

2X PINION VIBRATION PROBLEMS AND SOLUTIONS FOR MOTOR-GEAR-COMPRESSOR TRAINS DURING COMMISSIONING

CASE/STUDY 2014 TAMU TURBO SYMPOSIUM

TEXAS A&M

2X Pinion Vibration Problems and Solutions for Motor-Gear-Compressor Trains During Commissioning

Qingyu (Flofish) Wang Mechanical Engineer Elliott Group Jeannette, PA qiwang@elliott-turbo.com

> Manish Thorat Mechanical Engineer Elliott Group Jeannette, PA

Masaya Furuta Mechanical Engineer Elliott Group Sodegaura, Japan

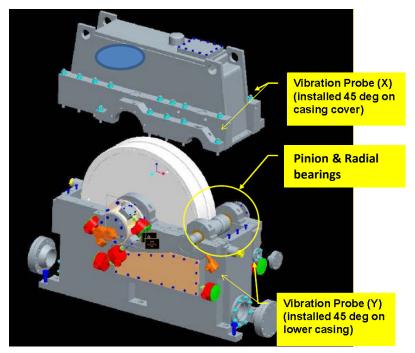
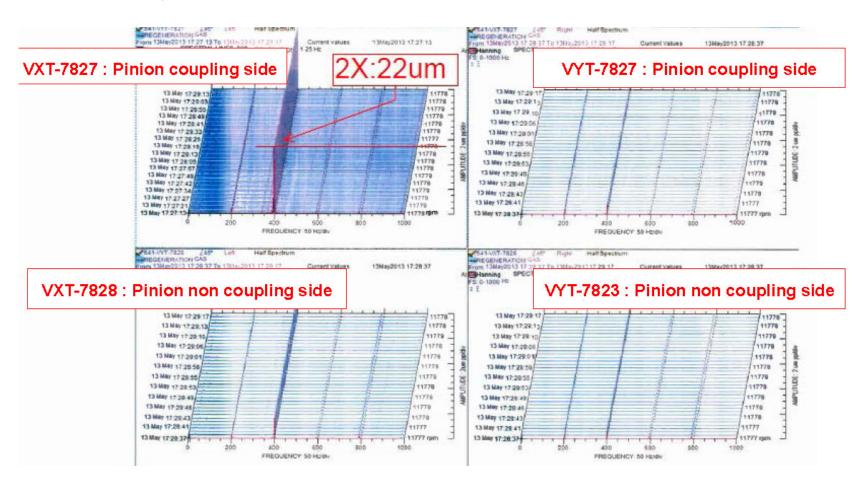
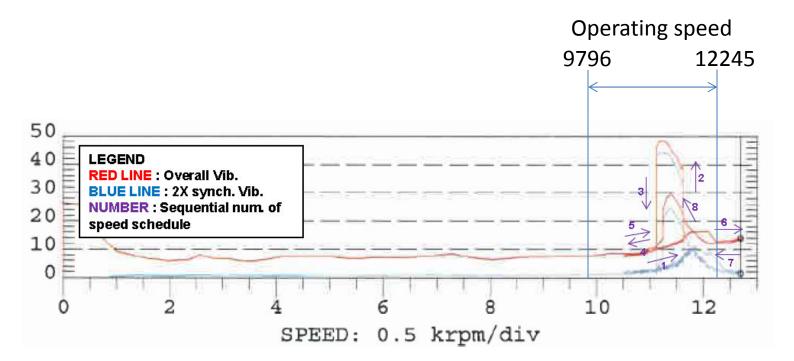

Koichi Hayama Mechanical Engineer Elliott Group Sodegaura, Japan

Table of Contents

- Problem description
- Root cause analysis
- Solution & result
- Lessons learned
- Bibliography


Problem Description

- Basic information:
 - Customer: *****
 - Gear Vendor: *****
 - Where: *****
 - When: 2013
 - RADIAL BEARING : PRESSURE DAM
 - THRUST BEARING : TILTING PAD
 - MINIMUM SPEED [rpm] : 1196 / 9796
 - RATED SPEED [rpm] : 1495 / 12245
 - MAX SPEED [rpm] : 1570 / 12857
 - GEAR RATIO, # OF TEETH : 8.1905 (21/172)
 - TRANSMISSION POWER (RATED/NOR) [kW] : 4500/3604
- What happened:
 - 4 identical equipment trains, 3 tested. All 3 have the same symptom: 2X vibration at coupling side of the pinion. Vibration from all other probes including the motor and the compressor is low.


Problem Description - Continued

• Waterfall plots

Problem Description - Continued2

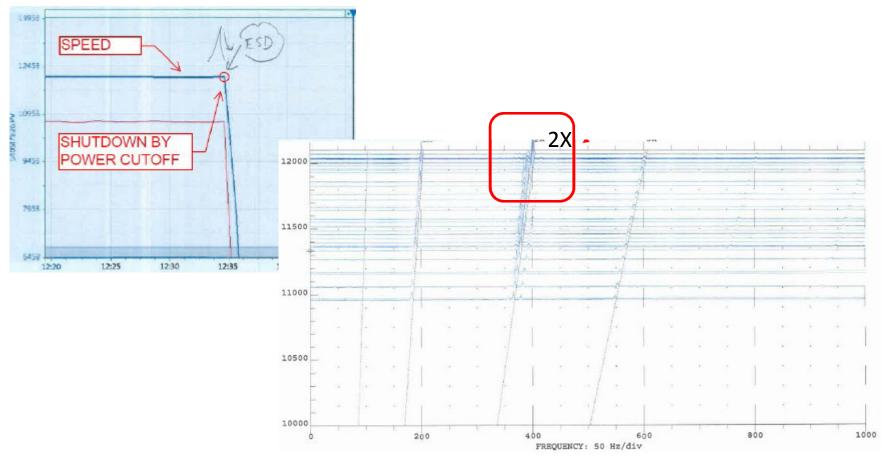
Bode Plot: Pinion Coupling Side X Direction

Root Cause Analysis

- Possible causes:
 - 1*: Coupling misalignment
 - 2*: Motor/VFD
 - 3: Bearing looseness
 - 4: Gear imbalance/bad teeth/alignment
 - 5: Gear soft-foot
 - 6: Shaft run-out
 - 7: Bad measurements

— ...

*: Most possible reasons


Root Cause Analysis - Continued2

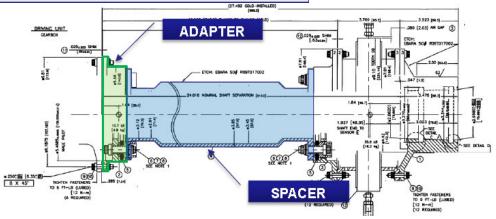
- Investigation:
 - Coupling alignment was the first thing checked (cold alignment only)
 - Bearing looseness: tolerance checked
 - Gear imbalance/bad teeth: blue checked/visual
 - Gear soft-foot: checked
 - Shaft run-out: checked
 - Bad measurements: checked

The above are not likely the true causes, because three identical trains exhibit exactly the same symptom

Root Cause Analysis - Continued3

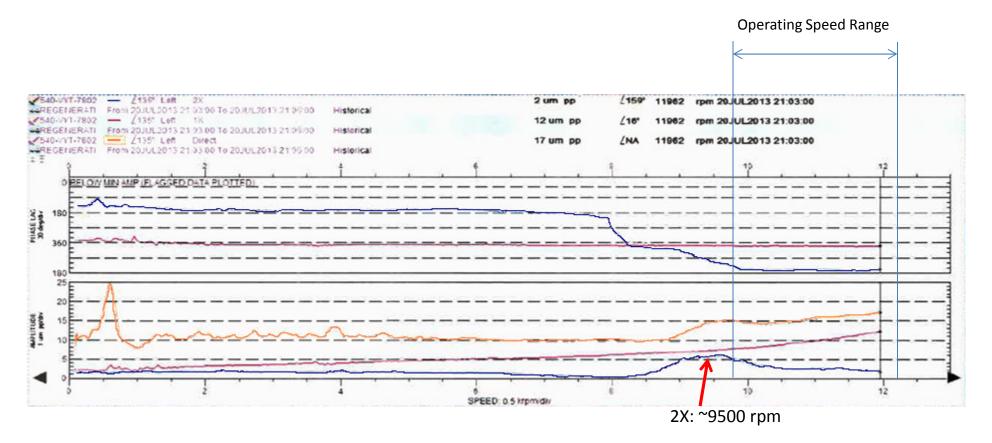
- Motor/VFD problem is ruled out by cutting off the power:
 - 2X shows up even with power cut-off

Root Cause Analysis - Continued4


- The only possibility left: hot/dynamic misalignment generates 2X excitation
- What causes the 2X?
 - literature: only parallel misalignment yields 2X (Ovalle etc.). The sources could be:
 - The disk, diaphragm, bolts, etc. characteristics
 - Interaction between Pinion and Compressor/ coincidence of critical speeds (Seon etc.)
 - The simplistic modeling for 2X excitation is (Ovalle):
 - K=A*sin(ω t), so that F=K*sin(ω t)=A*sin²(ω t)=A*(1-cos(2* ω t))/2, where
 - K is the dynamic stiffness of the coupling
 - $-~\omega$ is the running speed
 - A is the magnitude
 - F is the force/excitation from the coupling
- How to predict/calculate misalignment force?
 - For constant misalignment force (Gibbons): 5-6 lbf, calculated based on the alignment measurement, transmitted power, speed etc.
 - For dynamic misalignment force: ?
- Measure hot misalignment?
 - Schedule is tight
 - Hot misalignment may not be reflecting/equal to the dynamic force
 - Effectiveness of correcting hot misalignment is questionable

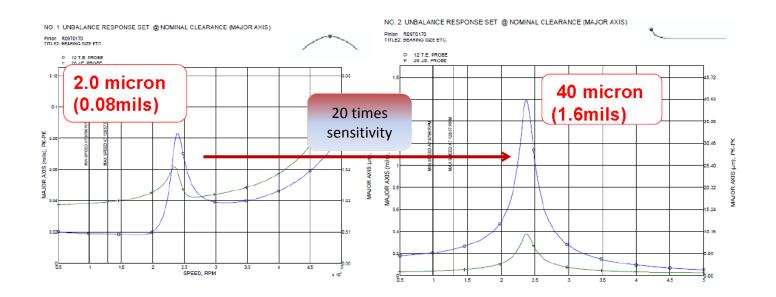
Solution and Result

An relatively simple solution: change the coupling weight to shift the critical speed


NO.	DESCRIPTION	CRITICAL SPEED by Gear Vendor (CPM)	CRITICAL SPEED by ELLIOTT (CPM)	REMARKS (HALF WEIGHT ON PINION)
1	Original Coupling	23614 (11807 rpm)	23400-24000 (11700-12000 rpm)	4.9kg(10.7Lb)
2	Titanium Space Coupling	25545 (12773 rpm)	25000-25800 (12500 – 12900 rpm)	3.4kg(7.6Lb)
3	Heavy Adapter Coupling	19158 (9579 rpm)	19000-20000 (9500-10000 rpm)	9.5kg(21Lb)

Note: Pinion model and bearing coefficients are provided by Gear Vendor

Solution and Result - continued


Heavy Adapter Coupling Test Result

The prediction is close, and the problem is solved!

Lessons Learned

- There are many gears with VFD/Turbine drives may operating smoothly with 1st critical speed in the 2X range, why these gears have problems?
- What are different/special about these gears?
 - Bearing load: 440 psi (high in general, but common for gears)
 - Bearing design: with fins
 - Coupling: with power wheel (complex and heavy)
 - Pinion: very sensitive to coupling unbalance/excitation (see plots below)
 - Compressor second critical speed: 21400-22800 rpm (close to 2X)

Lessons Learned - continued

- Analytically, with the current pinion-bearing model, the excitation from the coupling needs to be ~100 lbf to reach the maximum measured 2X amplitude (~1.4 mils), but the calculated misalignment force is only 5-6 lbf. There are a few possibilities:
 - The calculated Bearing coefficients may not be very accurate (damping might be significantly lower) for high load and/or high speed (see Kocur's survey for the diversity of the calculated coefficients by different vendors).
 - Gear vendor tried to modify the location of the bearings to lower the 2X, but not effective enough.
 - Dynamic excitation from the coupling might be much larger than static/constant alignment force.
 - The second critical speed of the compressor might contribute significantly to the dynamic excitation (Seon).

Lessons Learned – continued2

- What can we do to prevent problems in the future?
 - Avoid pinion 2X speed range if possible.
 - Otherwise (open for discussion)
 - For gear:
 - Check bearing load
 - Check bearing type/design
 - Check coupling side unbalance sensitivity (overhung length/bearing span)
 - Check empirical data to backup the design/application
 - For compressor:
 - Check the possible coincidence of the critical speed.
 - For Coupling:
 - Check coupling type, structure

Bibliography

- Al-Hajri, M., Gearbox Misalignment on Combustion Gas Turbine Generator, Case Study, Middle East Turbomachinery Symposium, 2011
- Corcoran, J., Lyle, D., McCormack, P. and Ortel, T., Advances in Gas Turbine Couplings
- Eldridge, T., Elliott, G., Martin, E. and Hitam, M.S., Axial Alignment and Thermal Growth Effects on Turbomachinery Trains with Double-helical Gearing
- Endres, N.M., Impact of Wireless Laser Based Shaft Alignment on Vibration and STG Coupling Failure, Proceedings of PWR 2007 – 22038, TX, USA
- Evans, B.F., McCraw, J.F., and Elliott, G., Multiple Resonance Vibration Mitigation on a 54,000 hp Parallel Shaft Double Helical Speed Increaser
- Gibbons, C.B., Coupling Misalignment Forces, 5th Turbomachinery Symposium, 1976
- Jackson, C., Cold and Hot Alignment Techniques of Turbomachinery , 2nd Turbomachinery Symposium, 1973
- Kocur, J.A.Jr., Nicholas, J.C., and Lee, C.C., Surveying Tilting Pad Journal Bearing and Gas Labryinth Seal Coefficients and Their Effect on Rotor Stability, 36th Turbomachinery Symposium, 2007
- Ovalle, R.D.A., An Analysis of the Impact of Flexible Coupling Misalignment on RotorDynamics, Thesis of Master of Science, Texas A&M, 2010
- Palazzolo, A. B., Locke, S.R., Calistrat, M., Clark, R.W.Jr., Ayoub, A., Calistrat, D. and Tang, P., Gear Coupling Misalignment Induced Forces and Their Effects on Machinery Vibration.
- Redmond, I., Shaft Misalignment and Vibration A Model, Conference: 2007 IMAC-XXV: Conference & Exposition on Structural Dynamics
- Seon, J., Coudray, X., Lucas, A., Gelin, A. and Quoix, B., Electric Driven Centrifugal Compressor Super Synchronous Vibrations of the High Speed Shaft Line: Observations, Assessment and Resolution, 42th Turbomachinery Symposium, 2013