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ABSTRACT

This study aimed to investigate and quantify turbulent flow e�ects for incom-

pressible, isothermal fluid flows in computational domains consisting of regularly 

packed spheres using high-fidelity computational fluid dynamics. The flow domains 

treated in this study are analogous in an idealized sense to those encountered in 

pebble bed based high temperature nuclear reactors.

The quantification of turbulent flow e�ects serves two purposes. Firstly, it as-

sists in the development of lower-fidelity engineering tools such as Reynolds averaged 

Navier-Stokes based methodologies. Secondly, the quantification of turbulent flow ef-

fects adds to our fundamental understanding of the physics of incompressible flows 

in complex geometries.

The study was conducted using an open-source spectral element computational 

fluid dynamics code, Nek5000, which was used to perform a series of direct numerical 

simulations in several flow domains representing both theoretical geometries and 

idealized sections of a practical reactor core at low to moderate Reynolds numbers.

Selected results include the development of a high-fidelity database of numerical 

data for an expanded unit-cell geometry, the identification of possible very low fre-

quency temporal dynamics in domains featuring several close packed spheres, and the 

calculation of turbulence statistics in a domain approximating the near-wall region 

of a reactor core.
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Non-dimensional characteristic numbers
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È·Í Average
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” Normalized interpolation line coordinate

‘ Dissipation tensor
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1. INTRODUCTION

The objective of this study is to investigate fundamental turbulent flow e�ects

present in flows through structured pebble beds using direct numerical simulation

(DNS). To achieve this goal, several numerical experiments were performed for di�er-

ent flow cases, with each case aiming to investigate specific phenomena. Specifically

of interest was the development of sets of high quality DNS reference data, the quan-

tification of the transport of turbulent kinetic energy, the temporal dependence of

the averaged variable fields, and the e�ects of bounding walls on flow in the near-wall

and bulk flow areas.

1.1 Background

The following subsections serve to broadly outline the relevant concepts, systems,

and methods treated in this work. A general description of pebble bed reactors

(PBR), which is the practical system to which the research applies, is given. Com-

putational fluid dynamics (CFD) as an investigative tool for fluid dynamics research

is then discussed. This is followed by a brief outline of direct numerical simulation,

which is the CFD framework used in this study. Finally, the significance and broader

impact of the work is discussed.

1.1.1 Pebble bed nuclear reactors

The pebble bed nuclear reactor is one of two variants of the very high temperature

gas-cooled reactor (VHTR) concept proposed by the Generation Four International

Forum (GIF) as a replacement for currently operating nuclear power reactors. The

design is based on an unstructured bed of spherical graphite fuel pebbles in which

tristructural isotropic (TRISO) fuel particles are dispersed [3, 4]. Energy transfer

1



and conversion is facilitated by a helium or molten salt working fluid in the primary

system, coupled via heat exchanger to a gas (Brayton) or steam (Rankine) thermo-

dynamic power cycles. The high coolant temperatures achievable by these systems

also allows for them to be used for process heat generation. The design o�ers several

improvements over existing light-water based power reactors:

1. Improved economics: high thermal e�ciency.

2. Application flexibility: high outlet temperatures that allow for power genera-

tion, as well as industrial process heat production.

3. Enhanced safety characteristics: stability of graphite moderator and core struc-

tures during accident transients.

A schematic representation of a PBR system is illustrated in Fig. 1.1. The core is

comprised either a cylindrical or annular graphite structure, filled with on the order

of hundreds of thousands of spherical graphite fuel pebbles. The coolant is generally

forced through the core from the top, so as to avoid fluidization of the bed, which

may lead to undesired mechanical stresses and wear.

Di�erent proposed designs call for either o�ine or online refueling. In the case

systems using online refueling, the fuel pebbles naturally displace downward and are

collected at the bottom of the core barrel before they are reinserted at the top. The

displacement rate is slow enough so that the core may be considered stationary when

considering flow simulations.

While a number of reactors based on the pebble bed design have been constructed,

several technical challenges remain open. From a fluid dynamics standpoint, relevant

challenges which may be addressed using fundamental studies include prediction of

coolant flow paths, flow stagnation and resultant hot-spot generation, and bypass-

flow in the near wall region.
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Figure 1.1: Schematic representation of a PBR system, illustrating forced convection
from the top of the core, as well as online refueling.

1.1.2 Computational fluid dynamics

Engineered systems that utilize working fluids for energy transport, such as PBRs,

almost exclusively operate in the turbulent fluid-flow regime. Turbulence is a time-

dependent, three-dimensional, and non-linear process, which through decades of re-

search has been proven to be accurately described by the Navier-Stokes (N-S) equa-

tions. Thus, CFD tools incorporate various frameworks to numerically solve or model

these equations for flows of interest.

With the advancement of computational resources in the last several decades,

CFD has become an integral tool for research and development work pertaining to

power systems. CFD provides a practically simplified and more cost-e�ective tool
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for research and development than experiments. It allows for the characterization of

fluid flow and heat transfer phenomena in complex systems without the setup time

and cost of experiments. Importantly however, many CFD tools are based on math-

ematical simplifications and assumptions that make simulating complex turbulent

phenomena practical in general engineering and design applications. To justify these

assumptions experiments must be used to validate the results of CFD computations,

especially in new or novel applications.

The following subsections briefly discuss the available CFD frameworks for con-

ducting numerical simulation of pebble bed flows, while a detailed review of the

various methodolgies and overarching frameworks may be found in [5].

1.1.3 Reynolds averaged Navier-Stokes

Figure 1.2 details the di�erent numerical frameworks that are available for sim-

ulating flows through pebble beds. Reynolds averaged Navier-Stokes (RANS) and

porous media based frameworks allow for simulations in computational domains that

most closely approximate practical system geometries. These methods are also com-

putationally inexpensive. However, since they rely on a number of assumptions and

closure models, the results generated using these methods must be explicitly tested

to ensure they deliver accurate results. Several studies using RANS based approaches

have illustrated their limited ability to generate accurate results in the pebble bed

geometries of interest here [1]. They also provide the least details in terms of the

underlying physics.

1.1.4 Large eddy simulation and hybrid methods

Higher fidelity methods such as large eddy simulation (LES) and hybrid RANS/LES

methods allow for more accurate numerical simulations that also better resolve the

relevant physics, at the cost of increased computational expense. As computational
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Figure 1.2: The di�erent frameworks in which numerical studies of flows through
pebble beds may be conducted [1].

fluid dynamics tools and resources become more advanced, these methods are be-

coming more prevalent in engineering research. Examples of such studies include

[6, 7].

1.1.5 Direct numerical simulation

Direct numerical simulation (DNS) explicitly solves the discritized N-S equations

using selected numerical methods, without the need for any modeling of the small

scales of turbulent motion as is required for RANS and LES based approaches. This

frameworks represents the costliest framework for solving the N-S equations, but

delivers unparalleled spatial and temporal fidelity, capturing all the physical phe-

nomena present in turbulent flows. Consequently, DNS is the preferred methodology

for fundamental turbulence research, and is employed in this study in the form of

the Nek5000 spectral element CFD code.

The spectral element method is a higher-order spatial method which forms a sub-

5



class of the finite-element discretization framework [8]. This method is well suited for

DNS, since it exhibits low numerical dissipation and dispersion, which is specifically

important when performing detailed investigations on physical e�ects such as the

dissipation of turbulent kinetic energy in flows under consideration.

The computational cost of DNS remains prohibitive. This limits both the size

of computational domains that may be considered, as well as the achievable flow

Reynolds numbers. Therefore, this study focuses on flow in regularized domains much

smaller than what is encountered in practical systems, while also only considering

low to moderate Reynolds number flows.

1.2 Objectives of the study

The aim of the study is to contribute in a meaningful manner to our understand-

ing of the dynamics of turbulent flows in pebble bed geometries. Additionally, by

conducting the research in a manner that facilitates the use of the developed data in

the optimization of engineering research and design tools, the work aims to also be

applicable in a broader sense.

By designing several simulations pertaining to flows in pebble beds and per-

forming pertinent analyses for each of the cases, the above mentioned goal may be

achieved. Three studies, each with a specific set of goals are proposed, with the

anticipated goals for each study are summarized in a point-wise manner below:

1. Numerical experiment I: Flow over one and two spheres in free-stream condi-

tions:

• Verify the simulation methodology by using the available numerical sim-

ulation and experimental literature.

• Confirm increased meta-stable behavior of data averaged over long time-

integration periods when additional spheres are added to the canonical
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case of flow over a single sphere.

2. Numerical experiment II: Face-centered-cubic (FCC) domain.

• Generate a high-fidelity database of time-invariant flow data, including:

– First- and second-order turbulence statistics.

– Budgets of the turbulent kinetic energy.

• Identify and isolate temporal instabilities present in the flow.

3. Numerical experiment III: Wall-bounded, expanded FCC domain.

• Generate first-of-a-kind DNS results that quantify the e�ect of a bounding

wall on the flow.

The chronological order in which the studies were conducted does not follow the

numbering of the numerical experiments listed above. Chronologically, the FCC

study was conducted first, followed by the spheres in free-stream conditions, and

finally the wall case. The reasoning for the deviation in presentation order from the

chronological order in which the experiments were conducted is to create a logical

progression in the complexity of the cases being considered both in terms of flow

parameters and geometry.

1.3 Structure of the dissertation

The di�erent numerical studies that comprise the dissertation will be treated as

independent results and discussions sections, with an overarching structure provided

by consolidated general introduction, mathematical theory, and conclusions sections.

The structure of the dissertation may be summarized section-wise below:

1. Section 1: Introduction. General introduction, including the relevant simula-

tion framework and objectives of the study.
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2. Section 2: Mathematical theory. Brief discussion of the mathematical theory

that is relevant to all the subsequent sections.

3. Sections 3-5: Computational studies.

(a) Numerical experiment I: Single and two sphere cases.

(b) Numerical experiment II: Single unit cell and expanded cases.

(c) Numerical experiment III: Wall bounded case.

4. Section 6: Conclusions and future work.

1.4 Summary

The background section served to introduce the engineering system of interest in

this study, along with a brief introduction to CFD and DNS, which will be the tool

employed in this study.

The objectives of the study are to provide CFD model developers with relevant,

statistically averaged and time-invariant data for the purpose of model optimiza-

tion and development. Furthermore, the study aims to quantify complex turbulent

phenomena present in pebble beds.
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2. THEORETICAL BACKGROUND

This section briefly outlines the mathematical theory relevant to the works that

will be subsequently discussed. Instead of fully re-deriving the conservation equations

and mathematical tools, only short discussions with references to relevant texts are

given for the sake of brevity. More specific methods, which might only pertain to

certain sections in the results, are discussed in the specific sections where they are

relevant.

The conservation laws, in the form of the Navier-Stokes eqations, are initially

stated. This is followed by a brief discussion of the numerical discretization of the

equations as it is implemented in Nek5000. The turbulent kinetic energy transport

equation, for which the budgets were calculated in several of the studies, is discussed.

The requirements for classification of a numerical simulation of a turbulent flow as

a direct numerical simulation, which itself requires access to the aforementioned

turbulent kinetic energy transport equation terms, is treated. Finally, the method

of proper orthogonal decomposition (POD), which was used in multiple cases during

this study, is briefly treated.

2.1 Navier-Stokes equations

Following the derivation in [9], the constant property, incompressible, dimensional

Navier-Stokes equations are

ˆ

t

fl + Ò · (flU) = 0 (Continuity) (2.1)

fl (ˆ
t

U + U · ÒU) = ≠Òp + Ò · · + flf (Momentum) (2.2)
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where · = µ

1
ÒU + ÒU

T

2
. Since we consider constant property flows, the continu-

ity equation (2.1) reduces to the divergence-free (solenoidal) condition Ò · U = 0.

Furthermore, our constant viscosity allows for the contraction of the viscous stress

tensor, so that

Ò · · = µ�U. (2.3)

The dimensional Navier-Stokes equations may be non-dimensionalized using ap-

propriate characteristic parameters. Using L

D

and U

C

as arbitrary characteristic

length and velocity parameters, so that x

ú = x/L

D

, U

ú = U/U

C

, t

ú = t

LD/UC
, and

assuming dominant convective e�ects, i.e. p

ú = p

flU

2
C

, the Navier-Stokes equations

can be non-dimensionalized to

ˆ

t

U

ú + U

ú · ÒU

ú = ≠Òp

ú + 1
Re

�U

ú + 1
Fr

f

g

, (2.4)

where Re = flUCLD
µ

and Fr = U

2
C

gLD
Since no external forces are assumed in the

simulations, we operate in the Fr æ Œ limit. Thus, we obtain a set of free equations.

Ò · U = 0 (2.5)

ˆ

t

U

ú + U

ú · ÒU

ú = ≠Òp

ú + 1
Re

�U

ú
, (2.6)

This formulation of the governing equations is used consistently throughout the re-

mainder of the dissertation. For simplicity the ú notation is dropped. Since the

density is unity in all the cases considered in the remainder of the dissertation, the
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Reynolds stresses are simply represented by the covariances of the fluctuating ve-

locity field, Èu
i

u

j

Í, where the fluctuating velocity field is obtained using standard

Reynolds decomposition, u

i

= Èu
i

Í ≠ U

i

.

2.2 Spectral element method and Nek5000 numerical schemes

The spectral element method (SEM) is a high-order finite element method for

the numerical solution of partial di�erential equations. The method is based on

discretization of a given computational domain into disjoint macro-elements, with the

solution and geometry approximated via high-order polynomial expansions within

each macro-element. The method combines high-order (spectral) accuracy, while

providing the geometric flexibility of low-order finite-element techniques.

For the three-dimensional flows considered in this dissertation, the spectral el-

ement method entails breaking the computational domain up in to hexahedral ele-

ments, with each element face consisting of non-degenerate quadrangles. Within each

element, a local Cartesian mesh is constructed corresponding to a N ◊N ◊N tensor-

product box. The solution is evaluated in this tensor-product box using Lagrange

polynomials, evaluated at Gauss-Lobatto-Legendre (GLL) collocation points. The

GLL distribution clusters the evaluation points near the element boundaries, and is

chosen due to it’s accurate approximation, interpolation, and quadrature properties.

A basic description of the spectral element method as it is implemented in

Nek5000 is given in the following subsections. The interested reader may refer to

[10] for further details regarding the SEM.

2.2.1 Spatial discretization

The SEM was originally developed using Chebyshev collocation within each el-

ement [8], but this was subsequently replaced by a Galerkin formulation based on

GLL quadrature [11].

11



In the SEM, data is represented on sets of nonoverlapping subdomains, �e

, e =

1, ..., E

f

, with the entire domain

�
f

:=
Ef€

e=1
�e

. (2.7)

In each element, a typical variable u (x) is represented by

u (x) |�e = u (x, y, z) |�e =
Nÿ

k=0

Nÿ

j=0

Nÿ

i=0
u

e

ijk

h

i

(r) h

j

(s) h

k

(t) , (2.8)

where u

e

ijk

are the basis coe�cients; h

i

(r), h

j

(s), h

k

(t) are N -th order one-dimensional

Lagrange polynomials evaluated at GLL points, and r := (r, s, t) are the coordinates

in the canonical reference element �̂ := [≠1, 1]3. For x := (x, y, z) œ �e, an isopara-

metric mapping

x|�e =
Nÿ

k=0

Nÿ

j=0

Nÿ

i=0
x

e

ijk

h

i

(r) h

j

(s) h

k

(t) , (2.9)

relates �e as the image of �̂ under the polynomial mapping in eq. (2.9). This

mapping is assumed to be invertible, and thus requires the angles at the edges of �e

are bounded away from 0¶ and 180¶, and that the edges of the element are smooth.

The discretization of the pressure space is similar to that of the velocity space,

with the only di�erence being that Lagrange interpolants of order N ≠ 2 are used

that are evaluated at Gauss-Legendre collocation points. This formulation is formally

known as the P
N

≠ P
N≠2 SEM.
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2.2.2 Temporal discretization

Nek5000 uses a semi-implicit time-stepping method. In the formulation, the

viscous terms in the Navier-Stokes equation, given in eq. (2.5), are treated implicitly

using a k-step backward di�erentiation formula (BDFk) based on a truncated Taylor

expansion of the solution, while the non-linear (convective) terms are treated using

an explicit extrapolation scheme of order k (EXTk). For the simulations conducted

in this dissertation, an order of k = 3 was used, resulting in a BDF3/EXT3 time-

stepping scheme that is globally third-order accurate.

Due to the explicit treatment of the convective terms, a restriction exists on the

time-step size �t, so as to maintain stability during time-marching. The stability

condition, termed the Courant-Friedrichs-Lewy (CFL) condition, can be written in

the form

�t < C ◊ MIN�f

I
�x

|u
x

| ,
�y

|u
y

| ,
�z

|u
z

|
J

, (2.10)

where C is the CFL number, �x, �y, �z are the x, y, z distances between the spatial

collocation points, u

x

, u

y

, u

z

are their corresponding velocities, and MIN�f
refers to

the minimum over the entire flow field.

2.3 Turbulent kinetic energy transport equation

The quantification of the evolution of turbulent kinetic energy in a flow is integral

to our understanding of turbulent flow processes. Since DNS allows us to decompose

the turbulent flow field using Reynolds decomposition, each term of the turbulent

kinetic energy equation may be computed at every point in the domain. Following

[9], the turbulent kinetic energy equation is given as
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0 =

Mean convection˙ ˝¸ ˚

≠ D̄

D̄t

Èu
i

u

j

Í ≠
T urbulent convection˙ ˝¸ ˚

ˆ

ˆx

k

Èu
i

u

j

u

k

Í +
V iscous diffusion

˙ ˝¸ ˚
‹Ò2 Èu

i

u

j

Í +P
ij

+ �
ij

≠ ‘

ij

, (2.11)

where P
ij

is the production tensor

P
ij

© ≠ Èu
i

u

k

Í ˆ ÈU
j

Í
ˆx

k

≠ Èu
j

u

k

Í ˆ ÈU
i

Í
ˆx

k

, (2.12)

�
ij

is the velocity-pressure-gradient tensor

�
ij

© ≠1
fl

K

u

i

ˆp

Õ

ˆx

j

+ u

j

ˆp

Õ

ˆx

i

L

, (2.13)

and ‘

ij

is the dissipation tensor

‘

ij

©
K

ˆu

i

ˆx

k

ˆu

j

ˆx

k

L

. (2.14)

The velocity-pressure-gradient tensor may be decomposed so that

�
ij

= R
ij

≠ ˆ

ˆx

k

T

(p)
ijk

, (2.15)

where R
ij

is the pressure-rate-of-strain tensor
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R
ij

©
K

p

Õ

fl

A
ˆu

i

ˆx

j

+ ˆu

j

ˆx

i

BL

, (2.16)

and T

(p)
ijk

is the pressure transport tensor

T

(p)
ijk

© 1
fl

Èu
i

p

ÕÍ ”

jk

+ 1
fl

Èu
j

p

ÕÍ ”

ik

. (2.17)

Each of these terms may be calculated in Nek5000 by calling subroutines devel-

oped in [12]. Di�erent terms in the turbulent kinetic energy transport equation are

calculated and discussed in results presented in later sections of the dissertation.

2.4 Requirements for DNS

For a numerical simulation to be termed DNS, it must resolve all the length

and time scales in a turbulent flow. The concept of the energy cascade, which was

put forth in [13], states that turbulence is comprised of eddies of di�erent sizes.

Turbulent kinetic energy is imparted to the largest eddies in the flow from the mean

flow kinetic energy, after which it is cascaded through increasingly smaller eddies to

the dissipation scales, which are the smallest length and time scales in a turbulent

flow. At these scales, the turbulent kinetic energy is transformed into heat energy.

Kolmogorov theory, which is underpinned by three hypotheses, remains the most

widely accepted theory that formalizes the energy cascade process and the charac-

teristics of the smallest scales of turbulent motion. The first Kolmogorov similarity

hypothesis [14] states that the statistics of a turbulent flow at a su�ciently high

Reynolds number have a universal form that is uniquely determined by the flow

kinematic viscosity ‹, and dissipation ‘. Based on this, the Kolmogorov length,
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velocity, and time scales may be defined respectively as:

÷ ©
A

‹

3

‘

B1/4

, (2.18)

u

÷

© (‹‘)1/4
, (2.19)

·

÷

©
3

‹

‘

41/2
. (2.20)

These scales represent a minimum criterion to which the discretization of a numerical

turbulent flow simulation must adhere to be termed a direct numerical simulation.

When both the temporal, as well as the spatial discretization of the numerical case is

finer than the Kolmogorov time and length scales respectively, all the possibles scales

of motion that is present in the flow will be captured, and the numerical simulation

may be classified as a direct numerical simulation.

While the Reynolds numbers of the flows treated in these studies could not be

explicitly classified as having su�cient Reynolds number based on the first similarity

hypothesis, these scales were calculated for the intermediate Reynolds number cases

that will be discussed in §4 and §5 and compared with relevant spatial and temporal

discretizations of those cases to test for conformance to DNS requirements.

2.5 Proper orthogonal decomposition

Proper orthogonal decomposition is a powerful analytical tool that allows us to

identify coherent structures in turbulent flows based on their energy content. POD

provides a basis for modal decomposition of an ensemble of functions, such as data

generated in DNS studies, with the goal of e�ciently capturing the dominant features

of a near-infinite-dimensional process (turbulence) with a drastically reduced number

of representative modes.
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POD data generated from turbulent flow simulations may be used in di�erent

ways. Firstly, the POD modes may be used as a set of basis functions for the

construction of a low-dimensional approximation of a full simulation governed by the

Navier-Stokes equations. Such a low-dimensional approximation, termed a reduced

order model, generally consists of a system of ordinary di�erential equations that

are integrated in time to calculate temporal coe�cients, which when combined with

the spatial information contained in the POD modes, may be used to approximately

reconstruct the dynamic behavior of the flow in question.

Secondly, since POD decomposes the flow field optimally in such a manner that

the persistent (temporally), highest energy structures in the flow are highlighted, it

allows us to investigate the physical e�ects that drive the behavior of the flow.

A brief discussion of the theory of POD following [15], and the method of snap-

shots [16], which is implemented in Nek5000 [17], is given below.

When seeking a good representation of the members of an ensemble of data, for

example scalar fields
Ó
u

k

Ô
with each a function u = u(x) defined on 0 Æ x Æ 1,

each u must be projected onto candidate basis functions. Thus, we assume that the

functions belong to an inner product space such as the L

2 ([0, 1]) space of square-

integrable functions with inner product

(f, g) =
⁄ 1

0
f (x) g (x) dx. (2.21)

Thus, we want to find a basis {„

j

(x)}Œ
j=0 for L

2 that is optimal for the data set in

the sense that the finite-dimensional representations of the form
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u

N

(x) =
Nÿ

j=1
a

j

„

j

(x) (2.22)

describe typical members of the ensemble better than representations of the same

dimension in any other basis. The term typical implies averaging, which in our

simulations is taken to be a time average over an ensemble with members u

k (x) =

u (x, t

k

) taken sequentially during time integration.

If the L

2 space considered in the example is taken to be a more general Hilbert

space H, the optimality condition for choosing the basis implies maximizing the

normalized averaged projection of u onto „,

max
„œH

e
| (u, „)2 |

f

Î„Î2 . (2.23)

This problem is solved using the calculus of variations, and delivers the following

eigenvalue problem

K„ = ⁄„ (2.24)

Thus, the optimal basis is given by the eigenfunctions {„

j} of the operator K that

is defined from the computational data, and are termed the POD modes.

Expanding (2.24), we have
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K„ (x) =
⁄

�
K (x, x

Õ) „ (xÕ) d (xÕ) = ⁄„ (x) , (2.25)

where the kernel K (x, x

Õ) = Èu (x, t) u (xÕ
, t)Í, and the vector multiplication implies

a dyadic product. Considering the finite dimensional case with H = RN , with the

data coming from the simulations as a collection of M vectors u

k œ RN , and È·Í
represents an arithmetic mean, the Kernel may be written as

K
ij

= 1
M

Mÿ

k=1
u

k

i

u

k

j

. (2.26)

Thus, K is a real, symmetric N ◊ N matrix, and eq. (2.24) is a standard matrix

eigenvalue problem in RN . However, since the number of grid points N is substantial

in DNS calculations, it is impractical to solve this eigenvalue problem for the DNS

data analysis. Thus, we instead use the method of snapshots to solve an M ◊ M

problem.

In the method of snapshots, the collection of M vectors that is used to generate

the kernel in eq. (2.26), is a series of linearly independent flow realizations taken

sequentially during time integration of the turbulent flow case. Now, taking {u

i}M

i=1

as the realizations of the flow field and that the inner product of the N -dimensional

vector space of the realizations is denoted by (·, ·), this is the discretized version of

the L

2 (�) inner product. Each eigenfunction may be written as

„ =
Mÿ

k=1
a

k

u

k

, (2.27)
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with the coe�cients a

k

to be computed. Using eq. (2.26), the eigenvalue problem

given in eq. (2.24) may be rewritten as:

A
1

M

Mÿ

i=1
u

i

1
u

i

2
T

B
Mÿ

k=1
a

k

u

k = ⁄

Mÿ

k=1
a

k

u

k (2.28)

The l.h.s. may be rewritten in the following manner:

Mÿ

i=1

C
Mÿ

k=1

1
M

1
u

k

, u

i

2
a

k

D

u

i

. (2.29)

A su�cient condition for the solution of eq. (2.24) will be to find the coe�cients a

k

such that

Mÿ

i=1

1
M

1
u

k

, u

i

2
a

k

= ⁄a

i

; i = 1, ..., M. (2.30)

This is the form of the M ◊ M eigenvalue problem that is solved in Nek5000 to

compute the POD modes of the flow under consideration.

2.6 Summary

This section detailed the mathematical theory that serves as basis for the studies

detailed in the following section, including the conservation equations, the turbulent

kinetic energy transport equation derived from the Navier-Stokes equations using

Reynolds decomposition, the discretization requirements for DNS, POD, and the

spectral element method which is utilized in Nek5000. The next three sections de-

tail separate numerical experiments focusing on di�erent aspects of flows through
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domains consisting of multiple close packed spheres.
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3. NUMERICAL EXPERIMENT I: SINGLE AND TWO SPHERES

The second numerical experiment conducted during the dissertation research is

presented as the first numerical experiment in this section. This ordering was cho-

sen so that the impact of multiple spheres on the temporal dynamics of the flow is

highlighted early. This ordering of the presented studies also allows for a satisfy-

ing progression of the geometric complexity of the considered cases, as well as the

progression of the flow complexity as characterized by the Reynolds number.

This section consists of a brief background regarding the canonical case of flows

over a single sphere in free-stream conditions, as well as the proposed addition of

spheres to increase complexity. This is followed by a discussion of the methodology

followed in the study, a presentation of the most pertinent results and associated

discussions, and finally some conclusions drawn from the study.

3.1 Background

The study of incompressible flow over spherical blu� bodies is encountered both in

fundamental fluid dynamics research, as well as in in research pertaining to physical

systems such as high temperature nuclear reactors.

Computational limitations have largely prevented researchers from using high

fidelity methods such as direct numerical simulations to extract similarly detailed

results from representative engineering flow simulations as has been achieved in

fundamental studies. Thus, the bulk of the available high fidelity numerical re-

sults pertaining to flows over spheres is devoted to fundamental studies of simplified

flows over single spheres in free stream conditions. Examples include studies at low

Reynolds numbers focusing on quantifying transition dynamics [18], and intermedi-

ate Reynolds number simulations using large eddy simulation and DNS focusing on
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wake visualization and first- and second order turbulence statistics [19, 20].

For practical flows over spherical bodies, such as those encountered gas-cooled

nuclear reactors, numerical simulations have largely been done using Reynolds aver-

aged Navier-Stokes (RANS) and hybrid-RANS based frameworks. For RANS based

simulations, examples of research include the quantification of the e�ects of contact

treatment between the spheres, and the calculation of turbulence statistics. How-

ever, since RANS based methods have inherent modeling uncertainties, they must

be verified and validated using either experimental or DNS flow data.

In support of the development of DNS verification data for RANS based sim-

ulations, results have recently been published from the simulation of isothermal,

intermediate Reynolds number flow through an idealized domain of packed spheres

[21]. During the simulations, low-frequency temporal instabilities in the flow were

observed that led to unsteady averaged statistics, even over long periods of time-

integration.

In this work, the aim is to further quantify the observed instability in flows over

multiple spherical bodies by reducing both the complexity of the flow physics, i.e.

the Reynolds number, as well as the the geometry, and thus isolate more clearly the

mechanism of the observed instability. Results from two simulations, flow over a

single and two spheres, are presented. Both cases were run with a Reynolds number

of 1000.

The case of flow over a single sphere was used to verify that the numerical simula-

tions delivered acceptably valid results, and also as reference case with which results

from the second case could be compared. Presented results include selected first-

and second order turbulence statistics, temporal auto- and cross-correlations, and

analysis of POD data.
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3.2 Methodology

This subsection outlines the cases under consideration, including the geometric,

flow, and computational parameters used in the study.

3.2.1 Geometry and boundary conditions

The first geometry under consideration is the canonical single sphere in free

stream conditions. The mesh for the case was generated in Prenek, the native mesh

generation and pre-processing module in Nek5000. The meshing process consisted

of generating a rectangular three-dimensional box with the extents defined by ≠5 Æ
x/L

D

, y/L

D

Æ 5, and ≠5 Æ z/L

D

Æ 25, after which a spherical shell mesh with spher-

ical to rectangular transition elements with extents of ≠1 Æ x/L

D

, y/L

D

, z/L

D

Æ 1

was substituted into the box domain at the origin. This resulted in a mesh with

24, 416 elements. The diameter of the sphere is defined as L

D

= 1. The sections of

the mesh surrounding the sphere(s) for the two cases is illustrated in Fig. 3.1.

The geometric parameters for the mesh resulted in a blockage of 1%, which

is considered negligible for experiments on this type of geometry [22, 23], and is

therefore appropriate in our numerical study.

The second mesh was generated using the same procedure as for the first mesh,

only with an additional spherical to rectangular mesh being added with center point

at [x/L

D

, y/L

D

, z/L

D

] = [0, 0, 2], resulting in a mesh with 24, 832 elements. Since

the spheres for the second case are located along the same axial line as for the single

sphere case, the blockage ratio remains the same. A polynomial order of N = 11

was chosen for both cases.

The boundary conditions were consistent for the two cases. No-slip wall condi-

tions were imposed on the sphere surfaces, while the upstream and radial boundaries

were set to a constant stream wise velocity of U

z

= 1. An outflow boundary con-
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Figure 3.1: Planar sections of the spectral element meshes for the two cases.

dition was used at the downstream boundary. This setup is similar to that used in

[18], which was conducted at corresponding Reynolds numbers.

3.2.2 Computational parameters

The flow Reynolds number for the cases was defined using the free stream velocity,

U

o

= 1, and pebble diameter L

D

= 1. A unit density was assigned to the fluid,

allowing the Reynolds number to be defined as Re = 1/µ. Since the purpose for

the study was the investigation of unsteady dynamics resulting from spheres in close

proximity, a value of Re = 1000 was chosen for the simulations. This allowed us to
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Figure 3.2: Volume rendering of the instantaneous stream wise vorticity in the wake
of the single sphere case.

run in the unsteady, subcritical regime for flows over blu� bodies, whilst avoiding

the increased spatial and temporal resolution requirements for higher values of the

Reynolds number. This choice also allowed for verification of the single sphere results

with results from previous studies.

The instantaneous stream wise vorticity component in the wake of the single

sphere case is shown in Fig. 3.2, with four vortex structures (indicated by W1-4)

observable in the wake region. A Kelvin-Helmholtz instability is known to exist

in the shear layer in the near downstream region of the sphere at this subcritical

Reynolds number [20], which results in the vortex structures not being as coherent

as those observed in the pure Kármán vortex regime at lower Reynolds numbers.
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Table 3.1: Computational parameters: 1 & 2 sphere cases

Case (Spheres)
Parameter 1 2
Reynolds number (1/µ) 1,000 1,000
Time step length (L

D

/U) 0.004 0.004
Collocation points 3.220E7 3.275E7
CPU Cores 16,384 16,384
Total CU 1,120 1,120

Both cases were run concurrently on the Argonne Leadership Computing Facil-

ity IBM Blue Gene/Q clusters located at Argonne National Laboratory. Initial flow

development to turbulent conditions was done for both cases using a lower discretiza-

tion order of N = 5, to allow for rapid time stepping. Flow was developed for 200

convective units (CU = L

D

/U

o

) before production runs were commenced. Table 3.1

presents a summary of the run-time parameters used during production runs.

3.2.3 Verification

To ensure the validity of the presented data, selected results from the single sphere

case were compared with results from experimental and computational studies carried

out using similar geometries.

3.2.4 Wake separation frequency

For the single sphere case, temporal data for 1, 200 point probes in the near wake

region were recorded during production runs. The point probes were seperated into

12 lines of 100 probes at increasing distances downstream of the sphere. Six lines

were defined in the [x, 0, z] and [0, y, z] planes respectively. For a selected point

in the shear layer downstream of the sphere, the power spectrum seen in Fig. 3.3
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Figure 3.3: Power spectrum of U

z

at z/L

D

= 3 and z/L

D

= 0.3. The observed
energy peak corresponds to the shedding Strouhal number, St = 0.187.

shows agreement with experimental data for flow at Re = 1000 [23], who observed

a shedding Strouhal number in the range of 0.187-0.202. The value of St = 0.187

for this simulation also correspond reasonably with the value of St = 0.195 reported

during computational studies [18].

3.2.5 Wake axial velocity.

Another parameter that is well quantified for flow over a single sphere is the

averaged stream wise velocity along the domain axial center line. A comparison of

our result with the experimental results in is shown in Fig. 3.4. While the profiles

show generally good agreement, the results from the current study do over predict

the magnitude of the velocity in the recirculation region.
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Figure 3.4: Profile of ÈU
z

Í along the domain axial center line and comparison with
the experimental data of [2].

3.2.6 Pressure and skin-friction coe�cients

Figure 3.5 shows the distribution of the pressure coe�cient, defined as

C

p

= 2 (p ≠ p

o

)
flU

2
o

(3.1)

on the surface of the sphere. The angle is measured from upstream to downstream.

Comparative results from both computational and experimental studies is also pro-

vided. From the computational results from [18] and the present study, it is observed

that as the Reynolds number increases, the angular position where the negative pres-

sure magnitude is lowest shifts towards the upstream (front) position on the surface
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Figure 3.5: Profile of the pressure coe�cient on the sphere surface.

of the sphere. The trend also shows that the maximum magnitude of the negative

value of the pressure coe�cient decreases as the Reynolds number increases. This

trend is further confirmed by the experimental results of [24, 23], where the angular

point of largest negative magnitude is shifted to the front of the sphere, and the

magnitude of the value decreases with increased Reynolds number.

The skin-friction coe�cient, defined as

C

f

= ·

w

flU

2
o

(3.2)

where ·

w

= µ

1
ˆU

ˆy

2

y=0
, is plotted in Fig. 3.6. For comparison with experimental

results generated at larger Reynolds numbers, the values are normalized using
Ô

Re.
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Figure 3.6: Profile of the skin-friction coe�cient on the sphere surface.

it is observed that profile for C

f

in the current simulations is consistent with exper-

imental data, but that the profile is shifted towards the downstream angular points.

This may be explained by the di�erence in Reynolds number, where higher values

will lead to the boundary layer separation point, defined by the the angular location

where ·

w

= 0, moving forward on the pebble surface. This is confirmed by tabu-

lated results in [19]. Additionaly, the angular point of separation for our simulation

matches the computational results in [18] very well. For the same Reynolds number,

they report a separation angle of ◊ = 102¶, while the current results show a value of

◊ = 101¶.

The presented verification results indicate acceptable results from the simulation.
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3.3 Results and discussions

Selected results from the two numerical cases are presented in the following sub-

sections.

3.3.1 First and second order statistics

The first- and second-order turbulence statistics presented here was averaged

for the total time integration period achieved during production. An established

practice for computational studies of flow over spherical blu� bodies is to average

interpolated line profiles azimuthally around the domain axial center line to obtain

well averaged statistics. This is justified by the assumption that the statistics develop

to a time-invariant, azimuthally symmetric condition as the time integration period

increases. However, based on the results presented in [21], it is observed that this is

assumption is not necessarily valid for flow geometries that feature multiple spherical

blu� bodies, even for long periods of time integration. While the geometries presented

in this study are simplified when compared with those detailed in [21], it is believed

that similar metastable behavior, characterized by low-frequency switching of the

azimuthal location of the highest magnitude of the statistics, might also occur for

these simpler geometries. It is expected that this to particularly be true for the case

with two spheres.

Since azimuthal averaging has not been implemented here, a longer period of

time integration was required to obtain acceptably stationary statistics. Based on a

review of studies similar to that performed here [19, 18], the total integration time

of 1120 convective units was deemed to be su�cient to compensate for this.

Pseudo-color fields of the averaged stream wise velocity is shown in Fig. 3.7 for

the [x, 0, z] plane. It can be seen that for the single sphere case that ÈU
z

Í shows a

symmetric profile around the axial center line. For the two sphere case, a generally
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Figure 3.7: Pseudo-color field of ÈU
z

Í for the one (left) and two (right) sphere cases.

symmetric wake region behind the downstream sphere is also observed, but ÈU
z

Í does

not have a symmetric solution in the gap area between the upstream and downstream

spheres. Here, the larger magnitude of the recirculation velocity, i.e. ÈU
z

Í < 0, is

biased towards coordinate values of x/L

D

< 0. Thus, an increased asymmetry in the

averaged first-order statistics is observed for the case where a second, downstream

sphere is present. The magnitude of the recirculation velocity for the two sphere case

is also larger than for the single sphere case.

Since the simulations were conducted using a fluid density of unity, the Reynolds

stress tensor is simply represented by the single-point, single-time covariance tensor,

Èu
i

u

j

Í. Figure 3.8 shows the Èu
z

u

z

Í component of the tensor for the two cases. While

the solution for this component of the Reynolds stress looks nominally symmetric for

the single sphere case, It can be seen that a significant asymmetry of this component

of the Reynolds stress exists for the two sphere case in the [x, 0, z] plane, even after
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Figure 3.8: Pseudo-color field of the in-plane Reynolds stress component Èu
z

u

z

Í for
the one (left) and two(right) sphere cases.

convergence to what would be classified as a stationary state. It can also be observed

that the magnitude of the Reynolds stress is also increased due to the presence of

the downstream sphere.

Figures 3.9 and 3.10 shows interpolated line profiles of Èu
z

u

z

Í in the near wake

region for both cases. Each of the six lines consist of 100 individual interpolation

points. A consistent set of markers between the location of the interpolation line

and the profile is used, with top-left to bottom right for the interpolated line plots

corresponding to bottom to top locations in the domain. The interpolated data is

normalized for the six lines in each data series using

X

norm

= max

1
max (|X

i,j

|)
i=1,100

2

j=1,6
(3.3)
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Figure 3.9: Line profiles of Èu
z

u

z

Í in the wake region of the single sphere. All lines
normalized using the largest absolute value obtained from the six interpolation lines.

where X is the variable that is to be normalized. This normalization allows for the

simplest representation of the the specific line profiles under consideration.

For the single sphere case, it can be seen that Èu
z

u

z

Í evolves from a low-magnitude,

narrowly peaked profile for the interpolation line closest to the sphere, to a broader

profile with a maximum magnitude at the z/L

D

= 2.5 line. A slight asymmetry,

with the maximum magnitude biased towards the x/L

D

< 0 side can be seen.

For the two sphere case, the first interpolation line is qualitatively similar to the

line at the same position for the single sphere case. The second and third lines,
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Figure 3.10: Line profiles of Èu
z

u

z

Í in the region close to the two spheres. All lines
normalized using the largest absolute value obtained from the six interpolation lines.

located in the recirculation area between the upstream and downstream spheres

correspond to the areas of highest Reynolds stress, with a clear asymmetry of the

averaged profile biased toward x/L

D

< 0 also being observable. Interestingly, for the

final interpolation line behind the downstream sphere, the asymmetry has switched,

although the magnitude of the shear stress is lower for this interpolated line.

From the presented statistics, it is evident that the addition of a second sphere

indeed increases the level of asymmetry observed in the nominally steady solution.
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Figure 3.11: Pseudo-color field of the diagonal components of the turbulent kinetic
energy production tensor for the single sphere case in the [x, 0, z] plane.

3.3.2 Turbulent kinetic energy

Selected components of the turbulent kinetic energy transport equation terms are

presented. The selected terms are the production and dissipation tensors.

The structure and the magnitude of the production components P
xx

and P
yy

are

similar, as shown in Figs. 3.11a and 3.11a. For P
zz

, shown in Fig. 3.11a, the mag-

nitude is higher, while a better converged structure is also observable. The position

of the maximum magnitude is consistent over all three components, and reflects the

location where the shear-layer Kelvin-Helmholtz (K-H) instability manifests on the

periphery of the recirculation region. The stream wise component, P
zz

also shows

non-zero values beginning at the sphere surface where the wake separates from the
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Figure 3.12: Pseudo-color field of the diagonal components of the turbulent kinetic
energy dissipation tensor for the single sphere case in the [x, 0, z] plane.

sphere, showing the interaction between the low velocity recurculation zone and the

free stream flow.

For the turbulent kinetic energy dissipation components shown in Figs. 3.12a,

3.12b, and 3.12c, the structure mirrors that of the production, showing a maximum

in the dissipation in the area where the K-H instability causes the production of

smaller structures in the wake.

For the two sphere case, the lateral production components P
xx

and P
yy

seem to

exhibit similar structures which are rotated by 90¶ around the axial center line of the

domain. The maximum magnitude of the production is focused on the stream wise

front of the down stream sphere. When considering P
zz

, a clear asymmetry of mag-

nitude of the production is apparent. This is consistent with increased asymmetry
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Figure 3.13: Pseudo-color field of the diagonal components of the turbulent kinetic
energy production tensor for the two sphere case in the [x, 0, z] plane.

of the velocity profiles that was observed in §3.3.1.

The turbulent kinetic energy dissipation components for the two sphere case have

maxima that are concentrated on the surface of the down stream sphere, making

visualization di�cult using pseudo-color fields. Thus, volume renderings are used to

illustrate the structure of the dissipation tensor components in Figs. 3.14a-3.14c. The

lateral components show a similar rotated agreement as observed for the production

components in Fig. 3.13, while the stream wise component ‘

zz

shows a symmetric

distribution on the surface of the down stream sphere.
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Figure 3.14: Volume rendering of the diagonal components of the turbulent kinetic
energy dissipation tensor for the two sphere case in the [x, 0, z] plane.

3.3.3 Temporal auto- and cross-correlations

As an initial investigation of a potential di�erence in temporal shedding behavior

between the two cases, the temporal auto-correlation function (ACF) and cross-

correlation function of the time histories of the fluctuating stream wise velocity, u

z

at two points in the shear layers of the two cases was calculated.

For both cases, the two points were selected from those defined in the time-history

interpolation lines in the [x, 0, z] plane discussed previously. For the single sphere

case, the points for the correlations were selected at z/L

D

= 2, and x/L

D

= ±0.5.

For the two sphere case, the points for the auto- and cross-correlation were selected

to be between the upstream and downstream spheres inside the shear layer observed

in Fig. 3.8, at z/L

D

= 1, and x/L

D

= ±0.6. The temporal auto-correlation function
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Figure 3.15: Temporal auto- and cross-correlation functions for the single sphere
case.

is defined as

R

ii

(·) = lim
T æŒ

1
T

⁄
T

0
u

i

(t)u
i

(t + ·)dt, (3.4)

where the index defines the point under consideration and u

i

is the instantaneous

fluctuating velocity at that point. Similarly, the temporal cross-correlation is defined

as
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Figure 3.16: Temporal auto- and cross-correlation functions for the two sphere case.

R

ij

(·) = lim
T æŒ

1
T

⁄
T

0
u

i

(t)u
j

(t + ·)dt, (3.5)

where u

i

and u

j

are again the instantaneous fluctuating velocities at the two points.

All the lines are normalized using the product of the · = 0 shifted auto-correlation

coe�cients for u

i

and u

j

:
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Sphere:
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Figure 3.17: Pseudo-color field of the mode 1, i.e. highest energy, POD eigenfunc-
tions.

R

ij

(·) = R

ij

(·)
(R

ii

(0) R

jj

(0))1/2 . (3.6)

It can be observed for the single single sphere case, shown in Figs. 3.15 and

3.16, that both the auto- and cross-correlations exhibit fluctuations as the time

shift is increases, consistent with the shedding of the vortex from the back of the

sphere. The same phase angle shift observed in [18], who showed that a di�erence
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in azimuthal position is related to a di�erence in the phase angle between the points

under consideration, was observed here. They attributed this to a potential azimuthal

rotation mechanism a�ecting the wake separation region, which was also suggested

by [22].

Figures 3.15 and 3.16 shows the auto- and cross-correlations for the two sphere

case between the points defined previously. A marked di�erence in the qualitative

behavior can be observed between these correlations and those seen in for the single

sphere case. The fluctuations observed for the single sphere case is not present

here. The auto-correlation shows the expected initial decorrelation, after which it

remains relatively constant for the available time-shifted data. The cross-correlation

fluctuates relatively stably around a fixed negative correlation value.

Based on the observations made above, it may be hypothesized that if there is

indeed a cyclic wake-separation mechanism present for the two sphere flow case,

that the frequency at which this mechanism is active is much lower than for the

single sphere case. However, the data presented is not su�cient for any definitive

conclusions. In continued studies, an increase in the available time-shifted data and

the number of azimuthal points that are monitored will help investigate this behavior

further.

3.3.4 Proper orthogonal decomposition

The method of proper orthogonal decomposition allows for the definition of co-

herent structures in a turbulent flow field as a function of spatial variables that has

maximum energy content. The spatial variable in the case of turbulent flows is the

turbulent kinetic energy. The POD algorithm used in Nek5000 follows the snapshot

method, and the details of the implementation may be found in [17].

For both cases, 1,200 snapshots of the instantaneous flow domain was saved every
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100 time steps, i.e. at intervals of 0.4 CU. Since the flow Reynolds number is low,

and thus the turbulent energy at high wave numbers negligible, it was deemed the

number of snapshots su�cient for identifying the highest energy structures.

Figures 3.17a and 3.17b show the magnitude of the mode 1, i.e. most energetic,

POD eigenfunctions for the single sphere case in the [x, 0, z] and [0, y, z] lateral planes.

The cyclical shedding structure can be observed in both figures, where discrete and

equally spaced energy cells with decreasing magnitude as they move further from the

sphere can be seen in the wake of the sphere. It is observed that the structure of the

mode di�ers between the two lateral planes under consideration. While more lateral

planar fields for comparison here have not been extracted here, it is evident that the

highest energy coherent structures in the field are not azimuthally symmetric around

the domain axial center line for the 480 CU over which the POD was calculated. This

is consistent with the observations made in [22, 18] regarding an azimuthal rotation

of the vortex shedding cell.

The mode 1 eigenfunctions for the two sphere case are shown in Figs. 3.17c and

3.17d. From these figures, it can be seen that the wake vortex structures seen in

the single sphere case is suppressed by the second sphere, leading to a qualitatively

di�erent concentration of the highest energy coherent structures for this case. In this

case, the maximum energy in mode 1 is concentrated at the front of the downstream

sphere and in the shear layer at the interface of the recirculation cell between the

upstream and downstream spheres and the higher velocity positive stream wise flow

outside the cell.

In terms of azimuthal symmetry, the two sphere case shows a more symmetric

structure for mode 1, although the magnitude of the energy is higher in the [0, y, z]

plane. This observation is again consistent with a possible lower frequency rotational

mechanism associated with the boundary layer separation.
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3.4 Conclusions

Selected results from the simulation of incompressible flow over a single and two

spheres at Re = 1000 has been presented. Several verification and validation results

for flow over a single sphere were presented to establish confidence in the numerical

results.

This work may be considered as an initial extension of the canonical case of flow

over a single sphere. Of specific interest is the change in temporal dynamics of the

flow when additional spheres are added. the results show that the addition of a

second sphere results in a marked increase in the asymmetry of turbulence statistics,

even for long periods of time integration. This is consistent with the results from

studies of higher Reynolds number flows through domains consisting of regularly

ordered spheres, which will be discussed in the next section.

In terms of results, a non-exhaustive selection of first-second order statistics were

shown that illustrate the increased level of asymmetry of the flow statistics resulting

from the addition of a second sphere downstream from the first. The di�erence

between the temporal vortex shedding behavior of the two cases was discussed by

comparing the temporal auto- and cross-correlations at selected points in the wakes.

Finally, a set of results generated by a POD of the turbulent flow field was discussed

to illustrate the qualitative di�erence in the structure of the highest energy coherent

structures between the two simulations. A marked decrease in the formation of a

vortex street was observed for the two sphere case.

Continued work will focus on refining the quantification of the temporal e�ects

of the additional sphere. Potential methods of analysis include dynamic mode de-

composition and spectral-POD, which are similar to the POD done in this study,

but better quantify the temporal dynamics. A linear stability analysis will also be
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performed to help identify the laminar to turbulent transition mechanism for the two

cases and identify any potential di�erences between them.
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4. NUMERICAL EXPERIMENT II: FCC UNIT CELL AND EXPANDED

DOMAIN

�

This section presents results for the FCC unit cell case and an expanded domain

based on this unit cell. This study was chronologically the first study to be conducted

during the dissertation research. Upon identification of meta-stable behavior that

will be discussed in more detail subsequently, the study of the single two sphere case

presented in the previous section was done to determine whether this meta-stable

behavior could be reproduced.

A similar structure of presentation to the previous study is followed, consist-

ing of background regarding the problem and it’s importance, a discussion of the

methodology, presentation of results and discussions, and finally conclusions.

4.1 Background

The very high temperature reactor (VHTR) is a reactor concept proposed by the

Generation IV International Forum as a potential successor to currently operating

generation II and III nuclear reactor systems. Pebble bed high temperature reactors

(PBR) form a sub-class of the VHTR concept, with the other being prismatic block

type. These designs incorporate advanced design features that enable enhanced

passive safety and e�ciency [3, 4].

The reactor core in a PBR consists of either a cylindrical or annular core geometry

randomly packed with on the order of hundreds of thousands of graphite spheres,

in which tristructural isotropic fuel is particles are dispersed. An online refueling
�This section contains results previously published in the ASME Journal of Fluids Engineering

[21].
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system may be utilized where pebbles are removed from the bottom of the core at a

rate of singular pebbles per day and reinserted at the top of the core until reaching

their cycle limit. Alternatively, a more conventional o�ine refueling strategy is also

possible.

PBR systems may use either an inert gas, such as helium, or molten salt as

primary loop coolant. Depending on the coolant type, secondary and tertiary energy

conversion loops may be used to provide thermal energy for chemical processes such

as hydrogen cracking, power generation using either Rankine or Brayton cycles, or a

combination of the two in co-generation.

To successfully design a nuclear reactor system, a detailed understanding of the

fluid flow through the core geometry is essential. Since the PBR core geometry con-

sists of a randomly packed bed, which means an extreme level of geometric curvature,

this type of reactor design features one of the most complex flow geometries in any

nuclear reactor system. This fact has historically hampered both detailed experi-

mental [25] and computational studies [7]. This fact has led to the implementation

of heuristic design philosophies that rely on macro-scale data to develop empirical

correlations for the calculation of parameters of engineering interest such as pressure

drop and temperature distributions. Certain correlations [26] remain highly refer-

enced today, where they are used to benchmark the accuracy of computational tools

in calculating macro-scale e�ects.

With increased emphasis on detailed analyses of physical e�ects and a more strin-

gent regulatory framework, the level of information provided by such correlations

alone may not be su�cient in the modern design of new nuclear reactor systems.

Fortunately, a substantial increase in computational capabilities in recent years, cou-

pled with the maturation of CFD as a research and design tool, enables increasingly

detailed simulations and analyses of complex flow domains such as those encoun-
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tered in PBR systems. Tools exist that cover the range of scales encountered in

PBR systems, from the total system scale which is usually treated in a one dimen-

sional fashion [27, 28] , to the pebble scale, where detailed three-dimensional CFD

simulations may be conducted [29].

CFD analyses of pebble bed flows is complicated by a number of challenges. The

large degree of geometric curvature in PBR beds leads to blunt body e�ects such

as flow separation and reattachment, which remains a challenge for RANS based

turbulence models that are generally employed in commercial CFD packages. Thus

far, limited success has been achieved when using these codes to performed detailed

flow analyses [30]. Further compounding this problem is a general lack of detailed,

i.e. two- or three-dimensional, experimental data which may be used for validating

RANS-based tools. This is again due to the complexity of pebble bed flow domains,

which complicate experimental procedures and the capture of detailed data inside

pebble beds [31].

High-fidelity simulation schemes such as LES and DNS are better suited to ac-

curately simulate the flow e�ects in pebble bed flow domains. LES explicitly solves

for the majority of the turbulent length scales in a given flow, while modeling the

dissipation scales, while DNS explicitly solves for all the turbulent length scales up

to and beyond the dissipation scales. These frameworks are thus less, or completely

independent of the modeling assumptions required in RANS-based approaches [32].

Commensurate with the additional level of resolution provided by LES and DNS

over RANS, their computational cost are much increased. An attractive objective

is therefore to use these better-resolved schemes to develop a detailed understand-

ing of physics in pebble bed fluid flow using suitable prototypical cases. This in-

creased understanding of the physics may then be used to inform the optimization

of RANS-based tools so that they may more accurately simulate flows in pebble bed
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geometries.

Although LES resolves the majority of the length scales in turbulent flows, they

are still dependent on the modeling of the so-called sub-grid, or dissipation scales.

Thus, LES is not completely free of modeling assumptions, which leaves DNS as the

only viable framework for the detailed analysis of pebble bed flows and the develop-

ment of high-fidelity reference data which may be used as pseudo-experimental data

for validating data obtained by using RANS methods.

This section outlines the development of a DNS database for incompressible,

isothermal flow through an expanded FCC unit cell pebble bed structure. The

database comprises data sets generated by using di�ering degrees of spatial dis-

cretization. The purpose of using multiple orders of spatial discretization was to

to ensure explicit conformance to DNS requirements and to prove the validity of

using Kolmogorov theory as a measure for this conformance. Temporal analyses

were done to verify the consistent behavior across the developed data sets. Selected

comparisons between data generated using the di�ering orders of discretization are

presented, as well as tests for statistical stationarity of the data sets. The results

from the data sets are also cross-verified using available quasi-DNS data.

Finally, an observed low-frequency fluctuating behavior of the temporally aver-

aged data is investigated. This is done by performing additional simulations in an

enlarged FCC flow domain and implementing ensemble averaging instead of time-

averaging, after which the results obtained using the di�ering methodologies are

compared.

4.2 Methodology

This subsection presents the research methodology. The problem scope, compu-

tational aspects, discretization, and simulation parameters are described.
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4.2.1 Outline

The flow domain under consideration is an extended, single FCC unit cell. All

the pebble surfaces are treated as no-slip walls. Since the domain is idealized and

features a set minimum spacing between pebbles, it is classified as an extended FCC

unit cell.

The spacing between the pebbles considered in this computational study does

not exist in practical VTHR systems. Thus, the flow geometry considered here

must be seen as idealized. Fortunately, complex flow e�ects such as separation and

attachments still manifest in this idealized geometry. These e�ects have not been

quantified using high-fidelity numerical simulation tools such as LES or DNS in any

significant manner based on a review of literature. The investigation of blunt body

flows using these tools have generally been limited to idealized flows such as those

treated in §3. Examples of such studies are included in the references [33, 19, 20].

Thus, the idealized FCC geometry treated in this section may be seen as a valid

starting point for high-fidelity investigations of pebble bed geometries, after which

additional complexity may be added in subsequent studies. This geometry also allows

for cross-verification of results with the data generated by Shams et al. [29].

The FCC geometry features eight 1
/8 pebble sections at the domain corner ver-

tices. Each face features a 1
/2 pebble section. The FCC unit cell thus consists of

a total of four complete spheres. Figure 4.1 shows an example the instantaneous

velocity magnitude of the turbulent flow field during simulation.

Figure 4.2 shows the position of the [x, 0, z] and [0, y, z] lateral planes where the

majority of the results that will be subsequently shown is obtained from. This choice

is completely arbitrary, since data from the entire field are available for analysis.

The domain is centered around the [0, 0, 0] coordinate. All spatial coordinates are
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Figure 4.1: Volume rendering of U

mag

. The cut away section is defined for the region
≠1 Æ y Æ 0 and 0 Æ z Æ 1.

normalized using half the domain length, L

D

. Table 4.1 provides physical dimensional

data, obtained from [29], as well as the equivalent normalized geometric data used

in this study.

The domain boundary conditions are all periodic, and thus approximate a phys-

ical domain located at the center of a practical pebble bed core where the e�ects of

inflow, outflow, and wall boundaries may be considered negligible.
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Figure 4.2: Position of the [x, 0, z] and [0, y, z] lateral planes in the domain.

4.2.2 Interpolation

Figure 4.3 illustrates the naming convention and locations of the arbitrarily cho-

sen interpolation lines and time history probes in the domain for the [0, y, z] plane.

The same layout is used in the [x, 0, z] plane. The data presented in the following

subsections are collected from these locations

The interpolation line locations in each plane was chosen so that there would
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Table 4.1: Geometric data: FCC unit cell

Parameter Physical Normalized
Domain length 91.924 [mm] 2 [-]
Inlet area 2795 [mm

2] 1.323 [-]
Pebble diameter 60 [mm] 1.305 [-]
Pebble gap spacing 5 [mm] 0.108 [-]

be at least one set of interpolation data in each plane that was normal to a specific

pebble surface. The length of each line presented in the results is presented as L, with

the specific point on each line represented by ”. All the line lengths are normalized

to one for simpler representation.

The naming convention uses a three letter identifier:

1. Top [T] or bottom [B], corresponding to the streamwise-positive (z > 0) or

streamwise-negative coordinates (z < 0).

2. Right [R] or left [L] of the domain, corresponding to the positive (x, y > 0) or

negative lateral coordinates (x, y < 0).

3. Lateral flow plane under consideration [X], corresponding to the [x, 0, z] plane,

or [Y], corresponding to the [0, y, z] plane.

4.2.3 Computational considerations

The computational mesh was generated by using Prenek, a meshing tool native

to Nek5000, and consists of 28,672 fully hexahedral elements. Figure 4.4 shows a

section of the N = 13 mesh, that is, thirteenth-degree mesh in the [x, 0, z] plane.

The SEM is advantageous for DNS, because it exhibits little numerical dispersion

and dissipation [34], and has been extensively validated [32]. Temporal advancement
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Figure 4.3: Naming convention and locations of the arbitrarily defined interpolation
lines and point probes.

of the Navier-Stokes equations is carried out by using an implicit, third-order, back-

ward di�erentiation (BDF3) scheme for the viscous terms and a third-order, explicit

extrapolation (EXT3) scheme for the nonlinear terms. Readers are referred to §2.2

for additional details regarding the time-stepping scheme.

To speed up the development of stationary turbulent flow conditions, fifth-degree

polynomials were used to allow for rapid time-stepping. The flow was allowed to de-

velop for 150 convective time units (L
D

/U), where each flow unit corresponds to half
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Figure 4.4: Section of the spectral-element mesh after sub-discretization, illustrating
the central pebble gap area.

a flow-through time (FTT). Using the flow profile obtained from the fifth-degree de-

velopment runs, production runs were run concurrently using seventh-degree, ninth-

degree and thirteenth-degree discretization. A fixed �t, shown in Tab 4.2, were used

to ensure that the CFL number remained below 0.6.

The simulations were performed on an IBM Blue Gene/Q cluster operated under

lease by the Texas A&M University High Performance Research Computing depart-

ment. The balance of the required computations and post-processing was done on

the systems operated by the Argonne Leadership Computing Facility, located at
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Table 4.2: Computational parameters: FCC case

Polynomial degree
Parameter 7th 9th 13th

Time step length 2.5 ◊ 10≠4 1.5 ◊ 10≠4 1.0 ◊ 10≠4

Collocation points 14.68 ◊ 106 28.67 ◊ 106 78.68 ◊ 106

Nodes (Cores) 128 (2048) 128 (2048) 256 (4096)
Total FTT 1260 300 77
Core hours 3 ◊ 106 3.5 ◊ 106 10.5 ◊ 106

Hours/FTT 2,381 11,667 136,364

Argonne National Laboratory.

4.2.4 Discretization

From turbulence theory, a recognized test for confirming that the numerical dis-

cretization of the Navier-Stokes equations meets the required criteria to be termed

a DNS, is the discretization of the problem beyond the Kolmogorov length scales

of the flow in question. The Kolmogorov scales are discussed in §2.4. During the

initial scoping runs before the initiation of the data set production runs, a number

of runs using di�erent polynomial degrees were conducted. During these runs, the

TKE dissipation and Kolmogorov scales were calculated at each point in the compu-

tational domain, with the global minimum and maximum values being exported for

comparison with the temporal and spatial discretization parameters for the runs.

For the case of N = 7, a total of 10.08E6 time steps were simulated. Taking the

average of the minimum calculated Kolmogorov length scale in the domain for the

available time history, a value of 7.89E-4 was obtained. The maximum grid spacing

in the domain was constant and equal to 4.6E-4. Thus, the maximum grid spacing

remains smaller than the smallest length scale in the domain by more than a factor of
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1.5. For the time scale, the constant time step length of 2.5E-4 seconds was smaller

than the average maximum Kolmogorov time scale by at least an order of magnitude.

Because the seventh-degree data already exceeded the requirements for DNS

based on Kolmogorov theory, the higher order runs would by extension also con-

form to the requirements for DNS. Because the simulation parameters for the cases

under consideration did not fully match those used in the formulation of Kolmogorov

theory, an additional check on DNS conformance could be performed by explicitly

comparing the data from the sets of di�ering discretization. This is analogous to a

grid-independence study.

4.2.5 Turbulent time scales

The temporal ACF allows for characterizing the time scales over which turbulent

motion at a point in the domain is correlated with itself. The ACF was used to

calculate and confirm that the three data sets delivered a consistent evolution of the

fluctuating velocity, that is, was su�ciently resolved in time. The ACF is plotted

for u

mag

at the XTR probe point in Fig. 4.5. The fluctuating velocity for the final

half-million data points was extracted from the total time history for analysis for

each data set. For each data set, 30,000 lag increments were used to calculate the

ACF. Acceptable agreement was observed between the data sets, indicating su�cient

temporal resolution for all the data sets. The ACF decays to an asymptotic state of

minimal correlation, r (·) Æ 0.1, after · ¥ 0.2 FTT, where the numerical value of ·

is normalized to represent a single FTT. Since a strong mean flow gradient is present

in the contracted space at the point surrounding the minimum distance between

pebbles, it is expected that a low level of correlation persists for increasing values of

· .
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Figure 4.5: Temporal ACF for time history of u

mag

at the XTR probe point.

4.2.6 Statistical stationarity

Di�ering FTTs were achieved for the simulations depending on their polynomial

deree. During production, a standard checkpoint save and restart methodology was

used. Checkpoints for the seventh-, ninth-, and thirteenth degree runs were saved

at 30, 6, and 1.8 FTT, respectively, corresponding to the number of time steps

achievable in the set wall-clock time limits on the compute resource. To confirm the

stationarity of the statistics, the averaged data was compared between each of the

available checkpoints, with the time shift, · , used to indicate the number of FTT

separating each checkpoint.

Figures 4.6, 4.7, and 4.8 illustrate the convergence of the diagonal components of

the velocity and Reynolds stresses for the ninth degree data set. The interpolation

lines are drawn at the coordinates for which they are defined in the [x, 0, z] plane.

The naming convention detailed in Fig. 4.3 is used. The data set shows an acceptable
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Figure 4.6: Interpolated profiles for ÈU
x

Í (top) and Èu
x

u

x

Í (bottom) profiles extracted
at times f (t) = 294 FTT and f (t + ·) = 300 FTT for the ninth-degree data set.

measure of stationarity for the choice of · .

Due to the high computational cost associated with the N = 13 data set, only

marginal stationarity was obtained for this data set. Thus, analysis of the data is

limited to the two lower order data sets.

4.3 Results and discussion

This subsection presents selected quantitative and qualitative data. Initially, the

generated data sets are compared in a fashion analogous to a grid independence
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Figure 4.7: Interpolated profiles for ÈU
y

Í (top) and Èu
y

u

y

Í (bottom) profiles extracted
at times t and t + · .

study. Cross-verification is then done using the quasi-DNS database of Shams et

al. [29] as reference. An observed long-term, semi-oscillatory temporal instability is

then investigated using the method of proper orthogonal decomposition. Finally, an

expanded flow domain and ensemble averaging scheme is used to try and eliminate

the asymmetry in the generated statistics.
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Í (bottom) profiles extracted
at times t and t + · .

4.3.1 Inter-data-set comparisons

Figures 4.9, 4.10,4.11,4.12, and 4.13 present line interpolations of selected first-

and second-order statistics for the TLX, TRX, BLX and BRX quadrants of the

[x, 0, z] plane. The interpolations are presented at the coordinates in the plane where

they are defined, as per Fig. 4.2.

The profiles were normalized using the maximum value of the velocity magnitude

in the plane under consideration. It is observable that both the velocity and the
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Figure 4.9: Profiles of the ÈU
y

Í for the three data sets.

covariance components show good agreement for the two lower order data sets. This

is also consistent for the other components not shown here. Since the area behind

the sphere, corresponding to the central pebble gap, exhibits lower magnitudes of

flow due to the flow separation and recirculation e�ects that exist in this area, the

interpolated line profiles that penetrate this area are slightly less well averaged. This

is expected.

In the contracted spaces where the clearance between the pebbles are minimized,

the flow is much more strongly directed or accelerated. Thus, the statistics generated

in these areas shows very smooth profiles associated with su�cient averaging in time.

Here, both the first- and second-orde statistics show very good agreement.
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Figure 4.10: Profiles of the ÈU
z

Í for the three data sets.

The data generated using N = 13 exhibits acceptable qualitative agreement when

compared with the other two data sets, considering the marginal stationarity achieved

for that data set. While the shapes of the profiles are generally similar, the observed

magnitude defects shows an observable trend, where the defect switches from negative

to positive as a function of lateral position x = 0. This is attributable to a velocity

asymmetry around the domain streamwise center line.

4.3.2 Turbulent kinetic energy

The turbulent kinetic energy transport in the FCC domain provides important

information regarding the turbulent processes that take place in this class flow, where

there is a large amount of geometric curvature. As seen in the results presented in
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Figure 4.11: Profiles of Èu
x

u

x

Í for the three data sets.

§3, even for a single sphere in free stream conditions at low Reynolds number, the

blu� body interaction between the sphere and the fluid causes complex flow behavior.

This complexity is further enhanced by the addition of additional spheres. Thus, we

expect the turbulent e�ects in the FCC domain to be even more complex.

The TKE fields presented in this subsection were all calculated using the data

from the N = 13 case. This is due to the fact that the gradients required for the TKE

term calculation require a higher resolution to be accurately resolved than what is

required for the velocity and covariance data.

Since there are several terms in the TKE transport equation, plotting all the

components of each term leads to an overwhelming amount of data. Since some of the
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Figure 4.12: Profiles of Èu
y

u
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Í for the three data sets.

terms are more pertinent than others, only selected components of the TKE transport

equation terms are plotted here. The two terms that are generally considered to be

most important are the production and dissipation terms of the TKE transport

equation, since their data most directly provides information regarding the physical

processes taking place in the flow.

All the second order tensors in the TKE equation have nine components, but since

the tensors are symmetric, only have six independent components. It is important

to realize that the structure of the individual terms show in the following figures

are dependent on the coordinate frame in which they were calculated, i.e. that the

data fields would look di�erent when using a di�erent coordinate frame. However,
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Figure 4.13: Profiles of Èu
z

u

z

Í for the three data sets.

by taking half the trace of the specific tensor under consideration, e.g. 1
2P

ii

, one

obtains the magnitude of that term, which is also frame invariant.

Figure 4.14 shows the independent components of the TKE production tensor,

P
ij

. For the two diagonal terms, P
xx

and P
yy

, it is observed that they show large

magnitudes of turbulent kinetic energy production in the area behind the streamwise

bottom sphere. This distribution is consistent with the area where the flow recircula-

tion cell exists, and the enhanced TKE production in this area may be attributed to

the strong shear layer and flow deceleration that exists between the fluid flowing in

the positive streamwise direction and the negative velocity in the recirculation cell.

For the P
zz

component, the maximum magnitude of production is seen to be in front
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Figure 4.14: Pseudo-color fields of P
ij

for the [0, y, z] plane. Top row, left: P
xx

,
middle: P

yy

, right: P
zz

. Bottom row, left: P
xy

, middle: P
xz

, right: P
yz

.

of the top pebble, in the area where the streamwise velocity rapidly decreases as it

nears the stagnation zone on the bottom of the top sphere. As the flow is deflected

laterally through the inter-pebble gaps, it is accelerated, which causes the production

to decrease.

The P
xy

and P
xz

terms, corresponding to the transverse and out-of-plane velocity

components have a lower magnitude in this plane, and are maximum behind and in

front of the bottom and top spheres, respectively. The in-plane diagonal component,

P
yz

shows a larger magnitude, and is again maximized in the flow separation and

shear layer regions that exist behind the bottom sphere.

For the components of the TKE dissipation tensor, ‘

ij

, a relatively similar trend
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Figure 4.15: Pseudo-color fields of ‘

ij

for the [0, y, z] plane. Top row, left: ‘

xx

, middle:
‘

yy

, right: ‘

zz

. Bottom row, left: ‘

xy

, middle: ‘

xz

, right: ‘

yz

.

is observed as for the production. For the three normal components, the distribution

of the areas of maximum dissipation are similar, while in terms of magnitude the

in-plane and streamwise components are larger than the out of plane component,

‘

xx

. In the central pebble gap area, the dissipation structure follows the separation

of the flow from the surface of the bottom pebble and becomes maximized in the

recirculation area in the central pebble gap.

The visible lines in the plots of the ‘

xx

, ‘

yy

, and ‘

zz

components are not physical

flow features. These lines form at the element boundaries of the spectral element

mesh. This is due to the numerical formulation of the SEM, where the velocity com-

ponent values are continuous over the element boundaries, while derivatives are not.
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Since the dissipation is defined as the averaged product of gradients of the fluctuat-

ing velocity, this term is very susceptible to this manifestation of the discontinuous

values of the term over element boundaries. While these lines are locally unphysical,

the overall structure of the field remains physical. A gradient smoothing operation

does exist to remedy the discontinuity of the gradients across element boundaries,

but the formulation of the dissipation term calculation used during run-time does

not allow for the operation to be carried out after the averaging has already been

performed. This formulation has already been updated for future studies.

The magnitude of the o�-diagonal terms of the dissipation tensor is less than

for the diagonal components. The values for the ‘

xy

and ‘

xz

components can also

be seen to be homogeneous and roughly zero in the bulk flow areas, while being

maximized on the surfaces of the pebbles. The final term ‘

yz

, is also maximized

close to the sphere surfaces, where the streamwise velocity is reduced as the lateral

velocity increases as the flow is deflected around the pebbles.

Figure 4.16: Pseudo-color fields of the diagonal components of the turbulent di�usion
tensor for the [x, 0, z] plane. Left: x-component, middle: y-component, right: z-
component.
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The turbulent di�usion tensor requires an averaged triple product of the fluctu-

ating velocity components in it’s calculation. Thus, this term takes the longest to

reach statistical stationarity. It is observable in the fields of the diagonal compo-

nents of this term, shown in Fig. 4.16, that the fields do not seem to be completely

stationary for the available time average. However, the structure where the in plane

x- and streamwise z-components are maximized is discernable, and are consistent

with the flow separation shear layer. The side-by-side positive and negative valued

regions are characteristic of this term of the TKE equation.

Figure 4.17: Pseudo-color fields of the diagonal components of the viscous di�usion
tensor for the [0, y, z] plane. Left: x-component, middle: y-component, right: z-
component.

Finally, the diagonal terms of the viscous di�usion tensor are shown in Fig. 4.17.

The figures focus on the contracted, inter-pebble gaps, since the viscous terms are

maximized here close to the pebble surfaces. This is attributable to the viscous

action dominating in the boundary layer.
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4.3.3 q-DNS data cross-verification

Verification data in the form of the q-DNS data of Shams et al. [29] was available

for a single lateral plane for selected flow statistics. Figures 4.18 and 4.19 show a

comparison of the q-DNS data with the seventh-degree data. In order to facilitate the

comparison of data generated in di�ering Cartesian reference frames, a 180-degree

rigid frame rotation of the q-DNS data was done. Since both simulations were

conducted in the limit of Fr æ Œ, and the rotation was of a rigid type, rotational

invariance of the governing equations applies, justifying the frame rotations. Focus

is given to the area of maximum statistical variability, which corresponds with the

central pebble gap region.

The comparison of ÈU
z

Í for the the seventh-degree data at the CX1 interpolation

with the q-DNS data is shown in Fig. 4.18a. In the figure, the profiles of the data

averaged over increasing time-integration periods are presented. The values given

in the legend represent a multiple of 30 FTT (i.e. N ◊ 30 FTT). As shown in the

figure, the average does not converge to a constant, symmetric profile for increasing

time averaging, as is expected for the class of symmetric domain under consideration

here. Instead, the averaging over increasing time-integration periods produces a

meta-stable switching behavior, where maximum value of ÈU
z

Í switches position

laterally around x = 0 as as the averaging period is lengthened. The temporal

instability has a very long period in the [x, 0, z] lateral plane, since a significant

switch in the side where the maximum magnitude is present only takes place over

roughly 42 ≠ 3 = 39 ◊ 30 = 1170 FTT.

A similar trend of ÈU
z

Í is observed for the CY1 line in Fig. 4.18b. Here, the

switching is more apparent than for the interpolated line in the [x, 0, z] plane. We

observe that for the data averaged over 15 checkpoints, an almost symmetric velocity
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(b) Velocity component ÈU
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Í, for line CY1.

Figure 4.18: Line profiles of ÈU
y

Í plotted for di�erent lengths of time-integration.

profile is obtained around the streamwise centerline at ”/L = 0.5. For 90 FTT

(N = 3), the maximum magnitude of this component of the velocity is located on

the side of the domain where ” > 0, while after 1260 FTT (N = 42), the maximum

magnitude of the component is located at ” < 0

Comparative results for the two in-plane components of the covariance tensor,

Èu
x

u

z

Í and Èu
y

u

z

Í, are presented in Fig. 4.19. The results show good agreement for

the [x, 0, z] plane illustrated in Fig. 4.19a. The magnitude of the Nek5000 data shows
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Figure 4.19: Line profiles of the in-plane covariance components plotted for di�erent
lengths of time-integration.

good agreement of the profiles. Similar trends relating to the temporal velocity profile

evolution are observed for the covariances in the two lateral planes. The profile for

CX1 in the [x, 0, z] plane is seen to converge to a relatively stationary state, whereas

the covariance in the [0, y, z] plane shows a clear evolution in time.

4.3.4 Temporal analysis

As an additional quantification of the averaged velocity instability observed in

the data, the piecewise averaged velocity magnitudes for the streamwise top row of
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time-history point probes were plotted. The averages were generated by averaging

the velocity component data taken at the probe locations for consecutive 32, 64, and

128 convective time unit intervals respectively and plotting these averages as point

data. Data from the seventh-degree set is illustrated here, since it had the longest

time history available.

The evolutions of the piecewise averaged velocities at these points are illustrated

in Fig. 4.20. It is observable that the magnitudes at the TLX and TLY probe points

remain steady for most of the available time history, before switching magnitude at

the end of the time series. For the TLY and TRY probes, the evolution exhibits a

shorter frequency, switching twice during the available time history. Thus, spatial

dynamic instabilities are observed in both lateral planes that seem to be evolving as

a function of di�ering time scales.

4.3.5 Proper orthogonal decomposition

Temporal instabilities of flow over blu� bodies such as spheres have been iden-

tified in a number of experimental studies. Although these studies usually focus on

single spheres in free stream conditions, it is expected that the physics observed in

the studies is relevant to the FCC domain treated here. The studies found that for

a range of Reynolds numbers, which includes the number used in this study, vortex

shedding occurs in a time-varying manner such that the vortex detachment point

moves around on the surface of the sphere [22]. Other experimental studies have

found the existence of two unique Strouhal numbers, associated with low-frequency,

large-scale instabilities in the wake and higher-frequency instabilities in the wake sep-

aration shear region, respectively [35]. Although the case presented here introduces

some additional geometric complexity and associated e�ects, these experimental re-

sults seem to indicate that the instability we observe in our temporal data is based on
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Figure 4.20: Evolution of the z-velocity (streamwise) components, averaged per 32
(top), 64 (middle), and 128 (bottom) FTT at four time probe locations.

physical e�ects in the wake of the pebble. Based on the conclusions made in §3, it is

also evident that any instability observed for the canonical case of flow over a single

sphere is greatly magnified when an additional sphere is added in close proximity to

the first.

As an initial step in quantifying the observed instability, an e�ort is made to

investigate the underlying dynamics of the flow, in a similar manner as to what

was attempted in the previous section by using the method of proper orthogonal

decomposition for this purpose. Details of the implementation of the method in
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Nek5000 may be found §2.5.

The POD was conducted by using the seventh-degree data for two time sequences

of 100,000 time steps, representing 12.5 FTT each. The time sequence initiation

points were spaced so that the two time series were separated by a long time history in

an attempt to observe the changes in the dynamics that lead to the observed temporal

instability of the flow statistics. The first sequence was initiated by using the first

available time history checkpoint as the restart condition. The second sequence was

initiated using the restart field corresponding to the checkpoint generated at 900 FTT

of time integration. Thus, the two time series were separated by 900 FTT of flow

integration. The second checkpoint was chosen to correspond to the time at which

the point probes in the [x, 0, z] plane started showing a switch in the lateral side

where the dominant velocity magnitude was located. Due to this switch occurring

during the snapshot generation sequence for the second time series, it was expected

that the POD modes would be less prominent.

Figure 4.21a shows the most energetic POD eigenfunctions for the transverse

([x, y, 0]) plane in POD sequence 1. A counterclockwise rotating eddy, represented

by the magnitude-scaled vector field, is observed in the planar area bounded by

≠0.4 < x < 0.4, and ≠0.4 < y < 0.4. This eddy structure is three-dimensional,

as can be seen by the [x, 0, z] lateral plane view shown in Fig. 4.21b. In this

figure, the orientation of the highest-energy eigenfunction is observed, with the modes

directed in the positive lateral direction before changing to favor a downward-facing

orientation. A clockwise rotating eddy structure is observed in the lower right of

Fig. 4.21b, which might correspond to the area of flow recirculation known to be

present behind the bottom pebble. This eigenfunction structure corresponds with the

observation regarding the lateral side at which the dominant velocity is present for

this sequence, as observed in Fig. 4.18a. The side of dominant velocity corresponds to
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(a) POD sequence 1, [x, y, 0]
transverse plane.

(b) POD sequence 1, [x, 0, z]
lateral plane.

(c) POD sequence 2, [x, y, 0]
transverse plane.

(d) POD sequence 2, [0, y, z]
lateral plane.

Figure 4.21: Vector of the most energetic eigenfunctions in the domain for the two
time sequences.

the lateral side ≠0.4 < x < 0, where the eigenfunctions are nominally directed in the

flow direction, whereas the lower magnitude side corresponds to 0 < x < 0.4, where

the eigenfunctions are directed downwards because of the recirculation eddy. Thus,

this large-scale, three-dimensional rotational structure of the fluctuating velocity

eigenfunctions is potentially the reason for the observed asymmetry in the mean

velocity field.

Sequence 2 of the POD delivers similar structure fields, as observed for the trans-
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verse and lateral planes in Figs. 4.21c and 4.21d. The most relevant di�erence is

that the eddy structure observed in the lateral plane has undergone a 90-degree,

counterclockwise rotation in the transverse plane. Thus, a structure similar to what

was observed in the [x, 0, z] lateral plane in sequence 1, is now seen in the [0, y, z]

plane in sequence 2.

The magnitude of the modes observed in sequence 2 is lower than those seen in

sequence 1, as expected. Since the temporal start point for the second time sequence

used for the POD was chosen to correspond to the time the switching commenced,

the averaged behavior for the sequence might be changing rapidly relative to the

locally stationary behavior captured in sequence 1, thus leading to less well estab-

lished structures. The correlation between the orientation of the highest energy

eigenfunctions and the position of maximum velocity magnitude is consistent with

the observation for sequence 1.

4.3.6 Expanded case and ensemble averaging

Based on the observation of the metastable behavior of the time-averaged tur-

bulence statistics in the case, it was important to test whether the geometry played

any significant role. Thus, to confirm su�cient decorrelation between the periodic

boundaries in the streamwise direction, an expanded FCC domain consisting of three

unit cells was generated by translating and copying the original unit cell twice in the

streamwise direction to create a three FCC geometry. Periodic boundary conditions

were used along all domain edges. When time averaging was performed for this new

geometry, similar metastable behavior was observed as in the single FCC case. It

was therefore confirmed that the observed switching behavior was not simply a con-

sequence of the domain potentially being too small. The e�ect of multiple spheres

in close proximity in cases with non-periodic boundaries was also confirmed in §3.
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A second test that was proposed was to test the e�ect of the averaging approach

used to generate the turbulence statistics. Instead of using time-averaging, a newly

implemented ensemble averaging scheme [36] was used to generate ensemble averaged

data for the three FCC domain. By generating data using the ensemble averaging

routines, it could be determined whether the method of averaging impacted the

attainment of a symmetric, time-invariant solution that is expected for this class of

flow simulation. For the ensemble averaging runs, 32 concurrent sessions of the case

were run in parallel. Each session was initialized using a uniquely perturbed initial

flow field based of the session number. After allowing su�cient time integration for

the sessions to decorrelate, time averages of each session were taken, after which the

ensemble average was performed over all the sessions.

Figure 4.22 shows ÈU
mag

Í in the [x, 0, z] lateral plane of the expanded domain after

192 FTT of ensemble averaging. A qualitatively symmetric velocity field around the

streamwise centerline of the domain can be observed. The covariance field for Èu
x

u

z

Í
is shown for the same plane in Fig. 4.23

Three line interpolation locations, CX1-3, are highlighted in Figs. 4.22 and 4.23.

Interpolations of ÈU
z

Í and Èu
x

u

z

Í at these locations plotted in Figs. 4.24a and 4.24b

respectively.

A comparison between the ensemble averaged data, the temporally averaged

Nek5000 data, and the q-DNS data, reveals a clear di�erence regarding the sym-

metry of the first- and second-order turbulence statistics. This indicates a violation

of the ergodicity assumption that is used to establish an equivalence between time

averaged and ensemble averaged data. This observation has also been made for

other cases where high-fidelity methods were employed [37]. Thus, in order ensure

completely stationary statistics for this type of flow geometry, ensemble averaging

instead of temporal averaging may be a requirement.
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Figure 4.22: Field rendering of ÈU
mag

Í in the [x, 0, z] plane for the 3 FCC domain.

4.4 Conclusions

This section presented a DNS analysis of flow through an extended FCC domain.

Three databases were generated by using di�ering levels of spatial discretization. The

conformance of each database to DNS requirements based on the Kolmogorov length

and time scales was tested, with even the data generated using the lowest order of

spatial discretization exceeding the requirements. To ensure that Kolmogorov theory

could be used as a test for DNS conformance at this moderate Reynolds number, the

data from the databases was compared with each other to test for consistent results.
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Figure 4.23: Field rendering of Èu
x

u

z

Í in the [x, 0, z] plane for the 3 FCC domain.

This form of testing is analogous to a grid convergence study, but since all the data

sets were already resolved beyond the Kolmogorov scale, it was expected that they

would deliver consistent results. This expectation was proven to be correct, with the

exception that the data generated using the highest order of spatial discretization

was not completely stationary yet. It was thus proved that the Kolmogorov scales

may be used as an explicit test of DNS conformance for this type of flow simulation.

Quasi-DNS data was used to perform cross-verification of the generated DNS

data. Good agreement was observed between the Nek5000 data and the available

first- and second-order statistics data from the q-DNS database. During the cross-
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Figure 4.24: Interpolated line profiles of ensemble averaged data in the 3 FCC do-
main.

verification process, a temporal instability in the averaged data was observed. This

metastable behavior manifested in the form of a bounded, semi-periodic switching

of the position of the maximum magnitude of averaged statistical quantities in the

domain. This behavior was initially believed to be due to an insu�cient amount of

time averaging of the data, but the switching continued even for very long periods

of time integration. Thus, the frequency of this mechanism is very low, being on the

order of hundreds of flow through times.
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POD was implemented as an analysis tool that could possibly shed light on the

metastable behavior observed in the flow. The data generated in the POD allowed

for the identification of a correlation between the most energetic POD modes at

di�erent points in time and the observed temporal instability. It was concluded

that the flow recirculation cell behind the streamwise bottom pebble generated a

large, three-dimensional instability that changed shape over large amounts of time

integration, and that this structure resulted in the time-dependent lateral shift of

the position of the maximum values of the statistical quantities under consideration.

Finally, a three FCC flow domain was generated by translating and copying

the original flow domain. A newly implemented ensemble averaging method was

employed to generate stationary and symmetric flow statistics in this geometry. The

ability of the ensemble averaging method to generate the expected symmetric results

point to a violation of the ergodicity assumption in this class of flows. This violation

is the result of low-frequency instability modes in the flow, potentially caused by the

slowly changing structure of the recirculation cell behind the pebbles.
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5. NUMERICAL EXPERIMENT III: WALL BOUNDED DOMAIN

The final section pertaining to the numerical experiments corresponds to the

last study done during the dissertation research. It was identified that no literature

existed, to the best knowledge of the author, that treated wall bounded pebble bed

domains. It was hypothesized that a bounding wall would significantly influence the

behavior of the flow in the near wall region, and therefore warranted investigation.

The insights gained from the two prior studies, coupled with practical considerations

regarding the size of the problem and it’s associated computational burden, informed

the development of this study.

The study is again detailed using the background, methodology, results and dis-

cussions and conclusions format of the previous sections.

5.1 Background

The bulk of the literature pertaining to the investigation of turbulent flows

through pebble beds focus on flow through regions removed from wall boundaries,

i.e. the reactor vessel walls. Example works like the series of papers by Shams et al.

[1, 6, 38, 30, 29], the LES paper of Hassan [7], and a number of theses [12, 39, 40].

This focus extends to more fundamental cases, where only single examples of the

treatment of spherical blu� bodies near bounding walls are encountered in literature.

Examples of experimental works include [41], while computational works include

treatment of single spheres [42] hemispheres [33]. From these works, it is apparent

that bounding walls drastically alter the flow characteristics when compared with

flows far removed from walls.

The experimental work in [41] is particularly pertinent in showing the e�ect of

a sphere in contact with a flat plate boundary, which leads to the formation of a
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low velocity recirculation region behind the sphere. In a practical reactor system,

where convective heat transfer is critical, such stagnation of the flow may lead to

significant temperature gradients on both the pebble surfaces and bounding walls.

Such temperature gradients may cause thermal fatigue in the spheres and core walls,

leading to decreased safety margins during long term operation.

The development of DNS flow data for a pebble bed flow domain with the addition

of a bounding wall again presents an opportunity to develop a better understanding of

the fluid mechanical interplay between spherical blu� bodies and walls walls, while

also providing reference data which be used to verify lower fidelity RANS based

simulations.

This study presents results for a DNS of a wall bounded pebble bed domain based

on an extension of the FCC unit cell geometry discussed in §4.

5.2 Methodology

This section discusses the methodology employed during the study. A case outline

is given, including meshing, flow and boundary condition information. The interpo-

lation of data during the simulation is discussed. Finally, the computational aspects

of the simulation is briefly discussed.

5.2.1 Case outline

The geometry for the case is based on the FCC unit cell geometry treated in the

previous section. To generate the mesh, the FCC mesh was copied in each principle

coordinate direction so that an eight FCC unit cell geometry was obtained. After

this, a half FCC unit cell layer was added to a selected domain edge to complete

the layer of spheres next to the wall. Finally, another layer of elements were added

to create a clearance gap between the sphere layer and the wall boundary equal to

the fixed inter-pebble gap spacing of the FCC unit cell. Thus, a consistent spacing
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Figure 5.1: Sectioned volume rendering of the wall bounded domain showing the
averaged velocity magnitude.

between all wall surfaces in the domain was maintained. Figure 5.1 shows the ge-

ometry of the complete domain, with a volume rendering of the averaged velocity

magnitude obtained after 256 convective time units of integration. A cutaway section

corresponding to x Ø 2, y Æ 0, z Ø ≠1 is included to show the velocity profiles inside

the domain in the near wall region.

The spacing between the wall and the spheres was chosen to minimize the num-

ber of additional elements required for the mesh, while still allowing for adequate

resolution of the turbulent boundary layer at the wall boundary. Meshing contact

areas remains a challenge when using hexahedral meshes, as discussed in the previous
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Figure 5.2: Section of the hexahedral mesh for the wall bounded domain in the near
wall region.

section. Thus, at the present time, a non-zero spacing is required to generate a mesh

of acceptable quality. A section of the mesh in the [2, y, z] plane in the near wall

region is shown in Fig. 5.2.

The boundary conditions for the case include non-slip wall conditions for the

sphere surfaces and the bounding wall at the negative y-coordinate domain edge, a

symmetry (slip) condition at the positive y-coordinate domain boundary, and peri-

odic boundary conditions for both x-coordinate domain edges and the stream wise

(z-coordinate) edges.

The flow Reynolds number was based on the same parameters as those used in

the results in §4, namely the averaged domain inlet velocity and the diameter of

the spheres, and an appropriate kinematic viscosity. To ensure that comparisons

could be drawn between the results presented in §4 and the results presented in this
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Figure 5.3: Three-dimensional view of three of the interpolation line sets distributed
in the near wall region.

section, a value of Re = 9308 was used.

5.2.2 Data interpolation

To collect time series data during the simulation, 44 line profiles consisting of

100 point probes each were defined in the computational domain. During run time,

the velocity and pressure information was interpolated at these locations for each

time step to generate time series that could be used do time-series analyses such as

temporal and spatial spectra, temporal auto-correlations, and two-point correlations.

The interpolation lines were chosen to be normal to the wall, with each terminat-
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ing at the wall and the relevant sphere surface depending on the location of the line

in the domain. Figure 5.3 shows a subset of three sets of six interpolation lines from

the total set of 44 lines. Each set is consistently spaced, with a simple translation

of the coordinates generating the interpolation lines sets at di�erent locations in the

domain.

The spacing of the lines that terminate on the surfaces of the the first row of

spheres next to the wall were chosen to have elevations of Â = 15, 30, 45, 60 degrees.

The elevation is defined as Â = 90¶ ≠ „, where „ is the inclination angle from

the zenith, which is defined to be the positive z-coordinate. The layout of each

interpolation line set is presented in Fig. 5.4. The line colors and symbols will be

used in subsequent line plots to demarcate the location at which the relevant profiles

were extracted.

The spacing of the lines that terminate on the surfaces of the the second row of

spheres from the wall were defined to be translated to be at z = z

ref

+ 0.75 and

z = z

ref

+ 1 respectively, where z

ref

is the center point z-coordinate of the sphere

directly below the line in the z-direction. The interpolation line x- and y-coordinates

are also defined to be the x

ref

and y

ref

respectively, where the reference coordinates

are again defined as the relevant sphere center point coordinates.

5.2.3 Computational parameters

The wall bounded domain consisted of 386,400 spectral elements. Based on scop-

ing runs and experience from the simulation of the FCC unit cell case, a polynomial

order N = 10 was chosen for the spatial sub-discretization. This resulted in a domain

consisting of roughly 280 million collocation points.

Time stepping was done using the characteristics scheme, allowing for stable time

integration with a CFL number of 2. This choice of time step length was larger than
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Figure 5.4: Layout of one of the interpolation line sets normal to the wall.

the minimum Kolmogorov time scale for the flow in this case. Fig. 5.5 shows a power

spectrum of the stream wise component of the fluctuating velocity, u

z

, at a point

located in the gap area between two spheres in the sphere layer next to the wall.

It is observed that the energy content for the high frequency fluctuations becomes

negligible at the St = 500, thus illustrating that all energy containing scales are still

captured, thus conforming to DNS requirements.

To reduce the real time to a stationary state for the turbulence statistics, the

ensemble averaging routines discussed in §4.3.6 was employed to conduct production

runs and averaging. After initial development of the flow for 60 convective time units
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Table 5.1: Computational parameters: Wall bounded domain case

Parameter Value
Time step length (L

D

/U) 0.0005
Collocation points 279.08E6
Ranks/Session 16,384
Sessions 16
Total FTT 256
Core hours 8.4E6
Hours/FTT 32,813

using polynomial order N = 6, an ensemble run was initiated using 16 concurrent

sessions, with each session running for a total of 5 convective time units. The first

time unit in each session was used for decorrelating the uniquely perturbed fields,

after which statistics were gathered for the remaining four convective units. This

procedure was repeated four times, with lower polynomial runs used to generate 24

convective units of flow between each ensemble run. This ensured that the initial

condition for each ensemble run was unique. Using this methodology, 256 convective

units of total averaging was achieved.

5.3 Results and discussions

The following subsections discuss selected first- and second-order turbulence statis-

tics. The presented pseudo-color fields are slices of the the domain in [1, y, z]. The

interpolated line profiles correspond to the blue set of profiles shown in Fig. 5.3.

These selections were arbitrarily made, since the periodicity of the domain dictates

that similar results will be observed for a given translation of in the lateral directions.

The interpolated data is normalized in the same manner as discussed in eq. (3.3)

of §3.3.1, while the normalized line zero coordinate corresponds to the location of
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Figure 5.5: Power spectrum for u

z

at the point [1, ≠1, 0].

the wall boundary.

5.3.1 First-order statistics

Data is only presented for ÈU
y

Í and ÈU
z

Í, since the magnitude of ÈU
x

Í is signif-

icantly smaller than the other components. This is expected for the plane under

consideration. For the field of ÈU
y

Í shown in Fig. 5.6, a similar field is observed as

for the single FCC case discussed in §4 in the area beyond the first row of pebbles,

with the flow accelerating laterally around the spheres in the contracted inter-pebble

spaces. Near the wall, the flow is directed towards the wall more consistently, indi-

cating an entrainment e�ect caused by the accelerating fluid near the wall.
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Figure 5.6: Pseudo-color field of ÈU
y

Í (top), and ÈU
z

Í (bottom).

For ÈU
z

Í, shown in Fig. 5.6, the field again resembles the flow distribution seen

in the 1FCC case in the domain beyond the first row of spheres next to the wall.

There is a slight increase in the magnitude of ÈU
z

Í on the side of the first row of

spheres furthest on the wall. The highest stream wise velocity is observed in the

area surrounding the minimum spacing between the sphere and the wall boundary.

Because of this accelerated flow, the recirculation cell behind the spheres in the first

row of pebbles next to the wall is drawn towards the wall and also enlarged when
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Figure 5.7: Pseudo-color field and velocity magnitude vectors for ÈU
y

Í (left), and
ÈU

z

Í (right) highlighting the recirculation behind the pebbles in the near wall region.

compared with the recirculation cells behind the pebbles further removed from the

walls. This is due to the flow entrainment caused by the accelerating flow through

the pebble-wall gap. This is highlighted in Fig. 5.7.

The interpolated line profiles for ÈU
y

Í in Fig. 5.8 shows the negative lateral veloc-

ity, indicating flow towards the wall, in the recirculation cell region. The magnitude

of lateral flow is reduced in the large gaps between the spheres next to the wall. For

the ÈU
z

Í component of the velocity, both flow acceleration next to the wall, as well

as the negative streamwise velocity in the recirculation cell are observable.

5.3.2 Second-order statistics

The second-order statistics highlight the increased Reynolds stress intensity in

the near wall region. For the lateral component Èu
x

u

x

Í, shown in Fig. 5.9, a marked

increase is observed in the gap areas of the first row of spheres next to the wall.
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Figure 5.8: Normalized interpolated line profiles for ÈU
y

Í (left), and ÈU
z

Í (right).

An increase in the magnitude of the stress is also observed close to the surface in

front of the spheres relative to the flow direction. This is related to the acceleration

of the fluid through the gap between the spheres and the wall, and the subsequent

deceleration as the flow is curved away from the wall after passing through the gap

and encounters the next sphere.

A similar trend is observed for Èu
y

u

y

Í in Fig. 5.9, where there is an increase in

magnitude in nearly the entire gap area between the spheres adjacent to the wall.

The shear stress magnitude of this component is also asymmetric behind the second

row of pebbles with relation to the wall, with an increased shearing e�ect taking
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Figure 5.9: Pseudo-color field for Èu
x

u

x

Í (top), and Èu
y

u

y

Í (bottom).

place on the side closest to the wall.

The highest magnitude of Èu
x

u

x

Í occurs in the large gap between the pebbles

next to the wall, as is observable in the top (black line) line plot of this Reynolds

stress component in Fig. 5.10. The magnitude of the component decreases as the

interpolation lines trend towards the area of maximum streamwise velocity in the

minimum pebble-wall spacing. The same trend is observable for Èu
y

u

y

Í in the same

figure.
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Figure 5.10: Normalized interpolated line profiles for Èu
x

u

x

Í (left), and Èu
y

u

y

Í (right).

The stream wise shear stress, Èu
z

u

z

Í, shows the largest increase in magnitude near

the wall in Fig. 5.11. This increase is also intuitively the easiest to understand when

considering the stream wise velocity component shown in Fig. 5.6. Due to the strong

velocity gradient that exists between the high-velocity jet and the recirculation cell

behind the sphere, a steep velocity gradient exists, leading to increased shear stress

in this area.

The o�-diagonal Reynolds stresses are smaller in magnitude than the diagonal

components of the Reynolds stress. Since they are of smaller magnitude, the time

integration period required for these quantities to reach stationarity is longer. The
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Figure 5.11: Pseudo-color field for Èu
z

u

z

Í (top), and Èu
y

u

z

Í (bottom).

Èu
x

u

y

Í, and Èu
x

u

z

Í Reynolds stresses are expected to be smaller in the plane under

consideration here, since the magnitude ÈU
x

Í is small.

For Èu
y

u

z

Í, shown in Fig. 5.11, acceptable convergence has been achieved. The

shear layers in the gaps between the spheres is again consistent with the results

generated in the 1 FCC case. Additionally, as with Èu
z

u

z

Í, the stress is increased

in the area where the high velocity flow through the contracted gap between the

wall and first row of spheres interacts with the stagnation region behind the spheres.
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Figure 5.12: Normalized interpolated line profiles for Èu
z

u

z

Í (left), and Èu
y

u

z

Í (right).

This is due to the entrainment e�ect of the high velocity flow through the narrow

gap causing lateral acceleration of the flow towards the wall before being decelerated

again as it approaches the wall.

The interpolated profiles for Èu
z

u

z

Í, shown in Fig. 5.12, indicate local maxima

close to the wall for the lines located in the large gap between the spheres. These

local maxima correspond to the area of high shear stress shown in Fig. 5.11. The

smaller double bumps observed in the second (red) profiles show the e�ect of two

spheres in close proximity. This type of behavior should prove di�cult for RANS

based simulations to capture accurately, and is thus a good example of why these
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high-fidelity results are important for this class of flow.

Figure 5.12 also shows the in-plane covariance component, Èu
y

u

z

Í. The first line

interpolation (black), which is located in the center of the large gap between the

pebbles, shows a qualitatively similar profile to those observed in the central gaps of

the 1FCC case. The subsequent line profiles also show the maxima of this Reynolds

stress component in the area where the interaction between the recirculation cell and

the high velocity jet occurs.

5.4 Conclusions

This section detailed the development and results of a direct numerical simulation

of incompressible flow in a domain consisting of regularly packed spheres, with a

bounding wall. Based on a review of the available literature, very few works have,

either experimentally of computationally, treated the near wall e�ects of flow in

a geometry such as this in detail. The flow Reynolds number was chosen to be

consistent with that used in the generation of the FCC unit cell data in §4.

Presented results include selected first- and second-order turbulence statistics.

While the ensemble averaging routines that are available in Nek5000 provide a pow-

erful tool for reducing the real time to convergence of the turbulence statistics, the

high computational cost of DNS means that certain statistics could not be considered

converged even as the computational hours committed to their development neared

10 million hours.

The statistics that could be considered converged were qualitatively similar to

those observed in the FCC case when considering domain units that were at least

two rows of spheres removed from the wall. Closer to the wall, the altered packing

structure resulted in areas of increased stream wise velocity flow in the areas of

minimum clearance between the wall and the first row of spheres. Additionally,
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enlarged areas of flow recirculation were observed behind the spheres in the first row

next to the wall.

Additional data generation is possible for this case, such as the calculation of

cross-flow fluxes to ascertain whether the wall leads to any significant cross-flow

e�ects. With more time integration, the budgets of the turbulent kinetic energy

equation may also be calculated to investigate how the geometry in the near wall

region influences the transport of turbulence energy, especially since the presented

second order statistics show increased shear stress magnitudes in the wake separation

areas.
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6. CONCLUSIONS

In this section, the conclusions drawn from the three numerical experiments are

consolidated and synthesized in to an overarching set of conclusions. The objectives

for each experiment are restated in the subsections that follow here. Conclusions are

then discussed for each objective.

6.1 Conclusions

The conclusions are detailed in the order in which they were presented in the

results sections.

6.1.1 Numerical Experiment I

• Verify the simulation methodology by using the available numerical simulation

and experimental literature.

Data from literature that treat the canonical case of flow over a sphere in free

stream conditions were used to verify the correct implementation of the case. Perti-

nent results used for comparison were skin-friction coe�cients, sphere surface pres-

sure coe�cient, shedding Strouhal number, and domain axial center-line velocity

profiles. Good comparisons were obtained for all the data.

It was imperative that the simulation methodology be confirmed before extension

to the two sphere case. Since the objective of the free-stream flow cases was to

confirm that the addition of spheres to the canonical case would increase the temporal

instability of the flow, confidence in the methodology was paramount.

• Confirm increased meta-stable behavior of long time-averaged data with the

addition of a additional spheres to the canonical case.
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Based on comparison of several first- and second-order turbulence statistics and

components of the TKE transport equation, it was observed the the addition of a

second sphere in the free-stream flow cases introduced significant asymmetry of the

temporally averaged flow data. This is consistent with observations made in the

FCC case.

6.1.2 Numerical Experiment II

• Generate a high-fidelity database of time-invariant flow data, including:

– First- and second-order turbulence statistics.

– Budgets of the turbulent kinetic energy.

The results presented in §4 show selected first- and second-order turbulence statis-

tics, and selected terms of the TKE transport equation. The conformance of the data

to DNS requirements was verified using both the calculated values of the Kolmogorov

scales, as well as the comparison of data sets of di�ering polynomial order. The data

conformed to DNS requirements based on both criteria.

The data generated using seventh- and ninth-degree discretization delivered sim-

ilar results, indicating that even the lowest chosen discretization level delivered DNS

results. This is important in practical terms, since the computational e�ort per FTT

is significantly less than for the higher discretization levels. Thus, when considering

first- and second-order statistics, higher levels of discretization are not required.

• Identify and isolate temporal instabilities present in the flow.

The long time-integration achieved during the FCC runs showed a low-frequency

switching behavior of the flow that led to an asymmetry of the turbulence statistics

in the symmetric flow domain. A POD of the flow revealed time-dependent coher-

ent structures in the recirculation region behind the pebbles, which is consistent
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with observations made in literature regarding slowly revolving flow wake separation

structures. The behavior of these structures correlated with the asymmetry that was

manifesting in the turbulence statistics.

Based on the observed asymmetry of the flow statistics, further tests were done

using an expanded FCC domain and an ensemble averaging scheme that allowed for

spatial averaging of the flow instead of temporal averaging. The results from this

case delivered symmetric, invariant first- and second-order statistics.

These findings challenge the ergodicity assumption that allows time-averaged

data to be equated to ensemble (spatial) averaged data. While the mechanism that

drives the low-frequency oscillatory behavior has not been fully quantified, it can

be concluded that to generate invariant statistics for the purposes of high-fidelity

database generation, ensemble averaging routines may be required to remove any

asymmetry from the statistics. Researchers must however be cognizant of the fact

that the ensemble averaging procedure may in e�ect be suppressing low-frequency

physical processes in the flow.

6.1.3 Numerical Experiment III

• Generate first-of-a-kind DNS results that quantify the e�ect of a bounding wall

on the flow.

The purpose of the simulation of the wall bounded geometry was to implement

and expand the lessons learnt from the previous studies and develop an initial tur-

bulence statistics data set that quantified the flow in the near wall region of a wall

bounded, expanded FCC domain.

Initial first- and second-order statistics generated for the wall bounded case was

discussed. It was observed that the flow acceleration in the contracted spaces between

the pebbles and the bounding wall cause the flow to relaminarize. Also observed was

106



enhanced flow stagnation and recirculation e�ects in the first row of spheres next to

the wall.

The above mentioned e�ects may have a significant impact on heat transfer be-

havior in a practical system, as the convective heat transfer will be diminished due

the the laminarization of the flow in the areas where the pebbles contact the wall.

The flow stagnation regions will also large temperature gradients that may compro-

mise the structural integrity of the near wall spheres during long residence time in

the reactor core.

6.2 Future work

Based on the findings, a number of subsequent studies may be initiated to expand

upon the analyses presented in this dissertation. These include:

1. The addition of heat transfer to characterize the e�ects of the flow on the

temperature distribution in pebble bed geometries. Conjugate heat transfer

treatment is recommended for such investigations.

2. DNS studies of the e�ect of inter-pebble contact treatment in both flow and

thermal fields. A systematic investigation of di�erent contact treatments using

high-fidelity methods has not been done based upon a review of the currently

available literature. Since contact treatment has the ability to markedly influ-

ence results obtained using numerical simulations, it’s e�ect must be quantified.

3. Investigation of the physical e�ects that drive the metastable behavior of the

flow in pebble bed geometries.
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