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ABSTRACT

With turbine rotors of low shaft elasticity (large diameter
and small bearing span) the increase in amplitude at the first
point of shaft resonance in the speed range is generally slight.
Consequently no particular attention is paid to this point of
resonance either at the rotor design stage or during operation
of the turbine.

However, if a two-cylinder condensing turbine has to be
replaced by a single-cylinder machine of similar high effi-
ciency, it is necessary to have a drum-type rotor of large bear-
ing span and small diameter in the region of the first drum
stages, and large diameter in the region of the low-pressure
stages.

This type of rotor has a markedly higher shaft elasticity
compared with the rotors of the two-cylinder machine.

A rotor of this type was recently built and put into service.
This paper describes the rotor and gives its calculated dynamic
characteristics. Since operation in the vicinity of the first re-
sonant speed is of greatest interest the paper describes the test
results for the properly balanced condition, and for the artifi-
cially heavily unbalanced condition.

The shaft vibration values measured during the test-run
are compared with the assessment criteria for rotor dynamic
performance used at present.

In order to obtain valid theoretical statements for even
more slender rotors, the shaft elasticity was systematically in-
creased in theoretical calculations (by increasing the bearing
span). The effects of the shaft elasticity on the magnitude of
the resonant speeds, the maximum vibration amplitudes and
the stability limit (oil whip) are described.

In its original form, the drum-type rotor studied here has
only one output shaft coupling. For even higher turbine pow-
ers, however, heavy couplings on both shaft ends are neces-
sary.

In order to examine the dynamic behavior of these rotors,
the original rotor was fitted with an extra mass at the usually
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free shaft-end to simulate a second coupling. For this rotor, the
same calculations and measurements were carried out in the
overspeed testing pit as were for the original rotor. The results
are given and discussed. A further point examined with this
rotor is whether there is a linear relationship between the
dynamic bearing force and the magnitude of the unbalance.

INTRODUCTION

Since it is almost impossible to undertake any subsequent
correction of possible unsatisfactory performance of a finished
rotor, it is necessary to be able to calculate the dynamic be-
havior of steam turbine rotors accurately at the preliminary
design stage.

Modern calculation methods of rotor dynamics allow for
the exact geometry of the rotor (mass distribution, pattern of
moments of intertia), the modulus of elasticity of the material
as a function of rotor temperature, the spring and damping
properties of the oil film between the rotor and the journal
bearing shells, and the spring constants of the bearing housings
themselves.

The spring and damping properties of the oil film in the
journal bearing are replaced by four spring constants and four
damping constants per bearing for the purpose of calculation as
seen in Figure 1.

In addition to the principal spring constants y;; v, and the
principal damping constants 8, and B,, there are also the re-
spective linking terms vy;,, v, and B}, B;. The linking terms
are explained as follows: If a force acts in the y direction (see
Figure 1) on a shaft rotating in a journal bearing, the shaft
reacts not only with a deflection in the direction of the force,
but also in a positive or negative x direction depending on the
direction of rotation. Mathematically spealdng, these values
are the linking terms between the equations of motion of the
rotor in the x and y directions.

The dynamic bearing forces F, and F, result as reaction to
the displacements x and y and the displacement velocities %
and y:

X+ 7y y+PBu- X+ By (1)
Fy= vy X+ v y+Bu X+Byn-y @)

Experimental determination of the spring and damping
constants giving good agreement with theoretical values has
been performed by Glienecke [1].

Fy=yu-

Pollmann [2] [3] improved the agreement between exper-
iment and theory by taking into account the change in oil
viscosity across the lubricating gap in circumferential direction.
Thus, today it is possible to calculate the spring and damping
constants with adequate accuracy for any journal bearing
geometry [4]. Details of the methods employed for calculating
rotor dynamic performance are given in references [5] and [6].
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Figure 1. Diagram of Spring and Damping Constants of the
Qil Film and the Spring Constants of the Bearing Housing.

SIMILARITY VALUES FOR
ROTOR DYNAMICS

If the same dynamic behavior is expected of two rotors,
journal bearings with the same clearance geometry for the sup-
porting oil film and the same length/diameter ratio must be
used. It is equally important, however, that the dynamic simi-
larity values are also identical: the displacement of the shaft in
the oil film and the magnitude of the spring and damping
constants are determined by the Sommerfeld number S, and
the similarity number for temperature rise K, according to
Pollmann [2], which takes into account the varying viscosity in
the oil film.

|
SO stat dl (3)
B-D nmg-w
MNE: o
K, ==° 4
‘T e o (4)

Fg. = Static bearing force

¢ = Relative minimum bearing clearance

B = Supporting bearing length

D = Bearing journal diameter

ng = Oil viscosity at reference temperature
VU

® = Angular velocity of rotor

c = Specific heat of oil

p = Specific gravity of oil

The shaft-bearing system is identified by the shaft elasticity w:
nw =f/AR (5)

A R = Minimum radial bearing clearance

AR=D- ¢ /2 (6)

f = Sag due to weight of a massless shaft having the
mass of the rotor concentrated as a point mass at
the center. f is made so that this single-mass vi-
bration system has the same first critical angular
velocity wg; for rigid bearing support as the tur-
bine rotor in question.

Therefore w¥, = v/c¢/m

¢ =m - gf
n = f/AP\=g/AR-w’]':‘;

© ® 3
e = A

g = Acceleration due to gravity

So that two rotors can be compared dynamically, S,
and K pare obtained for the first critical speed wg ¥ of the rigidly
supported rotor:

Foat . g2

Sox = _set- vt (10)
B-D - wgh*
Mg o]

KTK: S —— (11)
C.p.ﬂE.‘pZ

If the rotors being compared have similar journal bear-
ings and similar values S,x, Krx and u, their dynamic be-
havior will be largely identical at least up to the first rotor
resonant speed.

ROTOR FOR A CONDENSING TURBINE
WITH ONE COUPLING

The rotor being studied is shown in Figure 2 which gives
all principal data. Figure 3 shows the sections into which the
rotor is divided for calculating the dynamic behavior and also
the temperature variation for the modulus of elasticity of the
material.

In Figures 4, 5 and 6, the calculated amplitude values of
rotor vibration are plotted as a function of speed. The
amplitude values A are defined as half the major axis of the
ellipse of motion of the rotor center. The amplitude values are
plotted for the front free shaft end (o), the two bearing journals
(2) and (6), midway between the bearing span (4) and the rear
shaft end carrying the coupling (8).

Figure 4, 5 and 6 differ in the unbalance arrangement
chosen. Basically, the actual distribution of the unbalance of a
turbine rotor is unknown. During balancing, it is only possible
to measure the resulting unbalance vectors at the bearings. To
assess the dynamic behavior of the rotor, therefore, it is neces-
sary to make assumptions about the unbalance. They are cho-
sen so that, if possible, all natural frequencies of the rotor are
thoroughly excited.

So that different rotors can be compared with each other,
the same balance assumptions for the calculation are always
used. The assumption itself comprises the position and mag-
nitude of the unbalance and, when there are several, also the
phase position and the ratio of the magnitudes of the individual
unbalances.

Figure 4 is applicable to an unbalance at mid bearing span,
Figure 5 for two opposite-phase points of unbalance within the
bearing span and Figure 6 corresponds to Figure 5 but with an
additional opposite-phase unbalance at the two shaft ends.

Since a linear equation system is used for calculating the
shaft vibration amplitude values A, the amplitude A is directly
proportional to the chosen unbalance value U: twice the value
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front rear

MAXIMUM SPEED 5000 RPM
WEIGHT 30700 N
BEARING SPAN 2970 MM
BEARING DIAMETER F = 200 MM, R = 250 MM
SURFACE LOADING F = 0.61 N/mmz, R = 0.58 N/mm?
BEARING TYPE TWO WEDGE BEARING
BEARING LENGTH/DIAMETER RATIO 0.5
CRITICAL SPEED n}:l 2991 RPM
n}":Z (rigid bearings) 12327 RPM
SHAFT ELASTICITY H = 0.54
SOMMERFELD NUMBER (using nkl) SOK = 0.23
SIMILARITY NUMBER FOR TEMP. RISE (using nﬁl) KtK = 0.03

Figure 2. Condensing Turbine Rotor Studied With Principal Data.
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Figure 3. Rotor, Divided into Sections; Rotor Temperature Pattern, and Locations of Points, Used for the Calculation of Vibration
Amplitudes.
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Figure 4. Relative Amplitudes of Shaft Vibration as a Function of Speed for One Unbalance in the Center of the Rotor. (Rotor as in
Figure 2, Location of Calculation Points as per Figure 3).

4 BEARING DATA:

TYPE: TW®-WEDGE

BEARING NO.1:
SO, 1 0.2397E 00
20.8 | KTg: 0.3105€-01
Wi 0.60
BEARING NO.Z2:
S0.1 0.2171€ 00
KT : 0.3182E-01
1 0.4939E 00

— A/E

UNBALANCE DISTR IBUTION:

|
1.8 7= . =
!
I! Ii
= zstTﬁT'l

s 2 s s d

718,315, .72+8.088. 8

T
0008.0 (rpm) 12000.8

Figure 5. As Figure 4, but with Two Unbalance Points Opposite in Phase
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Figure 6. As Figure 4, but with Four Unbalance Points Opposite in Phase.

U gives twice the value A so the quotient A/U remains con-
stant. The unbalance radius e is introduced in place of the
unbalance U:
U
m

e =

(12)

rotor

M, = Total mass of rotor

The unbalance U then has the dimensions length x mass.
The shaft vibration amplitude values are plotted in Figures 4, 5
and 6 as relative values A/e. The unbalance itself must be
chosen large enough so that the calculation is numerically
stable. The choice of magnitude has no effect on the result of
the calculation. If several points of unbalance are used, the
unbalance radius e is defined as follows:

DY

m,

e =

rotor

Y U = Sum of all unbalance values.

The assumption that A/e is independent of the magnitude
of the unbalance assumed is only applicable now provided the
ratio of the magnitudes of the unbalances to each other is not
changed.

From Figures 4, 5 and 6 it can be seen that the first and
second points of rotor resonance are excited most strongly by
the center unbalance. The first point of resonance is at n; =
2872 rev/min, the second at n, = 7154 rev/min. At ny; the
rotor center exhibits maximum deflection whereas at ny, it is
the front shaft end. Since the relative values A/e have no rela-
tion to the values which must be attained during the ac-
ceptance testing of turbines, the relevant amplitude values A
have been calculated for an attainable balance grade of the

rotor assuming center unbalance. These amplitude values are
compared with the maximum values to API 612 [8].

Balance grade is defined by VDI 2060 [9] as:
Q=¢e w (13)
e=Q/w (14)

Q = Balance grade expressed as vibration velocity
® = Angular velocity of rotor

Thus, a requirement for constant balance grade Q necessi-
tates ever smaller radii e for the residual unbalance of the rotor
with increasing speed.

The values (A/e) are obtained from the vibration calcula-
tion:

A = (Ale) - e = (Ale) - Qlw (15)

To calculate the amplitude A it is necessary to have a value
for the unbalance radius e. This can be calculated for an attain-
able balance grade Q and a selected balance speed with equa-
tion (14). If the balance speed is taken as the maximum operat-
ing speed, the balance grade Q from equation (13) becomes
proportionally better for all low speeds.

In order to be able to make the most unfavorable assump-
tion for the magntiude of the unbalance radius for the whole
speed range, e is varied, but Q is held constant. In conse-
quence, e becomes a function of the speed.

This assumption has the advantage that every speed can
also be the balance speed.

For comparing the amplitude A with the acceptance limits
to API, the balance grade Q is taken as unity.

Hence, e = l/w (16)



76 PROCEEDINGS OF THE SEVENTH TURBOMACHINERY SYMPOSIUM

In Figure 7 the amplitude values for the bearing journals
(positions 2 and 6 on the rotor) must be compared with the API
values. The amplitude values for the assumed balance grade Q
= 1 are considerably below the API values. The splitting of the
first resonant speed, due to the two-wedge bearing, can be
clearly seen in Figure 7: the resonant point below ny, (defined
by the maximum amplitude of the rotor center, i.e. position 4)
also appears in Figure 4, but the unbalance is very small due to
e being constant, and with the low value of w, so that the
amplitude remains small. In Figure 7, on the other hand, the
unbalance radius assumes very large values at low speeds, thus
producing large amplitudes because of the very large unbal-
ance. The reverse applies to the higher speed range.

The API values are acceptance values for demonstrating
good balancing of a machine. However, for turbine operation
such amplitude values do not represent a danger limit.

In order to illustrate the difference between the API val-
ues and the “alarm limit”, the alarm-limit values, according to
the new VDI 2059 [10], have been entered in Figure 7. The
alarm limit has been calculated for a rotor which, at commis-
sioning, had shaft vibration values corresponding to API 612.

During test runs of the properly balanced rotor, the val-
ues of rotor amplitude shown in Figure 7 were measured at the
bearings. The calculated values and measured values are only
suitable for limited comparison because the unbalance distri-
bution of the balanced rotor is unknown and certainly will not
correspond to the calculation assumption of a single center
unbalance.

There is good agreement between measurement and cal-
culation for the position of the points of resonance. This proves
the excellent accuracy of the oil film spring constants being
used.

At the maximum balancing speed of n,,,, = 5000 rev/min
there is also good agreement between calculation and mea-
surement for the amplitude values. At higher speeds the mea-
sured curves rise more steeply than the calculated ones be-
cause here the actual balance grade is worse than Q = 1. At
lower speeds, however, the calculated values rise more steeply
because the actual rotor exhibits a balance grade better than Q
= 1 at these speeds.

In order to examine the sensitivity of the rotor to coupling
unbalance, a second absolute amplitude curve has been calcu-
lated for a single unbalance on the coupling. However, Q = 40
is used for the balance grade; although the coupling hub and
sleeve are balanced to Q = 1 to Q = 2.5, respectively, the
actual unbalance can become much greater due to the tooth
clearance and as a result of wear.

The absolute amplitude values are not compared with API
612 in Figure 8, because it is an unusual disturbance condition
which is being assessed.

The amplitudes at the bearings 2 and 6 are therefore com-
pared with the “alarm limit” to VDI 2059. Even for this large
coupling unbalance the vibration amplitude in the bearings
only reaches approximately one quarter of the alarm limit val-
ues.

In Figures 9 to 12 the deflection curves of the rotor are
shown in two planes for four different speeds: the lowest speed
is below ny,, the second is equal to ny,, the third is between ny,
and ny, and the fourth is equal to ny,. Since the occurrence of
major center unbalance due to rotor distortion or blade fracture
is to be studied as a disturbance condition for this rotor, only a
center unbalance is assumed.

For all speeds the deflection curve remains in the half-
wave form. The shaft becomes increasingly deflected at the
bearings with rising speed because of the spring properties of

the oil film. The changeover from the half-wave to the full-
wave curve, which takes place with rigid bearing support of the
shaft when the second critical speed is approached, no longer
occurs. For the first two speeds the maximum shaft deflection
is found the middle of the rotor, whereas for the last two
speeds it is at the front shaft end.

Dynamic bearing forces measured during balancing are
plotted on a graph in Figure 13. The sum of the dynamic forces
of both bearings has been referred to the rotor weight and is
shown as a function of speed.

Curve 1 applies to the properly balanced rotor. At the
maximum operating speed n,,,, = 5000 rev/min, the sum of the
dynamic bearing forces is approximately 10% of the rotor
weight and at the first resonant speed it is approximately 15%.

To examine the behavior of the rotor when passing
through the first resonant speed for a disturbance condition of
very large center unbalance, a single mass of 400 grams corre-
sponding to an unbalance of 60 X 10° mmg was placed at mid
bearing span. This unbalance corresponds to that of blade
damage in which two moving blades have broken off com-
pletely in each of four rows in the center rotor area. The
additional unbalance results in a balance grade of Q = 5.9 for
the first resonant speed.

The sum of the measured dynamic bearing forces is shown
as curve 2; at the first resonant speed it reaches 90% of the
rotor weight. The factor of increase compared with the value
for the properly balanced rotor is therefore approximately 6.

In the overspeed testing pit it was feund possible to pass
through the resonant speed without difficulty. This shows that
it would be possible to safely shut down a turbine incorporating
this slender drum-type rotor after the occurrence of major un-
balance at operating speed.

THEORETICAL EXAMINATION OF THE EFFECT
OF SHAFT ELASTICITY u RESONANT SPEED
AND AMPLITUDE

The shaft elasticity of the original rotor is approximately
u = 0.5. By increasing the bearing span, the w value is in-
creased in three steps to u = 1. The rotor geometry used for
the calculation is shown in Figure 14.

Figure 15 shows the effect of u on the resonant speeds:
with increasing shaft elasticity the resonant speeds fall, but
from w = 0.5 to u = 1.0 the speed decrease (ny; — ny,) is only
about 7%. Thus, the usable speed range between the two
points of resonance is practically independent of the shaft elas-
ticity. This is due to the oil film in the journal bearings, for with
rigid bearings the speed range is reduced by 33%.

Figure 16 shows the ratio of the resonant speed n; with
the oil film effect to the resonant speed n* for rigid bearings.
The first resonant speed, ny;/ny* is almost independent of w;
whereas, for the second resonant speed, nyy/ny,* rises sharply
with increasing w. This is the reason for the constant usable
speed range mentioned in connection with Figure 15. It fol-
lows from Figure 16, generally, that with increasing shaft elas-
ticity, the resonant speeds come closer and closer to those for
rigid bearings.

In Figure 17 the effect of the shaft elasticity on the
maximum rotor amplitude for the first resonant speed is
shown. This maximum rotor amplitude has been calculated for
position 4 (mid bearing span).

For a rotor supported in two-wedge bearings, a doubling
of the shaft elasticity also doubles the resonant amplitude val-
ues. Thus, the disadvantage of high shaft elasticity is high
resonant amplitude values when passing through the first re-
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Figure 7. Amplitudes of Shaft Vibration for Unbalance Corresponding to Balance Grade Q = 1 of the Rotor as in Figure 2, Location
of Calculation Points as per Figure 3.
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Figure 8. Amplitudes of the Shaft Vibration for an Unbalance at the Coupling Corresponding to Balance grade Q = 40 of the
Coupling (Rotor as in Figure 2, Location of Calculation Points as per Figure 3).
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Figure 13. Dynamic Bearing Force of the Rotor as in Figure 2
with Different Values of Unbalance.
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Figure 14. Variation in Shaft Elasticity by Enlarging the Bear-
ing Span of the Rotor as in Figure 2.
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Figure 16. Resonant Speed/Critical Speed as a Function of
Shaft Elasticity.

sonant speed. This aspect must be considered closely for dis-
turbance conditions which can give rise to major center unbal-
ances. The resulting resonant amplitude values could quite
possibly represent a design limit for the shaft elasticity.

The resonant amplitude values were also calculated for
four-wedge bearings in order to clarify the effect of the bearing
shape on resonant amplitudes. The rotor geometry was un-
changed. The four-wedge bearing has poorer damping prop-
erties than the two-wedge bearing because of its less sharply
curved bearing shells, so even at uw = 0.5 the resonant
amplitude is considerably greater than that with a two-wedge
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Figure 17. Amplitude at Rotor Center for Ist Resonant Speed
as a Function of Shaft Elasticity and Bearing Form.

bearing. With an increasing value of u the discrepancy com-
pared with the two-wedge bearing becomes steadily greater.
Double the value for u gives a three times greater resonant
amplitude for the four-wedge bearing.

The two-wedge bearing is clearly superior to the four-
wedge type with respect to the damping of unbalance
vibrations.

However, for a bearing rotor system it is not only the
behavior with forced unbalance vibration which has to be con-
sidered, but also its stability against self-excited vibration.
Such self-excited vibration occurs above a certain limit speed.
It is typified by large amplitudes and vibration frequencies
which are considerably lower than the rotational frequencies.

This limit speed, called the stability limit, is much higher
with four-wedge bearings than with two-wedge bearings, how-
ever (see Figure 18). Therefore, it is frequently necessary to
strike a balance between the damping of unbalance vibration
and the necessary stability reserve which the use of four-wedge
bearings makes essential. Figure 18 illustrates the effect of
shaft elasticity on the stability limit. With four-wedge bearings
the limit speed clearly decreases with increasing shaft elastic-
ity.

With two-wedge bearings the limit speed in the u range
being studied increases slightly with increasing elasticity and
decreases again when higher u values are reached. In general,
the limit speed falls with increasing shaft elasticity.

Increasing shaft elasticity has two negative effects on the
rotor dynamics: the resonant amplitude values of unbalance
vibration increase, and the limit speed for the occurrence of
self-excited vibration is reduced.

Mlinie 22 =
n
max.
2,0 \\
Four-wedge bearing
1.8 -
16
14 —
,,_,,——”’—'_‘ Two-wedge bearing
12 -
1,0 T 7 g 7
05 1.0
M = Shaft elasticity
N .y = Maximum operating speed
Ny ni¢ = Speed of stability limit (oil whip)

Figure 18. Stability Limit as a Function of Shaf't Elasticity and
Bearing Form.

ROTOR FOR A CONDENSING TURBINE WITH
COUPLING WEIGHTS AT BOTH SHAFT ENDS

The rotor studied so far had simply one coupling so only
one of the two shaft ends was loaded with a large mass. In
order to examine the effect on the resonant speeds, the reso-
nant amplitude; and the dynamic bearing forces of a mass on the
previously free shaft end; a mass of 70 kg was shrunk on to the
free shaft end. This corresponded to the mass of the coupling
on the original rotor.

Numerical computations and balancing measurements
were then performed for the modified rotor.

Figure 19 shows the rotor fitted with the extra mass. Fig-
ure 20 shows the subdivision of the rotor into sections for
calculation of the rotor dynamics.

In Figures 21, 22, and 23 the calculated relative values of
rotor amplitude are plotted as a function of speed. These
graphs are directly comparable with those in Figures 4, 5 and
6.

A comparison shows that the first resonant speed is
changed but little in position and magnitude by the extra mass.
The second resonant speed, on the other hand, is clearly much
lower: it has fallen from ny, = 7154 rev/min to ng; = 5868

. Addtl. mass = ~—uJ
MAXIMUM SPECD 5000 RPM
WEITGHT 31370 N
BEARING SPAN 2970 MM
BEARING DIAMETER F o= 200 MM, R = 250 MM
SURFACE LOADING F = 0.65 N/mm?, R = 0.57 N/mm?
BEARING TYPE TWO WEDGE BEARING
BEARING LENGTH/DIAMTER RATIO 9.5
CRITICAL SPEED n'fy 2974 RPM
n#y, (rigid beavings) 11624 RPM
SHAFT ELASTICITY W= 0.55
SOMMERFELD NUMBER (using n¥y) Sog = 0.24
SIMILARITY NUMBER FOR TEMP. RISE (using n¥ ;) Keg = 0.03

Figure 19. Rotor of Condensing Turbine Under Study with
Extra Mass at the Front; Principal Data.
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Figure 21. Relative Amplitude Values of Shaft Vibration as a Function of Speed for One Unbalance in the Center of the Rotor (Rotor
as in Figure 19, Location of Calculation Points as per Figure 20).
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Figure 23. As Figure 21, but with Four Unbalance Points in Opposite Phase.
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Figure 24. Amplitude Values of Shaft Vibration for Unbalance Corresponding to Balance Grade Q
Location of Calculation Points as per Figure 20.
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Figure 25. Amplitude Values of Shaft Vibration for a Coupling Unbalance Corresponding to Balance Grade Q = 40 of the Coupling
(Rotor as in Figure 19, Location of Calculation Points as Per Figure 20).
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rev/min. This results in the usable speed range between ny,
and ny, being greatly curtailed.

The resonant amplitude, however, is increased only
slightly. A comparison of the amplitude values of a rotor with a
center unbalance corresponding to balance grade Q = 1 having
a limit curve to API 612 shows the same picture for the rotor
with the extra mass as without it (see Figures 7 and 24). The
same applies to the amplitude values of the rotor with a cou-
pling unbalance corresponding to balance grade Q = 40 (see
Figures 8 and 25).

The magnitudes of the amplitude values have hardly
changed, but the second resonant speed has fallen sharply. The
curve of the second resonant point of the rotor with the extra
mass is, however, steeper than that of the original rotor, which
suggests lower damping coefficients.

The main effect of the extra mass on the free shaft end,
therefere, is to displace the second point of resonance consid-
erably towards lower speeds.

The w value of the rotor is hardly changed by the fitting of
the extra mass. The position and magnitude of the first reso-
nance are also unchanged. This confirms the suitability of the u
value as a similarity number for the first resonance. But despite
identical u values, the two compared rotors have very different
second resonant speeds. Therefore, the w value is unsuitable as
a similarity number for the second point of resonance. This is
not surprising since u was defined for a single-mass vibration
system.

Everything which has already been said for Figures 9 to 12
is applicable to the deflection curves of the rotor with the extra
mass (see Figures 26, 27, 28 and 29). The deflection curves are
almost identical to those of the rotor without the extra mass.
They have also been calculated for a center unbalance in Fig-
ures 26 to 28. The calculation speeds chosen were n = 1000
rev/min, ny; = 2852 rev/min, n = 4500 rev/min and n,, = 5868
rev/min.

Figure 30 shows the results of tests conducted on the rotor
during balancing. As in Figure 13 the sum of the dynamic
forces measured at both bearings are plotted as a function of
speed. The sum of the forces is referred to the rotor weight.
Curve 1 represents the variation in dynamic bearing forces as a
function of speed for the properly balanced rotor.

Throughout the speed range the dynamic bearing forces
are less than 10% of the rotor weight. Thus the rotor with two
coupling masses can also be balanced well.

Curve 2 was measured after an artificial unbalance of only
0.72 x 10* mmg (corresponding to a mass of 4 grams) had been
applied to the extra mass. At speed ny, this unbalance corre-
sponds to a balance grade of Q = 3 referred to the mass of the
additional unbalance.

Even this small unbalance results in approximately three
times greater dynamic bearing forces at the resonant speeds
compared with the properly balanced rotor. This means that
the “overhanging end” of the rotor is very sensitive to unbal-
ance.

Curve 3 is the result of measurements taken with an artifi-
cial unbalance of 30 x 10° mmg applied to the middle of the
properly balanced rotor with no artificial unbalance on the
extra mass. At speed ny, this unbalance corresponds approxi-
mately to balance grade Q = 3. Since only the behavior of the
rotor when passing through the first resonant speed was to be
examined, the measurements were only taken for speeds below
3000 rev/min.

The sum of the dynamic bearing forces at ny, attains ap-
proximately 55% of the shaft weight.
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Figure 26. Deflection Curve for Unbalance at the Middle of
the Rotor, n = 1000 rec/min (Rotor as in Figure 19).
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Figure 27. As Figure 26, but n = 2853 rev/min.

Curve 4 was obtained under the same conditions as curve
3, except that the unbalance was doubled to 60 X 10° mmg.
The dynamic bearing force at the first resonant speed is in-
creased to approximately 95% of the rotor weight. This value is
almost identical to that of the rotor without the extra mass
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Figure 29. As Figure 26, but n = 5868 rec/min.

(Figure 13). The point of resonance could be passed through
without difficulty.

For the properly balanced rotor, the dynamic bearing
force at ny; was approximately 10% of the rotor weight. The
increase in dynamic bearing force resulting from the center
unbalances was therefore 45% and 85%. With good accuracy,
therefore, it means that doubling the unbalance doubles the
dynamic bearing force. This linear relationship is at least valid
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LF = SUM OF DYNAMIC BEARING FORCES AT FRONT AND REAR
JOURNAL BEARINGS.

Flotor = 31370 N (ROTOR WEIGHT)
E £ = RELATIVE DYNAMIC BEARING FORCE OF ROTOR
Rotor

@ BALANCED ROTOR AS IN FIG.19: UZI:U ) UZQZO

@ ROTOR AS ABOVE, BUT WITH ARTIFICIAL UNBALANCE UZ]

APPLIED TO THE EXTRA MASS. U, = 0.72X10%mmg *)

UZQZ 0
*) This corresponds to a balance grade ®=3.1 when
refered to the unbalance mass, and to #=0.07 when
refered to the total rotor mass, at ng,

@ ROTOR AS ABOVE, BUT WITH ARTIFICIAL UNBALANCE UZZ
APPLIED TO THE ROTOR CENTER. Uzj= 0
Uzp= 30X10°mme *)

*) This corresponds to a kalance grade 0=2.9 when
refered to the total rotor mass at Nyq

@ ROTOR AS IN 3 ABOVE, BUT MASS OF ARTIFICIAL UNBALANCE
IN ROTOR CENTER DOUBLED TO UZZ: S0X18°mmg *). U21:0

*) This mass now corresponds to balance grade Q=5.8,
at ng, and refered to the total rotor mass.

Figure 30. Dynamic Bearing Force of the Rotor as in Figure 19
for Various Values of Unbalance.

up to dynamic bearing forces of the order of magnitude of the
rotor weight.

The tests have shown that extra masses on the ends of the
rotor have very little effect on the first resonant point of the
rotor. Such extra masses, however, have a serious effect on the
position of the second point of resonance. The effect of unbal-
ance at the middle of the rotor is largely unchanged by the
extra mass. Unbalance in the masses at the free ends of the
rotor, on the other hand, has a serious effect on the rotor
dynamics.
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