
HARNESSING CERTAINTY TO SPEED TASK-ALLOCATION

ALGORITHMS FOR MULTI-ROBOT SYSTEMS

An Undergraduate Research Scholars Thesis

by

DENISE IRVIN

Submitted to the Undergraduate Research Scholars program at

Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by Research Advisor: Dr. Shell

May 2017

Major: Computer Science

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&M Repository

https://core.ac.uk/display/87267578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Page

ABSTRACT .. 1

ACKNOWLEDGMENTS .. 3

NOMENCLATURE ... 4

CHAPTER

I. INTRODUCTION .. 5

Research Question .. 5

Problem Description ... 8

II. RELATED WORKS ... 11

III. ALGORITHMS .. 14

Linear Constraint Removal ... 14

Estimation Algorithm.. 14

IV. RESULTS ... 16

Linear Constraint Removal Results .. 16

Estimation Algorithm Results ... 17

V. CONCLUSION ... 20

REFERENCES ... 21

1

ABSTRACT

Harnessing Certainty to Speed Task-Allocation Algorithms for Multi-Robot Systems

Denise Irvin

Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Shell

Department of Computer Science and Engineering

Texas A&M University

 Some problems are best solved by systems of multiple robots, in which each robot is

assigned one task. A multi-robot system can, upon the start of a series of tasks, compute the

optimal task allocation for best performance of the team. For certain systems, during runtime,

changes in the environment, tasks, and state of individual robots might change which allocation

of tasks to robots is optimal, and the performance of the team would improve if the robots

switched tasks. Because communication between robots is expensive, in some cases it is better to

calculate an interval in which changes in the environment, tasks, and robots are not significant

enough to render the original allocation suboptimal. This way, robots only initiate

communication and correction if the system is likely to switch tasks, which limits the costs of

communication and computation in the system. In the problem of task allocation of single robot,

single task cases where environments and thus optimal assignments are expected to vary over

time, some knowledge of the system might help reduce computation and make possible a more

scalable algorithm for determining cost changes. In some systems, some costs may be known not

to vary over time. This research proposes creating and analyzing cost matrices of assignments to

examine if taking advantage of the certainty of some variables will improve performance. If

2

successful, models for exploiting certainty of task allocation will take less computation than

calculating ranges for all variables, and will save resources during runtime.

3

ACKNOWLEDGMENTS

I want to thank Dr. Shell for the help and support he gave me while exploring this topic. It has

been a pleasure working with him.

4

NOMENCLATURE

SR Single Robot

ST Single Task

MRTA Multiple Robot Task Allocation

OAP Optimal Assignment Problem

𝐶 Cost matrix representing the costs of assigning a particular robot to a

 particular task; also called the Objective Function Coefficients

𝐶 The matrix containing the lower boundaries of the cost matrix 𝑐

𝐶 The matrix containing the upper boundaries of the cost matrix 𝑐

𝑋∗ The optimal assignment matrix for a OAP problem

𝜃(𝑋∗) A set containing all matrices c which for which 𝑋∗ is optimal

𝑉𝑣 Set of indices (𝑖, 𝑗) where 𝑐𝑖𝑗 < 𝑐𝑖𝑗

𝑉𝑐 Set of indices (𝑖, 𝑗) where 𝑐𝑖𝑗 = 𝑐𝑖𝑗

5

CHAPTER I

INTRODUCTION

Research Question

The multi-robot task allocation (MRTA) problem assigns tasks to robots while

minimizing a cost function, usually time, of a system completing all its tasks. This problem can

be generalized into an Optimal Assignment Problem (OAP), as described by Siciliano and

Khatib [1], and linear programming methods can be applied. Specifically, in this paper we

consider the single robot, single task, instantaneous assignment problem, SR-ST-IA, meaning we

are assigning exactly one task to exactly one robot without planning for future task allocation.

For a system with 𝑛 robots and 𝑚 tasks, an 𝑛 × 𝑚 matrix cost matrix, 𝐶 is typically given for

which each value 𝑐𝑖𝑗 is the cost associated with assigning the 𝑖-th robot to the 𝑗-th task. Without

loss of generality, we assume n = m, because dummy robots or extra tasks could be inserted

added to the system. The optimal assignment matrix, called 𝑋∗, is an 𝑛 × 𝑚 matrix where 𝑥𝑖𝑗 =

1 if the 𝑖-th robot is assigned to the 𝑗-th task, and 𝑥𝑖𝑗 = 0 otherwise. Mathematically, this

problem is defined by equations 1-5.

 min ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1 (1)

subject to

 ∑ 𝑥𝑖𝑗 = 1𝑚
𝑗=1 ∀𝑖, (2)

 ∑ 𝑥𝑖𝑗 = 1𝑛
𝑖=1 ∀j, (3)

 0 ≤ 𝑥𝑖𝑗 ≤ 1 {𝑖, 𝑗}, (4)

 𝑥𝑖𝑗 ∈ ℤ+ {𝑖, 𝑗}. (5)

6

We want to compute ranges uncertain costs can deviate without breaking optimality. This

range of costs lie in an 𝑛2-polytope called 𝜃(𝑋∗). Ideas from sensitivity analysis, (SA), discussed

at length in by Ward and Wendell [2] and Gal [3], analyzes the effects individual variables have

on the whole system and can be applied to create ranges for each individual assignment cost.

This problem often has multiple feasible solutions, where the assignment variables in 𝑋 are

partitioned into basic and nonbasic variables [4]. Basic variables are variables that correspond to

a vector, for a feasible basis. In the equation below, 𝐽𝑘 is an array of the indices corresponding to

basic variables, 𝑁𝑘 is an array of indices corresponding to nonbasic variables, 𝐵𝑘 is a set of

columns of the constraint matrix corresponding to basic variables and 𝐴𝑁𝑘
 is a set of columns of

the constraint matrix corresponding to nonbasic variables. A critical region, 𝑅𝑘, where 𝑘 is the

index of a feasible solution, is the area enclosed by the constraints of the basic variable set,

where optimality is guaranteed to be preserved, defined by equation 6,

𝑅𝑘 = { 𝐶 ∈ ℝ𝑛2 ∶ 𝐶𝑁𝑘
− 𝐶𝐽𝑘

𝐵𝑘
−1𝐴𝑁𝑘

≥ 0}. (6)

Lin and Wen discuss the degeneracy of the OAP [5], and that there may be more than one

basis corresponding to an optimal solution, so we must consider the union of all critical regions,

described by equations 7-8.

𝜃(𝑋∗) = ⋃ 𝑅𝑘𝑘∈𝐻 (7)

 Where:

 𝐻 = { 𝑘: 𝑋𝐽
∗

𝑘
= 𝐵𝑘

−1, 𝑋𝑁𝑘
∗ = 0 } (8)

7

In some situations, it is unreasonable or less useful to model the costs as static, scalar

values, because the costs are uncertain or expected to change over time. In cases where we a

priori know the bounds in which costs fluctuate, we can model bounds with matrices 𝐶, which

contains the upper limit of the costs of each assignment and 𝐶, which contains the lower limit of

the costs of each assignment. In our experimentation, we run tests where costs have an upper and

lower bound equal to each other, effectively fixing the cost and where costs have an upper and

lower bound of infinity and negative infinity, respectively. We introduce the notation 𝑉𝑣 as the

set of indices (𝑖, 𝑗) for each 𝑐𝑖𝑗 where 𝑐𝑖𝑗 < 𝑐𝑖𝑗. We define 𝑉𝑐 as the set of indices (𝑖, 𝑗) for each

𝑐𝑖𝑗 where 𝑐𝑖𝑗 = 𝑐𝑖𝑗.

For models with variable costs over time, the performance of the system can potentially

be improved by changing which robots are assigned to which tasks. An algorithm that calculates

the potential utility of a change in task allocation must either periodically poll each agent and

compute an optimal assignment, requiring expensive communication, or be triggered by a

significant change in cost of one of robot-task pairs. This is done by assigning the initial optimal

assignment, and then calculating the range of cost values an assignment can fluctuate while the

current allocation is guaranteed to be optimal [2]. If a range is violated, then the optimal

assignment algorithm is recomputed. These calculations are costly, and may be simplified in

systems where some of the costs are known to never fluctuate over time.

We consider four categories of certainty. The first category is complete certainty, where

no costs in the model are uncertain. The last category is complete uncertainty, in which all costs

are uncertain. Other systems possess mixed certainty, where some costs are known to be certain

8

and others expected to vary over time. We suggest breaking mixed certainty problems into two

categories: structured mixed certainty and unstructured mixed certainty. For a cost matrix where

each value is the cost of a particular robot performing a particular task, this paper identifies two

kinds of structured mixed certainty. The first case is where the cost of every task for a particular

robot is certain, and other robots in the system have uncertain values. In the 𝑛 × 𝑚 cost matrix,

where 𝑛 is the number of robots and m is the number of tasks, in the first case of certainty, the

rows representing robots with fixed costs have certain values. The second case is of structured

certainty is a system where the cost of performing a particular task is certain, regardless of the

robot performing it. A matrix representing this situation would be composed of whole columns

with fixed values and whole columns of ranged values. A case of unstructured certainty is a

system where some robot-task assignment costs are certain, but for a particular task the cost is

not certain for every robot and for a particular robot the cost for every task is not certain. In this

cost matrix, there is no guaranteed pattern to which costs are certain and which costs are

uncertain.

This paper builds upon research done in uncertain cost systems, particularly in work done

using ideas from sensitivity analysis like Ward and Wendell [2], Lin and Wen [5], and Nam and

Shell [6] to explore unstructured certainty, beginning with cases with relatively few uncertain

costs.

Problem Example

Let us consider an example case of unstructured certainty, shown in Fig. 1 and Table 1,

where only one cost value is uncertain. Say we have a terrain with destinations 𝐷1,2 and need

9

exactly one of our two robots 𝑅1,2 to report at each destination. The cost of assigning a robot to a

task is measured by the time it takes a robot 𝑅𝑖 to reach a destination 𝐷𝑗 . Because we assume

each robot is taking the shortest path and going at the fastest speed it can, all the costs are

known. Suppose there is a bridge between 𝑅1 and 𝐷1 that may be impassable, rendering the cost

associated for this assignment unknown, but within the bounds of 10, the number of minutes 𝑅1

takes to reach 𝐷1 when it can take the bridge, and 60 is the number of minutes it takes when the

bridge cannot be used.

Fig 1. Navigation Example Image. We have two robots 𝑅1,2 and two destinations 𝐷1,2, and our

goal is to have a robot in each destination in the shortest possible time.

Table 1. Navigation Example Cost Matrix (𝐶).

 𝐷1 𝐷2

𝑅1 [10,60] [20,20]

𝑅2 [30,30] [10,10]

The initial assignment of this problem is 𝑋0
∗ = (

1 0
0 1

) , if the cost used for the

assignment of 𝑅1 to 𝐷1 is the average of the two possible costs. Intervals can then be calculated

10

for how much the uncertain cost can change, before the optimality is violated and the task will be

performed faster if the assignments are switched. For this case, the threshold cost for the

assignment 𝑐11 = 40. If a few minutes into execution, 𝑅1 discovers the bridge to be impassable,

and recalculates the cost of execution to be 𝑐11 = 60, the tasks will then be reassigned so 𝑋1
∗ =

 (
0 1
1 0

). We are interested in determining how we can simplify the computation of intervals

where optimality is not violated when only some values are uncertain.

11

CHAPTER II

RELATED WORK

Sensitivity analysis, the field that analyzes how deviation of one or more values will

affect other values in a problem, has inspired techniques regarding how systems allocate tasks.

In 1990, Ward and Wendell [2] gave an overview of different approaches to sensitivity analysis.

The last method considered in the paper, the tolerance approach, is designed for multiple

deviations in variables. The maximum acceptable amount of deviation, or tolerance, is calculated

for each variable in the problem. This limit on deviation, or tolerance, is multiplied by 100% to

become the maximum tolerance percentage. This provides us with a basis to see how the percent

change in a variable changes the final solution, as well as affecting other variables. The original

tolerance method computes the overall tolerance, that is how much variables can simultaneously

perturbed, based on the objective function. A weakness of the tolerance method is that if the

optimal solution has alternate or near alternate optimal bases, the tolerance will be very small

and unable to find these other bases. A weakness of this solution is that, in many nontrivial cases,

the tolerance is close to zero. This approach has been extended to compute tolerances for

individual variables. Later, Filippi [7] proposed a geometric algorithm to improve individual

tolerances, with maximal ranges. These tolerance ranges are “safe,” meaning that a cost can

fluctuate in this range without breaking optimality, regardless of how other variables fluctuate.

Munkres [8] improved the Hungarian algorithm [9], a one time task-allocation

assignment algorithm with a graph-based approach that assumes all costs are stable scalar values.

In 𝑶(𝒏𝟑) time, the Hungarian algorithm finds the optimal assignment of a system. Shell and Liu

12

[4] modify this algorithm to create the Interval Hungarian Algorithm, which given an optimal

assignment problem, computes the ranges each cost variable can independently deviate before

optimality is lost. However, in a situation where robots keep track of how the cost of their

assignment varies over time, this interval is not a safe interval, because other costs could change,

and render the assignment suboptimal. In systems for which multiple costs are expected to

change, such ranges offer little guidance.

Nam and Shell [6] suggest breaking up the group of robots into cliques, and invoking

global communication when the costs of the cliques violates its safe interval. Robots then can

report costs locally and thus consider a tolerance range in a lower dimension that must be broken

before resorting to global communication (and computation).

In the same paper, the authors present an approximation algorithm for constructing 𝜽(𝑿∗)

that only takes the union of a variable number of critical regions. Because a critical region is

calculated from a basic variable set, the number of basic variable sets determine the number of

critical regions. There are 𝒏 + 𝒎 − 𝟏 basic variables in a basic variable set for the assignment

problem [1]. From equation 8 we see that all basic variable sets contain the 𝒏 variables where

𝒙𝒊𝒋 = 𝟏 in the original assignment, as well as 𝒏 − 𝟏 additional variables. These remaining 𝒏 − 𝟏

variables are chosen from the 𝒏𝟐 − 𝒏 variables for which 𝒙𝒊𝒋 = 𝟎, resulting in a possible (𝒏𝟐−𝒏
𝒏−𝟏

)

critical regions. However, as seen in equation 8, 𝑩𝒌 must be invertible, which only a subset of

basic variable sets satisfy. Therefore (𝒏𝟐−𝒏
𝒏−𝟏

) is an upper bound on the number of critical regions,

growing proportionally to 𝒏!. As a result, there is significant performance improvement in an

estimation choosing fewer critical regions and yielding high quality results in problems with

13

complete uncertainty. These estimates are acceptable approximations of 𝜽(𝑿∗) because critical

regions may overlap. We conduct an experiment based on this idea in the estimation algorithm

section. Unfortunately, because (𝒏𝟐−𝒏
𝒏−𝟏

) must be calculated when creating critical regions,

computations become intractable after 𝒏 = 𝟔 so experimentation is limited to smaller values of

𝒏.

Their technique assumes every cost in the system can fluctuate, which possibly

introduces unnecessary computation costs if there are some costs known to be static. In such

cases, the system exhibits “mixed certainty,” a property that describes systems with some costs

that are certain and some costs uncertain. Inspired by these authors, we consider leveraging this a

priori knowledge to simplify computation costs by widening intervals, first by removing

redundant constraints and second by considering a heuristic to choose critical regions to include

in a polynomial estimation algorithm for computing 𝜽(𝑿∗).

14

CHAPTER III

ALGORITHMS

Linear Constraint Removal

The 𝑛2-polytope that defines the area a cost matrix 𝐶 can fluctuate without violating the

original optimal assignment can be described by a series of linear constraints. These constraints

can be generated by considering basic variables and all critical regions. Each individual critical

region is bounded by (𝑛 − 1)2 linear constraints, each equal to the 𝐶 where each element is

multiplied by a corresponding coefficient from a unimodular matrix. When all variable costs in a

constraint have a zero coefficient, the linear constraint is trivial true, because all constraints are

satisfied by the original assignment. Therefore, such constraints can be safely ignored.

Depending on the size of 𝑛 and the ratio of variable costs to fixed costs, there will be different

ratios of trivial constraints to total constraints. Coefficients will never be zero for variables that

are a part of the original assignment, so this reduction is only useful in certain cases.

Estimation Algorithm

The estimation algorithm modifies the computation of the exact method by only

computing the bounds of some critical regions and taking their union, effectively choosing a

smaller 𝑘 in equation 7. The total number of critical regions grows factorially, while the number

of boundaries for each region is (𝑛 − 1)2, although as we discussed some of these constraints

may be trivial. Choosing a smaller number of critical regions therefore will cause a significant

improvement in performance.

15

However, computation is saved only if critical regions can be chosen before enumeration.

Currently, we enumerate critical regions in a random order. The goal of studying critical regions

is to develop a heuristic that chooses critical regions to allow for better estimates of 𝜃(𝑋∗) with

fewer enumerations than this randomized algorithm. As mentioned above, critical regions are

calculated in equation 6 with a basic variable set, containing the 𝑛 variables for which 𝑥𝑖𝑗 = 1 in

the original assignment, as well as 𝑛 − 1 additional variables. We tested heuristics that

prioritized critical regions that chose elements of |𝑉𝑣| as the additional basic variables, elements

of |𝑉𝑐|, and ratios of the two but found no method that could consistently compete with a random

ordering.

Upon analyzing critical regions with Monte Carlo, we found that, testing with 𝑛 = 3,4,5

with varying sizes of |𝑉𝑣| that not all critical regions accept any of the tests, meaning none of the

Monte Carlo tests appear in the area of a specific critical region. Generally, the number of

“empty” regions varies with respect to |𝑉𝑣|. Smaller |𝑉𝑣| values result in a smaller number of

“nonempty” critical regions that contain many samples and larger |𝑉𝑣| values mean many

nonempty critical region with less samples in each one. In fact, when |𝑉𝑣| is sufficiently small,

i.e. |𝑉𝑣| ≤ 𝑛, there is a single critical region that contains every accepted sample. This pattern

suggests that there is a general rule for which critical regions are needed to fully estimate the

problem. We hope future research will uncover a heuristic that predicts the necessary critical

regions for a given problem.

16

CHAPTER IV

RESULTS

Linear Constraint Removal Results

 To analyze patterns in percentages of where linear constraints are trivial, experiments

were ran with problems where 𝑛 = 3,4,5,6. For each value of 𝑛, 10 trials where ran and averaged

together. Separate trials where run where the number of unfixed costs, |𝑉𝑣|, was equal to 1, 2, 3,

4 and 12 and the results are shown in Graph 1 below.

Graph 1 shows how the percent of trivial constraints vary with respect to changes in 𝑛 and |𝑉𝑣|.

17

As is expected, the more unfixed costs in the problem the fewer number of trivial

constraints exist. The case |𝑉𝑣| = 12 is of note because for 𝑛 = 5, 48% or roughly half of the

costs can vary. Removing trivial constraints will not improve the asymptotic run time of

computing or testing if a point is in 𝜃(𝑋∗), runtime will be improved. This approach can be

incorporated with the estimation algorithm to further speed computation.

Estimation Algorithm Results

To test the quality of estimating 𝜃(𝑋∗) by only generating randomly selected critical

regions, trials were performed on problems with size 𝑛 = 5, for values of |𝑉𝑣| = 1,12,24,25

which represent a problem that is 4%, 48%, 96% and 100% uncertain, respectively. Tests

where ran by taking 100,000 samples of randomly permutated matrices. A quality of 1 indicates

that an estimation covers the whole area defined by 𝜃(𝑋∗). All results are shown in Graph 2 and

18

the first 800 regions of each test are shown in Graph 3 to more easily compare trials.

Graph 2 is the plot of the number of critical regions considered in the estimate against the how

complete the estimate is of 𝜃(𝑋∗) for when |𝑉𝑣| = 1,12,24,25. The line for |𝑉𝑣| = 25 has 0%

certainty and is therefore a baseline for comparison.

19

Graph 3 shows a larger view of the first 800 regions of the experiments of Graph 2.

From Graph 2, we see that in the different mixed certainty cases not all critical regions

are needed to reach perfect quality and there is a potential for improvement in performance. This

potential is most dramatic in the case |𝑉𝑣| = 1, where less than 50 critical regions needed to be

added together to reach full quality.

20

CHAPTER V

CONCLUSION

Mixed certainty task allocation problems have the opportunity for better performance

than complete certainty problems. We analyzed trivial linear constraints, and how depending on

the problem structure significant percentages of constraints can be removed. We also discussed

an estimation algorithm that can compute the partial or complete 𝜃(𝑋∗) by choosing to union

random critical regions. In the future, we will continue to research developing a heuristic for

choosing necessary critical regions by exploiting the mixed certainty known for a given problem.

21

REFERENCES

[1] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2008.

[2] J. Ward and R. Wendell. "Approaches to sensitivity analysis in linear programming." Annals

of Operations Research, vol. 27, pp. 3-38, 1990.

[3] T. Gal, Postoptimal analyses parametric programming and related topics. McGraw-Hill,

1979.

[4] L. Liu and D. Shell, “Assessing optimal assignment under uncertainty: An interval-based

algorithm,” Int. J. of Robotics Research, vol. 30, no. 7, pp. 936-953, 2011.

[5] C.-J Lin and U.-P Wen, “Sensitivity analysis of the optimal assignment,” Euro. J. of

Operational Research, vol. 149, pp.35-46, 2003.

[6] C. Nam and D. Shell, “When to do your own thing: Analysis of cost uncertainties in multi-

robot task allocation at run-time,” in Proc. of IEEE Int. Conf. on Robotics and Automation,

2015, pp. 1247-1254.

[7] C. Filippi, “A fresh view on the tolerance approach to sensitivity analysis in linear

programming,” Euro. J. of Operational Research, vol. 167, pp. 1-19, 2005.

[8] J. Munkres, “Algorithms for the assignment and transportation problems,” Journal of the Soc.

for Industrial and Applied Mathematics, vol. 5, no. 1, pp. 32-38, 1957.

[9] H. Kuhn, “The hungarian method for the assignment problem,” Naval Research Logistic

Quarterly, vol. 2, no. 1-2, pp. 83-97,1955.

