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ABSTRACT 
Straightf01ward mechanics are used to give a physical 

understanding of the important parameters mvolved in rotor 
dynamic instability. A concise analysis procedvre is proposed 
for assembling available information into a meaningful design 
stability analysis of between-bearing roto��· The technique 
combines the destabilizing effects on the rotor into an equiva­
lent single source at the rotor mid-span, and uses an excitation 
"threshold value" to rate the system stability. Results of apply­
ing this design analysis technique to an unstable compressor 
and the benefit from bearing redesign are presented. 

INTRODUCTION 
Rotordynamic instability, a self-excitation of the rotor/ 

bearing system, can occur, without prior warning and has 
catastrophic potential. It may take only slight changes in such · 
things as oil temperature, bearing Clearance and machine 
alignment to enable the system to become unstable. ·Once 
initiated, vibraUon can grow to .levels that cause machine 
destruction. Even if a machine st'arts-up successfully, there is 
no guarantee for the future. Several docuinerite!l cases exist of 
machines that have become unstable after more than 15 years 
of successful operation. In each case, the plant lost significant 
production during the time required to return the machine to 

3 

service. To prevent such unexpected occurrences, an adequate 
stability factor of safety should be part of the machine design. 

Although there are numerous references which list the 
possible sources for a destablizing force in turbomachinery 
[I,2], and several mathematical treatises exist which point out 
important rotor/bearing parameters [3,4,5,6, 7], it still can be 
difficult to comprehend the physical reasons for an unstable 
rotor. A universally accepted approach to a design analysis for 
stability also does not exist. Some analysts evaluate the rotor/ 
bearing system alone, while others include their best estimate 
for all possible destablizing forces within the machine. Most 
approaches use the criterion that the resultant system damping 
be equal to or greater than some fixed constant. Analyses of 
unbalance response and free vibration without destabilizing 
forces do not supply sufficient information to evaluate rotor 
stability. The inclusion of destabilizing forces is a definite 
improvement; however, a need exists for a meaningful stability 
factor of safety which can be more universally applied. 

Two objectives will be addressed herein: 
• Clarification of the current theory by using simple mod­

els to show the physical effects of important parameters on 
stability, and 

• Presentation of a stability analysis procedure based on an 
energy approach that approximates all of the destabilizing 
forces with a single parameter. 

The single parameter design analysis approach enables the 
destabilizing forces and the rotor/bearing system to be rated 
separately, permits the use of a stability factor of safety with 
physical meaiiiJ1g. and encourages comparison. with existing 
machines. Results of applying this design analys,is technique to 
an unstable compressor and the benefit from bearing redesign' 
are presentep. 

Approximate analytical solutions are derived in the 
APPENDIX to enhance the understanding of rotordynamic 
instability and to facilitate the design stability analysis. 

CLARIFICATION OF CURRENT THEORY 
Description

, 
of Terms 

Instability 

Imagine a b�ll balanced on top of an upside-down bowL If 
the ball is disturbed, it will roll off the bowl and not return to 
the starting point, The starting point is a position of instability. 
Turn the bowl upright and setthe ball on the bottom. Disturb 
the ball and it will return to rest at the starting point, which is 
now a position ofStabifity. Rotor instability is similar. Disturb 
an unstable rotor, .�nd linear theory predicts it will whirl with . 
increasing amplitude. Disturb a stable rotor and it will return 
to its originai conditiOIL ' · 

· · 

Rotor instability' might be described as a self-excited 
vibration in which the exciti11g force is a result of motion and 
motion is a result of the exciting :Force. The destabilizing forces 
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in a rotor instability are proportional to the local shaft displace­
ment, which is why a system resonance is excited-where 
maximum displacements result from a given energy input. The 
resonant frequency that is excited (usually close to the first 
critical) is subsynchronous (below the operating speed), be­
cause the damping forces increase with frequency above the 
operating speed and decrease with frequency below the opera­
ting speed. For a given subsynchronous frequency, the damp­
ing forces continue to decrease as the operating speed is 
increased, while the destabilizing forces are continually in­
creasing with the operating speed. 

Threshold Speed 

Threshold speed is the operating speed at which energy 
added to the system from destabilizing forces is equal to that 
removed through damping. Once the threshold speed is ex­
ceeded, instability occurs. The threshold speed will usually 
exceed twice the first bending critical speed of the machine. 

Cross-coupled Force 

Some well known sources for a destabilizing force are fixed 
geometry bearings, seals, compressor impellers, shrink fits, 
gear type couplings, rubs, trapped f luids, and steam whirl. 
While these sources may use different mechanisms to generate 
a destabilizing force, the end results are similar. Since steam 
whirl is the easiest to describe physically, it will be used to 
show how such a force occurs. In Figure 1, a turbine wheel is 
shown running eccentric to its peripheral seal, so that more 
steam leaks by the blades on one side than on the other. The 
varying amount of steam passing through the blades causes a 
difference in the tangential (torque) forces applied around the 
wheel. Summing these forces produces a net force at the center 
of the wheel which grows in magnitude as the amount of wheel 
offset is increased. Because the force direction is perpendicular 
to the wheel offset direction, it is referred to as a cross-coupled 
force. This force can be represented for small displacements 
by: 

(1) 

where Kxy and Kyx are the cross-coupled stiffuesses. 

Damping Force 

Damping resists motion and tries to stabilize the system. 
The viscous and pressure drag of the surrounding fluid on the 
rotor as it tries to whirl is an example of a velocity dependent 
damping force and can be written as: 

(2) 

Important Parameters 

Shaft Stiffness versus Fluid Film Bearing Stiffness 

The significance of the bearing to shaft stiffuess ratio is 
explained by considering a single mass supported on a f lexible 
shaft between two identical symmetrical fluid film bearings, as 
shown in Figure 2. The only source of damping in this model, 
and the major source in most turbomachinery, comes from 
relative motion in the bearings. By gradually increasing the 
bearing stiffuess in relation to the shaft stiffuess, a greater 
portion of energy is concentrated into shaft deflection and less 
into relative motion in the bearings, resulting in diminishing 
system damping. The stiffer the bearings in relation to the 
shaft, the smaller the benefit from bearing damping. 

F 

Figure 1. Steam Whirl of a Turbine Wheel. 

Figure 2. Shaft Stiffness Versus Bearing Stiffness. 

Asymmetric Support Stiffness 

The benefit of asymmetric support stiffness is explained by 
referring to an elliptical orbit in the XY plane (Figure 3). The 
orbit becomes more elliptical as the vertical and horizontal 
support stiffuesses become more asymmetric. Since work input 

j 

t 
y Fe 

For Kxx '# Kyy 
Kxy = - Kyx 

W = f Fc•dS 

Figutre 3. Work from Cross-Coupled Force. 
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is the integral of force times displacement in the direction of 
the force, the cross-coupled force puts the maximum amount of 
work into the system when the orbit is a circle, because force 
and displacement are always tangent to the orbiting path. 
When the orbit is an ellipse, the cross-coupled force direction 
deviates from the direction of displacement and the amount of 
work put into the orbiting shaft is reduced. For the extreme 
case of a straight line orbit (Figure 4), the cross-coupled force is 
always perpendicular to displacement, and there is no work 
input. 

y 

-----------1---------.__-ds x � 7 

b = o_ 
w = fFc•ds = o 

Figure 4. Zero Work from Cross-Coupled Force. 

The damping force and displacement shown in Figure 5 
are of opposite sign, but everywhere tangent to the path, 
whether circular or elliptical in shape. Therefore, as the whirl 
orbit becomes more and more elliptical, the work input from a 
cross-coupled force decreases toward zero, whereas the work 
taken away by damping does not. A ratio of work input to work 
dissipated versus the orbit minor/major amplitude ratio is 
plotted in Figure 6. The system used in this example is 
unstable when the orbit is a circle (ratio of b/a =l and the work 
ratio is > 1). Stability is achieved by increasing the ellipticity of 
the orbit (decreasing ratio of b/a) until the work ratio becomes 
<l. 

Note: In light of the above, it becomes apparent that a 
high preload on tilt-pad bearings is undesirable for rotor stabili­
ty. Bearing preload increases the bearing stiffness and induces 
symmetry of the bearing stiffness coefficients [8]. This, howev­
er, may conflict with expected results for unbalance response, 

j 
t 

For Cxx = Cyy 

y 

Fo 
-L 

Figure 5. Work from Damping Force. 

Wx (Work Input) 
Wo (Work Dissipated) 

(For we 0.8k) 

Unstable 

0.4 0.6 0.8 1.0 b/a 
Figure 6. Work Ratio Versus Orbit Minor/Major Amplitude 
Ratio. 

where a stiff bearing sometimes means lower vibration levels 
for the relative motion between the rotor and the bearing. This 
is one more compromise the designer must consider. 

SINGLE PARAMETER STABILITY ANALYSIS FOR 
BETWEEN BEARING H.OTOHS 

Definition of Terms 

Keq-Energy Equivalent Mid-Span Cross Coupled 
Stiffness 

The work per revolution of an orbit performed by the 
cross-coupled force and damping force at each station of the 
rotor model in Figure 7, and summed over all stations, can be 
written as [9]: 

- c (i) [b 2 2 Q. + 2 . 2 Q. l t Wo yy i COS tJi ai Sll1 tJi f 

Figure 7. Destabilizing Forces on Rotor Model. 

(3) 
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where the subscript and superscript "i" refer to values at station 
"i" of the rotor model and the other variables are defined in 
Figure 8. The work per revolution of an orbit for a single 
equivalent cross-coupled force at the rotor mid-span in Figure 
9 can be written as: 

(4) 

The equivalent mid-span cross-coupled stiffness is found by 
�quating the above two expressions for work and solving for 
Keq: 

y 

Figure 8. Orbit Nomenclature. 

Figure 9. Single Equivalent Cross-Co-Upled Force. 

Kth-Threshold Value 

(5) 

The equivalent mid-span cross-coupled stiffness which 
produce! a growth factor of zero (the instl!.bility threshold) is 
labeled Kth· An approximate expression for Kth is derived in the 
APPENDIX and is writtenJ as: 

Ktt = [1 -(Co/Ce)2] [K0 2 + Cc 2 Ke (1- �0�0 )/M] 
e e (6) 

The above approach assumes that energy equivalent sources 
can be moved about on the rotor without significantly changing 
the resultant mode shape. Although this is not strictly true, the 
effect has been f�md to be minor. Using a full rotor model, the 
threshold value Kth produced by an excitation source close to 
the bearing (worst case) was reduced by only six percent when 
an equivalent source was placed at the mid-spa11 of the rotor. 
Since a factor of safety of two or better on the threshold value is 
desired, the error is insignificant. 

Procedure 

The following procedure may be used as a guide to 
determining the stability or instability of a rotor and taking 
corrective actions, if required: 

l. Calculate the first critical speed of the rotor on rigid 
supports. 

2. Run a stability program for the rotor/bearing system 
[10], with no additional destabilizing effects, to obtain the first 
forward whirl damped natural frequency and the corresponding 
growth factor. 

Whirl can occur in the direction of rotation (forward whirl) 
or against rotation (backward whirl). Only forward whirl is 
considered, because subsynchronous backward whirl is rarely 
excited. All stability runs should be made at the maximum 
operating speed of the rotor. 

3. Use the values from the previous �o steps to com­
pute, from Equation (6) the first estimate of Kth (the equivalent 
mid-span cross-coupled stiffness threshold value). Equation (6) 
is for a between bearing rotor whirling in the first " U" mode 
shape. 

_ 4. Run a stability program to improve on the first estimate 
of Kth· One of the significant advantages of this procedure is 
that a lot of time and effort is saved, without a significant loss of 
accuracy, by inputting cross-coupled stiffness (no damping) 
values at only the rotor mid-span. 

q, Compute the equivalent mid-span cross-coupled stiff­
ness Keq from Equation (5) by summing the destabilizing work 
over the rotor l�ngth. Use the mode shape produced by the 
threshold value Kth· 

This step requires information on the expected destabiliz­
ing cross-coupled stiffness and damping. There is analytical 
and/or experimental information available on what is presently 
thought to be the most significant contributors. Further infor­
mation about this is presel!.ted in the Discussion section. For 
existing field instabilities, Keq is found by increasing the mid­
span cross-coupled stiffness value until the rotor model be­
comes unstable at th� thresl!9ld speed observed in the field. 

6. Design for a Keq.;;;Y2Kth for a minimum factor of safe�y 
of two. 

By separating the destabilizing forces from the rotor/bear­
ing system, all machh!es can be reduced to a parameter for the 
destabili�ing forces (Keq) and a parameter for the rotor/bearing 
system (Kth). The simplicity of the single parameter approach 
enables and encourages the user to compare data for each new 
application with his data base of past machines. Through such 
comparisons, it: can be quickly determined if excessive de­
stabilizing forces are present and if the rotor/bearing system 
has fully benefited from design support stiffness asymmetry, 
bearing to shaft stiffness ratio, and system damping. 

Discussion 

Application to a Real Machine 

The centrifugal compressor shown. in Figure 10 has six 
closed face impellers mounted between bearings in a straight 
through design, oil seals, and a balance piston. The rotor 
weight is 1620 lbs and the bearing span is 68 in. The rotor 
rotates at 9500 cpm. Subsynchronovs whirl was observed at a 
frequency of 4200 cpm and prevented the plant from attaining 
full capacity operation. • 

The stability analysis results for the unstable compressor 
with the original rotor/bearhrg .system and one comprised of 
the same rotor with modified bearings is ·graphically compared · 
in Figure 11. The bearing configuration is a five pad, tilt-pad 
design with load on the pad. The lower curve shows this 
bearing with the original preload of o.q, and an ,installed 
diametral clearance of seven mils. The upper.curve shows this 
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bearing with zero preload and an installed diaJ:Eetral clearance 
of eight mils. As shoWn, the threshold value Kth of the rotor/ 
bearing system has improved by a factor of four by only the 
bearing modifications. This improvement produced a stability 
factor of safety of four since the original design was unstable at 
the operating speed. The dashed lines shown on. Figure 11 
are the results of the following approximate analytical solution. 

Figure 10. Centrifugal Compressor Rotor. 

x 104 Growth Factor Versus Mid Span Excitation 
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Figure 11. Compressor Stability Analysis Results. 

Approximate Analytical Solution 

An analytical solution has been derived for: 
• A between bearing single mass rotor (Figure 12) 
• No gyroscopic effects 
• Support by identical bearings with asymmetric stiffness 

and damping 
• Subsynchronous whirl at the first U-mode critical 
• A cross-coupled stiffuess at the rotor mid-span 

The effective mass and effective rotor stiffuess are computed 
from modal properties and are discussed in the APPENDIX. 
The derivation and solution of the equations of motion are also 
included in the APPENDIX. 

Ys 
_j 

Ya Xs 

_j 
Xa 

Figure 12. Rotor Model for Analytical Solution. 

The resulting characteristic equation for the system eigen­
values has two distinct regions with differing solutions. In the 
first region, the mid-span cross-coupled stiffness excitation is 
less than the difference in bearing principal stiffuesses. The 
analytical solution predicts a constant growth factor from zero 
excitation up to a transition point, where excitation equals the 
difference in bearing principal stiffuesses. In the second re­
gion, the cross-coupled stiffuess excitation exceeds the differ­
ence in principal stiffnesses. As excitation increases, the 
growth factor becomes less negative and the instability 
threshold is approached. 

The result of the analytical solution for the new bearing 
application plotted in Figure 11 shows the transition point. The 
calculation is included in the APPENDIX. The excitation has 
to overcome the bearing stiffuess asymmetry before it can 
move the rotor towards the instability threshold. For the old 
bearing, there is no transition point. The high preload on the 
bearing causes the stiffuess in the vertical and horizontal 
direction to be similar, thus the curve moves immediately 
towards the threshold of instability. 

The difference in results for the new bearing (Figure 11) of 
the computer analysis and the analytical solution is predomi­
nately from neglecting the gyroscopic terms in the analytical 
solution. There is some lesser effect from the actual rotor not 
having perfect symmetry. These effects combine to smooth out 
the distinct transition point which occurs with the analytical 
solution, but the effect of bearing stiffness asymmetry is still 
quite evident in the computer results. In the region of the 
instability threshold, the difference in computer and analyti.£al 
results is small, showing that the analytical solution for Kth 
provides a quick and reasonable estimate. 

The mode shape described by the analytical solution 
indicates that between zero cross-coupled stiffness excitation 
and the transition point,. the effect of this excitation alone is 
insufficient to promote rotor whirl. Once the cross-coupled 
stiffuess excitation exceeds the difference in principal stiffness­
es, the rotor begins to whirl in a highly elliptical orbit; and as 
excitation is further increased, the ellipticity decreases towards 
a circular orbit. 

Field Problems Versus New Design 

When a machine exhibits instability in the field, the 
analyst knows that the destabilizing forces present are sufficient 
to drive the system unstable. Therefore, when modelling the 
system, the cross-coupled stiffuess is increased until the sys­
tem becomes unstable at the tltreshold speed observed in the 
field. Having thus established Keq, the analyst can then use this 
value to evaluate a proposed design [11]. 

This procedure is in contrast to the case for new designs, 
where the analyst is completely dependent on the predictive 
tools available for anticipating destabilizing forc.e levels within 
the machine [2,12,13]. There are published data on cross­
coupled stiffuess and damping coefficients for gas labyrinth 
seals (14], and there are programs in progress to add to this 
experimental information as well as to develop the analytical 
tools needed for prediction. There are reasonable analytical 
tools available to predict expected excitation levels for oil seals 
[15,18]. These have emerged from the development work 
previously done on f luid film bearing analysis. 

Reduced Bearing Matrices 

A fixed geometry bearing can be adequately represented 
by a 2 X 2 matrix for stiffuess and a 2 X 2 matrix for damping. 
Tilt-pad bearings add a degree of freedom for each pad, which 
means that an additional row and column must be added to the 
matrix for each pad. For example, a five pad bearing has a 7 X 7 
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matrix array for stiffuess and a 7 X 7 matrix array for damping. 
These matrices can be reduced, however, to equivalent 2 X 2 
matrices that are frequency dependent. The frequency depen­
dency is slight for highly preloaded bearings, and the 2 X 2 
matrix array which represents the bearing at synchronous 
speeds is equally valid at subsynchronous speeds [16]. Howev­
er, the frequency dependency is significant for lightly pre­
loaded bearings. The predicted growth factor for synchronous 
frequency bearing matrices can be in error by as much as a 
factor of two over the results of using the correct subsynchron­
ous frequency matrices. When using lightly preloaded bear­
ings, it is important to reduce the bearing matrices at the 
subsynchronous frequency of interest or to use the full 7 X 7 
matrix in the case of a five pad tilt-pad bearing. 

Critical Speeds 

The analyst must pay close attention to the movement of 
critical speeds during design improvements on an unstable 
machine. He does not want to inadvertently replace one 
problem with another. On several occasions the redesign of an 
unstable compressor resulted in the machine nmning on a 
heavily damped critical speed. It was concluded, after careful 
scrutiny, that because of the heavy damping, this was an 
acceptable design. 

Non-Linearities 

Once the threshold speed is exceeded, the rotor would 
whirl with increasing amplitude, if it were not for the non­
linearities in the system. Such behavior can come from f luid 
film bearing characteristics under large displacements, and/or 
from actual physical contact between rotating and station­
ary parts when the orbit size exceeds the design ru1ming 
clearances. 

CONCLUSION 
The design analysis procedure presented offers an efficient 

way of assembling available information on a machine design 
into a concise and meaningful stability factor of safety. The 
simplicity of the single parameter approach encourages 
machine comparisons which will aid in learning more about 
expected overall levels of excitation, from repeated application 
to field stability problems. 

NOMENCLATURE 
X,, Y, Horizontal and vertical displacements of the rotor at 

the mid-span location, in 
Horizontal and vertical displacements of the rotor at 
the bearing locations, in 
Vector quantity 
Time derivative 
Total shaft deflection, in 

M Effective mass of the rotor whirling in the first "U" 
mode on rigid bearings, lb-sec2/in 

K, Effective stiffness of the rotor whirling in the first 
"U" mode on rigid bearings, lb/in 

K Cross-coupled stiffness at the rotor mid-span, lb/in 
Keq Value of K for energy equivalent of destabilizing 

forces, lb/in 
Kth Value of K at the threshold of instability, lb/in 
Kxxo Kyy Horizontal and vertical principal stiffnesses, lb/in 
Kxy• Kyx Horizontal and vertical cross-coupled stiffnesses, 

lb/in 
Cxx• Cyy Horizontal and vertical principal damping, lb-sec/in 

Cxy' 

Fe 
FD 
Wrig 
(I) 

GF �� 

Cyx Horizontal and vertical cross-coupled damping, lb­
sec/in 
Cross-coupled force, lb 
Damping force, lb 
First "U" mode critical speed on rigid bearings, 1/sec 
First damped natural frequency for a forward whirl 
"U" mode at the operating speed, 1/sec 
Exponential growth factor, 1/sec 

i, j Unit vectors in the horizontal and vertical direction 
a, b Major and minor amplitudes of the elliptical orbit, in 
aMs, bMs Major and minor amplitudes of the elliptical orbit at 

rotor mid-span, in 

13 Angle between major axis and x-axis 
"j" Subscript or superscript denoting mass station in the 

rotor model 

APPENDIX 

Approximate Analytical Solution 

For a single mass at the mid-span of a massless f lexible 
shaft supported by two identical bearings, and a cross-coupled 
stiffness at the mass location, the following equations of motion 
can be written: 

MX, + K,(X,- XB) + KY, = 0 

MY,+ K,(Y,- YB)- Kx, =0 

CxxXB + KxxXB + K,(XB- Xs) = 0 

Cyy y B + Kyy y B + K,(Y B - y ,) = () (A-1) 

When close to the threshold of instability, system damping 
is small and the above equations can be rewritten in terms of 
only x, and Ys [17]: 

where: 

MX, + CxeqXs + KxeqXs + KY 5 = () 

MY,+ CyeqYs+ KyeqYs- KX, =0 

Cyeq= 
[K, + Kyy]2 + w2 c;Y 

K, [Kxx(Kxx + K,) + w2 C:Cxl 
[K, + Kxxl2 + w2 C�x 

(A-2) 

(A-3) 

To obtain a solution, the above two equations can 
be combined into one equation in terms of even and odd 
coefficients: 

(A-4) 
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where: 

Let 

Z =X+ jY; j= H 

Ce = V2(Cxeq + Cyeq) 

Co= V2(Cxeq- Cyeq) 

a=GF+ j w 

ii=GF- j w 

The resulting characteristic equation is: 

(Ma2 + Cea)2 + 2 Ke(Ma2 + Cea) 
+ (Ke2+ K2)- (C0a+ K0)2=0 

Since typically C0<<Ce, assume C0=0: 

(A-5) 

(A-6) 

(Ma2 + Cea) = - Ke ± y'Ko 2- K2 (A-7) 

This equation has a different solution for each of two 
distinct regions. 

(No Whirl) 

GF2=GF1 

wi=K.,/M- (Ce/2M)2+ r'K02- K2 /M 

(Forward Whirl) 

(Reverse Whirl) 

where 

R1 = V2 t[KJM- (C.,/2M)2]2 + [K2- K0 2]/M2 

R2 =% [K.,/M- (C.,/2M)2] 

(A-8) 

(A-9) 

(A-10) 

(A-ll) 

Removing the assumption of C0 = 0 and solving for the 
cross-coupled stiffuess threshold value by setting G F = 0 re­
sults in: 

The effective mass, M, and rotor stiffuess, K., are deter­
mined from the first undamped rigid bearing bending natural 
frequency, Wrtg [11]. Using the mode shape of this frequency, 
the effective mass can be found from: 

(A-13) 
where mi is the lumped mass at station "i" in the rotor model, 
<l>i is the corresponding deflection, and <I>Ms is the deflection at 
the rotor mid-span. The effective rotor stiffness can be found 
from: 

(A-14) 

For between bearing rotors, "M" is approximately equal to the 
total mass of all of the compressor wheels plus V2 the mass of 
the shaft. 

The general expression for a force at a destabilizing source 
can be written as: 

F x = KxxX + Kxy Y + CxxX + Cxy Y 

Fy=KyyY + KyxX+ CyyY + CyxX (A-15) 

The general expression for work is found by integrating 
the force times displacement around an elliptical orbit and 
summing over the rotor length. The result can be written as: 

- w C�[bi2 cos2 �i + ai2 sin2 �il - w 12 (C�� 

+ C�)[ai2- bi2] sin 2�i } (A-1 6) 

For Keq = Kxy = - Kyx and Cxx = Cyy = Cxy = Cyx = 0 at the rotor 
mid-span: 

Works=21TKeq aMs bMs 

Set WorkA =Works and solve for Keq: 

Keq = WorkA/21r aMs bMs 

Example Calculations 

(A-17) 

(A-1 8) 

Calculations for the analytical solution plotted as the top 
curve on Figure 11 are described herein. The tilt-pad bearing 
has five pads, no preload, load on pad, and an installed 
diametral clearance of 8 mils. The full 7 X 7 stiffness and 
damping matrices were generated at the operating speed 
of 9500 cpm and reduced to 2 X 2 matrices for 3400 cpm 
(first damped frequency from non-excited stability program 
analysis). 

#1 Bearing: 

Kxxf2 = 355000 lb/in Kyy/2 = 8 93000 lb/in 

Cx/2 = 215 lb-sec/in Cyy/2 = 678 lb-sec/in 
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#2 Bearing: 

K,a/2 = 362000 lb/in Kyyf2 = 998000 lb/in 

Cxxf2 = 232 lb-sec/in Cyy/2 = 7 48 lb-sec/in 

Averaging the two bearings together: 

Kxx = 2(359000) lb/in 

Cxx = 2(224) lb-sec/in 

Kyy = 2(946000) lb/in 

Cyy = 2(713) lb-sec/in 

From a critical speed computer program: 

Wrig = 3900 cpm (408.4/sec) 

From non-excited stability computer program: 

w=3400 cpm (356.0/sec) 

From Equation A-13 and A-14: 

M = 3.25 lb-sec2/in 

K. = 542069 lb/in 

From Equations A-3: 

�x = (K. + Kxx]2 + w2 Cxx 2 = 1. 613 X 1012 (lb/in)2 

�y= (K. + Kyy]2 + w2 Cyy2= 6.182 X 1012 (lb/in)2 

Kxeq = K.[Kxx(Kxx + K.) + w2 Cxx 2]/ �. = 312600 lb/in 

Kyeq = K.[Kyy(Kyy + K.) + w2 Cyy 2]/ �y = 426410 lb/in 

• Cxeq=K.2 C • .f�.=81.61 lb-sec/in 

Cyeq = K. 2 Cyyl �Y = 67. 78 lb-sec/in 

From Equations A-5: 

Ke = 1/2 (Kxeq + Kyeq) = 369500 lb/in 

K0 = l/2 (Kxeq- Kyeq) = -56910 lb/in 

Ce = 1/2 (Cxeq + Cyeq) = 7 4. 70 lb-sec/in 

Co= l/2 (Cxeq- Cyeq) = 6. 92 lb-sec/in 

From Equation A-12: 

Kth = 62230 lb/in 
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