
FLOW2CODE - FROM HAND-DRAWN FLOWCHART TO CODE EXECUTION

A Thesis

by

JORGE IVAN HERRERA CAMARA

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Tracy Hammond
Committee Members, Thomas Ioerger

Zenon Medina-Cetina

Head of Department, Dilma Da Silva

May 2017

Major Subject: Computer Science

Copyright 2017 Jorge Ivan Herrera Camara

ABSTRACT

Flowcharts play an important role when learning to program by conveying algorithms

graphically and making them easy to read and understand. When learning how to code

with flowcharts and transitioning between the two, people often use computer based soft-

ware to design and execute the algorithm conveyed by the flowchart. This requires the

users to learn how to use the computer-based software first, which often leads to a steep

learning curve.

We claim that the learning curve can be decremented by using off-line sketch recog-

nition and computer vision algorithms on a mobile device. This can be done by drawing

the flowchart on a piece of paper and using a mobile device with a camera to capture an

image of the flowchart. Flow2Code is a code flowchart recognizer that allows the users to

code simple scripts on a piece of paper by drawing flowcharts. This approach attempts to

be more intuitive since the user does not need to learn how to use a system to design the

flowchart. Only a pencil, a notebook with white pages, and a mobile device are needed to

achieve the same result.

The main contribution of this thesis is to provide a more intuitive and easy-to-use tool

for people to translate flowcharts into code and then execute the code.

ii

DEDICATION

To the few people that had always believed in me: my parents, brothers and friends.

Thanks for all the unconditional support. Dios bo’otik! (God bless you)

iii

ACKNOWLEDGMENTS

I would like to express my gratitude to all the people who helped over this past two

years developing my thesis project. Special mention to my advisor and committee chair

Dr. Tracy Hammond for providing advice and all the tools I needed to complete my de-

gree. Her constant enthusiasm, mentoring and support helped me reach this goal. I would

like to also thank my committee members Dr. Zenon Medina-Cetina and Dr. Thomas Io-

erger for sharing their knowledge and giving advice. Finally, I would like to thank all the

members of the Sketch Recognition Lab at Texas A&M University for giving comments

and suggestions during the weekly meetings.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Professors Tracy Ham-

mond, Thomas Ioerger of the Department of Computer Science and professor Zenon

Medina-Cetina of the Department of Engineering. All work for the thesis (or) dissertation

was completed by the student, under the advisement of Tracy Hammond of the Department

of Computer Science.

Funding sources

Graduate study was supported by a fellowship from two Mexican institutions CANI-

ETI and CONACYT.

v

NOMENCLATURE

TAMU Texas A&M University

B/CS Bryan and College Station

OGAPS Office of Graduate and Professional Studies at Texas
A&M University

IRB Institutional Review Board

SVM Support Vector Machine

HMM Hidden Markov Model

UML Unified Modeling Language

IDE Integrated Development Environment

GUI Graphical User Interface

SUS System Usability Scale

QUIS Questionnaire For User Interaction Satisfaction

CSUQ Computer System Usability Questionnaire

AAS Axis Aligned Score

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xiv

1. INTRODUCTION . 1

2. LITERATURE REVIEW . 4

2.1 Related research studies and frameworks 4
2.2 Standalone flowchart-based programming systems 9

3. GOALS . 14

4. METHODOLOGY . 15

4.1 Overall process flow . 15
4.1.1 Pre-processing . 15
4.1.2 Stroke processing: features, corners, and metrics 23
4.1.3 Shape recognition . 30
4.1.4 Post-processing . 35

4.2 System design . 36
4.2.1 Architecture design . 36
4.2.2 Sketching design choices . 38

4.3 User interface design . 41
4.3.1 Flowchart project management 44
4.3.2 Camera module . 45

vii

4.3.3 Review module . 46
4.3.4 Correction module . 47
4.3.5 View/execute module . 48

5. EVALUATION . 50

5.1 Evaluation plan . 50
5.2 Complete user study . 51

5.2.1 Purpose of the study . 51
5.2.2 Pre-questionnaire . 52
5.2.3 Experiment . 52
5.2.4 Post-survey, interview and comments 54

5.3 Results . 55
5.3.1 Subject demographics . 55
5.3.2 Predictive analysis . 59
5.3.3 Qualitative analysis . 71
5.3.4 Discussion . 74

6. CONCLUSIONS AND 76FUTURE WORK

REFERENCES . 80

APPENDIX A. 94

APPENDIX B. 96

APPENDIX C. 100

APPENDIX D. 101

APPENDIX E. 102

APPENDIX F. 103

APPENDIX G. 104

APPENDIX H. 105

viii

LIST OF FIGURES

FIGURE Page

1.1 The image presents the overall high level design of Flow2Code mobile
application . 3

2.1 User Directed Sketch Interpretation input image and the software editing
GUI . 6

2.2 This image shows an example of TAHUTI and how it recognizes a drawn
class diagram . 8

2.3 This shows the pen-based programming teaching system by Zheming Yuan,
the left panel is the drawing canvas and the right one the C code translation 10

2.4 This image shows the GUI of four of the most popular and older systems
that used the flowchart-to-code approach 12

2.5 This image shows the GUI of two of the most recent and updated systems
that used the flowchart-to-code approach 13

4.1 The image shows the process flow of the data. From the picture pre-
processing to the code generation and execution 16

4.2 The picture shows an example of the a bitmap image before and after ap-
plying a thinning algorithm. 18

4.3 The first picture shows the original image, the second the image after the
grayscale and thresholding steps. Finally the the last one after the thinning
algorithm. 20

4.4 The first picture shows the neighboring window. The current point is P1.
The second image shows the case where you only have one option to go to
(from P1 to P5). Finally, the last image shows the option where you have
more than one option to go to (P1 is considered a point of ambiguity . . . 21

4.5 The image shows how when iterating from top-left to bottom-right a pixel
that is not start or end of stroke is selected first. 23

4.6 List of the formulas to calculate each Rubine feature 25

x

4.7 A list of the 44 geometric based features from Paulson and Hammond
Short-Straw . 26

4.8 Example of the aligned axis score. 28

4.9 An example of the poly-line corner finder Short-Straw 29

4.10 Flowchart shapes and their respective operations 30

4.11 RECTANGLE - The system calculates diagonals a) and b) to see if they are
similar enough, PARALLELOGRAM - The system calculates diagonals a)
and b) to see if a) is bigger than b) given a threshold 34

4.12 Flow2Code UML component diagram 37

4.13 A few non-closed ways in which a rectangle can be drawn 39

4.14 A few different ways in which a rectangle can be drawn. Flow2Code will
only recognize c). 39

4.15 Some of the different arrows with different shafts that are recognized by
flow2code. 40

4.16 Example of the recommended way to draw sequence arrows and shapes;
Flow2Code will all ways have more accuracy when avoiding collision like
in the option C. 40

4.17 Example of the the READ and PRINT tags added to Flow2Code 42

4.18 Example of how conditional labels should be drawn excluding the labels). 43

4.19 This image present the main modules of the mobile application. The first
one from left to right enable the management of projects, followed by the
recognized flowchart and then the code that was generated from it. The
step of taking a picture with the flowchart was not included since the cam-
era itself is outside the scope of the application. 43

4.20 This image shows the different GUI screens that the management module
uses. a) The image shows the different previously saved project listed, a
button for adding new ones and an options button in each of the item lists,
b) The image shows different options per project that can be performed:
Edit, Share and Remove. c) The image shows the input options when
adding a new project: Take picture or Open from gallery. 44

xi

4.21 This image shows the different GUI screens that the camera module uses.
a) The camera takes a picture of a previously drawn flowchart, b) This is
the picture taken with the camera. c) The user can crop the image after
taking or selecting a picture. The blue boundaries will crop the image as
desired. 45

4.22 This image shows the different GUI screen that the review module uses.
a)Shows an example of a flowchart with all its shapes and arrows recog-
nized correctly, b) Shows an example of a flowchart with one missing (not
recognized) shape and arrow . 46

4.23 This image shows the different GUI screens that the correction module
uses. a) Shows an example of a 100% recognized text string. b) Shows
an example of a wrong recognition, the system recognized the number 2
instead of the letter Z. c) Shows how the user can edit the text in case errors
in text recognition occur. 47

4.24 This image shows the different GUI screens that the view/execute module
uses. a) Shows the cleaned flowchart after all the processing and recogni-
tion, b) shows the pseudo-code on a side tab, it allows also manual editing,
c) shows how the system detects and ask for an input variable, in this ex-
ample the variable Z, d) shows the output of the script once executed with
the input variable Z=5. 49

5.1 The set up environment for the user studies 51

5.2 A subject drawing a flowchart to solve one of the exercises 53

5.3 A subject taking a picture of his handrawn flowchart and then comparing
the recognized shapes preview . 54

5.4 The graph show the gender distribution of the subjects from the user study 56

5.5 The graph show the age distribution of the subjects from the user study . 56

5.6 The graph show the occupation distribution of the subjects from the user
study . 56

5.7 The graph show the distribution of the subjects who agreed to having taken
a course where flowchart design was necessary 57

5.8 The graph show the distribution of the subjects who agreed to have used a
software tool for software design in the past 58

xii

5.9 The graph show the distribution of the flowchart design skills that the sub-
jects gave themselves, 1 being minimum and 5 maximum 58

5.10 The graph show the distribution of the programming skills that the subjects
gave themselves, 1 being minimum and 5 maximum 59

xiii

LIST OF TABLES

TABLE Page

5.1 Hardware specifications of the android smartphone used in the study . . . 53

5.2 Confusion Matrix of the first exercise (E01/Hello) 60

5.3 Confusion Matrix of the first exercise (E02/Fibonacci) 60

5.4 Confusion Matrix of the first exercise (E03/Factorial) 61

5.5 Confusion Matrix of all the exercises together 61

5.6 Confusion Matrix and metrics of the shape Ellipse 63

5.7 Confusion Matrix and metrics of the shape Parallelogram 63

5.8 Confusion Matrix and metrics of the shape Rectangle 63

5.9 Confusion Matrix and metrics of the shape Diamond 64

5.10 Confusion Matrix and metrics of the Arrows 64

5.11 All-or-nothing accuracy of each one of the three exercises 65

5.12 Confusion Matrix of unsupervised user study 66

5.13 Confusion Matrix and metrics of the shape Ellipse for the unsupervised study 66

5.14 Confusion Matrix and metrics of the shape Parallelogram for the unsuper-
vised study . 67

5.15 Confusion Matrix and metrics of the shape Rectangle for the unsupervised
study . 67

5.16 Confusion Matrix and metrics of the shape Diamond for the unsupervised
study . 68

5.17 Confusion Matrix and metrics of the Arrows for the unsupervised study . 68

5.18 Characteristics found on the unsupervised study 70

xiv

5.19 SUS table . 72

5.20 Open coding final categorization . 73

xv

1. INTRODUCTION

Most engineering programs today require students to be able to do programming at

some level as several engineering courses require programming skills [1]. Learning how to

code and develop algorithm design skills can be a difficult process. Problems encountered

when dealing with introductory programming topics for the first time include: Too much

focus on syntax, not enough emphasis on problem-solving, and lack of support for expe-

riencing program execution [2]. New techniques for introductory programming courses

have been developed to overcome those problems; one of the most popular is the use of

flowchart diagrams to give structure and spatial positioning to code instructions, otherwise

called flowchart-based programming. A major benefit of using the flowchart model is that

it greatly reduces syntactic complexity, allowing students to focus on solving the problem

instead of finding missing semicolons [3].

Novice programmers can find a few instructional approaches and tools which aim to

assist them to cope with their various problems. Nonetheless, introductory programming

continues to be a considerable obstacle for the unfamiliar novice trying to learn the subject

at school, college or university [4].

Researchers over the years have proposed and developed PC and tablet based systems

that interpret visual languages [5], include mathematical expressions [6], chemical dia-

grams [7], digital circuits [8], mechanical systems [9] and UML class diagrams [10].

Many of these automated software tools have emerged to assist the users in particular

tasks. However, most systems require that the users learn how to interact with it. Making

the design process more restricted has resulted in the drifting away from the benefits of us-

ing flowchart diagrams to assist the learning process of algorithm fundamentals. Instead of

designing the flowchart using UI controls on a software or a tablet computer, sketch recog-

1

nition and computer vision algorithms can recognize hand-sketched diagrams to make the

system more intuitive and consequently reduce the learning curve. The action of sketch-

ing can be considered a tool of thought that enables the mind to capture the things which

are in flux and iteratively refine them [11]. Aside from allowing designers to communi-

cate their ideas better, sketching also allows the learners improve their general academic

achievement and problem-solving thinking [12].

Studies have shown that people prefer to use paper and pen during the early design

stage[13]. This combined with the overall benefits of sketching serve as the major motiva-

tion to make an offline [14] flowchart recognizer that runs on a mobile platform and uses

computer vision algorithms to extract the strokes from a picture and sketch recognition

techniques to identify shapes.

Flow2code is an ongoing project in Sketch Recognition Lab. It consists of a mobile-

based application which can be used as a tool for students that design algorithms using

flowcharts. The application receives a picture either from the camera or the external mem-

ory of the device and using computer vision and sketch recognition extract and classify the

content of it to translate it into pseudo-code. The overall high-level design of the applica-

tion is shown in Figure 1.1. One important feature of the application is that it allows the

pseudo-code execution of the recognized flowchart by internally translating the pseudo-

code to javascript and executing the script to retrieve an output. This way the users can get

some feedback about the flowchart and also keep a list of runnable algorithms available

from the convenience of their pocket. This thesis describes a useful and handy mobile tool

for anyone that is new to the world of coding.

The remaining chapters discuss the motivation, approach, methodology and contribu-

tions of this thesis more elaborately. Chapter 2 discusses the relevant work in the related

fields as well as a high-level review of the works created in the area of flowchart based sys-

tems, image processing techniques, and sketch recognition. Chapter 3 outlines the goals of

2

this work. Chapter 4 presents details about the system design, including the pre-processing

of hand drawn diagrams, the algorithms used, and and sketch recognition techniques that

helped to recognize shapes. Chapter 5 provides details about the evaluation of the system

developed, the results, and a discussion of those results. Chapter 6 summarizes the con-

clusions reached for the overall project. Chapter 7 concludes with a discussion of future

work.

Figure 1.1: The image presents the overall high level design of Flow2Code mobile appli-
cation

3

2. LITERATURE REVIEW

Before explaining the details of Flow2code this section will review the most impor-

tant research contributions that influenced the design of Flow2code, including previous

flowchart based systems, sketch recognition techniques and algorithms, and other impor-

tant topics that were taken into consideration while designing and developing this project.

2.1 Related research studies and frameworks

Past research attempts to recognize hand drawn flow charts have been used sketch

recognition techniques that are either off-line or on-line. The offline approach is meant to

be a passive technology, the sketching process and design is not assisted or intervened by

any device. Further processing of scanned images or photos is required to actually perform

the recognition. On the other hand, an on-line approach will require an electronic device to

assist the sketching process. This approach has been most recently explored thanks to the

increasing advances in finger or pen-based mobile devices like smartphones and tablets.

Both approaches come with advantages and disadvantages. The offline approach comes

with the advantage of requiring no overhead in terms of learning how to interact with the

sketch, as the user simply uses a pen and paper as they would normally. A disadvantages is

the lack of temporal data in an offline sketch, as the computer only sees the finished sketch

and not the process the user went through while drawing the sketch. This includes precise

ordering, location, and possibly pressure of each of the points laid by the pen, which al-

lows for a number of features that can be used for computation. When using an electronic

device for drawing (online recognition) those features are computed and saved during the

actual process of drawing. Other hindrances include the noise on the picture itself which

can be mistaken for sketch data, producing difficulties for the recognition system and can

lead to false positives on the during recognition and image processing. Additionally, of-

4

fline systems can be time-consuming and computationally intensive.

An on-line approach are usually more accurate than an offline since the sketching pro-

cess is assisted by an electronic device [15]. Users can get immediate feedback as to

how the system is recognizing the image and adjust their drawing style to ensure accurate

recognition. Several important features can be extracted from the drawing on online recog-

nition systems such as: pressure, time-stamps, tilt, and others [16]. It also removes any

confusion that may come from non-sketched artifacts on the page. There main disadvan-

tage to online systems is that they require a pen-based device to provide for high-definition

drawing, and the overhead on learning how to sketch or draw on this device requires more

initial effort from the user.

More research has been done using on-line sketch recognition than off-line sketch

recognition, mainly due to the difficulty of recreating the temporal data [17, 18, 19] that is

easily available on online recognition systems.

Offline recognition systems do exist, however. Notowidigdo and Miller [20] described

a project called User-Directed Sketch Interpretation (UDSI) that allowed to recognized

paper based sketched diagrams and translating them into a graphical interface for editing

as seen in Figure 2.1. The system combined low-level recognizers with domain-specific

heuristic filters and greedy algorithm that eliminated incompatible interpretations. This

project takes a bitmap image [21] as input and converts it into geometric primitives that

are later presented to the user on a GUI on a PC software that allows the correction of false

positives. The system recognizes: text regions (not actual text), rectangles, diamond cir-

cles and arrowheads. The authors followed a four-step approach involving: image smooth-

ing, segmentation, text/shape recognition, and generation of alternatives.

It is important to notice that the overall purpose of UDSI is to provide an alternative

tool for creating flowcharts other than Microsoft PowerPoint. While the study showed

that overall the time it took to design a flowchart using UDSI was a little more than using

5

PowerPoint, most users appreciated a better alignment on their flowchart. This paper is

important since it demonstrates a successful offline flowchart sketch recognition system,

and even though the purpose of the project is different than the one this thesis will describe

it contains a few similarities when it comes to methodology.

Figure 2.1: User Directed Sketch Interpretation input image and the software editing GUI

Sahoo and Singh [22] described a framework for both on-line and off-line sketch

recognition using a global heuristic algorithm. The framework consisted of three different

blocks: A set of domain classes, input refining block and recognition engine block. One

noticeable aspect of this work was that it included a fuzzy logic [23] set membership as

a possibility distribution to improve recognition. The main contribution of this project is

the use of their own heuristic while using the A* search algorithm [24] to close shapes.

Once the user inserts an input image, they apply a stroke and Gaussian filter and employ a

segmentation algorithm. After this fist step, they employ an A* search algorithm to close

all the strokes found using their own heuristic that gives the best result if a shape is found.

One important aspect to mention is that this paper does not refer to a system itself but more

6

to a framework that can be used as blueprint for a more robust recognition system.

Peterson and Stahovich [25] worked on grouping strokes into shapes in hand drawn

diagrams describing a two-step algorithm that first classifies individual strokes according

to the type of object they belong. The system then groups the strokes with similar clas-

sifications into clusters [26] representing individual objects. This approach is defined by

two steps: (1) Classify single strokes into two or more different classes, and (2) Clustering

strokes of the same class into individual objects.

Using stroke/shape features that describe both topological and curvature related prop-

erties like the degree which the stroke forms a closed path, self-intersections for topo-

logical properties and bounding box size, curvature, squared curvature for curvature the

authors are able to do the single stroke classification. Using a threshold grouping classifier

that uses decision Trees [27] like AdaBoost [28] is how the process of joining strokes is

done by categorizing pairs of strokes as: Don’t Join, Near Join, and Far Join. This ap-

proach proved to be accurate enough to be used, however it requires examples of each

class to be able to train the single stroke classifier.

A recent research project that involves off-line sketch recognition was done by Wu,

Wang, Zhang and Rui [29]. They presented a three-stage cascade framework for off-line

sketch parsing. The authors used an existing selection recognition approach [30] with

smaller candidate groups than usual thanks to a novel concept. The major contribution

was the introduction to the idea of this novel concept “sharpness estimation” to reduce the

number of candidate groups that are selected for the selection recognition. The idea behind

their algorithm is not to jump immediately to the group recognition or classification, but

to include a previous step that detects a small number of stroke groups that represent good

shapes in a fast way using sharpness estimation. One limitation is that the shapes need to

be well defined to use the sharpness estimation approach, so if a quick drawing is made,

and the shapes are not well closed or defined the algorithm will give false positives.

7

Another method for recognizing high level shapes uses geometrical sketch recognition

techniques to create a natural sketch recognition environment for UML diagrams [10] (and

generalized in [31, 32, 33, 34, 35, 36, 37, 38, 39]) as seen in Figure 2.2. Hammond’s sys-

tem is based on a multi-layer recognition framework that recognized multi-stroke objects

by their geometrical properties allowing users to draw freely as they would on paper. This

work is really meaningful when it comes to how to use geometrical properties to recognize

shapes rather than requiring the user draw objects in a pre-defined manner. The system de-

scribed by Hammond falls into the category of on-line sketch recognition systems since the

sketching is assisted by a PC and a mouse while allowing editing at any time. The stages

of the multiple-layer recognition system described are: 1) Pre-processing, 2) Selection,

3)Recognition, 4) Identification. The non-modal dual approach is intuitive since users can

see what has been recognized from their sketching and make adjustments in real time. The

system not only recognizes sketched UML diagrams but also converts it to Rational Rose

and also automatically generates java code based on the drawn input.

Figure 2.2: This image shows an example of TAHUTI and how it recognizes a drawn class
diagram

8

One project that presents strong similarities with the work presented in this thesis was

done by Zheming Yuan [40]. The authors defined a pen-based flowchart recognition sys-

tem for programming teaching see figure 2.3. Zheming uses an on-line approach using a

pen and a tablet for input. Using on-line sketch features like curvature, speed, angle, and

others he is able to do feature extraction [41, 42]. After that he uses a hybrid SVM-HMM

algorithm to aid the sketch recognition by learning temporal patterns [43]. This project is

the most similar to the project described in this thesis with the major difference that their

system uses an on-line approach combined with HMM. The use of an HMM for shape

recognition purposes requires training to be able to produce acceptable results, but the

major advantage of using it is that it can allow partial recognition as the user draws the

flowchart. Another key difference is that the system described translates the flowchart into

C syntax code but does not allow for the execution of the user’s code to see the output.

This prevents the user from getting some feedback about the accuracy of their flowchart

diagram to be able to fix their mistakes if there was any.

2.2 Standalone flowchart-based programming systems

Since the flowchart-based programming approach proved to be an effective technique

for programming introduction a few available software solutions have emerged. Most of

these solutions are Windows-based systems that are designed using a point-and-click [44]

building block approach and do not include any sketching capabilities (neither on-line or

off-line). These systems rely on GUI controls to provide the users a way to create flowchart

diagrams and then translate them into code as you can see in Figure 2.4. Many of these

systems do not include any code execution capabilities so there is no way the user can

verify if the user’s flowchart will produce the desired result.

Hooshyar [4] created a survey of standalone (non-sketching) MS windows systems

while evaluating their strengths and weaknesses. Here are some of those options available:

9

Figure 2.3: This shows the pen-based programming teaching system by Zheming Yuan,
the left panel is the drawing canvas and the right one the C code translation

BACCII is one of the oldest systems that provide flowchart-to-code capabilities to

novice programmers in order to help them to express their programs. The system mainly

focuses on algorithm development rather than syntactical correctness [45]. Since the sys-

tem is one of the oldest approaches, it is designed to construct the flowchart using modal

windows per structure which might not be the best option available nowadays. The system

translates a constructed flowchart into either Pascal, C++, or FORTRAN. The system uses

a non-standard flowchart notation making it not transferable to a program design method-

ology and therefore requiring extra learning. The system does not provide any way to

execute the generated code so the users would not be able to validate their work and put in

practice their tracing and testing skills.

Raptor is an (non-sketching) MS Windows based tool originally expanded for the

United State Air force Academy as instruction and computing course. This system fo-

10

cuses mainly on improving the problem-solving skill of novices as well as help to avoid

syntax errors [46]. The system translates to Ada, C++, C#, and Java. While a robust so-

lution, the system does not allow code viewing and execution. An important feature of

Raptor is that it includes the widely popular object-oriented paradigm. Raptor is currently

used in 17 countries around the world, according to its developers make it one of the most

popular flowchart-based programming systems. The system was also used by the U.S.

Military Academy on an IT course focused mainly on algorithm design [47].

SFC editor or Structured Flowchart Editor is an MS Windows based system developed

at the Sonoma State University in California [48]. The overall design of the system stands

out than the rest of the other options when allowing side by side comparison between

flowchart and code. The system translates the flowchart to C++ and can be exported to a

text file for further execution on an IDE. The system takes advantage from the dual view

approach that allows users create the flowchart on one side while in the other the pseudo-

code is being processed simultaneously. The text cannot be modified directly from the

code view. It does not provide execution capabilities or any other feedback.

DevFlowCharter is an open-source (non-sketchint) MS Windows based system. The

system translates flowcharts to Pascal code [49] and supports variable assignments, deci-

sions, loops but does not handle arrays. An external environment is needed to execute the

code. This project is rather small and non-academic compared to the previously defined

option.

Many of the systems mentioned provide a reliable way to learn how to program and

show that value of flowcharts in design, however they are unfortunately outdated since

most of the popular programming languages today are different, and those systems are

not longer supported by its developers. In recent years there have been many different

flowchart-based programming systems designed for novice programmers that are more up

to date and overall in line with current programming languages and paradigms as seen in

11

Figure 2.4: This image shows the GUI of four of the most popular and older systems that
used the flowchart-to-code approach

Figure 2.5.

Visual Logic [50] is a paid-only (non-sketching) graphical authoring tool that allows

students to write and execute programs using flowcharts. The system is only supported

for Windows PCs. The system does not provide a way to see the generated code from the

flowchart and only provide a visualization of the result on a CMD terminal. The system

is currently supported by its developers and provide a good approach for flowchart design

beginners without dealing with source code.

Flowgorithm is an open-source (non-sketching) MS Windows software that provides

the tools for flowchart design and edition and the subsequent translation of the structure

to many languages such as C#, C++, Delphi/Pascal, Java, JavaScript, Lua, Perl, Python,

QBasic, Ruby, and others [51]. The system is continually being maintained by its devel-

opers. A limitation is that it only allows one input and an output flow and as all the other

it is only available on Windows.

12

Figure 2.5: This image shows the GUI of two of the most recent and updated systems that
used the flowchart-to-code approach

13

3. GOALS

Combining a hand-drawn flowchart recognition with the portability of mobile devices

could give the beginning programmer a powerful tool to verify the correctness of their

algorithm design. The idea is to provide an intuitive application that requires little to no

initial training. This allows the users to focus on the algorithm itself and not worrying

about details like syntax. Using image processing together with sketch recognition on a

mobile device would create a useful solution that allows the user to “code” on paper. The

goal of the project is to measure both the correctness of the tool itself together with the

usability metrics and overall feedback gathered from users. This can be subdivided into

following research questions which the evaluation will try to answer:

1. What is the recognition accuracy obtained using this approach?

2. How usable is the application according to the user’s feedback?

3. Will the users see any benefit in using this application?

4. What were the major limitations and experience breakdowns while using the appli-

cation?

14

4. METHODOLOGY

This chapter discusses the methodology steps that Flow2code uses to go from a picture

of a flowchart to a pseudo-code and its execution. This section is divided into three parts:

1) the overall process flow to explain the design choices of the system, 2) the system

architecture to explain how the system was technically build and how the software and its

architecture was designed, 3) the interface design to provide an example story case of how

the system is used as well as the UI design choices that were taken.

4.1 Overall process flow

There are three processing steps in: pre-processing, recognition and post-processing,

as seen in Figure 4.1. The pre-processing step will take an image as an input and will

employ computer vision/image processing algorithms to remove as much noise as possible

from the picture to improve further recognition. The second step is recognition, this step

uses computer vision algorithms to identify strokes from the previously cleaned picture

and store the recognized strokes. After that this step takes as an input a set of identified

strokes and using sketch recognition metrics and techniques will group them into shapes

using a top-down followed by a bottom-up approach. The third and last step is post-

processing. This step has two different objectives, first to allow the user to manually edit

the recognized shapes and text, and second generate pseudo-code as a graph by using the

nearest neighbor approach.

4.1.1 Pre-processing

Since the processing and recognition of the flowchart are set to be done on the mobile

device, the first step is to re-size the picture to a standard width and height so it can

handle the processing more easily. In order to reduce the processing time of the pre-

15

Figure 4.1: The image shows the process flow of the data. From the picture pre-processing
to the code generation and execution

processing steps, the design of the system includes a bridge to be able to execute C++

code on the mobile Application (Android) that also uses the OpenCV library [52]. The

OpenCV library has been used in many computer vision and image processing related

projects since its release[53, 54, 55] and it’s proven to be quite effective. The resizing step

is primarily to decrease the overall processing time that it takes to extract the strokes from

the picture.

The image re-sizing should be upscale or downscale according to the current image

dimensions and should be somewhere near 600 pixels for height and 400 pixels for weight.

Once the image is re-sized the system converts it to grayscale [56]. Since the system takes

in a photo of the hand-drawn flowchart, this can lead to very noisy images because of

the uneven brightness. One way to avoid this problem would be to get a reading of the

image using a scanner since it would remove all the noise caused by shadows and overall

brightness issues. However, that would deviate from the overall purpose of the system,

16

to be a quick and easy to use tool for beginner programmers since it would require more

effort by scanning the image. So, the system allows to either take a picture or use a

picture from the smartphone internal memory. Now, to alleviate the brightness/shadow

problem the system first applies first a binary threshold to convert the input image into

black or white [57]. Then, the system applies an Adaptive Gaussian Threshold to remove

most of the noise that is always present because of the picture environment [58]. The

adaptive Gaussian threshold is used to deal with photos taken with a camera when the

overall properties are not known [59].

In other words, since the brightness/light source of the image is most likely to be

uneven depending on which part of the photo is in focus (and if you used flash or not);

there is likely to be shadows on the picture. The adaptive Gaussian threshold takes those

items into consideration and removes most of the background noise generated by those

problems.

The system should have by now a black and white binary picture with most of the

external and pepper-and-salt [60] noise reduced. However, in order for the stroke extrac-

tion to work, the system needs strokes of only one-pixel width. Thus, the next step is to

use a thinning algorithm, which is a morphological operation [61] that is used to remove

selected foreground pixels from binary images and it is mainly used for the purpose of

skeletonization. Thinning is commonly used to tidy up the output for edge detectors by

reducing all lines to a single pixel thickness as seen in Figure 4.2. It is normally applied

to binary images and produces another binary image as output [58].

There are a few thinning algorithms available such as Tamura [62], Guo-Hall [63],

Hilditch [64] Zhang-Suen [65], Jang&Chin [66], Arcelli-Baja [67], O’Gorman [68] just

to mention a few. Unfortunately, there is no best all purpose thinning solution available

and all of the current thinning algorithms have drawbacks such as low performance, loose

topology output or not being able to keep the topology of certain curves or shapes. Having

17

Figure 4.2: The picture shows an example of the a bitmap image before and after applying
a thinning algorithm.

tried the options previously mentioned, the final system uses the Zhang-Suen algorithm

due to its fast processing time and overall reliable skeletonization results [69].

The system uses a modified version of the Zhang-Suen Algorithm because it does not

generate disturbances on the topology of the image as the other morphological thinning

approaches do [65]. The original version of the algorithm generates a good approximation

of the skeleton of the shape keeping the overall digital topology [70] of the entire image.

The Zhang-Suen algorithm is a two-step algorithm that operates on all black pixels P1

that can have eight neighbors [P9,P2,P3 | P8, P1, P4 | P7, P6, P5]. The boundary pixels of

the image cannot have the full eight neighbors. To have a better idea of what the Zhang-

Suen algorithm what follows is a simplified version for explanation of the two steps and

iteration process needed to be done.

Declare

• Define A(P1) = The number of transitions from white to black, (0 -> 1) in the se-

18

quence P2, P3, P4, P5, P6, P7, P8, P9, P2. (Note the extra P2 at the end because it

is circular).

• Define B(P1) = The number of black pixel neighbors of P1. (=sum(P2...p9)).

Step 1 All pixels are tested and pixels satisfying all the following conditions are just

noted at this stage.

1. The pixel is black and has eight neighbors

2. 2 < = B(P1) < = 6

3. A(P1) = 1

4. At least one of P2 and P4 and P6 is white

5. At least one of P4 and P6 and P8 is white

After iterating over the image and collecting all the pixels satisfying all the step 1

condition satisfying pixels are set to white.

Step 2 All pixels are again tested and pixels satisfying all the following conditions are

just noted at this stage.

1. The pixel is black as has eight neighbors

2. 2 < = B(P1) < =6

3. A(P1) = 1

4. At least one of P2 and P4 and P8 is white

5. At least one of P2 and P6 and P8 is white

19

After iterating over the image and collecting all the pixels satisfying all the step 2

conditions; all these conditions satisfying pixels are again set to white.

If any pixels were set in this round of either step 1 or step 2 then all the steps are

repeated until no image pixels are so changed.

The Zhang-Suen Algorithm has a disadvantage since it does not ensure that the overall

output would be one-pixel width particularly noticeable in curves. The solution to this

is create a small modification to the algorithm to overcome that problem by applying a

custom filter that discards the pixel that is redundant and breaks the one-pixel rule. An

easy way to implement the filter is to use Rajan and Hammond’s method to look for every

pixel window neighborhood that is considered a point of ambiguity [71, 72] if one of the

neighbor pixels leads to nothing. If that is the case that pixel is removed to ensure that the

system preserves the overall image topology.

Figure 4.3 shows how the pre-processing step is acting on the original image until the

system reaches the final thinned output.

Figure 4.3: The first picture shows the original image, the second the image after the
grayscale and thresholding steps. Finally the the last one after the thinning algorithm.

20

4.1.1.1 Stroke extraction

Before shape recognition, the system first performs stroke extraction.

After the thinning algorithm is applied the system can start with one of the most im-

portant parts of the framework, the stroke extraction. The algorithm takes as input a matrix

of pixels that represents the entire image. The matrix is filled with 0 (if pixel is off/white)

and 1 (if pixel is on/black). The matrix needs to be iterated through in an organized way.

A nested loop would be ideal to iterate from Top-Left to Bottom-Right of the entire matrix

and start looking for black pixels in every iteration. If a black pixel (1) is found then the

system needs to call a recursive [73] algorithm called extract stroke. The extract stroke

algorithm will add the point to a new list of points and then the pixel will be changed to

0. The system then calculates the neighboring 8-pixel window of the current pixel being

iterating on. There are three different steps that can be followed now according to the

neighbors of the current pixel.

Figure 4.4: The first picture shows the neighboring window. The current point is P1. The
second image shows the case where you only have one option to go to (from P1 to P5).
Finally, the last image shows the option where you have more than one option to go to (P1
is considered a point of ambiguity

21

If the current pixel only has one neighbor left, then the system again calls the extract

stroke algorithm.

If the current pixel has more than one pixel as neighbor then the point is considered a

point of ambiguity (see Figure 4.4). If there is a point of ambiguity and the current list of

points size equals to one, that pixel is added to a different list called ”ignored point”. Then

the pixel is again to the matrix of points, and the current pixel of points is discarded. If the

size of the list of points is greater than one then there exists more than one different path

to follow. To determine which path should be followed, an algorithm ’get linear option’

calculates the angles between the current pixel and its non-zero neighbors and returns the

one that preserves the least amount of change. The system then recursively calls stroke

extraction with the more linear point.

The main reason for ignoring the points is to try to find the start or end point of a stroke

and use that as a starting point, rather than a random point in the middle of a curve that may

show up early during the iteration of the entire pixel matrix. For example, Figure 4.5 shows

a curve in which the first pixel that the algorithm will verify would be the one marked in

yellow. Rather than start the processing with that point, the system instead identifies that

the point is a point of ambiguity, and also is able to identify that is a part of a curve and the

middle of a stroke. By ignoring that point in this instance, the algorithm starts adding the

points only when finding the start or end of a stroke, which is helpful in the next phases.

The algorithm deals with the ignored points after it is finished iterating the matrix.

If the current pixel does not have more pixels to go to (dead end) then the algorithm

saves the list of points and considers that list as a stroke. The algorithm then exits the

recursive function and returns back to the matrix iteration. At this point the algorithm

declares that it has found a stroke that consists of a list of points.

After the system finishes iterating the entire pixel matrix the system iterates through

the ignored point list. This is because there is a closed shape then all of the strokes would

22

Figure 4.5: The image shows how when iterating from top-left to bottom-right a pixel that
is not start or end of stroke is selected first.

have been considered as ignored points and since there is no start or end point the stroke

would never have been added. By iterating through this list of points using a similar stroke

extraction method this closed shape as a stroke is added, only this time the algorithm would

not ignore any point if the list of points equals to one and there is a point of ambiguity.

4.1.2 Stroke processing: features, corners, and metrics

After stroke approximation is complete, the system calculates a number of features and

metrics on those strokes and also performs corner finding to break the strokes down into

polylines.

4.1.2.1 Features and metrics

The bottom-up approach uses traditional shape recognition techniques to classify the

current strokes into two categories: Recognized shapes and Unrecognized Strokes. Metrics

that describe important features from strokes are used to create rules for identifying shapes

from those strokes. Rubine defined a set of thirteen incrementally computable in constant

time per input point features[74, 75]. These features can be used to create a classifier that

is able to categorize strokes into shapes.

A function called generate metrics receives a stroke as input and generates a set of

metrics that will be used further to categorize the given stroke[74, 76]. The metrics that

23

are being calculated are the following:

• f1. cosine of the initial angle of the stroke:

• f2. sine of the initial angle of the stroke:

• f3. Length of the bounding box diagonal:

• f4. Angle of the bounding box diagonal:

• f5. Distance between the first and last point:

• f6. Cosine of the angle between the first and last point:

• f7. Sine of the angle between the first and last point:

• f8. Total stroke length:

• f9. Total angle traversed:

• f10. Sum of the absolute value of the angle at each point:

• f11. Sum of the squared value of the angle at each mouse point:

• f12. Maximum speed of the gesture:

• f13. Duration of the gesture:

These features are calculated given only a set of points as shown in Figure 4.6

Feature numbers 12 and 13 are only applicable when dealing with on-line sketch recog-

nition since speed and duration time is not determinable using a picture, leaving 11 avail-

able features. However when dealing with flowchart shapes, the differences between the

basic used shapes (rectangle, parallelogram, diamond, circle) are actually quite noticeable

allowing the use of fewer features. The final system implementation only uses 5 of the 11

24

Figure 4.6: List of the formulas to calculate each Rubine feature

25

usable Rubine features: Start point, Endpoint, Stroke length, Distance between start and

end point, Total absolute rotation. In addition to Rubine features, the system incorporates

other features from Paulson and Hammond [75, 38, 36]. These features are geometric

based and are critical to differentiating between shapes since most of them differ greatly

geometrically speaking. Figure 4.7 shows the list of the geometric features.

Figure 4.7: A list of the 44 geometric based features from Paulson and Hammond Short-
Straw

Out of the 44 metrics, the systems final algorithm uses the following features: number

of corners, total stroke length, total rotation, absolute rotation, and number of sub-strokes.

26

4.1.2.2 Novel feature: Axis aligned score

As part of this thesis, a new geometrical feature was defined called Axis Aligned Score

(AAS) that was particularly helpful in differentiating between diamonds and other quadri-

laterals. AAS first obtains the corners of the stroke. If the corners are not consecutive then

they need to be reordered to be in consecutive order, either clockwise or anticlockwise (as

in [77]. Once the corners are ordered, the feature’s algorithm calculates both diagonals

between opposite corners. Then the midpoint between the diagonals is calculated, as well

as the midpoint of those two diagonal midpoints. This provides an approximated midpoint

of the entire quadrilateral. The feature’s algorithm then instructs to calculate the maxi-

mum and minimum values of X and Y of the whole shape and create four new corners

adding or subtracting the maximum and minimum X, Y values from the approximated

shape midpoint. Finally, the AAS algorithm instructs to calculate the difference between

the closest shape corner and the axis new generated corner and add the difference value to

a variable. The idea behind this metric is that ideally, the diamond will have its corners

aligned perfectly with the X and Y axis so the AAS would be equals or really close to 0

as shown in Figure 4.8. The algorithm sets a threshold of 80 for diamonds to give some

margin of error to the user. The other quadrilaterals scored above 100 or even more; AAS

ended up being a quite useful feature.

4.1.2.3 Corner finding

Short-Straw [78] was used to identify the number of corners on a given stroke to be

used later in the recognition process. Short-Straw is an accurate poly-line corner finder that

is simple to understand and implement (compared to more complex corner finding mea-

sures [79, 80, 81]), while still achieving a high all-or-nothing accuracy measure [78]. The

overall idea of Short-Straw is simple: given a stroke, imaging that a small short straw that

travels along the entire stroke point by point or in this case pixel by pixel as in Figure 4.9.

27

Figure 4.8: Example of the aligned axis score.

The Short-Straw algorithm calculates the angle that is generated between the current point

in the stroke with the ends of the short straw to determine when there is a possible corner

(close to 90 degrees). The complexity of this algorithm [82] is O(N), however since a

photo contains a high number of pixels (points), the window was increased to jump every

3 pixels, reducing the complexity to O(N/3). This might not always find the best pixel that

represents a given corner, but is is close enough for the purposes of our system.

At this point, the algorithm has the following components of a stroke:.

• Start point: First point of the stroke point list.

• End point: Last point of the stroke point list.

• Stroke Length: Number of points in points list.

28

Figure 4.9: An example of the poly-line corner finder Short-Straw

• Total Rotation: Overall change in direction from one point to another (actual value

- so a wavy line could have a small or even 0 rotation value)

• Total Absolute Rotation Change: Overall change in direction from one point to an-

other. (values are absolute - so a wavy line would necessarily have a large rotation

value).

• Corners: Best approximation to a point (using shortstraw) that have a nearly 90-

degree angle with his neighbors.

• Number of sub-strokes: Number of lines found in a stroke after corners detected.

• Distance between Start-End point: Euclidean distance between the Start point and

the Endpoint.

29

• # of corners: Number of corners of the stroke.

• Axis aligned score (AAS): Measure of how aligned are the corners of the stroke

(shape) with the X and Y axis (only work for quadrilaterals).

Once the above metrics are calculated, the system uses a set of geometry rules to

categorize the strokes into complete shapes or unrecognized strokes if the rules are not met.

The system detects: Circles/Ellipses, rectangles, diamonds, parallelograms and arrows as

shown in Figure 4.10.

Figure 4.10: Flowchart shapes and their respective operations

The algorithm then breaks down all the recognized strokes by its corners and store the

lines on a list for future processing.

4.1.3 Shape recognition

Once strokes are extracted and processed, the algorithm performs shape recognition

and attempts to differentiate between rectangles, diamonds, parallelograms, ellipses and

arrows. Shape recognition [83] attempts to classify the strokes that have been saved so

far as either complete shapes or unrecognized strokes. First, the system uses a bottom-

up approach to classify the strokes as complete or unrecognized strokes and then uses a

top-down approach to try to approximate the shapes from the unrecognized strokes using

30

a k-nearest neighbor approach. Finally, a tree of shapes and arrows is generated from the

recognized shapes and arrows

The system uses a novel algorithm called closedShapeRecognizer that takes a stroke

as an input and return a category as output. This category can be rectangle, diamond,

parallelogram, ellipse or unrecognized. The arrow recognition step is performed after the

closed shape recognition is made.

The set of features calculated was pruned as described in the stroke processing section

(Section 4.1.2) so that this part of the recognition process could be simple, fast, efficient,

and effective in recognizing between the aforementioned shapes. Shape recognition is

performed by ruling out or pruning the shapes depending on the features they have.

4.1.3.1 Overall ordering of shape recognition

The first rule is to see if it matches the feature thresholds for an ellipse, it is worth

mentioned that also a circle would work as a terminal or initial shape.

If the ellipse rule is not met, then the algorithm proceeds to check if the stroke features

meet the rules for a rectangle.

Then if the rectangle rule is not met, the algorithm proceeds to check if it can be either

a diamond or a parallelogram. These two shapes share metrics to a degree, however, the

angles within the shapes help to differentiate between the two.

If none of the above rules are met then the stroke is marked as an unrecognized stroke

and the algorithm ends.

4.1.3.2 Ellipse recognition

Several thresholds must be within certain values for a shape to be defined as an ellipse:

• DistanceBetweenStartToEnd must be less than 20px. A margin must be allowed

because the users almost never fully close the ellipses as preliminary tests indicated.

31

• the number of corners must be less than 3. The reason why any corners are allowed

is because the corner algorithms sometimes give one or two false positives because

of the angles of the extremes of the ellipse.

• AbsoluteRotationalChange must be more than 40 The major feature that differenti-

ates between the ellipse and the other shapes is the AbsoluteRotationalChange. This

Rubine feature measures the sharpness of the stroke, if the number is high it means

that is smoother and it usually contains curves instead of lines.

Note that the RotationalChange (without the absolute value) would be the same for

ellipses, rectangles, diamonds, or essentially any closed shape, which is why the abso-

lute value is used instead. Since the AbsoluteRotationalChange is significantly different

between the ellipses and the rest of the shapes, ellipses are checked first.

4.1.3.3 Quadrilateral recognition

After ruling out the possibility of a set of strokes are not an ellipse, the system then

checks if the shape is a quadrilateral shape, or in this case if is either a diamond, a paral-

lelogram or rectangle. The following thresholds must hold for a shape to be a quadilateral.

• the stroke has more than 2 and less than 5 corners

• the DistanceBetweenStartToEnd is less than 20

• the AbsoluteRotationalChange is more than 20

In the case the stroke has exactly 3 corners, there is one additional step. This is most likely

to be because the start and the end of the stroke do not join together and there is a gap

between the endpoints, and thus ShortStraw would not show it to be a corner. If there

are only 3 corners, the system attempts to approximate a fourth corner by calculating the

midpoint between the start and the end point of the stroke and adding it as a corner. Since

32

the distance between the start and the endpoint need to be less than 20 then the midpoint

between them as corner would not change the topology of the quadrilateral.

Now the system has identified that the stroke is a quadrilateral but the system still has

to differentiate between a diamond, a parallelogram or a rectangle.

4.1.3.4 Diamond recognition

To classify amongst the three quadilaterals, the system takes as an input the four cor-

ners (x,y coordinates) of the quadrilateral. The corners are checked to make sure that they

are listed in a clockwise orientation. This helps to ensure that the set of corners one-third

and second-fourth are opposite. The Axis Aligned Score, described above, calculates the

X and Y differences between the set of corners and the closest axis aligned generated

corners to provide a measurement of how aligned are the corners to either the X or Y axis.

1. If the Alix Aligned Score is less than 80 pixels the stroke is labeled as a diamond.

4.1.3.5 Rectangle & parallelogram recognition

If the shape is determined to be a quadrilateral, but not an ellipse, the system then

attempts to see if the quadrilateral is either rectangle, parallelogram or an unrecognized

stroke.

The systems then calculates the two diagonal lengths by calculating the distance be-

tween the first-third and second-fourth corners. The diagonal difference between the two

of them should be the about the same; if so, the shape is labeled as a rectangle. If one of

the diagonals is bigger then the other to a certain threshold then the stroke is labeled as a

parallelogram.

If none of the above rules are met then the stroke is labeled as unrecognized.

The methodology used to distinguish between quadrilaterals is merely geometrical

and is aided by a few thresholds. This is possible cause only a few shapes are to be

33

recognized. If the system will include more and more shapes, then these thresholds and

feature combination will most likely need to change or increase.

Figure 4.11: RECTANGLE - The system calculates diagonals a) and b) to see if they are
similar enough, PARALLELOGRAM - The system calculates diagonals a) and b) to see
if a) is bigger than b) given a threshold

4.1.3.6 Arrow recognition step

The arrow recognition step is performed after all the shapes have been recognized. This

ensures that the remaining unrecognized strokes could only be one of two: the shaft or the

head of the arrow. The system currently only recognizes the two stroke arrows where the

shaft and the arrow head are drawn separately. To recognize arrows, the system runs a

recursive algorithm with the unrecognized strokes available and checks if the strokes are

shafts or arrows and adding them together using a euclidean distance threshold as a rule.

This joins all the strokes that compose an arrow and also identify the orientation of the

head and the start and end of the shaft. That will be crucial when dealing with generating

code from the existing recognized shapes.

34

4.1.3.7 Top down approach

At this point, the system has two sets, the recognized shapes and the individual unrec-

ognized strokes. This top-down approach will run a recursive algorithm to try to approxi-

mate shapes by using a nearest neighbor approach [84]. The recursive depth is limited to

four to prevent any stack overflow problems. The algorithm runs as follows, it first iter-

ates through the unrecognized strokes and find the closest stroke available giving a certain

threshold. If the stroke is close enough the algorithm joins the strokes and tests if the

shape recognition rules are met, if not then the algorithm tries the same on the next closest

stroke to our new partial-composed stroke. This is done recursively, increasing a recursion

counter to limit the recursion to four nested ones since all of our shapes have four sides.

The system marks all strokes that are being joined to avoid repetition in the recursion.

If the partially composed stroke passes any of the above shape recognition rules then the

recursion is complete and the composed shape is added to the recognized shapes set. Then

the individual strokes of the composed stroke are pruned from the list of unrecognized

strokes to avoid repetition.

4.1.4 Post-processing

The post-processing step reviews the results of the recognition step and allows for cor-

rection of the text recognized on the flowchart. It also allows for the option of generating

and execute the code if possible. These steps are grouped into a single category because

they occur after the shape and text recognition steps.

The review step allows the user to visualize what was and wasn’t recognized from

the drawing. If not all shapes and arrows are recognized then the code generation will

not work as well, and the user can go back the drawing and make changes where his/her

drawing wasn’t recognized. This review step is optional so the user can choose to go to

the correction module even if not all shapes and arrows are recognized.

35

Next, is the correction step allows to make sure that the text was recognized properly.

This step is very important to allow for the system to convert the recognized input to code,

and if something is not recognized properly the output algorithm will not be able to execute

even though the diagram was correctly designed. Another reason the post-processing step

is necessary is because the handwritten text recognition libraries are also known as OCR

(Optical character recognition) [85] available today do not provide a great accuracy output.

The system currently using Tesseract [86] an open source [87] library for Object Character

Recognition, the library was released under the Apache License Version 2.0 [88], and

development has been sponsored by Google since 2006. Tesseract is considered one of the

most accurate open source OCR engines currently available and has been used in many

projects since its release [89, 90, 91].

After the post-processing step, the application uses a recursive function to go through

the shape tree to generate the pseudo-code from the previously recognized shapes. The

user is then given the option to execute that pseudo-code.

To execute the psuedo-code, the system quickly formats the pseudo-code to javascript

notations[92] and then uses a javascript execution library for android called Rhino [93]

(developed by Mozilla Foundation[94]) to run the code and get the result. The Rhino API

has been used by many projects [95, 96, 97] since it release and its proven to be very

efficient when compiling and executing javascript code.

4.2 System design

4.2.1 Architecture design

This section describes the overall architecture of the framework and the sketching de-

sign choices that were made to built Flow2Code. Figure 4.12 shows a UML [98] compo-

nent diagram [99]. Each component is represented with a box; the biggest blue box is the

whole Flow2Code application.

36

The system has four other components which are: ProjectManager, Pre-Processing,

SketchRecognition, and Post-Processing. ProjectManager takes care of the user input and

allows a user to Create, View, Update, Delete and Share a new project. The create module

follows the data flow process begins as described above going from the pre-processing

steps, followed by the recognition, and finishing with the review, correction, and finally

code generate/execute.

Figure 4.12: Flow2Code UML component diagram

The previous diagram attempts to make the high-level design of the architecture of the

system and the overall data flow understandable and easy to follow.

37

4.2.2 Sketching design choices

When designing Flow2Code many design wise choices had to be made to be able to

provide a complete, easy-to-use tool for beginner programmers. Flowchart-based pro-

gramming had been around a while, and there are already some systems that use this

approach as mentioned in the prior work chapter. The set of rules and constraints were

chosen to improve accuracy when translating the flowchart into code. Ideally, the system

would take as input a free hand diagram with little to no constraints when drawing. How-

ever, this imposes a big threat to the overall recognition since the noise or overlapping

strokes will most certainly decrease the accuracy.

The first design decision was the set of shapes to include to serve as building blocks

for the flowchart. The shapes that are most accessible to new users are the four basic

flowchart shapes because it doesn’t impose a great amount of knowledge to learn how to

use them: Circles or Ellipses for Start/End indicators, Rectangles for processing steps,

Parallelograms for Input/Output data, Diamonds for decision making, and finally Arrows

for sequence.

To allow the user to draw the flowchart as intuitive as possible the user can draw shapes

that are not fully closed in the corners. In early stages of testing, many users do not close

the shapes if they are drawing as quickly as possible. Figure 4.13 shows an example of a

few different ways a shape can be drawn by the user and still be recognized by the system.

It is still recommended that the user closes the shapes for a faster and more accurate

recognition.

For arrow recognition, there are also a number of ways in which the user can draw

them, closed-empty head, closed-filled head, separated-open head as shown in Figure 4.14.

Although Flow2Code can only recognize the last one at this time. The two-stroke separated-

open head arrow is fast to draw, a common method for drawing them, and does not suffer

38

Figure 4.13: A few non-closed ways in which a rectangle can be drawn

drastic changes in the topology of its form when it goes through the thinning algorithm.

Figure 4.14: A few different ways in which a rectangle can be drawn. Flow2Code will
only recognize c).

The arrow consists of two parts the shaft and the head. Although Flow2Code can only

recognize one time of arrow head, it can recognize several types of arrow shafts. The shaft

of the arrow can be drawn using multiple lines to allow the user more flexibility when

designing the algorithm, as seen in Figure 4.15

Flow2Code implements an offline stroke separation algorithm [71]. However, this

approach has difficulties separating collided strokes in some circumstances. Users that

separated their objects had much higher accuracy. Examples of arrows that have better

39

Figure 4.15: Some of the different arrows with different shafts that are recognized by
flow2code.

and worse accuracy are shown in Figure 4.16. Shapes should not collide with the arrows

have better accuracy. Likewise, text that does not collide with the outer shape also has

better accuracy. Users that adopt this approach the system will work faster for users since

it would not need to run the collision algorithm, and provides for better results. Also, it

does not impose a big constraint to the user and the flowchart ends up showing cleaner to

the sight.

Figure 4.16: Example of the recommended way to draw sequence arrows and shapes;
Flow2Code will all ways have more accuracy when avoiding collision like in the option
C.

40

In order to improve the usability of the code execution, there are defined functions that

can be used on the pseudo-code. The READ and PRINT function. The READ function

must be used once at the beginning of the algorithm to ask for variable initializations. The

PRINT function will print out whatever is passed through it adding a break-line at the

end for formatting. The READ function can take one or more parameters separated by a

comma. The user can use as many PRINT tags as he desires, all of them will be added to

the output console when executed. If the user adds the PRINT tag followed by a variable

name it will print the variable value. If the user chooses to use the " characters then the

string value of what is inside them will be displayed. As shown in Figure 4.17 the user

first reads two variables and then chooses to print the value of X followed by the string

X. This way the user will have a way to keep track of the processing steps and be able

to assess if the algorithm is well defined if the output is the desired one. These functions

were defined in javascript and the overall implementation is not visible to the user to avoid

any confusion.

Finally, the last constraint that the user needs to be aware is that the flowchart design

does not need to include the TRUE/FALSE or YES/NO text near the conditional arrows.

The design allows for if the arrow goes down it is immediately recognized as TRUE/YES,

and if it goes left or right it is considered FALSE/NO as shown in Figure 4.18

4.3 User interface design

The application was designed and implemented using the Google Material Design

guidelines [100] and the Android API 5.0 codenamed Lollipop [101]. The GUI con-

sists of three different screens: (1)Flowchart Project Management, (2) Editing/Correction

flowchart, (3) Camera module and (4)Presentation and code editing/execution. The ap-

plication is now in beta testing, and we are currently working to improve the recognition

rates as much as possible.

41

Figure 4.17: Example of the the READ and PRINT tags added to Flow2Code

42

Figure 4.18: Example of how conditional labels should be drawn excluding the labels).

Figure 4.19: This image present the main modules of the mobile application. The first one
from left to right enable the management of projects, followed by the recognized flowchart
and then the code that was generated from it. The step of taking a picture with the flowchart
was not included since the camera itself is outside the scope of the application.

43

4.3.1 Flowchart project management

This module provides the users with capabilities to manage their flowchart projects.

It is the main UI screen that the user will see. From this screen, the user is capable of

adding a new project if s/he needs to either by providing an image from the external or

internal memory of by choosing to take a picture with the device. This module also allows

the user to view and edit existing projects, delete them if they are no longer needed and

even sharing capabilities to export the project to any cloud service the user have installed

in their device such as Mail, Google Drive, Dropbox, etc. The different screens are shown

in Figure 4.20.

Figure 4.20: This image shows the different GUI screens that the management module
uses. a) The image shows the different previously saved project listed, a button for adding
new ones and an options button in each of the item lists, b) The image shows different
options per project that can be performed: Edit, Share and Remove. c) The image shows
the input options when adding a new project: Take picture or Open from gallery.

44

4.3.2 Camera module

This is the first intermediary module between the actions of adding a new flowchart by

taking a picture and the view/execute module. This module will launch a camera appli-

cation that the user has installed on their device and will use the picture taken as an input

for the flowchart recognition to begin. After a picture is taken the user will be required

to make any adjustments or cropping to the image to be able to remove the external noise

that is usually present at the borders of the picture. Once the user accepts the crop bound-

aries of the image, the system will begin the overall process for recognition and will be

presented with the correction module next. Figure 4.21 shows the camera modules.

Figure 4.21: This image shows the different GUI screens that the camera module uses. a)
The camera takes a picture of a previously drawn flowchart, b) This is the picture taken
with the camera. c) The user can crop the image after taking or selecting a picture. The
blue boundaries will crop the image as desired.

45

4.3.3 Review module

This is the second intermediary module between the actions of adding a new flowchart

and the view/execute module. This module was added to give a preview of what was

recognized by the system. Using color coded strokes the user can easily see not only what

was recognized but also if the shapes were recognized correctly. This way the user can see

for themselves if they have to go back to the drawing and make edits or continue to the

next step. There is no processing done in this module other than the color-coded flowchart

generation and that is the reason why this step was not included in the system process

described previously.

Figure 4.22: This image shows the different GUI screen that the review module uses.
a)Shows an example of a flowchart with all its shapes and arrows recognized correctly, b)
Shows an example of a flowchart with one missing (not recognized) shape and arrow

46

4.3.4 Correction module

This is the third intermediary module between the actions of adding a new flowchart

diagram and the view/execute module. This allows the user to manually edit all the text

that is being recognized by the system. This module was developed to guarantee a 100%

accuracy when dealing with hand-drawn text recognition since the OCR libraries in exis-

tence are not very accurate. The user can navigate by swiping left or right and manually

edit the recognized text. This module is important to the system due to the nature of the

project since it needs a 100% accuracy to be able to execute the code extracted from the

flowchart. Figure 4.23 shows the correction module screens.

Figure 4.23: This image shows the different GUI screens that the correction module uses.
a) Shows an example of a 100% recognized text string. b) Shows an example of a wrong
recognition, the system recognized the number 2 instead of the letter Z. c) Shows how the
user can edit the text in case errors in text recognition occur.

47

4.3.5 View/execute module

This is the last module that the user will interact with, first, it shows the user with a

cleaned black and white version of their flowchart and also a translated pseudo-code from

the flowchart itself. The pseudo-code is only for presentation only and it is not bound to

any programming language, although javascript notation is fully integrated. The user can

choose to manually edit the code if it was not recognized appropriately and will be given

the option of executing the code from the same module. If the user chooses to execute the

module, the system will first verify if there is any input variable needed for the algorithm

to run. If there is at least a variable needed the system will prompt a dialog box asking for

the input after it is set the system will execute the code with the input provided and will

show the result in a different dialog. If there is no input variable needed for its execution

the system will skip the input variable dialog and will proceed to show the output console

dialog. The system can choose to save the current project or to exit without saving. If the

user decides to save the project they system will ask for a name to be given to the project,

after that the system will show the main module the flowchart project management and

the project will be listed there for future view or edit. Figure 4.24 shows the correction

module.

48

Figure 4.24: This image shows the different GUI screens that the view/execute module
uses. a) Shows the cleaned flowchart after all the processing and recognition, b) shows the
pseudo-code on a side tab, it allows also manual editing, c) shows how the system detects
and ask for an input variable, in this example the variable Z, d) shows the output of the
script once executed with the input variable Z=5.

49

5. EVALUATION

5.1 Evaluation plan

In order to fully evaluate the usability of the system, an evaluation was performed

gaining both quantitative and qualitative feedback from users with a goal to measure both

the recognition accuracy of the application and the usability acceptance from the users.

Two different studies were implemented. The first one was a complete study involving

both qualitative and quantitative results with the researcher as facilitator and able to answer

doubts from the users.

The first study was be done by 20 subjects and only one requirement was asked when

selecting them: The user must learn how to model algorithms using flowcharts. Which

since most of the subjects were computer science students from graduate school all of them

already had flowchart background. The subjects recruitment was done via email using the

Texas A&M bulk mail and also by asking around campus. The study consisted of four

sections: 1) Purpose of the study, 2) Pre-questionnaire, 3) Experiment and 4) Usability

Survey, Interview, and comments from the user.

The user study was conducted in the Sketch Recognition Lab at Texas A&M Univer-

sity. The set up consisted of a single desk, chair, pieces of white paper, pencil, eraser,

pencil sharpener, and an Android smartphone with the Flow2Code application installed

and the drawing guidelines as you can see in Figure 5.1. All of it was provided by the

researcher.

The second user study was performed in a classroom for an Introductory Computer

Science course at TAMU (CSCE 206) at ETB 2005 by 45 Undergraduate Students. This

study was meant to be more quick and unsupervised study. This meant that the researcher

will not be able to answers from the users. The idea of this second study is to recreate

50

Figure 5.1: The set up environment for the user studies

a worst case scenario in which a user would be performing a flowchart drawing without

any guidance. This will allow us to identify strengths and weaknesses of the system.

No qualitative data was collected from this study. Only one drawing of a flowchart with

minimum instructions. The sketches were collected for further analysis.

We will focus on the first and complete user study done by 20 TAMU students since it

will give us both qualitative and quantitative data. We will discuss later the results obtained

from both the complete study and the smaller one.

5.2 Complete user study

5.2.1 Purpose of the study

The first part of the evaluation plan was to explain the user about the overall purpose

of the application, explain the idea behind it, as well as explaining the further steps of the

study and the amount of time that it will take. After that, the user was asked to sign a con-

51

sent form according to the TAMU Institutional Revision Board (IRB) [102] requirements.

The researcher then answered all the questions that the subject had before starting the next

step.

5.2.2 Pre-questionnaire

The researcher handed a pre-questionnaire to the user to gather information and data

about demographics and previous experience with the flowchart based systems for pro-

gramming as you can see in appendix A. The purpose of this part is to measure not only

demographic information but to also be able to know a little more about the subject’s back-

ground before the experiment take place. Google Forms was used as a tool to speed up the

questionnaire process. Again, the researcher answered all the questions that the subject

had before starting the next step.

5.2.3 Experiment

The experiment consisted of two steps: 1) Drawing exercises, 2) Flow2code use. Be-

fore the experiments take place the user was handed a sheet of drawing guidelines that

describe briefly how to use the application, as well as drawing tips to get better recognition

results. The drawing guidelines are not meant to be a detailed manual of the application.

The drawing guidelines can be seen in appendix B.

Once the subject read the drawing guidelines the user was handed the exercise sheet,

five blank sheets of paper, a pencil and an eraser. The subject was allowed to keep the

drawing guidelines during the drawing step. Only three sheets of paper needed to be used,

one per exercise. If the subject needed more, the researcher handed them. You can see the

exercises sheet on appendix C.

The drawing step consisted of three different flowchart related exercises in which the

subject needed to draw the algorithm using a flowchart. You can see in picture 5.2 a subject

that is drawing of the flowcharts from the exercises.

52

Figure 5.2: A subject drawing a flowchart to solve one of the exercises

It is important to mention that in this step the researcher played the role of observer

and only spoke when the user did not understand any part of the exercise to avoid any type

of coercion.

Once the subject finished drawing the exercises, the next step of the experiment took

place. The subject was handed with an Android smartphone with the specifications seen

in table 5.1:

Table 5.1: Hardware specifications of the android smartphone used in the study

Hardware Specifications
CPU Qualcomm Snapdragon 801 processor with 2.5GHz Quad-core CPU’S
RAM 3 GB LP-DDR3 1866MHz

Display 5.5 inch JDI 1080p Full HD (1920X1080), 401PPI
Back camera 13 Megapixel - Sony Exmor IMX 214, f/2.0 aperture, Dual LED flash

Android Lollipop version 5.1.1

All users used a smartphone that was supplied to them for the study so that privacy

53

about their data was not a concern and also to ensure they had a device for the study. We

also could then ensure that the users had the app on their screen.

Once the user had the smartphone with the application on the screen it is important to

mention again that the researchers did not explain how to use the application. Also, the

smartphone had no application running in the background other than Flow2Code.

Next, the subject was asked to create a new project for the third drawing (E03-Factorial)

and see if the system is able to execute the code that was recognized from the drawing as

you can see in picture 5.3. The researcher provided only guidance if the subject was lost

during the use of the application. Once the user finished adding and saving all three of the

new projects the smartphone was taken away as well as the smartphone.

Figure 5.3: A subject taking a picture of his handrawn flowchart and then comparing the
recognized shapes preview

5.2.4 Post-survey, interview and comments

For the last part of the evaluation, the researcher handed a Likert scale survey to the

user. The scale is called SUS (System Usability Scale)[103] and measures the usability

of a software or application as you can see in appendix D. After the scale was completed

54

the researcher and the subject engaged on a semi-structured interview[104] and the subject

was asked a few questions regarding the overall application. All the answers were written

down in a notebook by the researcher. The researcher asked finally any open suggestions

or comments that the user had at the end and also recorded the same in a notebook. You

can see the semi-structured interview script on appendix E. After this step, the researcher

thank the subject and the user study was completed.

5.3 Results

This section will show the results of the user studies in detail providing all the infor-

mation that were gathered during the user studies. First of all, we will describe the user

background and demographics, followed by showing the quantitative evaluation of the

prediction accuracy results of the system. Finally, we will show quantitative information

gathered from the System Usability Scale, and the semi-structured interview.

5.3.1 Subject demographics

The user studies took place at Texas A&M Sketch Recognition Lab. Data about the 20

subjects was collected before starting the user study. As you can appreciate in picture 5.4

most of the subjects were male, between 19 and 30 years old.

All except two subjects were not in the Engineering and Computer Science department.

However, they mentioned knowing flowcharts and programming basics fundamentals and

that’s the reason they were allowed to take the user study. Most of the students were in

Grad School (80%) and the rest were Undergrads(20%) as you can see in Figure 5.6.

Two questions were asked in the pre-questionnaire to the users about if they were

familiar with flowchart design and programming. The first question was: Have you taken

any courses that involve learning to code using flowcharts at any point in your life? This

question was answered by a simple yes or no as you can see in figure 5.7. The reason

for this question is because even though flowchart-based programming is a widely used

55

Figure 5.4: The graph show the gender distribution of the subjects from the user study

Figure 5.5: The graph show the age distribution of the subjects from the user study

Figure 5.6: The graph show the occupation distribution of the subjects from the user study

56

technique to get started with programming some institutions do not use them and begin

with code lessons since day one. 80% of the users had used flowcharts as a tool for coding

prior to the study and 20% did not as shown in Figure 5.8.

Figure 5.7: The graph show the distribution of the subjects who agreed to having taken a
course where flowchart design was necessary

For the users that answered positively to the previous question, they were asked if they

used a software as a tool for drawing or even just designing flowcharts. 60% of the subject

indeed used a software and the other 40% did not. After that, the users were asked to give

the name of the software tool if they remembered. Only 7 subjects remembered the tool

they used being: MS Word, MS PowerPoint, OmniGraffle, and Origami the only answers

given.

Finally, the survey asked them to rate both their flowchart design skills and their pro-

gramming skills on a scale from 1 to 5. Figures 5.9 and 5.10 show that 50% of the subjects

marked 3 as the answer for the flowchart design skills and 35% of them marked 4 for their

programming skills. The reason behind this set of questions was to get some information

57

Figure 5.8: The graph show the distribution of the subjects who agreed to have used a
software tool for software design in the past

about how confident they are around flowcharts and code (programming).

Figure 5.9: The graph show the distribution of the flowchart design skills that the subjects
gave themselves, 1 being minimum and 5 maximum

58

Figure 5.10: The graph show the distribution of the programming skills that the subjects
gave themselves, 1 being minimum and 5 maximum

5.3.2 Predictive analysis

In order to measure the accuracy of the recognition of the system, we will provide first

the results of each of the exercises followed by the overall results. Confusion matrices

portray the performance of the recognition algorithm, while evaluation metrics to discuss

the goodness of the recognition algorithm.

As mentioned previously three different exercises were handed to the subjects to be

solved by drawing a flowchart:

• E01/Hello

• E02/Fibonacci

• E03/Factorial

You can see an example of the E01 flowchart in appendix F, E02 in appendix G and

E03 in appendix H. Table 5.2 shows the recognition results of the first exercise E01/Hello

in a confusion matrix. In all experiments this was the first approach the subjects had with

59

the exercises, followed by E01, and then E03. We included the classification "none" to

include which shapes were not recognized at all by the system, Table 5.2 shows the missed

categorization of shapes was not common and most of them present on parallelogram

and rectangle. Also, there were 12 arrows, 3 ellipses, and 1 parallelogram that were not

recognized at all (classified/predicted as none).

Table 5.2: Confusion Matrix of the first exercise (E01/Hello)

E01 P R E D I C T E D
Ellipses Parallelogram Rectangle Diamond Arrow None

A Ellipses 37 0 0 0 0 3 40
C Parallelogram 1 51 5 0 0 1 58
T Rectangle 0 0 22 0 0 0 22
U Diamond 1 1 0 38 0 0 40
A Arrow 0 0 0 0 168 12 180
L None 0 0 0 0 0 0 0

39 52 27 38 168 16

For the second exercise E02/Fibonnaci, Table 5.3 shows almost the same results as the

previous one, although in this case, two ellipses are recognized as diamonds or parallelo-

grams. Also, 14 arrows were not recognized at all, as well as 2 ellipses, 1 parallelogram,

and 1 diamond.

Table 5.3: Confusion Matrix of the first exercise (E02/Fibonacci)

E01 P R E D I C T E D
Ellipses Parallelogram Rectangle Diamond Arrow None

A Ellipses 35 0 2 1 0 2 40
C Parallelogram 1 35 2 1 0 1 40
T Rectangle 0 1 77 0 0 2 80
U Diamond 0 1 1 17 0 1 20
A Arrow 0 0 0 0 167 14 181
L None 0 0 0 0 0 0 0

36 37 82 19 167 20

60

Finally for the third and last exercise E03/Factorial we can appreciate a drop on the

non recognized arrows (only 8) as well as only 2 ellipses and 2 diamonds. You can see the

confusion matrix for the third exercise in table 5.4.

Table 5.4: Confusion Matrix of the first exercise (E03/Factorial)

E01 P R E D I C T E D
Ellipses Parallelogram Rectangle Diamond Arrow None

A Ellipses 38 0 0 0 0 2 40
C Parallelogram 0 39 1 0 0 0 40
T Rectangle 0 0 78 0 0 2 80
U Diamond 0 1 0 19 0 0 20
A Arrow 0 0 0 0 172 8 180
L None 0 0 0 0 0 0 0

38 40 79 19 172 12

Since the number of shapes needed per exercise does not change greatly between exer-

cises them we added up the previous three confusion matrix into the one as you can see in

table 5.5 which will give us the overall recognition results and will be useful to compute

recognition metrics.

Table 5.5: Confusion Matrix of all the exercises together

ALL P R E D I C T E D
Ellipses Parallelogram Rectangle Diamond Arrow None

A Ellipses 110 0 2 1 0 7 120
C Parallelogram 2 125 8 1 0 2 138
T Rectangle 0 1 177 0 0 4 182
U Diamond 1 3 1 74 0 1 80
A Arrow 0 0 0 0 507 34 541
L None 0 0 0 0 0 0 0

113 129 188 76 507 48

Predictive analysis metrics from the aggregated confusion matrix give more meaning

61

to the results by computing a 2-class confusion matrix for all of the shapes available except

the "none" class since that one is not an actually predicted shape.

The evaluation metrics [105] used to describe the recognition of the algorithm per

shape are:

• Accuracy - Measure of how often is the classifier correct,

• True Positive Rate (TPR, sensitivity, recall) - Measures the proportion of positives

that are correctly identified as such.

• False Positive Rate (FPR, fallout) - Measure the proportion of positives that are

incorrectly identified as such.

• True Negative Rate (TNR, specificity) - Measures the proportion of negatives that

are correctly identified as such.

• False Negative Rate (FNR, miss rate) - Measure the proportion of positives which

yield negative test outcomes with the test

• Precision (Predictive value - Measure for classifier exactness, low precision can

indicate a large number of False Positives.

• f-score (f-measure) - Another measure for accuracy, it can be interpreted as the

weighted average of the precision and True positive rate.

Figure 5.6 shows the evaluation metrics for shape analysis. The accuracy of the ellipses

is considerably high with 98% as well as the precision with 97%. The FPR and FNR are

below 1% which indicates that there we rent many false positives or negatives overall. The

F1 measure being a metric for overall goodness of the classifier is just below 95% which

is considered good as well.

62

Table 5.6: Confusion Matrix and metrics of the shape Ellipse

ELLIPSE Predicted Accuracy 0.9878 FNR 0.0833
Ellipse Not Ellipse TPR 0.9166 Precision 0.9734

Actual Ellipse 110 10 FPR 0.0031 Fscore 0.9442
Not Ellipse 3 951 TNR 0.9968

The accuracy of the parallelogram is considerably high with 98% as well as the preci-

sion with 97% . The FPR and FNR are below 1% which indicates that there weren’t many

false positives or negatives overall. The F1 measure being a metric for overall goodness

of the classifier is just below 95%. (See Figure 5.7.)

Table 5.7: Confusion Matrix and metrics of the shape Parallelogram

PRLGRAM Predicted Accuracy 0.9842 FNR 0.0942
Parallelogram Not Pararellogram TPR 0.9057 Precision 0.9689

Actual Parallelogram 125 13 FPR 0.0042 Fscore 0.9363
Not Parallelogram 4 936 TNR 0.9957

The accuracy of the rectangle is considerably high with 98% as well as the precision

with 94%. The FPR and FNR are below 1% which indicates that there weren’t many false

positives or negatives overall. The F1 measure being a metric for overall goodness of the

classifier is just below 95%. (See Figure 5.8.)

Table 5.8: Confusion Matrix and metrics of the shape Rectangle

RECTNGL Predicted Accuracy 0.9851 FNR 0.0274
Rectangle Not Rectangle TPR 0.9725 Precision 0.9414

Actual Rectangle 177 5 FPR 0.0122 Fscore 0.9567
Not Rectangle 11 884 TNR 0.9877

The accuracy of the diamonds is considerably high with 99% as well as the precision

63

with 97%. The FPR and FNR are below 1% which indicates that there weren’t many false

positives or negatives overall. The F1 measure being a metric for overall goodness of the

classifier is just below 95%. (See Figure 5.9.)

Table 5.9: Confusion Matrix and metrics of the shape Diamond

DIAMOND Predicted Accuracy 0.9925 FNR 0.0750
Diamond Not Diamond TPR 0.9250 Precision 0.9736

Actual Diamond 74 6 FPR 0.0020 Fscore 0.9487
Not Diamond 2 987 TNR 0.9979

The accuracy of the arrows is considerably high with 96% as well as the precision

with 97%. The FPR and FNR are below 1% which indicates that there weren’t many false

positives or negatives overall. The F1 measure being a metric for overall goodness of the

classifier is just above 95%. (See Figure 5.10.)

Table 5.10: Confusion Matrix and metrics of the Arrows

ARROW Predicted Accuracy 0.9689 FNR 0.0628
Arrow Not Arrow TPR 0.9371 Precision 1

Actual Arrow 507 34 FPR 0 Fscore 0.9675
Not Arrow 0 554 TNR 1

Overall the accuracy of the shapes was high, with only a few missed shapes or wrong

classifications. Even though the recognition rates were high it is possible that if user

follows the drawing guidelines perfectly the recognition accuracy should be near 100%.

It is important to mention that all of the previous results were done on the user’s first

drawing. In other words, even though there is an intermediary review step in which the

user can go back to the drawing to re-draw parts of the flowchart that were not recognized,

64

those re-recognition results were not taken into account in this experiment since we were

interested in the first drawing to test the algorithm recognition accuracy.

Now, as shown previously, the recognition accuracy for all the shapes is considerably

high and that can be because of the enforced drawing guidelines that the users need to

keep in mind while drawing. This means that a more valuable metric to measure this sys-

tem recognition accuracy would be to measure the All-or-Nothing accuracy per drawing.

All-or-Nothing accuracy is defined as the number of flowcharts in which all shapes (i.e.,

nothing was wrongly recognized in the entire sketch) were recognized properly on the

first try over the total number of flowcharts. This metric reflects whether or not the user

would have to go back to make any edits. This metric is important because ideally, the

user wouldn’t have to go back to the drawing to make edits. Table 5.11 shows the results

for the first exercise; only 4 out of the 20 were recognized entirely on the first try, yielding

an accuracy of 0.2 or 20%. For the second exercise, 5 out of 20 were recognized entirely,

or .25 or 25%. For the last exercise 10 out of 20 were recognized entirely, or 50%. These

results align with the feedback the user gave at the end of the experiment. Most of them

felt lost when drawing the first flowchart, either because they didn’t remember how to do

it or because they had to keep track of the drawing guidelines. As the exercises continue

the subjects mentioned feeling more confident when drawing them and that can be seen in

the table below.

Table 5.11: All-or-nothing accuracy of each one of the three exercises

All-or-nothing
E01/Hello 4/20 0.2

E02/Fibonacci 5/20 0.25
E03/Factorial 10/20 0.5

avg=.3166

65

Our smaller user study also draw some interesting results. It is worth to reiterate that

this smaller user study was done to recreate a bad scenario in which the users do not have

the instructor to clarify any doubts or answer questions. Just minimum instructions were

provided and a simple exercises in which the users needed to draw a flowchart given a

simple algorithm description.

All the sketches were collected and a confusion matrix was put together from the recog-

nition results. The aggregated confusion matrix of all the 45 students from the smaller user

study are shown in table 5.12.

Table 5.12: Confusion Matrix of unsupervised user study

UNSP P R E D I C T E D
Ellipses Parallelogram Rectangle Diamond Arrow None

A Ellipses 53 0 5 4 13 10 85
C Parallelogram 1 49 6 2 5 5 68
T Rectangle 0 0 74 2 4 3 83
U Diamond 1 0 2 33 4 2 42
A Arrow 0 0 0 0 216 64 280
L None 0 0 0 2 97 0 99

55 49 87 43 339 84

The results for the ellipse were mostly similar than the complete study. Table 5.13

shows both the accuracy and precision stayed above 95%. However the F-score was low-

ered from 95% to 75%.

Table 5.13: Confusion Matrix and metrics of the shape Ellipse for the unsupervised study

ELLIPSE Predicted Accuracy 0.9507 FNR 0.3764
Ellipse Not Ellipse TPR 0.6235 Precision 0.9636

Actual Ellipse 53 32 FPR 0.0033 Fscore 0.7571
Not Ellipse 2 604 TNR 0.9966

66

The accuracy of the parallelogram is still considerably high with 97% as well as the

precision with 100%. The FPR is low which indicates that there weren’t many false pos-

itives overall. Although the FNR increased considerably. The F1 measure being a metric

for overall goodness of the classifier dropped to 75%.

Table 5.14: Confusion Matrix and metrics of the shape Parallelogram for the unsupervised
study

PRLGRAM Predicted Accuracy 0.9718 FNR 0.2794
Parallelogram Not Pararellogram TPR 0.7205 Precision 1

Actual Parallelogram 49 19 FPR 0 Fscore 0.8376
Not Parallelogram 0 608 TNR 1

The accuracy of the rectangle is consistently high with 96% as well as the precision

with 85% although less than previous study. The FPR and FNR are below 2% which

indicates that there weren’t many false positives or negatives overall. The F1 measure

being a metric for overall goodness of the classifier dropped to 85% but is still considered

a good rate.

Table 5.15: Confusion Matrix and metrics of the shape Rectangle for the unsupervised
study

RECTNGL Predicted Accuracy 0.9675 FNR 0.1084
Rectangle Not Rectangle TPR 0.8915 Precision 0.8505

Actual Rectangle 74 9 FPR 0.0218 Fscore 0.8705
Not Rectangle 13 583 TNR 0.9781

The accuracy of the diamonds remains considerably high with 97%. However the

precision dropped to 76%. The FPR remains low but the FNR increased. The F1 measure

being a metric for overall goodness of the classifier dropped to 77%.

67

Table 5.16: Confusion Matrix and metrics of the shape Diamond for the unsupervised
study

DIAMOND Predicted Accuracy 0.9718 FNR 0.2142
Diamond Not Diamond TPR 0.7857 Precision 0.7674

Actual Diamond 33 9 FPR 0.0157 Fscore 0.7764
Not Diamond 10 624 TNR 0.9842

The diamonds evaluation metrics were the most affected during this user study. The

accuracy of the diamonds dropped to 78% and the precision to 63%. Both FNR and FPR

increased to 22% approximately. And the goodness of the classifier being the F-measure

dropped to 69%.

Table 5.17: Confusion Matrix and metrics of the Arrows for the unsupervised study

ARROW Predicted Accuracy 0.7784 FNR 0.2285
Arrow Not Arrow TPR 0.7714 Precision .6371

Actual Arrow 216 64 FPR 0.2180 Fscore 0.6978
Not Arrow 123 441 TNR 0.7819

Since the unsupervised user study was meant to be helpful to identify strengths and

weaknesses on unsupervised flowcharts, we calculated a set of percentages that will be

helpful to give a clearer idea why the evaluation metrics dropped overall. Since the draw-

ing guidelines were omitted in the exercise the users incur in many different drawing char-

acteristics that hindrance the recognition of our classifier. Here is a list of the percentages

of these characteristics found on the 45 flowchart sketches on the unsupervised study.

The characteristics identified next we be used to understand why the evaluation metrics

dropped.

• All-or-nothing - Percentage of how many flowcharts were completly recognized

and were also correct,

68

• LogicCorrect - Percentage of how many subjects had the algorithm logic correctly

.

• LogicIncorrect - Percentage of how many subjects had the algorithm logic incor-

rectly.

• ClosedShapes - Percentage of completely closed shapes or with just one corner

unclosed .

• Non-ClosedShapes -Percentage of two or more corners unclosed.

• Scribbles - Percentage of how many sketches contained scribbles on them.

• ArrowPartOverlap - Percentage of arrows that had the shaft nad the head of the

arrow joined.

• ShapeArrowOverlap - Percentage of collisions between arrows and shapes found

on the sketch.

• ShapeTextOverlap - Percentage of collisions between text and shapes.

• Overtracing - Percentage of how many shapes and arrows were drawn with over-

laping strokes.

• Pencil - Percentage of sketches done with a regular pencil.

• MPencil - Percentage of sketches done with a mechanical pencil.

• MPencil - Percentage of sketches done with a pen.

• Erased - Percentage of sketches that contained erasures.

• ClearText - Percentage of clearly recognizable text in shapes.

69

• AmbiguousText - Percentage of ambiguous text in shapes.

• WrongShapeUsed - Percentage of times in which subjects had used a unappropi-

ated shaes to perform an action.

Table 5.18: Characteristics found on the unsupervised study

Percentage% Significance
All-or-nothing 15% Higher is better

Correct 47% Higher is better
Incorrect 53% Lower is better

Closed Shapes 79% -
Non-Closed Shapes 21% -

Scribbles 26% Lower is better
ArrowPartOverlap 86% Lower is better

ShapeOverlap 22% Lower is better
ShapeTextOverlap 6% Lower is better

Overtracing 16% Lower is better
Pencil 74% -

MPencil 8% -
Pen 18% -

Erased 1.2 Average
ClearText 84% Higher is better

AmbiguousText 16% Lower is better
WrongShapeUsed 6% Lower is better

As we can see many of these characteristics could of been voided if the complete set

of drawing guidelines were provided. Or if the researcher answered all the doubles an

questions. The ArrowPartOverlap were clearly high. However even though the guidelines

ask for a separated shaft an arrow to use the system then the accuracy results were not much

different. ShapeArrow overlap also caused recognition rate to drop as well as overtracing

of a shape or arrow.

70

5.3.3 Qualitative analysis

To measure usability we did a post-experiment survey called System Usability Scale

or SUS [103]. SUS was developed by John Brooke in 1986 and have proven to be more

reliable than other questionnaires such as QUIS [106] and CSUQ [107] according to Tullis

and Stetson [108]. Tullis and Stetson also proved that even a small sample of users (8-12)

can be enough to give a good assessment of how people see your system or product.

SUS is technology independent and has been tested on hardware, consumer software,

websites, cell-phones, IVRs and even the yellow pages. The questionnaire consists of 10

different questions about the usability of the system. To answer the questions the user

needs to fill a Likert [109] type scale which range from 1-5 (Strongly disagree - Strongly

agree). The questionnaire structure is organized in a way that for some questions (odd

numbers) the maximum score is good and for the rest of them, the maximum is bad. This

is because the user can just mark strongly agree on all of the questions, so that measure

will require that the user reads the question before answering. It is important to mention

that the overall SUS scores are not mean to be as a percentage measure of usability. Even

though the scores range from 0 to 100, they just indicate the maximum score that the users

gave to the system.

The average SUS score was 84.25 as shown in Table 5.19 which is usually seen as

good. According to literature a score between 80 and 90 is considered to be an “excellent”

measure for usability [110].

However, this is no perfect metric to evaluate the usability of the system. We were

also interested in the feedback that the subjects might have after using the system. As we

mentioned earlier we engaged in a semi-structured interview at the end of the experiment

to collect this valuable feedback from the users.

We engaged in Grounded Theory[111] using the open coding strategy[112]. We began

71

Table 5.19: SUS table

SUS S U B J E C T S
S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

Q Q1 2 2 3 4 2 3 3 4 4 3 3 1 3 4 3 3 3 3 3 4
U Q2 4 3 4 3 3 3 4 4 3 4 4 3 4 4 3 3 4 3 3 4
E Q3 3 3 3 3 3 4 2 4 3 3 4 3 3 4 4 3 3 2 3 4
S Q4 3 2 3 4 3 4 4 3 4 4 3 4 4 4 3 3 4 4 4 4
T Q5 3 3 4 4 4 3 4 4 3 4 4 3 4 4 4 3 3 2 0 4
I Q6 2 3 4 4 2 4 4 4 4 4 4 4 4 4 4 3 4 3 3 4
O Q7 4 3 4 3 4 4 4 4 4 4 3 3 4 4 4 3 3 3 3 4
N Q8 3 1 3 4 2 4 3 3 4 4 4 3 4 4 4 3 4 3 3 4
S Q9 2 3 3 4 3 3 4 4 4 4 3 3 4 4 3 2 3 2 3 4

Q10 4 2 4 4 4 4 4 4 3 3 3 4 3 3 4 3 3 3 0 4
30 25 35 37 30 36 36 38 36 37 35 31 37 39 36 29 34 28 25 40

x2.5 75 62.5 87.5 92.5 75 90 90 95 90 92.5 87.5 77.5 92.5 97.5 90 72.5 85 70 62.5 100
avg 84.25

by transcribing all the responses and observation about the subjects and then identifying

categories between those. Those categories were then merged into other categories until

we came up with the following table 5.20. As you can appreciate we ended up with

9 different categories. We included also a few of the keywords and phrases from the

responses so that we can have a clearer understanding of the user feedback.

Table 5.20 shows that the majority of the subjects liked or saw the potential of using

the application. Not all of the users gave their opinion or were articulated enough but the

following highlights a few positive and negative responses:

One of the subjects was a computer science graduate and was teaching a computer

science course for undergraduates. Not only the SUS score he gave was really high but

also talked about how this would be a great tool for their students to use and saw the idea

as good overall.

Two students were also considered to be "beginners" in terms of programming, one

being an undergrad and the other starting grad school but having a different major than

Computer Science. Their feedback was mostly appreciated since they are the target of the

whole system. They mentioned seeing potential when using the application to clean their

own flowcharts and that the code execution was a major perk. One of them was really

72

Table 5.20: Open coding final categorization

Categories Keywords/Phrases from Interview

Usability
Straightforward, great, I knew what every function was,
easy to use, not complex to use at all.

User Experience
Great, similar to apps I’ve used before, learn it quickly,
cool to try it out, recognition was good, enjoyed using it.

Difficulties
Hard time recognizing text, miss-recognized arrow,
shapes need to be too aligned, arrow guidelines were annoying.

Educational
Good as educational tool, great for understanding loops,
great to verify flowchart correctness, I see the potential.

Tool
Cool, useful, mobile, I would download it, great idea,
visual approach tool, handy, practical.

Usefulness
Good idea for beginners, I would use this if I were an undergrad,
I already know how to code so I wouldn’t use this.

Suggestions
Beautification, help section in app needed, color coded editor,
better label placement, different pencils.

Drawing
Confident drawing once the guidelines were learned,
didn’t really remember how to draw flowcharts,
simple drawing directions.

Tedious
Guidelines were annoying at the beginning,
type again the text is a pain, retype text is boring.

eager to use the system and mentioned that it is way easier to learn how to code using that

approach since it is rather visual, and since they only needed a pencil, a white sheet and a

smartphone the whole idea seemed practical.

On the negative side, some students even though they were familiarized with the

flowchart concept they never took the flowchart-based approach when they were in un-

dergrad. And were reluctant in seeing the actual potential of the system and the whole

approach as not good and that the students should "jump right into coding" as they did.

One thing that was made clear when the post interview took place is that international stu-

dents were familiarized with the flowchart-based programming concept while American

students were not.

Most of the subjects liked the idea of being able to code on paper and thought it was

73

an interesting and useful idea for beginner programmers.

5.3.4 Discussion

The motivation behind this project was as mentioned in previous chapters to provide a

reliable and usable tool for beginner programmers to translate flowchart drawings into code

and be able to execute it to verify its correctness. In the previous chapters, we described

the literature review, the process of the system, and its evaluation.

As described previously the recognition results of the system were good overall. The

recognition accuracy of the shapes was above 90% and the feedback gathered and usability

survey showed a good acceptance from the users overall. The weaknesses of the system

can be lowered by implementing the drawing guidelines as appreciated in the unsupervised

user study.

Originally the system was thought to allow free hand sketch recognition and let the

user draw without restrictions, but in unit testing, before the user studies, we noticed that

it would have been complicated and would of yield a low accuracy results. The guidelines

provided helped overcome that issue, and even though they add an extra layer of complex-

ity to the learning curve of the system we could see how the users didn’t really spend a

lot of time to learn them. The all-or-nothing accuracy was a clear indicator of this factor.

The all-or-nothing accuracy improved from 20% in the first drawing to 25% on the second

drawing and finally 50% in the third and last drawing.

The idea of being able to use paper and pencil to being able to develop and algorithm

and verify its correctness by allowing its execution was one of the major advantages of

using the system. However, after the user studies were done it was noticeable why most

of the current research is leading towards online recognition techniques.

When using offline recognition techniques, the system relies heavily on the user’s abil-

ity to draw and introduce variables that are not present in online recognition which leads

74

usually to not so good recognition results. However, the advantage of using pen and pencil

is still there and even though the whole process might be more troublesome we strongly

believe that was worth exploring according to the user’s feedback.

75

6. CONCLUSIONS AND FUTURE WORK

In this thesis, we designed and develop a system that takes a hand-drawn flowchart as

input and translates it into code for its immediate execution that can be used to help begin-

ners in programming to understand coding and algorithm design. Programming nowadays

is being taught in the majority of engineering programs around the world and it’s seen

as a basic skill. Flowchart-based programming is a teaching approach widely used and

takes the advantage of drawing visual diagrams to understand algorithm basic structures

and operations. The correctness of a flowchart is only currently verified by desktop based

systems and need that the users learn how to design the flowcharts on their system.

We designed and developed a novel flowchart-based p rogramming a pplication that

helps the students to verify the correctness of a hand-drawn flowchart by converting the

flowchart i nto code and a llow i ts e xecution. From t he data collected f rom 20 students,

we perform a predictive analysis to verify the accuracy and overall correctness of the

recognition. We also did a usability questionnaire and engaged in a post-interview to have

a better understanding of the user experience. The results for the shape recognition were

overall very good having an accuracy of above 95% and an average all-or-nothing accuracy

of 31%. Few of the shapes were not recognized at all or miss-classified as a different shape

although after the further analysis was not a surprise and the reasons were mostly because

of either badly drawn shapes, overlapping or even too much brightness on the input image.

The SUS usability questionnaire showed promising results scoring "excellent" according

to literature and the user experience of the users were mostly regarded as great with no

significant experience breakdown or usability hindrances.

76

In this section, we will also mention the work that can be done in the future to

improve either the usability or the recognition rates of the system. The following

future work was gathered mostly from the feedback of the users and the identifiable

problems that the system had when the users interact with it.

One of the major hindrances of the system was the difficulty for recognizing text from

inside the shapes. This was because at this time there is no out of the box best solution

for handwriting recognition. There is the possibility though of improving over time the

accuracy of the text recognition by using either a Support Vector Machine or a Neural

Network [113]. However, this will add another layer of complexity to the learning curve

of the system because the user would have to be involved in training the text recognizer.

Since this is intended for beginner programmers we do not expect that the users will en-

gage a huge amount of time using the system. That’s why adding the need of training

a handwritten recognizer contradicts the purpose of the system. However, adding this

functionality and make it optional for the user would probably be the best choice.

Some of the feedback gathered from the users were more related to usability and user

interface. A few of the users mentioned that the code editor should have colored key-

words like on a desktop Integrated Development Environment (IDE). Highlighting key-

words such as if, while, numbers/text will provide visual cues to the user and will also be

useful for them to familiarize with the code so that when they use an IDE they can see the

same colored mapped keywords.

A hindrance that was detected during the unit testing of the project and the user studies

was that the exposure and brightness of the pictures sometimes led to non-recognized

shapes. For example, if the user took a picture during the night, they will be prone to

77

use a flash to get a clearer image however if the smartphone is too close from the actual

drawing the brightness of the flash can be too intense and remove parts of the shapes or

arrows. The dynamic thresholding we are using to delete the noise from the image then

can be too aggressive if the exposure and brightness are too intense. A way to overcome

this would be to develop our own camera module that takes into consideration the current

light and keep the user away from the flash. Knowing the exposure and brightness level

of the image could be useful also to adjust the dynamic threshold parameters resulting in

a cleaner and more accurate recognition at the end of the process.

Feedback for flowchart correctness from the system is something that is not done ex-

plicitly by the system. So far the system provides a visual feedback [114] at the review

module so that the user can see if what was or wasn’t recognized. And also if the code at

the code edit module is wrong and the user tries to execute it a javascript error message

will prompt. However, that does not take into consideration of what would happen if the

user draws an incorrect flowchart. It would be interesting to add the feedback functionality

so that the user can realize that his/her drawing was not drawn correctly and why. This

way the system would become more of a tool them to learn and not only a tool for the

users to verify if their flowcharts are correct or not.

Another improvement that can be done to the system is to make most if not all of the

thresholds used dynamic. Thresholds like, start to end distance of a stroke, stroke length,

smoothness and others were used and adjusted to give the users some flexibility when the

recognition takes place. This means that the user does not have to draw perfect shapes or

arrows for the system to recognize them. However, over time the system could adjust this

threshold depending on the user drawings so that it improves the recognition overall.

Another feature that was suggested was to include a beautification flowchart module

like the one used in [115, 116, 117]. This module is already under development and will

basically take the graph that represents the flowchart and draw it again on a digital canvas

78

so that the alignment, shapes, and text are now perfectly even and properly distributed in

the output flowchart and not only cleaned like it is currently.

Drawing prediction is something that might be useful as well to improve the user ex-

perience. For example, if the system does not recognize the first arrow it does not know

where to go next and the code generation cannot go forward. This would be an example

of how the prediction can improve the user experience. The system could ask the user if

there should be an arrow between two shapes since there are none and the algorithm does

not know what to do instead of asking for the user to redraw the missing arrow and take

another picture.

Finally, we could make the whole system dual when it comes to online and offline

recognition. By allowing the modification of the flowchart via drawing directly on the

device. Erasing noise, correcting shapes, adding missed arrows electronically with one

finger or with the use of a stylus directly on the smartphone of a tablet might be a good

approach worth to look into. This could also enable the full online recognition if the

flowchart and see the offline approach as more of an input option.

79

REFERENCES

[1] M. McCracken, V. Almstrum, D. Diaz, M. Guzdial, D. Hagan, Y. B.-D. Kolikant,

C. Laxer, L. Thomas, I. Utting, and T. Wilusz, “A multi-national, multi-institutional

study of assessment of programming skills of first-year cs students,” in Working

Group Reports from ITiCSE on Innovation and Technology in Computer Science

Education, ITiCSE-WGR ’01, (New York, NY, USA), pp. 125–180, ACM, 2001.

[2] T. Crews and U. Ziegler, “The flowchart interpreter for introductory programming

courses,” in Frontiers in Education Conference, 1998. FIE ’98. 28th Annual, vol. 1,

pp. 307–312 vol.1, Nov 1998.

[3] K. Powers, P. Gross, S. Cooper, M. McNally, K. J. Goldman, V. Proulx, and

M. Carlisle, “Tools for teaching introductory programming: What works?,” in Pro-

ceedings of the 37th SIGCSE Technical Symposium on Computer Science Educa-

tion, SIGCSE ’06, (New York, NY, USA), pp. 560–561, ACM, 2006.

[4] D. Hooshyar, R. B. Ahmad, M. H. N. M. Nasir, S. Shamshirband, and S.-J.

Horng, “Flowchart-based programming environments for improving comprehen-

sion and problem-solving skill of novice programmers: A survey,” Int. J. Adv. Intell.

Paradigms, vol. 7, pp. 24–56, July 2015.

[5] T. Sezgin, “Overview of recent work in pen-centric computing: Vision and research

summary,” in Workshop on Pen-Centric Computing Research, 2007.

[6] J. Joseph, J. LaViola Jr, and C. Robert, “Mathpad2: A system for the creation and

exploration of mathematical sketches,” ACM Transactions on Graphics, vol. 23,

no. 3, pp. 432–440, 2004.

80

[7] T. Y. Ouyang and R. Davis, “Recognition of hand drawn chemical diagrams,” in

Proceedings of the 22Nd National Conference on Artificial Intelligence - Volume 1,

AAAI’07, pp. 846–851, AAAI Press, 2007.

[8] J. Lo, C. Torres, I. Yang, J. O’Leary, D. Kaufman, W. Li, M. Dontcheva, and E. Pau-

los, “Aesthetic electronics: Designing, sketching, and fabricating circuits through

digital exploration,” in Proceedings of the 29th Annual Symposium on User Inter-

face Software and Technology, UIST ’16, (New York, NY, USA), pp. 665–676,

ACM, 2016.

[9] L. B. Kara, L. Gennari, and T. F. Stahovich, “A sketch-based tool for analyzing

vibratory mechanical systems,” Journal of Mechanical Design, vol. 130, no. 10,

p. 101101, 2008.

[10] T. Hammond and R. Davis, “Tahuti: A geometrical sketch recognition system for

uml class diagrams,” in Technical Report SS-02-08: Papers from the 2002 Associ-

ation for the Advancement of Artificial Intelligence (AAAI) Spring Symposium on

Sketch Understanding, (Menlo Park, CA), AAAI, 7 2002. 8 pages.

[11] B. Buxton, Sketching User Experiences: Getting the Design Right and the Right

Design. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[12] D. Roam, The Back of the Napkin (Expanded Edition): Solving Problems and Sell-

ing Ideas with Pictures. Penguin Publishing Group, 2009.

[13] P. J. Farrugia, J. C. Borg, K. P. Camilleri, and S. Christopher, “Experiments with

a cameraphone-aided design (cpad) system,” ICED 05: 15th International Con-

ference on Engineering Design: Engineering Design and the Global Economy,

pp. [737]–[750], 2005. Peer reviewed.

81

[14] C. Y. Suen, M. Berthod, and S. Mori, “Automatic Recognition of Handprinted Char-

acters - The State of the Art,” Proceedings of the IEEE, vol. 68(4), pp. 469–484,

Apr. 1980.

[15] R. Plamondon and S. N. Srihari, “Online and off-line handwriting recognition: a

comprehensive survey,” IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, vol. 22, pp. 63–84, Jan 2000.

[16] B. D. Eoff and T. Hammond, “Who dotted that ’i’?: Context free user differentia-

tion through pressure and tilt pen data,” in Proceedings of Graphics Interface 2009,

GI ’09, (Toronto, Ont., Canada, Canada), pp. 149–156, Canadian Information Pro-

cessing Society, 2009.

[17] Y. Kato and M. Yasuhara, “Recovery of drawing order from single-stroke handwrit-

ing images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, pp. 938–949, Sept.

2000.

[18] Y. Qiao and M. Yasuhara, “Recovering dynamic information from static handwrit-

ten images,” in Ninth International Workshop on Frontiers in Handwriting Recog-

nition, pp. 118–123, Oct 2004.

[19] D. S. Doermann and A. Rosenfeld, “Recovery of temporal information from static

images of handwriting,” in Proceedings 1992 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pp. 162–168, Jun 1992.

[20] M. Notowidigdo and R. C. Miller, “Off-line sketch interpretation,” in AAAI Fall

Symposium. Menlo Park, CA, pp. 120–126, AAAI Press, 2004.

[21] J. D. Foley, Computer graphics: principles and practice. Addison-Wesley Systems

Programming Series, 1997.

82

[22] G. Sahoo and B. K. Singh, “A new approach to sketch recognition using heuristic,”

International Journal of Computer Science and Network Security, pp. 102–108,

2008.

[23] V. NovÃąk, J. Mockor, and I. Perfilieva, Mathematical principles of fuzzy logic.

Kluwer international series in engineering and computing science, Boston, MA:

Kluwer, 1999.

[24] D. Delling, P. Sanders, D. Schultes, and D. Wagner, “Algorithmics of large and com-

plex networks,” ch. Engineering Route Planning Algorithms, pp. 117–139, Berlin,

Heidelberg: Springer-Verlag, 2009.

[25] E. J. Peterson, T. F. Stahovich, E. Doi, and C. Alvarado, “Grouping strokes into

shapes in hand-drawn diagrams.,” in AAAI (M. Fox and D. Poole, eds.), AAAI

Press, 2010.

[26] C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and Applications.

Chapman & Hall/CRC, 1st ed., 2013.

[27] C. Reviews, Finite Math and Applied Calculus: Mathematics, Mathematics.

Cram101, 2016.

[28] R. E. Schapire, “A brief introduction to boosting,” in Proceedings of the 16th In-

ternational Joint Conference on Artificial Intelligence - Volume 2, IJCAI’99, (San

Francisco, CA, USA), pp. 1401–1406, Morgan Kaufmann Publishers Inc., 1999.

[29] J. Wu, C. Wang, L. Zhang, and Y. Rui, “Offline sketch parsing via shapeness estima-

tion.,” in IJCAI (Q. Yang and M. Wooldridge, eds.), pp. 1200–1207, AAAI Press,

2015.

[30] M. Bresler, D. Prùša, and V. Hlavác, “Modeling flowchart structure recogni-

tion as a max-sum problem,” in Proceedings of the 2013 12th International Confer-

83

ence on Document Analysis and Recognition, ICDAR ’13, (Washington, DC, USA),

pp. 1215–1219, IEEE Computer Society, 2013.

[31] T. Hammond and R. Davis, “Ladder: A language to describe drawing, display, and

editing in sketch recognition,” in Proceedings of the 18th International Joint Con-

ference on Artificial Intelligence, IJCAI’03, (San Francisco, CA, USA), pp. 461–

467, Morgan Kaufmann Publishers Inc., 2003.

[32] T. Hammond and R. Davis, “Shady: A shape description debugger for use in sketch

recognition,” in AAAI Fall Symposium on Making Pen-Based Interaction Intelligent

and Natural (AAAI), (Arlington, VA), AAAI, 10 2004. 7 pages.

[33] T. Hammond and R. Davis, “Automatically transforming symbolic shape descrip-

tions for use in sketch recognition,” in Proceedings of the 19th National Conference

on Artifical Intelligence, AAAI’04, pp. 450–456, AAAI Press, 2004.

[34] T. Hammond and R. Davis, “Ladder, a sketching language for user interface devel-

opers,” Computers & Graphics, vol. 29, no. 4, pp. 518–532, 2005.

[35] T. Hammond and R. Davis, “Interactive learning of structural shape descriptions

from automatically generated near-miss examples,” in Proceedings of the 11th In-

ternational Conference on Intelligent User Interfaces, IUI ’06, (New York, NY,

USA), pp. 210–217, ACM, 2006.

[36] B. Paulson and T. Hammond, “A system for recognizing and beautifying low-level

sketch shapes using ndde and dcr,” in ACM Symposium on User Interface Software

and Technology (UIST), (Newport Rhode Island), ACM, 10 2007. 2 pages.

[37] T. A. Hammond, Ladder: A Perceptually-based Language to Simplify Sketch Recog-

nition User Interface Development. PhD thesis, Cambridge, MA, USA, 2007.

AAI0818371.

84

[38] B. Paulson and T. Hammond, “Paleosketch: Accurate primitive sketch recognition

and beautification,” in Proceedings of the 13th International Conference on Intelli-

gent User Interfaces, IUI ’08, (New York, NY, USA), pp. 1–10, ACM, 2008.

[39] T. Hammond and R. Davis, “Creating the perception-based ladder sketch recogni-

tion language,” in Proceedings of the 8th ACM Conference on Designing Interactive

Systems, DIS ’10, (New York, NY, USA), pp. 141–150, ACM, 2010.

[40] Z. Yuan, H. Pan, and L. Zhang, A Novel Pen-Based Flowchart Recognition Sys-

tem for Programming Teaching, pp. 55–64. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2008.

[41] B. D. Eoff and T. Hammond, “Who dotted that ’i’?: Context free user differentia-

tion through pressure and tilt pen data,” in Proceedings of Graphics Interface 2009,

GI ’09, (Toronto, Ont., Canada, Canada), pp. 149–156, Canadian Information Pro-

cessing Society, 2009.

[42] B. Paulson, P. Rajan, P. Davalos, R. Gutierrez-Osuna, and T. Hammond, “What!?!

no rubine features?: Using geometric-based features to produce normalized con-

fidence values for sketch recognition,” in HCC Workshop: Sketch Tools for Dia-

gramming (VL/HCC), (Herrsching am Ammersee, Germany), pp. 57–63, VL/HCC,

9 2008.

[43] T. M. Sezgin and R. Davis, “Hmm-based efficient sketch recognition,” in Proceed-

ings of the 10th International Conference on Intelligent User Interfaces, IUI ’05,

(New York, NY, USA), pp. 281–283, ACM, 2005.

[44] A. Sears and J. Jacko, Human-Computer Interaction: Designing for Diverse Users

and Domains. Human Factors and Ergonomics, CRC Press, 2009.

85

[45] B. A. Calloni and D. J. Bagert, “Iconic programming in baccii vs. textual program-

ming: Which is a better learning environment?,” SIGCSE Bull., vol. 26, pp. 188–

192, Mar. 1994.

[46] M. C. Carlisle, T. A. Wilson, J. W. Humphries, and S. M. Hadfield, “Raptor: Intro-

ducing programming to non-majors with flowcharts,” J. Comput. Sci. Coll., vol. 19,

pp. 52–60, Apr. 2004.

[47] J. C. Giordano and M. Carlisle, “Toward a more effective visualization tool to teach

novice programmers,” in Proceedings of the 7th Conference on Information Tech-

nology Education, SIGITE ’06, (New York, NY, USA), pp. 115–122, ACM, 2006.

[48] T. Watts, “The sfc editor a graphical tool for algorithm development,” J. Comput.

Sci. Coll., vol. 20, pp. 73–85, Dec. 2004.

[49] “Sourceforge devflowcharter.” https://sourceforge.net/projects/

devflowcharter/. Accessed: 2016-11-23.

[50] “Visual Logic 2.2.10.” http://www.visuallogic.org/. Accessed: 2016-

11-23.

[51] “Flowgorithm roberto atzori.” http://flowgorithm.org/index.htm.

Accessed: 2016-11-23.

[52] “OpenCV | open source computer vision.” http://opencv.org/. Accessed:

2016-11-23.

[53] F. Calderon, J. Flores, and A. Garnica-Carrillo, “A fast algorithm for binary seg-

mentation using color information,” in 2015 IEEE International Autumn Meeting

on Power, Electronics and Computing (ROPEC), pp. 1–7, Nov 2015.

[54] W. F. Abaya, J. Basa, M. Sy, A. C. Abad, and E. P. Dadios, “Low cost smart se-

curity camera with night vision capability using raspberry pi and opencv,” in 2014

86

International Conference on Humanoid, Nanotechnology, Information Technology,

Communication and Control, Environment and Management (HNICEM), pp. 1–6,

Nov 2014.

[55] T. Dai, Y. Dou, H. Tian, and Z. Huang, “The study of classifier detection time based

on opencv,” in 2012 Fifth International Symposium on Computational Intelligence

and Design, vol. 2, pp. 466–469, Oct 2012.

[56] S. Johnson, Stephen Johnson on Digital Photography. O’Reilly Media, Inc., 2006.

[57] G. Stockman and L. G. Shapiro, Computer Vision. Upper Saddle River, NJ, USA:

Prentice Hall PTR, 1st ed., 2001.

[58] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition). Upper

Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.

[59] M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quanti-

tative performance evaluation.,” J. Electronic Imaging, vol. 13, no. 1, pp. 146–168,

2004.

[60] A. C. Bovik, Handbook of Image and Video Processing (Communications, Net-

working and Multimedia). Orlando, FL, USA: Academic Press, Inc., 2005.

[61] N. Efford, Digital image processing: a practical introduction using Java. 2000.

Includes CD-ROM.

[62] H. Tamura, “A comparison of line thinning algorithms from digital geometry view-

point,” in ICPR, pp. 715–719, 1978.

[63] Z. Guo and R. W. Hall, “Parallel thinning with two-subiteration algorithms,” Com-

mun. ACM, vol. 32, pp. 359–373, Mar. 1989.

[64] C. J. Hilditch, “Linear skeletons from square cupboards,” Machine Intelligence,

vol. 4, pp. 403–420, 1969.

87

[65] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital patterns.,”

Commun. ACM, vol. 27, no. 3, pp. 236–239, 1984.

[66] B.-K. Jang and R. T. Chin, “Analysis of thinning algorithms using mathematical

morphology,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. PAMI-12, pp. 541–551, June 1990.

[67] C. Arcelli, “Pattern thinning by contour tracing,” Computer Graphics Image Pro-

cessing, vol. 17, pp. 130–144, Oct. 1981.

[68] L. O’Gorman, “K x K thinning,” CVGIP: Image Understanding, vol. 51, pp. 195–

215, Aug. 1990.

[69] A. R. Widiarti, “Comparing hilditch, rosenfeld, zhang-suen,and nagendraprasad -

wang-gupta thinning,” International Journal of Computer, Electrical, Automation,

Control and Information Engineering, vol. 5, no. 6, pp. 563 – 567, 2011.

[70] A. McAndrew, A Computational Introduction to Digital Image Processing, Second

Edition. CRC Press, 2015.

[71] P. Rajan and T. Hammond, “From Paper to Machine: Extracting Strokes from Im-

ages for use in Sketch Recognition,” in Eurographics Workshop on Sketch-Based

Interfaces and Modeling (C. Alvarado and M.-P. Cani, eds.), The Eurographics As-

sociation, 2008.

[72] P. Rajan, P. Taele, and T. Hammond, “Evaluation of paper-pen based sketching in-

terface.,” in Proceedings of the 16th International Conference on Distributed Mul-

timedia Systems (DMS), pp. 321–326, 2010.

[73] D. E. Knuth, The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and

Searching. Redwood City, CA, USA: Addison Wesley Longman Publishing Co.,

Inc., 1998.

88

[74] D. Rubine, “Specifying gestures by example,” in Proceedings of the 18th Annual

Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’91,

(New York, NY, USA), pp. 329–337, ACM, 1991.

[75] B. Paulson, P. Rajan, P. Davalos, R. Gutierrez-Osuna, and T. Hammond, “What!?!

no rubine features?: Using geometric-based features to produce normalized confi-

dence values for sketch recognition,” in HCC Workshop: Sketch Tools for Diagram-

ming (VL/HCC), (Herrsching am Ammersee, Germany), p. 57âĂŤ63, VL/HCC, 9

2008.

[76] T. Hammond, Sketch Recognition: Algorithms and Applications. Cambridge Uni-

versity Press, 2018. draft from March 1, 2016, publication forthcoming.

[77] T. Hammond and B. Paulson, “Recognizing sketched multistroke primitives,” ACM

Trans. Interact. Intell. Syst., vol. 1, pp. 4:1–4:34, Oct. 2011.

[78] A. Wolin, B. Eoff, and T. Hammond, “Shortstraw: A simple and effective cor-

ner finder for polylines,” in Proceedings of the Fifth Eurographics Conference

on Sketch-Based Interfaces and Modeling, SBM’08, (Aire-la-Ville, Switzerland,

Switzerland), pp. 33–40, Eurographics Association, 2008.

[79] A. Wolin, M. Field, and T. Hammond, “Combining corners from multiple seg-

menters,” in Proceedings of the Eighth Eurographics Symposium on Sketch-Based

Interfaces and Modeling, SBIM ’11, (New York, NY, USA), pp. 117–124, ACM,

2011.

[80] A. Wolin, B. Paulson, and T. Hammond, “Sort, merge, repeat: An algorithm for

effectively finding corners in hand-sketched strokes,” in Proceedings of the 6th Eu-

rographics Symposium on Sketch-Based Interfaces and Modeling, SBIM ’09, (New

York, NY, USA), pp. 93–99, ACM, 2009.

89

[81] A. Wolin, B. Paulson, and T. Hammond, “Eliminating false positives during corner

finding by merging similar segments,” in Proceedings of the 23rd National Confer-

ence on Artificial Intelligence - Volume 3, AAAI’08, pp. 1836–1837, AAAI Press,

2008.

[82] S. Arora and B. Barak, Computational Complexity: A Modern Approach. New

York, NY, USA: Cambridge University Press, 1st ed., 2009.

[83] L. Wenyin, “On-line graphics recognition: State-of-the-art,” in in GREC 2003:

5th IAPR International Workshop on Graphics Recognition, 2003, pp. 291–304,

Springer, 2003.

[84] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf.

Theor., vol. 13, pp. 21–27, Sept. 2006.

[85] H. Bunke and P. Wang, Handbook of Character Recognition and Document Image

Analysis. World Scientific, 1997.

[86] R. Smith, “An overview of the tesseract ocr engine,” in Proc. Ninth Int. Conference

on Document Analysis and Recognition (ICDAR), pp. 629–633, 2007.

[87] L. Rosen, Open Source Licensing: Software Freedom and Intellectual Property

Law. Prentice Hall PTR, 2005.

[88] “Apache Software Foundation apache licence version 2.0.” https://www.

apache.org/licenses/LICENSE-2.0.

[89] R. Neto and N. Fonseca, “Camera reading for blind people,” Procedia Technology,

vol. 16, pp. 1200 – 1209, 2014.

[90] H. N. Do, M. T. Vo, B. Q. Vuong, H. T. Pham, A. H. Nguyen, and H. Q. Luong,

“Automatic license plate recognition using mobile device,” in 2016 International

90

Conference on Advanced Technologies for Communications (ATC), pp. 268–271,

Oct 2016.

[91] K. C. Liu, C. H. Wu, S. Y. Tseng, and Y. T. Tsai, “Voice helper: A mobile assistive

system for visually impaired persons,” in 2015 IEEE International Conference on

Computer and Information Technology; Ubiquitous Computing and Communica-

tions; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and

Computing, pp. 1400–1405, Oct 2015.

[92] “Javascript main website.” https://www.javascript.com/. Accessed:

2016-11-23.

[93] “Rhino-Mozilla mdn.” https://developer.mozilla.org/en-US/

docs/Mozilla/Projects/Rhino. Accessed: 2016-11-23.

[94] “Mozilla Foundation.” https://www.mozilla.org/en-US/

foundation/. Accessed: 2016-11-23.

[95] M. Nakamura, Y. Fukuoka, H. Igaki, and K. i. Matsumoto, “Implementing multi-

vendor home network system with vendor-neutral services and dynamic service

binding,” in 2008 IEEE International Conference on Services Computing, vol. 2,

pp. 275–282, July 2008.

[96] M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query expansion via wordnet for

effective code search,” in 2015 IEEE 22nd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), pp. 545–549, March 2015.

[97] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-download

attacks and malicious javascript code,” in Proceedings of the 19th International

Conference on World Wide Web, WWW ’10, (New York, NY, USA), pp. 281–290,

ACM, 2010.

91

[98] T. Pender, UML Bible. Bible, Wiley, 2003.

[99] O. M. Group, “OMG Unified Modeling Language (OMG UML), Infrastructure,

V2.1.2,” tech. rep., Nov. 2007.

[100] G. Inc., “Google material design.” https://material.google.com/. Ac-

cessed: 2016-11-23.

[101] “Android API 5.0 codename lollipop.” https://developer.android.

com/about/versions/android-5.0.html. Accessed: 2016-11-23.

[102] “vpr.tamu.edu - Institutional Revision Board.” Web, 2016.

[103] J. Brooke, “Sus: A quick and dirty usability scale,” 1996.

[104] A. Galletta and W. Cross, Mastering the Semi-Structured Interview and Beyond:

From Research Design to Analysis and Publication. Qualitative studies in psychol-

ogy, NYU Press, 2013.

[105] C. Sammut and G. I. Webb, Encyclopedia of Machine Learning. Springer Publish-

ing Company, Incorporated, 1st ed., 2011.

[106] J. P. Chin, V. A. Diehl, and K. L. Norman, “Development of an instrument mea-

suring user satisfaction of the human-computer interface,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, CHI ’88, (New

York, NY, USA), pp. 213–218, ACM, 1988.

[107] J. R. Lewis, “Ibm computer usability satisfaction questionnaires: Psychometric

evaluation and instructions for use,” Int. J. Hum.-Comput. Interact., vol. 7, pp. 57–

78, Jan. 1995.

[108] T. S. Tullis and J. N. Stetson, “A comparison of questionnaires for assessing website

usability.,” in Proceedings of UPA 2004, June 2004.

92

[109] R. Likert, “A technique for the measurement of attitudes.,” Archives of Psychology,

vol. 22, no. 140, pp. 1–55, 1932.

[110] A. Bangor, P. Kortum, and J. Miller, “Determining what individual sus scores mean:

Adding an adjective rating scale,” J. Usability Studies, vol. 4, pp. 114–123, May

2009.

[111] A. L. Strauss and J. Corbin, Basics of qualitative research : techniques and proce-

dures for developing grounded theory. Los Angeles, London, New Delhi: SAGE

Publications, 2008.

[112] U. Flick, An Introduction to Qualitative Research. SAGE Publications, 2009.

[113] J. Feldman and R. Rojas, Neural Networks: A Systematic Introduction. Springer

Berlin Heidelberg, 1996.

[114] Interaction Design: Beyond Human-Computer Interaction, 2Nd Ed. Wiley India

Pvt. Limited, 2008.

[115] H. Miyao and R. Maruyama, “On-line handwritten flowchart recognition, beau-

tification and editing system,” in 2012 International Conference on Frontiers in

Handwriting Recognition, pp. 83–88, Sept 2012.

[116] M. Agrawal, A. Zotov, M. Ye, and S. Raghupathy, “Context aware on-line diagram-

ming recognition,” in 2010 12th International Conference on Frontiers in Hand-

writing Recognition, pp. 682–687, Nov 2010.

[117] L. Julia and C. Faure, “Pattern recognition and beautification for a pen based inter-

face,” in Proceedings of 3rd International Conference on Document Analysis and

Recognition, vol. 1, pp. 58–63 vol.1, Aug 1995.

93

Flow2code	Study	Pre-Questionaire
This	pre-questionaire	will	only	be	used	for	collecting	demographic	data	about	the	subjects.	If	
you have any questions ask the researcher about it.

1. ID	(The	researcher	will	provide	this	to
you)

2. Are	you	Male	or	Female?
Mark	only	one	oval.

	Male
	Female
	Prefer	not	to	say

3. What's	your	age?

4. Whats	your	occupation?
Mark	only	one	oval.

	Undergraduate	student
	Graduate	student
	Full	time	worker

5. If	you	are	a	student.	What's	your	major?

6. Have	you	taken	any	courses	that	involve	learning	to	code	using	flowcharts	at
any	point	in	your	life?.
Mark	only	one	oval.

	Yes
	No

7. If	yes	to	previous,	Did	you	use	any	software	as	a	tool	for	desigining	flowcharts?
Mark	only	one	oval.

	Yes
	No

8. If	yes	to	previous,	what	is	the	name	of
the	software	tool	you	used?	if	you
remember.

9. How	would	you	rate	from	1-5	(five	being	the	maximum)	your	flowchart	design
skills?.
Mark	only	one	oval.

	1
	2
	3
	4
	5

APPENDIX A

94

Powered	by

10. How	would	you	rate	from	1-5	(five	being	the	maximum)	your	programmingskills?.
Mark	only	one	oval.

	1
	2
	3
	4
	5

95

Flow2code Drawing Guideline

This page will illustrate recommended flowchart drawing tips that will improve the recognition
accuracy when Flow2code is used. Try to use them all if possible.

1-Flow2code only accepts the following shapes: Ellipse, Rectangle, Diamond, Parallelogram
and Arrow. Please note the typo of arrow that is recognized by Flow2code, the shaft and the
head should not touch each other.

2-Don’t over trace when drawing, you can use the eraser as much time as you want.

APPENDIX B

96

3-Remember that to begin the flowchart should have a starting ellipse with the tag START
(Upper keys needed) and there should be an END ellipse as well to terminate the flowchart.

4-For processing steps (Rectangles), you don't need to add “;” at the end of each sentence if it
is only one. If you are going to use more than one sentence on the same rectangle separate
them using “;”.

97

5-Flow2code recognition accuracy improve the more separated the shapes, arrows and text
from inside the shape are from each other. It is not necessary to touch the shape with the arrow,
the application will choose the closest shape to the arrow head orientation.

6-Remember to write as clear as possible inside the shapes to improve text recognition. You
can use the pencil sharpener and eraser as much as you want.

7-Flow2code do NOT uses FALSE/NO or TRUE/YES tags attached to decision arrows.
Flow2code automatically detects the bottom arrow as TRUE/YES and the left or right arrow as
FALSE/NO.

8-Flow2code uses two special labels: READ and PRINT (Upper keys needed). Both should be
declared inside parallelograms because they represent I/O of data.

98

The READ tag should be declared right after the START ellipse and can take either one variable
or more. If more variables are needed, separate them with a comma. The PRINT function can
receive either a single variable or a string using “variable”. The PRINT label can be used at any
time between the START and END function.

99

ID:

Flowchart Exercises

This part of the study will require for you to solve the following problems by drawing flowcharts. Use the
Information sheet if needed to use the tips and recommendations given. You can ask any question to the
researcher if you do not understand any of the exercises.

1-Draw a flowchart that prints the string “Hello” as much times as a given X
variable but only if X is less than 10 if X is less than 10 just print once the word
“Bye”.
READ X
IF X<10

WHILE X>0
PRINT “Hello”
X--
End of WHILE

ELSE
PRINT “BYE”
End of IF

2- Draw a flowchart that prints that takes N as input, and print the first N fibonacci
numbers. You can use the following pseudocode:
Fibonacci pseudocode

READ N
FT=0;ST=1;AX=0
WHILE ST<=N

PRINT ST
AX= ST
ST= ST+FT
FT=AX

End of WHILE

3-Draw a flowchart that prints the factorial number of a given number K. You can
use the following pseudocode:

Factorial pseudocode

READ W
M=1;F=1;
F=F*M
WHILE M!=W

M=M+1
F=F*M

End of WHILE
PRINT F

APPENDIX C

100

APPENDIX D

101

Semi-Structured Interview Script

The following questions were asked to the subject after the experiment took place. Since it is a
semi-structured interview, new questions arose during the interview process.

Do you found the application useful?

Do you see any advantages in using the application when learning how to code?

Did you found the system easy to use?

Did you have any troubles using the system?

Did you found the drawing guidelines to be too difficult to follow?

Is there anything that you disliked about the system itself?

Do you have any final comments or recommendations?

APPENDIX E

102

APPENDIX F

103

APPENDIX G

104

APPENDIX H

105

