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[1] Conventional multivariate hydrological frequency analysis utilizes only the
concurrent parts of data sets, leaving a lot of nonconcurrent data unutilized. Simultaneous
inclusion of such nonconcurrent data can significantly reduce uncertainty in hydrologic
design estimates. The methodology proposed in this paper allows varied length
multivariate data to be combined and analyzed in an integrated framework through a
“Composite Likelihood Approach.” The method employs copula‐based multivariate
distributions in order to provide necessary flexibility of admitting arbitrary marginals. The
paper presents the theoretical basis of the approach and highlights its advantages through
two applications. A significant reduction in uncertainty in design flood quantiles of a
relatively shorter flood series is achieved by utilizing an associated downstream flood data.
The advantage of the methodology is further demonstrated by establishing significant
information gain for six different combinations of Gaussian and non‐Gaussian marginals.
The proposed approach marks a paradigm shift in hydrologic design procedures,
particularly for partially gauged basins, wherein a higher precision in hydrologic designs is
achieved by leveraging associated information that has hitherto remained unutilized. It
is opined that the approach will enable offsetting the impact of dwindling hydrological
observation networks around the world by enhancing information that is derivable from
existing networks.
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1. Introduction

[2] Sufficiently long‐term data is required for sound hydro-
logical designs based on statistical analysis. Such long‐term
and good quality data is often a difficult proposition, espe-
cially in partially gauged basins around the world [IAHS,
2001]. Hydrological design estimates based on inadequate
data lengths involve large uncertainties. As precision of
hydrological estimates is proportional to data lengths, gaug-
ing networks need to be operated for sufficiently long periods,
entailing cost consequences. There is, however, considerable
potential for reducing uncertainties by extracting additional
information from the associated hydrological data that are
often available at or around the gauging station under con-
sideration. As design methods in statistical hydrology have,
to a large extent, been based on univariate analyses, such
additional information has not been harnessed for the pur-
pose of uncertainty reduction. A few nonstructural measures,
such as station‐year method for precipitation [Buishand,

1984] or index flood method for flood frequency [Dalrymple,
1960], and regional regression techniques have been evolved
for reducing biases and uncertainties by pooling regional
information. These methods, excepting those developed later,
e.g., the generalized least squares technique [Stedinger and
Tasker, 1985], do not fully incorporate the dependence char-
acteristics inherent in such associated data.
[3] Furthermore, hydrological information invariably con-

tains a lot of staggered data of which a bulk of nonconcurrent
data remains unutilized. There is a huge untapped potential
for reducing parameter uncertainty by considering a multi-
variate framework that allows for simultaneous consider-
ation of partially concurrent information in an integrated
manner. A few studies in the past have utilized such partially
concurrent or incomplete bivariate or multivariate data sets.
These studies, however, employed conventional bivariate
or multivariate frequency distributions that are restrictive in
having to choose the marginals from the same distribution
types, limiting the usage of the methodology. These studies
have been for normal distribution using bivariate or trivariate
normal distributions [Lord, 1955; Edgett, 1956; Anderson,
1957; Fiering, 1962; Matalas and Jacobs, 1964; Rueda,
1981], for gamma distribution using bivariate gamma distri-
bution [Clarke, 1980], for largest extreme value distribution
using different forms of bivariate and trivariate Gumbel dis-
tributions [Rueda, 1981; Raynal‐Villasenor, 1985; Escalante
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and Raynal‐Villasenor, 1998], for Weibull distribution using
bivariate Weibull and mixed Weibull distributions [Escalante,
2007], or for the general extreme value distribution using
bivariate and trivariate general extreme value distributions
[Escalante and Raynal‐Villasenor, 2008; Raynal‐Villasenor
and Salas 2008]. Applications made in these studies were,
e.g., for extending a shorter annual streamflow record using
a longer precipitation record, extending a shorter flood record
by using longer flood records from one or more adjoining
stations, or for regional flood frequency analysis.
[4] In all of the above studies, the bivariate or multivariate

distributions comprised the same types of marginals, such
as normal, largest extreme value (Gumbel), general extreme
value, Weibull, or mixed Weibull. Intuitively, the choice of
marginals must be dictated by the type of distribution that
best represents the data under consideration. It is likely that
arbitrarily different marginals constitute the multivariate pro-
cess of interest. The copula‐based distributions can advan-
tageously provide means for combining such marginals. The
methodology presented here is motivated by this flexibility
offered by copula models, with the objective of developing a
copula‐based “Composite Likelihood Approach” for reduc-
ing uncertainty in the estimates of frequency distribution
parameters. The approach comprises univariate, bivariate,
and/or multivariate likelihood components as per periods
of concurrency in the available data. This paper presents the
theoretical basis of the proposed approach, leading to expres-
sions for information gain that is accruable by integrating the
nonconcurrent associated hydrological information that has
hitherto remained untapped. The two applications included in
the paper illustrate the usefulness of the approach. In the first
application, a significant reduction in uncertainty of design
flood quantiles for a relatively shorter flood data series is
attained by simultaneously utilizing a longer flood data series
from another downstream station. The second application
involves quantifying the “expected information gain” for six
different combinations of Gaussian and non‐Gaussian mar-
ginals and conventional and copula‐based bivariate distri-
butions. The paper is organized in four sections. Following
the introductory remarks and a brief review, the objectives
are laid out in section 1. Section 2 provides necessary details
of the composite likelihood approach, including assump-
tions and applicability, and steps for estimating information
gain. The advantages of the approach are demonstrated by
presenting two applications in sections 3 and 4. The im-
portant gains achievable by this approach are discussed in
section 5, and conclusions and future research directions are
summarized in section 6. It is opined that this proposed
approach will provide a framework for improving the pre-
cision of hydrologic design estimates, particularly those
based on inadequate data, at virtually no extra cost, as it
utilizes existing associated hydrological data that has hith-
erto remained unharnessed for this purpose.

2. Composite Likelihood Approach

[5] The maximum likelihood estimation method is fre-
quently applied in hydrologic applications owing to its large
sample properties of, in general, yielding consistent esti-
mates with minimum variance. Under certain regularity con-
ditions, these estimates for large samples are considered
as good as any other estimates [Mood et al., 1974]. The

asymptotic variances can be obtained from the Cramer‐Rao
theorem that provides the lower bound on the dispersion of
parameter estimates. Estimates for small samples are also
invariably approximated on this basis and have found gen-
eral acceptance in practice. These estimates are assumed to
be normally distributed, with estimated values as the mean
vector and asymptotic variance‐covariance matrix represent-
ing dispersion. The proposed composite likelihood approach
considers both the concurrent and nonconcurrent parts of an
associated multivariate data set in an integrated manner and
provides more precise parameter estimates. In a way, this
approach provides a mechanism to transfer information from
an associated data series to a relatively shorter data series
under consideration. This information gain leads to a reduc-
tion in uncertainty and can be quantified as the ratio of
reciprocals of variances of estimates resulting from com-
posite and simple likelihood approaches.
[6] The methodology assumes homogeneity, serial inde-

pendence, and stationary properties among individual vari-
ables and in their dependence characteristics. It would be
applicable to most hydrological designs, as they are also
invariably based on similar assumptions. Starting with a
simple likelihood function, the composite likelihood approach
is outlined next, providing quantitative expressions for infor-
mation gain.

2.1. Dispersion Matrix Based on Simple
Likelihood Function

[7] Considering a multivariate random variable X =
(X1,X2,…,Xk), having its k‐dimensional probability density
function (pdf ) f(x∣y) in Rk real‐space and r‐dimensional
parameter vector y = (y1,y2,…,yr), the likelihood function
L with respect to n independent and identically distributed
(iid) observations is given as

L ¼ L yjxð Þ ¼
Yn
i¼1

f xijyð Þ:

The corresponding log likelihood function l is given as

l ¼ log L yjxð Þ ¼
Xn
i¼1

log f xijyð Þ: ð1Þ

For brevity, f(x∣y) is hereafter written as f(x), L(y∣x) as
L(x) or L, and log L(y∣x) as log L(x) or log L or l. The
maximum likelihood estimates ŷp for p =1:r are obtained by
maximizing the log likelihood function by solving the sys-
tem of equations given by

@ logL

@yp
¼
Xn
i¼1

@ log f xið Þ
@yp

¼ 0:

The Cramer‐Rao Lower Bound (CRLB) provides the lower
bound on the dispersion of parameters obtained by any esti-
mation method. Such variance‐covariance matrix is inversely
proportional to the Fisher information matrix. The (p,q)th
element of the Fisher information matrix with respect to the
above multivariate likelihood function L, as adapted from
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Wilks [1962], Rao [1973], and Cox and Hinkley [1974] and
elaborated by Chowdhary [2010], is given by

i p;q ¼ E
@ log L Xð Þ

@yp

@ logL Xð Þ
@yq

" #
¼ nE

@ log f Xð Þ
@yp

@ log f Xð Þ
@yq

" #

¼ nE Sp Xð Þ Sq Xð Þ
� �

¼ nE � @2 log f Xð Þ
@yp@yq

" #
¼ nE �Spq Xð Þ

� �
;

ð2Þ

where Sp(x) =
@ log f xð Þ

@yp
for p =1:r is the score function and

Spq(x) = @2 log f xð Þ
@yp@yq

is its first derivative with respect to
parameter q =1:r.
[8] The Fisher information matrix I is then obtained as

I ¼k i p;q krxr ¼ nk ap;q k¼ nA;

where A = kap,qkrxr and ap,q, the information content deriv-
able from a single observation of X, using equation (2), is
given by

ap;q ¼ 1

n
ip;q ¼ E Sp Xð Þ Sq Xð Þ

� �
¼ E �Spq Xð Þ

� �
: ð3Þ

The variance‐covariance matrix VC = kvcpqkrxr for the
asymptotically efficient estimates is then obtained by inverting
the Fisher information matrix as

VC ¼ I�1 ¼ 1

n
A�1 ¼ 1

n
B; ð4Þ

with matrix B = kbp,qk = (A)−1.
2.1.1. Special Case I: Univariate Distribution
[9] As a special case, considering X = X to be a univariate

random variable, the elements of the information matrix,
using equation (2), are given as

i p;qX ¼ E
@ log LX Xð Þ

@yp

@ logLX Xð Þ
@yq

" #
¼ nE

@ log f Xð Þ
@yp

@ log f Xð Þ
@yq

" #

¼ nE Sp Xð ÞSq Xð Þ
� �

¼ nE � @2 log f Xð Þ
@yp@yq

" #
¼ nE �Spq Xð Þ

� �
:

ð5aÞ

The expectation terms in the above equalities are obtained by
either algebraic or numerical integration as

E Sp Xð ÞSq Xð Þ
� �

¼
Z þ1

�1
Sp xð ÞSq xð Þf xð Þ dx

or

E Spq Xð Þ
� �

¼
Z þ1

�1
Spq xð Þf xð Þdx:

ð5bÞ

The resulting Fisher information matrix IX is given by

IX ¼ k i p;qX krxr ¼ n k ap;q
X k¼ nAX ;

where AX = kaXp,qkrxr and again aX
p,q, the information content

derivable from a single observation of X, using equation (5a)
is given by

ap;qX ¼ 1

n
ip;qX ¼ E Sp Xð ÞSq Xð Þ

� �
¼ E �Spq Xð Þ

� �
: ð6Þ

For asymptotically efficient estimates, the corresponding
variance‐covariance matrix VCX = kvcXpqkrxr, taking a matrix
BX = kbXp,qk = (AX)

−1, is given as

VCX ¼ IXð Þ�1¼ 1

n
AXð Þ�1¼ 1

n
BX : ð7Þ

2.1.2. Special Case II: Bivariate Distribution
[10] Considering X = (X, Y ) to be a bivariate random

variable, the elements of the information matrix, using
equation (2), are given as

i p;qXY ¼ E
@ log LXY X ; Yð Þ

@yp

@ logLXY X ; Yð Þ
@yq

" #

¼ nE
@ log f X ; Yð Þ

@yp

@ log f X ; Yð Þ
@yq

" #
¼ nE Sp X ; Yð ÞSq X ; Yð Þ

� �

¼ nE � @2 log f X ; Yð Þ
@yp@yq

" #
¼ nE �Spq X ; Yð Þ

� �
: ð8aÞ

The expectation terms in the above equalities are obtained
by either algebraic or numerical integration as

E Sp X ; Yð ÞSq X ; Yð Þ
� �

¼
Z þ1

�1
Sp x; yð ÞSq x; yð Þf x; yð Þdx dy

or

E Spq X ; Yð Þ
� �

¼
Z þ1

�1
Spq x; yð Þf x; yð Þdx dy:

ð8bÞ

The resulting Fisher information matrix is given by

IXY ¼ k i p;qXY krxr ¼ n k ap;q
XY k ¼ nAXY ;

where AXY = kaXYp,qkrxr and again aXY
p,q, the information con-

tent derivable from a single observation of (X,Y ), using
equation (8a) is given by

ap;qXY ¼ 1

n
ip;qXY ¼ E Sp X ; Yð ÞSq X ; Yð Þ

� �
¼ E �Spq X ; Yð Þ

� �
: ð9Þ

For asymptotically efficient estimates, the corresponding
variance‐covariance matrix VCXY = kvcXYpqkrxr , considering
a matrix BXY = kbXYp,qk = (AXY)−1, is given as

VCXY ¼ IXYð Þ�1 ¼ 1

n
AXYð Þ�1 ¼ 1

n
BXY : ð10Þ

For the sake of brevity, subscript XY has been used in lieu
of X,Y in the above equations.

2.2. Composite Likelihood Function

[11] The likelihood of a composite event, comprising some
concurrent and some exclusive (nonconcurrent) periods of X
and Y, as shown in Figure 1, is called here the composite
likelihood function. NX and NY are the total available lengths
(sample sizes) of the two data series individually. Of these
lengths, nXY is the concurrent period, and nX and nY are the
exclusive periods. These periods have been shown contig-
uous for the sake of clarity only and without loss of gen-
erality these represent cases of intermittent data availability
as well. Let fX (x;d) and fY (y;h) represent marginal pdfs and
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fX,Y (x,y;y) be the bivariate pdf of (X,Y). Here d = {d1,d2,…drd},
h = {h1, h2,…hrh} and y = {d,h,q} = {y1,y2,…yr} are the
parameter vectors of these distributions, respectively. q =
{�1,�2,…�r�} is the association parameter vector appearing
in the bivariate pdf. For purposes of brevity, these pdfs are
hereafter written as f(x), f(y), and f(x,y).
[12] The whole realization in Figure 1 can be considered

a composite event eC, comprising three independent events,
eX, eY, and eXY, that occur in the two exclusive and one
concurrent period, respectively. Let the likelihood functions
corresponding to all observations of these three events be
LX, LY, and LXY, and their joint likelihood, termed here as
the “composite likelihood function,” be LC. Owing to the
mutual independence of these three events, the composite
likelihood can be expressed as the product of their indi-
vidual likelihoods [Rao, 1973] as

LC ¼ LX LYLXY :

The corresponding log likelihood is the sum of the individual
log likelihoods as

lC ¼ logLC ¼ log LX þ logLY þ log LXY : ð11aÞ

This can easily be extended by induction to multivariate
cases. Taking, e.g., a trivariate random variable (X,Y,Z), the
composite log likelihood, using similar notations, can be
expressed as

lC ¼ logLC ¼ logLX þ log LY þ logLZ þ log LXY þ logLYZ
þ logLZX þ log LXYZ :

Depending on the presence of certain exclusive and con-
current periods in the trivariate data set, the respective
components in the above equality can be retained for further
computations.

2.3. Dispersion Matrix Based on Composite
Likelihood Function

[13] The maximum likelihood estimates ŷp for p =1:r in
case of composite events, such as in Figure 1, are obtained
by maximizing the composite log likelihood function and
solving the system of equations given by

@ logLC
@yp

¼ @ logLX þ logLY þ logLXYð Þ
@yp

¼ 0: ð11bÞ

As in equation (2), the (p,q)th element of the Fisher infor-
mation matrix, with respect to the composite likelihood
function LC, is given by

ip;qC ¼ E
@ logLC
@yp

@ logLC
@yq

" #
:

Using equation (11a), this can be simplified as

i p;qC ¼ E
@ log LX þ log LY þ log LXYð Þ

@yp

@ log LX þ logLY þ logLXYð Þ
@yq

" #

¼ E
X

i2 X ;Y ;XYf g

@ logLi
@yp

@ log Li
@yq

" #8<
:

þ
X

i;j2 X ;Y ;XYf g;i 6¼j

@ logLi
@yp

@ log Lj
@yq

" #9=
;

¼
X

i2 X ;Y ;XYf g
E

@ logLi
@yp

@ logLi
@yq

" #

þ
X

i;j2 X ;Y ;XYf g;i 6¼j

E
@ logLi
@yp

 !
E

@ logLj
@yq

 !" #
:

In the above equality, the expectation of the product within
the second summation is expressed as the product of the
expectations, owing to the independence among events ei
and ej, where ei,ej 2 {eX, eY, eXY} and ei ≠ ej. Further, simple
algebraic steps [Chowdhary, 2010] show that all these
expectations are equal to zero and thus

i p;qC ¼ E
@ logLX
@yp

@ log LX
@yq

" #
þ E

@ log LY
@yp

@ logLY
@yq

" #

þ E
@ log LXY
@yp

@ logLXY
@yq

" #
:

The three expectation terms in the above equality correspond
to the elements of the Fisher information matrix for univariate
and bivariate distributions, as given in equation (5a) and (8a),
and thus

ip;qC ¼ ip;qX þ ip;qY þ ip;qXY :

This summation of information from the constituent events of
a composite event is in agreement with the Fisher information

Figure 1. Arrangement of an incomplete sample of bivariate random variable (X,Y).
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of independent observations (here observations are from eX,
eY, and eXY events) being additive [Rao, 1973]. Considering
the length of the concurrent period nXY > 0, the above result
can be expressed in terms of ap,qs, using equations (6) and (9),
as

ip;qC ¼ nX a
p;q
X þ nY a

p;q
Y þnXY a

p;q
XY ¼ nXY

nX
nXY

aX
p;qþ nY

nXY
ap;qY þ ap;qXY

� �

¼ nXY
NX

nXY
� 1

� �
ap;qX þ NY

nXY
� 1

� �
ap;qY þ ap;qXY

� �
:

Taking the ratios of total lengths ofX and Y and the concurrent
period as mX = NX/nXY and mY = NY/nXY, respectively, the
elements of the information matrix for composite events
becomes

ip;qC ¼ nXY mX � 1ð Þap;qX þ mY � 1ð Þap;qY þ ap;qXY½ �: ð12Þ

The resulting Fisher information matrix IC is given by

IC ¼ k ip;qC krxr ¼ nXY k ap;qC k ¼ nXYAC ;

where AC = kaCp,qkrxr and aC
p,q, the information content cor-

responding to a single concurrent bivariate observation and
proportional contributions from the exclusive univariate por-
tions is given as

ap;qC ¼ 1

nXY
ip;qC ¼ mX � 1ð Þap;qX þ mY � 1ð Þap;qY þ ap;qXY : ð13Þ

For the asymptotically efficient estimates, the corresponding
variance‐covariance matrix VCC = kvcCpqkrxr, taking a matrix
BC = kbCp,qk = (AC)

−1, is given as

VCC ¼ ICð Þ�1 ¼ 1

nXY
ACð Þ�1 ¼ 1

nXY
BC : ð14Þ

The results in equation (12) are easily extendable by induc-
tion to multivariate cases. Taking, e.g., a trivariate random
variable (X,Y,Z), the elements of the Fisher information
matrix that are the basis of all further computations, using
similar notations as above, can be expressed as

ip;qC ¼ nX a
p;q
X þ nYa

p;q
Y þ nZa

p;q
Z þ nXYa

p;q
XY þ nYZa

p;q
YZ

þ nZX a
p;q
ZX þ nXYZa

p;q
XYZ

¼ nXYZ

mX � mXY �mXZþ1ð Þap;qX þ mY � mXY � mYZ þ 1ð Þap;qY

þ mZ � mZX � mYZ þ 1ð Þap;qZ þ mXY � 1ð Þap;qXY

þ mYZ � 1ð Þap;qYZ þ mZX � 1ð Þap;qZX þ ap;qXYZ

2
64

3
75

ð15Þ

Various length ratios used in the above equality are intuitive
and can be obtained by considering the total univariate and
bivariate lengths as NX,NY,NZ and NXY,NYZ,NZX, respectively,
and the trivariate concurrent length as nXYZ and taking mX =
NX/nXYZ, mY = NY/nXYZ, mZ = NZ/nXYZ, mXY = NXY/nXYZ, mYZ =
NYZ/nXYZ, and mZX = NZX/nXYZ. If only certain concurrent and
exclusive periods are present, then the corresponding com-
ponents only need to be retained for further computations.
The above formulation assumes the presence of a trivariate
concurrent period, i.e., nXYZ > 0 to be true. The available tri-
variate data set can still be advantageously pooled for reducing
uncertainty even if the trivariate concurrent period is absent.
In such case, the first equality of equation (15), in which nXYZ

is not factored out, can be used after dropping the trivariate
term.

2.4. Modeling Concurrent Periods Using Copulas

[14] The joint distribution function f (x,y) appearing in
equation (8b) is required for computing the information
content derivable from a concurrent event eXY that is one of
the constituent of a composite event eC. As mentioned ear-
lier in section 1, information gain for parameter estimates of a
few distributions has been investigated in the past. One of the
limitations in all those studies has been in having the mar-
ginals from the same type of distribution for modeling the
concurrent bivariate or trivariate periods. Application poten-
tial can increase tremendously if this limitation is overcome.
The copula‐based distributions have an advantage over con-
ventional distributions with respect to admitting arbitrary
marginals and can therefore be advantageously employed for
representing concurrent periods of the composite events.
[15] The joint probability in copula‐based distributions is

expressed in terms of marginal probabilities and more advan-
tageously in terms of uniformmarginals. This theory has been
in vogue for some time, especially with respect to actuarial
science and finance applications. In recent years, copula‐
based distributions are being increasingly employed in the
field of hydrologic engineering. Several illustrative and review
studies [Favre et al., 2004; Salvadori and De Michele, 2004;
De Michele et al., 2005; Grimaldi et al., 2005; Zhang and
Singh, 2006, 2007; Genest and Favre, 2007; Poulin et al.,
2007; Salvadori and De Michele, 2007; Serinaldi and
Grimaldi, 2007; Kao and Govindaraju, 2007a, 2007b,
2008; Serinaldi, 2009; Samaniego et al. 2010; Vandenberghe
et al., 2010; among others] provide elaborate discussion
on copula applications related to flow and rainfall variables.
Reference may be made to Joe [1997] and Nelsen [2006] for
theoretical details on dependence and copulas.
[16] Considering a bivariate random variable (X,Y), its

joint cumulative distribution function (cdf) F(x,y), in terms
of probability transformed or standard uniform variates u =
FX(x) and v = FY(y), is given as

F x; yð Þ ¼ C� FX xð Þ;FY yð Þ½ � ¼ C� u; vð Þ ð16Þ

where FX(x) and FY(y) are marginal cdfs and C� : [0,1]×
[0,1]→[0,1], a mapping function, is the “copula” that
combines marginal probabilities into joint probability. In
turn, it means that a valid joint distribution model for (X,Y)
is obtained whenever the three constituents (C,FX, and FY)
are chosen from given parametric families, viz.,

FX x; dð Þ; FY y;hð Þ ; C� u; v; qð Þ;

where d and h are the parameter vectors of marginal dis-
tributions, and q is the dependence parameter vector.
[17] By double differentiating equation (16), the copula‐

based joint pdf, involving copula density c� (u,v) and mar-
ginal pdfs f(x) and f(y), is obtained as

f x; yð Þ ¼ f xð Þf yð Þc� u; vð Þ: ð17Þ

There are several copula classes and families, such as
Archimedean, meta‐elliptic, extreme value, and miscellaneous
class. A number of models under each of these categories
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provide a great deal of flexibility in choosing copula models
that may be suitable for any particular application. The func-
tional forms of joint cdfs and pdfs of various copula models
along with their dependence characteristics and parameter
spaces are obtainable from any standard text on copula, such
as Joe [1997] and Nelsen [2006]. Selection of copula models
is discussed in one of the applications presented later in
section 3.

2.5. Information Gain

[18] Simplified expressions for the information gain for
asymptotically efficient estimates based on the composite
likelihood approach can be derived in terms of elements of
variance‐covariance matrices. As information is a reciprocal
measure of dispersion, the ratio of reciprocals of the corre-
sponding elements of variance‐covariance matrices obtained
from the composite likelihood and univariate approaches
would signify information gain. Terming such element‐wise
ratio corresponding to estimates of pth and qth parameters of
the distribution function for X as relative information RIX

pq,
it can be expressed in terms of the elements of variance‐
covariance matrices of univariate and composite events given
in equations (7) and (14) as

RIpqX ¼

1

vcpqC
1

vcpqX

¼ vcpqX
vcpqC

¼

1

NX
bpqX

1

nXY
bpqC

¼ 1
NX

nXY

bpqX
bpqC

� �
¼ 1

mX

bpqX
bpqC

� �
: ð18Þ

Similarly, the relative information RIY
pq, corresponding to

asymptotically efficient estimates of distribution function for
variable Y, is given as

RIpqY ¼

1

vcpqC
1

vcpqY

¼ vcpqY
vcpqC

¼

1

NY
bpqY

1

nXY
bpqC

¼ 1
NY

nXY

bpqY
bpqC

� �
¼ 1

mY

bpqY
bpqC

� �
: ð19Þ

When sample estimates of variance terms bX
pq, bY

pq, and bC
pq

are used in equations (18) and (19) for a data set, the result-
ing relative information pertains to that particular sample.
On the other hand, “expected information gain” is obtained
if expected variances are used in the above equalities. The
expected information gain is an important result, as it
indicates the extent of additional information that is accruable
on an average for any given combination of marginals and
copula model. The second application in section 4 illustrates
such advantage for six different cases. The relative infor-
mation in excess of unity indicates additional information
yielded by the composite likelihood approach, resulting in a
reduction of uncertainty in parameter estimates. In all cases
presented in this article, the relative information is equal to or
greater than unity and significantly more than unity in most
cases. This demonstrates the main advantage of this proposed
approach that systematically integrates available hydrologic
data and provides more precise parameters and design
estimates.
[19] Another way of looking at relative information gains

is in terms of virtual data augmentation. Variances being
inversely proportional to data lengths, a reduction in vari-
ance is equivalent to augmenting the data by certain length.

Assuming the effective (or virtual) lengths for X or Y to be
NX
C and NY

C, these relate to the information gains as

RIpqX ¼ vcpqX
vcpqC

¼

1

NX
bpqX

1

NC
X

bpqX

¼ NC
X

NX
and RIpqY ¼ vcpqY

vcpqC
¼

1

NY
bpqY

1

NC
Y

bpqY

¼ NC
Y

NY
:

In other words, the augmented lengths of the two series are
equal to the product of relative information and the actual
available lengths. Thus, the percent information gain indi-
rectly indicates an equivalent gain in the length of the data
series.

3. Application I: Flood Quantiles Based
on Composite Likelihood Approach

[20] This application illustrates the prime advantage of the
composite likelihood approach by obtaining more precise
design flood quantiles. The uncertainty in flood quantiles for
a relatively shorter upstream river gauging station is sig-
nificantly reduced by utilizing associated data from a longer
annual flow series available from a downstream station.
After describing the data set and identifying potential mar-
ginals, a copula model is selected on the basis of three
parameter estimation methods and several graphical and
analytical inference procedures, including assessing overall
and tail dependence characteristics. The composite likelihood
approach is then employed to show significant reduction in
uncertainty in flood quantiles for the shorter series.

3.1. Data Set and Potential Marginals

[21] The annual peak flow data for two USGS river gaug-
ing stations, Alderson (03183500) and Buckeye (03182500),
on Greenbrier River in West Virginia State considered in this
application are obtained from the online National Water
Information System of the USGS (http://nwis.waterdata.usgs.
gov). The Greenbrier River is a tributary of New River in
southeastern part of the state and is approximately 265 km
long. Flowing into New, Kanawha, and Ohio rivers, it is part
of the Mississippi River watershed. The Alderson station
located at 37°43′27″ latitude and −80°38′30″ longitude is
122 km downstream of the Buckeye station which is located
at 38°11′09″ latitude and −80°07′51″ longitude. These sta-
tions command 3500 and 1400 km2 of drainage areas and
have riverbeds at about 466 and 636 m above sea level,
respectively. Annual peak flows for Alderson station for
112 years from 1896 to 2007 and for Buckeye station for
78 years from 1930 to 2007 are available. These time series at
Alderson (X = QA) and Buckeye (Y = QB) stations are shown
in Figure 2 (left).
[22] Several candidate distributions such as normal (NOR),

two‐ and three‐parameter lognormal (LN2 and LN3), two‐
parameter gamma (G2), Pearson type III (P3), log‐Pearson
type III (LP3), largest extreme value (LEV), and two‐ and
three‐parameter Weibull (W2 and W3) are first considered
for fitting the two data series on a univariate basis. LEV and
LP3 distributions are found to adequately represent annual
peak flows at Alderson andBuckeye stations, respectively, on
the basis of Kolmogorov‐Smirnov, Anderson Darling, and
Chi‐square test statistics and the overall fit of observed and
computed quantiles (QQ plots). The overlay of probability
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density functions of these distributions and the corresponding
histograms is shown in Figure 2 (right).

3.2. Bivariate Dependence and Copula Models

[23] The concurrent period of 78 years among the two
annual peak flow series is considered for obtaining copula
models representing dependence and joint distribution of
the bivariate data. The scatterplots of annual peak flows at
Alderson and Buckeye stations, of their scaled ranks (scaled
by n + 1), and of their computed probabilities F̂X and F̂Y

(based on the fitted LEV and LP3 distributions), along with
respective histograms are shown in Figure 3. As expected
for the annual peak flows from two stations on the same
river, all these three scatterplots indicate a strong positive
dependence. The sample estimates of the association mea-
sures, the Pearson correlation coefficient r, the Kendall
tau t, and the Spearman rho rs, 0.887, 0.643, and 0.823,

respectively, with corresponding p values�1.0e‐20,�1.0e‐
20, and 2.15e‐20, corroborate this assertion. Further quali-
tative assessment of dependence from Chi plot and K
plot as proposed by Fisher and Switzer [2001] and Genest
and Boies [2003], respectively, reaffirms the significant
positive dependence. Lower tail independence and upper tail
dependence is evident by considering bottom left and top
right quadrants of these plots exclusively, as suggested by
Abberger [2005].
[24] Archimedean copulas such asAli‐Mikhail‐Haq (AMH),

Clayton or Cook‐Johnson, Frank, extreme value copulas as
Gumble‐Hougaard (GH) and Galambos (GH being an
Archimedean copula also) and miscellaneous copula as Farlie‐
Gumbel‐Morgenstern (FGM) are considered for modeling
the joint probability of the two annual peak flow data. On the
basis of the Kendall tau value of the sample, 0.643, and the
similarity with lower and upper tail dependence features,
the two extreme value copulas, Galambos and GH, make

Figure 2. (left) Time series and (right) histograms of annual peak flows at Alderson (X = QA) and
Buckeye (Y = QB) stations. The probability density functions of the fitted LEV and LP3 distributions
are plotted over the respective histograms.
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plausible copula models. In order to appreciate the rela-
tive suitability of Clayton and Frank copulas, these are also
short‐listed owing to their comprehensive dependence char-
acteristics. The AMH and FGM copulas are excluded from
further consideration as these admit Kendall tau in ranges
of −0.1817 to 0.3333, and −0.222 to 0.222, respectively,
both of which fall significantly short of covering the sample
Kendall tau estimate.
[25] The dependence parameters for copula families under

consideration are estimated by three methods: (1) moment‐
like method of inversion of association measures (MOM),
(2) maximum pseudolikelihood (MPL), and (3) “inference
from margins” (IFM) [Genest and Favre, 2007]. For the
MOM method, the estimates of dependence parameter � can
be obtained from its relationships with Kendall tau t or
Spearman rho rs. The MPL and IFM method‐based esti-
mates are obtained by maximizing the likelihood function,
involving empirical and computed marginal probabilities,
respectively. These estimates, the respective standard errors
and the maximized log likelihood values (LLmax) are given
in Table 1. The sample Kendall tau used in MOM method
and those obtained by inverting estimated dependence param-
eter � in MPL and IFM methods are also given in Table 1. It
may be seen that standard errors from the MPL method are
much lower than those for the MOM method. The errors are
only slightly larger for the IFM method as compared to the

MPL method, except for the Clayton copula for which it
is much larger. The Galambos and GH copulas have very
similar maximized log likelihood values that are much higher
than other copulas. Thus, from the point of view of likelihood
values and standard errors, the Galambos and GH copulas
obtained by the MPL method may be preferable.

3.3. Assessment of Copula Fitting

[26] The relative suitability of various copula models is
ascertained in multiple ways by employing (1) graphical
methods, (2) error statistics, and (3) analytical goodness‐of‐
fit tests.
3.3.1. Graphical Methods
[27] First, the scatterplot of observed bivariate data is

compared by superimposing it on sets of large number of
random bivariate samples generated on the basis of various
hypothesized copulas. Sets of 500 samples are generated for
each of the four copula families, utilizing MOM, MPL, and
IFM method‐based parameters. Figure 4 shows one such
representative comparison for the MPL method, and it is
apparent that the spread of observed and generated data
matches well for the Galambos and GH copulas, whereas for
the Clayton and Frank copulas the match is poor, particu-
larly for higher peak flows. Second, comparison of empiri-
cal probabilities and computed probabilities revealed the
extent of fitting of copula surface with the empirical prob-

Table 1. Copula Dependence Parameter Estimates and Error Statistics for Annual Peak Flows at Alderson and Buckeye Stations

Method/Copula Family Theta (�̂) Tau (�̂) Standard Error LLmax RMSE MN‐A‐ERR MX‐A‐ERR

MOM
Clayton 3.655

0.643

0.693 – 0.023 0.018 0.054
Frank 9.314 1.451 – 0.016 0.013 0.043
Galambos 2.115 0.345 – 0.013 0.012 0.025
GH 2.828 0.346 – 0.013 0.012 0.025

MPL
Clayton 2.468 0.552 0.274 40.263 0.032 0.025 0.064
Frank 8.789 0.630 0.159 42.957 0.017 0.014 0.044
Galambos 2.062 0.639 0.193 48.447 0.014 0.012 0.026
GH 2.769 0.639 0.172 48.283 0.014 0.012 0.026

IFM
Clayton 2.650 0.570 8.447 38.462 0.030 0.024 0.062
Frank 9.977 0.665 0.174 46.088 0.016 0.012 0.042
Galambos 2.218 0.659 0.290 51.979 0.012 0.011 0.023
GH 2.928 0.658 0.252 51.825 0.012 0.011 0.023

Figure 3. Scatter plots and histograms of the bivariate annual peak flows at Alderson (X = QA) and
Buckeye (Y = QB) stations in (a) original domain, (b) as scaled ranks, and (c) as LEV and LP3 computed
probabilities.
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ability surface. The matching for both Galambos and GH
copulas was very good in every case, whereas differences
progressively increased for the Frank and Clayton copulas,
particularly for larger joint probabilities. Third, a graphical
comparison of empirical and computed probability distribu-
tions, Kn(w) and K�n

(w), of the bivariate probability integral
transform (BIPIT) variate W = C(U,V), and that of observed
and expected order statistics of W in the form of generalized
K plots as proposed by Genest and Favre [2007] is done. All
these plots showed very good matching for the Galambos
and GH copulas, followed by progressively inferior match-
ing for the Frank and Clayton copulas. For brevity, the nature
of these comparisons is represented by K plots for the MPL
method in Figure 5.
3.3.2. Error Statistics
[28] Comparison of error statistics, such as root mean

square error (RMSE), mean absolute error (MN‐A‐ERR),
and maximum absolute error (MX‐A‐ERR) given in Table 1
also provides a measure of fit of copula models to the joint
empirical probability. All these statistics for the three meth-
ods indicate better suitability of the Galambos and GH
copulas as against progressively larger errors for the Frank

and Clayton copulas. It may be observed that errors for the
three methods are comparable, except for the Clayton copula
for which the MPL and IFM methods yield much larger
errors, owing to lower dependence returned by thesemethods.
3.3.3. Analytical Goodness‐of‐Fit Tests
[29] Three goodness‐of‐fit test statistics have been em-

ployed to formally test the adequacy of the hypothesized
copulas. The first, comparing empirical and parametric cop-
ula probabilities based on the process

ffiffiffi
n

p
(Cn − C�n

), is the
Cramer‐vonMises type statistic CMn proposed byFermanian
[2005]. The other two, providing comparison of the empirical
and theoretical probabilities of W on the basis of the process
Kn(w) =

ffiffiffi
n

p
{Kn (w) − K�n

(w)}, are the Cramer‐von Mises and
Kolmogorov type statistics Sn and T n given by Genest et al.
[2006] as variants of those proposed by Wang and Wells
[2000]. Tests based on these three statistics, involving a
parametric bootstrap procedure, are conducted for the three
parameter estimation methods. For this, 10,000 samples of
the size of the observed bivariate peak flow data set (i.e., 78)
are simulated, except for the Galambos copula for which
only 1000 sets are generated owing to a larger computational
time requirement. The results of three such simulation runs

Figure 4. Comparison of observed annual peak flows at Alderson and Buckeye stations and the MPL
method‐based random samples for various copulas. Solid circles are random samples (size 500), and plus
symbols represent observed data. Numbers in name strips are dependence parameter estimates with cor-
responding Kendall tau values in parenthesis.
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for only the MPL method are given in Table 2 for the sake
of brevity. Very low p values returned in each instance for
the Clayton copula provide overwhelming evidence for its
rejection at a 5% significance level. On the other hand, no
evidence is found for rejection of the Galambos, GH, and
Frank copulas. The very high p values for the Galambos and
GH copulas suggest that these may be preferred over the
Frank copula.
[30] All the graphical and analytical goodness‐of‐fit test

results thus suggest Galambos and GH copulas as suitable

models for the bivariate data under consideration. Although
either of these copulas would make a viable model for this
data set, the GH copula is finally selected, owing to its fre-
quent use in hydrological applications. And in view of
smaller standard error (Table 1), the MPL estimation method
is employed for estimating the parameters.

3.4. Composite Likelihood‐Based Flood Quantiles

[31] Considering LEV and LP3 marginals and the GH
copula as selected above, the distribution parameter estimates

Table 2. Goodness‐of‐Fit Statistics for Hypothesized Copulas With Respect to the MPL Methoda

Copula

CMn Sn T n

Obs. Stat. S* P Obs. Stat. S* P Obs. Stat. S* P

Clayton 8.499
4.693 0.002

0.233
0.207 0.029

1.132
1.075 0.031

4.648 0.001 0.207 0.029 1.075 0.028
4.785 0.001 0.209 0.030 1.073 0.028

Frank 1.764
2.551 0.321

0.080
0.122 0.416

0.844
0.902 0.494

2.542 0.317 0.121 0.413 0.901 0.506
2.561 0.316 0.122 0.414 0.902 0.500

Galambos 1.124
2.872 0.824

0.076
0.125 0.403

0.739
0.870 0.570

2.920 0.826 0.132 0.418 0.886 0.602
2.847 0.818 0.126 0.393 0.914 0.587

GH 1.134
2.812 0.820

0.077
0.125 0.408

0.739
0.878 0.598

2.771 0.812 0.124 0.392 0.880 0.587
2.796 0.804 0.124 0.392 0.882 0.583

aS* implies critical value of the test statistic at 5% significance level, and P indicates the p values of the observed
test statistic (Obs. Stat.).

Figure 5. Graphical goodness‐of‐fit tests for various copulas using K plots for the MPL method‐based
estimates for annual peak flows at Alderson and Buckeye stations. Step functions are the empirical dis-
tributions Kn (w), and curves are the theoretical distributions K�n

(w) of the bivariate integral transform
variable W = C(U, V ). Numbers in name strips are dependence parameter estimates with corresponding
Kendall tau values in parenthesis.
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and associated variance‐covariance matrix based on the
composite likelihood approach are obtained from equations
(11b) and (14), respectively. The interval estimates for 100,
200, and 500 year return period flood quantiles are obtained
on the basis of these parameters and dispersion character-
istics. These quantiles along with associated standard errors
and confidence widths corresponding to a coverage proba-
bility of 95% are given in Table 3. The quantile estimates,
standard errors, and confidence widths obtained purely on a
univariate basis in section 3.1 are also given in Table 3. About
30% reduction in standard errors and confidence widths for
the three quantiles shows significant benefits that are accru-
able upon considering both annual peak flow series in a
composite fashion as compared to the usual univariate anal-
ysis. Comparison of LP3 probability plots on a log‐gamma
probability paper resulting from these two approaches is
shown in Figure 6. The narrower confidence band in the
case of composite likelihood approach graphically illustrates
the benefit of the approach. This application pertained to a
moderate length ratio of mX = 112/78 = 1.43. The percent
uncertainty reduction is expected to be even higher for greater
length ratios of 2–3 that are typically expected for an actual
design application.
[32] Apart from reduction in uncertainty in terms of stan-

dard errors and confidence widths, a fewmore error statistics,
such as root mean square error (RMSE), standard error of fit

(SEF), bias (BIAS), and mean absolute relative deviations
(MARD), are also computed for the two approaches. These
error estimates alongwith percent changes are given inTable 4.
Again, a reduction of about 10%–20% in all these error
estimates is achieved by employing the composite likeli-
hood approach.

4. Application II: Quantifying Expected
Information Gain

[33] This application highlights the benefits of the
approach by showing the extent of the “expected information
gain” that is accruable for certain combinations of marginals
and a copula‐based bivariate distribution. No observed data
is involved in this application, as it deals with expected
information gains that are obtainable from equations (5b) and
(8b). The application is illustrated by considering a simpli-
fied arrangement of the composite event shown in Figure 1
wherein only the exclusive period of X and the concurrent
period of (X,Y) are present, i.e., for nY = 0 and NY = nXY. The
variable X, having both exclusive and concurrent periods,
would hereafter be called “longer series,” and Y, having only
the concurrent period, would be called “shorter series.” The
objective here is to see if the uncertainty in distribution
parameter estimates for X and Y decreases by employing the
composite likelihood approach. Six cases involving different

Figure 6. Comparison of probability plots for annual peak flows at Buckeye station obtained on the
basis of purely univariate analysis (annotated as “UV”) and by composite likelihood approach (annotated
as “CLA”).

Table 3. Comparison of Uncertainty in Flood Quantiles for Buckeye Station Obtained From Purely Univariate Approach (UV) and
Composite Likelihood Approach (CLA)

Return Period
(years)

Computed Quantiles and Error Statistics (103 cumec)

% ChangeUV Based CLA Based

Quantile
Standard
Error

Confidence
Width Quantile

Standard
Error

Confidence
Width Quantile

Standard
Error

Confidence
Width

100 1.58 0.20 0.80 1.72 0.15 0.58 −8.4 27.8 27.6
200 1.81 0.26 1.04 2.01 0.19 0.74 −10.9 29.0 29.5
500 2.14 0.36 1.44 2.45 0.25 0.99 −14.6 30.7 31.6
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marginals and bivariate distributions, as listed in Table 5, are
analyzed and compared for the gains by shorter and longer
series. The four marginals considered are normal (NOR),
largest extreme value or Gumbel (LEV), gamma (G2), and
log‐Pearson Type III (LP3). Cases I and II involve conven-
tional bivariate normal and Gumbel Type A [Gumbel and
Mustafi, 1967] distributions, respectively. These two cases
have been studied earlier as well [Rueda, 1981; Raynal‐
Villasenor, 1985] but are presented here for purposes of
comparison and completeness. Admitting different margin-
als, Cases III to VI employ the Frank copula for modeling
concurrent bivariate periods. The selection of specific uni-
variate and bivariate distributions here, including the Frank
copula, is solely for illustrative purposes and without loss
of generality, results for the expected information gain are
obtainable for any other marginal distributions and copula
types.
[34] The combinations of marginals considered in these

six cases have direct relevance to hydrologic applications.
For example, the combination of two NOR distributions
(Case I) may be suitable for normally distributed variables,
such as annual flow volumes and (or) annual rainfall from
adjoining gauging stations or watersheds. The two LEV dis-
tributions (Case II) may be of use when dealing with extreme
value variables, such as annual peak flood and (or) annual
peak storm rainfall, or maximal water quality parameters that
exhibit a certain level of association. The combination of
NOR and LEV or G2 marginals (Cases III and IV) may
be useful where data for an extreme value variable, such as
annual peak flood, is of shorter length but an associated
normally distributed variable, such as annual precipitation or
annual flow volume, is available for a longer period. Simi-
larly, the combination of G2 and LEV distributions (Case V)
or LEV and LP3 distributions (Case VI) could be employed
where data for an extreme value variable such as annual peak
flood is of shorter length but another associated extreme value
distributed annual peak flood data from nearby station on the
same or adjoining river is available for a longer period. Such
possibility of arbitrarily combining different marginals can be
advantageous for improving precision of estimates in many
other hydrologic applications, involving precipitation, evap-
oration, flow, soil moisture, groundwater, and/or water qual-
ity variables, where one or more variables have limited data
availability but there is sufficiently long‐term availability of
one or more other associated variables from same or nearby
observation stations.
[35] The expressions of pdf and cdf for the four marginals

and bivariate normal and Gumbel Type A distributions can
be obtained from any standard text on distribution functions.
The mean and variance for NOR distribution are denoted as
mi and si

2, location and scale parameters for LEV distribu-

tion as gi and ai, and scale and shape parameters for G2
distribution as ai and bi, for i 2 {X,Y}, and location, scale,
and shape parameters for the LP3 distribution for Y as gY,
aY, and bY, respectively. The joint cdf for the Frank copula‐
based bivariate distribution is obtained from equation (16)
wherein C(u,v) is taken from any standard text on copulas
as indicated in section 2.4. The corresponding joint pdfs can
be obtained from equation (17) after obtaining copula den-
sity c�(u,v) by double differentiating C(u,v).

4.1. Asymptotic Variances

[36] Expressions for exact variances can be derived for
parameter estimates that can be expressed in explicit form.
Obtaining expressions for parameter estimates that cannot
be expressed in closed form may become a formidable task.
Asymptotic variances are used as a good approximation in
such situations when sample size is large enough. Rueda
[1981] showed that even for sample sizes as small as 10
and 20, asymptotic variances provide acceptable estimates
of exact variances for bivariate normal and bivariate Gumbel
Type A distributions. Asymptotic variances can be obtained
for a univariate or a bivariate distribution as the inverse of
the information matrix. Elements of the information matrix
can be obtained from either the third or the fifth equality of
equations (5a) and (8a) while computing expectation terms
through integration as in equations (5b) and (8b).
4.1.1. InformationMatrices for Univariate Distributions
[37] Considering n observations of a univariate random

variable X, the elements of information matrices for normal,
largest extreme value, gamma and log‐Pearson Type III dis-
tributions can be obtained from equation (5a) after a few
algebraic steps and knowing themoment generating functions
of the distributions. As information matrices are symmetric, it
suffices to write the elements of upper diagonal matrices. For
estimates of mean and variance for normal distribution, the
information matrix is given as

INOR �; �2
	 


¼ n

1

�2
0

1

2 �2ð Þ2

��������

��������
: ð20Þ

For the largest extreme value distribution, the information
matrix for location and scale parameters is given as

ILEV �; �ð Þ ¼ n

�2

1 �0:4228

1:8237

������
������: ð21Þ

Table 4. Comparison of Error Statistics for LP3 Distribution
Fitting for Buckeye Station Obtained for Purely Univariate Approach
(UV) and Composite Likelihood Approach (CLA)

Error Statistic

Error Estimates

% ChangeUV Based CLA Based

RMSE 2.94 2.31 21.6
SEF 2.98 2.34 21.6
BIAS −0.15 −0.12 19.6
MARD 4.58 4.11 10.2

Table 5. Six Cases for Which Application of Composite Likelihood
Approach Has Been Illustrated

Case

Marginal Distribution of

Bivariate DistributionLonger Series X Shorter Series Y

I NOR NOR Bivariate normal
II LEV LEV Bivariate Gumbel Type A
III NOR LEV Frank copula
IV NOR G2 Frank copula
V G2 LEV Frank copula
VI LEV LP3 Frank copula
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For the gamma distribution, the information matrix for scale
and shape parameters is given as

IG2 �; �ð Þ ¼ n

�

�2

1

�

y
0
�ð Þ

�������
�������: ð22Þ

Here y ′(b) is called “psi” or “trigamma” function, given by

y
0
�ð Þ ¼ @y �ð Þ

@�
¼ @

@�

G
0
�ð Þ

G �ð Þ

" #
:

The information matrix for location, scale, and shape param-
eters for the log‐Pearson Type III distribution is given as

ILP3 �;�; �ð Þ ¼ n

1

�2 � � 2ð Þ
1

�2

1

�2 � � 1ð Þ
�

�2

1

�

y
0
�ð Þ

�����������

�����������
: ð23Þ

4.1.2. Information Matrices for Bivariate Distributions
[38] Obtaining elements of information matrices for bivar-

iate distributions quickly becomes an involved process as one
moves from bivariate normal to other non‐Gaussian distri-
butions, such as the bivariate Gumbel Type A or the copula‐
based distributions. For the bivariate normal distribution,
these elements of information matrix can be easily derived
in closed form. Considering n observations of a normally
distributed bivariate random variable (X,Y), the information
matrix with respect to means, variances and dependence
parameter is given as

For the bivariate Gumbel Type A distribution, getting ele-
ments of information matrix in closed form becomes cum-
bersome and therefore expectation terms in equation (8a) are
obtained through numerical integration. It is easier, in this
case, to work with the product of score functions Sp(x,y) and
Sq(x,y) rather than their derivatives Spq(x,y). The score func-
tions for the bivariate Gumbel Type A distribution, with
respect to location, scale, and association parameters yp =
{gX,aX,gY,aY,�} for p = 1:5, are given as

Sp x; yð Þ ¼ @ log f x; yð Þ
@yp

¼ @

@yp
� log�X � log�Y þ log fZX ;ZY zX ; zYð Þ
� �

;

where ZX =
X��X
�X

and ZY =
X��Y
�Y

are the standard LEV variates
and FZX, ZY

(zX,zY) is the standard bivariate Gumbel Type A
pdf obtained from its cdf,

FZX ;ZY zX ; zYð Þ ¼ exp �e�zX � e�zY þ � �ezX þ�ezYð Þ�1
j k

:

Similarly, for copula‐based distributions also, the expec-
tations in equation (8a) are difficult to obtain algebraically
and recourse is taken to numerical integration. Using
equation (17), the derivatives Sp(x,y) for copula‐based dis-
tributions can be obtained as

Sp x; yð Þ ¼ @ log f x; yð Þ
@yp

¼ @

@yp
log f xð Þ þ log f yð Þ þ log c� u; vð Þ½ �

¼ @ log f xð Þ
@yp

þ @ log f yð Þ
@yp

þ @ log c� u; vð Þ
@yp

:

The first two derivatives in the last equality are the score
functions of the two marginals, and therefore when yp 2{d}
or yp 2{h} the score function for the other marginal
becomes zero. After obtaining score functions Sp(x,y) with
respect to all the parameters, the elements of information
matrix can be obtained numerically using equation (8a).

4.2. Expected Information Gain

[39] The relative information for parameter estimates of
marginals in all the six cases is computed on the basis of
equations (18) and (19), involving length ratios mX = NX/nXY
and mY = NY/nXY and dependence parameter �. For the sim-
plified arrangement in Figure 1 under consideration, nY = 0
and NY = nXY results inmY = 1. The results can be generalized
for any individual lengths of longer and shorter series such
that mX ≥ 1. The results are therefore presented as charts of

relative information plotted against the length ratio mX and
for various levels of association. As the significance of the
dependence parameter � as a measure of association is dif-
ferent for different distributions, it makes it an unsuitable
reference while presenting or comparing results of informa-
tion gain. In order to assess the role of dependence, it is
desirable to relate the information gain with certain associa-
tion measures that have common meaning for different dis-
tributions. The parametric Pearson correlation coefficient r
or rank‐based nonparametric measures, such as Spearman
correlation coefficient rs and Kendall t, could be used for
the purpose. Using the correspondence between � and the
association measures r, rs, and t as given by Nelsen [2006],

IXY �X ; �
2
X ; �Y ; �

2
y ; �

� 
¼ n

1

�2
X 1� �2ð Þ 0

��

�X�Y 1� �2ð Þ 0 0

2� �2ð Þ
4 �2

Xð Þ2 1� �2ð Þ
0

��2

4�2
X�

2
Y 1� �2ð Þ

��

2�2
X 1� �2ð Þ

1

�2
Y 1� �2ð Þ 0 0

2� �2ð Þ
4 �2

Yð Þ2 1� �2ð Þ
��

2�2
Y 1� �2ð Þ
1þ �2

1� �2ð Þ2

�����������������������

�����������������������

: ð24Þ
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their interrelationships are established with respect to the six
cases under consideration. The values of r and equivalent rs,
in parenthesis, shown in all the plots for reference and use
have been obtained on the basis of these relationships. The
Pearson correlation coefficient r is, however, not preferred as
it can be misleading at times for the non‐Gaussian distributed
data. Nevertheless, since r is amore familiar measure tomany
practitioners, the same is retained in all the plots for an easy
reference.
[40] For Cases I–III, the relative information is a function

of length ratio mX and association level only. The results in
these cases are therefore valid for anymember of the involved
marginals, i.e., for any values of the constituent parameters.
For Cases IV–VI, the relative information is also a function
of shape parameters of the gamma and log‐Pearson Type III
distributions. Therefore, computations for these cases may
be done for specific shape parameter that may be of interest.
For illustration, the results for shape parameter bY = 12 are
presented here. Furthermore, for Case VI, the relationship
between r and � also involves the scale parameter of LP3
distribution and a value of aY = 0.25 has been used. These
specific values of scale and shape parameters have been taken
for illustrative purposes only and without loss of generality,
the expected information gain for any other admissible values
can be obtained.
[41] The expected information gain for all the cases has

been computed for mX ranging from 1 to 5. Such a range
would easily cover most practical hydrological applications,
e.g., when a shorter series is available for only about 20 years
and a longer series is available for about 40–60 years. Further,
the association levels in increments of 0.1 of the Pearson
correlation coefficient r are considered in the range of 0.1–
0.9, wherever admissible. A common characteristic observed
in the results of all the cases is that the relative information for

parameters of longer series decreases with the increase in
values of mX, whereas for shorter series it increases with
increasing mX. This is expected as there is relatively lesser
proportional contribution from the shorter to longer series
when the value of mX increases. On the other hand, a shorter
series gains more from relatively larger contribution of longer
series when the value of mX increases. For purposes of com-
parison and reporting, a value of mX = 1 for the longer series
is used, indicating the scenario of maximal gain for such
marginals if another marginal having about the same length is
available. For the shorter series, a value of mX = 3 is used as
it is more likely to expect values about this in real‐life
situations. Similarly, r = 0.7 (i.e., coefficient of determination
R2 = 0.49), a moderate value to expect for the supposedly
associated variables under consideration, is used as a practical
reference value. However, a higher dependence is expected
among related variables and for that reason results are also
reported and discussed with reference to a higher value of
r = 0.9 (R2 = 0.81) wherever admissible. The information
gain for longer and shorter series is summarized in Tables 6
and 7, respectively. The results for the six cases are dis-
cussed in the following six subsections.
4.2.1. Case I: Normal Marginals
[42] The objective in this case is to see if there is a gain in

information for a normally distributed shorter series when
data of another associated normally distributed longer series
is utilized in a composite manner. At the same time, it may
be seen if the longer series also gains from this approach. As
all required variance‐covariance matrices in this case are
available in closed form [Rueda, 1981], the relative infor-
mation for parameters of longer and shorter series can be
obtained analytically. Considering NX and NY observations
of X and Y, the asymptotic variance‐covariance matrix of
parameter estimates are obtainable in closed form by matrix
inversion of equation (20) as

VCX �X ; �
2
X

	 

¼ 1

NX

�2
X 0

2 �2
Y

	 
2
������

������ ð25Þ

and

VCY �Y ; �
2
Y

	 

¼ 1

NY

�2
Y 0

2 �2
Y

	 
2
������

������: ð26Þ

Using equation (20) and (24), the elements of the Fisher
information matrix for the simplified composite event in
Figure 1, i.e., withmY = 1, can be obtained from equation (12)
as

IC �X ; �
2
X ; �Y ; �

2
y ; �

� 
¼ nXY

1

�2X
mX � 1ð Þ þ 1

1� �2ð Þ

� �
0

��

�X�Y 1� �2ð Þ 0 0

1

2 �2
Xð Þ2

mX � 1ð Þ þ 2� �2ð Þ
2 1� �2ð Þ

� �
0

��2

4�2
X�

2
Y 1� �2ð Þ

��

2�2X 1� �2ð Þ
1

�2Y 1� �2ð Þ 0 0

2� �2ð Þ
4 �2Yð Þ2 1� �2ð Þ

��

2�2Y 1� �2ð Þ
1þ �2

1� �2ð Þ2

�����������������������

�����������������������

:

Table 6. Percent Information Gain for Distribution Parameter
Estimates for Longer Series X

Case

Marginals
% Information Gain for Parameter Estimates

of X at mX = 1

X Y

For Moderate r For High r

r �̂X/�̂Y �̂X
2/�̂X �̂X r �̂X/�̂X �̂X

2/�̂X �̂X

I NOR NOR 0.7 0 0 – 0.9 0 0 –
II LEV LEV 0.6 2 12 – 0.67 3 29 –
III NOR LEV 0.7 18 8 – 0.9 65 41 –
IV NOR G2 0.7 16 6 – 0.9 51 24 –
V G2 LEV 0.7 – 8 8 0.9 – 30 29
VI LEV LP3 0.4 18 12 – 0.5 40 27 –
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The corresponding variance‐covariance matrix can be
obtained in closed‐form by inverting the above information
matrix as

The relative information for mean and variance can now be
obtained for longer and shorter series using equations (18)
and (19) on the basis of variance‐covariance matrices given
in equations (25), (26), and (27) as

RIX �Xð Þ ¼ 1

mX

b11X
b11C

� �
¼ 1

mX

�2
X

�2
X

mX

¼ 1;

RIX �2
X

	 

¼ 1

mX

b22X
b22C

� �
¼ 1

mX

2 �2
X

	 
2
2 �2

X

	 
2
mX

¼ 1;

and

RIY �Yð Þ ¼ 1

mY

b11Y
b33C

� �
¼ 1

1

�2
Y

�2
Y 1þ mX � 1ð Þ 1� �2ð Þ½ �

mX

¼ 1

1� �2 1� 1=mXð Þ ;

RIY �2
y

� 
¼ 1

mY

b22Y
b44C

� �
¼ 1

1

2 �2
Y

	 
2
2 �2

Y

	 
2
�4 þ mX 1� �4ð Þ½ �

mX

¼ 1

1� �4 1� 1=mXð Þ :

It is apparent from the above that for the longer series X the
relative information remains unity for bothmean and variance
for any mX and any association level. In other words, the
longer series does not gain at all from the shorter series when
both marginals are normal, irrespective of the level of cross
correlation. For the shorter series Y, it may be seen that, for
mX = 1, the relative information for both parameters is unity,
irrespective of the association level. Furthermore, when the
two series are independent, i.e., when � = 0, relative infor-
mation is again unity for both parameters, irrespective of the
value of length ratio mX. However, when there is a perfect

association, i.e., when � = 1, the relative information for
both parameters is equal to mX. In other words, the relative
information curve is a straight line passing through origin
and having unit slope and thus for mX = 3, for example, both
these gains would be 200%.
[43] The graphical and tabular results of the expected

information gain for mean and variance parameters of the
shorter series, RIpp 8 p = {3,4} = {mY,sY

2}, are given in
Figure 7 and Table 7, respectively. It may be seen from
these plots and table that there is a greater gain in infor-
mation for mean as compared to variance. For a value of
mX = 3 and r = 0.7, the gain in mean is 49%, and for variance,
it is 19%. For a higher correlation of r = 0.9, the gains for both
increase rather sharply and are 117% and 78%, respectively.
4.2.2. Case II: LEV Marginals
[44] In this non‐Gaussian case, the objective is to see up

to what degree both the shorter and longer Gumbel distrib-
uted series benefit each other in terms of relative information.
The relative information for the longer and shorter series is
obtained using equations (18) and (19) on the basis of infor-
mation matrices for univariate Gumbel distribution given in
equation (21) and that obtained numerically for the composite
likelihood approach involving the bivariate Gumbel Type A
distribution. The graphical and tabular results for relative
information for location and scale parameters of longer and

VCC �X ; �
2
X ; �Y ; �

2
y ; �
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¼ 1

nXY

�2
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mX
0

��X�Y
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0 0

2 �2
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2
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0
2�2�2

X�
2
Y
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�2
X � 1� �2ð Þ

mX

�2
Y 1þ mX � 1ð Þ 1��2ð Þ½ �

mX
0 0

2 �2
Y

	 
2
�4 þ mX 1� �4ð Þ½ �

mX

�2
Y � 1��2ð Þ �2 þ mX 1� �2ð Þ½ �

mX

1� �2ð Þ2 �2 þ mX 2� �2ð Þ½ �
2mX

����������������������������

����������������������������

:

ð27Þ

Table 7. Percent Information Gain for Distribution Parameter
Estimates for Shorter Series Y

Case

Marginals
% Information Gain for Parameter Estimates

of Y at mx = 3

X Y

For Moderate r For High r

r �̂Y/�̂Y �̂Y
2/�̂Y �̂Y r �̂Y/�̂Y �̂Y

2/�̂Y �̂Y

I NOR NOR 0.7 49 19 – 0.9 117 78 –
II LEV LEV 0.6 27 33 – 0.67 33 49 –
III NOR LEV 0.7 76 27 – 0.9 221 137 –
IV NOR G2 0.7 – 13 14 0.9 – 79 80
V G2 LEV 0.7 76 27 – 0.9 180 92 –
VI LEV LP3 0.4 8 10 10 0.5 27 35 33
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shorter series, RIpp8p = {1,2,3,4} = {gX,aX,gY,aY}, are given
in Figure 8 and Tables 6 and 7, respectively. It may be seen
that, for r = 0.6, the gain for location parameter gX of longer
series is insignificant at the 2% level. For the scale parameter
though, the gain is higher at 12%. For a higher r = 2/3, which
is the maximum admissible value of correlation for this
distribution, these gains are 3% and 29%, respectively. The
shorter‐series gains are significant for both parameters,
gains being 27% and 33% for r = 0.6 and 33% and 49%
for r = 2/3, respectively.
4.2.3. Case III: NOR and LEV Marginals
[45] This case is a combination of Gaussian and non‐

Gaussian distributions, with the Frank copula providing the
basis for their joint distribution. It would be important to
see if the relative information characteristics in this case
are significantly different from the previous two cases. The
relative information is obtained for longer and shorter series
using equations (18) and (19) on the basis of information
matrices for normal and largest extreme value distributions
given in equation (20) and (21) and that obtained numeri-
cally for the Frank copula‐based bivariate distribution. The
graphical and tabular results for mean and variance and
location and scale parameters of longer and shorter series,
RIpp 8 p = {1,2,3,4} = {mX,sX

2,gY,aY}, are given in Figure 9
and Tables 6 and 7, respectively. For r = 0.7, the gains for
mean and variance of longer series are 18% and 8%, respec-
tively. For a higher correlation of r = 0.9, these gains are 65%
and 41%, respectively. These gains have interesting com-
parison with Case I wherein there were no such gains for
normally distributed longer series. The shorter‐series gains
are significantly greater for both location and scale para-
meters at 76% and 27% for r = 0.7 and at 221% and 137% for
r = 0.9, respectively. Comparison with corresponding gains
in Case II, having LEVdistributed longer series, indicates that
these gains are substantially higher.

4.2.4. Case IV: NOR and G2 Marginals
[46] This case is similar to Case III, except for the gamma

distribution replacing the largest extreme value distribution
for the shorter series. It would be important to see if the
relative information characteristics for normally distributed
longer series are different in the two cases. The relative
information is obtained for the two series using equations (18)
and (19), on the basis of information matrices for normal and
gamma distributions given in equations (20) and (22),
and that obtained numerically for the composite likelihood
approach involving the Frank copula‐based bivariate dis-
tribution. The graphical and tabular results of the relative
information for mean and variance and scale and shape
parameters of longer and shorter series, RIpp 8 p = {1,2,3,4} =
{mX,sX

2,aY,bY}, are given in Figure 10 and Tables 6 and 7,
respectively. It may be seen that, for r = 0.7, the gains for
mean and variance of longer series are 16% and 6%,
respectively. For a higher r = 0.9, these gains are 51% and
24%, respectively. All these gains are less than those in
the previous case of shorter series being largest extreme
value distributed. However, this result cannot be general-
ized, as it pertains to the specific shape parameter bY = 12.
The gains for the shorter series for both scale and shape
parameters are moderate at 13% and 14%, respectively. For
r = 0.9 though, the gains are significantly higher at 79%
and 80%, respectively.
4.2.5. Case V: G2 and LEV Marginals
[47] This case is similar to Case III, except for the longer

series being gamma distributed instead of normal distributed.
It would be important to see if the relative information
characteristics for the shorter largest extreme value distrib-
uted series are different in the two cases. The relative infor-
mation is obtained for the two series using equations (18) and
(19) on the basis of information matrices for gamma and
largest extreme value distributions given in equations (22)

Figure 7. Relative information RIpp for parameter estimates of an incomplete bivariate normal data as a
function of length ratio mX and association levels r (or rs). Subscripts “pp” correspond to mean and var-
iance parameters {3, 4} ≡ {mY, sY

2} of shorter series Y.
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and (21) and that obtained numerically for the compo-
site likelihood approach involving the Frank copula‐based
bivariate distribution. The graphical and tabular results for
relative information for scale and shape parameters and
location and scale parameters of longer and shorter series,
RIpp 8 p = {1,2,3,4} = {aX,bX,gY,aY}, are given in Figure 11
and Tables 6 and 7, respectively. For amoderate r = 0.7, gains
for scale and shape parameters of longer series are marginal
at 8% each. For a higher r = 0.9, these gains are moderately
higher at 30% and 29%, respectively. For moderate r = 0.7,
the gains for shorter series are higher for location than for
scale and are 76% and 27%, respectively. In fact, the levels
of these gains are same as that in Case III. However, a gen-
eralized statement to this effect may not be appropriate in
view of the specific shape parameter of bY = 12. For a

higher r = 0.9, the gains are significantly greater at 180% and
92%, respectively. However, these gains are substantially less
than those in Case III.
4.2.6. Case VI: LEV and LP3 Marginals
[48] This case involves an LP3 distributed marginal and

may have direct relevance for flood frequency analysis in
the United States where it is the prescribed distribution. The
relative information is obtained for the two series using
equations (18) and (19) on the basis of information matrices
for LEV and LP3 distributions given in equations (21) and
(23) and that obtained numerically for the composite like-
lihood approach involving the Frank copula‐based bivariate
distribution. Graphical and tabular results for the relative
information for location and scale parameters and location,
scale, and shape parameters of longer and shorter series,

Figure 8. Relative information RIpp for parameter estimates of an incomplete bivariate Gumbel Type A
data as a function of length ratio mX and association levels r (or rs). Subscripts “pp” correspond to loca-
tion and scale parameters {1 : 2} ≡ {gX, aX} of longer series X and {3 : 4} ≡ {gY, aY} of shorter series Y.
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RIpp8p = {1,2,3,4} = {gX,aX,gY,aY,bY}, are given in Figure 12
and Tables 6 and 7. The linear correlation coefficient r hugely
underestimates the actual association in this case that may be of
nonlinear nature. For example, values of r = 0.4 and r = 0.5
correspond to Spearman correlation coefficients of rs = 0.78
and rs = 0.92, respectively, indicating higher association.
These two values will therefore be used in this case while
referring to moderate and higher association levels. It may be
seen that, for r = 0.4, gains for location and scale parameters of
the longer series are moderate at 18% and 12%, respectively.
For a higher r = 0.5, these gains increase to 40% and 27%,
respectively. Gains for the shorter series are marginal for all
three parameters at 8%, 10%, and 10%, respectively. For the
higher correlation of r = 0.5, gains are comparatively higher at
27%, 35%, and 33%, respectively. Another observation in this

case is that gains for LP3 series do not grow significantly for
increasing values of mX.

5. Discussion

[49] The theoretical basis of the proposed composite
likelihood approach is elaborated in section 2, wherein
equations (18) and (19) provide expressions for information
gain through simultaneous consideration of concurrent and
nonconcurrent portions of incomplete bivariate data sets.
The first application in section 3 demonstrates the advantage
of the approach wherein flood quantiles for 100, 200, and
500 year return periods are obtained with about 30% less
standard error or, in other words, with 30% better confi-
dence, as compared to the conventional univariate analysis.

Figure 9. Relative information RIpp for parameter estimates of an incomplete Frank copula‐based bivar-
iate data, with NOR and LEV marginals, as a function of length ratio mX and association levels r (or rs).
Subscripts “pp” correspond to the mean and variance parameters {1 : 2} ≡ {mX, sX

2} of longer series X and
the location and scale parameters {3 : 4} ≡ {gY, aY} of shorter series Y.
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This improvement pertained to the case where shorter
annual peak flow data series benefited from an associated
downstream flow series having 40% more data (i.e., having
the length ratio mX = 1.4). Reduction in uncertainty can be
as high as 50%–60% for mX = 2.0, which is not uncommon
in an insufficient data availability situation. The second
application in section 4, involving six different combina-
tions of Gaussian and non‐Gaussian marginals, establishes
accrual of significant “expected information gain” through
this approach. For these six cases, the average and maxi-
mum expected gains for moderate level of association are
about 30% and 75%, respectively. For higher association
levels, these gains are as high as 90% and 220%, respec-
tively. Although, these six cases pertained to specific mar-
ginals and the Frank copula, the results are indicative of the

impressive gains that are achievable at no extra cost for
other combinations of marginals and copula models.
[50] Every hydrologic design estimate has associated

uncertainty, and keeping this uncertainty at an acceptable
level continues to be an important design objective. Desir-
able reduction in uncertainty in hydrologic design estimates
that are predominantly based on univariate frequency anal-
ysis is typically achieved by operating observation networks
for longer periods and therefore have direct cost con-
sequences. The proposed approach marks a paradigm shift
in the strategy for reducing uncertainty by providing an
alternative avenue for increasing information by pooling
staggered but associated hydrologic data that already exist
and thereby avoiding the need for extra funding to run
networks for extended periods. Despite a greater need for

Figure 10. Relative information RIpp for parameter estimates of an incomplete Frank copula‐based bivar-
iate data, with NOR‐G2 marginals, as a function of length ratio mX and association levels r (or rs). Sub-
scripts “pp” correspond to the mean and variance parameters {1 : 2} ≡ {mX, sX

2} of longer series X and
the scale and shape parameters {3 : 4} ≡ {aY, bY} of shorter series Y.
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strengthening hydrologic observation networks in view of
tremendous pressure on water as a resource and for studying
potential impacts of climate change, hydrologic observation
networks in many countries have been dwindling in recent
times [IAHS, 2001], mainly due to financial constraints and
lack of awareness at governmental levels. As information
for the discontinued stations or data series can be enhanced
by employing the proposed approach, it can significantly
offset the negative impact of shrinking networks. At the
same time, the methodology can also be advantageously
applied for enhancing precision pertaining to shorter data
lengths at newer stations in an upgraded network. Hydro-
logical data sets typically abound varied length data series,
as different stations or variables have different and staggered
observation periods. The approach has a high practical value,

as it is particularly suited for shorter hydrologic data series
that are often considered inadequate for yielding satisfactory
design estimates. In such situations of data inadequacy, this
approach can help enhance precision by integrating longer
data series of the same or other associated processes that
are invariably available from the existing baseline or other
long‐term observation stations in the vicinity. A variety of
hydrological applications involving rainfall, flow, soil mois-
ture, groundwater, and/or water quality processes can benefit
from this approach, wherein additional information for shorter
data series is gained.

6. Conclusions

[51] Increasingly better parameter estimation methods for
hydrological frequency distributions that yield parameters

Figure 11. Relative information RIpp for parameter estimates of an incomplete Frank copula‐based bivar-
iate data, with G2‐LEV marginals, as a function of length ratio mX and association levels r (or rs). Sub-
scripts “pp” correspond to the scale and shape parameters {1 : 2} ≡ {aX, bX} of longer series X and the
location and scale parameters {3 : 4} ≡ {gY, aY} of shorter series Y.
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Figure 12. Relative information RIpp for parameter estimates of an incomplete Frank copula‐based
bivariate data, with LEV‐LP3 marginals, as a function of length ratio mX and association levels r (or
rs). Subscripts “pp” correspond to the location and scale parameters {1 : 2} ≡ {gX, aX} of longer series
X and the location, scale, and shape parameters {3 : 5} ≡ {gY, aY, bY} of shorter series Y.
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with minimum variance or higher precision have evolved as
a result of considerable research effort of statisticians and
hydrologists. The composite likelihood approach presented
in this paper gives a new dimension to this evolution by
offering a mechanism, wherein arbitrarily distributed longer
and shorter data series can be integrated in a copula‐based
multivariate framework, yielding parameter estimates with
higher precision. Specific results of impressive information
gains in two applications included in this paper have been
discussed. A few general and some specific conclusions
arising from these applications are as follows:
[52] 1. Significant information gain is achievable for

shorter series even at moderate association levels.
[53] 2. There is information gain even for the longer

series, except for the bivariate normal case.
[54] 3. Gains for longer series decrease with increasing

values of the length ratio mX, whereas they increase for
shorter series. For a given length ratio mX, gains are pro-
portional to the level of association.
[55] 4. For shorter series in a bivariate normally distrib-

uted data, the limiting gains are equal to the length ratio mX

when there is near perfect association. This indicates a tre-
mendous benefit of this approach when two highly corre-
lated normal data series are under consideration.
[56] 5. Gains for location parameter for shorter largest

extreme value series are substantially higher when combined
with a longer normally distributed series, as compared to
that when combined with another largest extreme value
series. These gains are exactly the same when the longer
series is gamma distributed.
[57] Overall, the proposed composite likelihood approach

offers a promising framework for integrating staggered
information that has hitherto remained unharnessed for
obtaining hydrologic design estimates. The approach yields
more information from the existing baseline and other long‐
term observation stations at no extra cost and thus can play a
vital role in offsetting losses due to declining data avail-
ability in the current tough economic times. The approach is
of particular advantage for designs pertaining to partially
ungauged basins or for recently upgraded networks in which
many data series have shorter record lengths. Further studies
may be aimed at characterizing potential information gain
for other marginals and copula models pertinent to different
hydrologic designs and at evaluating benefits of considering
higher order multivariate models. In view of its simplicity
and character of significantly improving the precision, this
approach has a potential for faster adoption by researchers
and field practitioners alike.
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