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ABSTRACT

Over the past several years, the use of wearable devices has increased dramatically,

primarily for fitness monitoring, largely due to their greater sensor reliability, increased

functionality, smaller size, increased ease of use, and greater affordability.These devices

have helped many people of all ages live healthier lives and achieve their personal fitness

goals, as they are able to see quantifiable and graphical results of their efforts every step

of the way (i.e. in real-time). Yet, while these device systems work well within the fitness

domain, they have yet to achieve a convincing level of functionality in the larger domain

of healthcare.

As an example, according to the Alzheimer’s Association, there are currently approxi-

mately 5.5 million Americans with Alzheimer’s Disease and approximately 5.3 million of

them are over the age of 65, comprising 10% of this age group in the U.S. The economic

toll of this disease is estimated to be around $259 billion. By 2050 the number of Amer-

icans with Alzheimer’s disease is predicted to reach around 16 million with an economic

toll of over $1 trillion. There are other prevalent and chronic health conditions that are

critically important to monitor, such as diabetes, complications from obesity, congestive

heart failure, and chronic obstructive pulmonary disease (COPD) among others.

The goal of this research is to explore and develop accurate and quantifiable sensing

and machine learning techniques for eventual real-time health monitoring by wearable

device systems. To that end, a two-tier recognition system is presented that is designed to

identify health activities in a naturalistic setting based on accelerometer data of common

activities. In Tier I a traditional activity recognition approach is employed to classify short

windows of data, while in Tier II these classified windows are grouped to identify instances

of a specific activity. Everyday activities that were explored in this research include
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brushing one’s teeth, combing one’s hair, scratching one’s chin, washing one’s hands,

taking medication, and drinking. Results show that an F-measure of 0.83 is achievable

when identifying these activities from each other and an F-measure of of 0.82 is achievable

when identifying instances of brushing teeth over the course of a day.
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1. INTRODUCTION

Recent advances in functionality, design, and affordability have led to the widespread

adoption of wearable devices such as fitness trackers and smartwatches. As a result, people

are now able to play a much larger role in managing their day-to-day fitness, as many of

these devices can accurately track basic metrics such as steps walked, calories burned,

and even several simple exercises. To allow for this functionality, these devices often

utilize sensors such as accelerometers, gyroscopes, GPS, and magnetometers. Despite

these advances in functionality and ubiquity, current wearable devices are predominantly

used by those who are healthy and affluent, as devices are largely limited to fitness-related

applications.

One area where wearable devices could make a significant impact is healthcare [1–

4]. The global population is expected to age dramatically over the coming decades [5]

(shown in Fig. 1.1) which is expected to coincide with a sharp increase in the number of

cases of chronic age-related diseases such as Alzheimer’s, diabetes, arthritis, congestive

heart failure, and chronic obstructive pulmonary disease (COPD) [6, 7], posing significant

societal, financial, and systemic problems to an already strained system [8, 9].

There are several areas within healthcare where wearable devices could make an im-

mediate and dramatic impact. One study found that of the nearly 70% of U.S. adults who

track at least one health metric, half of this population track this metric “in their heads”

while another third keep track of this metric in some type of notebook or journal [10].

Both of these methods are unreliable as the former relies on the person’s memory while

the latter relies both on the user’s diligent and accurate recording and their recollection of

where those records are kept. The alternative to patients keeping track of their own health

metrics requires trained observers to do so for them; however this is expensive, obtrusive,
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Figure 1.1: United Nations world population projections. Reprinted from [5]

and tiring for the observers. By leveraging the assortment of sensors within wearable

devices today, it is entirely possible to not only accurately, securely, and unobtrusively

track these metrics but also to develop more sophisticated and personalized applications

and interventions based on these metrics [11–15].

Sophisticated and accurate monitoring of chronic health conditions is especially impor-

tant. By 2030 it is estimated that one half of American households will include someone

who suffers from one or more chronic conditions. Furthermore, about one-fifth of patients

who suffer from chronic conditions experience some degree of inability to perform normal

everyday activities [16], commonly referred to as Activities of Daily Living (ADLs).

Such activities can be divided into two categories: Basic and Instrumental. Basic ADLs,

characterized by care and movement of the body, consist of bathing/showering, toilet

hygiene, dressing, eating & feeding, functional mobility, personal device care, personal

hygiene and grooming, and sexual activity. Instrumental ADLs, characterized by more

complex daily interactions, consist of activities such as health management, home man-
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Figure 1.2: A comparison of the amount of care caregivers give to people with Alzheimer’s
and the elderly without Alzheimer’s. Reprinted from [22]

agement, driving/community mobility, child rearing, meal preparation and cleanup, and

shopping [17]. Often patients can live relatively independently if they are unable to

perform one or two instrumental ADLs; however, if they are unable to perform three or

more, they typically require some form of nursing care [18]. This is especially problematic

for people suffering from cognitive decline who lose the ability to perform these activities

over time. Common activities that such patients need additional help with are shown

in Fig. 1.2, thus, not only is monitoring an ability to perform such an actions vital, but

also equally critical is being able to determine when they are unable to perform such

an action. This type of monitoring has been shown to be possible through the use of

wearable sensors [19]. By using devices and algorithms that can determine when a person

is performing these activities, physicians and/or family members can be alerted if activities

are performed incorrectly or not at all, a reassurance which can allow individuals with

chronic conditions to live more independently [20, 21].
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In this study we target six everyday activities: brushing one’s teeth, combing one’s

hair, scratching one’s chin, washing one’s hands, taking medication, and drinking. We

focus on identifying brushing teeth in a naturalistic setting as it can lead to severe health

consequences if not performed adequately or at all. Failing to brush one’s teeth regularly

and maintaining poor oral hygiene, in general, can lead to a variety of systemic diseases

including atherosclerosis, COPD, diabetes, and bacteremia as well as conditions such as

brain abscess [23–25]. Furthermore, periodontal disease, one of the most common results

of poor oral hygiene is estimated to affect 10-15% of the world’s population [26], and

individuals with this disease are 3.2 times more likely to die from Type 2 diabetes [27], 4.3

times more likely to have a cerebral ischemic stroke [28], susceptible to a 25% increased

risk of heart disease [29], and disposed to an increased risk of developing Alzheimer’s

and pancreatic cancer [30, 31]. Periodontal disease and poor oral hygiene have also

been shown to have a stronger association with total mortality than with coronary heart

disease [29].

Given these risks it is especially important to ensure that patients with dementia are

maintaining proper oral hygiene. In the early stages of dementia, patients may need to be

reminded that they need to brush their teeth and/or be supervised while doing so. In later

stages, patients may be unable to brush their teeth, stop understanding that they need to

clean their teeth, or lose interest in doing so [32].

To this end, the goal of this research is to explore the following two questions:

1. Can we accurately distinguish between six everyday activities: brushing one’s teeth,

combing one’s hair, scratching one’s chin, washing one’s hands, taking medication,

and drinking using a commercially available smartwatch and smartphone?

2. Is our two-tier recognition system able to identify brushing one’s teeth in a natural-

istic setting?

4



To address these questions, we employ activity recognition, which is the use of ma-

chine learning to identifying human activities. In Chapter 2 we describe previous work

in this field. In Chapter 3 we describe the recognition system we developed to identify

activities in a naturalistic setting. In Chapter 4 we describe the data collection process,

from the system we used to collect data to the three user studies we conducted. In

Chapters 5 and 6 we discuss our efforts to apply our recognition system to our dataset and

the implications of these results. In Chapter 7 we describe the next steps in this research

and then offer conclusions in Chapter 8.
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2. RELATED WORK

Research into activity recognition has seen considerable interest since the late 1990s

given its potential to facilitate more personalized interventions and interactions in fields

ranging from health care and assisted living to sports, learning environments, and secu-

rity [33–36]. Early on, before the widespread adoption of mobile phones, much of the

research centered around sensor placement; however since smartphones and wearable

devices have become popular, research has shifted to take advantage of their ubiquity

and the easy access to sensor data they provide. In the following sections, we focus our

discussion on works that recognize health and/or exercise activities and feature systems

worn on the body as opposed to in the surrounding environment.

2.1 Sensor Type and Placement

Initially, much of the research in the field was focused on identifying both the optimal

collection of sensors as well as their optimal location on the body. Researchers demon-

strated varying levels of accuracy with sensors such as accelerometers, gyroscopes, and

microphones placed on users’ wrists [37–46], hands [41, 47–50], upper arms [38, 42, 46,

51], hands [52, 53], waist [38–40, 42, 44–46, 54–58], upper leg [37, 38, 42, 45, 59],

lower leg [37, 38, 42, 43], shoulder [39, 41, 60], head [41], foot [57], eyes [61–63],

and chest [37, 40, 41, 43, 44, 64–66]. These studies almost uniformly found that the

best locations for sensors depended on the activity being measured. For example, Bao &

Intille [38] placed bi-axial accelerometers on the upper arm, wrist, hip, thigh, and ankle

and found that accelerometers placed on the thigh, hip, and ankle were the best indicators

for activities that had some form of ambulation or posture, while accelerometers placed on

the wrist and arm were better indicators for activities that involved mostly the upper body.

Berchtold et al. [67] took a unique approach in developing ActiServ, which was designed
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to detect activities no matter where the sensors were placed or how they were oriented;

however it required several days of calibration to achieve a high accuracy.

By and large, in terms of types of sensors, the accelerometer is the most commonly

used sensor for activity recognition. In most cases it is used individually; however, in

several cases it is used in combination with other sensors [68]. Notably, Pärkkä et al. [41]

conducted a comprehensive study using 19 different types of sensors to identify several

common scenarios such as visiting the library, a restaurant, or a shop as well as common

physical activities such as walking, running, and cycling. They found that accelerometers

proved to be the most accurate indicator of what activity was being performed.

2.2 Smartphone Mediated Recognition

Over the past several years, as smartphones have achieved widespread popularity,

activity recognition research has shifted to utilizing smartphone sensors, commonly con-

sisting of accelerometers, gyroscopes, GPS, magnetometers, proximity sensors, and light

sensors, for activity recognition. In addition to their available sensors and ubiquity, smart-

phones are also advantageous for this purpose due to their unobtrusiveness, their high

computational power and storage capacity, and the ease with which they can be pro-

grammed [69–71]. Brezmes et al. [72] had users carry a smartphone in their hand with-

out regard for orientation, and they were able to identify walking, climbing-up stairs,

climbing-down stairs, standing-up, sitting-down, and falling using the phone’s triaxial

accelerometer. Kwapisz et al. [73] were able to identify similar activities (walking, jog-

ging, ascending stairs, descending stairs, sitting, and standing) with an overall accuracy

of 91.7%; however, they had users keep a smartphone in their front pant pocket. Anguita

et al. [74] looked at similar activities (walking, standing, ascending stairs, descending

stairs, sitting, and laying), and they were able to distinguish between them with an overall

accuracy of 89% with the smartphone attached to the user’s waist.
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Several studies have taken advantage of this combination of sensors present in smart-

phones to inform their recognition. Reddy et al. [75] used both an accelerometer and GPS

to differentiate between modes of transportation (staying still, walking, running, biking,

motor transport) using six phones attached to the arm, waist, chest, hands, pocket, and in

a bag. World of Workout, a mobile role-playing game (RPG), allowed the user to improve

their game character through a variety of exercises such as jumping jacks, crunches, and

cycling, which were automatically recognized using the phone’s accelerometer and GPS

data [76].

2.3 Wearable Device Mediated Recognition

In more recent years several studies have utilized wrist-mounted devices and commer-

cially available wearable devices to improve the accuracy and feasibility of recognition

systems. Saponas et al. [77] used the Nike+iPod Sport kit to detect when the user’s

were using their feet, and by combining this output with features extracted from data

gathered from the accelerometer of an iPhone placed in the user’s pocke, they were able

to recognize running, walking, bicycling, and sitting with an accuracy of 97%. Thomaz

et al. [78] recognized eating movements with an overall F-score of 76% using the 3-axis

accelerometer in a Pebble smartwatch for both controlled and in-the-wild studies.

2.4 Activities Being Recognized

The majority of the work in this field has looked at various forms of ambulation (walk-

ing, running, standing, sitting, lying down, etc.); however, many studies do include other

activities in addition to these. In particular, numerous studies have looked at brushing one’s

teeth; however, it has commonly been investigated simultaneously with other ambulation

and posture activities [12, 38, 39, 78–82]. In most of these cases, this activity was not

compared to other similar motions: brushing teeth is a highly repetitive wrist motion, while

most forms of ambulation are full body movements with much longer delays between
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repetitions. Amft et al. [83] looked at eating and drinking through a combination of inertial

sensors to detect the gesture, a microphone to detect chewing, and electromyography

electrodes to detect swallowing, and achieved an average detection rate of about 80%.

Dernbach et al. [84] made a distinction between simple activities and complex activities,

and they sought to recognize both categories using an Android smartphone. They were

able to reliably differentiate between simple activities such as driving, lying, running,

sitting, standing, and walking using an Android smartphone, but they were unable to

do the same with complex activities, which included cleaning, cooking, retrieving and

sorting medication, sweeping, washing hands, and watering plants. Varkey et al. [85]

made a distinction between static and dynamic activities, and they were able to differ-

entiate between walking, standing, writing, smoking, jumping jacks, and jogging using

an accelerometer worn on the wrist and a gyroscope worn on the ankle. Hong et al. [86]

used a combination of accelerometers and radio-frequency identification (RFID) sensors to

differentiate between many different forms of ambulation and posture as well as activities

such as brushing hair, phone calling, reading, brushing teeth, and taking pictures.

Our system builds on this body of work by seeking to identify ADL activities that all

solely consist of some form of wrist and upper arm movement. By including activities

that, in several cases, have only slight differences in orientation and vigor, we aim to

show that we can reliably and relatively unobtrusively differentiate between many of

the more physically-nuanced activities that one performs on a daily basis using solely a

commercially available accelerometer and smartphone. Furthermore, we aim to show that

recognition of these activities is not limited to a controlled setting but can be realistically

used in real-time systems.
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3. TWO-TIER RECOGNITION

To identify activities in a real time naturalistic setting, we propose a two tier recog-

nition system. Tier I consists of traditional activity recognition, i.e. data are segmented

into static sliding windows which are classified as a particular activity. Tier II features

a dynamic window constructed from the smaller windows of Tier I to identify specific

instances of the specific activity actually occurring. In this chapter we describe this two-

tier system in detail; in Chapters 5 & 6 we describe the implementation of this system to

identify brushing teeth in a naturalistic setting.

3.1 Tier I Recognition: Static Sliding Windows

For Tier I recognition, we take the traditional approach to activity recognition [87].

Raw accelerometer data is first segmented into static sliding windows. From each of these

windows we then extract a set of features, which are then collectively inputted into various

classification algorithms to test their efficacy in differentiating between the activities being

observed.

For this particular study, collected data were segmented into four second sliding win-

dows with a a one second overlap. We discuss the implications of window size in Sec. 3.3,

as the characteristics of Tier II recognition influence this parameter. Samples of a single

window of recorded data for each activity can be seen in Fig. 3.1. For each window we

extracted fifty-one features. Thirty of these features were features that have previously

been shown to be effective in activity recognition (described in Sec. 5.1) [88], while the

remaining twenty-one features were novel features discerned from visualizing the data for

each activity and quantifying their differences (described in Sec. 6.1). Every feature we

extracted was either calculated for each axis or from a combination of axes.
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3.2 Tier II Recognition: Dynamic Activity Windows

While the recognition of activities segmented into windows is important, these results

are not directly applicable to a real-life and real-time situation, which is the ultimate goal

of this work. To that end, we developed an additional layer of recognition to integrate the

shorter sliding classified windows from Tier I into a longer dynamic window representing

an actual instance of the user performing the activity. To do this step we established three

thresholds a minimum activity duration, a maximum inactivity duration, and an activity

percentage. These thresholds are defined below. The values of these thresholds are

dependent on the activity being classified. Examples of the functioning of this algorithm

are shown in Fig. 3.2.

3.2.1 Minimum Activity Duration Threshold

The minimum activity duration threshold is the minimum amount of time that the user

needed to have spent doing the activity for it to be considered an instance of that activity.

In the case of brushing teeth, we initially considered setting this threshold to 60 seconds

given that the recommended duration for brushing teeth is 2-3 minutes [89]; however we

found that this produced several false negatives, as people on average spend less than this

recommended time brushing their teeth [90]. Thus, for brushing teeth we set this threshold

to be 45 seconds.

3.2.2 Maximum Inactivity Duration Threshold

The maximum inactivity duration threshold accounts for instances when clusters of

windows classified as the particular activity being identified are classified as another activ-

ity or as Inactive. If the number of sequential windows classified as something other than

the desired activity does not exceed this threshold, these windows are added to the total

number of windows, thus counting towards the overall activity window. In other words,
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the maximum inactivity duration is the maximum amount of time that the algorithm can

predict that a user is not doing the activity being identified. In the case of brushing teeth

this threshold was set to 15 seconds; setting this metric to be much less than this value led

to sequences that should be considered to be one instance of brushing teeth being divided

into separate instances.

3.2.3 Activity Percentage Threshold

With just the first two thresholds a situation could arise where most of the windows in a

sequence are Inactive, as so long as the number of sequential windows of inactivity is less

than the maximum inactivity duration threshold, the inactivity sections will be counted

towards an instance of the activity. To ensure that most of the sequence does consist of

windows classified as the activity we established a third threshold: the activity percentage

threshold. This threshold is the minimum percentage of windows within the sequence that

need to be classified as the activity. We found that setting this threshold to 75% worked

well for brushing teeth, as any value significantly lower introduced a number of false

positives.

3.3 Window Size

As previous studies have noted, the size of the window can have a significant impact

on the performance of the classification methodology [91]. Purely in terms of recognition

accuracy the optimal window size varies by activity; however, other metrics such as

computational load and recognition time, both larger with smaller window sizes, need to

be considered depending on the application. In our study, the dynamic window recognition

system we employ as part of Tier II recognition has further implications on the window

and overlap size. The larger the window and overlap size are, the smaller the number of

windows required to meet the minimum activity duration becomes. This view of Tier II

recognition in turn increases the likelihood of false positives occurring. However, since we
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envision this system being implemented into a real time system, we cannot set these values

to be too small in the interest of minimizing computational load and real-time delay. Both

of these considerations were taken into account when finally settling on a window size of

four seconds with a one second overlap.
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Figure 3.1: Sample graph of each activity where A = Brushing Teeth, B = Combing Hair,
C = Scratching Chin, D = Washing Hands, E = Drinking, & F =Taking Medication
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Figure 3.2: To illustrate how Tier II recognition works in practice, let us assume that
for this particular activity we’d like to identify (shown in blue) the minimum activity
duration is 13 windows, the maximum inactivity duration is 6 windows, and the activity
percentage is 60%. In both cases the maximum number of sequential windows classified
as Inactive (shown in red) is less than 5, so every single one of these will be treated
as having been misclassified as Inactive and will count towards the number of windows
signifying the activity. In both cases the minimum activity duration threshold is now met
since every window is now treated as being classified as the activity; however, only the
bottom sequence passes the activity percentage threshold, as 10 out of the 13 windows
were initially classified as the activity (77%). In the top sequence, the activity percentage
is only 31%, which does not meet the threshold of 60%. Thus only the bottom sequence
is considered an instance of the activity.
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4. DATA COLLECTION

To test our proposed two-tier recognition system we conducted a series of user stud-

ies. In this chapter we describe the activities studied, the system used to facilitate data

collection, and the user studies we ran.

4.1 Activities

To evaluate our recognition system’s ability to identify activities in a natural setting,

we tested our system on the data collected for six activities: brushing one’s teeth, combing

one’s hair, scratching one’s chin, washing one’s hands, taking medication, and drinking.

These activities were chosen for at least one of the two following reasons:

1. The activity plays a role in the average person’s everyday health, and

2. The activity requires physical movements similar to those required by another activ-

ity being studied.

In the case of the former, activities such as brushing one’s teeth, washing one’s hands,

and for some people taking medication, are, or at least should be, preformed regularly,

as they impact our day-to-day health. The first two of these are Basic ADLs, as they are

important forms of personal hygiene/grooming, while taking medication is an instrumental

ADL indicative of the person’s ability to manage their personal health. For the purposes of

data collection, taking medication was separated into two separate activities, taking a pill

(simulated with an M&M and a push and turn pill bottle) and drinking a glass of water.

In the case of the latter, four of the activities (brushing one’s teeth, combing one’s

hair, scratching one’s chin, washing one’s hands) consist of back and forth movements

of the wrist. In this sense it is important to note that the definition of several of these

activities was limited to their most literal meaning. For example, the colloquial definition
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of brushing teeth often includes the actions of putting toothpaste on the toothbrush, rinsing

out one’s mouth, and cleaning one’s toothbrush, in addition to the actual physical action

of brushing one’s teeth. Similarly washing one’s hands can consist of activities such as

turning on the faucet, applying soap to one’s hands, and drying one’s hands off on a towel

or under/in a hand dryer in addition to actually washing one’s hands under running water.

In these cases, we aimed to recognize the actual activity, as not only did those sections

solely display the back and forth movements we sought to classify, but they also represent

the clearest indication that the activity has actually been performed.

4.2 System Implementation

To collect data, a system consisting of a Pebble smartwatch [92] worn on the user’s

dominant hand and an Android application [93] was developed. The Pebble contains a

4G 3-axis accelerometer (shown in Fig. 4.1); these data, combined with corresponding

timestamps, was transmitted via Bluetooth using the Pebble SDK to the Android appli-

cation. Data was recorded at a sampling rate of 25 Hz, and any collected data that did

not fall within ±10% of the sampling rate (22.5 Hz - 27.5 Hz) were not used in data

analysis. For Stages I and II of the user study, data were stored on the phone, while in

Stage III data was stored on a server. In addition to facilitating the storage of this data, the

Android application also allowed for precise labeling of the data (via a drop-down menu)

and mediated the starting and stopping of data collection. Any data that was not labeled

as one of the six specified activities were labeled as “Inactive”.

4.3 Controlled vs. Naturalistic Data Collection

Historically, research in the area of activity recognition has relied predominantly on

training systems based on activities completed in a laboratory setting. This characteristic

severely limits the efficacy of these systems for several reasons. Several studies have

shown that people tend to perform activities differently in a laboratory setting than they
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Figure 4.1: Pebble accelerometer axes

would naturally as part of their normal routine [37, 38, 70, 94]. Furthermore, training

models purely on data obtained from a controlled setting removes much of the context

surrounding the activities being recognized in a natural setting. Therefore these models

would not account for the other activities actually present nor the motions a user would

make in between performing the measured activities in real life. Thus, although many of

these systems have achieved a high accuracy, they remain flawed candidates for deploy-

ment into real-world settings.

4.4 User Studies

To address this pitfall, we conducted a user study with three distinct stages. Each

subsequent stage was characterized by a shift towards a more naturalistic setting.

4.4.1 Stage I: Controlled Study

To establish a baseline understanding of what these activities looked like as quantified

by an accelerometer, we first collected data in a completely controlled environment, where
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participants were asked to complete each of the six activities consecutively but in no

particular order. For this stage we had 20 participants.

4.4.2 Stage II: Hour-Long Semi-Naturalistic Study

For Stage II, data were collected for an hour, during which participants went about

their day as they normally would except that they performed each of the activities at some

point during the hour. Six participants participated in this study, with data being collected

for four of them for a second day. It is worth highlighting that this stage introduced

“Inactive” data, or data that are representative of none of the six activities being measured.

Additionally participants were instructed in how to label the data themselves (described in

more detail in Sec. 4.2), and they were not supervised during data collection.

4.4.3 Stage III: Full-Day Naturalistic Study

For the Stage III of our user study, data collection was conducted over a 31-day period,

during which the users were only asked to perform each of the activities at least once

during each day of the study. As in Stage II, participants were taught how to label the data

themselves, and they were completely unsupervised during data collection. Over this time

period, data were collected on average for 6.25 days per user, with data collection being

run for 4.9 hours on average per day. While these averages still represent a significant

amount of data, the difference between these numbers and the actual duration of the study

can largely be explained by the fact that the onus of data collection was placed on the

participants, which leads to varying compliance [95]. This stage had 12 participants, none

of whom took part in the first two stages of this study.
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5. RECOGNITION BASED ON TRADITIONAL FEATURES

Having collected data for each of the activities being studied, we implemented our

two-tier recognition system based on features commonly used in activity recognition. In

this section we describe these features, our implementation of the proposed two-tier recog-

nition system, and the results of distinguishing between the six activities being studied and

identifying brushing teeth in a naturalistic setting.

5.1 Recognition Methodology

As stated in Sec. 3.1, collected accelerometer data were segmented into four-second

sliding windows with a one second overlap. From these windows, we initially extracted

thirty features. These features were taken from prior work, in which they have been shown

to be effective in activity recognition [96]. Subset selection was then performed on these

features to identify the optimal set of features for recognizing the activities being observed.

This subset of features was then inputted into several classification algorithms with 10-fold

cross-validation. To further identify brushing teeth in a naturalistic setting, the best model

produced by these algorithms was evaluated on a test data set. We describe each of these

steps in detail below.

5.1.1 Features

The thirty extracted features can be divided into time-domain features and frequency-

domain features. Time-domain features are advantageous because of their lack of compu-

tational complexity, and as a result, these features can provide a basic yet practical quanti-

tative sense of the data. Frequency-domain features, on the other hand, are advantageous

as they can highlight the repetitiveness of signals.
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5.1.1.1 Time-Domain Features

For our purposes we calculated the average (X, Y, Z), standard deviation (X, Y, Z)

(Equation 5.1), average jerk (X, Y, Z), average distance between axes (XY, XZ, YZ)

(Equation 5.2), correlation (XY, XZ, YZ) (Equation 5.3), number of peaks (X, Y, Z),

number of valleys (X, Y, Z), and root mean square (RMS) (X, Y, Z) (Equation 5.4). In

these equations n represents the total number of data points in the window, while xi and

yi represent the ith data point in the window.

σx =

√√√√ 1

n

n∑
i=1

xi − x (5.1)

avgxy =

∑n
i=1 |xi − yi|

n
(5.2)

Corr(xi, yi) =
Cov(xi, yi)

σxσy
(5.3)

RMS =

√√√√ 1

n

n∑
i=1

x2i (5.4)

5.1.1.2 Frequency-Domain Features

The frequency-domain features included energy (X, Y, Z) and entropy (X, Y, Z).

Energy has been shown to be effective in differentiating between activities by intensity,

while entropy has been shown to be capable of further distinguishing between activities

that have similar energy levels. The formulas for energy and entropy can be seen in

Equations 5.5 and 5.6 respectively, where n represents the total number of data points

in the window and a and b are the real and imaginary components respectively of each

data point in the window after they have been converted to the frequency domain using a
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discrete Fast Fourier Transform (FFT).

energy =
n∑

j=1

a2j + b2j
n

(5.5)

entropy =
n∑

j=1

cj ∗ log(cj), cj =

√
a2j + b2j∑n

k=1

√
a2k + b2k

(5.6)

These two features have commonly been successfully used together in activity recogni-

tion [88, 97].

5.1.2 Subset Selection

To determine the optimal subset of these features, we performed subset selection on

the thirty extracted features. This step is critical, as it can make the difference between

an algorithm being able to successfully build a model of the activity being studied or

not. Often times, several of the features initially selected can be redundant or misleading.

While the redundant features only lead to additional computation time and an increased

load on the system, misleading features can sometimes dramatically reduce the efficacy of

the algorithm. Even if the metrics of the model are high, irrelevant features can lead to

overfitting, rendering the produced model sub-optimal or even useless when applied to a

test data set.

For our purposes we used the CFsSubset Evaluator with the BestFirst search method

which is available in the Weka Data Mining Toolkit [98]. The CFsSubset Evaluator re-

wards features within a subset that correlate highly with recognition accuracy but correlate

poorly with other features in the subset. More specifically, it evaluates the “merit” of

adding a new feature using Equation 5.7, where rzc is the “merit” of the subset of features,

rzi is the average of the correlations between the features and the classification results, k

is the number of features, and rii is the average of the correlations between the features.
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This formula is identical to Pearson’s correlation coefficient with the exception that the

variables are standardized [99].

rzc =
krzi√

k + k(k − 1)rii
(5.7)

The BestFirst method of searching explores the subset space using a greedy hill climb-

ing approach that can backtrack if a certain subset is producing sub-optimal results [99].

5.1.3 Recognition Algorithms

In this work we tested our features on five distinct classifiers: C4.5 (The Java im-

plementation known as J48 was used here.), Random Tree, K-Nearest Neighbor (kNN),

Multilayer Perceptron, and Random Forest. As our data were labeled, all the chosen

classifiers were supervised learning techniques. With each of these algorithms, 10-fold

cross-validation was done to ensure that the algorithm did not overfit to the training data,

and that it could be counted on to produce similar results when applied to a test data set.

5.1.3.1 Decision Trees - C4.5 & Random Tree

Decision Trees are one of the most commonly used machine learning algorithms for

several reasons. For one thing, they are amongst the simplest algorithms to understand,

often elucidating the underlying relationships in the data. Although performing subset

analysis separately usually yields better results, decision trees also implicitly determine

the optimal subset features when building their model.

In this work we tested two Decision Tree algorithms, Random Tree and C4.5. Random

Tree is a relatively simple decision tree algorithm that considers a random subset of

attributes at each node in the tree and does not do any pruning. C4.5 is one of the

most widely used decision trees, as it can handle missing values and both categorical

and numeric values. It addresses overfitting through the use of pruning; however, it is still
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susceptible to overfitting when supplied with noisy data.

5.1.3.2 Random Forest

Random Forest is an ensemble method that constructs a model based on the average of

many randomized decision trees. It has shown to be widely applicable to a diverse range of

problems, consistently achieving high degrees of accuracy [100]. Moreover it is relatively

fast and easy to implement, and it can avoid overfitting when handling a large number of

input features.

5.1.3.3 kNN

kNN is a lazy learner that classifies an instance based on the majority vote of its k-

nearest neighbors. As its mechanics suggest, kNN works well on problems that focus on

finding the similarity between observations; however, it struggles with large datasets and

high dimensionality. Another challenge associated with kNNs is picking the optimal value

of k: choosing a small k value allows noise to more severely impact the results, while

choosing a large k value is very computationally expensive. In this work the initial value

of k was set to be the square root of the number of features, with nearby values being

tested to see if the resulting model improved.

5.1.3.4 Multilayer Perceptron

Multilayer Perceptron is a feed-forward artificial neural network that utilizes back-

propagation to train its model.This algorithm works well at finding non-linear patterns in

data that are not linearly-separable, but that can be extremely slow. It has been used in

other studies to recognize hand gestures, notably for recognizing sign language [101].

5.2 Results

In evaluating the efficacy of these algorithms in both distinguishing between the six

activities and identifying when a user brushed their teeth over the course of a day, we used
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accuracy and F-measure as indicators of the algorithm’s performance. While accuracy by

itself can provide an initial indicator of performance, it can be misleading when the dataset

being analyzed is imbalanced in favor of a particular class. In our case, this scenario held

true when evaluating the data from Stage II, and especially from Stage III of our user study

which featured an enormous amount of data not representative of any of the activities being

analyzed. In this situation one could simply use an algorithm such as ZeroR, which simply

classifies every instance as an instance of the majority class and achieves an accuracy of

nearly 100%. This algorithm, however, would obviously fail completely at identifying the

minority classes, which is one of the primary goals of this work.

For this reason we report F-measure in addition to accuracy, as it is a good indicator

of an algorithm’s performance when given an imbalanced dataset. Looking at the formula

(shown in Equation 5.8) we can see that the F-measure takes true negatives into account

and relies solely on the true positives that occur.

F -measure =
2TP

2TP + FP + FN
(5.8)

5.2.1 Distinguishing between Activities

To first test the effectiveness of our features, we tested their ability to discriminate

between the six activities. As described in Sec. 4.1, distinguishing between these activities

is in and of itself a challenging problem, given that several of these activities are quite

similar gesturally. Performing subset selection on the thirty extracted features yielded a

subset of seventeen features. This subset is shown in Table 5.1.

These features were then run through each of the classifiers with 10-fold cross-validation.

As with the subset selection methods, these algorithms are available in the Weka Data

Mining Toolkit [98]. The results of running these algorithms can be seen in Table 5.2.

Table 5.3 shows the confusion matrix of the best classifier (Random Forest).
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Table 5.1: Optimal subset of traditional features for discerning between the six activities
Features
Average Jerk Z
Energy Z
Entropy Z
Average (X, Y, Z)
Average Distance Between Axes (XY, YZ)
Standard Deviation (X, Y, Z)
Correlation YZ
Number of Peaks (X, Y, Z)
Number of Valleys (X, Z)

Table 5.2: Performance of classifiers for distinguishing between the six activities using the
subset of features shown in Table 5.1

Classifier
Overall Accuracy

(%)
F-measure

C4.5 71.2 0.71
kNN (k=4) 76.6 0.762
Multilayer
Perceptron

68.0 0.672

Random Tree 69.8 0.
Random Forest 82.1 0.818

Table 5.3: Confusion matrix for discerning between the six activities using Random Forest
and the feature subset shown in Table 5.1

Activity
Classified As

Brush Teeth Comb Hair Drinking Scratch Chin Take Meds Wash Hands
Brush Teeth 91.7 1.07 0.98 0.27 1.87 4.09
Comb Hair 24.5 64.0 2.37 2.37 3.16 3.56
Drinking 7.93 0.51 86.7 2.05 1.53 1.28

Scratch Chin 12.05 5.42 3.61 71.1 3.01 4.82
Take Meds 17.1 1.25 4.17 1.67 72.1 3.75

Wash Hands 20.6 0.9 2.02 0.22 2.91 73.3
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Table 5.4: Subset of thirty features for identifying brushing teeth
Features
Entropy (Y, Z)
Average (X, Z)
Standard Deviation Z
Number of Peaks (X, Y, Z)
Number of Valleys (X, Y)

5.2.2 Recognizing Brushing Teeth in a Naturalistic Setting

Having shown that these activities could be differentiated from each other, we shifted

our focus to testing the ability of our two-tier recognition system to recognize if and when

a user brushed their teeth over the course of a day. For this analysis, any activity that

was not brushing teeth was relabeled as Inactive, such that our model was simply required

to differentiate between brushing teeth and everything else. For Tier I of our recognition

system we followed the same steps as we did for distinguishing between the six activities,

the only difference being the data that were used for training and test data. Since we

were interested in identifying when a person brushed their teeth over the course of a day

our training dataset needed to contain data representative of activities other than the six

specified. For this reason training data consisted of data from both the first and second

stages of data collection. Since the dataset changed, we again conducted subset selection

(using the CFsSubset Evaluator with the BestFirst search method as before); the optimal

feature subset is shown in Table 5.4. These features were extracted from each window of

data and were run through the same classifiers with 10-fold cross-validation. These results

can be seen in Table 5.5. Table 5.6 shows the results of the confusion matrix of the best

classifier, Random Forest.

To test Tier II recognition, we evaluated these models on data from Stage III of data

collection. The results of this can be seen in Table 5.7. Random Forest, the classifier
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Table 5.5: Performance of classifiers for identifying brushing teeth using features shown
in Table 5.4

Classifier
Overall Accuracy

(%)
Overall

F-measure
C4.5 96.1 0.957

kNN (k=3) 96.3 0.96
Multilayer
Perceptron

96.3 0.958

Random Tree 94.7 0.947
Random Forest 96.7 0.963

Table 5.6: Confusion matrix for identifying 4 second windows of brushing teeth using
C4.5 and the feature subset shown in Table 5.4

Activity
Classified As

Brush Teeth Inactive
Brush Teeth 53.1 46.9

Inactive 0.29 99.7

that had produced the most accurate model, produced six false negatives and seven false

positives leading to F-measure of 0.67. As these results are not really sufficient for real

world applications, we introduce new features to reduce the number of errors in the next

chapter. As such we leave the discussion of these errors to the next chapter.

Table 5.7: Performance of two-tier recognition on Stage III data
Classifier F-measure

J48 0.65
kNN 0.59

Multilayer Perceptron 0.57
Random Forest 0.67
Random Tree 0.37
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6. IMPROVING RECOGNITION WITH ADDITIONAL FEATURES

The 30 features we selected were able to discriminate between the six activities fairly

accurately and achieve a high accuracy on Tier I recognition. However, the results of

Tier II recognition make the models impractical for real-world use. Thus, to improve the

recognition of brushing teeth in a naturalistic setting, we added an additional 21 features

by observing and quantifying differences in the accelerometer data between activities. We

discuss each feature as it relates to brushing teeth below and then present the results of

adding these features.

6.1 Additional Features

As can be seen in Fig. 3.1 many of the activities displayed the see-saw pattern in

the accelerometer data that one would expect from a back and forth physical gesture;

however, the frequency and amplitude of this pattern tended to vary between activities. To

capture these qualities we calculated 21 additional features: average and standard deviation

side height (X, Y, Z), average and standard deviation of the peaks (X, Y, Z), average and

standard deviation of the valleys (X, Y, Z), and axis order (XY, XZ, YZ). The side height

represents the height of the segments connecting the peaks and valleys. The axis order

represents the number of times the axes crossed over each other over the course of the

window. In total 51 features were now calculated for each window of data.

6.2 Results

As we did with solely the 30 original features, we started our analysis from Stage I

data to ensure that the addition of these features had not negatively impacted our ability to

differentiate between the six activities being studied. Subset selection was performed on

these 51 features, again using the CFsSubset Evaluator with the BestFirst search method,
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Table 6.1: Subset of original and new features for discerning between the six activities
Features
Average Jerk Z
Average Side Height (X, Z)
Standard Deviation Height X
Energy Z
Entropy Z
Average (X, Y, Z)
Average Distance Between Axes (XZ, YZ)
Standard Deviation (Y, Z)
Axis Order YZ
Number of Peaks (X, Z)
Average of Peak (X, Y, Z)
Standard Deviation of Peaks Y
Average of Valleys (X, Z)
Standard Deviation of Valleys (Y, Z)

producing an optimal subset of 24 features shown in Table 6.1. The results of running

these features through the same classifiers as before are shown in Table 6.2. Table 6.3

shows the confusion matrix of the best classifier (Random Forest).

To test our two tier recognition system, we again trained on data from Stages I and

II and tested on data from Stage III. As the dataset changed we again performed subset

selection on the training data using the CFsSubset Evaluator with the BestFirst search

method. As we did when performing this analysis with just the original features, any data

that were not characteristic of brushing teeth were relabeled as Inactive. The selected

subset of features are shown in Table 6.4. The classification performance of algorithms

trained on these features with 10-fold cross validation is shown in Table 6.5. The confusion

matrix for C4.5, the best-performing algorithm, can be seen in Table 6.6.

As can be seen in Table 6.7, when applying these models to the data from Stage III and

testing Tier II Recognition, a marked improvement in recognition performance (with the

exception of the Random Tree-based model) occurs. Using this model produced four false
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Table 6.2: Performance of classifiers for distinguishing between the six activities using
features shown in Table 6.1

Classifier
Overall Accuracy

(%)
Overall

F-measure
C4.5 71.0 0.71

KNN (K=5) 75.0 0.75
Multilayer
Perceptron

66.5 0.66

Random Tree 70.5 0.704
Random Forest 83.4 0.83

Table 6.3: Confusion matrix for discerning between the six activities using Random Forest
and the feature subset shown in Table 6.1

Activity
Classified As

Brush Teeth Comb Hair Drinking Scratch Chin Take Meds Wash Hands
Brush Teeth 93.5 0.36 0.71 0.27 2.14 3.03
Comb Hair 22.9 64.0 3.56 2.77 3.95 2.77
Drinking 6.14 1.28 88.5 1.54 1.28 1.28

Scratch Chin 13.9 3.01 2.41 73.5 4.22 3.01
Take Meds 19.6 0.42 5.42 1.67 70.0 2.92

Wash Hands 19.51 0.45 1.79 0.22 2.92 75.1

Table 6.4: Feature subset for brushing teeth
Features
Entropy Z
Average (X, Z)
Axis Order (YZ)
Number of Peaks Y
Standard Deviation Peaks (X, Y, Z)
Number of Valleys (X, Y)
Standard Deviation Valleys (X, Y, Z)

31



Table 6.5: Performance of classifiers for identifying four-second windows of brushing
teeth using the feature subset shown in Table 6.4

Classifier
Overall Accuracy

(%)
F-measure

C4.5 96.1 0.620
KNN (K=5) 95.3 0.636
Multilayer
Perceptron

96.0 0.594

Random Tree 94.4 0.560
Random Forest 96.5 0.657

Table 6.6: Confusion matrix for identifying 4 second windows of brushing teeth using
C4.5 and the feature subset shown in Table 6.4

Activity
Classified As

Brush Teeth Inactive
Brush Teeth 49.7 50.3

Inactive 0.73 99.3

negatives and one false positive.

6.3 Evaluating the Effect of Additional Features

When attempting to discriminate between the six activities, Table 5.2 clearly shows

that the original features were more than sufficient to reliably achieve this goal. As

can be seen in Table 6.2, the addition of the new features did not negatively impact

the performance of the algorithms; instead their addition led to a slight improvement in

recognition in the case of the best-performing algorithm.

Evaluating the effect of the new features on recognizing brushing teeth is not as clear

cut. Comparing the results in Table 5.5 to those in Table 6.4, we can see that the per-

formance of the algorithms did decrease with the addition of the new features. However,

with the introduction of the new features the results of applying Tier II recognition did
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Table 6.7: Performance of our two-tier recognition system with the feature subset shown
in Table 6.4

Classifier F-measure
C4.5 0.82
KNN 0.65

Multilayer Perceptron 0.71
Random Forest 0.76
Random Tree 0.33

improve (as can be seen by comparing Table 5.7 to Table 6.7). More specifically, the

number of False Positives produced by applying Tier II Recognition on windows classified

by C4.5 decreased by six and the number of False Negatives decreased by one. Thus the

F-measure improved from 0.67 with the original features to 0.82 with the new features. In

the following sections we discuss the feature subsets chosen in each case and the errors

that were removed by the introduction of the new features. The errors that still occurred

despite their introduction are also addressed

6.3.1 Algorithm Accuracy

It is important to note that when designing our algorithm (as discussion in Sec. 4.1),

we limited the definition of brushing one’s teeth to the back and forth movements typically

associated with this activity. However, controlling how the data were labeled by users was

a challenge (recall that in Stage III the users were tasked to self-annotate the data using

the Android application). In other words, given that much of this study was not conducted

in a controlled laboratory setting, it was impossible to limit the sections of data labeled

as brushing teeth to just those consisting of the actual physical motions of brushing teeth.

Therefore, actions such as using the application and putting the phone down were most

likely mislabeled as brushing one’s teeth.

When looking at the labeled data, this phenomenon manifested itself most often in the
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mis-classification of the first and/or last several windows labeled by the user as brushing

teeth. In most cases the period during which the user literally brushed their teeth still meets

the Tier II thresholds (the exceptions are discussed in Sec. 6.3.3.2). Furthermore, in a real-

world application, which would be promoting brushing teeth for at least 2-3 minutes, the

actions separating the literal and colloquial definition of brushing teeth would not factor

into this time period.

6.3.2 Comparing Feature Subsets

Interestingly, most of the features selected by performing subset selection on just the

original features were present in the subset of both the original and new features. Table 6.8

shows the subset of features selected for differentiating between the six activities. When

recognition was based on just the original features, subset selection chose 16 out of the

30 features; when the new features were added subset selection chose 23 out of the 51

features. Of these selected features, 11 features were chosen in both instances.

Table 6.9 shows the subset of features selected for identifying brushing teeth. When

subset selection was applied to just the original features, it chose 10 out of the 30 features;

when it was applied to the combination of original and new features, it chose 13 out of the

51 features. These subset selections had 6 features in common.

Three features showed up in each case of subset selection: Entropy Z, Average X,

and Average Z, suggesting that these features are fundamental in differentiating between

activity and inactivity. When subset selection was performed on just the original features,

there were five features that remained in common: Standard Deviation Z, Number of Peaks

X, Number of Peaks Y, Number of Peaks Z, and Number of Valleys X, suggesting that of

the original 30 features, these particular features were the most critical to distinguishing

brushing teeth from other activities. When looking at the subsets of the combination

of original and new features, there were four features they held in common: Standard
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Table 6.8: Comparison of feature subsets for differentiating between the six activities. The
common features are bold-faced.

Subset of Original Features Subset of Original + New Features
Average Jerk Z Average Jerk Z
Energy Z Average Side Height (X, Z)
Entropy Z Standard Deviation Side Height X
Average(X, Y, Z) Energy Z
Average Distance Between Axes (XY, YZ) Entropy Z
Standard Deviation (X, Y, Z) Average (X, Y, Z)
Correlation YZ Average Distance Between Axes (XY, YZ)
Number of Peaks (X, Y, Z) Standard Deviation of (Y, Z)
Number of Valleys (X, Z) Axis Order YZ

Number of Peaks (X, Z)
Average of Peaks (X, Y, Z)
Standard Deviation of Peaks Y
Average of Valleys (X, Z)
Standard Deviation of Valleys (Y, Z)

Deviation of Valleys Y, Standard Deviation of Valleys Z, Standard Deviation of Peaks Y,

and Axis Order YZ. The presence of these particular features in both subsets suggests that

they were the most important features out of the 51 total features in identifying when a

user was brushing teeth, as the performance of our system improved with the addition of

the new features.

6.3.3 False Negatives and False Positives

With the addition of the new features, the best-performing algorithm (C4.5) produced

five errors: four false negatives and one false positive. None of these errors were new, i.e.

the addition of the new features did not lead to any errors that the original features did not

produce. In the following sections we first discuss the errors that were fixed by adding

these new features and then discuss the remaining errors.
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Table 6.9: Comparison of feature subsets for identifying brushing teeth. The common
features are bold-faced.

Subset of Original Features Subset of Original + New Features
Entropy (Y, Z) Entropy Z
Average (X, Z) Average (X, Z)
Standard Deviation Z Axis Order (YZ)
Number of Peaks (X, Y, Z) Number of Peaks Y
Number of Valleys (X, Y) Standard Deviation of Peaks (X, Y, Z)

Number of Valleys (X, Y)
Standard Deviation of Valleys (X, Y, Z)

6.3.3.1 Errors Removed by Introducing New Features

The biggest source of improvement by introducing the new features was in the resulting

false positives: the original features produced seven false positives, while the original and

new features produced only one false positive. Below we discuss each of these seven

false positives and how the classification of their comprising windows differed when the

features used changed.

One of the false positives produced is shown in Fig. 6.1. This figure shows a one

minute period which the algorithm trained on the original 30 features thought consisted

almost entirely of windows of brushing teeth. With the addition of the new features, the

model correctly identified this entire period as Inactive.

Another false positive fixed by the introduction of the new features is shown in Fig. 6.2.

Clearly in this example the introduction of Axis Order YZ feature had a significant impact

on the recognition accuracy, as the sections of this false positive where the Y and Z axes

intersected frequently were recognized with much higher accuracy. In both cases the

introduction of this feature led to the amount of time the algorithm thought the user spent

brushing their teeth to fall below the minimum activity threshold of 45 seconds.

In Fig. 6.3 there are two periods which are almost completely comprised of windows
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incorrectly classified as brushing teeth with the original features. With the introduction

of the new features, the percentage of these windows within these sections dropped well

below the required 75% activity percentage threshold. Similarly in Fig.s 6.4 & 6.5 the

introduction of the new features decreased the number of windows classified as brush-

ing teeth within the sequences, enough to cause the percentage of windows within this

sequence classified as brushing teeth to fall below the activity percentage threshold. In

Fig. 6.6 the introduction of the new features leads to the correct classification of a twenty

second period towards the beginning of the sequence. As a result the sequence is no longer

long enough to be considered an instance of brushing teeth.

The addition of the new features also removed one of the false negatives that had

occurred when the system was built solely on the original features. As shown in Fig. 6.7,

with the original features, the tail end of the sequence consisted entirely of misclassified

windows, thereby causing the instance to fall short of the minimum activity duration.

However, with the new features several windows at the very end were correctly identified.

Looking at the data, it makes sense that the break in the repetitive motion that occurs

from about 43 seconds to 52 seconds would be misclassified, as it does seem like the user

performed a different gesture during that time and then resumed brushing their teeth for a

few seconds afterwards.

6.3.3.2 Remaining Errors

In the case of the best-performing model (C4.5), our recognition system still produced

six errors: 5 false negatives and 1 false positives. As each case occurred for different

reasons, we address each separately.

The false negative shown in Fig. 6.8 depicts an approximately 30 second period during

which the user indicated they had brushed their teeth. Our system did not classify any

of the windows present in this period as brushing teeth. Even if it had, this sequence
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Figure 6.1: The graphed period shows an approximately one minute long false positive,
which occurred when windows were classified using the original features. The brief gap
in data (which lasted about 7 seconds) was not included in any window; it can be treated
as an Inactive period. In other words, if that period had lasted longer than the 15 second
maximum inactivity duration threshold, the two areas of data that it spans would not be
considered part of the same possible activity. With just the original features every window
of data in this period were classified as brushing teeth, while the addition of the new
features led to this entire period being classified as Inactive.
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Figure 6.2: This graph shows a period during which two false positives occurred in quick
succession when windows were classified using the original features. In this example,
the gap in the data lasted for 19 seconds, which is longer than the minimum inactivity
threshold of 15 seconds. However, since this gap is still relatively small and surrounded
by two false positives, this example was treated as a single instance of a false positive.
Looking at the two sections surrounding the gap, we can see that most of the improvement
in classification with the introduction of the new features came from correctly recognizing
the initial few seconds of each section (where the X values are below the Y and Z values).

39



Figure 6.3: This graph shows a period during which two false positives occurred one
minute apart from each other when the windows were classified using the original features
alone. With the introduction of the new features, enough of the windows in each sequence
are correctly identified as Inactive for Tier II recognition to determine the section is not an
instance of brushing teeth.
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Figure 6.4: This graph shows a period during which a false positive occurred when
its comprising windows were classified using the original features. As can be seen
in the bottom sequence, when these windows were classified using the subset of the
original and new features, the number of windows correctly identified as Inactive increased
dramatically, allowing Tier II recognition to identify this section as a period of inactivity.
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Figure 6.5: In this instance, the introduction of the new features increases the number of
windows correctly classified as Inactive; as a result, the percentage of windows within the
sequence classified as Brushing Teeth does not meet the activity percentage threshold of
75%.
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Figure 6.6: This graph shows an approximately 50 second period the two-tier recognition
system mistakenly identified as an instance of brushing teeth when it relied solely on
the original features. With the addition of the new features, this sequence is no longer
recognized as an instance of brushing teeth.
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Figure 6.7: The graphed period shows an approximately one minute long false negative
that occurred when the algorithm was run on the original features. With the introduction
of the new features, more of the windows were correctly recognized as brushing teeth.
Notably with the addition of the new features, the system was able to correctly recognize
several windows at the end of the sequence.
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still would have been considered a period of inactivity, since it occurred for less than the

minimum activity duration threshold. These data appear to indicate that the user did not

actually brush their teeth during this period, suggesting that the user may have accidentally

indicated they brushed their teeth.

In the case of the false negative shown in Fig. 6.9 only 67% of the windows comprising

the sequence were classified as brushing teeth. Looking at the sections that were classified

as Inactive, the user appears to have paused multiple times while brushing their teeth,

leading to the low activity percentage. This false negative could be averted by reducing

the activity percentage threshold or by reducing the minimum activity duration. However,

reducing either of these thresholds to accommodate this particular instance introduces a

number of false positives. It is worth noting that if the number of false positives could be

kept to a minimum or avoided altogether, recognition of smaller sections of brushing teeth

could serve as the basis for motivational interventions encouraging participants to brush

their teeth for longer periods of time.

In two cases the system recognized the user as having brushed their teeth for less than

the time they indicated. Fig. 6.10 depicts one of these cases where the user indicated that

they had brushed their teeth for 60 seconds; however, the system only identified the user

as brushing their teeth for 39 seconds. Notably, the 21 seconds that were misclassified

occurred at the beginning of the one minute period, and the data do seem to indicate that

the user was doing something other than literally brushing their teeth. As discussed in

Sec. 6.3.1 the user could have been doing other activities that comprise the colloquial

definition of brushing teeth, e.g., opening the toothpaste, applying toothpaste to their

toothbrush, and/or running their toothbrush under the faucet. In the other case, shown

in Fig. 6.11, the user brushed their teeth for 49 seconds; however, the system predicted

they had brushed their teeth for only 34 seconds. The data indicate that there does seem

to be a five-second gap from about 40 to 45 seconds into the gesture where the user seems
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to have paused while brushing their teeth. Given that analysis was done using four-second

windows with a one second overlap it is possible that this five second window altered

the feature values for the windows around it enough for the model to not recognize those

surrounding windows as brushing teeth.

Our algorithm also produced one false positive, which occurred right after a false

negative, as can be seen in Fig. 6.12. Although the user only annotated the first 43 seconds

as brushing their teeth (producing the false negative), in all likelihood the user actually

brushed their teeth for 75 seconds, took a one minute break, and then continued brushing

their teeth for another 67 seconds. Clearly, this approximately three minute period can be

treated as one instance of the user brushing their teeth over the course of a day.

6.3.4 Noteworthy Cases

There is one unique case worth mentioning that we classified as a true positive. The

user indicated that they brushed their teeth for 26 seconds, which is clearly below the

minimum activity duration of 45 seconds that we set. However, our algorithm classified

the user as having brushed their teeth for 80 seconds. As can be seen in Fig. 6.13, the

data suggest that the user did in fact brush their teeth for longer than they indicated. We

believe the brief interlude after the end of the labeled brushing teeth data is when the user

switched the label from ”Brushing Teeth” to ”Nothing” on the Android application.

As we stated in Chapter 1, many users rely on memory or on written records to

track health metrics. However, these approaches to tracking activity are susceptible to

inaccuracy due to memory lapses and/or failing to diligently keep records. In that light,

this particular example is encouraging, as it suggests that our system is more accurate than

the traditional methods of activity tracking.

By discussing these errors that persisted even with the addition of new features,we

aim to show that most of these errors would not change the experience of using such a
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system in a real-time application. Several of the errors were likely due to human error,

i.e., the data was mislabeled. As the user would not be tasked with labeling the data in

a real-world application, these errors would not occur. In a system designed to ensure

that users were properly brushing their teeth, failing to recognize that the user brushed

their teeth when they did not brush their teeth for the recommended 1-2 minutes would

be an understandable, if not optimal, response. Encouragingly, Tier I of our recognition

system does seem to recognize the comprising windows of smaller periods of brushing

teeth; this could serve as the basis of a more sophisticated Tier II. As stated earlier, such

a system that recognized smaller periods of time spent brushing teeth could be used to

drive motivational interventions. Additionally, efforts could be made to recognize the

other actions comprising the colloquial definition of brushing teeth (putting toothpaste on

the toothbrush, running the toothbrush under the faucet, cleaning the toothbrush, etc.) to

improve the recognition of this activity.
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7. FUTURE WORK

Our work thus far suggests several avenues for further research. Based on our re-

sults, we believe that our system can be extended to other activities and to a real-time

application. Furthermore, we believe that this recognition algorithm could serve as the

underlying intelligence of a system designed to provide users with personalized feedback

and interventions.

7.1 Other Activities

In this work we outline a two-tier recognition system for activity recognition but have

yet to test it on activities other than brushing one’s teeth. Possibly the most promising

candidate for recognition in our dataset is washing hands, as it also features a back and

forth hand motion - which our features were able to identify in brushing teeth - and

poses significant health implications [102, 103]. Furthermore, its Tier II thresholds can

be easily established, as the CDC recommends that people wash their hands for at least 20

seconds [104]. Taking medication is also worth studying, as medication nonadherence is a

widespread and expensive problem worldwide [105–107]; however given that this activity

is not a back and forth hand motion, recognition is potentially much more challenging.

7.2 Real-Time Recognition

While our work thus far has focused on recognizing activities in a naturalistic setting,

we have yet to recognize activities in real-time. We established the framework of the two-

tier recognition with the end goal of real time recognition in mind, and we believe that

it is entirely possible to implement this system into a real-time system. We envision our

recognition running in the background on a smartphone, classifying accelerometer data

from a smartwatch in real-time.
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7.3 Personalized Feedback & Interventions

The eventual goal of this work is to develop intelligent personalized feedback and

interventions based on this recognition. There are many potential use cases; however, we

focus our discussion here on a few.

One use case is developing a system for people suffering from dementia. As mentioned

in Chapter 1, in the early stages of dementia, patients may need to be reminded that they

must brush their teeth and/or be supervised while doing so. In later stages, patients may be

unable to brush their teeth, stop understanding that they need to clean their teeth, or lose

interest in doing so [32].

Another use case would be using detection of washing hands as an indirect indicator

of bathroom use, as incontinence is a leading factor in nursing home placement [108]. By

recognizing these activities, we can provide users with interventions such as reminders,

navigation to the bathroom with vibration cues (as in [109–112]), encouragement, and

suggestions, or even alert the user’s physician and/or family members if something might

be wrong.
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8. CONCLUSION

In this work we were able to differentiate between six everyday activities: brushing

one’s teeth, combing one’s hair, scratching one’s chin, washing one’s hands, taking med-

ication, and drinking using accelerometer data collected from a Pebble smartwatch with

an overall accuracy of 83.4% and an F-measure of 0.83. Furthermore, we were able to

determine when a person brushed their teeth over the course of a day with an F-measure

of 0.82.

To achieve these results we presented two main contributions. First, we developed

a two-tier recognition system, where the first tier employed traditional activity recogni-

tion (segmenting data into dynamic windows, extracting features, running those features

through classification algorithms), and the second tier grouped classified windows into

sequences based on three thresholds to find instances of brushing teeth. To test the efficacy

of this system, we collected data from 38 participants over the course of three user studies.

In the first study, users were asked to perform each activity in a controlled environment;

however, in the second and third study users were asked to perform the activities at any

time they wished over the course of one hour and one day, respectively.

Second, to improve the performance of this system, we developed 21 novel features

specific to the action of brushing teeth. These 21 additional features improved the system’s

ability to distinguish between the six activities by 1.3% and improved the system’s ability

to identify brushing teeth by 15%. Although our eventual system did lead to several

errors, we discussed each error and reached the conclusion that these errors would not

necessarily occur or matter if such a system was implemented into a real-world application.

Thus, through this work we show that it is possible to identify specific health activities

through the use of features specifically designed to highlight the unique characteristics
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of those activities. Through recognition of these activities, specific personalized health

interventions can be developed to improve the lives of the average person.
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