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ABSTRACT 

Investigation of Pedestrian-Cyclist Interactions through Machine Vision 

 

George Francis Gillette II 

Department of Civil Engineering 

Texas A&M University 

 

Research Advisor: Dr. Dominique Lord 

Department of Civil Engineering 

Texas A&M University 

 

 

For pedestrian-cyclist facilities where collisions and resulting injuries may not be fully 

covered in police reports, there is a need for improved safety indicators. After fifteen hours of 

video observation at Pickard Passageway, College Station, there appears to be four broad types 

of pedestrian-cyclist interactions: passing, weaving, turning, and avoiding. Within each of these 

behavior categories, there are both safe and unsafe maneuvers. In order to determine whether an 

event should qualify as a safety-critical event or near-miss, multiple factors should be taken into 

account, including relative distance, sudden change in velocity, and sudden change in path. 

While an improved understanding of the general interactions between pedestrian and cyclists in 

these underpass facilities can lead to an improvement of the safety research field, analyzing each 

path manually would take a prohibitively excessive time. This paper suggests ways in which 

machine learning can implement the behavior categorization of pedestrian-cyclist interactions for 

safety evaluation at pedestrian-cyclist facilities throughout the identification, classification, and 

safety evaluation phases.  
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TERMINOLOGY 

 

The following terminology is employed throughout the thesis. It will be explained in 

context, and this section functions as an easy reference to the general definition of each of these 

terms. 

 

Pedestrian-Cyclist Interactions Any near-misses, conflicts, or collisions between a cyclist 

and a pedestrian. 

 

Pedestrian-Cyclist Under/Overpass Pedestrian-cyclist facilities that go above or below roadway 

grade to separate pedestrians and cyclists from motorized 

vehicles and provide improved safety conditions. 

 

AdaBoost  Boosting algorithm designed to create a strong classifier 

from a set of weak classifiers (~50%). 

 

Background Subtraction Image processing method to remove pixels associated with 

the background by assuming the background is composed 

of the pixels that did not move between frames. 

 

Kalman Filter Algorithm that inputs speed, direction, and position over 

time to generate an optimized future prediction. 

 

OpenCV A library of programming functions aimed at real-time 

computer vision. These are written in C++. Bindings and 

wrappers exist in Python, Java, Matlab, Octave, C#, Perl, 

Ch, Haskell, and Ruby. 

 

Hard-Negative Training Process in machine learning where the inputs are explicit 

false positives and the output is correct false classification. 
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CHAPTER I 

INTRODUCTION 

 

In recent years, there has been an increased effort to improve vehicle-pedestrian and 

vehicle-cyclist interactions through the form of safety initiatives, integrated road networks, and 

awareness campaigns. These steps reflect a generally positive progression towards a safer 

infrastructure for pedestrians and cyclists; however, they tend to not address the interactions 

between pedestrians and cyclists. Pedestrian-cyclist interactions are when a pedestrian is in 

conflict with a cyclist, instead of with a motor vehicle. While the majority of these conflicts will 

occur on sidewalks or in neighborhoods, one particular area wherein pedestrian-cyclist 

interactions are prevalent are pedestrian-cyclist underpasses and overpasses. These bridges can 

either go over the pre-existent structures (overpass) or underneath them (underpass). Their 

primary benefit is to create an alternative pathway for pedestrians and cyclists separate from 

motor vehicle traffic. 

Designed to improve safety of travel for pedestrians and cyclists, these passageways may 

still present a risk of collision for pedestrians compared to at-grade (e.g. sidewalks) alternatives. 

Even though motor vehicles have been removed from the equation, higher-speed vehicles – 

cyclists – are present. While underpasses/overpasses have a mix of traffic, they do not have the 

same level of traffic control and coordination. Accordingly, a risk of collision between 

pedestrians and cyclists may exist without preventative measures. Although they typically result 

in less severe injuries, Chong et al. indicate that pedestrian-cyclist collisions still can result in 

injury and do send people to the hospital (1). 
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One of the issues in evaluating pedestrian-cyclist facilities is the lack of a fundamental 

measure that quantifies their safety. The primary method to measure the safety of pedestrians and 

cyclists is to evaluate the crash data. Unfortunately, the data available is quite limited; especially 

for underpasses and overpasses. Efforts have been made to improve evaluations of crashes for 

pedestrians and cyclists, such as encouraging agencies to use the Pedestrian Bicycle 

Categorization (PBCAT) tool from the Pedestrian Cyclist Information website, but these crash 

evaluation methods are concerned with vehicle-pedestrian and vehicle-cyclist interactions (2). 

Other methods of evaluation for pedestrians and cyclists include Bicycle and Pedestrian Level of 

Service Ratings and Walking Security Index (3,4). However, both of these metrics are relative 

and indirect measures of safety based upon the site characteristics.  

In order to gain an understanding of the safety conditions in a pedestrian-cyclist 

environment, the current body of research requires a significant time investment wherein the 

team gathers a significant amount of video data, collects surveys, and performs other traditional 

safety evaluations. Once the data is collected, student workers typically have to work for several 

months to complete the data reduction. While efficient on the cost-scale, these tasks cannot be 

objectively quantified or compared between student workers. Accordingly, without a consistent 

machine vision approach to analyze safety critical components of the interactions, a holistic 

measure that adequately represents the safety of a pedestrian-cyclist facility cannot be developed. 

This paper suggests the development of an objective measure to quantify the number of 

near-misses of cyclist-cyclist and pedestrian-cyclist interactions and ways in which machine 

learning can be applied in future studies to estimate this measure.  Through these near-misses 

from video footage, an objective measure of safety for these passageways can be applied and 

unsafe locations can be properly identified for remedial engineering. 
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CHAPTER II 

METHODOLOGY 

This chapter documents the methodology for how the data was gathered and subsequently 

discusses potential analysis paradigms in machine learning to evaluate the data. The first section 

describes the location and process for the data collection. The second section introduces potential 

machine learning solutions. The third section discusses the ways in which safety critical events 

can be evaluated. 

Video Collection 

In order to conduct this research, the first step was to choose a pedestrian-cyclist facility 

that would provide enough representative data to collect pedestrian cyclist interactions and 

merge them into similar categories. For this reason, the research team decided to focus on 

facilities with potential conflicts to ensure an adequate interaction sample size. After 

investigating these sites, Pickard Passageway was chosen. An aerial view of the facility from 

Google Earth (left) is provided alongside a wide-view picture on top of West Campus Garage 

(right) for perspective in Figure 1.  

  

FIGURE 1 – Aerial and Side View of Pickard Passageway 
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Pickard Passageway is an example of a pedestrian-cyclist facility in College Station, 

Texas. It was chosen for its unique blind corner at the T-intersection, which may allow for more 

pedestrian-cyclist interactions to be observed.  The video data was gathered from a camera 

placed in the window of West Campus Garage pointed with an aerial view of Pickard 

Passageway. The red box on Figure 1 illustrates the study space on the Google Earth image.  

This data collection process spanned over the course of one month, and collected 

approximately 15 hours of video footage. Four camera configurations were used to offer 

differing perspective angles and heights of observation. In further detail, there were two 

configurations per floor, with two floors (4th and 5th) chosen. These two floors were chosen in 

order to minimize privately identifying information while ensuring enough detail for image 

processing evaluations. The two configurations were the sites on the staircases closer to the West 

Campus Garage and the Recreational Center approaches respectively. Additionally, each of the 

four locations acquired the same number of hours. Approximately three hours of daytime data 

were collected at each site, and about forty minutes of nighttime data. Although the pedestrian-

cyclist facility had sufficient lighting infrastructure, the nighttime data was recorded in small 

amounts in order to observe any potential difficulties of the process. After reducing the video 

data, some of the viewpoints allow for improved viewpoints of segments of the passageway, 

while obstructing others. For example, the lower angled configuration may have a small portion 

of the center of the passageway obstructed from view due to a tree in the line of sight. However, 

the higher angled configuration might result in losing details from farther along the passageway. 

Accordingly, one must plan ahead in terms of the interested line of sight and overall study area 

before planning camera configurations at the study site. From a rudimentary post-reduction 
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sensitivity analysis, future practitioners will have a better understanding of appropriate use cases 

for the analysis. 

Behavior Grouping 

 In order to understand the natural behaviors and interactions of the pedestrians and 

cyclists of the underpass, the manual footage was reduced to instances of pedestrian-cyclist 

interactions. Pedestrian-cyclist interactions were defined as any time in which a pedestrian or 

cyclist’s path influenced the path of another pedestrian or cyclist. While this definition remains 

relatively broad, it allows for a simple approach to analyzing all types of pedestrian-cyclist 

interactions and their relative safety when compared to one another. For example, a pedestrian 

walking on one side of the passageway and a cyclist speeding down on the opposing side would 

not be determined as an interaction, as neither’s behavior influenced the path of the other. 

However, if in a hypothetical scenario wherein a cyclist abruptly turns in front of the pedestrian’s 

apparent path, then this would be determined as an interaction.  

At the beginning of the video reduction period, there were no pre-defined categories for 

which pedestrian-cyclist interactions would be observed. By maintaining our broad definition for 

a pedestrian-cyclist interaction, all of the possible types of interactions can be gathered. Once 

each pedestrian interaction was recorded, the portions of the video around the pedestrian-cyclist 

interaction were revisited to attempt to group similar interactions. For example, if a cyclist 

swerved to avoid an incoming cyclist, the seconds preceding the interaction as well as the 

seconds after the interaction would be observed for any distinguishable features. The interactions 

recorded in an Excel sheet each had a line of information, documenting the time in the video 

when the pedestrian-cyclist interaction took place, the preceding events and actions of the two 

actors, and the possible categorization of the event in terms of the type of behavior observed. In 
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review of each of these pedestrian-cyclist interactions, the overarching goal was to identify 

similar events to better understand pedestrian-cyclist interactions and categorize which sets of 

behaviors may translate to unsafe situations.  

 While many of these interactions may be subjectively evaluated differently by human 

observers, they may exhibit similar visual traits that cue certain people to the safety critical 

nature of the event. For example, many might believe that the closeness between the entities 

would determine its safety, whereas others may cite the importance of their velocity. For this 

reason, a systematic approach to the evaluation of a pedestrian-cyclist interaction should be 

developed through established image processing and machine learning techniques. 

Machine Learning 

As a broad field, machine learning falls under artificial intelligence as a method to 

develop programs that adapt or change when exposed to new data. While the growing popularity 

and usage of these techniques can be traced to the advent of higher power computing, machine 

learning is a well-researched field dating back to the 1950s. In order to properly classify 

pedestrians and cyclists, there are a wide variety of approaches taken by the image processing 

community. These include, but are not limited to, neural networks, Haar features cascade 

training through the Viola-Jones framework (5), and Histogram of Oriented Gradients (HOG) 

training (6). However, in the realm of image processing and pedestrian-cyclist classification, the 

accuracy of these efforts can sometimes be jeopardized by the unique and difficult conditions per 

the viewing environment. To demonstrate this concept with a controlled dataset, the OpenCV 

library Linear Support Vector Machine (SVM) trained with HOG for pedestrian classification 

was run on the INRIA dataset (7). 
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The complete training and testing datasets for this project comes from the Daimler cyclist 

(8) and INRIA pedestrian (6) benchmarks. For the sake of clarity, the original INRIA pedestrian 

dataset was developed to test the HOG method for pedestrian-cyclist detection. These datasets 

are collected natural footage of pedestrians and cyclists in a number of different environments. 

However, this dataset was first generated with multiple objects of interest per image with many 

irrelevant detractors in the image. In order to ensure an adequate training process, a script was 

developed to input the text annotation files describing the number and location of persons in the 

image, perform rudimentary analysis to determine the positions of the persons within each 

image, and output a complete image training dataset with each image pertaining to only one 

person. In this situation, there are few errors and a relatively successful classification effort. This 

test represents an optimum case for identifying pedestrians, and does not perform as well under 

varying light and distance conditions. 

For situations with weak classifiers (~50% accuracy), boosting algorithms can be applied 

to improve results; one such example would be AdaBoost. AdaBoost is one specific example of a 

boosting algorithm by which weak classifiers can be combined to form strong classifiers. A 

candidate set of weak classifiers was developed from a literature review of other AdaBoost 

implementations in pedestrian detection, particularly from work done by Wang et al. (9). One of 

the prerequisite statements of the AdaBoost assumption is that the weak classifiers are at least 

greater than 50% accurate. In order to ensure this assumption is not violated in this application, 

each of the candidate measures should be tested and validated prior to application. The unique 

benefit of applying a wide range of measures is that AdaBoost determines the appropriate 

weighting and success cases for each of the individual classifiers. These measures are: 

 



11 

 Intensity Histogram 

 Linear Binary Pattern 

 Histogram Oriented Gradients 

 Haar Features 

 First Order Statistics (Mean, Standard Deviation, Skewness, Kurtosis) 

 Second Order Statistics (Correlation, Energy, Homogeneity) 

 Hu’s Invariant Matrix 

Within the classification process, there are two juxtaposing and competing problems; 

locating a region of interest and identifying the classified object within that region. Since the 

video recording will be intended to capture a wide area of pedestrian-cyclist interactions, 

determining the relevant region of interest presents its own challenges. To overcome this 

challenge of identifying the relevant region, background subtraction will be applied to the 15 

hours of pedestrian-cyclist footage. Although there are a host of widely available models for the 

task, the specific implementation and successful performance depends heavily upon the tuning 

parameters. Despite these adjusted values, certain shakiness in the video was captured by the 

background subtraction. Whenever the leaves moved on the tree or the light changed on the 

overhanging concrete from the overpass, the object may be considered no longer part of the 

background. A simple contour edge detection developed by OpenCV, the Douglas-Peucker 

algorithm, was applied to the background-subtracted photo, and these results are shown in Figure 

2 (10). Although the algorithm successfully identifies four of the moving entities in this image, a 

false positive does occur. The slight motion of the tree along with its significant contour area 

cause the algorithm to falsely identify it as a moving entity. This is shown by the red circle in 

Figure 2. 
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FIGURE 2 – Sample Background Subtraction 

 The black segments of the image represent the background, as it is the part of the image 

with minimal motion. In order to adequately estimate whether a near-miss event occurred or 

whether it was a typical pedestrian-cyclist interaction, precise information regarding the updating 

position of the pedestrian and cyclist must be obtained. For a given lighting situation, the shadow 

extracted version of the background subtraction algorithm applied above can give a strong 

indication as to the ground for the pedestrian or cyclist. Since the passageway has a unique 

curvature (downhill from all paths towards the center), utilizing the lowest point where the 

pedestrian or cyclist is touching the ground provides a common comparison point for conflict 

analysis. Additionally, to sift between false positives and minimize any missed pedestrians or 

cyclists, a few simple rules have been added to the algorithm to remove contours with limited 

area and boxes that do not represent a general pedestrian or cyclist shape (i.e. large proportion 

rectangles, 20:1 ratio). However, despite these efforts to remove false positives, the tree was 

unable to be removed. In future efforts, an iterative user process to harness the power of hard 
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negative training could be applied. The following paragraphs discuss a potential option for future 

development through guided machine learning in pedestrian-cyclist classification and near-miss 

analysis. 

The user would then be presented a randomly generated set of images from the video 

collection, and request the user’s feedback as to whether the bounding box contains a pedestrian, 

cyclist, or neither. After the first training phase, the coefficient for the AdaBoost algorithm is 

adjusted, and a new set of images are presented. The new set is generated for hard-negative 

training, a process by which the previous false positives are correctly identified. A performance 

measure and confidence in current classifier is given to the user and the user can decide what the 

appropriate confidence is for their application. This application for specific safety-related 

analysis would require a high level of confidence and would therefore encourage further 

iterations towards higher confidence levels. However, if the algorithm is trained with an excess 

portion of the dataset, the model may be over-trained and perform poorly on dissimilar datasets. 

Accordingly, a reasonable balance must be struck between providing enough training data to 

acquire an appropriate confidence level while preventing the model from becoming overfit.  

Quantifying Safety Critical Events 

At the fundamental level for near-miss analysis, the goal is to observe patterns of 

behavior that relate to or cause unsafe conditions and events. However, since pedestrian-cyclist 

interactions are heavily situation dependent, near-misses can appear vastly different from 

instance to instance. When the event happens in close focus of the camera, the relative distance 

between the two entities in terms of pixels may appear quite far apart. While watching the event 

though, it becomes apparent that the pedestrian or cyclist had to take significant action. 

Accordingly, multiple indicators should be taken into consideration when deciding whether an 
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event is safe or unsafe, or whether it should be classified as a near-miss or as an intentional 

detour to avoid conflict. Derived from both independent and interrelated properties of near-miss 

events and pedestrian-cyclist interactions, the three primary characteristics are sudden changes in 

velocity, proximity of distance to another entity, and sudden changes in path. Whereas the first 

two characteristics can be directly measured from the contours in the previous steps, the 

evaluation of “sudden changes in path” seems quite subjective: at what point should the event be 

determined to have a sudden change in path? To develop the methodology surrounding the 

sudden change of path algorithm, the first step was to evaluate known extrapolation methods and 

see how future path can be predicted. Once a future path can be predicted, the sudden change in 

the current path could be better predicted. 

As one example, the Kalman filter is an iterative process of predicting and updating a 

projected state that can account for noisy data (11). Once each of these moving entities are 

appropriately classified as pedestrians and cyclists through the application of the AdaBoost-

trained algorithm within the frame of the video, then a Kalman filter is applied to determine its 

future position and speed. The process for applying this is shown in Figure 3. 

 

 

 

 

 

 

FIGURE 3 – Iterative Kalman Filter Process 

1. Predict future state 

2. Project error covariance 

1. Compute the Kalman Gain 

2. Update estimate 

3. Update error covariance 
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Specific to this analysis, the fundamentally most important part of the Kalman Filter is 

the Kalman Gain. The Kalman Gain provides an estimate of how much to adjust the estimation 

by given the true measurement. Since the analysis is undertaken posteriori, the true future 

position and speed of any given pedestrian or cyclist is already reduced and analyzed. 

Accordingly, the deviations between the predicted future position provided by the Kalman Filter 

and the true future position will determine when and where the pedestrian or cyclist drastically 

changed paths. The Kalman Gain is calculated as shown below, where Kk stands for the Kalman 

Gain, Pk
- represents the a priori estimate error covariance, Rk represents the measurement error 

covariance matrix, and Hk and Hk
T

 stands for the observation and transposed observation matrix 

respectively. 

      𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1     (Eq. 1) 

Accordingly, a lower Kalman Gain would indicate that the prediction a priori has a closer 

match to the truth a posteriori and vice versa. A suddenly large Kalman Gain would show that a 

sudden change of direction took place. However, the suddenness and degree of change for 

Kalman Gain depends on several initial parameters. For example, if the framerate is excessively 

quick, then the Kalman Gain will routinely be smaller. The reason for this is that the time 

difference between state estimations will be smaller and the distance between each subsequent 

estimation step will be similarly reduced. Additionally, the location under analysis may also 

impact the way Kalman Gain should be interpreted. For example, if the path in the video frame 

features a long straight segment followed by a sharp curve, then the Kalman Gain would indicate 

a large shift at the point of the curve. This point would not be a near-miss; rather, the shift in the 

value for Kalman Gain would predominately be caused by the geometry of the road. Ideally, 

additional preliminary variables can be included in the Kalman Filter estimation in order to pre-
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define the facility geometry and give an underlying shape to the early predictions. Finally, if the 

pedestrian or cyclist decides to completely change paths in the opposing direction, the Kalman 

Filter will indicate a significant shift in gain, despite no conflict with opposing actors. 

While the Kalman Filter provides a reasonable estimation of future data points, there are 

a number of alternative forecasting methods that could be employed, such as weighted-

smoothing, time series decomposition, or autoregressive integrated moving average (ARIMA) 

model (12). The fundamental necessity for the Kalman Filter algorithm is a prediction of future 

position, and any number of these alternative methods could function in this role. The near-miss 

event will be largely determined by the deviation between predicted and true paths within 

proximity to another actor (pedestrian or cyclist).  However, computing the full predicted path at 

each time step seems computationally steep. A simple local regression model can be fit to 

provide an approximation of the path direction. Then, the areas of large difference between the 

predicted curve and the true curve will indicate where there were significant changes of 

direction. This concept is illustrated in the two graphs from Figure 4. These two graphs represent 

the simulated trajectory of a cyclist going along the passageway, with the first graph showing no 

disruption and the second graph showing a pedestrian-cyclist interaction. By monitoring the 

absolute value of the difference between these two paths, the location and time of the event can 

be narrowed down.  The red circles on Figure 4b demonstrate where the algorithm detects 

significant or sudden path changes. 
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(a) Sample Trajectory of Smooth Path 

 

 

(b) Sample Trajectory of Pedestrian-Cyclist Interaction 

 

FIGURE 4 – Path Differences for Near-Miss Identification 
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Before applying these ideas to evaluate the relative safety of a pedestrian-cyclist facility, 

further research must be conducted regarding the path prediction and near-miss determination 

methodology. For example, if the true paths of pedestrians and cyclists were analyzed and 

applied as ground truth models for the general shape of the trajectories, the models could be 

more adequately tuned to individual pedestrian and cyclist choices on that path. Another way to 

improve prediction would be to further break down the ground truth path choices by actual 

pedestrians and cyclists into types of pedestrian-cyclist interactions. In order to robustly handle a 

variety of geometric facilities, the model should be able to predict in a multi-dimensional space.  

Chapter Summary 

 This chapter has described the nature of the data analyzed and discussed the multiple 

avenues for future progress in machine learning and pedestrian-cyclist interactions. Specifically, 

this chapter reviewed the state of the industry, evaluated current pedestrian classification through 

OpenCV, and explored ways in which safety critical events may be identified. The next chapter 

describes the video observation results and how they relate to future machine vision applications.  
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CHAPTER III 

RESULTS 

This chapter reviews the data from the video observation period. The first section details 

the four primary pedestrian-cyclist interaction behaviors observed. The second section discusses 

how the process can be generalized and how any pedestrian-cyclist facility can be evaluated. 

Video Observations 

During the manual reduction of the video data, some interesting qualities of near-miss 

interactions between pedestrians and cyclists were observed. Firstly, there can be different visual 

cues depending upon the type of near-miss. One might assume a threshold for a constant number 

of pixels to function as a near-miss classifier. However, this assumption may fail in over and 

under-classification. For example, if the cyclist and pedestrian are both in the same line of sight 

to the camera, then their interaction may appear to be a near-miss, despite being several feet 

apart. In terms of under-classification, near-miss interactions between cyclists travelling in 

opposing directions may have several pixels of separation. Despite this separation, this event is 

still a near-miss; if evasive action was not taken, their paths were likely to collide. Due to their 

increased speeds, cyclists must take evasive maneuver a significant distance in advance; 

accordingly, the pixel threshold that may be assumed as a near-miss between pedestrians and 

cyclists would not apply for cyclist-cyclist interactions.  

Secondly, the near-miss behaviors of cyclists with pedestrians and other cyclists can be 

summarized under four general categories: passing, weaving, avoiding, and turning. Similarly to 

the PBCAT classification of conflicting events between pedestrians-vehicles and cyclists-

vehicles, the manual reduction of the video generated general categories of near-miss events that 

summarize the ways in which cyclists and pedestrians could interact. However, these categories 
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were those observed from the manual reduction of the video; within other geometric 

configurations or situations, it could be easily conceivable that alternative conflicts could arise. 

While this list provides a groundwork for understanding the conflicts between pedestrians and 

cyclists, further analysis should be undertaken to ensure all potential events are considered. 

There were a total of 31 pedestrian-cyclist interactions. While this number seems 

disproportionately low relative to the total hours observed, the criteria for an interaction is 

relatively strict – the path of one entity must influence the other, whether it occurs in a safety-

critical event or not. On a large facility such as Pickard Passageway, much of the traffic occurs 

such that two entities are travelling independently. Accordingly, after collecting the footage from 

these 31 instances, it was found that each of these behaviors did not carry an inherent risk to 

them – passing, weaving, turning, and avoiding each could be a safe or unsafe maneuver. Within 

these four groups; however, there were examples of how a maneuver could be performed with a 

higher or lower degree of risk.  In the passing condition, the primary factor in increased risk 

associated with the maneuver was the degree of the turn the cyclist took. Passing typically occurs 

between a cyclist and a pedestrian, though it may also apply to the dynamic of a faster pedestrian 

and another pedestrian. In the yellow box (a), note how the cyclist angle with the ground is 

relatively upright; in contrast in the red box (b), note how the cyclist is at a much closer angle to 

the ground and with fewer pixels separating them. These sorts of interactions are very common 

on shared-use passageways, such as Pickard Passageway. Weaving can be seen as an 

ideologically similar behavior to passing, but occurs under different circumstances. While 

observing the footage, the behavior during weaving segments with higher density was distinctly 

different and deserved its own category. Note in the yellow box (c) that the cyclist takes a 
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minimal deviance, straight path through two groups of pedestrians, whereas in the red box (d) the 

cyclist forces their way through a group of three pedestrians.  

The third and fourth category of pedestrian-cyclist interactions are turning and avoidance 

respectively. Both of these behaviors share similar goals, with a pedestrian or cyclist making 

their way from point A to B with a small deviation (a turn or avoidance) along the way. Turns 

are unique in that the angle of the cyclist in taking the turn, the amount of space given to the 

pedestrian, and the amount of time the pedestrian was forced to wait can impact the overall 

safety and quality of the intersection. While turning may appear similar to passing, passing is in 

the same direction of travel of the other pedestrian or cyclist and turning is generally 

perpendicular to the other pedestrian or cyclist. In general, turning points are critical in 

pedestrian-cyclist design as these segments highlight the issues of a large speed differential with 

minimal (if any) traffic guidance in most pedestrian-cyclist facilities. Safe and unsafe versions of 

these behaviors can be seen in e and f for turning, and g and h for avoidance. Images are shown 

in Figure 4 for reference. 
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(a) Passing – Lower Risk (b) Passing – Higher Risk 

  

(c) Weaving – Lower Risk (d) Weaving – Higher Risk 

  

 

 

 

 

(e) Turning – Lower Risk (f) Turning – Higher Risk 

  

 

 

 

 

 

(g) Avoiding – Lower Risk (h) Avoiding – Higher Risk 

FIGURE 5 – Types of Pedestrian-Cyclist Conflicts 
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Generalized Process 

 Although it would be ideal if these four categories represented all types of behaviors and 

interactions between pedestrians and cyclists, it is highly unlikely. The primary reason for this 

are the geometric considerations. Since the footage for this project was taken from Pickard 

Passageway at its T-intersection, the majority of the movements were influenced by the 

geometry. For example, avoidance maneuvers had to be taken if a pedestrian was inside of the 

cyclist lane and the cyclist just finished performing their turn. Additionally, Pickard Passageway 

maintains a relatively steep downward slope from each of the three legs towards the center. 

Accordingly, while the results cannot be immediately applied to all pedestrian-cyclist facilities, 

the process can be adapted for an improved perspective on the pedestrian and cyclist safety at a 

given facility.  

 The process can be generalized into three steps: video observation, analysis of safety 

critical events, and safety evaluation. The video observation phase provides two key pieces of 

information. Firstly, it provides a ground truth dataset. While there are flaws associated with 

manual data reduction, such as limitations of reproducibility and human error, manual data 

reduction remains the industry standard for these forms of safety evaluations and allows for 

sufficient testing. Additionally, the video observation phase highlights any and all pedestrian-

cyclist interactions for further viewing. The second step in the process is to analyze these safety 

critical events, both manually and algorithmically. Since the interactions may be unique by site, 

the number of and types of interaction categories may vary. Manual analysis allows for 

researcher intuition, and the categories can be better refined to the exact geometry. The 

algorithmic analysis can provide further information about the types of features in each of these 

behaviors. For instance, the videoclips with the interactions can be analyzed for the severity of 
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path or velocity change, the density surrounding the event, or the proportion of cyclists and 

pedestrians. If desired, these metrics could be clustered into similar groups and the behavior 

groupings determined from these clusters. Finally, the safety of these behaviors must be 

determined. While this is more subjective, the video observation and safety critical metrics 

provide the information required. The relative safety can be determined from the video, and the 

difference between the safe and unsafe interactions should be marked with significant differences 

in the safety critical metrics.  

Chapter Summary 

 This chapter has evaluated the video observation results and discussed the value of the 

results in the broader industry. Specifically, this chapter introduces four pedestrian-cyclist 

interaction behaviors and provides a generalized process to extend the results of this project to 

other pedestrian-cyclist facilities. The next chapter concludes the report and summarizes 

previous chapters, along with suggestions regarding future research. 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 Chapter 1 underscores the issue of pedestrian-cyclist facilities and the need for improved 

safety metrics. Chapter 2 explains how the data was collected and explores the potential 

interactions and uses of powerful machine vision algorithms to analyzing pedestrian-cyclist 

interactions. Chapter 3 discusses the findings of the video observation data and frames it within 

the context of potential future development. This chapter will summarize the critical features of 

the report in the first section, and suggest future avenues for development in the second section. 

Primary Takeaways 

Pedestrian-cyclist facilities provide convenient access points that are intended to improve 

safety conditions and improve the travel time and experience for pedestrians and cyclists in the 

area. However, without metrics to evaluate the safety and near-misses through an efficient or 

objective means, it is difficult to determine the optimum design criteria for these facilities. 

Accordingly, this project aimed to fill this research gap and define the general modes of 

pedestrian-cyclist interactions, evaluate the possibility of using machine learning applications 

that can automate the analysis process and minimize costs to interested state agencies, and 

discuss the future research potential of the project to perfect the near-miss method. A few critical 

points from this project are shown below: 

 Over the course of 15 hours, pedestrian-cyclist video data was sampled across 

multiple lighting, volume, and time of day conditions. Through manual 

observation, a total of 31 pedestrian-cyclist interactions were cataloged. After 

reviewing the segmented portions of the video data with manually recorded 
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pedestrian-cyclist interactions, the behaviors were reduced to four general 

categories of behaviors: passing, turning, avoidance, and weaving.  

 While many of these behaviors share common features of path change, proximity 

to other entities, and velocity change, there are distinct differences within each. 

The primary differences are in the intent of the action, gleaned by careful video 

observation, and the situation in which it occurs. For each of these types of 

behaviors, there are safe and unsafe versions of the behavior. For example, if a 

cyclist attempts to weave through a mixed crowd including cyclists, the risk is 

much higher since the collective speed is higher and there are more entities to 

consider.  

 Machine learning provides a wide array of potential solutions for the analysis of 

pedestrian-cyclist interactions, ranging from AdaBoost to ARIMA models. Due to 

the innate difficulty of classifying pedestrians and cyclists in unique environments 

or the challenge of predicting future paths, there will be small proportions of false 

positives and negatives. Through future development, these issues can be resolved 

and these algorithms can save significant amounts of time for researchers and 

improve safety for pedestrians and cyclists. 

Future Research 

 There are two general paths for future development of this project: algorithmic 

improvement and applicability. Within the algorithm, the classification and path prediction are 

the areas with the greatest potential improvement. Pedestrian and cyclist classification remains a 

daunting task in unique environments, and further efforts should be made to improve the 

methodology. HOG-trained models have shown success in pedestrian identification in the past, 
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but adaptive algorithms should be considered in order to handle the unpredictable and difficult 

nature of the pedestrian-cyclist environment. One such example would be a minimal-feedback 

AdaBoost system. This system would use the background-subtracted contours from a test 

environment as the training dataset. Then, the researcher would be questioned as to the 

classification of the box – pedestrian, cyclist, neither. By using the context of moving cyclists 

and pedestrians within a pedestrian-cyclist facility, the task of generating a training dataset is not 

insurmountable. Another way in which the algorithm could improve is in its path prediction. 

While local regression appears to adequately represent sudden changes of path choice, another 

way in which the typical paths could be determined would be through another learning 

application. Using the trajectories of the known entities after classification, a map of the typical 

pedestrian or typical cyclist paths can be determined. Then, when a pedestrian or cyclist begins 

along a certain path, a general structure is applied to their time series and the local regression 

model will be more representative of the pedestrian or cyclist path choice. 

 Another area of future development would be applicability. This paper explores a variety 

of potential metrics that could be applied to estimate the safety of an interaction. Accordingly, 

future research efforts should narrow down the most critical metrics and their thresholds (path, 

velocity, density, etc.) across a wide variety of volume conditions and geometries. From this 

information, these proxy safety metrics can be compared across multiple situations to determine 

an ideal threshold for pedestrian-cyclist safety given the conditions and peak hours. Similarly to 

how crash modification factors allowed road designers to get a better understanding of how 

various roadway design features influenced crash safety, an improved pedestrian-cyclist safety 

metric could lend itself to more uniform and improved pedestrian-cyclist facility designs in the 

future. 
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