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Project Commissioning

Compressor

• 2250 HP (1678 kW) Centrifugal – 4 Stage 7100 RPM

• Service is closed loop refrigeration, Freon ® 22 

• Equipped with Proximity Probes, and bearing exit oil 

temperature RTD’s

Commissioning Difficulties – startup 1994

• Performance did not achieve contract performance 

obligations at high head conditions

• Rotor was redesigned and installed to increase 
compressor output
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Operating Difficulties

Operation 1996 - 2004

• New rotor improved 
performance, 

however not over 

entire operating 
range

• High head conditions 

resulted in excessive 
discharge 

temperature and 
sometimes 

compressor surge
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Operating Difficulties (Cont.)

Operation 1996 - 2004

• During this time period the compressor 
experiences two thrust bearing failures.  

Compressor was operated until internal thrust 
limit interlock switch was tripped.

• Surging was original suspect of root cause of 

thrust bearing failure
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Use of PPM Technology

Routine Oil Analysis

• Samples collected from pressurized lubrication system

• Samples subject to Spectrochemical and Physical Analysis

Vibration Monitoring

• Equipped with Thrust and Radial Probes to a rack system –
recording peak output only.

• Periodic data collection on casing of compressor, as well as 
proximity signals.

Temperature Monitoring

• Oil Supply Temperature

• Thrust bearing drain temperature

• Radial bearing contact RTDs.

431



Matt Moll & Julia Postill – September 15, 2011

7

Use of PPM Technology (Cont.)
Thrust bearing distress was first detected by routine oil analysis

First Significant 
Increase Jan 2005
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Use of PPM Technology (Cont.)
Compressor rotor running position would suddenly change after about six 
months to two years stable operation to + 1.5 mil (0.038 mm) per month in 
active direction.  This rate of change would suddenly plateau for a month 
or more then reinitiate the climb

First Significant Thrust 

Position Change in 

June 2005
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Use of PPM Technology (Cont.)

Lube Oil Temperature – not an effective indicator 
of bearing distress dT 8 deg C (14.4 deg F)

June 1st to Aug 1st 2005
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Use of PPM Technology (Cont.)
Thrust bearing removed from service February 2006 

(Third Bearing)
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Corrective Action

OEM involved with failure investigation

• OEM Reviewed thrust bearing sizing calculations 
from 1995.  In the original calculations the 
compressor balance piston was sized for 170 psi 
(1172 kPa) load on the thrust bearing.  

• OEM utilized a new design routine (2006), this 
calculation indicated that with the installed 
balance piston, the load on the thrust bearing was 
360 psi (2482 kPa)  

• OEM recommendation was to increase balance 
piston sizing.  There was no cost for the analysis, 
however the cost associated with refitting the 
compressor with a larger balance piston was not 
offered with the solution.
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Corrective Action (Cont)

Creative solution desired

• OEM calculations combined with operating 
experience converged on a overloaded thrust 
bearing as being the root cause of the failures.

• Those familiar with compressor design 
understand that resizing the balance piston is the 
most elegant solution to solve this problem.

• Those familiar with compressor fabrication and 
maintenance understand that resizing the 
balance piston is an expensive procedure.

• Site management did not desire to absorb the 
cost associated with taking the compressor out of 
service to retrofit or the lost production.
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Corrective Action (Cont)

Creative solution desired

• The preferred solution was to redesign the thrust 

bearing with increased load carrying capacity to 
reduce the risk of failure.

• To keep a low cost modification, the thrust 

bearing had to be used in the same envelope as 
the original OEM bearing, with no modification to 

the bearing housing. 
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Corrective Action (Cont)

Improvements to the thrust bearing design:

• larger thrust bearing area to reduce unit load from 

360 psi to 242 psi (2482 kPa to 1669 kPa)

• copper backing material for faster heat 
dissipation;

• offset pivot to further increase the load carrying 

capacity;

• ball & socket pivot to reduce pivot wear caused 
by high loads;

• provided option to install instrumentation to 

monitor the bearing metal temperature during 
bearing service; 
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Corrective Action (Cont)

Bearing description: flooded, self-equalizing, ball & 

socket pivot, seven copper backed pads, 62% offset 
pivot;
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Corrective Action (Cont)

• The new bearing design has a 41% increase in 

thrust area then the original design; copper 
backing material for faster heat dissipation;

• This was accomplished by changing the design 

from four pads to seven pads because there was 
no room to increase the thrust area by changing 

the bearing diameters.

• The pivot location was radial and circumferentially 

offset, to allow a better flow in each thrust pad 
and to better support a full oil film over each pad.

441



Matt Moll & Julia Postill – September 15, 2011

17

Corrective Action (Cont)

• Due to this change the mean velocity increased 

from 107 fps to 112 fps (32.6 m/s to 34.1 m/s);

• The increase in thrust area and the larger pivot 
diameter resulted in an increase in the horse 

power loss. The bearing was already getting the 
adequate amount of oil, so no increase in oil 

supply was necessary. 

442



Matt Moll & Julia Postill – September 15, 2011

18

Present Condition
Lower trend line indicates thrust position of rotor from Aug 2008 to March 2010

Rotor Running Position 
Cycling 2 mils (.051 mm) 
with changes in head 
pressure over 18 months 
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Present Condition (Cont)

New OEM 
Bearing 
Installed Jan 08

Retrofit Bearing 
Installed April 08
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Present Condition (Cont)

OEM thrust 

bearing installed 

between January 

and April 2008
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Present Condition (Cont)

• Retrofit Thrust bearing was installed in April 2008 

and demonstrated successful operation for ~24 
months, at which time it was replaced

• Replacement bearing is demonstrating similar 

performance in the same timeframe.

• Oil analysis laboratory results indicate 
significantly less bearing material circulating in 

lubricating system.

• The average oil temperature change across the 
bearing increased from 8.5 deg C to 10.3 deg C 

(15.3 deg F to 18.54 deg f) with the retrofit, as 

expected for the additional frictional losses.
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Present Condition (Cont)

Retrofit thrust bearing 

after 24 months of 

operation
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Conclusion

• Use of advanced bearing design practices can be 

used in the maintenance field to reduce downtime 
and cost

• In small volume lubricant systems, oil analysis is 

a leading indicator to vibration and thrust position 
for bearing faults.

• Bearing discharge oil temperature is not a useful 

indicator for bearing condition monitoring, further 
reinforcing the objectives of API 670.
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Questions?
A discharge bearing oil temperature interlock that actually tripped!
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