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ABSTRACT

This thesis studies the problem of recursive distributed state estimation over

unreliable networks. The main contribution is to fuse the independent and dependent

information separately. Local estimators communicate directly only with their imme-

diate neighbors and nothing is assumed about the structure of the communication

network, specifically it need not be connected at all times. The proposed estimator is

a Hybrid one that fuses independent and dependent (or correlated) information using

a distributed averaging and iterative conservative fusion rule respectively. It will be

discussed how the hybrid method can improve estimators’s performance and make it

robust to network failures.

The content of the thesis is divided in two main parts. In the first part I study

how this idea is applied to the case of dynamical systems with continuous state

and Gaussian noise. I establish bounds for estimation performance and show that

my method produces unbiased conservative estimates that are better than Iterative

Covariance Intersection (ICI). I will test the proposed algorithm on an atmospheric

dispersion problem, a random linear system estimation and finally a target tracking

problem.

In the second part, I will discuss how the hybrid method can be applied to

distributed estimation on a Hidden Markov Model. I will discuss the notion of

conservativeness for general probability distributions and use the appropriate cost

function to achieve improvement similar to the first part. The performance of

the proposed method is evaluated in a multi-agent tracking problem and a high

dimensional HMM and it is shown that its performance surpasses the competing

algorithms.
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1. INTRODUCTION

1.1 Definitions

Some theoretical background that will be used throughout the rest of this thesis

is reviewed in this chapter. The content is taken mainly from [9, 7, 25] and the

interested reader can find further details therein.

Definition 1. A graph is an ordered pair G = 〈V , E〉 where, V and E are the set

of graph nodes and edges respectively. If (vi, vj) ∈ E , it means nodes vi and vj are

connected. in-Neighbors of node vi are defined as1

N i = {∀vj ∈ V , (i, j) ∈ E}. (1.1)

Also, |N i| is the cardinality of N i. The degree of a node vi, denoted di, is the number

of edges incident to it.

Definition 2. If a weight is assigned to each edge of the graph G = 〈V , E〉, the result

is called a weighted graph. An example weighted graph is shown in Fig. 1.1.

1.2 Consensus Algorithm

One of the fundamental problems in a network of agents is to reach consensus

over a decision or opinion. Any solution is constrained by a number of factors

including, network communication topology and the agent’s knowledge about it.

Agents can be static or dynamic (moving) and represent sensors, robots, UAVs, etc.

One example application is depicted in Fig. 1.2 where a flock of heterogeneous robots

1The traditional definition for the node vif neighbors in graph theory excludes node vi. I choose
this definition since it results in more condensed formulas.

1



v1

v2

v3

v4

e14
w12

w11

w21

w24
w22

w23

w32
w34

w33

w43

w44

w41

Figure 1.1: An example directed graph with four nodes

are moving towards a goal. They are communicating to each other and making

decisions collectively. The ground robots get disconnected from the Quadrotors at

some point and they get back together later. The group is trying to keep a specific

formation while moving toward a goal position.

The distributed consensus problem’s objective is to devise algorithms for local

processing and messaging protocol such that by following them, nodes reach an

agreement over an opinion (usually represented by a scalar, vector or a matrix). One

of the main categories of consensus problems is the distributed averaging problem.

1.3 Distributed Averaging

Definition 3. Distributed Averaging: Assume that we have a network with n nodes

whose time varying communication topology is denoted by Gk = 〈V , Ek〉. The i’th

component of vector x(0) = [x1(0), · · · , xn(0)] represents the initial value at node i.

Let xave =
∑n

i=1 x
i be the average node value. The goal in distributed averaging is to

2



Figure 1.2: A typical robotics scenario in which reaching to a target point is the
objective.

calculate xave in a distributed manner.

The following linear update formula is utilized to update node values

xi(k + 1) =
∑n

j=1γij(k)xj(k). (1.2)

In [25] the conditions for convergence of this update rule to xave is studied. The

following assumptions and theorem summarizes the results relevant to this thesis.

Assumption 1.3.1. There exists a positive constant α such that:

(a) γii(k) ≥ α, for all i, t.

(b) γij(k) ∈ {0} ∪ [α, 1], for all i, j, t.

(c)
∑n

j=1 γij(k) = 1, for all i, k.

Assumption 1.3.2 (Bounded interconnectivity times). There is some B such

that for all k, the graph 〈 V , E(kB) ∪ E(kB + 1) ∪ · · · ∪ E((k + 1)B − 1)〉 is strongly

connected.

Theorem 1.3.3. Under Assumptions 1.3.1 and 1.3.2, the update rule 1.2 guarantees

asymptotic consensus, that is, there exists some c (depending on x(0) and on the

sequence of graphs G(·)) such that limk→∞ x
i(k) = c, for all i.

3



If the network topology is fixed, i.e., G(k) = G for all k, one can associate a

Markov Chain with network G, and assign transition probabilities of the Markov

Chain as edge weights. Then, the consensus update rule can be written as

x(k + 1) = Γx(k), (1.3)

where Γ is the transition probability matrix. It can be shown that if Γ is a doubly

stochastic matrix, i.e. its rows and columns sum to one, the consensus algorithm is

guaranteed to converge to xave. A particular choice of a doubly stochastic matrix based

on a Metropolis Hastings Markov Chain (MHMC) has been proposed in [32, 34]. The

advantage of MHMC based distributed averaging is that the weights are determined

only based on local information and no global knowledge of network topology is

required. An example application has been shown in Fig. 1.3. In a network consisting

of n = 13 nodes with a topology shown in 1.3(a), nodes can reach a consensus over

the average initial node values through the MHMC-based consensus method. The

evolution of the node values is depicted in 1.3(b). Nodes converge to the same value

only using local message passing.

4



(a) Network Topology

(b) The evolution of node values from their initial value to xave

Figure 1.3: Evolution of node values for a distributed averaging algorithm.
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2. LINEAR/LINEARIZED SYSTEMS AND GAUSSIAN NOISE

This chapter expands on the material published in reference [28]1

2.1 Related Work

This chapter studies distributed estimation using multiple robotic agents with

applications to the estimation of a dynamic random field. When the field dynamics

can be described by a linear, lumped-parameter model, the classical solution is the

Kalman filter (KF). However, bandwidth and energy constraints may preclude the

centralized implementation of such a filter and necessitate the design of a distributed

estimator.

In general, a distributed sensor network cannot achieve the estimation quality of

a centralized estimator but is inherently more flexible and robust to network failure

and consequently is advantageous in certain applications [36].

In distributed estimation settings, the system comprises a set of nodes connected

to each other through a communication network with some topology. Nodes are

assumed to make noisy observations of a global state from which the full state of

the system cannot necessarily be recovered. The goal is to design local estimators

that can recursively calculate an estimate of the global state with access only to

the information locally available to nodes. We desire that estimates be conservative

and the estimator be consistent. No prior knowledge about the network topology is

assumed.

When the topology of the network is known a priori and it remains connected

throughout, some existing methods recover the centralized estimator’s performance

1 Reprinted, with permission, from Amirhossein Tamjidi, Suman Chakravorty, and Dylan Shell,
”Unifying consensus and covariance intersection for decentralized state estimation” In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 125–130, 2016.
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[23, 24] for dynamic state estimation. However, such methods are not applicable for

the case where the network does not remain connected all the time.

For static state/parameter estimation Xia, et al., introduce a method based on

distributed averaging that can converge to the global state estimator provided that

the infinitely occurring communication graphs are jointly connected [33]. This method

relies on the distributed averaging property of Metropolis-Hastings Markov Chains

(MHMC). The advantage of it is that the network topology can be dynamically

changing and need not be connected at all times. The local estimators exchange

information only with their immediate neighbors and remain agnostic about the

topology of the rest of the network. Their work is limited to static field/parameter

estimation. In the dynamic state estimation, when the network becomes disconnected,

the estimate priors can drift away while they still have some mutual information.

Performing distributed averaging on those priors is incorrect since it results in multiple

counting of mutual information. In order to solve this problem one would have to resort

to distributed estimators that account for the correlations between local estimates.

In [11], a Distributed Delayed-State Extended Information Filter (DDSEIF) is

described that handles the correlation between local estimates. This method only

works in directed networks that do not have any loops. It is claimed that under certain

assumptions local estimates would converge to the centralized estimate. However, the

method requires a large amount of data communication, storage memory, and book-

keeping overhead, and therefore, does not lend itself to online resource constrained

recursive distributed state estimation.

Another approach to deal with the correlation of local estimates is to use Covariance

Intersection (CI) methods [14] that produce conservative estimates in the absence

of correlation knowledge. The work in references [30, 14, 12, 20, 16, 15] falls into

this category. They propose different optimization criteria to perform CI and/or use

7



different iterative CI schemes for distributed state estimation.

The downside of distributed CI based methods is that they produce overly conser-

vative estimates by unnecessarily performing the covariance intersection on generally

uncorrelated new information at the current step. This incurs significant performance

loss compared to MHMC-based distributed averaging, which is a superior way to

reach consensus on uncorrelated information.

2.2 Motivating Example

In fig. 2.1 a motivating example is given for the method proposed in this chapter.

Consider an atmospheric dispersion scenario as an example where there exists 6

pollutant sources and 8 receptor distributed in the field connected to each other

through a time varying graph. At first, all receptors are connected and all the nodes

reach a consensus over the field estimate. Later, for a time interval, we have two

disconnected groups. The sensors in each group continue receiving new information

and calculate their local estimates to the best of their knowledge, After some time

the network becomes connected again and agents in each group will get access to

Figure 2.1: A motivating example: In an atmospheric dispersion scenario there
exists 6 pollutant sources and 8 receptor distributed in the field connected to each
other through a time varying graph. At first all receptors are connected and for a
time interval we have two disconnected groups. The question is how to handle the
consensus over estimates after reconnection.
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the information accumulated in the other group during the disconnection time. As

explained earlier, since the priors of the two groups become different, simple averaging

is no longer applicable, and using Covariance Intersection results in too conservative

estimates. The question is how to handle the consensus over estimates when agents

are connected, during the disconnection time, and after reconnection.

In this work we strive to bring together the best of MHMC based distributed

averaging and CI. The former is suitable for reaching consensus over uncorrelated

information and the later is useful for combining estimates whose correlations are

unknown or difficult to keep track of. We propose a hybrid scheme that has comparable

performance to MHMC consensus while being robust to network failures. Albeit

the method is explained with respect to the dynamic field estimation example, it is

generally applicable to most distributed estimation scenarios.

In Section 2.3, the notation used in this chapter is explained as well as assumptions

and system model. Section 2.4 discusses some preliminaries on distributed estimation

which paves the way for introducing our problem objective and method. Our proposed

method is presented in Section 2.4 along with its theoretical performance analysis.

We extensively evaluate our method’s performance in Section 2.7.

2.3 Modeling

2.3.1 State Space Modeling of the Dynamic Field

In this chapter the atmospheric dispersion problem [27] is considered as a case-

study. The three-dimensional advection-diffusion equation describing the contaminant

transport in the atmosphere is:

∂c

∂t
+∇ · (cu) = ∇ · (K∇c) +Qδ(X −Xs), (2.1)

9



where c(x, y, z, t), the parameter of interest, is the mass concentration of the pollutant

at location X = (x, y, z). Other parameters and boundary conditions are explained

in [27]. With proper discretization of the above PDE, one can define a state vector

by stacking the values of the field at a given time k over all sites of the discretization

lattice. The PDE model then becomes a lumped parameter, discrete-time linear (LTI)

state equation of the form

x(k + 1) = Ax(k) +Bu(k), (2.2)

where x(k) = [Fk(1, 1, 1) · · ·Fk(n, n, n)] and Fk(ix, iy, iz) = c(ix∆x, iy∆y, iz∆z, k∆t).

2.3.2 Stochastic Field Model

Since we consider the case where we have noise and the system is stochastic, we

model the evolution of the field using the following equation which relates the state

at time step k to k + 1:

x(k + 1) = Ax(k) +Bu(k) + w(k). (2.3)

In the above equation u(k) ∈ Rm accounts for m input variables and the vector w(k) ∼

N (0, Q(k)) represents additive white noise used to model unknown perturbations.

2.3.3 Network Topology

Assume that we have N homogeneous agents associated with nodes of a graph.

These agents can communicate with each other under a time-varying network topology

Gk = 〈Vk, Ek〉 where Vk and Ek are the set of graph nodes and edges respectively. If

(i, j) ∈ Ek, it means agents i and j can communicate. The node corresponding to the

10



i-th agent is denoted by vi. Neighbors of node vi are defined as

N i = vi ∪ {∀vj ∈ V , (i, j) ∈ E}. (2.4)

Also |N i| is the cardinality of N i.

Each agent has a processor and a sensory package on-board. Sensors make

observations every ∆t seconds and processors and the network are fast enough to

handle calculations based on message passing among agents every δt seconds. We

assume that δt� ∆t. We also assume that the agents exchange their information

over the communication channel which is free of delay or error.

We assume that x(k) denotes the state of the field at time-step k. Each agent

retains a local version of x(k) which is denoted by xi(k). For random variables we

use the following notation: x̂ = E(x) and Px = E[x− x̂]2 are the expected value and

the covariance of the random variable x respectively.

2.3.4 Observation Model

We assume that each agent has a sensor that produces noisy observations that

are functions of the state of the field. The observation model of the i’th sensor is

zi(k) = Hi(k)x(k) + vi(k), (2.5)

vi(k) ∼ N (0, Ri(k)). (2.6)

2.4 Distributed Filtering Preliminaries

Filtering is the process of recursively computing the posterior probability of a

random dynamic process x(k) conditioned on a sequence of measurements Zk =

{z(1), z(2), . . . , z(k)}, where z(k) denotes the observation vector at the time-step k.

Under the Gaussian assumption, the Kalman Filter (KF) is the optimal recursive

11



filter for linear state space systems. We denote the predicted and estimated mean

and covariance at time k by (x̂−(k), P−(k)) and (x̂(k), P (k)).

2.4.1 Centralized Kalman Filter

The KF steps are generally formulated based on the mean and covariance matrix

representation of Gaussian random variables involved; however, an alternative repre-

sentation, called the information form of the KF is more useful and intuitive in the

development of the decentralized filter. In this representation we define

y(k) = P−1x (k)x(k), (2.7a)

Y(k) = P−1x (k), (2.7b)

where y(k) and Y(k) are the information vector and information matrix respectively.

The prediction step of the KF can then be written as

M(k) = (A−1)TY(k − 1)A−1, (2.8a)

P (k) = M(k) +Q(k)−1, (2.8b)

Y−(k) = M(k)−M(k)P (k)−1M(k), (2.8c)

y−(k) = Y−(k)AY(k − 1)y(k − 1). (2.8d)

The information content of an observation zj(k) is δij(k) =HT
j (k)Rj(k)−1zj(k) along

with the information matrix δIj(k) =HT
j (k)Rj(k)−1Hj(k). Assuming that information

from all agents is available to a central processor, the update step of KF can be

carried out by adding the information from different observations to the predicted

12



values.

y(k) = y−(k) +
∑N

j=1 δij(k) (2.9a)

Y(k) = Y−(k) +
∑N

j=1 δIj(k) (2.9b)

This formulation is called the Centralized Information Filter (CIF).

An assumption underlying the CIF is that there is a central processor which has

access to all the information available. However, when there is no central processor

and each agent can only communicate with its neighbors, we want to formulate a

decentralized version of the information filter. When run by all agents they should

converge to the centralized estimate of the field state.

2.4.2 Decentralized Estimator Designs

2.4.2.1 Consensus Based Estimator

We start with CIF procedure outlined in previous section. Looking at Eqs.

2.9a–2.9b, one can see that

[δI, δi](k) , N. 1
N

∑N
j=1[δIj, δIj](k) , N [δI, δi](k).

Now if all the agents have the same prior information and if via a distributed

averaging method the agents can reach a consensus over δi(k) and δI(k), they can use

Eqs. 2.9a–2.9b to get a decentralized estimate whose results asymptotically converge

to the centralized estimate.

Fortunately, such a method exists. The distributed averaging method of [33]

makes minimal assumptions about the network topology and only relies on local

information exchange between neighboring nodes of a graph to reach a consensus over

the average initial value of the nodes. The method uses an iterative linear consensus
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filter based on the weights calculated from an MHMC. Throughout this chapter, to

avoid confusion, we use superscript l to indicate the consensus iterations. Consider

communication graph Gl. One can use the message passing protocol of the form

xl+1 =
∑|N l|

j=1γ
l
ijx

l
j to calculate the average of the values on the graph nodes in which

dli = |N l

i| is the degree of the node vi, and

γlij =



1
1+max{dli,dlj}

if (i, j) ∈ E l,

1−
∑

(i,m)∈El
γim if i = j,

0 otherwise .

(2.10)

Note that for each node i, γij’s only depend on the degrees of its neighboring nodes.

Also, due to the averaging property of MHMC weights, after reaching consensus,

MHMC estimates converge to the centralized estimator’s results. Therefore, given

the ideal centralized estimate (x̂CTR, P CTR
x ), we have x̂MH

i = x̂CTR and PMH
xi

= P CTR
x in

the limit.

In practice the priors become different as a result of network disconnection. In

those cases agents have some shared information (from the time they were connected

to each other) but will accumulate new information whilst disconnected from one

another. Their priors will differ after reconnection so, consequently, their consensus

must be handled with care.

2.4.2.2 Covariance Intersection Based Estimator

It follows from the above discussion that if the priors are not the same among the

network nodes, distributed averaging alone will not produce consistent estimates. One

way of handling such a scenario is using Covariance Intersection (CI) methods. We

may use an iterative CI method to reach a consensus over the local estimates when

14



the priors differ, either owing to disconnection or termination of the consensus process

over-early. In iterative CI, the goal is to fuse different estimates of a random variable

without having any knowledge about the cross covariance between such estimates.

Iterative CI, iteratively solves the following optimization problem and updates local

estimates accordingly until it reaches consensus.

2.4.3 Iterative CI (ICI)

At initial iteration l = 0, for each agent, assign the local estimate, [Y 0
i , y0

i ], to be

Y 0
i , Yi(t0) + δIi(t0), y0

i , yi(t0) + δii(t0).

Then for each iteration afterward solve for w∗ such that

ω∗ = argmin
ω
J
(
[
∑

j∈N l
i
ωjY l

j ]−1
)
,

s.t.
∑|N l

i |
j=1ωj = 1, ∀j ωj ≥ 0,

(2.11)

where J (·) is an optimization objective function; we consider trace(·) or log det(·).

Local estimates are then updated for the next iteration

[Y l+1
i , y l+1

i ] =
∑

j∈N l
i
ω∗j [Y l

j , y lj]. (2.12)

As discussed in [14], CI and consequently iterative CI (ICI) generate conservative

estimates which means that E[x− x̂ICI
i ] = E[x− x̂CTR] = 0 and P ICI

xi
≥ P CTR

x for the local

estimates and the consensus value. The disadvantage of CI is that it generates overly

conservative estimates by continually neglecting the cross correlation information.
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2.4.4 Problem Objective

Our goal is to design a network agnostic recursive decentralized estimator to

calculate the local estimate xHYB
i along with an associated covariance P HYB

xi
such that

the following properties hold:

E[x− x̂ICI

i ] = E[x− x̂HYB

i ] = E[x− x̂CTR] = 0,

J (P CTR

x ) ≤ J (P HYB

xi
) ≤ J (P ICI

xi
), (2.13)

i.e., we are looking for an unbiased estimate whose covariance is less than that of CI.

2.5 Hybrid CI Consensus

We propose a hybrid approach that uses ICI to reach consensus over priors and the

MHMC based consensus filter for distributed averaging of local information updates.

Our method is summarized in Algorithm 1. We explain the flow of the proposed

method using a simple scenario with two agents. Generalization to more than two

agents is straightforward and follows similar steps.

Imagine a scenario consisting of two agents, observing a dynamic field with state

vector x, that are communicating with each other through a time-varying network

topology. At time t0, the agents start with priors [y−1 (t0),Y
−
1 (t0)] and [y−2 (t0),Y

−
2 (t0)]

respectively.

At time t1 the field evolves to the new state x(t1) and agents calculate their own

local prediction (line 1 in the algorithm). Then they make observations z1(t1) and

z2(t1), respectively, and compute the local information updates [δi1(t1), δI1(t1)] and

[δi2(t1), δI2(t1)] (lines 2 and 3 of the algorithm).
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Algorithm 1: Hybrid Method

Input : [yj(t0),Yj(t0)]
1 Use Eqs. 2.8c – 2.8d to calculate predicted values [y−j (t1),Y

−
j (t1)] given

[yj(t0),Yj(t0)]
2 Collect local observation zj(t1) and calculate jacobian and noise covariance

[Hj(t1), Rj(t1)]
3 Calculate the local information update

δij(t1) = HT
j (t1)R

−1
j (t1)zj(t1)

δIj(t1) = HT
j (t1)R

−1
j (t1)Hj(t1)

4 Initialize consensus variables (l = 0)
5

[y0
j ,Y 0

j ] = [y−j , Y
−
j ](t1) [δi 0j , δI 0

j ] = [δij, δIj](t1)

6 while NOT CONVERGED do

7 BROADCAST[y lj,Y l
j , δi lj, δI lj]

8 RECEIVE[y lk,Y l
k , δi lk, δI lk] ∀k ∈ N

l

j

9 Collect received data

Clj = {y lk∈N l
j
,Y l

k∈N l
j
} Ml

j = {δi lk∈N l
j
, δI lk∈N l

j
}

10 Do one iteration of CI on consensus variables for local prior information Clj

[y l+1
j ,Y l+1

j ] = CI(Clj)

11 Do one iteration of MHMC on consensus variables for new information Clj

[δi l+1

j , δI l+1

j ] = MHMC(Ml
j)

12 l← l + 1

13 Calculate the posteriors according to:

Yj(t1) = Y l
j + nCGδI lj

yj(t1) = y lj + nCGδi lj

return [Yj(t1),yj(t1)]
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The two agents, if performing ICI, would find a fused estimate

Y ICI = wICI(Y−1 + δI1) + (1− wICI)(Y−2 + δI2),

where wICI is obtained from solving the optimization problem in Eq. 2.11. Note that

doing MHMC alone is not possible here since Y−1 and Y−2 are different. In our hybrid

method we do the following:

Y HYB = wHYBY−1 + (1− wHYB)Y−2︸ ︷︷ ︸
CI to reach

consensus over priors

+ δI1 + δI2︸ ︷︷ ︸
consensus over
the incremental

information

.

It can be seen that δI1+δI2 ≥ wCIδI1+(1−wCI)δI2 and J (wHYBY−1 +(1−wHYB)Y−2 ) ≥

J (wCIY−1 + (1− wCI)Y−2 ) due to the fact that the optimization problem for Y−2 and

Y−2 has the optima wHYB. If J (·) has the property that if J (Y1) ≥ J (Y2) and I1 ≥ I2

then J (Y1 + I1) ≥ J (Y2 + I2), then our method is guaranteed to outperform CI.

For an N -agent system with the i’th agent having prior Y −i , the ICI approach

is used to find a consensus over the priors using Eq. 2.11 recursively. The MHMC

approach is used to form the consensus over the new information, i.e.,
∑N

j=1 δIj (Eq.

3.10). In line 12 of the algorithm, nCG is the number of agents that form a connected

group, and it can be determined by assigning unique IDs to the agents and passing

these IDs along with the consensus variables. Each agent keeps track of unique IDs it

receives and passes them to its neighbors. The following propositions hold.

2.6 Analysis

2.6.1 Proof of Convergence

Proposition 1. If the objective function J (·) in Eqn. 2.11 is strictly convex, the

ICI process is guaranteed to reach a consensus over the priors, i.e., ∃Y?, such that ∀i
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liml→∞ Y l
i = Y?. The same result holds for the information vector as well.

Proof. At each iteration ’l’ and for each agent ’j’, ICI solves an instance of the

optimization problem in Eq. 2.11. Local variables Yi(l),∀i ∈ 1, · · · , N are then

updated according to

Yi(l + 1) =
∑

j∈N i(l)

ω∗jYj(l). (2.14)

Performing ICI is equivalent to a mapping F that maps the set of local information

matrices at step l to a new set of information matrices at step l + 1. Defining

I(l) = {Y1(l), · · · ,Yn(l)}, we can write

I(l + 1) = F
(
I(l)

)
. (2.15)

The very definition of the optimization problem in Eq. 2.11 requires that2

J (Y −1i (l + 1)) ≤ J (Y −1j (l)) ∀j ∈ N i(l) (2.16)

Lets define V (Yi, l) = J (Y −1i (l)). Take the Lyapunov function of the whole network

at iteration l to be

V(I(l)) =
N∑
i=1

V (Yi, l). (2.17)

If J (X) is a positive function over the set of {X ∈ Sn++ , Symmetric Positive Definite

matrices}, then ∀l, V(I(l)) > 0.

Now define the set Ω = {I| V(I) = V
(
F(I)

)
}. Due to the strict convexity

of J , V is also strictly convex and ∀I ∈ Ω, all Yi’s should be equal; otherwise,

V(I(l + 1)) < V(I(l) due to the strictly convex property of J which results in a

contradiction. This proves that V(I) is a decreasing function unless all the local

2Can be easily proved by contradiction.
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information matrices are equal.

Since V(I) is decreasing, and it is a positive function, it has a lower bound VL > 0.

When the network reaches this lower bound, the value of V(I) does not change and

I ∈ Ω. According to the above discussion, all the local information matrices should

be equal then.

Therefore, by performing ICI, the Lyapunov function of the network is guaranteed

to reach a lower bound in which all Yi’s are equal. We conclude that if there exists a

Y∞, then the network is guaranteed to converge to it.

Strict convexity of J , traceY (w)−1 in w is straightforward to show. Next proof

shows that log detY (w)−1 is also strictly convex in w. By establishing strict convexity,

the convergence of ICI process is guaranteed by proposition 1.

Proof. For the objective function J (w) = log detY (w)−1, the gradient vector with

respect to the elements of w is

gi(w) =
∂log detY (w)−1

∂wi
= − trace(Y (w)−1Yi) (2.18)

= − trace(Y (w)−1/2YiY (w)−1/2) ≤ 0 (2.19)

for i = 1, · · ·n.

Similar to the above calculation, for the Hessian matrix we have
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Hij(w) =
∂2log detY (w)−1

∂wi∂wj
= − trace(Y (w)−1Yi) (2.20)

= − trace(Y (w)−1YiY (w)−1Yj) (2.21)

= − trace((Y (w)−1/2YiY (w)−1/2)

(Y (w)−1/2YjY (w)−1/2)) (2.22)

for i, j = 1, · · ·n. We can verify that Hik(w) is strictly convex for y ∈ Rn.

yTH(w)y

=
n∑

i,j=1

−yiyj trace(Y (w)−1/2YiY (w)−1/2)

(Y (w)−1/2YjY (w)−1/2)) (2.23)

= trace
(
Y (w)−1/2

(∑n

i=1
yiYi

)
Y (w)−1/2

)2
(2.24)

=
∥∥∥(Y (w)−1/2

(∑n

i=1
yiYi

)
Y (w)−1/2

)∥∥∥2
F
≥ 0 (2.25)

which establishes that log detY (w)−1 is convex in w. From Eq. 2.23 one can see that

yTH(w)y = 0 only if
∑n

i=1 yiYi which will not happen for y 6= 0 due the independence

of Y1, · · · , Yn. Therefore, log detY (w)−1 is strictly convex in w. This guarantees that

there is a unique solution w∗ for the CI problem with the assumptions in proposition

1.
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A counter example for Hybrid method

In order to show the superiority of the Hybrid method to CI, one should be able

to show that

det
[∑
j∈N i

ωICI

j Yj +
∑
j∈N i

ωICI

j δIj
]

≤ det
[∑
j∈N i

ωHYB

j Yj +
∑
j∈N i

δIj
]

(2.26)

We know that
∑

j∈N iδIj ≥
∑

j∈N iωICI
j δIj and det

[∑
j∈N iωHYB

j Yj
]
≥ det

[∑
j∈N iωICI

j Yj
]
.

However, as the following example shows, for PSD matrices A,B,C, and D, A ≥ C

and det[B] ≥ det[D] does not guarantee that det[A+B] ≥ det[C +D]. This can be

seen by assuming the following assignments.

A =

2 0

0 2

 , B =

1 0

0 1

 ,
C =

1 0

0 1

 , D =

10 0

0 0.01

 (2.27)

With this assignments

det(A+B) = 9 ≤ det(C +D) = 11.11

2.6.2 Performance Analysis

With the counter example in the previous section, one cannot show that in general

for J (·) = log det(·), J (P HYB
xi

) ≤ J (P ICI
xi

) In the following we show that if hybrid

method uses weights calculated by ICI, it outperforms ICI. Also, if the objective is to
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reduce the trace , i.e, J (·) = trace(·), then hybrid method always outperforms ICI.

Proposition 2. For the distributed estimation problem with the network topology

G = 〈V , E〉, and the objective function J (·) = log det(·), if at the beginning, the

estimate priors satisfy ∀i, Y HYB
i (0) ≥ Y ICI

i (0) and if at each iteration of the consensus

process ICI weights are used to fuse priors in the Hybrid method, then, for all agents

i = 1, · · · , N and for all iterations l = 1, · · · , L

Y HYB

i (l) ≥ Y ICI

i (l), (2.28)

and after convergence

P HYB

i (+∞) ≤ P ICI

i (+∞). (2.29)

Proof. For l = 0, the inequality in Eq. 2.28 holds by default. Now suppose that it

holds at step l for agent i, ∀i ∈ [1, · · · , N ]. Then, since ∀i, Y HYB
i (l) ≥ Y ICI

i (l),

∑
j∈N i

ωICI

j (l)Y HYB

j (l) ≥
∑
j∈N i

ωICI

j (l)Y ICI

j (l)

and therefore, ∀i, Y HYB
i (l+1) ≥ Y ICI

i (l+1). Invoking the method of prove by induction,

the first claim of the proposition is proved. The second claim is obtained by invoking

the first claim as l→∞.
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2.6.3 Properties of ICI Weights

For the second part, note that ICI iteration for each agent i starts by making a

convex combination of Yi(0) , Y ICI
i (0) + δIi(0),∀i ∈ N i. In the second iteration,

Y ICI

j2
(1) =

∑
j1∈N j2

ωICI

j1
(1)Y ICI

j1
(1) (2.30)

=
∑

j1∈N j2

ωICI

j1
(1)
[ ∑
j0∈N j1

ωICI

j0
(0)

[
Y ICI

j0
(0) + δIj0(0)

]]
(2.31)

=
∑

j1∈N j2

∑
j0∈N j1

ωICI

j1
(1)ωICI

j0
(0)Y ICI

j0
(0)

+
∑

j1∈N j2

∑
j0∈N j1

ωICI

j1
(1)ωICI

j0
(0)δIj0(0). (2.32)

One can rewrite the ICI iterations as multiplication of time varying stochastic matrices

by the results from the previous iteration. The multiplication of two stochastic

matrices is also a stochastic matrix. Therefore, by dropping the ICI superscript for

better clarity, the following can be said about {m,n}′th element of Yi’s:

Y {m,n}(l + 1) =



Y {m,n}1 (l + 1)

Y {m,n}2 (l + 1)

...

Y {m,n}N (l + 1)



=



w1,1(l) · · · w1,N(l)

w2,1(l) · · · w2,N(l)

... · · · ...

wN,1(l) · · · wN,N(l)





Y {m,n}1 (l)

Y {m,n}2 (l)

...

Y {m,n}N (l)


, (2.33)
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in which wi,j(l) , 0 if {i, j} /∈ E and for the rest of the elements in i′th row where

{i, j} ∈ E at least one of them is non-zero and the non-zero elements always add up

to one. In a more compressed way,

Y {m,n}(l + 1) = WG(l)Y {m,n}(l), (2.34)

in which WG(l) is the graph topology dependent weight matrix for ICI at iteration l.

WG(l) is a stochastic matrix and since the multiplication of two stochastic matrices

is also a stochastic matrix, the ICI process is equivalent to performing a convex

combination of priors and local information matrices.

Y {m,n}(∞) = lim
l→∞

∞∏
l=1

WG(l)Y {m,n}(0). (2.35)

We have shown that under ICI, all estimates converge to a unique matrix and given

that the ICI is equivalent to a convex combination of initial values over all the nodes,

it can be concluded that

1. The matrix WG(∞) =
∏∞

l=1W
G(l) is a stochastic matrix and has an eigen

value of 1

2. The corresponding eigen vector for eigen value 1 is a vector of all ones.

3. The ICI estimate is a convex combination of priors and additional information

over all the network nodes, i.e., ∃w = (w1, · · · , ωn) ∈ RN , where ∀i, 0 ≤ ωi ≤ 1,∑N
i=1 ωi = 1 and

Y ICI(+∞) =
N∑
j=1

ωjY ICI

j (0) +
N∑
j=1

ωjδIj(0). (2.36)
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Now given the assumption that hybrid method uses the weights of ICI and given that

N∑
j=1

ωjδIj(0) ≤
N∑
j=1

δIj(0), (2.37)

it can be seen that

[ N∑
j=1

ωjδY
HYB

j (0) +
N∑
j=1

δIj(0)
]−1

≤
[ N∑
j=1

ωjδY
ICI

j (0) +
N∑
j=1

ωjδIj(0)
]−1

. (2.38)

Therefore, with the assumptions made in the proposition, for the converged value of

covariance

P HYB(+∞) ≤ P ICI(+∞).

Proposition 3. For the distributed estimation problem with the network topology

G = 〈V , E〉, and the objective function J (·) = trace(·), if at the beginning, the

estimate priors satisfy ∀i, Y HYB
i (0) ≥ Y ICI

i (0), then, for all agents i = 1, · · · , N and

for all iterations l = 1, · · · , L

trace(Y HYB

i (l)) ≥ trace(Y ICI

i (l)), (2.39)

and after convergence

trace(P HYB

i (+∞)) ≤ trace(P ICI

i (+∞)). (2.40)

Proof. For l = 0, the inequality in Eq. 2.39 holds by default. Now suppose that it holds

at step l for agent i, ∀i ∈ [1, · · · , N ]. Then, since ∀i, trace(Y HYB
i (l)) ≥ trace(Y ICI

i (l)),

26



and

trace
(∑
j∈N i

ωHYB

j (l)Y HYB

j (l)
)

≥ trace
(∑
j∈N i

ωICI

j (l)Y ICI

j (l)
)

(2.41)

should hold. If it does not, then

trace
(∑
j∈N i

ωHYB

j (l)Y HYB

j (l)
)

< trace
(∑
j∈N i

ωICI

j (l)Y ICI

j (l)
)
, (2.42)

and one can combine use ICI weights and get a strictly larger trace value compared to

the combination with ωHYB
j (l)’s. This contradicts with the fact that ωHYB

j (l)’s minimize

the trace of the convex combination of Y HYB
j (l)’s.

Using the method of proof by induction, the above discussion shows that the

inequality in 2.39 holds for all consensus iterations. Once this is proved, for converged

estimates we have

trace
( N∑
j=1

ωHYB

j Y HYB

j (0)
)

≥ trace
( N∑
j=1

ωICI

j Y
ICI

j (0)
)

(2.43)
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and

trace
( N∑
j=1

ωHYB

j Y HYB

j (0) +
N∑
j=1

Ij(0)
)

≥ trace
( N∑
j=1

ωICI

j Y
ICI

j (0) +
N∑
j=1

ωICI

j δIj(0)
)

(2.44)

which proves that

trace(P HYB

i (+∞)) ≤ trace(P ICI

i (+∞)). (2.45)

2.6.4 Properties of CI as an Operator

Covariance intersection as a function accepts more than two inputs. However,

investigating the mathematical properties of it as a binary operator gives us insight

into relationship between distributed CI and centepsralized CI. The former iteratively

updates estimates in a network through successive local CIs till it converges. The

latter performs the optimization on all the estimates in the network at once. Important

question is if these two converge to the same value. In our experiments we found that

most of the time both methods converge to the same value. However there are cases

where that is not the case. The example in Fig. 2.2 illustrates one such case where

the order of doing covariance intersection affects the final outcome. As it can be seen,

among the three possible combinations considered, only CI(CI(B,C), A) generates

the same result as the global CI. The scenario that generates this example is as follows.

A network with three nodes i, j and, k starts with a topology in which node i is isolated

from the two other at first and j and k are connected to each other. Initial covariances

are Ci0, Cj0 and, Ck0. After doing local CI, the covariance of node i does not change

while the covariance of nodes j and k become CI(Cj0, Ck0). In second step all nodes
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Figure 2.2: The result of Iterative CI procedure does not always converge to the
solution of global CI.

get connected and they all have covariance matrix CI(CI(Cj0, Ck0), Ci0). The example

in Fig. 2.2 shows that CI(CI(Cj0, Ck0), Ci0) is not equal to CI(Ci0, Cj0, Ck0) in two

of the three cases considered there.

2.6.5 The Price of Not Knowing the Cross-Covariance

We consider an example in which the difference between knowing and not knowing

the correlation between two estimates becomes noticeable. Consider the following
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scenario. Two agents a and b start with the same prior information and make

observations za and zb in turn. They calculate local covariance estimates Paa and Pbb

respectively. Now consider three different cases

1. Local estimates are uncorrelated.

2. Local estimates are correlated but the correlation matrix P̃ab is unknown.

3. Local estimates are uncorrelated and the correlation matrix P̃ab is known.

Suppose now that they become in contact with each other and suppose that they

want to fuse their information according to

c = K1a+K2b

The first two cases can be handled by finding the solution to the following problem.

Pcc = [K1 K2]

Paa P̃ab

P̃ T
ab Pbb


KT

1

KT
2

 . (2.46)

The optimal solution of K1 and K2 yields a Pcc in the following form:

P−1cc =

[
I I

]
P−1

I
I

 (2.47)

=P−1aa +
(
P−1aa P̃ab − I

)
×
(
Pbb − P̃ T

abP
−1
aa P̃ab

)−1 (
P̃ T
abP

−1
aa − I

)
. (2.48)

The case of unknown correlation is handled by CI method. The three cases are

compared in figures 2.3, 2.4 and 2.5. In these examples
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Figure 2.3: Fusion of two estimates with unknown correlation between them.

Paa =

 1.0 0

0 0.1

 , Pbb =

 0.1 0

0 1


and for the known correlation case

P̃ab =

 −0.3162 0

0 −0.3162

 .

As it can be seen Fig. 2.4, knowing the correlation can make a big difference in some

cases. The uncertainty is considerably smaller compared to two other cases.

2.6.6 Realistic Evaluation Criteria

Comparing the performance of the distributed algorithm with centralized algorithm

is insightful. However, when because of network disconnection, realization of a

centralized estimator is impossible, comparing its performance with the distributed

estimation algorithm is unfair. Instead, the comparison should be made with respect
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Figure 2.4: Fusion of two estimates with known correlation between them.

to the best possible estimator given the network connectivity constrains throughout

time. Such an ideal estimator is called Gold Standard from now on. It is described as

follows:

Each agent keeps track of its own observations and all the observations that it

receives at each iteration from other agents connected to it. Lets denote this by Ht
i.

If the memory and communication constrains are not of concern, at each time step

agents can share their history with each other and update their history according to

the shared information. The update rule for Ht
i is as follows

Ht
i =

⋃
∀j,1i→j

Ht−1
j

⋃
∀j,1i→j

ztj (2.49)

where 1i→j is an indicator function which is 1 when there is a path between node i

and j under current network topology. Obviously 1i→i.

In Gold Standard, at each step the best possible estimate for each agent is obtained

by updating the history and then rerunning the filer from scratch. If the network
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Figure 2.5: Fusion of two estimates with zero correlation between them.

remains connected, the output is equal to the centralized estimator. If the network

gets disconnected, Gold Standard gives the best possible estimate.

2.6.7 Complexity Analysis

Consider the the problem of distributed estimation of a state vector of dimension

n by a system consisting of M agents connected to each other through a network

G = 〈V , E〉.

Complexity of the ICI method: The core of CI is a determinant maximiza-

tion problem and according to [29] the number of iterations required to solve the

optimization is of order O(
√
nf(ε)) where ε is a convergence parameter. For each

iteration of the optimization algorithm and for each agent i, cost (considering the

objective function -log det(·)) and gradient calculations are of orders O(n3 + din
2)

and O(din
2) respectively, where di is the node i’s degree. Therefore, the complexity

of CI optimization step is O(
√
n(n3 + din

2)).

Assuming TICI to be the number of iterations until ICI converges, the computational

complexity requirement for each agent can be summarized as
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TICI ×O
(√

n(n3 + din
2)
)
. (2.50)

ICI relies on passing messages of size di(n
2 +n) which is independent of the size ofthe

network and only depends on the number of agent i’s neighbors.

Complexity of the Hybrid method: The computational cost of ICI is already

calculated. For the Hybrid method the cost of doing MHMC consensus should also be

considered. MHMC consensus iterations update local covariance with order O(din
2).

The convergence times of these algorithms are different in general. Assuming TMH to

be the number of iterations until MHMC converges, the computational complexity

requirement for each agent can be summarized as

TICI ×O
(√

n(n3 + din
2)
)

+ TMH ×O(din
2) (2.51)

The Hybrid method relies on passing messages of size 2di(n
2 + n) for exchanging

information with neighbors.

Complexity of the Gold Standard Algorithm: Assuming that observations

and histories that are passed around in the network have unique ID numbers and

timestamps, finding the union in Eq. 2.49 for each agent takes

O
(
t2(M − 1)2 + t(M − 1)n2

)
for worst case scenario and O(din

2) at least. The best implementation of union

algorithm would only look for the observations that the agent does not have at

the moment. That is, it will look for timestamps and agents that are not present

in the current history. Assuming that history is saved as a look up table, the

worst case would be to search in the history of all agents for the Nmiss missing
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observations, which takes O(Nmiss(M − 2)) for the worst case scenario. This results

in O(Nmiss(M − 2)) +O(Nobsn
3) Establishing an average computational requirement

for the union in Eq. 2.49 is more involved and even without considering that, for each

agent the Gold Standard algorithm has to run the estimation starting from the latest

time for which the whole history of all other agents is at its disposal. This will become

computationally prohibitive as time goes on for a network that might get disconnected.

The upper bound for computational cost is O(tMn3). Even without considering the

computational cost of performing the union and the prohibitive memory size and

communication requirement for passing messages, the full history estimation cost is

larger than the hybrid algorithm for large t.

The memory and message passing requirement of keeping the full history also

grows linearly in time which finally will make Gold Standard algorithm impossible to

implement for real world applications. We will only use the Gold Standard algorithm

for comparison purposes as it is the best achievable performance under the network

topology constraints.

2.7 Experiments

We perform two sets of experiments on an atmospheric dispersion problem to show

the effectiveness of our method and evaluate its performance during disconnection and

after reconnection. This is a three dimensional problem and after proper discretizing

of its Partial Differential Equation (PDE), we get a system in the format of Eq. 2.3.

For our experiments after discretization, the dimension of the state is 80. We

assume that there are 10 sources emitting pollutant Zinc (referred to as Zn from now

on) into atmosphere. There are also 9 receptors making noisy measurements of the

concentrations of Zn around their location in space. We assume that receptors can

communicate to each other through a time varying network which does not remain
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Figure 2.6: Topology of the Network when all receptors are connected (left) and
when receptors 7,8 and 9 get disconnected from the rest of the group (right).

connected at all times. Receptors receive information only from their immediate

neighbors. They all have access to the sources’ locations and the source emission is

modeled as a white noise process with known covariance.

2.7.1 The Effect of Disconnection on Estimation Performance

In this experiment we intend to evaluate the performance of the proposed method

during the phase where some receptors become disconnected from the rest of the

group and get connected again after some interval. The topology of the network takes

one of the forms depicted in Fig. 2.6. The network starts fully connected and starting

from timestep 3, receptors 7, 8 and 9 become isolated and remain in this situation

for 2 steps, then they are connected back to the rest of the receptors. Similarly,

disconnection happens in intervals [17− 20] and [23− 30].

In order to make a comparison we obtain the estimation result using pure CI, our

method and also a centralized estimator to see how much of its performance can be

recovered. Note that the MHMC consensus cannot be done here due to disconnection.

The results are depicted in Fig. 2.7.

We use three measures to evaluate the estimates.

As it can be seen, the proposed method outperforms pure CI as expected and is able

to get the performance very close to centralized estimator results after reconnection.

Based on Bhattacharyya distance, closeness between centralized and distributed
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Figure 2.7: Comparison of the estimation results using centralized kalman filter, pure
covariance intersection, and our method.

estimators drops during disconnection interval as expected since receptors do not

have access to all the information available to the centralized estimator. While the

proposed method is able to immediately recover after reconnection, pure CI continues

to have lower performance even after re-connection due to the fact that it ignores the

correlations.

Fig. 2.8 takes a closer look at the performance of the proposed method and

compares the estimation results of receptor 5 and 8 during two different time steps.

The vertical axes represent consensus steps not time. Based on Fig. 2.6, receptor
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Figure 2.8: Estimation performance comparison among receptors.

5 remains in a group of size 6 during disconnection period whereas receptor 8

remains totally isolated in that period. The higher difference between centralized and

distributed estimate for this receptor can be explained based on the fact that it has

less information at its disposal. However, after reconnection both receptors are able

to converge to the same value which is very close to the centralized estimator.

2.7.2 Performance Analysis and Robustness to Link Failure

In this experiment we evaluate the performance of our method in a systematic

way to establish its usefulness and robustness to networks with high probability of

link failure. We consider the same system as in the first experiment and simulate it

for 50 time steps. At the beginning of each step a 4 regular graph with 9 nodes is

generated, and given a probability of failure for each link, some links in the graph

will randomly be disconnected. Depending on the regularity degree, and probably of

failure, in some percentage of times, the graph still remains connected. However, if
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Figure 2.9: Composite diagram for performance comparison for different probablity
of link failure.

the regularity degree goes down or the probability of failure increases, more often

than not, the graph becomes disconnected.

In practice, for p ≥ 0.2, consensus methods are no longer guaranteed to succeed

since the network almost always get disconnected at some point in time.

We ran our method for 50 steps, as explained earlier, for each probability of

link failure and compared its performance with the ideal centralized result (which is

obtained by assuming full connectivity at all times). The performance is evaluated

by calculating the average value for Bhattacharyya distance and determinant ratio

measure at all steps and for all receptors. Based on Fig. 2.9, for the case considered

in this experiment, our distributed estimator performs very similar to the ideal
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centralized one for p ∈ [0.0, 0.4] while drastically outperforming pure CI all the time.

This means that in the case considered here, our method can perform almost as well

as the ideal estimator for an unreliable network. Obviously, the performance can vary

from one system to another and under different network topologies. However, our

method can recover the performance of the centralized method when the network

is unreliable and substantially outperforms pure CI always as it has already been

established theoretically.

2.7.3 Comparison with Gold Standard

We performed a comparison with Gold Standard for the reduced order atmospheric

example. We reduced the dimension of the system reduced from 105 to 40 using RPOD

(A Randomized Proper Orthogonal Decomposition Technique) [35] and simulated

the reduced order system for 80 steps. The performance comparison with the gold

standard is shown in Fig. 2.10. The gap between the results of the Hybrid algorithm

and the GS (Gold Standard) is the price of not keeping all the information. Given

the unsubstantial computational requirement of the GS method, one might resort to

using the Hybrid algorithm with some loss of performance.

2.7.4 Tracking Example

Figures 2.11 and 2.12 illustrate an example of running the proposed method on a

tracking problem. Nine agents observe a maneuvering target.

2.7.5 Convergence Time

The convergence time of distributed averaging and ICI are compared in Fig. 2.13.

The convergence time is faster for the ICI compared to MHMC distributed averaging

part.
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Figure 2.10: Comparison with Gold Standard

Figure 2.11: Tracking example.
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Figure 2.12: Tracking example zoomed version.

Figure 2.13: Convergence time of distributed averaging and ICI.
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3. GENERALIZED HYBRID DISTRIBUTED ESTIMATION.

3.1 Related Work

Estimation on sensor networks has many applications and, thus, has been exten-

sively studied in recent years [17, 10]. In a sensor network, nodes represent sensors

that make noisy observations of the state of an underlying system of interest. The

estimation is considered centralized if all the nodes send their raw observations to

a central node who then calculates an estimate based on the collective information

[1]. This is not always possible due to link failures as well as bandwidth and energy

constraints [36]. One viable alternative is Distributed State Estimation (DSE).

In DSE, the processor on each node fuses local information with the incoming

information from neighboring nodes and redistributes the fused result on the network.

The objective is to design both a protocol for message passing between nodes and

local fusion rules so that the nodes reach a consensus over their collective information.

Although the DSE algorithms are not guaranteed to match the performance of the

centralized estimator all the time, their scalability, modularity and, robustness to

network failure motivates the ongoing research. These features are important for

the envisioned applications of such algorithms like multi-agent localization [26] and

cooperative target tracking [31].

DSE algorithms can be categorized based on the assumptions they make. Any

DSE method makes assumptions about one or more of the following aspects: the

state (static [34] or dynamic [26]), state transition model (linear [23] or non-linear

[6]), type of noise (Gaussian [34, 23] or non-Gaussian [18]), topology of the network

(constant or changing [28, 34]), connectivity of the network (always [6] or intermittent

connection [28, 34]), agents’ knowledge about the network topology (global or local
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[28, 34, 6]) and finally the treatment of mutual information between local estimate

(exact solution through bookkeeping [17] or conservative solutions that avoid double

counting [30, 20]).

The research on DSE for linear systems with Gaussian noise is extensive (see

[23, 13] for reviews). For nonlinear systems with Gausssian noise, the distributed

versions of Extended Kalman Filters (EKF), Extended Information Filters (EIF) and

Unscented Kalman Filter (UKF) have been proposed by [5, 12, 6], respectively. For

nonlinear systems with non-Gaussian noise, different flavors of Distributed Particle

Filter (DPF) methods were proposed by [22]. In order to avoid scalability problems

and the need for synchronized random generators, DPF methods make approximations

that result in loss of performance compared to a centralized PF [18].

For dynamic systems, the connectivity constraint is a determining factor for

choosing the proper DSE method. If the network remains connected, DSE methods

can keep the node priors the same and perform consensus only on likelihoods [19, 21].

We refer to this approach as Consensus on Likelihoods (CL). The advantage of CL

is it can match the centralized estimator’s performance. However, if the network

becomes disconnected, priors become different and CL methods fail. For those

scenarios, one approach is to perform Iterative Conservative Fusion (ICF) on node

posteriors [4, 30, 20]. ICF methods are inherently sub-optimal as a result of their

conservative fusion rule that avoids double counting at the expense of down weighting

the uncorrelated information.

Recently, researchers have suggested combining ICF and CL methods to benefit

from their complementary features [5, 6, 28]. CL can reach a consensus over uncorre-

lated new information and ICF can handle the correlated prior information. Such

hybrid methods have been shown to outperform pure ICF’s performance and remain

robust to link failure [28].
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In this chapter we extend the method of [28] to finite-state systems with non-

Gaussian noise. We adopt Hidden Markov Model (HMM) to model the system.

Unlike most methods we do not require the network to remain connected all the time.

In Section 3.2, the notation used in this chapter is explained as well as assumptions

and system model. Section 3.3 discusses some preliminaries on distributed state

estimation, paving the way for our method. Our proposed method is presented in

Section 3.4. We report on evaluation of our method’s performance in Section 3.5.

3.2 Modeling

3.2.1 The Network Topology

Assume that we have n homogeneous agents associated with the nodes of a graph.

These agents can communicate with each other under a time-varying undirected

network topology Gk = 〈V , Ek〉 where V and Ek are the set of graph nodes and edges

at step k respectively. The node corresponding to the ith agent is denoted by vi. If

(vi, vj) ∈ Ek, it means that agents i and j can communicate at step k. The neighbors

of node vi are defined as N i; those agents connected by an edge to vi. The set

Ni = N i ∪ {vi} will also be used in some of the equations. |Ni| is the cardinality of

Ni. For an arbitrary integer a, we define the index set Ia to be

Ia = {1, 2, · · · , a}, (3.1)

and therefore, index sets In, and Ik, index the agents and time steps, respectively.

3.2.2 The Hidden Markov Model

Consider a finite state hidden markov model (HMM) with the following specifica-

tion:

• The HMM has ns possible states X = {S1, · · · , Sns} and also, there are nz
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possible observation symbols Z = {O1, · · · , Onz}.

• The random variables Xk ∈ X and Zi
k ∈ Z represent the state and observation

made by agent i at step k, respectively. The realizations of those random

variables at step k are denoted as xk and zik.

• The transition model is a ns × ns matrix denoted as Pk|k−1 , p(Xk|Xk−1). All

the agents on the network have a copy of this model.

• Each agents has an observation model, which is a ns × nz matrix denoted as

p(Zi
k|Xk), i ∈ In. The observation models of different agents can be different.

• The prior, prediction, and posterior probabilities are 1× ns random vectors

πk−1 , p
(
Xk−1|{zik}i∈In

k∈Ik−1

)
,

π̃k , p
(
Xk|{zik}i∈In

k∈Ik−1
,Xk−1

)
,

πk , p
(
Xk|{zik}i∈In

k∈Ik

)
,

respectively.

The above HMM is well defined for many distributed estimation applications including

ones with dynamic state and time varying observation models. For example, the

following transition and observation models can be represented in the above form.

Xk+1 = f(Xk+1,wk) wk ∼ p(Wk), (3.2)

Zi
k+1 = hi(Xk+1,vk) vk ∼ p(Vk). (3.3)

In which, Wk and Vk are random variables representing the noise in the model and

the observation. We further assume that each agent has a processor and a sensor
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on-board. Sensors make observations every ∆t seconds and the processors and the

network are fast enough to handle calculations based on message passing among

agents every δt seconds. We assume that δt� ∆t. We also assume that the agents

exchange their information over the communication channel which is free of both

delay and error. Note that the above specification for the HMM and the model may

easily be extended to include control inputs but they are omitted as they are not the

focus this chapter.

Hence, {Zi
k}

i∈In
k∈Ik

is the indexed family of all the observations made by all the

agents up to step k. Moreover, for each agent i, the variable Rij
k , j ∈ N i denotes the

information that node i receives from its neighbor, node j, at time k. The set Ri
k

contains all the information that node i has received from its neighbors up to step k

and Iik = Ri
k ∪ Zi

k represents all the information content that is available to agent i

at time k. In general, in this chapter a superscript i denotes that the information in

the variable that bears the superscript is a version local to the ith agent. Moreover,

symbol η with or without any sub/superscript is a normalizing constant.

3.3 Distributed State Estimation Preliminaries

In the context of HMMs, a Recursive State Estimation is the process of recursively

computing the posterior probability of a random dynamic process Xk conditioned on

a sequence of measurements {zik}
i∈In
k∈Ik

. Bayesian recursive filtering, in a process with

the Markov assumptions, has the form

p(Xk|zk) =
1

η
p(zk|Xk)p(Xk|zk−1,Xk−1) (3.4)

=
1

η

n∏
i=1

p(zik|Xk)

∫
p(Xk|Xk−1)p(Xk−1|zk−1)dXk−1.
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Performing recursive estimation in a sensor network setting and for an HMM can be

done in one of the following ways:

3.3.1 Centralized Estimation

In this approach there is a single distinguished node in the network that receives

observations zIn
k , {zik}i∈In from the rest. The above Bayesian filtering recursion for

step k of a finite state HMM consists of first calculating the prediction π̃k according

to

π̃k = πk−1Pk|k−1, (3.5)

then, updating via:

πk =
1

η
π̃kOk, (3.6)

where Ok is an ns × ns diagonal matrix of likelihoods, p(zIn
k |Xk).

3.3.1.1 Distributed Consensus Based Filtering

Looking at (3.4) one can see that if all agents share the same prior information,

they can recover the centralized estimator’s performance if they can reach a consensus

over the product of measurement probabilities. Distributed averaging methods can

be applied here as the nodes need to reach a consensus over the log of the joint

measurement probabilities (log-of-likelihood):

l̃k =
1

n
log

n∏
i=1

Oik =
1

n

n∑
i=1

logOik =
1

n

n∑
i=1

l̃ik. (3.7)

Once consensus is reached, the updated estimate is

πk =
1

η

prediction︷ ︸︸ ︷
πk︸︷︷︸
prior

Pk|k−1 enl̃︸︷︷︸
likelihood

. (3.8)
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Reaching a consensus over likelihoods can be implemented for the discrete state

variables using a distributed averaging method based on Metropolis-Hastings Markov

Chains (MHMC). To avoid confusion we use m to indicate consensus iterations

throughout this chapter. On a communication graph G one can use a message passing

protocol of the form

ψi(m+ 1) =
∑|Ni|

j=1γij(m)ψj(m), (3.9)

such that
∑
m

γij(m) = 1, ψi(0) = l̃ik,

to calculate the average of the values on the graph nodes in which di(m) = |N i| is

the degree of the node vi, and

γij(m) =



1
1+max{di(m),dj(m)} if (i, j) ∈ Em,

1−
∑

(i,n)∈E
γin if i = j,

0 otherwise.

(3.10)

With this messaging passing protocol,

lim
m→∞

ψi(m) = l̃k.

Note that for each node i, the γij’s depend only on the degrees of its neighboring

nodes. As stated earlier, once a consensus has been reached over likelihoods, the

centralized estimate can be recovered. The prerequisite for this method to work

is that the network remains connected. This however is too restrictive for many

applications.
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3.3.1.2 Conservative Approximate Distributed Filtering

In this approach, instead of putting effort into keeping the dependencies between

agents’ information, a fusion rule is designed to guarantee that no double counting

of mutual information occurs. This usually results in replacement of independent

information with some form of conservative approximation. Such a treatment results

in inferior performance with respect to the exact distributed filter’s output.

3.3.1.3 Conservative approximation of a Probability Mass Function (PMF)

The authors in [3] introduced a set of sufficient conditions for a Probability Mass

Function (PMF) p̃(X) to satisfy in order to be a conservative approximation of

another PMF p(X). The conditions are

• Non-decreasing entropy property:

H(p(X)) ≤ H(p̃(X)).

• The order preservation property that,

p(xi) ≤ p(xj) iff p̃(xi) ≤ p̃(xj), ∀xi,xj ∈ X

3.3.1.4 Conservative Fusion of two PMFs (CF)

Two probability distribution functions pa(X|Ia) and pb(X|Ib) can be fused together

with the Geometric Mean Density Rule (GMD)

pc(X) =
1

ηc
pa(X|Ia)ωpb(X|Ib)1−ω

=
1

ηc
pa(X|Ia \ Ib)

ωpb(X|Ib \ Ib)
1−ωpa(X|Ia ∩ Ib),

(3.11)
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in which, 0 ≤ ω ≤ 1. Note that in the above equation the PMFs are raised to the

power of ω and multiplied together element-wise. As it can be seen this rule never

double counts the mutual information and replaces the independent components with

a conservative approximation of them. The interesting property of this fusion rule is

that it works without the knowledge of the dependence of two initial PMFs. This

fusion rule can be generalized to more than two PMFs. For example, in the context

of this chapter, node i calculates a conservative approximation of the centralized

estimate and stores it in π̃i. The GMD fusion of these estimates is also a conservative

approximation of the centralized estimate.

π̃k =
1

η

n∏
i=1

(π̃ik)
ωi , s.t.

∑n
i=1 ωi = 1. (3.12)

Remark 1. Several criteria have been proposed to choose the ωi. One such criterion

is [2]:

π̃ = arg min
π

max
i
{D(π‖π̃i)}, (3.13)

in which the D(π‖π̃i) is the Kullback-Leibler divergence between π and π̃i.

Remark 2. In [3], the authors have shown that raising a PMF to the power of ω ≤ 1

reduces its entropy. From (3.12) it can be seen that applying the GMD rule reduces

the entropy of the likelihood probabilities that are independent. This is undesirable

and can be avoided by treating the likelihood probabilities separately.

3.3.1.5 Iterative CF (ICF)

At each first iteration of consensus, m = 0, for each agent j, initialize the local

consensus variable to be

φj(0) =
1

ηj
(π̃jkO

j
k).
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Solve for ω∗ such that

ω∗ = arg min
ω
J
(1

η

∏
j∈N i(m)

[
φj(m)

]ωj
)
,

s.t.
∏

j∈N i(m)
ωj = 1, ∀j, ωj ≥ 0,

(3.14)

where η is the normalization constant and J (·) is an optimization objective function.

Specifically, it can be entropy H(·) or the criteria in (3.13). Estimates are then

updated locally for the next iteration

φi(m+ 1) =
1

η∗

∏
j∈N i(m)

[
φj(m)

]ω∗j . (3.15)

3.4 Hybrid ICF and CL

We propose a hybrid approach that uses CF to reach consensus over priors and the

MHMC-based consensus filter for distributed averaging of local information updates.

Our method is summarized in Algorithm 2. We explain the flow of the proposed

method using a simple scenario with two agents. Generalization to more than two

agents is straightforward and follows similarly.

Imagine a scenario consisting of two agents, observing, xk, the state of a Markov

chain at time k, that are communicating with each other through a time-varying

network topology. Initially, the agents start with priors π1
0 and π2

0 respectively.

At step k the chain transitions to the new state x(k) and agents calculate their

own local prediction π̃1
k and π̃2

k respectively (line 1 in the algorithm). Then they make

observations z1k and z2k, respectively, and compute the local likelihood matrices O1
k

and O1
k (line 2 of the algorithm).

Clearly, if there was a centralized agent that received all the observations at all
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times the fused estimate would be

CENπk+1 =
1

η
CENπ̃kO1

kO2
k. (3.16)

However, if the two agents were to perform ICF, would find a fused estimate

ICFπk+1 =
1

η
(ICFπ̃1

kO1
k)
ωICF

(ICFπ̃2
kO2

k)
1−ωICF

, (3.17)

where wICF is obtained from solving the optimization problem in (3.14). Note that

doing MHMC alone is not possible here since ICFπ̃1
k and ICFπ̃2

k differ. In our hybrid

method we do the following:

HYBπk+1 =
1

η1
(HYBπ̃1

k)
ωHYB

(HYBπ̃2
k)

1−ωHYB︸ ︷︷ ︸
ICF to reach

consensus over priors

O1
kO2

k︸ ︷︷ ︸
consensus over
the incremental

information

. (3.18)

The above equations demonstrate why the hybrid method is capable of recovering

the centralized estimate if, after a disconnection, the network stays path connected

long enough. Assume that the agents are disconnected at time k − 1and resume

connection at time k. Then the agents have different priors at time k. Therefore, for

the ICF method Eq. 3.17 and for the hybrid method Eq. 3.18 should be used for their

update step. At this point one of the two posteriors could be closer to the centralized

estimate. However, as time goes forward and the two agents remain connected, due

to the forgetting property of Markov chains, the priors of the centralized estimate and

the hybrid method reconcile and therefore, Eq. 3.18 becomes the same as Eq. 3.16.

For an n-agent system with the ith agent having prior HYBπ̃ik, the ICF approach

is used to find a consensus over the priors using (3.14) recursively. The MHMC

approach is used to form the consensus over the new information, i.e.,
∑n

j=1 l̃
i
k (3.10).
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In line 12 of the algorithm, nCG is the number of agents that form a connected group,

and it can be determined by assigning unique IDs to the agents and passing these

IDs along with the consensus variables. Each agent keeps track of the unique IDs it

receives and passes them to its neighbors. The following propositions hold.

Proposition 4. The ICF process is guaranteed to reach consensus over the priors,

i.e., ∃ φ∞,

lim
m→∞

φi(m) = φ∞ ∀i.

The same result is already established for the distributed averaging process, i.e., ∃ψ∞

lim
m→∞

ψi(m) = ψ∞ ∀i.

3.5 Experiments

The first experiment is concerned with a distributed target pose estimation problem

in a grid using multiple observers connected through a changing topology network.

Fig. 3.1 depicts the 2D grid in which a target performs a random walk while six

observers are trying to estimate its position. Each white cell is modeled as a single

state of our HMM representing the position of the target on the grid. The observers’

motion is deterministic; four of them are rooks moving along the borders and the

other two are bishops moving diagonally on the grid. In order to detect the target,

each observer sends a straight beam normal to its direction of motion as shown in

the figure. The beam hits either the target, or a wall (that can be an obstacle or

a border). In the former case the observer senses the position of the target based

on a discrete one dimensional Gaussian distribution over the states that the beam

has traveled. In the latter case, under the assumption of no “false positives”, the

observer produces the “no target” symbol as an additional state incorporated into
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Algorithm 2: Hybrid Method

Input : πjk−1
1 Use (3.6) to calculate π̃jk
2 Collect local observation zjk and calculate Ojk and l̃jk
3 Initialize consensus variables

φj(0) = π̃jk, ψj(0) = l̃jk

4 m = 0
5 while NOT CONVERGED do
6 BROADCAST[ψj(m), φj(m)]
7 RECEIVE[ψi(m), φi(m)] ∀i ∈ N j

8 Collect received data

Cj(m) = {φi∈N j

(m)}, Mj(m) = {ψi∈N j

(m)}

9 Do one iteration of CI on consensus variables for local prior information Cjm

φj(m+ 1) = ICF(Cj(m))

10 Do one iteration of MHMC on consensus variables for new information

ψj(m+ 1) = MHMC(Mj(m))

11 m = m+ 1

12 Calculate the posteriors according to:

πjk = enCGψ
j(m)φj(m)

the observation model by setting zero probabilities in the likelihood matrix for those

states that beam has traveled until it has hit a wall.

At each Markov transition step, each observer carries out its distributed estimation

step for the position of the target, which is shared with other connected observers

through a communication network. The network topology has two components; one

has the rook observers and the other one has the bishop. The observers in each
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Figure 3.1: The grid map of the environment, dark cells depict obstacles; blue circles
are trackers and the red circle is the ground truth location of the maneuvering target;
the green circle depicts the observation an agent.

component are connected all the time while the link between the two components gets

connected and disconnected intermittently. All communications occur at a higher rate

than Markov transition steps, which allows the connected nodes to reach consensus

over the shared information.

We evaluate the performance of the proposed method during the phase where the

rooks become disconnected from bishops and are reconnected again after some interval.

In order to make a comparison, each node performs three instances of estimation. In

one instance it uses our hybrid method to fuse its prior along with the received priors
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while in the second instance it uses ICF methods to fuse its posterior along with

the received posteriors. The third instance concerns a hypothetical god’s-eye-view

centralized estimator, for comparison purposes. To make such a comparison we use

the Bhattacharyya distance [8] between the estimation results and the centralized

estimator. The Bhattacharyya distance can be used to evaluate the similarity of two

probability mass functions, π1(X), π2(X) as:

DB(π1(X), π2(X)) = − ln(
∑

x∈X

√
π1(x)π2(x)). (3.19)

In the case of P1 = P2, complete similarity, DB(p1, p2) = 1, while DB(p1, p2) = 0

means complete dissimilarity.

In Fig. 3.2 we compare the performance of both hybrid and ICF methods in

terms of their respective Bhattacharyya distances to the ideal centralized case. As

it can be seen, the proposed hybrid method outperforms CF and is able to get the

performance very close to centralized solution after reconnection. Based on the

Bhattacharyya distance, closeness between centralized and distributed estimates

drops during disconnection interval, as is expected, since observers do not have

access to all the information available to the centralized estimator. While the hybrid

method is able to immediately recover after reconnection, ICF continues to have worse

performance even after reconnection due to the fact that it ignores the correlations.

Fig. 3.2 also gives a detailed view of the performance of the hybrid method

and compares the estimation results of observers 3, a rook, and 5, a bishop, during

three different time steps. The shaded area shows the time during which rooks

are disconnected from the bishops. The higher difference between centralized and

distributed estimate for the fifth observer, which is a bishop, can be explained based on

the fact that it has less information at its disposal. However, after reconnection both
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groups are able to converge to the same value which is very close to the centralized

estimator.

In second experiment we have evaluated the robustness of the proposed method

for networks with different likelihoods of link failure. We report the Bhattacharyya

coefficient, and Helinger distance vs. link failure probability for a general distributed

HMM with a network of size 20 and state size 30 with each node roughly connected

to 10% of the other nodes. We simulate the system multiple times, each time for

150 time steps but with different probability of link failure. At the beginning of each

step, a 2 regular graph with 15 nodes is generated and, given a probability of failure

for each link, some links in the graph will randomly be disconnected. The graph

still remains connected some portion of the time, but this depends on the degree

and probability of failure. If the regularity degree goes down or the probability of

failure increases, more often than not, the graph becomes disconnected. In practice,

for p ≥ 0.05, consensus methods that rely on full connectivity are no longer succeed

since the network almost always suffers disconnection at some point in time.

We ran our method for 150 steps for a range of probabilities of link failure

and compared performances with the ideal centralized result (which is obtained by

assuming full connectivity at all times). The performance is evaluated by calculating

the average value for the Bhattacharyya coefficient and determinant ratio measure

at all steps and for all receptors. Based on Fig. 3.3, for the case considered in this

experiment, our distributed estimator performs close to the ideal centralized one

for p ∈ [0.0, 0.1], and drastically outperforms ICF all the time. This means that

in the case considered here, our method can perform almost as well as the ideal

estimator for an unreliable network. Obviously the performance can vary from one

system to another and under different network topologies, but, our method can

recover the performance of the centralized method when the network is unreliable
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and substantially outperforms ICF as has already been established theoretically.
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Figure 3.2: Estimation performance in the tracking example
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Figure 3.3: Performance comparison between the proposed method and ICF.
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4. CONCLUSION

In chapter two I introduced a distributed estimator for dynamic systems in

networks with changing topology and those that do not remain connected all the time.

Separating the process of consensus for the correlated and uncorrelated information

was the key to achieve a better performance compared to Covariance Intersection

alone. Evaluating the proposed method on an 80-dimensional estimation problem

showed substantial performance improvement compared to CI and also the ability to

recover after a disconnection interval occurs.

Chapter three proposes a distributed state estimator for discrete-state dynamic

systems with non-Gaussian noise in networks with changing topology and those that

do not remain connected all the time. Separating the process of consensus for the

correlated and uncorrelated information was the key to achieving better performance

compared to ICF alone. Evaluating the proposed method on a multi-agent tracking

application and a high-dimensional HMM distributed state estimator problem showed

substantial performance improvement compared to the state of the art. We are able

to achieve robustness and recover performance after a disconnection interval occurs.
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