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Abstract 
Equipment sizing decisions in the Oil and Gas Industry often 
have to be made based on incomplete data. Often, the exact 
process conditions are based on numerous assumptions about 
well performance, market conditions, environmental conditions 
and others. Since the ultimate goal is to meet production 
commitments, the traditional way of addressing this is, to use 
worst case conditions, and often adding margins onto these. 
This will invariably lead to plants that are oversized, in some 
instances by large margins. In reality, the operating conditions 
are very rarely the assumed worst case conditions, but they are 
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usually more benign most of the time. Plants designed based on 
worst case conditions, once in operation, will therefore usually 
not operate under optimum conditions, have reduced flexibility, 
and therefore cause both higher capital expenses and operating 
expenses.  
 The authors outline a new probabilistic methodology that 
provides a framework for more intelligent process-machine 
designs. A standardized framework using Monte Carlo 
simulation and risk analysis is presented that more accurately 
defines process uncertainty and its impact on machine 
performance .  
This paper  describes  a new method for the design of efficient 
plants. The use of statistical and probabilistic tools allows to 
better take the unpredictability of component performance, as 
well as ambient conditions and demand, into account. Using the 
methodology allows to design plants that perform best under the 
most likely scenarios, as opposed to traditional designs that tend 
to work best under unlikely worst case scenarios. A study was 
performed for a relatively simple scenario, but the method is not 
limited, and can easily be adapted to scenarios involving entire 
pipeline systems, complete plants, or platform operations. 
Based on these considerations, significant cost reductions are 
possible in many cases. 
 

INTRODUCTION 

 During Front End Engineering Design (FEED) Process 
engineers often make blanket assumptions on pressure losses 
across process exchangers, vessels, control valves, etc. which 
can vary significantly from individual losses as defined in the 
manufacturer’s specifications. Certain license processes will 
also recommend that a + 10%   margin on flow be added to 
accommodate uncertainty during operation.  These have been 
found to result in vast discrepancies between what was 
specified in a design office and what is found during start up in 
the field.  Due to uncertainties in the actual design conditions 
for most oil and gas compression applications, compression 
units often are needlessly oversized. Therefore they are more 
expensive, and generate higher operating expenses than units 
that are sized closer to the actual operating conditions. The 
argument for oversizing is often, that these oversized units will 
always provide enough power to meet the operating conditions 
under any circumstances. However, the probability that all 
difficult circumstances occur at the same time is very small. 
Kurz et al  (2013)  have made this argument for pipeline 
operations.   
 
Taher and Meher-Homji (2012)  have pointed out the necessity 
for realistic margins between compressor absorbed power and 
gas turbine available power. All too often , these margins are 
applied, while looking at the equipment performance under the 
most extreme conditions, that is, the compressor at its highest 
power operating point, and the gas turbine at the highest 
possible ambient temperature.  Needless to say that, even 
without the margin, the probability that the gas turbine can ever 
use its maximum power is virtually nil.  Rather, the units, 

including the process valves, and process separators are 
oversized for practical operation purposes. Operating oversized 
equipment is usually a challenge: Valves tend to have poor 
controllability, and separators may operate at low separation 
efficiency if the flow they actually have to handle is much 
smaller than what they were designed for. Compressors may run 
in recycle, or very close to the control line.    
 
Despite expensive company specifications and upper quartile 
maintenance practices, off design operation continues to plague 
the industry with catastrophic failures and inefficient plant 
operation.  Recent data taken from 1 major Petrochemical 
producer indicated that over 80% of the pumps surveyed 
operated away from their intended design point by up to 20%.  
One estimate, places this cost at over  5 billion dollars per year 
to the global energy and petrochemical industries largely 
stemming   from  failure and operational  inefficiency . The 
methodology has been used for other purposes related to 
turbomachinery.   For example, Singh (1985) and Singh et al. 
(2004) have discussed probabilistic approaches to individual 
equipment items, for example turbine blades or impellers.  In 
addition, the Monte Carlo analysis approach has been widely 
applied in Risk Assessment. It also has been broadly applied for 
logistical modeling of process plants, working on gross plant 
building blocks. On a smaller scale, the methodology has been 
applied to electrical systems, including reliability data on 
individual sensors of electrical components. 
 

BACKGROUND 

 
In the early years of the 19th century industrial quality was 
limited to inspecting finished products and removing defective 
items. Shewhart's (1939) work pointed out the importance of 
reducing variation in a manufacturing process and the 
understanding that continual process-adjustment in reaction to 
non-conformance actually increased variation and degraded 
quality. Shewhart (1939) framed the problem in terms of 
assignable-cause and chance-cause variation and introduced the 
control chart as a tool for distinguishing between the two. He 
concluded that while every process displays variation, some 
processes display controlled variation that is natural to the 
process, while others display uncontrolled variation that is not 
present in the process causal system at all times. Taguchi 
(1995), stressed the importance of addressing variance during 
product design phases by developing a framework for statistical 
experiments.  He suggested that the design process consists of 
three phases: system design, parameter design, and tolerance 
design.  In the system design phase basic concept is decided 
using theoretical knowledge and experience to calculate the 
basic parameter values to provide the required performance.  
Parameter design involves refining the output values in relation 
to control and noise factors not under the effective control of 
the designer.  Tolerance design, he asserted, is the final stage, in 
which the effects of random variation of manufacturing 
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processes and environments are evaluated to determine whether 
the design and processes can be further optimized.   
Unfavorable variances within the Taguchi meta-model (1995) 
translate to greater operational risk with critical machinery.   
Both Barringer (2003), and Bloch (1998) have documented 
machinery failures that have occurred as a result of off design 
operation resulting from variances in the specified operating 
conditions. One major petrochemical manufacturer recently 
surveyed over 100 pumps in a process unit and found over 80% 
operated up to 20% away from their design point.  Europump 
and Hydraulic Institute publications (2001) have noted that 
nearly 20% percent of the world’s electrical energy demand and 
over 25% of energy usage in certain industrial plant operations 
account for pumping systems alone.  Off design operation of 
pumps and turbomachinery is estimated to cost the process 
industry over $ 5 billion per year in failures and inefficiency.   

 
 

 
Figure 1:  Meta-Model for Machinery (Taguchi, 1995) 
 
 

PROCESS-MACHINERY INTERFACE 

The oil, gas and petrochemical industries are a network of 
highly integrated production processes where products from one 
process may have an end use or may also represent raw 
materials for other processes. Operational flexibility is required 
to enable operators to constantly respond to changing market 
conditions. The impact of uncertainty is unavoidable. In 
production planning, sources of system uncertainties can be 
categorized as short or long-term.  The former uncertainties 
involve operational variations, for example those resulting from 
catastrophic equipment failure. Whereas, long-term uncertainty 
may include supply and demand rate variability and price 
fluctuations that manifest themselves over a longer time line.   
 The optimization of down-stream process facility networks 
involves a broad range of aspects varying from economical and 

environmental analysis to strategic selection of processes .  
Most process engineering optimizations begin with 
deterministic models which will define the production 
capacities within the various processes.  Acknowledging the 
shortcomings of deterministic models, parameter (process yield, 
raw material and product prices, and lower product demand) 
uncertainty is then computed  using stochastic models.  The 
results of these models in the literature have been shown to 
yield very different network configurations and plant capacities.   
 
Having established technologies, processes and production 
capacities  engineering efforts within major capital projects then 
develop  flow diagrams.  The determination of flow and 
pressure loss calculations are derived from non-specific 
assumptions based on similar equipment types or more often 
times on rules of thumb. Factors of safety are applied to account 
for long term fouling, wear or aging of equipment. Other factors 
of safety may be added to also account for computational 
uncertainty. Licensor requirements may additionally mandate a 
supplemental adder of 10% of flow to accommodate future 
expansion or operational flexibility.  Machinery engineers are 
then provided process conditions confirmed by modeling runs 
expressed as deterministic normal and design points.  These are 
used as a basis of selection for FEED engineering design.  
Eventually, this equipment will be specified using API 
Standards that may require tolerances on power of additional + 
4% .    In certain cases , users will size drivers on the  basis of 
end of the curve power requirements despite falling  outside 
allowable operating ranges or alternatively based on a future  
presumed  increases of + 5%  head  in the case of  API-610 
centrifugal pumps.  In other words, instead of proceeding in an 
orderly sequence of successively more precise designs as 
prescribed by Tagushi (1995) in the last century, the current 
process industry model follows a divergent path of  increasing 
variance until it  ultimately culminates in equipment purchase 
and start up. Figure 2 illustrates the increasing precision from 
conceptual design to FEED study, and to the detailed design. 
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Figure 2:  Maximum Process-Machine Variance  
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METHODS TO ACCOUNT FOR UNCERTAINTY 

Two principal methods to describe the probabilistic nature of  
design data, and their influence on possible plant performance 
are perturbation methods and the Monte Carlo Analysis. Of the 
two methods, we have selected the Monte Carlo analysis for 
this study. 
 
Using a Monte Carlo simulation, we will describe a new 
method, whereby one accounts for the probability that certain 
conditions occur. Ambient conditions, factors that influence 
operating conditions, or equipment performance, and others are 
treated as probabilistic. At the core, this is an application of the 
Monte Carlo method, to demonstrate the advantages of a 
probabilistic station design. Several examples, based on typical 
project requirements, will be provided. 
 
Numerical methods that are known as Monte Carlo methods can 
be loosely described as statistical simulation methods, where 
statistical simulation is defined in quite general terms to be any 
method that utilizes sequences of random numbers to perform 
the simulation (Oakridge National Laboratory, 1995). Monte 
Carlo methods have been used for centuries, but only in the past 
several decades has the technique gained the status of a full-
fledged numerical method capable of addressing the most 
complex applications. 

Statistical simulation methods may be contrasted to 
conventional numerical discretization methods, which typically 
are applied to ordinary or partial differential equations that 
describe some underlying physical or mathematical system. In 
many applications of Monte Carlo, the physical process is 
simulated directly, and there is no need to even write down the 
differential equations that describe the behavior of the system. 
The only requirement is that the physical (or mathematical) 
system be described by probability density functions (pdf's). 
Once the pdf's are known, the Monte Carlo simulation can 
proceed by random sampling from the pdf's. Many simulations 
are then performed (multiple ``trials'' or ``histories'') and the 
desired result is taken as an average over the number of 
observations (which may be a single observation or perhaps 
millions of observations). In many practical applications, one 
can predict the statistical error (the ``variance'') in this average 
result, and hence an estimate of the number of Monte Carlo 
trials that are needed to achieve a given error.  
CASE STUDY 

The different outcomes, comparing the traditional stacking of 
tolerances and  a probabilistic approach are demonstrated in the 
following example. It is based on realistic data, based on a 
typical scenario encountered in gas gathering operations.  For 
gas gathering operation, either onshore or offshore, suction and 
discharge pressures my stay reasonably constant, especially 
when the application is combined with export compression.   

 
Figure 3: Monte Carlo Simulation of a physical system 
(Oakridge National Laboratory, 1995). 
 
For the compressors, this means that the required head stay 
about the same, regardless of flow.  Therefore, in general,  the 
compressor operating points will move from the control line 
(and lower speed) to the choke region (and higher speed), 
depending on available power (Figure 4). As a result, the 
compressor efficiency sees significant fluctuations. If little 
power is available (hot days or degraded engine), the unit will 
go into recycle and thus off –line. The traditional design 
methodology would require to size the unit to produce 5% more 
than the design flow, at the highest ambient temperature 
conditions. Since there is usually some uncertainty about the 
gas composition that needs to be compressed, the lightest gas 
will be assumed for sizing the machines. For our example, we 
assumed a 5% variation of specific gravity around the nominal 
gas composition. As will be shown later, assuming the lighter 
gas will add about 1.4% to the compressor consumed power. 
This forces one to design a compressor that operates at this 
condition at its best efficiency, since this operating condition 
determines the size of the driver. Driver sizing traditionally 
requires to assume a 4% positive tolerance on the compressor 
absorbed power, and an additional tolerance between the 
compressor absorbed power and the driver power, to allow for 
engine degradation, typically in the range of 3 to 9% (for our 
study, we have assumed 9%). One of the reasons is the concern 
that the unit will go off line if the driver does not produce 
sufficient power to stay on line.  The driver will usually be 
assumed with a tolerance from its nominal performance of 3%.  
In our example, the highest site temperature is 45C, while the 
most likely site temperature is 37.8C (that will be the 
temperature for sizing the ‘probabilistic’ engine). This means, 
that the new driver will be oversized by about 33% , compared 
to a driver sized strictly based on  nominal values.  
 
The gas which has to be compressed usually consists of 
mixtures of light hydrocarbons (alkanes), nitrogen, and carbon 
dioxide. In many applications, especially midstream pipeline 
and storage applications, but also in many upstream 
applications, the dominant component is Methane. Often, 
especially in upstream applications near the well, the gas is 
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saturated with water. Hydrogen sulfide may also be present. The 
conversion of process variables (temperature, pressure, flow, 
gas composition) into variables relevant for the compressor 
(enthalpy, entropy, density) is performed using equations of 
state (EOS). Frequently applied EOS include Redlich-Kwong, 
Redlich-Kwong-Soave, Peng-Robinson , Lee-Kesler-Ploecker ,  
the Starling version of the Benedict-Webb-Rubin model , and 
the AGA 8 adaptation in ISO20765-1 (Rasmussen et al, 2009). 

 
The probabilistic design uses nominal data. We also added a 
case were we, arbitrarily, assumed an engine with 10% more 
power than in the previous probabilistic design. This margin 
allows to control the desired probability to be able to deliver the 
design flow. 
 
   
 

Parameter Traditional Probabilistic Probabilistic, 
10% margin 

Specific 
Gravity 

0.7315 0.77 0.77 

Compressor 
power 
consumption 

 110.6% 100% 110% 

Design 
Ambient 
Temperature 

45 C 37.8°C  37.8°C  

Degradation 
after 4 years 

9% 0% 0% 

Nominal 
power, new 
engine, at 
37.8 C 

133.35 100% 110% 

Nominal, 
new engine, 

at 45 °C  

124.27% 93.19% 102.51% 

Relative size + 33.35% 0 + 10% 

Table 1: Different design assumptions for the same application. 
 
The Monte Carlo simulation is performed using commercially 
available software (@Risk®,2012). 
The questions to be answered are: 
 

- What is probability that the design flow can be met at 
all times , assuming a degraded engine in year 4. 

- What is the  average flow that will be met 
 
 The limitation in choices is acknowledged, since equipment, in 
this case gas turbines, come in discrete power ratings. How 
close the plant design matches the size of a selected driver has 
therefore a significant impact on the outcome of the study. 
However, this does not impose a limitation to the concept. 
 

Cases where the traditional design would exactly load a certain 
gas turbine, while the probabilistic sizing would require the 
same driver, but only partially loaded, would skew the results.  
To eliminate this bias, it was assumed that two different gas 
turbines exist, that meet exactly the requirements for either the 
probabilistic sizing requirements or  the traditional sizing 
requirements. Moreover, it was assumed that efficiency, part 
load behavior and the slope of the power-temperature 
relationship are the same for each driver. In the economic 
discussion, we will assume that both drivers have the same 
$/kW cost. In reality, all these assumptions are reasonably 
realistic. 
   
For the traditional plant design, the parameters are outlined in 
Table 1. No probabilities are applied at this stage, but rather, the 
design includes the typically required design margins.     
For the probabilistic plant design , we assign  probabilities to 
the following parameters: 
 
-gas turbine available power: normal distributed around a 
nominal value. This is in line with typical manufacturing 
tolerance seen from industrial gas turbine manufacturers. The 
gas turbine available power variation due to manufacturing 
tolerances: normal distribution around a nominal value. This is 
in line with typical manufacturing tolerance seen from industrial 
gas turbine manufacturers. It is general practice to reduce the 
acceptance criteria for the power of engines by a certain 
percentage from the predicted value, for example by 3%. The 
same would be done for driver efficiency. Most evaluations 
would use the acceptance value , rather than the nominal value, 

for evaluations. Therefore, we assume a standard deviation of σ 
= 1.5% for the manufacturing tolerances. 
 

 
 
Figure 4: Compressor Map, Design A(left) and Design B 
(right). Design Flow and Discharge pressure are indicated. All 
operating points are assumed to be at constant discharge 
pressure, and are thus located on the horizontal line. Design B 
has a slightly better efficiency (+2%) at its design point than 
Design A, because it uses impellers with a higher flow 
coefficient. Impeller diameters, and number of impellers are 
identical for both designs. 
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-Ambient temperature:  we assumed a triangular distribution 
with a most probable temperature of  37.8 C, a maximum 
temperature of 45C and a minimum temperature of  10C. The 
variation in ambient temperature serves as a surrogate for the 
impact of all ambient conditions that influence the available 
engine power. 
 
-Gas compressor power consumption: With fixed head, the 
power consumption is only a function of flow and efficiency. 
The efficiency is assumed to be  normal distributed around a 
nominal value. This is in line with typical manufacturing 
tolerance seen from industrial gas turbine manufacturers. Using 
an actual compressor map, the nominal efficiency of the 
compressor is known for any flow, along a path of constant 
head (Figure 6a). The model sets the station flow to zero if the 
compressor goes into recycle (because it crosses the control 
line) due to lack of power. 
API 617 in general allows the compressor on the test bed to 
consume 4% more power than predicted above, and the driver 
sizing has to be appropriate for this scenario. For the purpose of 
this study, we did  not assume that the head-flow characteristic 
of the compressor is subject to deviations.  
 
-Gas Composition, expressed by gas specific gravity. One of the 
key problems in any plant designs is the uncertainty of the 
actual operating parameters of the compressors. Since we have 
fixed the suction and discharge conditions we are using the 
uncertainty in the gas composition as a surrogate for all effects 
on the compressor operating requirements (Figure 6b). It is 
acknowledged that there are many other factors, such as gas 
temperature, required suction or discharge pressure and others. 
Based on a normal distribution for gas specific gravity, and all 
other parameters fixed, this allows to calculate the probability 
distribution for the compressor absorbed power. 
 
-Degradation:  In many instances, the applied tolerances are to 
cover effects of engine degradation. We evaluated the 
performance over 4 years, with increasing levels of degradation. 
The level of degradation is subject to uncertainty, and we 
assume a normal distribution around a mean value. We look 
into degradation after 4 years, with a normal distribution for the 
degradation values. The power degradation after four years is 

nominal 6%, with σ = 1.5%. (Kurz et al. (2009), Morini et al., 
(2010)). 
 
-Flow capability: Based on the probabilities above, it is possible 
to calculate the flow the compression train can generate (Figure 
6a). 
  
To illustrate the issue, this is a possible scenario for a 
probabilistic plant design study. We selected a pipeline 
compressor example (others are equally possible), because a 
probabilistic element can easily be incorporated (in this case the 
friction losses in the pipeline). We can also easily define the 
required performance (delivering a certain amount of flow at a 

certain pressure). We also can introduce the variation in 
equipment performance (compressor efficiency and driver 
output), as well as ambient conditions.  
 
Figure 5 shows the nominal site available power versus ambient 
temperature for a new engine. The power demand for the 
compressor, between traditional design parameters and 
probabilistic design parameters is increased by over 33%. This 
constitutes a significant increase in CAPEX and OPEX, the 
latter due to the fact that maintenance cost roughly tracks with 
power.  Although gas turbine ratings are only available in 
discrete sizes, and increase of 33% in power output usually 
means the difference between at least one driver size.  We will 
not take size mismatch into account for the calculations for the 
larger driver, since this mismatch could affect the sizing of both 
the smaller and the larger driver. We therefore assume a driver 
exists, that exactly meets at full load the project requirements, 
and has the same manufacturing tolerances and non-
dimensional efficiency versus load behavior regardless of size. 
   

 
Figure 5: Nominal site available power for new gas turbine 
driver. 
 
For the situation at hand, we also have to consider that we have 
different options of sizing the compressor. To show this, we 
have actually created  two compressor designs, that  operate a 
somewhat different surge margin at the design point. Design A 
has about 25.6% surge margin at the design point, while Design 
B has about  17.1 % surge margin at the design point (Figure 4). 
This means, that the chance that the compressor goes into 
recycle (and the flow goes to zero) is higher for Design B. On 
the other hand, it will show better performance at higher flows,  
that is, when the engine produces more than design power. 
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Figure 6a Relationship between compressor power consumption 
and compressor flow for a constant head application (Design 
A). 

 
Figure 6b: Impact on change of gas composition on compressor 
power consumption 
 

 
Figure 7: Probability of meeting the design flow demand 
(100%) with a selection based on nominal data in year 4. 
Design A compressor selection left, Design B compressor 
selection, right. Due to its lower design surge margin, the 
Design B compressor may go into recycle, and thus the flow 
becomes zero. The mean achieved flow (99.6%) of Design A is 
clearly better, and almost meets the required design flow. 
 

 
Figure 8:  Probability of meeting the design flow demand 
(100%) with a selection based on nominal data and 10% power 
margin in year 4. Design A compressor selection left, Design B 
compressor Selection, right.  Design B still has to resort to 
recycle at a few instances. However, the mean achieved flow is 
almost identical for both designs, and exceeds the required 
design flow.  
 

 
Figure 9:  Probability of meeting the design flow demand 
(100%) with a selection based on nominal data and 20% power 
margin in year 4. Design A compressor selection left, Design B 
compressor Selection, right.  Design B provides a slightly better 
average flow (119.7%).  Both designs meet the full demand 
over 99.9% of the time. 
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Figure 10:  Probability of meeting the design flow demand 
(100%) with a selection based on nominal data and 33.35% 
power margin in year 4. This would be the performance of a 
traditionally sized compressor train. Design A compressor 
selection left, Design B compressor selection, right.  Both 
designs exceed the 100% demand at all times. Design B 
provides a higher average flow (132.6%) than  Design A. 
 
 
The result of the Monte Carlo Simulation is a probability 
distribution for the delivered flow (Figures 7 to 10), always 
assuming engines that are in their 4th year of operation, with the 
associated engine power degradation. For an engine sized 
strictly for nominal requirements, that is without margins for 
gas turbine and compressor performance, no allowance for 
degradation, the  nominal specific gravity, and the most 
frequently occurring temperature, the package only reaches 
(assuming Design A) the required flow 45.4% of the time. 
However, the average flow this configuration can achieve is still 
99.6% (Figure 7). Design B shows one of the problems 
resulting from the lower design surge margin: The machine goes 
occasionally off line, because the recycle control line is crossed. 
It therefore only flows on average 94.8% of the flow, and meets 
the full demand 43.4% of the time.  
 
Figures 8 and 9 show the behavior for engines sized for 10% 
and 20% more power than the nominal configuration shown in 
Figure 6. In these cases, the average flow is above 100%, with a 
slight advantage for design B. Moreover, the design with 20% 
margin meets the design flow practically always (over 99.9% of 
the time). 
 
For the results in Figure 10, the engine was sized to meet the 
traditional approach. In other words, it is sized with margins for 
gas turbine and compressor performance, an allowance for 
degradation, the highest ambient temperature, and the lightest 

gas. This adds up to a 33.5% power margin over the nominal 
design shown in Figure 7. Obviously, this configuration will 
meet and exceed the design flow demand at all times, for both 
compressor designs. The Design B is advantageous is this case, 
due to its higher flow capability, and can, on average, achieve 
over 132% of the design flow.   
 
We therefore see, that the probability to meet the flow demand 
at all times,  with an engine, designed for nominal and most 
likely process conditions, is about 45%. On the other hand, if 
we just add 20% margin (as opposed to the 33.5% that would 
result from the traditional design), the probability becomes 
about 99.9%. It should be noted, that we state the probability 
for not meeting the flow demand. Even in cases where the flow 
demand is not met (situations where the power margin is 
negative), the station will still flow gas. It just will be somewhat 
less than the design demand. Therefore it is important to 
evaluate the average flow capability, which takes into account 
that the shortfall in flow at certain times can be compensated by 
excess flow at other time- assuming the process equipment is 
designed to make use of this capability. It also must be 
mentioned that this example describes the situation after the 
engine has been running for 4 years. In earlier years, with less 
degradation, the margins become more favorable. 
 
The biggest influence on the capability of the train to meet the 
flow requirements is in the ambient temperature (Figure 11). 
This indicates that even if all other factors mentioned in this 
study are neglected, a careful consideration of actual site 
temperature distributions alone can give good insights into the 
sizing requirements.  
 

 
Figure 11: Inputs ranked by effect on output mean. This chart is 
for design A with 33.5% margin, but it is typical for all 
examples.  
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Figure 12: Comparison of cost, probability to meet the design 
flow, average flow delivered  and cost per flow delivered, for 
Designs A  and B. 
 
The overall results are shown in Figure 12. We show the cost of 
oversizing the engine based on the assumption of a constant 
$/kW cost. The traditionally sized driver, in our example, would 
be about 33.5%  more expensive than the driver sized based on 
nominal conditions. Maintenance costs scale also at an 
approximately constant $/kW value, so they also would be 
about 33.5% higher. This has considerable impact in particular 
for CAPEX and OPEX constrained projects. If the project 
specifics allow to satisfy the design flow on average, virtually 
no power margin is necessary. An increase in driver size yields  
improvements, but this assumes that the rest  of the station 
equipment, and the gas supply are sufficient to use that 
capability. A power margin of about 20% can assure that the 
flow demand is met even in the 4th year of driver operation. It 
also must be mentioned that, while the increase in average flow 
for higher margins looks attractive, it will look significantly less 
attractive in the earlier years. This is due to the fact that the 
compressor will operate further near choke, and at decreasing 
efficiencies if large amounts of surplus power is available. 
Eventually, the compressor will become speed limited, and 
cannot absorb additional power.  
 
This becomes clear when we look at the cost for a certain 
amount of flow delivered. Here, Design A, with no design 
margin, and Design B with 10 to 20% margin tie for  the lowest 
cost per flow delivered. Design A is clearly better than Design 
B for low power margins, while Design B is favorable for high 
flow margins. 
 
Again, it needs to be emphasized that gas turbine drivers are not 
manufactured in a continuum of power ratings.  The other 
results show the capability of the train to always deliver the 
required flow, as well as the average flow that can be delivered. 

 
 The argument for this type of study does not include the impact 
on fuel consumption, which has been covered in other studies 
(Kurz et al., 2013).  
 

 

APPLICATIONS 

The example was used to highlight the significant savings that 
can be accomplished by more appropriate plant designs. As 
shown, the savings in installed power can be significant.  In 
evaluating potential savings, the user must be clear about the 
goal of the optimization. For example, if the value of 
production is very high, the value of incremental production 
will always outweigh incremental cost of the equipment – up to 
the point where incremental production is limited by other 
factors, such as the capacity of the facility, the capacity of the 
recipient of the production, or the capacity of the wells. 
However, we have to assume that the overall design flows for 
the project are realistic, and the goal is to meet these flows with 
a limited amount of expense.  
 
Another important application is based on the fact that gas 
turbines are available only in discrete sizes. Many compression 
installations are sized to meet certain process needs   
(Rasmussen et al., 2009). For example, a gas injection 
application may be sized on a certain flow requirement (to meet 
the desired oil recovery), and to meet a certain discharge 
pressure (based on a predicted reservoir pressure). Similarly, a 
gas export application would be based on the amount of gas 
available (an estimate), and  the pressure drop in the pipeline 
(just as in the example above, subject to uncertainty). The 
suction and discharge requirements for a pipeline compressor, 
sized to meet certain flow demands, are subject to the friction 
losses in the pipeline (Kurz et al, 2013) . All these values are 
subject to uncertainty. So is the distribution of ambient 
temperature, as well as the degradation behavior of the driver, 
the driven equipment, the process equipment and the pipeline.  
If the nominal values and tolerances are used, the application 
would require a certain power from the driver, that may be 
between available driver sizes. The probabilistic method can, in 
this case, be used to determine the probable economic impact of 
a slightly smaller (and less expensive) or an oversized driver. 
 
The simulation can also be used to determine the capability of 
an existing plant. Again, in that case the parameters for the 
existing units (possibly based on test data, or based on 
prognostics (Venturini et al, 2012) would be entered. The 
results allow determining the firm output commitments that can 
be made. Further, it is possible to determine the allowable 
performance deterioration before the delivery commitments are 
jeopardized. Thus, maintenance and overhaul decisions can be 
made on a more rational basis.   
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CONCLUSION 

This paper defines a new method to design efficient and safe 
plants. The use of statistical and probabilistic tools allows to 
better take the unpredictability of component performance, as 
well as ambient conditions and (although not demonstrated in 
this paper) demand, into account. Using the methodology 
allows to design plants that perform best under the most likely 
scenarios, as opposed to traditional designs that tend to work 
best under unlikely worst case scenarios. This study was 
performed for a relatively simple scenario, but the method is not 
limited, and can easily be adapted to scenarios involving entire 
pipeline systems, complete plants, or platform operations. New 
approaches to the discussion of spare units are possible.  Based 
on these considerations, significant cost reductions are possible 
in many cases.  
The other ‘new’ concept follows from the fact, that neither the 
equipment manufacturers, nor the engineering contractors (or 
end user) have all information by themselves. Thus, the 
methodology described requires close collaboration during 
project development. 
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