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INTRODUCTION 

All turbomachines share at least one common trait: they 
all handle some type of fluid. Since fluids have a rather 
insidious inclination to find flow paths other than those intend
ed, the subject of fluid leakage and its control through the use 
of sealing devices has always been of importance to the rotating 
equipment designer. The use of seals in turbomachinery dates 
back to the first pumps, turbines and compressors of nearly a 
century ago. 

Since seals have such a long history, it might be assumed 
that the subject was a static one, and readers may question why 
there is still so much interest in seals. The answer lies in two 
words - energy and efficiency. Rising energy costs of the last 
few years have put greater emphasis on the improvement of 
machinery efficiency, including reduction of leakage rates 
through improved seal designs. The desire to improve efficien
cy by reducing leakage has led to the development and use of 
abradable seals. In an abradable seal the rotating element is 
actually allowed to wear into the stationary sealing element, 
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which is made of a material that can tolerate abrasion. This 
technique permits reduced clearance between the rotating and 
stationary parts of the seal, and the reduced clearance results 
in lower leakage rates across the seal. 

In a seal which is used to contain the fluid within the 
machine, this lower leakage rate obtained with abradable seals 
can be viewed as a reduction of throughput losses. While in a 
seal used to separate internal parts , the reduced leakage cuts 
down on internal recirculation. In either case, the end result is 
improved overall machine efficiency. 

The intent of this paper is to describe various aspects of 
the application of abradable seals to industrial turbomachinery. 
Topics covered include sealing locations, materials, compara
tive studies and examples of the use of abradable seals. The 
paper will illustrate the use of the abradable seal as an energy 
saving device. 

Although the basic concepts discussed in this paper are 
generally applicable to several types of turbomachines, the 
scope of this paper will be directed primarily toward centrifu
gal compressors, since the compressor offers several different 
seal applications for study and because most of the work done 
on abradable seals has been relative to compressors. 

LOCATIONS WHERE ABRADABLE 
SEALS CAN BE USED 

Many sealing locations exist in turbomachinery where 
abradable seals can be utilized to their fullest extent. Locations 
that require a close clearance type seal, where the rotating 
element runs in close proximity to the stationary element, 
make good locations for the application of abradable seals. An 
ideal situation for the application of an abradable seal is where 
the rotating element grows radially or axially toward the sta
tionary element. The greater the amount of radial or axial 
excursion, the more suitable is the application of an abradable 
seal design. Wherever an abradable seal design is applied, a 
seal with minimum operating clearance results. 

Examples of locations in turbomachinery, where abrad
able seals are used, can generally be classified into two groups. 
These two groups are vane tip clearance seals and labyrinth 
clearance seals. 

Vane tip clearance seals are located where vane tips come 
in close proximity to the stationary housing. Figure 1 shows 
two examples of vane tip abradable seals; i.e. an axial compres
sor blade tip seal and an open centrifugal compressor impeller 
vane tip seal. In both cases the vane tip of the compressor 
blade must be in close, optimum proximity to the stationary 
housing to give efficient operation of the compressor stage. The 
less leakage that occurs across the vane tip, between the vane 
tip and housing, the more efficiently the compressor vane will 
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Figure 1 . Two Examples of Vane Tip Abradable Seals. 

function; and, therefore, result in a more efficient operating 
compressor stage. In a vane tip application, the abradable seal 
material is applied to the stationary element (shroud surface) in 
the vicinity of the vane tip. As the compressor rotor speed is 
increased to its operating speed, the blade tips will grow 
radially toward the stationary shroud. When an abradable seal 
material is used as the stationary shroud element, the clear
ance should be kept to the minimum necessary for start-up of 
the rotor. As the rotor increases in speed and the blades grow 
radially, the vane tips are allowed to freely abrade away the 
seal material and find their own minimum running clearance. 
The running clearance using an abradable seal design will be 
less than the running clearance of a conventional design. 
Hence, the abradable seal configuration will have less leakage 
and higher stage efficiency than a configuration without an 
abradable seal. 

If an abradable material is not used on the stationary 
shroud, ample clearance must be provided for the radial 
elongation of the blade, as well as any rotor dynamic deflec
tions, to ensure that no contact is made between the rotating 
and stationary elements, since contact could possibly result in a 
catastrophic failure of the rotor assembly. 

The second group of abradable seal locations are those 
utilizing labyrinth clearance seals, where pressure reduction is 
accomplished by a series of annular orifices. Figure 2 shows an 
example of an abradable labyrinth seal that is used to seal along 
an axial surface. Any location in a turbomachine that presently 
utilizes a labyrinth seal is a potential location for the use of an 
abradable labyrinth seal. As in vane tip abradable seals, the 
abradable material is applied to the stationary element. The 
labyrinth teeth are applied to the rotating element. The clear
ance between the rotating labyrinth teeth and stationary abrad
able material is kept to the minimum required for the assembly 
and start-up of the rotor. As the labyrinth teeth grow radially 
from rotation and move radially due to rotor dynamics, the 
labyrinth teeth are allowed to freely cut into the abradable seal 
material. 

Since an abradable seal material allows the rotating laby
rinth teeth to seek their own minimum running clearance, the 
leakage is kept to a minimum. If the axial excursions are kept to 
a minimum, the abradable labyrinth seal configuration will 
take on the characteristics of a staggered labyrinth seal after the 
abrading has taken place. Figure 3 shows an abraded labyrinth 
seal in an operating configuration corresponding to a staggered 
labyrinth seal. 

Abradable labyrinth seals can also be used on radial faces, 
provided that the rotating labyrinth teeth will have an axial 
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Figure 2. An Example of an Abradable Labyrinth Seal That is 
Used to Seal Along an Axial Sutface. 
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Figure 3. Operating Configuration of an Abraded Labyrinth 
Abradable Seal Showing the Formation of a Staggered Laby
rinth Seal. 

excursion into the stationary abradable seal material. The 
potential benefit of less leakage is similar to an abradable 
labyrinth seal along the axial surface. 

Examples of locations of abradable labyrinth seals for a 
typical centrifugal compressor are shown in Figure 4. The 
closed centrifugal impeller shroud seal (intrastage seals) and 
interstage centrifugal impeller seals act to minimize recircula
tion losses. The balance piston or drum seal is intended to 
minimize the leakage from discharge pressure to suction pres
sure. The purpose of the balance drum is to balance the 
resultant aerodynamic thrust of all the impellers. The shaft-end 
seals act to contain the gas being compressed with the case. 
Depending on the nature of the gas, and because labyrinth 
seals leak, labyrinth shaft end seals are not always appropriate. 

New locations for the application of abradable seals are 
continuously being explored. The designer must realize how 
abradable seals function to ensure that the location is favorable 
to an abradable seal design. 

ABRADABLE SEAL MATERIALS 

In addition to understanding how an abradable seal func
tions, the designer must be familiar with the properties of 

material used in abradable seals. In a typical application the 
abradable material is mounted on the stationary part of the 
assembly. Besides the obvious abradability requirement, there 
are other important considerations. The material selected must 
be compatible with the environment at the installation site. It 
must be mechanically capable of withstanding the forces result
ing from a rub or from differential pressure across the seal or 
from temperature excursions. It must be resistant to erosion by 
high velocity leakage flow especially in labyrinth seals. It must 
be compatible with a wide variety of gases and mixtures of 
gases ranging from air in a gas turbine compressor to isobutane 
in a process compressor application to sour natural gas in an oil 
field application. As part of the abradability requirement, seal 
materials must be able to accept damage from foreign objects 
without failing. In addition, the material must not cause signifi
cant wear on the blade or knife edge. 

There are many materials available which show promise 
for use in abradable seals. We will not cover all of them here. 
We will discuss several which are currently being used. One of 
the better known abradable seal materials is Feltmetal®. Felt
metal seals are made from Brunswick Technetics proprietary 
metal fibers. The material is produced as a uniform mat of 
metal fibers, sintered and compressed to a specified thickness 
and density. Two popular materials used to make the Feltmet
al® mat are Haynes 188 and Hastelloy X. When specified in the 
21% density product, Feltmetal® has good abradability while 
causing minimum wear to the blade tips and knife edges. 

As with all good things there are limitations. The Feltmet
al® noted above is susceptible to severe erosion when exposed 
to wet steam in a labyrinth seal. Another limit which is of little 
concern in most compressor applications is the upper tempera
ture at which the material may be applied. Depending on the 
backing and mounting, this limit is approximately 1200°F. 

Feltmetal® is by nature a porous material. The designer 
must take this into account when using it in an abradable seal. 
At low differential pressures across the seal the leakage 
through the material - as opposed to through the clearance 
gap - is minor. At higher differential pressures, provision 
must be made to "seal" the porosity. The differential pressure 
where this change in philosophy is required depends on the 
specific application and estimates of acceptable leakage. 

Fluorosint® is another material which has been success
fully used in abradable seals. It is a proprietary development of 
the Polymer Corporation consisting of a synthetic mica-filled 
TFE Fluorocarbon. The addition of the mica improves its 
performance characteristics over pure TFE. The reduced coef
ficient of thermal expansion over pure TFE virtually eliminates 
fit and clearance problems in seal parts made from Fluorisint®. 
Fluorosint® has good form stability to approximately 650°F and 
exhibits good heat distortion characteristics. In addition it is 
practically impervious to chemical attack. Only gaseous 
flourine at high temperature and pressure, and molten alkali 
metal show any significant attack. Some fluorinated com
pounds cause swelling. 

Unlike Feltmetal® which can be brazed to a suitable 
mounting device, Flourisanf1ll must be mechanically held in 
place. Since it is a plastic material it is usually mounted in some 
kind of metallic holder. The holder may be part of the com
pressor structure or a separate assembly may be provided. 

Honeycomb is one of the oldest materials used for abrad
able seals. It has been applied as turbine blade-tip seals and as 
labyrinth seals in centrifugal compressors. It is generally made 
of stainless steel strip. When used as a labyrinth seal, the basic 
honeycomb shape when cut by the rotating knives, may de
velop various and widespread leak paths. To overcome this 
objection, the cells of the honeycomb may be filled with a 
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suitable abradable !Uaterial. In this configuration, the honey
comb provides the mechanical strength and resistance to ero
sion, and the filler prevents spurious leak paths. Because of the 
metallic construction of the honeycomb, this material causes 
somewhat more wear to the rotating mating parts than other 
seal materials. 

PMG® is an abradable seal material developed by Gould, 
Inc. for turbine and compressor tip, labyrinth and interstage 
seals. It is a powder metal grid available in several composite 
systems. A typical composite consists of a modified nickel
graphite substrate gridded with L-605 cobalt base alloy. It can 
be applied from room temperature to l250°F. A PMG® seal 
can use any sinterable material available in powder form. The 
grid serves to preserve the structure under gas stream erosion 
conditions while the substrate acts as the seal and low-wear 
rubbing component. PMG® exhibits the durability of filled 
honeycomb with less component wear. It is available as a 
finished component ready to install or as rough material for 
user finishing. 

Several grades of glass filled TFE and Nylon have been 
used in abradable seal applications. In general they have been 
unsuccessful. This is attributed to the large coefficient of linear 
expansion of the glass-filled materials, the lower melting point 
(compared to Fluorosint®) and the highly abrasive characteris
tics of the glass filler. 

When considering materials for abradable seals, the de
signer should also consider the material of the rotating part. In 
most cases, standard materials that are compatible with the gas 
being compressed can be used. However, some applications 
may have special considerations where particular care must be 
taken. For example, pockets of gas between labyrinth teeth 
may result in localized "hot spots," which could cause prob
lems in some applications, such as oxygen or chlorine. In these 
instances, materials with the proper heat-resistant properties 
should be employed. Other instances involving particularly 
corrosive environments should be considered accordingly 
when selecting the proper material for the rotating seal part. 

EXAMPLES OF ABRADABLE SEALS 

Locations where abradable seals can be used were dis
cussed in general in a previous section. Figures 5 through 9 
illustrate specific applications of abradable seals in various 
configurations designed and applied by Transamerica Delaval 
Inc., including some patented designs. 

Figure 5 illustrates the shroud and interstage seals which 
act to minimize recirculation, both around the impeller and 
from other stages. This sealing arrangement can be used on 
most centrifugal compressors. 

Figures 6 and 7 show two balance piston seal designs for 
different temperature limits. 

Figure 8 shows abradable labyrinth seals being used in 
conjunction with an oil-type shaft-end seal. The number of 
labyrinth seals used can vary depending on the type of buffer 
gas or eductor system. This configuration is commonly used on 
compressors handling hydrocarbon gases. 

Figure 9 shows a multi-labyrinth shaft-end seal for a 
combination buffer/eductor seal system. This type of seal is 
most often used on compressors handling non-hydrocarbon 
gases, such as chlorine, which cannot be allowed to leak into 
the atmosphere. 

These illustrations demonstrate the versatility of abrad
able seals as applied to a wide variety of compressor applica
tions. 
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Figure 6. Typical Centrifugal Compressor Balance Piston Seal 
for Normal Temperatures and Intermediate Pressures. 

COMPARATIVE STUDIES 
USING ABRADABLE SEALS 

Various studies have been conducted to compare the use 
of abradable labyrinth seals to the use of conventional labyrinth 
seals. Primarily, the studies were conducted to verify the 
theoretically calculated efficiency improvements, due to the 
reduction of leakage that is available when abradable labyrinth 
seals are used. 

One of the these studies was undertaken to improve the 
stage efficiency of wedge-type low specific speed compressor 
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impellers by incorporating an abradable seal for the shroud 
seal. The internal deficiency, 'Tti> of a compressor stage can be 
expressed as, 

'Ttad'TtDF'Ttvol 

where 

'Ttad adiabatic efficiency 

TtoF = disc friction efficiency 

Ttvol = volumetric efficiency 

The volumetric efficiency can be expressed as, 

m 
'Ttvol = 

m + �m 

where 

m = impeller mass flow 

dm = leakage mass flow (across shroud seal) 

(1) 

(2) 

The above equations show that as the leakage flow is 
reduced, the volumetric efficiency increases and stage efficien
cy increases. 

Egli [2] presented an equation for the leakage through a 
straight labyrinth seal as, 

where 

G leakage flow (Ibm/sec) 

A area of the throttling opening, 'IT D 8/Fl4 (ftz) 

8 radial clearance (in) 

D seal diameter (in) 

a contraction factor (a function of 8 and �) 
d labyrinth strip width (in) 

<!> pressure ratio factor (a function of P JPr and n) 

'Y carry over factor (a function of 8/s and n) 

g acceleration of gravity (ft/sec2) 

n number of labyrinth teeth 
P 0 absolute pressure before labyrinth (lbf/ft2) 
Pr absolute pressure after labyrinth (lbf/ft2) 

V0 specific volume before labyrinth (ft3/lbm) 

s pitch between labyrinth teeth (in). 

See Figure 10 for the terminology used. 

(3) 

If a series of calculations are made for a straight labyrinth 
design application with all geometric parameters remaining 

1 
D 

Figure 10. Labyrinth Seal Terminology. 
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constant except for the radial clearance, a curve of leakage 
versus radial clearance can be generated. 

First, consider the case of the standard straight labyrinth 
shroud seal of a low specific speed wedge-type impeller opera
ting under the following conditions (See Figure 11): 

D 7.625 in. 

B .007 in. 

� .031 in. 

s .125 in. 

n 4 

Po 18.0 psia 

Pr 14.7 psia 

T 600°R 

Using the above parameters, the leakage was calculated to 
be .029 Ibm/sec. Since low specific speed impeller efficiencies 
can be substantially improved by reducing the shroud seal 
leakage (1], abradable seals were designed for this application 
with the following parameters. (See Figure ll) 

D 8.248 in. 

B .001 in. to .010 in. 

� .013 in. 

s .140 in. 

n 6 

Po 18 psia 

Pr 14.7 psia 

T 600°R 

The resulting curve of leakage versus radial clearance 
calculated for the above parameters is shown in Figure 12. To 
verify the substantial reduction in leakage calculated with 
abradable seals and the resulting stage efficiency improve
ment, a test program was initiated. Various abradable seal 
designs were implemented at the shroud seal to determine the 
effect on stage performance which includes both efficiency and 
head [1]. 

Figure 13 shows the normalized performance improve
ment when abradable seals were installed as the shroud seal. It 
can be seen from Figure 13 that stage performance improve
ments of up to 4% were realized when abradable seals were 
implemented at the shroud seal. 

Similar comparative studies were also made for the suc
cessful implementation of abradable seals at other locations in a 
centrifugal compressor. These locations include interstage cen
trifugal compressor seals, multistage centrifugal compressor 
balance drums, and multistage centrifugal compressor shaft
end seals. 
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Figure 1 1 .  Standard and Abradable Shroud Seal Configura
tions for the Low Specific Speed Impeller. 
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CONCLUSION 

We have now shown that abradable seals can be designed 
in a variety of configurations using several materials, and can 
be applied to many sealing locations in rotating machinery, 
particularly in centrifugal compressors. Let us now return to 
the introductory remarks claiming the abradable seal as an 
energy-saving device. 

Figure 13 clearly indicates the ability of abradable seals to 
improve compressor stage efficiency by improving volumetric 
efficiency equation (2). The application of abradable seals to 
balance piston seals and shaft end seals can also result in 
compressor efficiency improvement by reducing throughput 
losses. This has the effect of increasing the compressor's overall 
volumetric efficiency. 

The overall efficiency improvement attainable by using 
abradable seals in a compressor varies with several factors, 
most notably the size of the compressor. Flow capacity in
creases as the square of the impeller diameter, while seal 
clearance increases more linearly with impeller size and is also 
dependent on other factors such as bearing clearances and 
manufacturing tolerances. Therefore as the compressor size 
increases, the leakages involved become a smaller portion of 
the total flow. As this happens, the improvements gained by 
reducing these leakages have a diminishing impact on the 
machine's overall efficiency. This relationship is illustrated in 
Figure 14. 
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Figure 14. Energy Savings With Abradable Seals. 

Another factor to consider when weighing the efficiency 
gains obtained with abradable seals is the prospect of seal wear 
over the operating life of the compressor. In a conventional 
lab�rinth seal where the teeth are in the stationary part, the 
seal s clearance may increase over time as the rotating part 
touches the stationary part and wears down the teeth. The 
extent of this wear depends on the initial clearance and the 
amount of movement of the rotating part. The rate of wear can 
increase if the machine is subjected to frequent upsets or if 
rotor dynamics is not properly controlled. Over a typical 3 year 
continuous operation, it is possible for the clearance of conven
tional labyrinth seals to increase to twice the initial value 
which would result in a doubling of the leakage rate. 

' 

With an abradable seal, if radial and axial excursions of the 
rotating teeth are not excessive, the effective clearance can 
remain nearly as installed for long periods of operation. Thus 
with an abradable seal the leakage rates need not increase 
substantially with time. In the case of a compressor running 
continuously for 3 years, the cumulative savings with abradable 
seals could be as much as 150% of that shown in Figure 14. 

We can conclude, therefore, that abradable seals can be 
successfully applied in various sealing locations of tur
bomachinery, particularly centrifugal compressors, and can be 
used to improve overall efficiency of these machines. 
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