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PART I - THEORY 

1.1 INTRODUCTION AND STATEMENT OF THE 
PROBLEM 

It has been stated by various experts in held maintenance 
of rotating machinery such as Charles Jackson of Monsanto 
Corporation that over 90% of the held service problems in
volved with vibrations in turbomachinerv have been associated 
with misalignment and unbalance of th� equipment. 

In modern petrochemical plants and utilities the cost of 
down time of a compressor or turbine due to the correction of 
vibration problems can amount to $50,000 to $100,000 a day. It 
is therefore highly desirable that field service engineers be 
able to quickly and accurately balance a large rotating unit on 
the site so as to minimize down time if the unit is sHH'ering from 
a want of balance. \Vith the new generation of rotating equip
ment being developed, it is often difficult and uneconomical to 
ship large turbo rotors back to the [lctory or to a speeializecl 
balnncing facility to correct the rotor Jor unbalance. This is 
particularly true in the case where the equipment is in au 
inaccessible loc::ttion sneh as an otf�horc drilling rig, or an A las-
kan oil pumping station. 

. 

The problem of balancing a high speed rnultimass tur
borotor theref()re reduces to the problem of reducing the rotor 
synehronous amplitude of motion and bearing h.>rces transmit
ted to within acceptable limits throughout the operating range 
of the machine. 

In this paper, we will consider only the problem of 
synchronous rotor response due to unbalance. There are 
numerous complex nonsynchronous vibrations that can occur in 
rotating machinery. Quite often the nonsynehronous motion 
can not be corrected merely by improving the rotor balance. 
The causes of this may be due to self-excited whirl motion 
caused by fluid film hearings, seals, balance pistons, aero
dynamic effects, internal friction, shaft rubs, shaft asymmetry, 
or by external excitations through gear boxes, misaligned 
couplings, piping acoustics or transmitted foundation 
vibrations. 

Therefore the first step in correcting a machine vibration 
is to identify the source of the problem to determine that the 
vibration encountered is not eaused by self-excited vibrations 
or machine misalignment before balancing is attempted. 

No piece of rotating equipment ean ever be said to be 
perfeetly balanced at all speeds as this is a physical impossibil
ity. From an engineering viewpoint it is highly impractical to 
attempt to reduce the rotor amplitude to zero everywhere. 
What is desired, however, is to reduce the level of vibrations 
down to acceptable values. What is def]ned as an acceptable 
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level of vibration is beyond the scope and the desire of the 
authors to explain. For example, what would have been con
sidered an acceptable levd of vibration in turbomachines 10 
years ago is now often viewed as unacceptable clue to the de
velopment of sophisticated electronic vibration monitoring 
equipment such as the norK·ontacting eddy current and capaci
tance probes and casing velocity mensuring devices. 

The balancing requirements on rotating equipment will 
obviously vary considerably according to the usage and applica
tions. Therei(Jre gas bearing gyroscopes or dental drills re
quired to rotate at 200,000 RPM or high speed textile spindles 
will require closer tolerances than will steel rolling mills or low 
speed rotating machinery. 

. 

Therehlrc values of acceptable levels of vibration will vary 
widely with the class of turbomachinery and the spccif]cations 
of balancing must often he based upon eonsiderable fl dd ex
perience. 

1.2 DISCUSSION OF UNBALANCE 
DISTRIBUTION 

The total unbalance in a rotating maehine may be due to a 
combination of several complex distributions of rotor mass as 
shown in Fig. l . l .  The flrst Fig. l . la, represents a continuous 
distribution of unbalance along the shaft. This may be caused by 
the fact that the journal hearing surfaces are not machined 
concentric with the main rotor. The second unbalance case, 
l . l b, represents a series of localized radial point masses 
attached at a radius R; to a uniform shaft .  Such a sys-

-�--
Figure 1.1 Types of Unbalance Distribution 
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tern may be created in built up turbomachinery such as com
pressors and turbines where the individual stages, impellers or 
balance pistons are first balanced as rigid body discs before 
assembly on the main shaft. 

The third type of unbalance distribution is that caused by 
a shaft bow of a normally uniform shaft. Such a situation can be 
created by uneven shrink fits of impellers or spacers on a shaft 
resulting in a permanent bow. Temporary bow conditions can 
exist in particularly high temperature turbomachinery such as 
gas or steam turbines due to uneven temperature distribution 
along the shaft. The problem of thermal bow of steam turbines 
is well known and was reported on very early by Stodola. A 
temporary thermal bow can be caused by a local mechanical 
rubbing of a part or a seal on the shaft. Temporary thermal or 
mechanical bows are usually indicated by drifting rotor phase 
angle readings over a time span as the unbalance distribution 
slowly changes form. 

The fourth form of unbalance is a moment unbalance 
caused by a local disc in which the principal axis of the disc 
does not lie along the axis of rotation. The dynamic forces 
generated by the rotation of the skewed disc will cause a couple 
to be exerted on the shaft which can excite the various rotor 
resonance frequencies. The case of a skewed disc on a shaft can 
be caused by the uneven shrinkage of a disc on the shaft or by 
the fact that the drilled hole of the disc is not normal to the 
plane of the disc. The disc will also behave as if it is skewed if it 
has balance correction weights attached to it in two planes at 
180° out of phase. This will produce a product of in tertia effect 
which is similar to a balanced disc at an inclined skew angle T. 

It is therefore seen that the most general case of rotor 
unbalance may consist of some combination of all four types of 
unbalance in various planes distributed along the shaft. 

The problem of balancing the rotor therefore appears 
to require that at each increment dz along the shaft , 
the center of the incremental mass dm(z) must lie along 
the axis of rotation of the shaft and the local products 
of inertia dixz(z) and diyz(z )  about the shaft centerline 
must also vanish. For a continuous elastic body, this then 
would seem to indicate that an infinite number of balance 
correction planes is necessary to achieve perfect balance. 
This is correct but fortunately the achievement of "perfect" 
balance is not necessary. It will be shown that satisfactory 
balance can be accomplished by a small number of planes 
in which finite correction weights are placed. 

1.3 THEORIES OF BALANCING 
The first investigator to describe the influence of unbal

ance on rotor motion was H. H. Jeffcott in 1g19 in his classic 
paper "The Lateral V ibration of Loaded Shafts in the 

Neighbourhood of a Whirling Speed - The Effect of Want of 
Balance". He showed the important effect in a single mass 
rotor that the rotor unbalance eccentricity vector would lead 
the rotor motion at the critical speed by goo. This observation 
of Jeffcott has today been adopted into a balancing technique 
where the rotor amplitude and phase angle are observed at the 
critical speed. In the early 1g30' s and 40's there was not a 
significant amount of field balancing attempted on flexible 
rotors in place. This was primarily due to the lack of readily 
available electronic measuring equipment to accurately deter
mine amplitude and phase of motion of rotating equipment. 

One practice that was done on relatively slow speed 
equipment was to run the rotor up in speed while a piece of 
chalk was held near the shaft. The chalk would mark the high 
spot as the rotor passed through the critical speed. From the 
Jeffcott theory it was assumed that the rotor unbalance vector 

was leading the shaft displacement by 90°. Therefore a correc
tion weight was placed goo lagging the chalk mark in the direc
tion opposite rotation. Such a procedure is used today by 
monitoring the shaft motion with a noncontacting probe and 
measuring the rotor phase angle by means of a synchronous 
tracking filter. 

People who have employed the method of balancing a 
rotor by observation of the critical speed amplitude and phase 
of motion have often found that the process may require sev
eral iterative steps. If we define the actual critical speed as the 
speed at which the maximum amplitude of motion is observed, 
then it should again be pointed out that the unbalance vector is 
not leading the shaft motion by goo but by a higher value which 
is dependent upon the damping in the system. Only for rotors 
which have very low levels of damping, such that the amplifica
tion factor is greater than 10, will the unbalance lead the dis
placement by exactly goo. The few degrees error in the place
ment of the balance correction weights can sometimes have a 
considerable effect on the unbalance response. 

1.3.1 Influence Coefficient Method 

The next major step in field balancing of rotating machin
ery with portable equipment was the method described by 
E. L. Thearle of the G. E. Co. in 1934. Thearle's method was 
developed for single and two plane balancing of rotors at a 
given speed by placing trial weights at either end of the 
machine and measuring the response at each end due to the 
individual trial weights. 

The two plane balance corrections were then calculated by 
a semigraphical and tabular method. This procedure is still 
being used with success and it is in essence the fundamental 
concept in which the influence coefficient method was derived 
for multimass rotors and elaborated on by later investigators 
such as Lund, Rieger, Badgley, Tessarzik and others. 

The major assumption of the influence coefficient method 
is that the system will be a linear response of a set of unbal
ances times the influence coefficient matrix at a given speed. 
The influence coefficients are determined experimentally by 
applying trial weights to the rotor at one location at a time and 
measuring the rotor response. A major advantage of this 
method (and also one of its disadvantages) is that no assump
tions need be made as to the rotor flexibility properties or the 
bearing characteristics. 

The procedure requires that vibration measurements 
must be made at each station in which balance weights are to 
be placed. In many applications of field balancing of machin
ery, it is not possible to place noncontacting probes along the 
rotor and measure all of the influence coefficients necessary for 
the process. Another drawback to the method for field balanc
ing besides theN trial runs required for N planes of balancing 
is that a computer program must be used to invert the influ
ence coefficient matrix in order to calculate the balance correc
tion weights. 

Laboratory tests cif the influence coefficient method in 
which amplitude and phase measurements could be made ac
curately at all of the required stations has shown that the 
method is highly successful in balancing a rotor through several 
critical speeds. 

In the laboratory studies of this method it was seen that 
the accuracy of the phase angle measurements are critical to 
the success of this method. The method requires that the rotor 
phase measurements must be accurately determined from the 
rotor amplitude signals without having the phase meter 
equipment itself giving a phase shift to the data. This is best 
done with a synchronous tracking filter. 
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The influence coefficient method for multimass rotors is 
based on the assumption that at a particular speed the rotor 
amplitudes are given by 

[z] = [a] [u] 
where z = complex amplitudes at N stations 

[a] = N x N influence coefficient matrix 
[ u J = Effective unbalance vector at N stations 

(1. 3. 1) 

In an actual rotor with run out, shaft bow and moment 
unbalance caused by skewed discs, the rotor amplitude is more 
closely represented by the vector equation 

[z] =[a] [u] +[a,] [z,] +[am] [um] + Z0 (1. 3. 2) 

where 
[ z,] = shaft bow vector 
[ a,] = amplitude response matrix due to shaft bow 
[ u111] = moment unbalance due to local unbalance 

couples or disc skew 
[am] = amplitude response matrix due to moment 

unbalance 
Z0 = constant runout vector (mechanical or electrical) 

The use of trial weights can only solve for the [a J influence 
coefficient matrix. Therefore, the direct application of the in
fluence coefficient method without considering shaft run out or 
bow can result in a rotor apparently balanced at the speed at 
which the measurements are taken but unbalanced at other 
speeds. 

In spite of these limitations it is felt by the authors that an 
adaptation of this method in conjuction with the modal method 
can be used to rapidly balance multimass flexible rotors with a 
minimum of measurement planes and trial runs. 

1.3.2. Modal Balancing Method 

The balancing problem has been approached by two dif
ferent schools of thought; those who view the rotor as a series 
of point masses and those who treat the rotor as a continuous 
elastic body. The treatment of the rotor as a continuum has 
led to the modal concept pioneered by Bishop and Parkinson. 
In this method, the rotor amplitude is expressed as a power 
series function of the system undamped eigenvalues. Bishop 
shows that the general unbalance distribution may be ex
pressed in terms of modal unbalance eccentricities. The rotor 
amplitude of motion near a critical speed is thus primarily 
affected by that particular modal unbalance distribution while 
the higher order modes have little influence on the lower criti
cal speed response. They then state that the rotor should be 
balanced mode by mode by placing proper weights at the an
tinodes. Several excellent papers have been published by Kel
lenberger of Brown Boveri whv has treated the balancing prob
lem of both continuously distributed and local unbalances and 
discusses the problem of balancing in N or N + 2 planes. 

The paper of Kellenberger on "Should a Flexible Rotor be 
Balanced in N or N + 2 Planes" was received with considerable 
criticism by Bishop and Parkinson who state that only N bal
ance planes are required and that rigid rotor balancing is not 
necessary beforehand. 

1.4 FLEXIBLE ROTOR BALANCING IN N + B 
PLANES 

Den Hartog, in his paper on "The Balancing of Flexible 
Rotors" states that if a rotor consists of a straight weightless 
shaft with N concentrated masses along its length and sup
ported in B bearings with an arbitrary unbalance distribution, 

then it can be balanced perfectly by placing small correction 
weights in N + B planes along the length of the rotor. 

He also states that if the flexible rotor is balanced on rigid 
supports, then the balance of the rotor so obtained will not be a 
function of the bearing impedances. That is, the introduction of 
support flexibility and damping to the rotor system will not 
materially effect the rotor unbalance response if the N + B 
plane method of balancing is used. 

It should be noted, however, that the inverse condition is 
not true. If a rotor is balanced on soft supports, such as with a 
standard flexible mount balancing machine, then the rotor may 
not necessarily be in balance when run in the actual machine in 
which the support stiffness values are substantially higher than 
the balance machine. Therefore it can be concluded that 
balancing on the hard bearing support balancing machines is 
preferable to balancing on soft support machines. 

The N + B concept of Den Hartog is extended to mul
timass flexible rotors and he states that nearly perfect balance 
at all speeds can be obtained by balancing in N + B planes, 
where N now means the number of rotor critical speeds in the 
speed range from zero to four times the maximum service 
speed of the machine. 

To demonstrate theN + B method of balancing consider 
Fig. 1. 2 which represents a single mass rotor with an 
arbitrary unbalance of uk = mk ek. 

The equation of motion in y - z plane for the major mass 
stations can be obtained by the influence coefficient method 
as follows 

where 

and 

(1. 4. 1) 

au = deflection at station 1 due to a unit force at 1 
a1k = deflection at station 1 due to a unit force at 

station k 
Pk = sum of external and inertial forces acting at 

station i 

00 
pl = MYi = Mw2yl 

for synchronous motion neglecting external damping or other 
external forces at the major mass stations 

Pk = mk(Yk + ek)w2 = w2(uk + mkyk) 
The deflection at y1 is given by 

Y1 w2[M Y1 au + (uk + mk yJa,k] 
where uk 

- -- --

(1. 4. 2) 

Figure 1.2 Single Modal Mass Rotor With Arbitrary Point 
Mass Unbalance 
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It is assumed that the balance correction weight mk 
is small in comparison to the major mass station. 
Hence mk Yk 

--- � 
my! 

Solving for the deflection at the major mass station for a 
series of unbalances uk 

Y1 
� alk UkW2 

1-w2 Ma11 
(1.4.3) 

If the�amplitude at the major mass station y1 is to be 
zero at all speeds then it is apparent that the balancing 
requirement is 

2: alk uk = 0 (1.4.4) 
In addition to reducing the amplitude of motion at 

the major mass station it is also desired to reduce the 
forces transmitted to the bearings. The bearing force reactions 
are given by 

Fbi + Fb2 = w• [M Y1 + 2: mk(Yk + �)] = 0 (1.4.5) 
Since the unbalance masses mk are small in comparison 

to M and the shaft deflection Yk is of the order of mils of 
deflection whereas the distance ek at which the unbalance 
masses are acting may be several inches, the vanishing of the 
bearing forces requires that 

w• [m y1 + 2: mk e J = 0 (1.4.6) 
If the balance criterion of Eq. (1.4.4) is met so that 

the motion at the major mass station is zero, then the 
vanishing of the sum of the bearing forces requires that 

(1.4.7) 

This is recognized as simply the first requirement 
for rigid body balancing. 

The third balancing requirement is obtained by summing 
moments about the first bearing 

Fb2 · L = w• [m YI L1 + 2: mk Lk(Yk + �)] = 0 (1.4.8) 
This reduces to the requirement that 
I Lkuk = 0 (1.4.9) 
In summary the requirements for flexible rotor balancing 

may be stated as two equations of rigid body balance plus 
a flexible rotor balance requirement 

a. 2: uk = 0 � rigid rotor 
b. 2: Lk uk = 0 balance 
c. 2: a1k uk = 0 flexible rotor 

(1.4.10) 

With these equations we can now better understand the 
argument behind the N and N + 2 plane method of balancing 
as presented by Kellenberger and developed somewhat along 
the line of Den Hartog but in a more elaborate fashion. Kel
lenberger states that the N + 2 plane method with a two 
bearing machine should always be superior to the N plane 
method, and that rigid body balancing should first be don.e. 
Bishop and Parkinson argue that only N planes are necessary 
and that rigid body balancing should not be done. According to 
their line of reasoning everyone should throw away their rigid 
body balancing machines and use the modal technique which 
they have developed. Unfortunately in all of their many papers 
on the subject they do not inform us as to how they actually 
calculate the modal balance weights except by trial and error. 

If the N plane method alone is used to balance either the 
single mass model of Fig. 1.2 or a multimass rotor to pass 

Figure 1.3 Multimass Rotor With Distributed Point Mass Un
balance 

through the first critical speed, then only one balance correc
tion weight is needed to reduce the amplitude at the major 
mass station or shaft antinode to zero. The balance correction 
ub1 placed at the major mass station is given by 

1 
Ubl = - -- � a1k Uk (1.4.11) au 

Although the amplitude at the major mass station has 
been reduced to zero, the transmitted bearing forces are 
nonvanishing. In order to eliminate the transmitted bearing 
forces due to unbalance as well as reduce the rotor amplitude 
of motion while passing through the first critical speed, 
two additional balance planes are required. Let ub2 and ub3 
be two additional balance correction weights placed on 
the rotor. 

a. 

b. 

c. 

The balance correction weights are given by 
Ub 1 + Ub 2 + Ub 3 -� Uk R 1 

l R 

L1 ubl + L2ub2 + L3ub3 = -� Lk Uk = R2 "": 
a12 a13 1 C 

ubl + -- ub2 + -- ub3 =---�alkuk = R3 au au au 

1.5 BALANCING IN A TEST FACILITY WITHOUT 
TRIAL WEIGHTS 

The values of u k components are unknown can 
never be exactly calculated for a complex multimass system. 
However it should be noted that the first two quantities on the 
right hand side can be measured with a rigid rotor balancing 
machine. 

In the simplified derivation presented, no damping effect 
of the bearings or on the rotor was taken into account. The 
influence of damping will alter the rotor amplitude and phase 
angle relationships from the simple expression given in eq. 
(1.4.3). However, several companies are developing elaborate 
spin pit test facilities in which they can run the rotor in a 
vacuum and mount the rotor on ball bearings. In this way the 
damping forces acting on the rotor are negligible and equations 
equivalent to eq. (1.4.3) are valid. 

By placing a noncontacting probe near the center of the 
rotor which should correspond to the major balancing plane 
no. 1, the rotor may be balanced from the observation of the 
rotor amplitude of motion without the use of trial weights. 

Eq. (1.4.3) may be rewritten in the form 
� alk UkW2 

Y1 = 1 _ fi (1.5.1) 

where f1 = 

w 
Wcrl critical speed ratio on rigid supports 

wcrl = rotor first critical speed on rigid supports 
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�AL.�E
PLANE 2 

BALANCE ---
PLANE I 

BALANCE ---
PLANE 3 

K'"'�_,�,_ HARD BEARING 
SUPPORTS 

r::::: PROBE NO, 2 

C: PROBE NO, I 

C PROBE NO, 3 

Figure 1.4 Vertical Spi n  Pit Balance Facility 

The rotor first critical speed may be experimentally 
determined by placing the rotor on fixed end supports and 
electromagnetically exciting it to determine the resonance 
frequency. This works well on long thin rotors where 
gyroscopic effects due to shaft rotation do not materially 
change the synchronous critical speed. 

The right hand side of eq. (1. 4. 12) for R3 is given by 1 (1-(f) R3 = -- � O:!k Uk = -Ml YI L'2 0:11 Ii 
(1. 5. 2) 

The value of M1 for a multi mass rotor is now interpreted 
as the modal mass and will be shown to be given by 

L 
M1 = f PlP1 (z)2 dz = � mi(z) lPu (z)2 (1.5.3) 

0 
where cpli(z) = mode of shape of rotor for first critical speed. 

The balance correction weights for three plane balancing 
for the first critical speed is given by 

[::�I = - [L11 Lz L3 � -I I � �:�k , 1(1.5.4) 
ub3 1 O:tz 0:13 W1Y1 (1 f1) 

a: 11 a: 11 gfi 
where ubi are expressed in lb-in. 

To summarize the three plane method without trial 
weights the following steps are taken 

1. Determine I uk and I Lk uk by a standard 
soft mount bearing machine. However do not rigid 
body balance the rotor. 

2. Calculate the rotor critical speed from a computer 
code with rigid supports or experimentally measure 
the rotor natural frequency by exciting it while 
placed on knife edge supports. 

3. Place a static load at the major balance station l 
and measure the deflections at stations 2 and 3. 
From these deflections calculate the ratio of 
a12/ a11 and a13/ a11. 

4. Calculate the rotor modal weight V�\ from the critical 
speed computer code. If this is not available take 
wl = wtotal/2. 

5. Place the rotor in the spin pit facility and record 
the rotor amplitude and phase y1. 

6. Calculate the balance correction weights ubi and place 
on the rotor. 

7. Rerun the rotor with the balance correction weights 
added and refine the balance by the influence co
efficient method if the desired balance is not achieved. 

1.6 FLEXIBLE ROTOR MODAL RESPONSE 

The dynamical equations of motion of the multimass rotor 
may be written in matrix form where the rotor is composed of 

N mass stations 
00 0 

[m)N [Y]N + [c)N [Y]N + [k)N [Y]N 

= wz [u] eiwt (1.6.1) 
TheN mass station system has N critical speeds, however, 

we are only interested in the first j critical speed values such 
that 

For each value of critical speed there is a corresponding 
mode shape 

cf>/Y) or cpii 
It is assumed that the rotor amplitude can be expressed 

as a series in terms of the critical speed mode shapes 
as follows 

IYN 

+ � + ... + qj 

The displacements at any station k are given by 
j 

(1. 6. 2) 

Yk = � � lPik (1.6.3) 
i = 1 

The equations of motion may be expressed in the series 
form by 
j j 

� &'i [M] [lPil + � Cli [c] [lPil + � qi [k] [lPi] (1.6.4) 
i=l i=l 

= w2 [u] 
The equations may be uncoupled by multiplying by the kth 

mode and using the principal of orthogonality of the modes. 
It is also assumed that damping may also be approximately 
treated if the damJ?ing is either small, or is proportional 
to the [k] or [M J matrix, or if the complete complex 
mode shapes are used. 

Multiplying by the transpose vector [ lPj ]T we obtain 
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[<f>k:] T [M] [1/lj]'{fi + [<f>k:JT [c] [1/lj] &i 
+ [<f>k:] T [k] [1/lj] qi = w2 [<f>k:] T [u] 

From orthogonality we obtain 
[<f>k:]T [M] [1/lj] = oikMk 

mk = modal mass for the kth natural frequency 
We now obtain j uncoupled equations of the form 

(I .6.5) 

fik qk + ck qk + Kk qk = w2 [<i>k:]T [u] eiwt (1. 6.6) 

By dividing the equation by the modal 
the resulting equation can be obtained 

mass Mk, 

00 2 t 0 2 
qk + Wk .;kqk + Wk:qk E eiwt k 

where 
wk = kth natural frequency 

gk = kth mode damping = 
[ 1/lk ]T [ c] ( 1/lk] 

2Mk Wk 

(1.6.7) 

Ek = modal unbalance eccentricity 
The solution of� is given by 

[1/lk]T [u] 
Mk 

Let 

then 

w 
f.= -k Wk 

(1.6.8) 

N otice now that the modal multiplication factor qk 
appears to be in similar form to the amplitude equation 
for the single mass rotor. 

The motion at any station y is given by 
[y] = Et Adl/ld + E2 A2 [1/12] + · · + Ej Aj [ <Pj] (1.6.IO) 

Examination of the amplitude response of the rotor at 
first glance would appear to be expressed as an infinite sum 
of all of the various modal components. However most rotating 
machinery usually operates only through several critical 
speeds. Examination of the modal amplification factors shows 
that the higher modes become vanishingly small and do not 
have to be considered. 

For example consider the modal amplification factors for 
a uniform rotor operating at 95% of the first critical speed 
and w2/w1 = 4, W<J/w1 = 9. The modal amplification factors 
are given by (neglecting damping) 

.95 2 
At = I __ 95 2 = 9.26 

(
95 / 

--4--.,..--= 0.06; _A_2 = 0.006 
I- ( '

95
)
2 At 

9 

(
'95

)
2 

9 A3 
---=-= O.OI;- = O.OOOI .95 2 A I - (-) t 

4 

Therefore if the rotor is operated close to the first 
critical speed, the amplitude of motion will be predominately 

due to the first mode distributions. The second mode 
will contribute only 1 or 2% to the rotor motion and the third 
mode will hardly be felt at all. 

This then has led to the concept of modal balancing 
where the modal unbalance E1 is first corrected while 
running near the first critical and then the rotor speed 
is increased to near the second critical speed where E2 is 
then corrected� It can also be seen that if a rotor is 
balanced by the conventional influence coefficient method near 
the first critical speed, then due to slight errors in the measure
ment process only the E1 modal component will be accurately 
balanced. If the rotor is operated near a higher critical speed 
there can still remain a substantial unbalance in the higher 
modes to excite the rotor. 

1. 7 FLEXIBLE ROTOR MODAL BALANCING 

The most general case of distributed unbalance u (z) 
may be expanded in terms of the modal eccentricity com
ponents in terms of the mode shapes 

u(z) = }: Ek m(z) cf>k(z) 
where Ek is given by 

L f0 u(z) f/lk(z) dz = Mk Ek 

To balance out the rotor first critical speed using a 
three plane balance procedure 

U1 E1 m1 cf>u + Ez mz c/>21 
Uz E1 mz c/>12 + Ez m2 c/>22 
u3 E1 m3 c/>1 3 + E2 m2 c/>23 

Where m; are the effect masses at the balance stations. 
The effective masses may be computed from the critical 
speed mode shape and values of modal mass by 

M1 = m1 cf>u2 + m2 c/>122 + m3 c/>132 
M2 = m1 c/>212 + m2 c/>222 + rna c/>232 

The effective mass stations should also satisfY the rotor 
orthogonality conditions 

0 = fit 1/lu l/l2t + fi21/lt21/l22 + fi31/l131/l23 
The unbalance can now be expressed as the sum of the 

two modal components 

[$]. 

The first set of unbalances will excite the rotor first 
mode and the second set will only excite the second 
critical speed. 

In the combined modal - influence coefficient method 
of balancing near the first or higher order critical speed, 
a modal unbalance distribution is used rather than a single 
value. The trial unbalance distribution for the first mode 
is given by 

fi2 l/lt2 
fit 1/lu 

fi3 1/l13 
fit 1/lu . 

(1.7.4) 
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This trial weight distribution is placed on the shaft 
and the rotor amplitude is measured. The trial unbalance 
eccentricity is given by 

E _ UT ["" + fiz c/Jt � + fi3 c/Jt � J 1 t - Mt 'l'tt fit c/Jtt fit c/Jtt 
(1.7 .5) 

The rotor amplitude of motion at any point along the 
rotor is given by 

(yh = ( Et + En) Adept] +  E2 A2 [c/J2] + ... + EjAj [c/Jj] 
(I. 7.6) 

Subtracting the original measured amplitude at station k 
from the trial run we obtain 

by 

YTk - Yk = En At cf>kr (1.7.7) 

The complex first modal amplification factor is determined 

1 N (Yrk-Yk7 At =-1: N ElTc/Jik k=l (1.7.8) 

\Vhere N is the number of stations at which measurements 
are made. If the first probe is assumed to be near the 
maximum rotor amplitude then the modal unbalance is given by Yt Yt Et = -- = (---)En At c/J11 Yn-Yt (I. 7.9) 

The modal balance correction E1b is placed opposite 
the unbalance eccentricity 

Erb = -Er 

The correction balance weights for the first critical 
speed are simply given by ratio of rotor amplitude at the 
center station 1 by [U11� [ Ull J u21 = ( Yl ) u21 Yl-YTJ UJl b UJl T 
1.8 SUMMARY 

(1.7.10) 

a) A large fraction of all vibration problems in tur
bomachinery are due to unbalance. The real cost of these prob
lems is usually measured in lost production rather than in the 
cost of balancing procedures. 

b) Unbalances may be generally categorized in four ways: 
continuous unbalance distributions, point masses, shaft bows, 
and moment unbalances. Turbomachinery is usually subject to 
some combination of all four types. 

c) Much of recent balancing literature is devoted to the 
influence coefficient method. For multi-mass flexible rotors, 
this method is successful where it is possible to place several 
noncontacting probes along the rotor and to have a computer 
available for inversion of the influence coefficient matrix. In 
many applications, the placement of probes along the rotor 
may not be possible for either technical or financial reasons. 

d) The influence coefficient method can be relatively eas
ily modified to include the effects of shaft bow, moment unbal
ance due to local unbalance couples or disc skew, and mechan
ical or electrical runout in the shaft. 

e) Requirements for balancing of multi-mass flexible 
rotors may be stated as two equations describing a rigid body 
balance plus a flexible rotor balance requirement. 

f) Modal balancing has been approached in two separate 
ways: considering the rotor as a series of point masses and 
treating it as a continuous rotor. This has resulted in the dis
cussion of balancing in N + 2 planes or N planes. In order to 
balance a flexible single mass rotor on flexible supports, three 
balance planes are required to reduce the rotor amplitude at 
the mass as well as the transmitted bearing forces to zero. This 
concept may be extended to multi-mass rotors. \Vhen the bear
ing stiffuesses are large compared to the shaft stiffness, N plane 
balancing in sufllcient. For cases where the bearing stifl"nesses 
are of the same order of magnitude or smaller than the shaft 
stiffuess, N + 2 plane balancing is required. 

g) A method of balancing without trial weights is pre
sented. 

h) Accurate modal balancing will result in balance weight 
distributions which do not excite other modes. Small residual 
errors in the influence coefficient method may result in excita
tion of modes not directly balanced. 

i) A combination modal-influence coefficient method of 
applying a modal trial weight distribution has been presented. 
This may result in an optimum technique for flexible multi
mass rotors. 
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PART II- EXPERIMENTAL RESULTS 

2. 1 SINGLE MASS ROTOR RESPONSE- RIGID 
SUPPORT 

Fig. 2.1.1 represents the amplitude of motion of a single 
mass rotor before and after balancing. Before balancing, the 
rotor has a slight residual bow of 1 mil and reaches a rotor 
amplitude of 16. The rotor was balanced to zero amplitude at 
1,800 RPM, which was just below the rotor critical speed. Note 
that although the rotor amplitude was balanced to zero, there 
is still a substantial amplitude response at the first critical 
speed of over 6 mils. This amplitude response at the first criti
cal speed is due to the fact that the rotor bow was not taken into 
consideration in the balancing. 
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In Fig. 2.1. 2, the rotor was rebalanced at 1,800 RPM 
considering the rotor bow. It can be seen that the rotor 
amplitude almost goes to zero at the critical speed of 2,000 
RPM, and the amplitude is quite uniform above the critical 
speed. Note that the difference in balancing weights between 
the two cases is only 24 mg. shifted through an angle of 20°. 
The total balancing weight is 560 mg. Therefore it can be seen 
that the additional correction required for the shaft bow is 
extremely small in comparison to the total rotor unbalance. 

Fig. 2.1.3 represents another single mass rotor with a 
smaller disc attached to it. With the lighter weight disc, the 
critical speed is higher and is approximately at 4,000 RPM. The 
three curves represent a trial and error balancing of the rotor 
until the low rotor amplitude of curve 3 was obtained. Notice 
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Figure 2.1.3 
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Figure 2.2.1 Single Mass Rotor Amplitude Mounted on an 
Isolation Pad with a Large Unbalanced Moment 

with curve 3 that there is a slight dip in the rotor amplitude at 
the critical speed. This is characteristic of a rotor with a shaft 
bow. 

2.2 INFLUENCE OF ISOLATION PAD ON 
SINGLE MASS ROTOR RESPONSE 

Fig. 2.2.1 represents the rotor motion of the single mass 
system on an isolation pad with a large unbalance moment on 
the disc. Note that the critical speed response at 4,000 RPM is 
quite low with the unbalance added. This is because of the 
attenuation characteristics of the isolation pad. When the rotor 
is balanced, there is again observed a reduction of the rotor 
amplitude at the critical speed due to the slight shaft bow. It is 
of interest to note that there is a response of the rotor system at 
approximately one-half of the rotor critical speed at 2,000 
RPM. Note that the balance of the rotor does not appear to 
effect this rotor response. This appears to be a secondary or 
gravitational critical speed caused by the rotor weight or shaft 
asymmetry. This rotor response cannot be predicted by linear 
theory and is due to nonlinear effects in the system. 

Fig. 2.2.2 represents the balanced single mass rotor with 
and without the isolation pad. When the rotor is operating with 
the isolation pad on the support system, the rotor seems to be 
extremely well balanced, and there is very little response at 
the first critical speed. However when the rotor is clamped to a 
rigid support to eliminate the influence of the isolation pad, 
there is an increase in the secondary critical speed response at 
1,800 RPM, and the unbalance response at the critical speed is 
so high that it is impossible to run the rotor through the critical 
speed region without damaging the system. This fig�re then 
represents a dramatic example of the influence of an isolation 
pad which contains damping of the foundation to reduce the 
rotor critical speed response. 

Fig. 2.2.3 represents the rotor on the isolation pad after 
balancing and with weights added to it. In the unbalance con
dition there is a very small response on the isolation pad. Again 
when the rotor assembly is clamped down, there is a violent 
unbalance response at the first critical speed. 
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Figure 2.2.4 S ingle Mass Rotor on Rigid Support 

Fig. 2.2. 4 is similar to the previous figure with a slightly 
different unbalance weight. Shown on the plots are traces of 
the rotor motion obtained from the oscilloscope pictures of the 
shaft motion. 

2.3 INFLUENCE OF A FLEXIBLE SUPPORT ON 
ROTOR RESPONSE WITH AND WITHOUT 
ISOLATION PAD 

Fig. 2.3.1 represents the balanced rotor with an isolation 
pad under it on a flexible support. This type of condition could 
occur in practice, for example, with a compressor or turbine on 
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Figure 2.3.2 Single Mass Rotor on Flexible Support 

an offshore oil rig or a turbine built on a steel superstructure. 
The steel superstructure could have considerable flexibility 
with little inherent damping in it. In Fig. 2.3.1, the rotor is 
balanced and is similar to the case shown in Fig. 2.2.1. The 
rotor amplitude of motion at the critical speed of 3, 900 RPM is 
extremely low and approaches zero due to the shaft bow. There 
again is a somewhat larger response at 2,000 RPM due to the 
secondary critical speed response which is not affected by 
balancing. This second critical speed response may also possi
bly be caused by a misaligned coupling in the system. 

When the rotor in the previous figure was firmly bolted to 
the flexible support in order to eliminate the beneficial effects 
of the isolation pad, the resulting rotor motion obtained is that 
shown in Fig. 2.3.2. The response at the secondary critical 
speed is somewhat higher due to the reduction of the damping 
in the system, but the response at the critical speed at 3,800 
RPM is now extremely pronounced. The orbit obtained from 
the oscilloscope shows a predominantly vertical response of the 
system in the direction of the flexible support. When the rotor 
speed was increased to approximately 8,000 RPM, the 
amplitude of motion became extremely severe with an excita
tion of the first critical speed. The amplitude of motion 
abruptly shot up to 15 mils. Therefore it can be seen that a 
machine could be adequately balanced on a test stand, and 
when it is installed in an installation which has a low stiffness, it 
is possible that severe vibrational amplitudes may result in the 
rotor system even though the level of unbalance in the rotor is 
quite low. This effect has been caused by the flexible support 
reducing the effective damping of the isolation pad and the 
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Figure 2.3.4 Single Mass Rotor Amplitude with Isolation Pad 
on Flexible Support with Large Unbalanced Moment 

bearings. The rotor has now been changed from a moderately 
low amplification factor rotor to one of extremely high amplifi
cation. Therefore the rotor critical speed is severely excited 
and also nonsynchronous motion occurring at twice the run
ning speed is encountered. If this type of motion were encoun
tered with an operational machine, then disastrous effects 
could result. The amplitude of motion at the 8,000 RPM range 
occurs so rapidly that it would be impossible to control this 
motion in an actual rotor before destruction occurred. 

Fig. 2.3.3 represents the rotor motion with the isolation 
pad on the flexible support with unbalance. Here the unbal
ance does cause a response at the critical speed and a substan
tial secondary critical speed amplitude. There is a small com
ponent at twice the first critical speed at 7,625 RPM. 

Fig. 2.3.4 represents the system similar to the previous 
figure except that the unbalance has been increased from .82 
gm-in2 moment to 2.19. There is little increase in the secon
dary critical speed at 2,000 RPM, but the first critical speed 
response at 3,700 RPM increases dramatically. Note the non
linear rapid increase of amplitude upon the increase in speed. 
The first critical speed response occurs extremely rapidly. 
Upon the increase in speed, there was a small response at 
7, 750 RPM. Upon decelerating the rotor there was an ex
tremely rapid unbalance response with an amplitude of the 
same order of magnitude as the first critical speed response. 
This excitation at two times the critical speed could cause se
vere machine problems upon rotor deceleration. 

Fig. 2.3.5 is similar to the previous figure except that the 
rotor amplitudes were taken with rapid acceleration and decel
eration rates. With balancing weights in stations 7 and 3, no 
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high response was obtained at twice the rotor critical speed. 
With the high unbalance and rapid acceleration, the rotor criti
cal speed was greatly reduced. If the rotor is rapidly deceler
ated then the high response at twice the rotor critical speed 
was not excited. 

2.4 TWO MASS ROTOR MOTION 
Fig. 2 .4 . 1 represents the motion of a two mass rotor sys

tem in which the two masses are placed symmetrically inboard 
of the bearing location. The shaft motion was monitored by 
three noncontacting probes. The probe No. 2 was located at 
the rotor center, and the probes 1 and 3 were located near the 
major mass stations. The rotor system has two critical speeds; 
one at 3,200 RPM and the other at 4,700 RPM. At the first 
critical speed, the mode shape is at a maximum at the rotor 
center, and the two mass stations are in phase. In the second 
critical speed, the mass stations are out of phase, and the probe 
No. 2 is a nodal point. Before balancing, probe No. 1 shows a 
substantial amplitude at the first and the second critical speed. 
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Probe No. 2, which is at the rotor center, only shows a sizable 
peak at the first critical speed. Probe No. 2, which is at the 
rotor center, only shows a sizable peak at the first critical speed 
as would be expected. The balance speed that was used for this 
run was 2,800 RPM, which is below the first critical speed. 
After the rotor first critical speed was balanced by the applica
tion of two weights in phase, the first critical speed amplitude 
is reduced considerably for both probes, 1 and 2, and a slight 
reduction at the second critical speed is achieved at probe No. 
1. The balancing condition achieved on this run is equivalent to 
a modal balancing procedure since the balancing weights used 
at the masses are identical and are of the same phase relation
ship. The center probe was used for the balance readings and 
the two balance weights were calculated by the single plane 
balance theory. 

In Fig. 2 .4 . 2 the rotor system was similar to the run shown 
in the previous figure except there was somewhat more shaft 
bow and unbalance in the mass stations. From probe No. 3 
there can be seen two distinct resonance frequencies. The res
onance frequency at the second mode for probe No. 3 is the 
highest because the second mode is a conical mode. For probe 
No. 1 the maximum amplitude occurs at the first critical speed, 
and this motion is in phase to the peak at station No. 3. A two 
plane simultaneous balance was performed on the rotor at the 
2,000 RPM and the resulting rotor amplitude is shown in the 
figure. There is a considerable reduction in amplitude at the 
probe station No. 1 and somewhat of a reduction at probe No. 
3.  The amplitudes of the vibration were not reduced to a very 
low level because in the balance calculations, rotor bow was 
not taken into consideration. 

Fig. 2 . 4. 3 represents the two mass system in which the first 
mode has been balanced out. As can be seen, there exist a 
substantial second mode amplitude at probe No. 3. The balanc
ing speed selected was 4,000 RPM, which is below the second 
critical speed. At this speed, the amplitude at the probe loca
tions 1 and 3 are approximately·180° out of phase. The balance 
correction weights were calculated for these two speeds using 
the two plane method without the consideration of rotor bow. 
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The motion after balancing has caused a considerable reduction 
of the rotor amplitude. Note that the application of the balanc
ing weights causes little excitation of the first critical speed. 
Upon close examination of the balance correction weights, the 
components are almost of the same magnitude and are exactly 
180° out of phase. Therefi:Jre these balance weights would rep
resent a second mode correction factor. The rotor could have 
been balanced for the first and second critical speeds by the 
use of probe No. 1 and No. 2 only. For example, by the use of 
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probe No. 2 monitoring the rotor center, the first critical speed 
can be balanced out by the use of in phase modal balancing 
weights at the mass stations. By observing the rotor motion at 
probe No. 1 or 3, the second critical speed can he balanced out 
by the modal method using balancing weights at the two mass 
stations which are equal, bnt are 180° out of phase. lf the modal 
method of balancing is therefore used, it is not necessary to do 
the two plane simultaneous balancing to achieve low rotor 
amplitude. It also should be noted that the modal method of 
balancing flrst and then the second critical speed results in a 
lower level of vibration than t he simultaneous two plane 
method of balancing below the flrst critical speed. The modal 
method of balancing also is somewhat easier than the simul
taneous two plane method of balancing, and this procedure 
may he extended to a more cmnplex multi-mass system operat
ing at higher critical speeds. 

Fig. 2. 4. 4 represents a two mass system which is in a fi:tirly 
well balanced condition. A two plane simultaneous balance was 
performed on the rotor at 4,600 RPM without the considera
tion of rotor bow or runout. The rotor amplitudes at both 
probes 1 and 3 are reduced at  the balance speed. The 
amplitude at  the first critical speed f(lr probe No. 1 is slightly 
increased because of the small reexcitation of t he first critical 
speed. If the heming stiHi1ess were extremely high, then there 
would he a very sharp response at this speed. Note that at 
5, 000 RPj\J the before and after balance conditions are approx
imately tbe same at probe No. 1 although there is considerable 
improvement at probe No. 3 above t he .'5,000 HPI\1. 

Fig. 2. 4. 5  represents the horizontal motion at the rotor 
center at station No. 2 and at the major mass station, station 
No. 3, for a well balanced two mass system. Note that at the 
center station there is a considerable amplitude drop at the 
first critical speed indicating a bowed shaft. At one-half of the 
first critical speed, there is a large superharmonic excitation. 
At the second critical speed, there is no excitation. At station 
No. 3, there is a first critical speed response and a superhar
monic excitation when the rotor is operating at one-half the 
critical speed. The superharmonic oscillation is caused by non
linearities in the system and may be caused by a misaligned 
shaft and coupling. 

2 . 5  THREE MASS ROTOR RESPONSE 
Fig. 2. 5. 1 represents the unbalance response before and 

after balancing the first critical speed of a three mass rotor 
system. It is seen from the figure that there is a considerable 
first mode excitation as observed by probes 1 and 2 at the first 
critical speed at 3, 000 RPM. The maximum amplitude at probe 
location 1 was approximately 13 mils and 12 mils at probe 
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Figure 2.5.1 Three Mass Rotor Kit 

A 

location No. 2 .  These amplitudes were in phase. The rotor was 
balanced by the single plane correction at the mass station No. 
2 to balance out the first mode excitation. A balance weight of 
1,364 mg. at a phase angle of 10. 5° was placed on the second 
disc. It can be seen that the first critical speed has been well 
balanced out. This particular run is an example of how a mul
timass rotor can be balanced out in its first critical speed by the 
application of modal balancing. In the case of the three mass 
system, only one balancing station at the rotor center is re
quired to balance out the first critical speed. As the speed 
increases to 7,000 RPM, note that the amplitude at probe sta
tion No. 2 increases. This is because the rotor is approaching a 
second critical speed. Additional probes placed at the bearing 
locations showed that there was a sizable amplitude at the 
7,000 RPM range. 

Fig. 2. 5. 2 represents a three mass system which has been 
balanced for two critical speeds by means of a modal method. 
The rotor first critical speed at 2,300 RPM has an extremely 
high response of 13 mils. A heavier mass was placed at station 
No. 2 than was used in the run shown in Fig. 2 . 5 . 1 in order to 
reduce the critical speeds so that two would occur in the 
operating range. It is also of interest to note that there is a 
slight residual runout, and that also small components of the 
second and third order harmonics were excited in the rotor. 
These secondary harmonics however were not affected by the 
balance level in the rotor. In the first balancing run (curve No. 
2 on the figure) unbalance weights were placed in phase at the 
three discs. As it can be seen from the response curve, the first 
critical speed amplitude was greatly reduced. However when 
the rotor speed was increased beyond 4,500 RPM such that the 
second critical speed was approached, it was not possible to 
operate through the second critical speed. 

In order to balance out the second critical speed a second 
mode balance distribution was used on the rotor in which 
weights of 253 mg. were placed at the end mass stations 1 and 
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3,180° out of phase. These unbalance distributions are second 
modal components and hence will not excite the rotor first 
critical speed. In response run No. 3, it can be seen that there 
is no additional excitation of the first critical speed, ·and the 
second critical speed has been satisfactorily balanced. Tl]ere
fore by using modal distribution of balance weights for the first 
and second critical speeds the rotor can be balanced through 
two critical speeds by using single plane balancing theory 
based on influence coefficients with one probe observing the 
rotor motion between discs 1, 2, and 3. 

Fig. 2 . 5. 3 represents the motion of a three mass rotor at 
which three critical speeds are excited at 2,000, 6,000, and 
9,000 RPM. In this particular run, an unbalance distribution 
was placed on the rotor to excite the third mode. Unbalances at 
the end discs were placed in phase and unbalance at the center 
disc was placed out of phase. The. third mode unbalanoe �istri
bution on the rotor caused a large synchronous vibration to 
develop at the end probe positions of l and 4 of over 20 mils. 
When this occurred, the center of the rot�>r at 9,000 RPM 
jumped abruptly into a fractional frequence wbi:('l motion . This 
whirl motion was eliminated by reduoing the rotor speed. The 
self exoited whirl motion in the rotor was only observed when 
there was sufficient unbalance in the rotor to cause a consider
able amount of bending of the shaft. It is believed that the 
bending of the shaft initiated internal friction between the shaft 
and the disc causing a self exoited whirl motion. It has been 
reported in the literature by Newkirk and others that often a 
large shook or excitation is required to initiate shaft whirl due 
to internal friction. Therefore it is possible to have a compres-



146 PROCEEDINGS OF THE FIFTH TURBOMACHINERY SYMPOSIUM 

sor which operates satisfactorily when it is well balanced, but if 
large unbalance is placed on it such that there is a deformation 
of the shaft with shrink fits, then it is possible for the internal 
friction to drive the rotor into a self excited whirl instability. 

2 .6 T HREE POINT METHOD OF BALANCING 
There arise many circumstances in industry in which it is 

difficult to obtain an adequate phase angle measurement which 
is required for balancing by means of the influence coefficient 
method. Under these circumstances it is possible to balance 
out a rotor without the use of phase measurements if the three 
point method of balancing is employed. A description of the 
three point method of balancing taken from the IRD 
Mechanalysis course notes is included to illustrate the proce
dure. The three point method of balancing was used to balance 
out a single mass rotor in which it was assumed that neither the 
phase angle could be measured or that the rotor speed could 
not be held constant. The rotor was run through the first criti
cal speed and the amplitude recorded as shown in Fig. 2. 6. 1. 
The rotor was rerun ·with trial weights alternately placed at 
three different locations around the disc, and the resulting 
rotor amplitudes were recorded. The peak amplitudes result
ing from the various runs were obtained, and the correction 
plane was calculated as shown in Fig. 2. 6.2. Three radii are 
drawn from the circle representing the original rotor 
amplitude. The intersection point of the locust of the curves 
represents the position of the correction weight and the ratio of 
the radius vector to the original amplitude of vibration yields 
the value of the balance correction weight. Fig. 2. 6.1 shows 
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Figure 2 . 6. 1  Amplitude vs . RPM 

the results of the final balancing. Note that there is a consider
able reduction at the rotor first critical speed. This is because 
there is a bow in the rotor system. If the vibration amplitudes 
were not recorded at the first critical speed then the rotor 
balance would not have been as satisfactory because the bow 
hector could not be taken into consideration. If the vibration 
values are observed at the critical speed, then this procedure 
may be used for a bowed rotor. It is also of importance to note 
that this method may be used to balance out higher critical 
speeds by using a modal unbalance distribution on a multimass 
shaft. 

2 . 7  CONCLUSIONS 
Neglecting residual shaft bow during balancing can result 

in large amplitudes of rotor motion at the critical speeds even 
though low vibration levels exist at the balancing speed. If a 
rotor is not field balanced, the change in support damping and 
flexibility characteristics between the balancing facility and 
field installation may alter the rotor vibrations levels consid
erably. In the field, large unbalance response and instability 
may appear in a rotor that exhibited acceptable vibration levels 
during balancing. 

Both the influence coefficient and modal balancing 
methods produce satisfactory results if properly applied. The 
modal method is generally easier to apply however. Care 
should be taken to monitor rotor motion at locations that have a 
relatively large response. Rotor node points should be avoided 
as monitoring stations. Large vibratiional amplitudes not 
caused by unbalance may exist in rotors. Such responses can
not be altered or removed by balancing although they can be 
affected by rotor acceleration and support changes. 

Satisfactory balancing in the field can be achieved without 
phase angle information using a three point balancing tech
nique. The method can be applied as both a single plane cor
rection or as a modal balance correction. Care must be taken to 
select proper balancing speeds and to take into account perma
nent rotor bow. 
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