
REFERENCE SPECULATION-DRIVEN MEMORY MANAGEMENT

A Dissertation

by

JINCHUN KIM

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Paul V. Gratz
Committee Members, Daniel A. Jiménez

A. L. Narasimha Reddy
Jean-Francois Chamberland

Head of Department, Miroslav M. Begovic

May 2017

Major Subject: Computer Engineering

Copyright 2017 Jinchun Kim

ABSTRACT

The “Memory Wall”, the vast gulf between processor execution speed and memory

latency, has led to the development of large and deep cache hierarchies over the last twenty

years. Although processor frequency is no-longer on the exponential growth curve, the

drive towards ever greater main memory capacity and limited off-chip bandwidth have kept

this gap from closing significantly. In addition, future memory technologies such as Non-

Volatile Memory (NVM) devices do not help to decrease the latency of the first reference

to a particular memory address. To reduce the increasing off-chip memory access latency,

this dissertation presents three intelligent speculation mechanisms that can predict and

manage future memory usage.

First, we propose a novel hardware data prefetcher called Signature Path Prefetcher

(SPP), which offers effective solutions for major challenges in prefetcher design. SPP

uses a compressed history-based scheme that accurately predicts a series of long complex

address patterns. For example, to address a series of long complex memory references,

SPP uses a compressed history signature that is able to learn and prefetch complex data

access patterns. Moreover, unlike other history-based algorithms, which miss out on many

prefetching opportunities when address patterns make a transition between physical pages,

SPP tracks the stream of data accesses across physical page boundaries and continues

prefetching as soon as they move to new pages. Finally, SPP uses the confidence it has in

its predictions to adaptively throttle itself on a per-prefetch stream basis. In our analysis,

we find that SPP outperforms the state-of-the-art hardware data prefetchers by 6.4% with

higher prefetching accuracy and lower off-chip bandwidth usage.

Second, we develop a holistic on-chip cache management system that tightly inte-

grates data prefetching and cache replacement algorithms into one unified solution. Also,

ii

we eliminate the use of Program Counter (PC) in the cache replacement module by using

a simple dead block prediction with global hysteresis. In addition to effectively predicting

dead blocks in the Last-Level Cache (LLC) by observing program phase behaviors, the

replacement component also gives feedback to the prefetching component to help decide

on the optimal fill level for prefetches. Meanwhile, the prefetching component feeds con-

fidence information about each individual prefetch to the LLC replacement component.

A low confidence prefetch is less likely to interfere with the contents of the LLC, and as

confidence in that prefetch increases, its position within the LLC replacement stack is so-

lidified, and it eventually is brought into the L2 cache, close to where it will be used in the

processor core.

Third, we observe that the host machine in virtualized system operates under different

memory pressure regimes, as the memory demand from guest Virtual Machines (VMs)

changes dynamically at runtime. Adapting to this runtime system state is critical to reduce

the performance cost of VM memory management. We propose a novel dynamic memory

management policy called Memory Pressure Aware (MPA) ballooning. MPA ballooning

dynamically speculates and allocates memory resources to each VM based on the current

memory pressure regime. Moreover, MPA ballooning proactively reacts and adapts to

sudden changes in memory demand from guest VMs. MPA ballooning requires neither

additional hardware support, nor incurs extra minor page faults in its memory pressure

estimation.

iii

DEDICATION

To my loving creator, without his love and protection, I can do nothing.

iv

ACKNOWLEDGEMENTS

First of all, I deeply appreciate my advisor, Paul V. Gratz, for his endless advice, in-

sight, and support. He guided me to approach a technical problem from various angles,

encouraged me to voyage the unexplored research area, and gave me numerous oppor-

tunities to work with greatest minds in both academia and industry. My research would

not have been possible without his vision and professional experiences. I would also like

to express my gratitude to my advisory committee members: Daniel A. Jiménez, A. L.

Narasimha Reddy, and Jean-Francois Chamberland for their constructive feedback on my

research, proposal, and this final dissertation.

I also thank to my colleagues at Computer Architecture, Memory Systems and In-

terconnection Networks (CAMSIN) and Texas Architecture and Compiler Optimization

(TACO) research groups. Luke McHale, Eric Garfinkle, Gino Chacon, and Elvira Teran,

it was my great pleasure to work with you all. I hope you will all continue the tradition of

Whisky Club without having any loss of productivity. Special thanks to Chris Wilkerson,

Alaa Alameldeen, Zeshan Chishti, and Seth Pugsley at Intel Labs. The collaboration with

Intel researchers allowed me to learn the practical perspective of microarchitecture design.

Finally, I would like to thank my family who has mentally, spiritually, and financially

supported me during my Ph.D. program. I am very fortunate to have this lovely family in

my life.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Paul V.

Gratz, Professor A. L. Narasimha Reddy, and Professor Jean-Francois Chamberland of the

Department of Electrical and Computer Engineering and Professor Daniel A. Jiménez of

the Department of Computer Science and Engineering.

Chapter II and III were collaborated with Elvira Teran of the Department of Computer

Science and Engineering, and Chris Wilkerson, Seth Pugsley, and Zeshan Chishti of Intel

Labs. Chapter IV was collaborated with Viacheslav Fedorov of NXP when he was a

graduate student of the Department of Electrical and Computer Engineering.

All other work conducted for the dissertation was completed by the student indepen-

dently.

Funding Sources

Graduate study was supported by the National Science Foundation (NSF) through

grants CCF-1320074 and I/UCRC-1439722, and a generous support by Intel Corporation.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

CONTRIBUTORS AND FUNDING SOURCES vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xiii

CHAPTER I INTRODUCTION . 1

I.1 Memory Wall . 1
I.1.1 Data Prefetching . 3
I.1.2 Cache Replacement Policy . 4
I.1.3 Memory Management in Virtualized System 7

I.2 Dissertation Statement . 7
I.3 Dissertation Organization . 8

CHAPTER II CONFIDENCE-BASED MEMORY ACCESS PREDICTION . . 9

II.1 Introduction . 9
II.2 Motivation and Prior Work . 11

II.2.1 Speculating complex memory access patterns 11
II.2.2 Adapting Aggressiveness . 12
II.2.3 Prefetching and Page Boundaries 13
II.2.4 Other Prior Prefetchers . 14

II.3 Design . 15
II.3.1 Design Overview . 15
II.3.2 Learning Memory Access Patterns 18
II.3.3 Path Confidence-based Prefetching 20
II.3.4 Page Boundary Learning . 22
II.3.5 Prefetch Filter . 24

vii

II.4 Evaluation . 26
II.4.1 Methodology . 26
II.4.2 Single Core Performance . 27

II.4.2.1 Prefetching Coverage and Accuracy 29
II.4.2.2 Average Lookahead Depth 31
II.4.2.3 Contribution to Performance Improvement 32

II.4.3 Multi-programmed Mix Performance 33
II.4.4 Sensitivity Study . 35

II.5 Summary . 37

CHAPTER III HOLISTIC MULTI-LEVEL CACHE MANAGEMENT 38

III.1 Introduction . 38
III.2 Motivation . 40

III.2.1 Why do we need a holistic cache management? 40
III.2.2 Why is a PC-based policy insufficient? 42
III.2.3 Impact of Compiler Optimizations 43
III.2.4 The PC can be replaced . 44

III.3 Design . 48
III.3.1 KPC-P: Confidence-based Prefeching 49

III.3.1.1 KPC-P Overview . 49
III.3.1.2 KPC-P Training . 50
III.3.1.3 KPC-P Prefetching . 51

III.3.2 KPC-R: Global Hysteresis Replacement 53
III.3.2.1 KPC-R Overview . 53
III.3.2.2 KPC-R Training . 54
III.3.2.3 KPC-R Placement/Replacement 56

III.4 Evaluation . 58
III.4.1 Methodology . 58
III.4.2 Performance . 59
III.4.3 Analysis . 62

III.5 Summary . 66

CHAPTER IV DYNAMIC MEMORY REALLOCATION IN VIRTUALIZED
 SYSTEM . 67

IV.1 Introduction . 67
IV.2 Design Motivation . 71

IV.2.1 Adaptation to System Conditions 71
IV.2.2 Slow Reclamation and Reallocation 73
IV.2.3 Working Set Estimation Overhead 75

IV.3 Design . 77
IV.3.1 Adaptive Memory Cushion . 77

viii

IV.3.3 Adaptive Hysteresis . 81
IV.3.4 Implementation . 82

IV.4 Evaluation . 83
IV.4.1 Methodology . 83
IV.4.2 Repeating Single Application . 85
IV.4.3 Multiple Applications in Random Order 87
IV.4.4 Hypercall Overheads . 88

IV.5 Summary . 90

CHAPTER V CONCLUSION . 91

REFERENCES . 93

ix

IV.3.2 Memory Reallocation Trigger 79

LIST OF FIGURES

FIGURE Page

I.1 Memory access latency in terms of 3.2GHz processor cycle 1

I.2 Impact of prefetching depth on a simple PC-based delta prefetcher 4

I.3 Performance of SHiP [17] and EAF [18] under data prefetcher 6

II.1 Complex memory access pattern. 11

II.2 A case of lookahead prefetching caused by an infinite loop in the prediction
pattern table. 13

II.3 Overall SPP architecture . 17

II.4 SPP table update operations. 19

II.5 Path confidence-based lookahead prefetching. 20

II.6 Learning delta patterns across page boundaries. 23

II.7 Prefetching Filter. 25

II.8 Single-core IPC speedup. 28

II.9 Prefetching coverage and useless prefetches. 30

II.10 Raw prefetch request breakdown. Both VLDP and BOP generate signifi-
cant numbers of useless prefetches. 31

II.11 Average Lookahead Depth . 32

II.12 Contribution of SPP components. Stacked graph represents accumulated
speedup from each component . 33

II.13 Normalized speedup for mixes of 4 workloads. 34

II.14 Sensitivity study. 36

III.1 LLC allocation breakdown with DA-AMPM prefetcher 41

x

III.2 Loop unrolling example . 44

III.3 Global hysteresis quickly trains and adapts to program phases 45

III.4 Dead block prediction accuracy for PC and global hysteresis 46

III.5 Design overview of the KPC system . 48

III.6 Update the signature and delta pattern 50

III.7 KPC-P training and prefetching . 51

III.8 KPC-R global hysteresis update mechanism 54

III.9 KPC-R updates fill level threshold for KPC-P 55

III.10 Single core performance compared to DA-AMPM + LRU 59

III.11 4-core multiprogrammed workloads performance 60

III.12 Various combinations of prefetching and replacement algorithms 61

III.13 Prefetching coverage: DA-AMPM vs. KPC-P 62

III.14 Dynamic adaptation of fill level thrshold TF 63

IV.1 Performance degradation of ballooning with Tmem 68

IV.2 False balloon target due to clean pages in vips from the PARSEC suite . . 72

IV.3 Slow response to memory allocation and deallocation 74

IV.4 Adaptive memory cushion. 78

IV.5 Improved response time with trigger . 79

IV.6 Performance analysis on trigger threshold 80

IV.7 Create memory pressure by restricting MEMhost 84

IV.8 Performance analysis in 20% pressure 86

IV.9 Performance analysis in 40% pressure 86

IV.10 Performance analysis in 60% pressure 86

IV. 8811 Performance analysis with random ordered applications

 xi

IV.12 Number of hypercalls normalized to Tmem 89

xii

LIST OF TABLES

TABLE Page

II.1 Simulator parameters. 27

II.2 SPP storage overhead. 35

III.1 KPC-R prediction table . 56

III.2 KPC storage overhead . 64

III.3 Storage overhead comparison . 65

IV.1 Design overhead of MP aware ballooning 82

IV.2 Baseline configuration . 83

IV.3 Randomized mixes . 85

xiii

CHAPTER I

INTRODUCTION

I.1 Memory Wall

In computer architecture, the memory hierarchy represents multiple levels of memory

devices optimized for different speeds, capacities, and manufacturing costs. For example,

on-chip caches are designed with expensive SRAM cells that provide fast response time

while traditional off-chip main memory (DRAM) is optimized for higher capacity with

lower implementation cost. With an advent of future memory technologies, such as Phase

Change Memory (PCM) or flash-based NVMs, the discrepancy between memory devices

becomes wider than ever. As a result, in modern memory system architecture, we can

observe a huge range of differences in terms of response time, capacity, and bandwidth.

Figure I.1 shows different memory technologies ordered in memory access latency. As

illustrated in Figure I.1, a gigantic gap, also known as “Memory Wall” [1], exists between

processor and main memory speed. Similarly, an access to the storage devices is signifi-

cantly slower than the memory access. Although future NVM technologies can reduce the

number of disk accesses by exploiting higher memory capacity, NVM is still far slower

than DRAM and its limited bandwidth is also a major performance bottleneck.

Core L1 L2

Core L1 L2

LLC Future
NVMs

Fast

DRAM

100 101 102 103 104 105 106 107

Slow

SSD HDD

Memory
Wall

Storage
Access

Figure I.1: Memory access latency in terms of 3.2GHz processor cycle

1

To mitigate the impact of slow memory accesses, major processor vendors have relied

on a large multi-level cache hierarchy. With the end of Dennard scaling [2], however,

growing cache size comes at an increasingly high cost in terms of power and energy con-

sumption. As argued by Esmaeilzadeh et al. [3], energy consumption must be justified

by increased performance to be practical as VLSI scaling continues; under this constraint

the diminishing performance gains seen with increasing cache size become hard to justify

relative to their energy cost.

To maximize a given cache capacity under the limited power budget, computer archi-

tects have focused on intelligent memory management techniques. In particular, advanced

data prefetching and cache replacement algorithms have been deeply studied in modern

microprocessor design. Ideally, if a core processor can accurately predict the future mem-

ory references, data blocks can be prefetched from off-chip memory ahead of its actual use

or preserved for the next reference until the block does not exhibit any temporal locality

in a given time period. In doing so, the overall system performance can be dramatically

improved by serving most memory requests at the on-chip cache level without paying

expensive main memory access latency. The important question is how to design an accu-

rate and powerful speculation algorithm with minimal hardware complexity. An efficient

memory management becomes more critical in large server clusters. For example, in vir-

tualized environments, a guest machine does not know the available memory of the host

system which prohibits efficient memory reallocation across multiple Virtual Machines

(VMs). In this case, system architects need to adjust the total global memory pressure

of system as well as local memory pressure in a guest machine. Since the communica-

tion between guest and host machines requires expensive system calls, it is also crucial to

minimize the software communication overhead.

In the following sections, we will introduce basic backgrounds of these memory man-

agement techniques and states the contribution of this dissertation.

2

I.1.1 Data Prefetching

Prefetching is a well-studied technique which can provide an efficient means to im-

prove the performance of modern microprocessors. The aim of prefetching is to proac-

tively fetch useful cache blocks from further down in the memory hierarchy, ahead of their

first demand reference. In essence, prefetching hardware speculates on the spatial and

temporal locality of memory references, based on past program behavior. In some earlier

proposed prefetching techniques, the prefetching opportunity is limited to waiting until

a cache miss occurs, and then prefetching either a set of blocks sequentially following

the current miss [4], a set of blocks following a stride pattern with respect to the current

miss [5], or a set of blocks spatially around the miss [6, 7]. More recent prefetchers attempt

to predict complex, irregular access patterns [8, 9, 10, 11, 12]. While these methods show

significant benefit, because they are inherently reactive, the depth of their speculation is

limited, which can lead to untimely prefetches.

Increasing prefetch depth is one way to speculate deeper. For example, if a processor

has a simple next-line prefetcher that prefetches a (+1) delta ahead of the current demand

cache block, we can build a more aggressive next d line prefetcher that prefetches d∗(+1)

deltas ahead of the current miss (e.g., +11, +12, ..., +1d). To generalize, a stride prefetcher

whose delta distance (stride) is N and whose prefetching depth is d can be represented

by (N1, N2, ..., Nd). Naively increasing the prefetching depth, however, does not always

improve overall system performance, because often the predicted reference stream and the

actual reference stream will eventually diverge. Figure I.2 shows the effect of prefetching

depth on two different SPEC CPU 2006 benchmarks using a simple Program Counter (PC)

based delta prefetcher [13]. As the prefetching depth d grows, the PC delta prefetcher

brings more cache blocks that are dN distance away from base address. In this figure,

bwaves benefits from deeper prefetching until d = 7, because its memory access pattern

3

0%

5%

10%

15%

20%

25%

30%

35%

1 2 3 4 5 6 7 8

IP
C	
Sp
ee
du

p	
(%

)

Prefetching	Depth	(d)

bwaves lbm

Figure I.2: Impact of prefetching depth on a simple PC-based delta prefetcher

is a predictable series of (+1) or (-1) deltas, up to seven steps ahead of the current demand

access. After that point, the performance benefit drops as further speculative requests

serve only to consume memory bandwidth, without contributing additional cache hits. On

the other hand, lbm suffers from performance degradation as the prefetching depth grows.

Since lbm has a variety of memory access patterns [11], deeper prefetching with a simple

delta predictor wastes bandwidth, and pollutes the cache. While deeper speculation is

useful for bwaves, lbm shows the greatest benefit from a speculative depth of only d = 1.

Thus, as Figure I.2 illustrates, achieving high performance across many workloads requires

adapting speculation relative to its prefetching accuracy. The adaptive controll mechanism

is one of main motivations for path confidence-based prefetching and more details will be

discussed in the later section.

I.1.2 Cache Replacement Policy

The Last-Level Cache (LLC) is a large on-chip structure with significant power con-

sumption. In many cases, however, most of the LLC blocks are replaced without any reuse

4

during their life time in the cache. Khan et al. [14] showed that, on average, 86% of cache

blocks in a 2MB LLC is dead and do not exhibit further reuse behavior. To improve the

efficiency of LLC, advanced replacement algorithms [14, 15, 16, 17, 18] have been inten-

sively discussed over the last ten years and showed superior performance than traditional

LRU-managed LLC.

Still, without coordination between cache management and speculation techniques at

different levels in the cache hierarchy, schemes such as data prefetching and replace-

ment often work at cross-purposes. Previous work suggests advanced prefetching algo-

rithms [19, 6, 20, 10, 21, 22, 23, 24] to reduce the gap between processor speed and

memory latency. Most data prefetchers are trained by private L1 or L2 cache accesses

to make timely prefetches far ahead of demand requests. Often, however, the appro-

priate placement within the shared LLC for these prefetched blocks is unclear. A so-

phisticated cache replacement policy is the right tool to solve this problem. Previous

work [15, 16, 25, 26, 14, 17, 18, 27] shows a substantial gain can be achieved by placing

blocks predicted to be dead [26] at the vulnerable position in the LRU stack. However, with

data prefetches, the incremental benefit of replacement policy often becomes marginal or

sometimes even negative [28, 29, 30].

In particular, replacement policies which use the Program Counter (PC) of missing

load to predict reuse [25, 26, 14, 17, 27] experience substantial interference from prefetched

blocks, which by definition do not carry demand fetch load PC values. Figure I.3 com-

pares the IPC speedup of a top performing, PC-based replacement policy (SHiP [17]),

and a recently proposed non-PC-based replacement policy (EAF [18]) when a high per-

formance data prefetcher, DA-AMPM [29] is being used. In this figure, the performance

is normalized to DA-AMPM with the baseline LRU replacement policy. Although SHiP

typically shows better performance than EAF when running without prefetching, we see

that here EAF outperforms SHiP across most applications. This is largely because PCs are

5

1.025
1.040

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

IP
C

 S
pe

ed
up

 o
ve

r
D

A
-A

M
PM

 +
 L

R
U

DA-AMPM + SHIP DA-AMPM + EAF

Figure I.3: Performance of SHiP [17] and EAF [18] under data prefetcher

simply not available for prefetches, forcing SHiP to use a static prediction (always dead or

always live) for prefetched blocks. On the other hand, EAF tracks the physical addresses

of recently evicted blocks in a bloom filter to make a dead block prediction. When there is

a cache miss and the missing block is found in the victim filter, that block is inserted with

higher priority. The baseline assumption is that if a block with high reuse is prematurely

evicted from the cache, it will be accessed soon after eviction [18]. Thus, EAF can make

a per-block-based prediction for both demand and prefetch that yields higher performance

than SHiP without relying on PCs.

To alleviate the harmful interference between prefetching and replacement policy, sev-

eral works [28, 29, 30] propose to selectively prioritize the prefetch request over demand

request or vice versa. While these approaches show some gains, there remains little inte-

gration between the techniques, leaving critical program behavior information known by

the prefetcher out of the replacement/placement decision, thus leaving performance on the

table. In Chapter III, we will discuss how a holistic cache management can reduce the

prefetching interference and improve the overall efficiency of multi-level caches.

6

I.1.3 Memory Management in Virtualized System

With the advent of Virtual Private Server (VPS) vendors, such as Amazon Elastic

Compute Cloud (EC2) and Rackspace Cloud, cloud computing has become a large and

growing component of the computing market. To provide adequate service for clients,

vendors often utilize hardware virtualization due to its strong server consolidation and

high scalability characteristics. In virtualized environments, a hypervisor or virtual ma-

chine monitor (VMM) is responsible for managing virtualized hardware resources and

the execution of guest virtual machines (VMs). The main memory size specified by each

guest VM running on a given host, however, can quickly add up to impose a high cost

in required host machine physical memory. Despite this high cost, VMs rarely fully uti-

lize their entire virtualized main memory space, thus wasting this valuable resource. To

deal with under-utilization of physical memory in virtualized environments, hypervisor

memory-management techniques which enable physical memory overcommitment have

been developed, however they often trade lower system memory requirement for a signif-

icant performance cost, or do not effectively respond and adapt to dynamically changing

memory pressure. The goal of Chapter IV is to reduce the performance overheads of hy-

pervisor memory management techniques by proposing a Memory Pressure Aware (MPA)

ballooning which dramatically improves responsiveness and adaptivity of virtualized sys-

tem.

I.2 Dissertation Statement

In this dissertation, we introduce three reference-driven speculation mechanisms that

can precisely predict the future memory usage. First, we propose a novel confidence-based

data prefetcher. This prefetcher leverages confidence value to control the aggressiveness of

data prefetching and extends its coverage by selecting a prefetching path with the highest

confidence. Each prefetching path is represented by a series of signatures which is a

7

compressed form of past memory references. Second, we integrate both data prefetching

and LLC replacement algorithms into one unified solution. Finally, we propose memory

pressure aware ballooning that dynamically adapts to the global memory pressure state

and reallocates memory resource in virtualized environments. Each prediction mechanism

is designed to have minimal hardware or software complexity so that it can be easily

implemented with the existing infrastructure.

I.3 Dissertation Organization

In the remaining chapters, each speculation mechanism is first introduced with the

main research motivations and then followed by detailed implementation. Chapter II dis-

cusses the path confidence-based data prefetcher. Chapter III extends the concept of path

confidence and proposes a holistic multi-level cache management technique. Chapter IV

introduces the global memory pressure of virtualized system and shows how the overall

system memory can be efficiently managed across multiple virtual machines. Proposed

designs are evaluated with a set of thorough experiments. In Chapter II and III, we use

a microarchitectural simulator to demonstrate the performance impact of proposed tech-

niques. In Chapter IV, we directly modify the Linux kernel and Xen Hypervisor [31] to

measure the real time performance. Finally, Chapter V concludes this dissertation.

8

CHAPTER II

CONFIDENCE-BASED MEMORY ACCESS PREDICTION∗

This chapter presents a confidence-based prefetching mechanism that alleviates the

impact of “Memory Wall”. We first introduce a background of data prefetching. Then, a

detailed implementation is described in the design section. The evaluation section com-

pares our confidence-based prefetcher with other state-of-the-art data prefetchers.

II.1 Introduction

To address both prefetching coverage and accuracy, prior work has adopted lookahead

mechanisms [11, 21, 32]. These studies, however, suffer from high hardware complex-

ity [21, 32], or do not implement adaptive throttling [11]. For example, B-Fetch [21] and

Runahead [32] require either deep hooks into the core microarchitecture or a whole sec-

ondary core to prefetch accurately, making them impractical to implement in the lower

levels of the cache. Meanwhile, recent techniques, such as VLDP [11], showed that a

lookahead path can be built by memory access pattern without relying on core pipeline in-

formation. This algorithm, however, prefetches a static depth ahead of the demand fetch,

without considering the prefetching confidence [11], either leading to missed opportunities

when the accuracy is high or to inaccuracy in the face of divergent memory access patterns.

Moreover, most hardware prefetchers work in the physical address space [6, 11, 12, 13],

where the mapping between virtual and physical memory is not known. As a result, it is

often difficult to predict patterns across 4KB physical page boundaries.

In this chapter, we propose a simple but powerful path confidence-based lookahead

prefetcher, the Signature Path Prefetcher (SPP). The contributions of this work are:

∗Reprinted with permission from "Path Confidence based Lookahead Prefetching" by J. Kim, S. H.
Pugsley, P. V. Gratz, A. L. Narasimha Reddy, C. Wilkerson, and Z. Chishti 2016. Proceedings of the 2016
49th International Symposium on Microarchitecture, Copyright 2016 by IEEE

9

• We introduce a signature mechanism that stores memory access patterns in a com-

pressed form and initiates the lookahead prefetching process. Up to four small deltas

can be compressed in this 12-bit signature without aliasing. By correlating the sig-

nature with future likely delta patterns, SPP learns both simple and complicated

memory access patterns quickly and accurately. The signature can be also used to

detect the locality between two physical pages, and continue the same prefetching

pattern off the end of one physical page and onto the next.

• We develop a path confidence-based prefetch throttling mechanism. As lookahead

prefetching goes deeper, a series of signatures builds a signature path. Each sig-

nature path has a different confidence value based on its previous delta history,

prefetching accuracy, and the depth of prefetching. The path confidence value is

used to throttle prefetching depth dynamically in order to balance prefetch coverage

with accuracy.

• Unlike prior lookahead based prefetchers [21, 32], SPP does not require deep hooks

into the core microarchitecture and is purely based on the physical memory access

stream.

We evaluate SPP with a combination of SPEC CPU 2006 and commercial workloads

and find it achieves an average 27.2% performance improvement compared to a baseline

without prefetching. Moreover, SPP outperforms recent, best of class, lookahead and non-

lookahead prefetchers [10, 11, 12], including the winner of the most recent data prefetch-

ing competition, by 6.4% on average. The remaining sections are organized as follows.

Section II.2 discusses the motivation for path confidence based prefetching. Section IV.3

describes the detailed hardware implementation of SPP. A detailed performance evaluation

is presented in Section III.4.

10

II.2 Motivation and Prior Work

In this section, we examine previously proposed prefetchers with an eye toward im-

provement. In particular, we note that complex data access patterns are difficult to predict

without the use of recursive lookahead mechanisms, while existing lookahead-based pre-

fetchers do not consider path confidence, instead prefetching to an arbitrary degree.

II.2.1 Speculating complex memory access patterns

An optimal prefetching algorithm should cover a wide range of memory access pat-

terns. Simple stride prefetching techniques only detect sequences of addresses that differ

by a constant value and fail to capture diverse delta patterns [33]. For example, Figure II.1

shows two examples of complex memory access patterns, taken from GemsFDTD and

mcf, which cannot be captured by a simple prefetcher. Though both show complicated

patterns, GemsFDTD (Figure II.1a) has a repeating sequence of strides (+7, -6, +12, +6,

-5, -6, -6), that should be predictable assuming the prefetcher can store a long delta his-

tory. Concatenating such a long sequence in a simple pattern table, however, could result

in huge storage overhead.

On the other hand, Figure II.1b shows that mcf has a random (though biased) access

pattern that is difficult to predict. In this particular case, it is better to use a simple next-line

7

-6

12

6

-5
-6 -6

1

-3

7

-6

12

6

-5
-6 -6

-12

-8

-4

0

4

8

12

De
lta

	P
at
te
rn

Execution	Time

(a) GemsFDTD: Complex but predictable pattern

-2 -1
-10

1

13

1

11

1
-2 -1

-17

1 -2

27

1

11

1
-3
1-2 -3

1 -2

13

1 -2

11

1
-7
1
-2 -1

-32
-24
-16
-8
0
8
16
24
32

De
lta

	P
at
te
rn

Execution	Time

(b) mcf : Complex and random patterns

Figure II.1: Complex memory access pattern.

11

prefetcher, because (+1) is the most commonly seen delta pattern. Offset based prefetchers

such as the Best Offset prefetcher [12] and the Sandbox prefetcher [22] evaluate multiple

offsets at run-time and issue prefetches with an offset that maximizes likelihood of use.

These offset prefetchers do not, however, account for temporal ordering between delta

patterns, and suffer from low accuracy on complex, yet predictable address patterns. In

addition, if there are multiple offsets that are commonly observed during program execu-

tion, offset prefetchers take longer to train or fail to select the optimal offset. Lookahead

prefetchers [11, 21] efficiently encode the relationship between accesses to yield future

predictions, enabling further speculative lookahead accesses.

II.2.2 Adapting Aggressiveness

Lookahead prefetchers learn patterns by collecting histories of observed data access

patterns, and correlating these with the next expected delta in the pattern. Figure II.2 shows

an example lookahead prefetcher that recursively refers to a pattern table to generate future

prefetches. In this example, the prefetcher indexes into the pattern table to find the next

predicted delta for prefetching. Once this prefetch is issued, the prefetcher recursively

uses that prediction to again index into the pattern table and generate further predictions.

This recursion allows lookahead prefetchers [11, 21] to prefetch far ahead of the current

program execution, and generate timely prefetches for as long as their predictions remain

accurate.

In principle, the lookahead process can be repeated as long as the predicted pattern is

found in the pattern table. As shown in Figure II.2, delta (+1) predicts the 3rd index (+3),

and delta (+3) predicts the 1st index (+1), forming a loop. While the loop here may persist

for many iterations, it is unlikely to persist forever, thus the true desired prefetching depth

must be limited. To avoid over-prefetching, existing lookahead prefetchers [21, 11] glob-

ally and statically limit the depth to which lookahead is pursued ahead of the current de-

12

Pattern Table

Delta Next Index

+1 3rd

+2 N/A

+3 1st

+4 N/A

Index
Prefetch with

P0%

Infinite Loop

Lookahead
Prefetch with

P1%

Lookahead
Index

Figure II.2: A case of lookahead prefetching caused by an infinite loop in the prediction
pattern table.

mand access stream. Unfortunately, it is often the case that the ideal prefetch depth varies

from application to application, as shown in Figure I.1, and even varies between prefetch

streams within the same application. Thus a per-prefetch stream throttling mechanism is

critical to adapt prefetch aggressiveness to the stream’s prediction confidence [20].

II.2.3 Prefetching and Page Boundaries

Virtual memory is a vital tool in the operation of modern computers, but it creates

unique challenges when designing data prefetchers which work in the lower-levels of the

cache. Two addresses which are contiguous in the virtual address space might be separated

by great distances in the physical address space. By extension, patterns which are trivially

easy to detect in the virtual address space might be nearly impossible to fully detect in the

physical address space.

Prefetchers are often located alongside caches where they have no access to address

translation hardware, and hence they do not have knowledge of the relationship between

physical pages in the virtual address space. Thus, data access patterns which cross physical

13

page boundaries are difficult to exploit. Physical address prefetchers often try to learn

intra-page or global patterns, applying these patterns to new pages that are encountered,

or they discover simple patterns, like streams or strides, by considering each new page in

a vacuum. This has the effect of either ignoring complex patterns altogether, as in the case

of the Best Offset prefetcher [12], or requiring long, per-page, warmup times, as in Access

Map Pattern Matching [10] and conventional stream prefetchers. All of these prefetchers

must stop prefetching once a page boundary is reached, because it is impossible to know

the physical mapping of the next page in the virtual address space. Although challenging to

implement, an effective prefetcher should be able to seamlessly continue complex patterns

detected in one page as they cross page boundaries, without having re-detect the pattern

from scratch in the new page.

II.2.4 Other Prior Prefetchers

Somogyi et al. proposed Spatial Memory Streaming (SMS) [6] which leverages the

correlation between memory request instruction addresses (PC) and access patterns spatial

near the current memory request. This purely spatial pattern ignores the temporal ordering

between future demand accesses. Later efforts extended this approach to detect the tempo-

ral order between delta patterns [8, 9]. While these prefetchers achieve good performance,

they require megabytes of hardware state storage, which is orders of magnitude more than

the other prefetchers considered in this paper.

14

II.3 Design

To address the deficiencies outlined in Section II.2, we propose the Signature Path

Prefetcher (SPP), a novel, low-overhead and accurate lookahead prefetcher.

II.3.1 Design Overview

SPP uses a speculative mechanism we refer to as “lookahead” to increases its prefetch-

ing degree and improve timeliness. Once a delta prediction has been made by SPP, and a

prefetch request has been issued, the accumulated history used to make the prediction(i.e.,

the signature) is speculatively extended to include the predicted delta, thereby generating

a new lookahead signature (the mechanism is discussed in detail in Section II.3.2). This

signature can then be used to make a new delta prediction, which leads to producing yet

another signature. Thus, we use predicted deltas, with no confirmation of their accuracy,

to recursively speculate down a “signature path.” These speculative signatures resem-

ble techniques used in branch prediction to deeply speculate beyond unresolved branches.

Relying on this mechanism, SPP can continue to speculate much further than the most

recently confirmed delta. In fact, with this mechanism in place, the challenge shifts from

generating new delta predictions to deciding when to stop.

From the discussion in Section II.2.2 of Figure II.2, we can conclude that lookahead

prefetches will tend to be less accurate than initial prefetches. In general, as the number

of speculative deltas increases, our confidence in the prefetch requests should decrease as

the product of the confidence of each speculative prefetch along the path. To illustrate

this, assume the probability of the first delta0 prediction being accurate is p0 and the

probability of the second delta1 is p1. During speculative lookahead, the prefetch resulting

from delta1 has a probability of being accurate of p0 ∗ p1. This is because the path used

to select delta1 , contains delta0 which itself is only accurate with probability p0. In

fact, the probability that the delta predicted at any lookahead depth of d will produce

15

a useful prefetch is a product of the probabilities of all prior speculative deltas (
∏
p =

p0 ∗ p1 ∗ p2 ∗ ... ∗ pd). We label this path probability Pd as the product of the probability of

all constituent deltas to depth d such that Pd =
∏
p. Further, the probability of any path

of depth d can be expressed as a function of the probability of the most recent delta and

the probability of the previous path, as shown in Equation II.1:

Pd = pd · Pd−1 (II.1)

Pd can be compared against a given confidence threshold to adaptively determine when

prefetching for this particular lookahead stream should be stopped. Further, this confi-

dence, Pd, can also be used to determine which cache level to insert prefetched lines, with

more accurate/confident prefetches sent to a higher cache level and less accurate/confident

prefetches sent to a lower cache level.

To gracefully handle the transition between physical pages, SPP shares learning across

page boundaries. As discussed in Section II.2.3, SPP operates in the physical address

space, without any access to address translation. Thus, the spatial relationships between

physical pages are largely unknown and assumed to be random. Despite this, SPP lever-

ages learning from one physical page to make timely predictions in other pages. SPP does

this in two ways, first, while delta history signatures are maintained on a per-physical page

basis, as will be described in Section II.3.2, those signatures index into a global table for

predicting deltas, which is shared by all pages. Second, as described in Section II.3.4,

when the first demand access is made to a new physical page, the delta signature patterns

from a previous physical page whose delta predictions crossed a page boundary can be

inherited and used to bootstrap predictions in this new page. This gives SPP the advan-

tage of not requiring long, per-page warmup periods to start prefetching complex patterns,

which leads to higher prefetch coverage.

16

L1 Cache
(32KB, LRU)

L2 Cache
(256KB, LRU)

L3 Cache
(2MB, LRU)

Off-Chip
DRAM

Trained by
L2 access

Prefetch
(Insert into
L2 or LLC)

Update filter

SPP
Module

(5.37KB)

Signature Table (ST)
Pattern Table (PT)

Global History Register
(GHR)

Prefetch Filter (PF)

Demand
Prefetch

Core
Processor

Figure II.3: Overall SPP architecture

The high level design of the SPP engine is illustrated in Figure II.3. The SPP module

consists of three main structures (Signature Table, Pattern Table, and Prefetch Filter) and a

small Global History Register (GHR), which is used for cross-page boundary bootstrapped

learning. SPP is trained by L2 cache accesses, and can fill prefetch requests into either the

L2 or LLC (depending on the confidence of the predicted prefetch). The Signature Table

(ST) tracks the 256 most recently used pages, and stores the history of previously seen

delta access patterns in each page as a compressed 12-bit signature. The Pattern Table

(PT) is indexed by the history signatures generated by the ST and stores predicted delta

patterns. The PT also estimates the path confidence that a given delta pattern will yield

a useful prefetch. If the delta generated by the PT is found to have sufficient confidence

(above a configured threshold), then it is passed as a prefetch candidate to the Prefetch

Filter (PF), which checks for redundant prefetches. If the predicted delta crosses a 4KB

physical page boundary, SPP does not issue the prefetch but instead redirects the request

to the GHR for page boundary learning. In the remainder of this section we describe each

stage of the SPP in detail.

17

II.3.2 Learning Memory Access Patterns

The ST, shown in Figure III.6, is designed to capture memory access patterns within

4KB physical pages, and to compress the previous deltas in that page into a 12-bit history

signature. The ST tracks the 256 most recently accessed pages, and stores the last block

accessed in each of those pages in order to calculate the delta signature of the current

memory access, which is then used to access and update the PT. Whenever there is an

L2 cache access, its physical address is passed to the ST to find a matching entry for the

corresponding physical page. Figure III.6 shows an example of accessing the ST with a

physical page number of 3 and block offset 3 from the beginning of the page. In this case,

the ST finds a matching entry for this page and is able to read a stored signature 0x1. This

signature is a compressed representation of a previous access pattern to that page, which

was generated via a series of XORs and shifts as shown in Equation II.2. In this case, the

signature 0x1 represents a single previous delta access to Page 3, which was (+1).

New Signature

=(Old Signature << 3-Bit) XOR (Delta) (II.2)

Since the ST stores the last block offset 1 accessed in Page 3, we know that the current

delta in Page 3 is (3 - 1) = (+2). This delta is non-speculative, because it is based on a

demand request to the L2. Therefore, we can infer that a given set of accesses (signature

0x1 in this instance) will lead to a delta of (+2). Figure II.4b shows how this correlation is

used to update the delta pattern in the PT.

The probability of each delta occurring is approximated using a per-delta confidence

value Cd, which is derived from counters stored in the PT. Since a matching delta (+2) that

corresponds to 0x1 is found in the PT, the corresponding Cdelta counter increases by one.

18

Signature Table (ST)

Tag Last
Offset Signature

Page 1 10 No History

Page 2 1 0x1
(+1)

Page 3 1 0x1
(+1)

Page 4 4 0x52
(+1, +2, +2)

Signature Table (ST)

Tag Last
Offset Signature

Page 1 10 No History

Page 2 1 0x1
(+1)

Page 3 3 0xA
(+1, +2)

Page 4 4 0x52
(+1, +2, +2)

Access
Page 3
Offset 3

(Signature << 3) XOR (Current Delta) = New Signature

Pre-update Post-update

(a) Update signature

Signature Table (ST)

Tag Last
Offset Signature

Page 1 0 No history
0x0

Page 2 1 0x1
(+1)

Page 3 3 0x1
(+1) è

0xA
(+1, +2)

Page 4 4 0x54
(+1, +2, +4)

Pattern Table (PT)
Entry: Sig 0x1

Index Delta Cdelta Csig

0x0
0 0

0
0 0

0x1
+1 2

9
è 10

+2 7
è 8

(0x1, +2)
Sig Delta

(b) Update delta pattern

Figure II.4: SPP table update operations.

In order to estimate the prefetch accuracy probability for each delta, we also maintain an

separate counter Csig, which tracks the total occurrences of the signature itself. If either

Cdelta or Csig saturates, all counters associated with that signature are right shifted by 1.

In doing so, SPP is able to continue updating its counters with the most recent information

without ever completely losing all previously collected history. If the PT contains no

matching delta, we simply replace the existing delta with the lowest Cdelta value.

Unlike the ST, whose entries correspond to individual physical pages, each PT entry

is shared globally by all pages. If Page A and Page B, for example, share the same access

pattern, they will generate the same signature, which indexes to the same entry in the PT,

and updates the same delta pattern in the PT. Sharing patterns between pages in the PT

minimizes SPP training time as well as the number of entries needed to store predictions.

Each entry in the PT can hold up to four different deltas so that multiple different deltas can

be prefetched by a single signature. Each of the deltas in a PT entry can be prefetched if

its corresponding probability (Cd = Cdelta/Csig) is above the given prefetching threshold

TP .

After updating the PT, the ST is also updated with a new signature based on the current

delta (+2). Equation II.2 shows how the SPP generates a new history signature. The old

19

Pattern Table (PT)
(𝑻𝑷 = 0.25)

Index Delta Cdelta Csig

0xA
+1 2

10
+2 8

0xB
-1 2

5
+1 3

(0xA)
Sig

𝑷𝒅 = 𝜶 ⋅ 𝑷𝒅'𝟏 ⋅ 𝑪𝒅
𝑷𝟎 = 𝑪𝒅𝒆𝒍𝒕𝒂	/	𝑪𝒔𝒊𝒈
𝑷𝟎 = 𝟎.𝟖

𝑷𝟎 ≥ 𝑻𝑷
Prefetch	
(BaseCL+2)

(0xA	<<	3)	XOR	(+2)	=	0x52Lookahead
Signature

(a) Prefetch (Lookahead depth d=0)

Pattern Table (PT)
(𝑻𝑷 = 0.25)

Index Delta Cdelta Csig

0x52
+2 3

8
+3 5

0x53
-2 1

2
+2 1

(0x52)
Sig

(0x52	<<	3)	XOR	(+3)	=	0x293Lookahead
Signature

𝑷𝒅 = 𝜶⋅𝑪𝒅 ⋅𝑷𝒅(𝟏
𝑷𝟏 = 𝟎.𝟗 ⋅ (𝟓/𝟖) ⋅𝑷𝟎
𝑷𝟎 = 𝟎.𝟒𝟓

𝑷𝟏 ≥ 𝑻𝑷
Prefetch

(BaseCL+2	+3)

(b) Lookahead prefetch (Lookahead depth d=1)

Figure II.5: Path confidence-based lookahead prefetching.

signature 0x1 is left-shifted 3-bits and XORed with the current delta (+2). In this way, a

12-bit signature can represent the last four memory accesses in Page 3. Note that we refer

to this signature as being “compressed” because deltas greater than 7 have the potential to

overlap and cause aliasing with existing history. At this point, the new signature (0x1<<3)

XOR (+2) = 0xA represents the current access pattern, (+1,+2), in Page 3. Assuming 4KB

pages with 64B cache lines, all possible deltas fall in the range of (-63) to (+63). We use a

7-bit sign+magnitude representation for both positive and negative deltas. Thus, negative

and positive deltas produce different signatures, pointing to different entries in the pattern

table, and ultimately different prefetch targets.

II.3.3 Path Confidence-based Prefetching

After updating the ST, as in Figure III.6, SPP accesses the PT so that it can predict

the next delta following signature 0xA. As shown in Figure II.5a, the path confidence Pd

is calculated for deltas associated with signature 0xA. The initial path confidence P0 is

simply set by (Cdelta / Csig) since there is no prior path confidence value. In this example,

(+2) delta has P0 = 0.8 which is greater than the prefetching threshold TP . Therefore,

the PT adds the delta (+2) to the current cache line’s base address and issues a prefetch

request.

20

In addition, the PT initiates the lookahead process by building a speculative lookahead

signature. As shown in Figure II.5a, the lookahead signature 0x52 is generated from 0xA

and the predicted delta (+2) using Equation II.2. While there could be multiple candidates

for prefetching, SPP only generates a single lookahead signature, choosing the candidate

with the highest confidence. The lookahead signature is used to index the PT again so that

SPP can search for further prefetch and lookahead candidates down the signature path. If

the lookahead signature 0x52 finds more prefetch candidates in the PT (Figure II.5b), the

process will be repeated and prefetch requests will be issued. The lookahead mechanism is

used recursively until the signature path confidence Pd falls below the prefetching thresh-

old TP . Note, a separate, greater confidence threshold Tf determines which level of the

cache a given prefetch will be fill into, either the L2 if Pd is greater than Tf or the LLC if

Pd is less than Tf .

SPP also uses a global accuracy scaling factor α based on the observed global prefetch-

ing accuracy to further throttle down or increase the aggressiveness of the lookahead pro-

cess. Thus, Equation II.1 is modified to include α according to Equation II.3:

Pd = α · Cd · Pd−1 (α < 1) (II.3)

If the prefetching accuracy is generally high across all prefetches, α will decrease the path

confidence Pd very slowly, allowing deeper lookahead prefetching. On the other hand, if

global prefetching accuracy is low, α will quickly throttle down lookahead prefetching.

The prefetching accuracy is tracked by the PF described in section II.3.5. The global α

and the local, per-delta Cd work together to provide a throttling mechanism which globally

adapts to the general prefetching confidence of a given program phase, while simultane-

ously favoring some signature paths over others based on their relative confidence.

Note that for simplicity, in the discussion above we describe path confidence calcula-

21

tions in the context of floating point numbers. However, in a real implementation (and

in our simulator), we use 7-bit fixed point numbers to represent path confidence val-

ues between 0∼100, and perform multiplication and division on those fixed point num-

bers. In addition, since Cdelta and Csig are 4-bit saturating counters, we can use a simple

16x16=256 entry lookup table that stores all possible division results, which allows us

to completely remove the expensive divider modules. Moreover, the extra computational

latency can be hidden, because SPP can calculate the path confidence in the background

while the L2 cache is waiting for the DRAM to service demand misses.

In addition to throttling when Pd falls below the prefetch threshold Tp, SPP also stops

prefetching if there are not enough L2 read queue resources. Reserving L2 read queue

entries is desirable because even accurate, useful prefetches can take resources away from

even more performance-critical demand misses from the L1 cache. Therefore, SPP does

not issue prefetches when the number of empty L2 read queue entry becomes less than the

number of L1 MSHRs. To summarize, SPP stops prefetching if the prefetcher observes

one of following conditions:

1. Low path confidence Pd.

2. Too few L2 read queue resources.

II.3.4 Page Boundary Learning

One of the challenges for history-based prefetchers like SPP is the loss of history in-

formation that occurs during transitions to new physical pages. Pages that are adjacent in

the virtual address space may not be adjacent in the physical address space. As a result,

patterns that are very easy to learn and follow in the virtual address space may be very hard

to detect and predict when they are broken up by a physical page transition. Previously

proposed history-based techniques [6, 11] address this by making predictions using the

22

63
62
61
60
59
58

+3	by	0x52
Pd =	0.45
Last	Offset	=	62

3
2
1
0

Global History Register
(GHR)

Signature Pd
Last

Offset Delta

0x52 0.45 62 +3

0x1CF 0.40 5 -17

Store	Prefetch	Request	in	GHR

Page	A	
Boundary

Page	A

+4

+3

-5

(a) GHR stores prefetch request that crosses
physical page boundary

62	+	3	=	65	
65	– 64	=	Offset	1
Offset	Match!
(0x52	<<	3)	XOR	(+3)
=	0x293

3
2
1
0

Global History Register
(GHR)

Signature Pd
Last

Offset Delta

0x52 0.45 62 +3

0x1CF 0.40 5 -17

First	Access to	Page	B	Offset	1
(No	Signature)	è Search	GHRPrefetch

with	0x293

1

2

3

Page	B

(b) Immediately start prefetching for new page

Figure II.6: Learning delta patterns across page boundaries.

first offset in a page, or with very short delta histories. Although these predictions may

increase coverage, they do so at the expense of accuracy because they are made with little

or no information about what happened in the previously accessed page.

SPP addresses this problem with a novel mechanism that allows histories to be main-

tained and tracked across physical page transitions. It does this by augmenting the per-page

ST with a global history that is updated when the prefetcher makes a prediction off the end

of a page, and is checked against when accessing new pages for the first time.

Figure II.6 shows how SPP connects a signature path across physical page boundaries

without the need to relearn any delta history patterns, or do any other warmup in the new

page. As shown in Figure II.6a, when there is a prefetch request that goes beyond the

current Page A, a conventional streaming prefetcher must stop prefetching, because it is

impossible for the prefetcher to predict the next physical page number. However, this

boundary-crossing prediction can still be useful when the next page is accessed for the

first time, and we find that the page offset of that first access matches the out-of-bounds

offset previously predicted by SPP.

In order to track this behavior, the boundary crossing prediction is stored in a small

8-entry GHR. The GHR stores the current signature, path confidence, last offset, and delta

23

used for the out-of-page prefetch request, which is everything necessary to bootstrap SPP

prefetching in a new page. If we access a new page that is not currently tracked (i.e., a miss

in the ST), SPP searches for a GHR entry whose last offset and delta match the current

offset value in the new page. Figure II.6b shows that Page B is accessed with an initial

offset of 1. SPP checks if any GHR entry’s last offset and delta value match the current

offset of 1. In this case, the signature 0x52 has the last offset and delta whose sum (62 + 3

= 65) matches the offset of 1 in Page B, since there are only 64 64B blocks in 4KB physical

page. We can now predict that Page B will produce a delta pattern that is a continuation of

the signature 0x52.

Since the pattern predicted by signature 0x52 is now continuing in a new page, we

need to connect the signature 0x52 with delta (+3) by generating a new signature. Using

the same Equation II.2, we generate a new signature 0x293 for Page B that can begin

prefetching immediately, without needing to learn any additional delta history. The new

signature 0x293 is entered into the ST for future use by Page B. Thus, SPP does not

suffer from long, per-page warmup periods, and it can prefetch complex patterns in new

physical pages sooner, resulting in higher prefetch coverage. Unlike the Global History

Buffer [34], which records all observed delta patterns, the GHR only stores delta patterns

that cross page boundaries. Note that SPP does not stop looking even further ahead for

more prefetch candidates after coming to the end of a page and updating the GHR. As

shown in Figure II.6a, if the (+3) delta, which lands in Page B, is predicted to be followed

by a (-5) delta, which comes back to Page A, then SPP can still exploit this behavior and

prefetch an offset of 60 in Page A.

II.3.5 Prefetch Filter

The main objectives of the PF, shown in Figure II.7, are to decrease redundant prefetch

requests, and to track prefetching accuracy. The PF is a direct-mapped filter that records

24

Prefetch Filter (PF)

Tag Valid Useful

- 0 0

CLB 1 0

Prefetch Filter (PF)

Tag Valid Useful

CLA 1 0

CLB 1 1

Prefetch
CLA

Pre-update Post-update

Demand
CLB

Figure II.7: Prefetching Filter.

prefetched cache lines. SPP always checks the PF first, before it issues prefetches. If the

PF already contains a cache line, this means that line has already been prefetched, and SPP

drops the redundant prefetch request. Entries in the filter get cleared by resetting a Valid

bit when the corresponding cache line is evicted from the L2 cache.

Due to collisions, a filter entry may already be occupied by another prefetched cache

line. In this case, SPP simply replaces the old cache line, stores the current prefetch request

in the filter, and issues the current prefetch. Note that this simple replacement policy might

erase cache lines from the filter before they get evicted from the L2 cache, which could

lead to re-prefetching, but we find in practice that this happens very infrequently.

By adding a Useful bit to each filter entry, the PF can also approximate prefetching

accuracy. SPP has two global counters, one which tracks the total number of prefetch

requests (Ctotal), and the other which tracks the number of useful prefetches (Cuseful).

The Ctotal counter increases whenever SPP issues a prefetch that is not dropped by the

filter. Useful prefetches are detected by actual L2 cache demand requests hitting in the

PF, which increments the Cuseful counter. To avoid increasing Cuseful more than once

per useful prefetched line, we set a used bit in the PF entry which keeps it from being

double counted. The global prefetching accuracy tracked by this filter is used for α in

Equation II.3 to throttle the path confidence value.

25

II.4 Evaluation

In this section, we evaluate the SPP prefetch engine. We first present the evaluation

methodology, followed by single core and multi-core performance. Finally, we present a

sensitivity study of SPP’s design parameters.

II.4.1 Methodology

We evaluate SPP using the ChampSim simulator, which is an updated version of the

simulation infrastructure used in the 2nd Data Prefetching Championship (DPC-2) [35].

We model 1-4 out-of-order cores, whose parameters can be found in Table II.1. ChampSim

is a trace-based simulator, and we collect SimPoint [36] traces from 18 memory intensive

SPEC CPU2006 [37] applications. We also collect single thread traces from 3 server

workloads (Data Caching, Graph Analytics, SAT Solver) from CloudSuite [38]. Since our

SimPoint methodology does not work with the server workloads, we instead collect the

server workload traces after fast-forwarding at least 30B instructions to pass through the

benchmark’s initialization phase. For performance evaluation, we warm up each core for

200M instructions and collect results over an additional 1B instructions.

Single core simulations use a single DRAM channel. In multi-core simulations, all

cores share a single L3 cache and main memory system, with two DRAM channels. In-

struction caching effects are not modeled in this simulation infrastructure. In ChampSim,

all prefetching actions are initiated by an L2 access, but prefetches can be directed to fill

in either the L2 or the L3 cache. Our simulation infrastructure uses a 4KB page size when

mapping virtual to physical addresses. In ChampSim, virtual to physical page mappings

are arbitrarily randomized. All of the prefetchers we evaluate in this work were designed

to operate strictly in the physical address space with no knowledge of the relationship

between physical and virtual address spaces.

We compare SPP against three top performing recently proposed prefetching algo-

26

Core Parameters

1-4 Cores, 3.2 GHz
256 entry ROB, 4-wide

64 entry scheduler
64 entry load buffer

Private L1 Dcache
32KB, 8-way, 4 cycles

8 MSHRs, LRU

Private L2 Cache
256KB, 8-way, 8 cycles

16 MSHRs, LRU, Non-inclusive

Shared L3 (LLC)
2MB/core, 16-way, 12 cycles,

LRU, Non-inclusive

Main Memory
1-2 64-bit channels

2 ranks/channel, 8 banks/rank
1600 MT/s

Table II.1: Simulator parameters.

rithms: the Variable Length Delta Prefetcher (VLDP) [11], the Best Offset Prefetcher

(BOP) [12], and the DRAM-Aware Access Map Pattern Matching (DA-AMPM) [39]

prefetcher† . We use the original code for each of these prefetchers submitted to DPC-2. In

each case, their design parameters have been re-tuned to attain their highest performance

in ChampSim running these traces. SPP does not use any feature of ChampSim that was

not also available to the designers of the other evaluated prefetchers. SPP’s threshold con-

figurations were empirically derived. The prefetching threshold TP = 0.25 and fill level

threshold TF = 0.9 were found to provide good performance improvement and accuracy,

and they are used throughout these results except where otherwise noted.

II.4.2 Single Core Performance

Figure II.8 shows the IPC speedup of all four evaluated prefetchers over a no-prefetching

baseline. Overall, SPP outperforms or matches all other prefetchers on nearly every bench-

mark. On average, SPP achieves a 27.2% geometric mean speedup, which is 6.4% and

5.6% more than BOP and DA-AMPM respectively. Also, SPP outperforms VLDP (a

recent lookahead prefetcher) by 13.2%. SPP shows particularly significant improvement

†Note: DA-AMPM is an extended version of AMPM [10] which accounts for DRAM row buffer locality.

27

1.272

1.0

1.2

1.4

1.6

1.8

2.0

as
ta
r

bw
av
es

bz
ip
2

ca
ct
us
AD

M gc
c

Ge
m
sF
DT

D
gr
om

ac
s

lb
m

le
sli
e3
d

lib
qu

an
tu
m

m
cf

m
ilc

om
ne

tp
p

so
pl
ex

sp
hi
nx
3

w
rf

xa
la
nc
bm

k
ze
us
m
p

da
ta
_c
ac
hi
ng

gr
ap

h_
an

al
yt
ic
s

sa
t_
so
lv
er

Ge
om

ea
n

IP
C	
Sp
ee
du

p

VLDP BOP DA-AMPM SPP

(a) IPC speedup versus no prefetching.

0.9

1.0

1.1

1.2

1.3

m
cf

xa
la
nc
bm

k

SA
T

Ge
om

ea
n

m
cf

xa
la
nc
bm

k

SA
T

Ge
om

ea
n

m
cf

xa
la
nc
bm

k

SA
T

Ge
om

ea
n

Baseline Low	Bandwidth Small	LLC

IP
C	
Sp
ee
du

p

VLDP BOP DA-AMPM SPP

(b) IPC speedup for Low BW and small LLC.

Figure II.8: Single-core IPC speedup.

in benchmarks that have complex access patterns. For example, both GemsFDTD and lbm

show substantial performance improvement with SPP. Further, SPP shows remarkable

performance gains in bwaves, cactusADM, leslie3d, and libquantum. These applications

are highly predictable by SPP, and gain significantly from SPP’s ability to adaptively look

ahead very deeply.

As Ferdman et al. [38] noted in a prior study, data prefetching for large scale workloads

is not as effective as prefetching for general purpose workloads. Performance with SPP

only improves by 2∼4% for this class of benchmark. However, SPP and VLDP show the

best performance for Data Caching and Graph Analytics, because both prefetchers are able

to capture the complex memory access patterns found in those workloads. BOP achieves

a 13.8% performance gain in SAT solver by aggressively prefetching on every L2 cache

access. The impact of aggressive prefetching by BOP will be discussed further in the

next section. We also modeled and compared the performance of the SMS [6] prefetcher

originally designed for server workloads, however, the overall performance of SMS on

both SPEC and CloudSuite was less than that of DA-AMPM. To simplify the performance

analysis, we only include the results from DA-AMPM.

Figure II.8b shows the performance improvement under different memory resource

28

constraints. The baseline configuration used for Figure II.8a has 12.8GB/s of DRAM

bandwidth and 2MB LLC. The low bandwidth test is configured with only 3.2GB/s mem-

ory bandwidth, and the small LLC configuration has only 512KB of last level cache.

Along with a geomean across all benchmarks, Figure II.8b also shows performance for

three benchmarks where SPP has lower performance than other prefetchers. As shown in

Figure II.8b, due to aggressive prefetching, VLDP and BOP show similar or worse per-

formance improvement for mcf and xalandbmk under the low bandwidth configuration.

Meanwhile, BOP always shows the best performance for mcf and SAT solver regardless

of resource constraints. We find that these benchmarks have random access patterns (i.e.,

pointer chasing) that cannot be easily captured in the physical address space. Therefore,

offset-based prefetchers [12, 22] work better than SPP for these, because they are trained

by individual offset occurrence frequency, and do not rely on longer delta patterns repeat-

ing. However, the benefit of aggressive offset prefetching without pattern matching can

be nullified by resource constraints when multiple workloads fight for limited shared LLC

and DRAM bandwidth [40]. The performance degradation of BOP with mcf and SAT

solver is discussed in the multi-core analysis section.

II.4.2.1 Prefetching Coverage and Accuracy

The substantial performance benefit of SPP versus the other prefetchers shown in Fig-

ure II.8 is a direct result of SPP’s prefetching accuracy and coverage. Figure II.9 shows

the prefetching coverage for each benchmark. In this figure, each prefetcher is indicated

by its first letter (e.g., “V” for VLDP, “D” for DA-AMPM, etc.). Prefetching coverage is

measured by the number of useful prefetches divided by the number of cache misses with-

out prefetching. Because prefetching can be useful in different ways, we further break

down the useful prefetches into four different categories. Useful represents the portion of

prefetched cache lines that are filled into the cache before their first demand access, elimi-

29

-100%
-80%
-60%
-40%
-20%
0%

20%
40%
60%
80%

100%

V B D S V B D S

astar bwaves bzip2 cactusADM gcc GemsFDTD hmmer lbm leslie3dlibquantum mcf milc omnetpp soplex sphinx3 wrf xalancbmk zeusmp Data Graph SAT Average

Pr
ef
et
ch
	C
ov
er
ag
e	
(%

)

Useless L2	Useful L2	Late LLC	Useful LLC	Late

Figure II.9: Prefetching coverage and useless prefetches.

nating all cache miss penalty. On the other hand, Late represents the portion of prefetched

cache lines that were issued to DRAM but were not filled before their first demand ac-

cess. Thus, Late prefetches have the effect of accelerating the demand fetch compared to

a regular cache miss. Useful and Late are measured for both the L2 cache and the LLC.

We also plot the fraction of useless prefetches on the bottom of the figure, showing the

effect of over-aggressive, low-confidence prefetching. On average, BOP shows the high-

est prefetching coverage, however, it also generates a large number of useless prefetches

(mostly to the L2 cache), which consume additional DRAM bandwidth and energy. Al-

hough SPP has slightly lower coverage compared to BOP, it has the largest number of L2

Useful prefetches due to its highly accurate dynamic path confidence-based throttling.

Because prefetching coverage alone does not show the aggressiveness of each prefetcher,

we also plot the raw number of prefetch requests in Figure II.10. As discussed in Sec-

tion II.4.2 and shown in Figure II.8a, BOP and VLDP outperform SPP in three workloads

(mcf, xalancbmk and SAT solver) in a single-core environment. Figure II.10 shows that

for these workloads, BOP and VLDP generate a huge number of useless prefetches to

achieve this performance advantage, aggressively consuming DRAM bandwidth and LLC

capacity. In a single core environment, this over-prefetching does not negatively impact

30

0
10
20
30
40
50
60
70
80

V B D S V B D S

astar bwaves bzip2 cactusADM gcc GemsFDTD hmmer lbm leslie3d libquantum mcf milc omnetpp soplex sphinx3 wrf xalancbmk zeusmp Data Graph SAT Average

N
um

be
r	o

f	P
re
fe
tc
he

s(
M
ill
io
ns
)

Useless L2	Useful L2	Late LLC	Useful LLC	Late

Figure II.10: Raw prefetch request breakdown. Both VLDP and BOP generate significant
numbers of useless prefetches.

performance, however as we will show, performance does degrade when the LLC and

DRAM bandwidth are shared by multiple cores.

II.4.2.2 Average Lookahead Depth

Because the length of memory access patterns is different in each application, the opti-

mal lookahead prefetching depth also varies. Figure II.11 shows the diversity of lookahead

depths SPP uses across the 21 benchmarks we examined. For example, libquantum is well

known to have very stable and long delta patterns. Figure II.11 confirms that SPP uses a

very deep lookahead depth for libquantum. Meanwhile, milc also uses a deep lookahead

depth, but this case is very different from libquantum. We find that many delta patterns

in milc do not fit within a single 4KB page. In these cases, SPP will predict that the ac-

cess pattern will leave the current page, and then, several deltas later, return to the current

page, where prefetching can continue. SPP will continue looking further ahead until its

confidence falls below the threshold. On the other hand, SPP does not prefetch deeply on

xalancbmk, because this benchmark is not amenable to prefetching, due to a low degree

of spatial and temporal locality in each page. In this case, SPP detects that prefetching is

inaccurate by using the PF, and lowers the global scaling factor α, which serves to limit

the lookahead depth. The average lookahead depth of SPP across all traces is 6.9.

31

3.7

13.2

4.3
6

1.5

5 3.9

16.1

8.7

16.5

1

20.5

1.5
3.4

1110.4

1.1

6.6 7

1.91.3

6.9

0

5

10

15

20

25

as
ta
r

bw
av
es

bz
ip
2

ca
ct
us
AD

M gc
c

Ge
m
sF
DT

D
hm

m
er

lb
m

le
sli
e3
d

lib
qu

an
tu
m

m
cf

m
ilc

om
ne

tp
p

so
pl
ex

sp
hi
nx
3

w
rf

xa
la
nc
bm

k
ze
us
m
p

Da
ta

Gr
ap

h
SA
T

Av
er
ag
e

Av
er
ag
e	
Lo
ok
ah

ea
d
De

pt
h

Figure II.11: Average Lookahead Depth

II.4.2.3 Contribution to Performance Improvement

Figure II.12 shows the relative contribution of lookahead and page boundary learn-

ing (via the GHR), compared to a basic version of SPP without either of these fea-

tures. To highlight the impact of each feature, we select two benchmarks (libquantum

and GemsFDTD), and break down the performance benefit. A basic SPP algorithm with-

out lookahead or the GHR shows a performance improvement of 11.8% on libquantum

and 14.0% on GemsFDTD. Adding lookahead prefetching achieves a significant addi-

tional speedup of 21.4% for libquantum, because the benchmark has simple memory ac-

cess patterns that can be accurately covered with very deep lookahead prefetching. On the

top of that, page boundary learning provides little benefit for libquantum, because each

page takes very little time to train, even withouth the GHR. For GemsFDTD, lookahead

prefetching improves performance by 25.9%. However, page boundary learning provides

a substantial boost of 4.5% to GemsFDTD because many delta patterns do not fit inside a

single 4KB page. In this application, a common delta pattern is (+30) followed by (+1),

thus many of the deltas cross page boundaries. The GHR structure captures this behavior

32

1.0

1.2

1.4

1.6

libquantum GemsFDTD Geomean

IP
C	
Sp
ee
du

p

Lookahead	and	GHR	OFF Lookahead	ON	and	GHR	OFF Lookahead	and	GHR	ON

1.118

1.332

1.349

1.140

1.399

1.444

1.129

1.252

1.272

Figure II.12: Contribution of SPP components. Stacked graph represents accumulated
speedup from each component

in GemsFDTD and provides a substantial performance improvement. On average, basic

SPP, without lookahead provides a 12.9% speedup; adding lookahead prefetching pro-

vides 12.3% more speedup, and finally adding the page boundary learning gains another

2.0% improvement.

II.4.3 Multi-programmed Mix Performance

To show results for a multi-core system, we generate 20 multi-programmed mixes

consisting of traces from different benchmarks, and assign each trace to a different core.

The mixes are randomly generated in order to fairly represent the characteristics of multi-

programmed workloads. Figure II.13a shows the performance improvement of four-workload

mixes, measured by normalized weighted speedup. The graph is sorted by speedup order.

Out of the 20 random mixes, SPP achieves the best performance on 19 mixes. For the

remaining mix, DA-AMPM beats SPP by less than 0.5%. On average, SPP achieves a

21.7% speedup compared to the baseline.

Note that the BOP prefetcher, which nearly ties for second place on single core bench-

33

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
W
ei
gh
te
d	
IP
C	
Sp
ee
du

p

Workloads	Sorted	by	Speedup

VLDP BOP DA-AMPM SPP

No	Prefetching

Geomean
SPP:	1.217
DA-AMPM:	1.159
BOP:	1.120
VLDP:	1.095

(a) Workloads sorted by normalized weighted
speedup

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

m
cf

bz
ip
2

ca
ct
us
AD

M

ze
us
m
p

Av
er
ag
e

SA
T

w
rf

ze
us
m
p

xa
la
nc
bm

k

Av
er
ag
e

MIX10 MIX18

W
ei
gh
te
d	
IP
C	
Sp
ee
du

p

VLDP BOP DA-AMPM SPP

(b) Performance alaysis for MIX10 and MIX18.

Figure II.13: Normalized speedup for mixes of 4 workloads.

marks, shows particularly poor performance in multicore systems. As shown in Fig-

ure II.9, although BOP has good coverage, it also fetches a high number of useless lines.

In a single core system this does not hurt performance, because the LLC is not over-

committed. In a multicore system, however, the LLC pressure is greater, which leads to

performance loss. Figure II.13b shows two examples of multi-programmed mixes that

suffer from BOP’s aggressive prefetching. Each mix contains benchmarks in which BOP

outperforms SPP in the single core environment. In MIX10, VLDP and BOP show the

least performance degradation on mcf. However, this performance in mcf comes from

aggressive prefetching, which prevents other workloads from getting better performance.

In particular, BOP shows performance degradation on bzip2 while the other prefetchers

show performance improvement. In MIX18, all prefetchers gain performance in wrf and

zeusmp at the cost of degrading SAT solver and xalancbmk. Similarly, BOP’s advantage

is lower than SPP’s due to its aggressive prefetching on SAT solver and xalancbmk. Note

that in single core experiments, BOP showed performance improvement in xalancbmk and

SAT solver. However, when resources are shared among multiple cores, BOP’s aggressive

prefetching hurts overall system performance.

34

II.4.4 Sensitivity Study

The total storage used by SPP in the preceding experiments is 5.37KB, with the stor-

age requirement for each individual component shown in Table III.2. As the table shows,

SPP’s largest component is the PT (3KB). This table has multiple delta predictions and

counters for each tracked signature. Figure II.14a shows a performance sensitivity analysis

between BOP, DA-AMPM, and SPP when scaling storage size. Each point represents the

storage configuration used for the performance evaluation. As expected, the overall perfor-

mance of SPP and DA-AMPM does not increase with greater storage capacity. Generally,

SPP always outperforms the other prefetchers at a given storage budget. Note that, coun-

terintuitively, BOP does not benefit from greater storage, because it takes a longer time to

find the best offset value when more cache lines are in its recent request table [12].

SPP uses a 12-bit history signature built by a series of 3-bit shifts and XORs. This

shifting and XORing represents a form of lossy information compression. The more bits

Structure Entry Component Storage

Signature Table 256

Valid (1 bit)
Tag (16 bit)

Last offset (6 bit) 11008 bits
Signature (12 bit)

LRU (6 bit)

Pattern Table 512
Csig (4 bit)

Cdelta (4*4 bit) 24576 bits
Delta (4*7 bit)

Prefetch Filter 1024
Valid (1 bit)
Tag (6 bit) 8192 bits

Useful (1 bit)

Global History
Register

8

Signature (12 bit)
Confidence (8 bit) 264 bits
Last offset (6 bit)

Delta (7 bit)

Accuracy Counter
1 Ctotal (10 bit) 10 bits
1 Cuseful (10 bit) 10 bits

11008 + 24576 + 8192 + 264 + 20 = 44060 bits ≈ 5.37 KB

Table II.2: SPP storage overhead.

35

1.20

1.22

1.24

1.26

1.28

1.30

0 2 4 6 8 10 12 14

IP
C	
Sp
ee
du

p

Storage	Overhead	(KBytes)

BOP DA-AMPM SPP

BOP
1.85KB,	1.208

SPP
5.37KB,	1.272

DA-AMPM
9.68KB,	1.216

(a) SPP storage sensitivity.

1.261

1.271

1.272
1.270

1.269

1.252

1.259

1.24

1.25

1.25

1.26

1.26

1.27

1.27

1.28

1 2 3 4 5 6 7

IP
C	
Sp
ee
du

p

Number	of	Bits	to	Shift

(b) Performance sensitivity with respect to the num-
ber of bits to shift.

Figure II.14: Sensitivity study.

that are shifted, the less compression, and vice-versa. Here we examine the performance

impact of this compression. Figure II.14b shows the performance sensitivity to the number

of shifted bits. Since each delta pattern within a 4KB page can be represented with 7 bits

(-63 ∼ 63), there is no value in shifting more than 7 bits. The figure shows that a 12-bit

signature prefers 3-bit shifting. The goal of the history signature is to track as many useful

deltas as possible within a small 12-bit signature. This is best achieved by giving small

deltas, which are the most common, all the precision they need, while still keeping some

information from larger deltas. By shifting 3-bits prior to XORing, SPP compresses four

deltas into 12-bits. Deltas from 0-7 are represented at full precision. Larger deltas (>7)

cause some aliasing, but still contribute information to the final signature.

36

II.5 Summary

Signature Path Prefetching offers compelling solutions for three major prefetching

challenges. First, it is able to learn and prefetch complex data access patterns by using

a compressed history signature. Second, it is able to detect when a data access pattern

crosses a page boundary, and quickly resume prefetching on the new page. Third, it is able

to balance aggressive prefetching with accuracy by using path confidence. SPP is able to

do all this without using the program counter or other core registers, and while operating

strictly in the physical address space. SPP improves performance versus a no-prefetching

baseline by 27.2%, and improves performance by 6.4% versus the next best competing

technique.

37

CHAPTER III

HOLISTIC MULTI-LEVEL CACHE MANAGEMENT∗

This chapter presents Kill the Program Counter (KPC), a holistic cache memory man-

agement technique that covers both data prefetching and cache replacement policy. First,

we analyze why Program Counter (PC) cannot be a perfect tool to speculate future pro-

gram behavior with the presence of data prefetcher. Based on our analysis, we propose a

simple global hysteresis mechanism that can accurately predict the program behavior in

the LLC. The proposed technique is further extended to provide constructive feedback to

the data prefetcher living in the private cache.

III.1 Introduction

Due to the combined pressures of increasing application working sets [38, 41], the

persistence of the Memory Wall [1], and the breakdown of Dennard scaling [3], processor

memory system hierarchies have continued to grow in complexity, size, and performance

criticality. In recent architectures, caches consume as much as 40% of the total die area

and 20% of energy consumption on chip [42]. With so much of the available on-die re-

sources invested in the cache hierarchy, an efficient, high performance design requires

intelligent cache management techniques. While many cache management and specula-

tion techniques such as alternate replacement policies [15, 16, 25, 43, 44], dead-block/hit

prediction [26, 14, 17, 18, 27], and prefetching techniques [19, 6, 20, 10, 21, 22, 23, 24]

have been extensively explored, many of these are piecemeal, one-off solutions that of-

ten interact poorly when implemented together and typically only address one level of

∗Reprinted with permission from "Kill the Program Counter: Reconstructing Program Behavior in the
Processor Cache Hierarchy" by J. Kim, E. Teran, P. V. Gratz, D. A. Jiménez, S. H. Pugsley, and C. Wilk-
erson 2017. Proceedings of the 22nd International Conference on Architectural Support for Programming
Languages and Operating Systems, Copyright 2017 by ACM

38

the memory-system hierarchy. There has been little work exploring the interactions be-

tween these policies across multiple levels of the memory hierarchy and examining the

information needed across boundaries in the system from software to the core, to the last

level cache. This study proposes a holistic, speculative, multi-level cache management

system that effectively reconstructs program behavior in the processor memory hierarchy

to prefetch and manage placement of data across the cache hierarchy.

In this work, we present a novel cache management mechanism called Kill-the-PC

(KPC) that integrates data prefetching and replacement policy across multiple levels of

the cache hierarchy into a single system. KPC consists of two main components. First,

we develop a prefetcher (KPC-P) that produces a proxy of future use distance based on its

prediction confidence. KPC-P is an extended version of SPP [23] and tightly integrated

with the LLC management technique. Second, we propose a replacement policy (KPC-R)

that quickly adapts to the dynamic program phase using two small global counters. Each

counter is exclusively updated by demand or prefetch so that KPC-R can predict useless

cache blocks for both memory requests.

Additionally, KPC-R and KPC-P are integrated to share information. For example

KPC-P learns from KPC-R to dynamically adjust a threshold for the prefetching fill level.

KPC-R monitors a sample of prefetched blocks in the LLC to check if they could have

been timely prefetches at the L2 cache. If there are enough timely prefetches detected by

KPC-R, the fill level threshold becomes lower allowing prefetches go all the way up to the

L2 cache. On the other hand, if the L2 cache is being polluted by a low fill level thresh-

old, KPC-P automatically increases the threshold. Further, when KPC-P sends prefetch

requests from the L2 to hit in the LLC with a given confidence, that confidence is used

to update placement information withing the LLC’s replacement stack. Critically, neither

component depends on load PCs, eliminating the hardware complexity of PC propagation

through the entire on-chip cache hierarchy.

39

III.2 Motivation

In this section, we discuss the need for holistic cache management and explain why

the PC is an inadequate input feature for holistic cache design, especially under the effect

of prefetching.

III.2.1 Why do we need a holistic cache management?

Previous studies [20, 28, 30] show that a large fraction of prefetches are dead in the

LLC. Figure III.1 analyzes the types of allocations within the LLC when the DA-AMPM

prefetcher is in use. More than 40% of LLC allocations are filled by prefetching and

approximately 90% of these prefetches are useless, i.e., they will have no accesses in

the LLC (they are also pulled into the L2 and all hits to them occur there). Ideally, an

intelligent cache replacement policy should detect these dead prefetches and evict them as

soon as possible from the LLC. However, as we noted in Figure I.3, both PC- and non-PC-

based replacement algorithms often yield negative impact when they are combined with

prefetching. If we further break down the usage of prefetched blocks, it is even harder for a

replacement policy to predict correct reuse behavior by itself. Some prefetched blocks are

constantly reused by demand (white) while some blocks are only hit by another prefetch

request from the L2 (grey).

In order to minimize the interference from prefetching, Wu et al. propose PAC-

Man [28], a prefetch-aware cache management policy. PACMan dedicates a few sets of

the LLC to each of the three competing policies that treat demand and prefetch requests

differently and uses the policy that shows the lowest number of cache misses. Competition

between three different policies, however, increases the overhead of set dueling [15], espe-

cially in a multicore environment. Similarly, Seshadri et al. propose ICP [30]. ICP is also

designed as a comprehensive mechanism to mitigate prefetching interference. ICP simply

demotes a prefetched block to the lowest priority on a demand hit based on the observa-

40

0%

20%

40%

60%

80%

100%
Useful Prefetch Hit by L2 Prefetch Useless Prefetch Demand

Figure III.1: LLC allocation breakdown with DA-AMPM prefetcher

tion that most prefetches are dead after their first hit. To address prefetcher-caused cache

pollution, it also uses a variation of EAF [18] to track prefetching accuracy and inserts

only an accurate prefetch to the higher priority position in the LRU stack. ICP assumes,

however, that all prefetches are inserted only into the LLC, which restricts the maximum

benefit of prefetching. Additionally, with sophisticated, high-performance data prefetch-

ers [21, 29, 23, 22, 24], demoting a prefetched block on the first hit actually degrades the

overall performance. In fact, we found that EAF [18] shows better performance than ICP

with lower hardware complexity and storage overhead when it is combined with the DA-

AMPM prefetcher. Critically, both PACMan and ICP consider the data prefetcher as an

independent component that disturbs the LLC replacement policy and attempts to isolate

that disturbance. Neither technique attempts to leverage information from the replacement

policy to produce better prefetching algorithm.

Without a holistic approach that identifies how prefetched blocks are used in the L2 and

LLC, we cannot optimize the efficiency of the precious on-chip cache resource. A Unified

Memory Optimizing (UMO) architecture [29] is the most recent work to attempt holistic

41

cache design. UMO’s main idea is to design a data prefetcher that increases the DRAM

row buffer locality (DA-AMPM) and a replacement policy that refers to the data prefetcher

for better prediction accuracy. However, UMO needs to access the L2 prefetcher on every

LLC access since its replacement policy depends on the status map of DA-AMPM. Further,

its prefetching algorithm is still separated from the LLC replacement policy and operates

as a stand alone module. More importantly, UMO assigns equal priority to a stream of

prefetches whose future use distance can be different from each other. In fact, we find that

PACMan and EAF achieve higher performance than UMO when they are combined with

DA-AMPM, which necessitates a better approach for holistic cache design.

III.2.2 Why is a PC-based policy insufficient?

One way to implement a holistic approach is to use a PC from the core pipeline for both

prefetching and replacement policy. Passing PCs throughout the load-store queue and the

all levels of cache hierarchy, however, requires extra logic, wire, and energy consumption.

Additionally, there is a significant organizational cost of extra communication between

front-end, mid-pipe, cache design, and verification teams as new interfaces are defined,

implemented, and tested. When time-to-market is considered, incorporating the PC into

prefetching and replacement may be considered too costly by industrial microarchitects.

Moreover, modern data prefetchers [22, 24, 29, 11] do not associate prefetches with a

particular PC. Thus, when the LLC allocates a cache line brought by a prefetch request,

there is no PC value that can be used for reuse distance prediction. Even for demand

requests, the PC does not always correlate with reuse behavior.

The baseline assumption of PC-based replacement algorithms is that a given memory

instruction will exhibit certain memory use behavior over the program execution, regard-

less of which particular data location that instruction references. This is not always true,

however, since a single load or store instruction might show variable cache line reuse be-

42

havior. For instance, if there is a load instruction located in a nested loop, data brought

by that load may or may not be reused depending on the result of prior branches. In this

scenario, using a single PC cannot provide a robust prediction. Instead of using a single

instruction address, it is possible to accumulate a history of PCs. Although Lai et al. [26]

introduced and Liu et al. [45] later refine a dead block predictor that collects a trace of PCs,

using multiple PCs does not improve accuracy in the LLC since most memory accesses

are filtered by upper-level caches, causing many important PCs to be missed [14].

III.2.3 Impact of Compiler Optimizations

Compiler optimizations, such as loop unrolling, also affect the performance of PC-

based replacement algorithms. Contrary to the prior case where a single PC exhibits mul-

tiple reuse behaviors, loop unrolling generates multiple PCs that often show the same reuse

behavior, necessitating a larger prediction table to correlate PCs and reuse. Figure III.2a

shows a typical example of a loop structure that loads data from an array and reuses it in

the same loop iteration. Without loop unrolling, the original loop code will be repeated

n times. As a result, a single load instruction (PC Y) will be executed n times and the

resulting data (X) will each be reused once. In other words, PC Y is responsible for n data

reuses. Prior PC-based replacement algorithms are designed to observe these n instances

of data reuse and update a prediction table by increasing the reuse counter associated with

PC Y.

With compiler loop unrolling, the actual correlation between PCs and data reuse trans-

forms as shown in Figure III.2b. The compiler generates n consecutive load instructions

and places them ahead of the reuse function. In doing so, we can reduce the number of

branch instructions and achieve more memory level parallelism. Unlike the original code,

the unrolled loop contains n load PCs and each PC is associated with a single reuse rather

than the n reuses without unrolling. To capture this reuse correlation without any conflicts

43

f o r (i =0 ; i <n ; i ++) {
X = l o a d (a r r [i]) ; / / PC Y l o a d s a r r [i]
Z = r e u s e (X) ; / / PC Y i s r e u s e d

}
(a) Original loop

X1 = l o a d (a r r [0]) ; / / PC Y1 l o a d s a r r [0]
. . .

Xn = l o a d (a r r [n−1]) ; / / PC Yn l o a d s a r r [n−1]

Z1 = r e u s e (X1) ; / / PC Y1 i s r e u s e d once
. . .
Zn = r e u s e (Xn) ; / / PC Yn i s r e u s e d once

(b) Unrolled loop

Figure III.2: Loop unrolling example

between PCs, the PC-based replacement algorithm requires at least n entries in its predic-

tion table. Furthermore, training n entries will take n times more iterations through the

code as a non-unrolled version. Since loop unrolling is a common optimization technique,

PC-based algorithms will suffer from hardware overheads and less prediction accuracy.

Note that, in the unrolled example, not every PC will be used to access the predictor

on every unrolled iteration, since an initial demand read will load multiple words causing

subsequent iterations to hit in the L1. Because alignment of data structures is not required

to be on LLC block boundaries, however, the particular PC that causes a miss will vary

from one entry to the unrolled loop to the next.

III.2.4 The PC can be replaced

Instead of extracting PCs from the front-end of core pipeline, we propose using a

simple global hysteresis mechanism that quickly adapts to the dynamic program phase

and provides similar or higher prediction accuracy than PC-based prediction. Figure III.3

shows how the prediction counter value changes over the program execution for PC-based

44

prediction and global hysteresis prediction. For PC-based prediction, we profile the most

frequently used PC in two SPEC CPU 2006 benchmarks and track a prediction counter

value correlated to that PC. In this experiment, we use the prediction mechanism proposed

in SHiP [17]. If a cache block is evicted without being reused, the PC that allocated

this block increases its prediction counter value. When the counter reaches the maximum

value of 7, cache blocks brought by this PC are considered to be dead. Otherwise, if

a cache block is hit, the corresponding PC prediction counter decreases. For the global

hysteresis experiment, we use a single 3-bit counter that is updated by every LLC hit and

miss.

Figure III.3a shows the training of the prediction counter in cactusADM. This bench-

mark has a long streaming access pattern in which all references are effectively dead on

arrival. Both prediction techniques eventually saturate their prediction counters and predict

most incoming cache blocks to be dead. Some cache blocks with more temporal locality

may be preserved to be reused in the LLC. In the figure, we see that the global hysteresis

approach learns faster than the PC-based because it is updated on every LLC access while

only a subset of references touches any given entry in the PC-based. Figure III.3b shows

that the prediction counter changes frequently in sphinx3 because the working set size is

slightly larger than the size of LLC and there are some LRU friendly blocks. Still, the

0
1
2
3
4
5
6
7

0.0E+00 1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06 6.0E+06 7.0E+06

Pr
ed

ic
tio

n
Va

lu
e

Execution Cycle

Global PC

(a) cactusADM training time

0
1
2
3
4
5
6
7

0.0E+00 1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06 6.0E+06

Pr
ed

ic
tio

n
Va

lu
e

Execution Cycle

Global PC

(b) sphinx3 training time

Figure III.3: Global hysteresis quickly trains and adapts to program phases

45

0%

20%

40%

60%

80%

100%

Pr
ed

ic
tio

n
A

cc
ur

ac
y

PC Global Hysteresis

Figure III.4: Dead block prediction accuracy for PC and global hysteresis

global hysteresis adapts to the program phase much faster than the PC-based prediction

for this workload.

The advantage of fast learning and dynamic adaptation results in better prediction accu-

racy. Figure III.4 shows the prediction accuracy for PC and global hysteresis predictions.

As we expected, cactusADM shows similar prediction accuracy for both PC and global

hysteresis. For this workload even the slower training of PC-based is sufficient because

the streaming access pattern does not change. Alternately, the global hysteresis prediction

produces much higher prediction accuracy for sphinx3. As described above, the global

mechanism more quickly adapts to the program behavior changes seen in this application.

Why does the simple global hysteresis prediction work? There are two main reasons

behind this. First, the global hysteresis makes a dead block prediction only when the

counter is saturated. A single cache hit can change the direction of prediction. Thus, there

is a low risk of discarding useful cache blocks. Second, data structures with similar tem-

poral locality tend to be accessed in a similar time frame. Typically, when a programmer

46

writes an application, he or she works at the data structure level (i.e., map, list, queue)

rather than hardware cache block level. As a result, when a function call accesses a data

structure, the cache blocks in that specific structure tend to be accessed at the same time.

Thus, a small global counter can track the reuse behavior of the LLC without complex

hardware. As a result, a simple global counter can replace a set of logics and wires that

deliver PCs from core pipeline to the cache memory hierarchy.

47

III.3 Design

Here we examine the design of our proposed holistic cache management algorithm,

KPC. KPC has two primary components: KPC-P the prefetching component, and KPC-R

the cache replacement algorithm. These components are co-designed and integrated to

achieve high-performance through the reconstruction of program behavior in the cache

hierarchy.

L1D
Cache

L2
Cache

Last Level
Cache

DRAM

Train

Prefetch

Train

Dead Block
Prediction

Update TF

KPC System

KPC-P
Signature Table
Pattern Table

KPC-R
LLC Sampler

Global Counters

Timely
Prefetch

Figure III.5: Design overview of the KPC system

Figure III.5 provides a high level design overview of KPC. KPC-P is trained by L2

demand accesses and issues each prefetch with a calculated prediction confidence. The

confidence value is used to control prefetch throttling, prefetching level within the cache

hierarchy (i.e., L2 or LLC), and prefetch promotion. A prefetch is issued only if its con-

fidence is higher than a set prefetching threshold constant (TP)†. Typically, a prefetch

whose predicted use is far in the future is given a low confidence. KPC-R is trained by

both prefetch and demand LLC accesses. A small fraction of LLC references are sampled

to update the LLC sampler and predictor. KPC-R also dynamically updates the fill level

†We empirically determined 25% for this threshold was optimal.

48

threshold (TF) based on feedback about prefetch timeliness from KPC-P. Thus, the entire

KPC module provides a holistic cache management scheme.

III.3.1 KPC-P: Confidence-based Prefeching

Next we describe in detail the design and mechanisms of the KPC-P prefetching algo-

rithm.

III.3.1.1 KPC-P Overview

KPC-P is designed to produce a per-prefetch confidence value that controls the ag-

gressiveness of prefetching. Inspired by prior work on lookahead prefetching [21, 23, 11],

KPC-P monitors the pattern of cache block accesses in a physical page, and then recur-

sively prefetches future cache blocks in that page until its prediction confidence falls be-

low a threshold, TP . To achieve this goal, the Signature Table (ST), shown in Figure III.5,

records a compressed history of past L1 cache block misses as a history of deltas (i.e.,

differences) between consecutive memory addresses to the current physical page. This

history, including the delta between the last reference in the current page and the current

reference in the current page, is used as a signature to index into the Pattern Table (PT)

to look up the predicted next delta in the current page. Once this prefetching prediction is

made, the PT also generates a “lookahead” signature, corresponding to the predicted next

reference in the current page. This lookahead signature is used to re-reference the PT and

produce another predicted next delta, and in turn to produce another lookahead signature,

and so on.

Figure II.4 illustrates the prefetching mechanism of KPC-P when an L2 access occurs

to physical page 0xB with an offset of 2 in that page. In the next two subsections we

describe the operation of KPC-P using this example.

49

Signature Table (ST)

Page Last SIG P U

0xA 0 - 0 0 0 0 0 0 0 1

0xB 1
è 2

0x1
è 0x9 0 0 0 0 0 1 1 1

Page
0xB

Block 2

Update PT
SIG 0x1 è Delta +1

Pattern Table (PT)

Entry Delta Cdelta Csig

0x0

0x1
-1 2

7 è 8
+1 5 è 6

Figure III.6: Update the signature and delta pattern

III.3.1.2 KPC-P Training

When the L2 cache accesses a block of offset 2 in page 0xB, KPC-P begins by search-

ing for a matching page entry in the ST. Figure III.6 shows that the page 0xB was recently

accessed, is currently being tracked by the ST, and that the last block offset accessed in

this page was 1. Further, we see that the most recent delta history signature in this page

(SIG) is 0x1. Thus, the PT is indexed with the signature 0x1. We see that the PT currently

has two valid deltas stored at index 0x1, -1 and +1. Because the current reference delta of

+1 matches one of these, the +1 delta entry’s occurrence counter (Cdelta) is incremented,

adding confidence to the prediction of a signature of 0x1 leading to a delta of +1. The sig-

nature occurrence counter (Csig) is also incremented. We will discuss in Section III.3.1.3

how these two counters are used to estimate prefetch confidence. Each physical page has

its own ST entry, but all pages contribute to building up predictions in a single PT, which

is shared by all pages. This accelerates delta pattern learning times.

Based on the current reference, the last block offset and history signature in the ST

must also be updated. A new history signature 0x9 is constructed by shifting the prior

signature (0x1) to the left 3-bits and XORing it with the current delta (+1). This new

value is stored as the new current signature. The last offset into the page (Last) is also

50

Signature Table (ST)

Page Last SIG P U

0xA 0 - 0 0 0 0 0 0 0 1

0xB 2 0x9 1 0 0 0 0 1 1 1

I. Index SIG 0x9

Pattern Table (PT)

Entry Delta Cdelta Csig

0x9
+1 8

8
- -

0x10
-1 2

8
+1 6

II. Check Block (2+1) = 3

III. Lookahead SIG 0x49
= (0x9 << 3) XOR (+1)

Figure III.7: KPC-P training and prefetching

updated to 2. The ST also maintains two bit-vectors to track the status of each cache block

within each page. The prefetched (P), and used (U) vectors work together to ensure cache

blocks are not redundantly prefetched, and enable the calculation of a general prefetching

effectiveness metric, which is used to throttle future prefetches. The used bit is now set,

which prevents block 2 from being prefetched again by any future predictions. Finally, we

check to see if the prefetch bit corresponding to block offset 2 was previously set. If it was,

then prefetching for that block is considered to be timely. The ST resets both prefetch and

used bits when a block is evicted from the L2 cache.

III.3.1.3 KPC-P Prefetching

After updating both tables, KPC-P begins confidence-based prefetching, as illustrated

in Figure III.7. First, (I on the figure) the PT is indexed by the updated signature 0x9. Any

of the deltas in a PT entry can be prefetched, as long as their corresponding confidence,

calculated asC0 = Cdelta/Csig, is above the prefetching threshold TP . In this example, 0x9

was seen 8 times and each time it was always followed by a +1 delta, giving a confidence

of 8/8 = 1 or 100%. Based on this 100% confidence, KPC-P will plan to prefetch block

offset (2 + 1 = 3) within the physical page 0xB.

However, before the actual prefetch request is issued, KPC-P must check the status

51

bit-vectors in the ST to prevent redundant prefetching. If either the corresponding used

bit or prefetch bit is already set, KPC-P simply drops the prefetch request. Otherwise,

the prefetch is issued and the prefetch bit in the ST is marked to prevent future redundant

prefetch requests to that line. Next, KPC-P generates a new, speculative signature based

on the demand signature (0x9) and the predicted next cache block delta (+1) (III in the

figure), creating the first speculative lookahead signature 0x49. KPC-P then continues to

recursively index the PT. The lookahead mechanism described here is similar to signature

lookahead prefetching [23].

Without a proper throttling mechanism, KPC-P can be too aggressive and pollute the

cache through infinite recursion when individual deltas in the PT have 100% confidence.

To prevent this from happening, KPC-P calculates a path confidence according to the

following formula:

Cn = α ∗ Cn−1 ∗ Cdeltan/Csign (III.1)

where n is the current iteration depth and Cn−1 was the path confidence of the previous

iteration. Here we use the global pefetching accuracy α as a scaling factor, preventing in-

finite recursion on 100% confident prefetches. Note that α is easily calculated by dividing

the number of timely prefetches observed at the ST by the number of prefetch requests at

the PT. KPC-P uses two 10-bit counters to track these numbers and calculate α. KPC-P

also has a small global history register that records a prefetch request that goes beyond

the 4KB physical page boundary. Thus, the global history register is able to provide a

signature when there is a new page that is not tracked by the ST. For simplicity, the global

history register is not shown in Figure III.6.

The main advantage of KPC-P is that each prefetch request has a proxy of its future

use distance in the form of its path confidence Cn. In general, as the depth of lookahead

prefetching increases, the confidence decreases. KPC-P exploits this confidence to support

52

the replacement policy in the LLC. Only when the confidence is higher than the fill level

threshold TF , is a prefetched block also inserted into the L2 (TF is dynamically adapted by

KPC-R as described in Section III.3.2.1). Low confidence prefetches with long predicted

use distances stay in the LLC waiting for a prefetch request with higher confidence to pull

them into the L2. Second, if a prefetch request is a hit in the LLC, the cache block is

promoted within the replacement stack of the LLC only when the prefetch confidence is

higher than TF . Otherwise, a prefetch request with low confidence does not change the

replacement state. Low confidence indicates two possible scenarios: a long use distance,

or an inaccurate prefetch request. In either case, it is best to avoid cache pollution by not

filling a low confidence prefetch into the L2. Furthermore, not promoting on a prefetch hit

with low confidence ensures that the LLC can evict these blocks earlier than other blocks

with higher priority. Thus, KPC-P uses prefetch confidence to integrate prefetching with

the replacement policy, and provides a tool for holistic cache design.

III.3.2 KPC-R: Global Hysteresis Replacement

Here we examine the design and implementation of KPC’s global hysteresis replace-

ment algorithm, KPC-R.

III.3.2.1 KPC-R Overview

KPC-R is a low overhead replacement policy that uses a global hysteresis to predict

dead blocks by tracking global reuse behavior. Similar to prior work [17, 18], KPC-R

associates the cache recency stack with 2-bit re-reference prediction value (RRPV) coun-

ters [16] that represent eviction priority. A cache block with a small RRPV counter has low

eviction priority whereas a cache block with maximum RRPV may become the next vic-

tim in its set. To train the global hysteresis, KPC-R randomly samples 64 sets in the LLC,

and duplicates their tags in a separate structure called the LLC sampler. The sampler is

managed using true LRU replacement (unlike the real cache, which uses RRPV counters).

53

LLC Sampler
Tag Type Used LLCP Level

A Demand 0 è1 X X

B Prefetch 0 è1 X X

A Demand 0 X X

B Prefetch 0 X X

C Prefetch 0 è1 0 è1 LLC

Sampler
Hit

L2
Prefetch

Sampler
Miss

DGH--

PGH--

DGH++

PGH--

PGH++

Figure III.8: KPC-R global hysteresis update mechanism

When an LLC access is a hit in the sampler, the global hysteresis decreases, indicating

that references during this program phase are more likely to be used again. Because the

reuse behavior can be different between demand requests and prefetches, KPC-R has two

global hysteresis counters, one for each request type. If there is a sampler miss, KPC-R

searches for a victim block using the LRU replacement policy within the sampler. If the

victim was never used in the sampler, KPC-R increments the global hysteresis based on

its allocation type. Note that this global hysteresis is a per-core counter and not shared by

different cores on the same chip.

III.3.2.2 KPC-R Training

Figure III.8 shows the update algorithm of KPC-R. In the figure there are three different

training scenarios: Sampler Hit, Sampler Miss and L2 prefetch. The first two cases are

straightforward. If there is a hit in the sampler, KPC-R marks the used bit for that cache

block and decrements the Demand Global Hysteresis (DGH) or Prefetch Global Hysteresis

(PGH) based on its allocation type, indicating greater likelihood that references during this

54

LLC Sampler
Type Used LLCP Level

Prefetch 1 1 LLCWas it
LLCP?

Signature Table (ST)

Page Last SIG P U

0xB 3 0x49 1 0 0 0 1 1 1 1

FC++

TF
Highest

Lowest

90
75
50
25

FC == MAX?

TF ↓
FC = 0

Figure III.9: KPC-R updates fill level threshold for KPC-P

phase will be reused. Once the used bit is set, additional hits to the same cache block do

not decrease the DGH.

If there is a miss in the sampler, KPC-R replaces the LRU victim in the sampler. As

shown in the figure, if the used bit is set, the victim does not update either the DGH or

PGH. Alternately, if the victim is not accessed by either demand or prefetch request, KPC-

R increases the global hysteresis value, indicating greater likelihood of references being

dead during this program phase.

When there is an L2 prefetch hit in the sampler, KPC-R checks whether this block was

allocated by an LLC prefetch through the 1-bit “Level” status in the sampler. If the hit

block was filled with an LLC prefetch, KPC-R marks the used bit and LLC prefetch bit

in the sampler. Remembering an LLC prefetched block in the sampler allows KPC-R to

dynamically update the fill level threshold TF . Figure III.9 shows how KPC-R updates TF

based on timely prefetch feedback from KPC-P. Because KPC-P has prefetch and used bits

in the ST, it can detect timely prefetched cache blocks. When a timely prefetch is detected

by the ST, KPC-P probes the LLC sampler to see if this block was initially prefetched

55

Demand Prefetch

Promotion Always Promote
if (Cn > TF)
⇒ Promote

Insertion
if (DGH == MAX) if (PGH == MAX)

⇒ Dead ⇒ Dead

Fill Level Always L2 and LLC
if (Cn < TF)
⇒ LLC

Table III.1: KPC-R prediction table

into the LLC and brought up to the L2 later by an additional prefetch request. If so, the

additional L2 prefetch request would have been unnecessary if the prefetch fill level was

initially set to the L2. Whenever this event is detected by sampler, KPC-R increments the

fill level counter (FC) by one. If the FC becomes saturated, then the fill level threshold TF

decreases to allow more prefetches to be filled into the L2 cache.

To avoid TF becoming too low and KPC-P polluting the L2 cache, we track the global

prefetching accuracy α to increase the fill level threshold. A low α value implies that

KPC-P is likely to pollute the L2 cache with aggressive prefetching. Therefore, KPC-P

increases TF by one level when α becomes lower than TF . Thus, KPC-R helps the data

prefetcher by setting a dynamic prefetching level and provides another tool for holistic

cache design. Table III.1 summarizes the prediction mechanism of KPC-R.

III.3.2.3 KPC-R Placement/Replacement

Based on the insertion and promotion policy described in Table III.1, KPC-R predicts

an incoming demand (or prefetch) block to be dead when the DGH (or PGH) is saturated.

Dead blocks are inserted to the “LRU” position (RRPV = 3) and do not change other

cache blocks’ RRPV status. If the global hysteresis is not saturated, the incoming block

is inserted to the “near LRU” position (RRPV = 2). Demand requests are always inserted

into both L2 and LLC, while a prefetch’s fill level is determined by its confidence value.

56

If there is a cache hit, the promotion scheme is based on its access type and confidence

value. For demand requests, KPC-R always promotes reused block to the “MRU” position

(RRPV = 0). For prefetch requests, KPC-R promotes a reused block only when its pre-

diction confidence is higher than the current fill level threshold (Cn > TF), as described

in Section III.3.1.3. In doing so, KPC-R does not allow extra life time to the cache block

reused by low prefetch confidence.

57

III.4 Evaluation

In this section, we evaluate the KPC system. First, we present the evaluation methodol-

ogy and compare the performance of KPC with recently proposed replacement algorithms

and data prefetchers. We also show in-depth analysis on prefetching coverage with a sen-

sitivity study.

III.4.1 Methodology

We compare KPC with various prefetching and replacement algorithms using the Champ-

Sim simulator, an extended version of the simulation infrastructure used in the 2nd Data

Prefetching Championship (DPC-2) [35]. The detailed simulation parameters can be

found in Table II.1. We collect SimPoint [36] traces from 16 memory intensive SPEC

CPU2006 [37] applications, 3 server workloads from CloudSuite [38], and one machine

learning workload trace from mlpack [46] that does collaborative filtering on real world

data sets [47]. Since our SimPoint methodology does not work with the server work-

loads (CloudSuite and mlpack), we instead collect the server workload traces after fast-

forwarding at least 30B instructions to get past the benchmark’s initialization phase. For

all experiments, each trace is warmed up with 200M instructions and simulation results

are collected over the next 1B instructions. The baseline replacement policy is LRU re-

placement for all caches unless otherwise stated. We compare against two prefetch-aware

replacement policies, UMO [29] and PACMan [28]. We also compare against two prefetch

non-aware replacement policies, EAF [18] and SHiP [17]. Since the original SHiP algo-

rithm does not work well with a data prefetcher as it requires a PC for every insertion, we

implement a modified version of SHiP (SHiP+) that uses a single PC value to represent all

prefetch requests.

58

1.092

0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

IP
C

 S
pe

ed
 u

p
ov

er

D
A

-A
M

PM
 +

 L
R

U

UMO PACMan EAF SHiP+ KPC-R KPC

Figure III.10: Single core performance compared to DA-AMPM + LRU

III.4.2 Performance

Single-core Performance: Figure III.10 shows the single-core IPC speedup. All results

are normalized to the baseline configuration, where the DA-AMPM prefetcher [29] is used

with LRU replacement in the caches. In general, KPC has similar or better performance

versus the other cache management schemes. The geometric mean improvement of KPC

is 9.2%, 5% higher than the best prior work scheme, the optimized PC-based replace-

ment policy (SHiP+) [17], 5.8% higher than the prior work on prefetch aware mechanism

(PACMan) [28], and 8.1% higher than previously proposed unified memory architecture

(UMO) [29]. We also plot the performance of our replacement scheme KPC-R combined

with the prior work DA-AMPM. Since KPC-R is not co-designed for operation with DA-

AMPM, we see that the performance of this combination is only marginally better than

SHiP+.

Non-PC-based algorithms such as EAF and KPC-R show less performance improve-

ment for mcf, sphinx3, and xalancbmk. These benchmarks exhibit a large number of LLC

misses; the reuse behavior of missing cache blocks in these apps is correlated to a large

set of various PCs. In this case, each PC value serves as a unique identifier for reuse

prediction and shows higher performance gain than non-PC-based schemes. Still, EAF

59

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

W
ei

gt
he

d
Sp

ee
du

p

UMO PACMan EAF SHiP+ KPC-R KPC
1.016 1.027Geomean: 1.042 1.060 1.1411.081

Figure III.11: 4-core multiprogrammed workloads performance

and KPC-R show reasonable performance on these benchmarks. When both prefetching

and replacement policy are integrated into one holistic system (KPC), mcf and xalancbmk

experience more performance degradation. In this case, both benchmarks benefit from

DA-AMPM’s aggressive prefetching, which brings more cache lines, achieving more cov-

erage with lower utilization. When confidence is low, KPC dynamically throttles down

its lookahead prefetching and has fewer timely prefetches leading to lower performance

gains. Aggressive prefetching does not hurt overall performance in a single core environ-

ment since only one core is exclusively using the LLC. However, when there are multiple

applications competing for the shared resource [40], prior cache management schemes fail

to achieve good performance. The multi-core performance of KPC in the next section

clearly shows the benefit of dynamic throttling.

Multi-core Performance: Since other schemes have no mechanism to regulate the ag-

gressiveness of the prefetcher based on use and replacement, KPC shows superior perfor-

mance improvement in a multi-core environment. For multi-core experiments, we ran-

domly generate 54 mixes of 4-core workloads and assign each workload to a different

60

0.950

1.000

1.050

1.100

EAF SHiP+ PACMan KPC-R

IP
C

 S
pe

ed
up

 o
ve

r
D

A
-A

M
PM

 +
 L

R
U

Replacement Policy

Adjacent BOP DA-AMPM KPC-P

Figure III.12: Various combinations of prefetching and replacement algorithms

core. Figure III.11 shows the normalized weighted speedup of the six different techniques

we tested in this work. The graph is sorted by weighted speedup order. On average, KPC

achieves a 14.1% speedup and outperforms SHiP+ by 8.1%. Out of the 54 mixes, KPC

shows best performance on 52 mixes. For the remaining mixes, SHiP+ or EAF beats KPC

by less than 2%. The substantial performance gap between KPC and other techniques is

mainly due to the cooperation between KPC-P and KPC-R described in Sections III.3.1

and III.3.2.

KPC-R with other data prefetchers: To further validate the synergy between KPC-R and

KPC-P, we also evaluate different types of data prefetchers with various replacement poli-

cies. Figure III.12 plots the performance of various combinations between data prefetchers

and replacement policies. Here, along with KPC-P and DA-AMPM, we also evaluate an

adjacent cache line prefetcher (Adjacent) [48] and Best-Offset Prefetcher (BOP) [24]

(BOP was the winner of the 2nd Data Prefetching Competition (DPC-2) [35]). Both

prefetchers are offset-based spatial prefetchers which exhibit different characteristic com-

pared to streaming based prefetchers (e.g., DA-AMPM and KPC-P). The performance is

normalized to DA-AMPM with LRU. Since UMO shows the least improvement, we have

61

0%

20%

40%

60%

80%

100%

120%

140%

D K D K

astar bwaves bzip2 cactus Gems gromacs lbm leslie3dlibquantum mcf milc omnetpp soplex sphinx3xalancbmk zeusmp Data Graph SAT mlpack Average

Covered Uncovered Over Prefetched

Figure III.13: Prefetching coverage: DA-AMPM vs. KPC-P

removed it from this figure. Figure III.12 shows that KPC-R still achieves great perfor-

mance versus other techniques regardless of prefetching algorithms. In particular, KPC-R

achieves the best performance when it is combined with KPC-P. KPC-R adds 3.8% perfor-

mance on the top of KPC-P while PACMan shows the second best performance of 2.3%

above KPC-P with LRU. To summarize, the global hysteresis replacement scheme works

well for both spatial and streaming based prefetchers, however, its gain is maximized when

KPC-R is used with KPC-P due to the synergistic effect of holistic cache management.

III.4.3 Analysis

Prefetching Coverage: Figure III.13 shows prefetching coverage of DA-AMPM and

KPC-P. Each prefetcher is labeled by its first letter. On average, KPC-P covers 61% of on-

chip cache misses with 3% over prefetched blocks while DA-AMPM covers 59% misses

with 13% over prefetches. Over prefetches represent the sum of prefetches never used

prior to eviction, caused by aggressive prefetching. Compared to KPC-P, DA-AMPM

produces 10% more over prefetched blocks. In particular, we can see that DA-AMPM

generates a higher fraction of over prefetching for mcf, xalancbmk, and SAT solver, where

DA-AMPM achieves greater performance. Note that for these benchmarks, the actual

number of prefetches is also higher for DA-AMPM. While this does provide some gain

62

0
10
20
30
40
50
60
70
80
90

100

0.00E+00 2.00E+08 4.00E+08 6.00E+08 8.00E+08

Fi
ll

L
ev

el
 T

hr
es

ho
ld

 (T
F
)

Execution Cycle

mcf lbm SAT Solver

Figure III.14: Dynamic adaptation of fill level thrshold TF

for these benchmarks, the over prefetching becomes a serious issue when multiple applica-

tions contend for shared resources such as LLC capacity and memory bandwidth, as shown

in Figure III.11. Since KPC is designed to adapt prefetch placement and aggressiveness by

closely integrating the prefetcher and replacement policy, KPC exhibits less performance

gain for single-core but achieves much higher benefit in a multi-core environment.

Dynamic Fill Level Thrshold: Figure III.14 shows the dynamic adaptation of the fill

level threshold TF over program execution. As we see, each benchmark prefers a different

TF value. For example, KPC lowers TF for lbm since most of prefetches are useful in the

L2 cache. The timely prefetch feedback from KPC-P to KPC-R quickly adjusts the TF

value. On the other hand, KPC does not change TF for mcf since its reference pattern is

unpredictable. For SAT Solver, TF frequently changes due to program phase, based on its

global prefetching accuracy. Thus, KPC dynamically adapts its fill level threshold to each

individual application.

Global Hysteresis Sensitivity: We also investigated the performance sensitivity of the

global hysteresis to its counter bit-width (figure removed for brevity). We changed the

width of global hysteresis from 1-bit to 10-bits and measured the geomean performance.

63

Structure Entry Component Storage

Signature Table 256

Valid (1 bit)
Tag (16 bit)

Last offset (6 bit)
Signature (12 bit) 43776 bits
Prefetch (64 bit)

Used (64 bit)
LRU (8 bit)

Pattern Table 512
Csig (4 bit)

Cdelta (4*4 bit) 24576 bits
Delta (4*7 bit)

LLC Sampler 64

Valid (1 bit)
Tag (16 bit)
Type (1 bit)
Used (1 bit) 1600 bits
LLCP (1 bit)
Level (1 bit)
LRU (4 bit)

Hysteresis
1 DGH (3 bit) 3 bits
1 PGH (3 bit) 3 bits

Misc. - Registers 284 bits
43776 + 24576 + 1600 + 6 + 284 = 70242 bits ≈ 8.57 KB

Table III.2: KPC storage overhead

Surprisingly, we find that, for single-core, the performance of KPC is very insensitive to

the width of the global hysteresis counter. Even for a 1-bit counter, performance drops by

only 1.2%. For multi-core, however, we found that using a counter width below 2-bits suf-

fers from substantial performance degradation. Though the global hysteresis is a per-core

counter, multiple applications put additional memory pressure on the LLC and frequently

toggle the prediction of a 1-bit global hysteresis, causing performance degradation. The

final design of KPC uses 3-bit global hysteresis because there is no visible difference in

performance above 3 bits.

Storage Overhead: Table III.2 shows the storage overhead of KPC. All together, KPC

requires a modest 8.57KB of state per core, with only 2% of the overhead coming from

KPC-R. Most of the storage overhead lies with KPC-P, since KPC-R only uses a small

sampler and two narrow hysteresis counters per core. Table III.3 presents a storage com-

64

Prefetcher Replacement Total Storage

DA-AMPM: 4.8 KB

UMO: 20 bits ≈ 4.81 KB
PACMan: 30 bits ≈ 4.81 KB

EAF: 32 KB ≈ 36.8 KB
SHiP: 7.18 KB ≈ 11.98 KB

KPC-R: 0.23 KB ≈ 5.03 KB
KPC-P: 8.34 KB KPC-R: 0.23 KB ≈ 8.57 KB

Table III.3: Storage overhead comparison

parison between KPC and previous cache management schemes. Note that the storage

overhead of KPC is comparable to existing state-of-the-art replacement algorithms while

providing higher performance.

Moreover, unlike PC-based schemes, KPC does not require extra logic/wires to propa-

gate PC values through from the instruction fetch unit, to the load store queue, and then the

entire cache hierarchy. Both UMO and PACMan rely on set dueling [15] that only requires

two or three global counters. In doing so, their storage overheads are very small but come

with the cost of low performance improvement. In particular, in multi-core environments,

set dueling based policies show less performance gain than others because the learning

overhead from set dueling monitors grows as the number of cores increases [28].

65

III.5 Summary

Kill-the-PC reconstructs program behavior in the cache hierarchy by taking a holistic

approach to cache management. Tightly integrating L2 prefetching and LLC management

into one unified solution, KPC is effective at making sure data is as close to the processor

core as possible when it is needed by a demand access. In addition to being an effective

prefetcher for complex delta patterns, the prefetching component, KPC-P, feeds confidence

information about each individual prefetch to the LLC replacement component, KPC-R.

A low confidence prefetch is less likely to interfere with the contents of the LLC, and

as confidence in that prefetch increases, its position within the LLC replacement stack is

solidified, and it eventually is brought into the L2 cache, close to where it will be used

in the processor core. In addition to effectively predicting dead LLC blocks by observing

program phase behaviors, KPC-R also gives feedback to KPC-P to help decide on the

optimal fill level for prefetches.

While KPC-P and KPC-R can each stand on its own as an effective solution within

its own domain, the combination of both is more effective than replacing either compo-

nent with a state-of-the-art solution. KPC provides a 9.2% performance benefit versus a

baseline system with a top-of-class prefetcher, besting the nearest competitor by 5%. Fur-

ther, across our suite of multicore mixes, KPC improves performance by 14.1% versus a

prefetching+LRU baseline and extends its lead over the best of class competitor to 8.1%.

66

CHAPTER IV

DYNAMIC MEMORY REALLOCATION IN VIRTUALIZED SYSTEM∗

In this chapter, we propose a novel dynamic memory management policy called Mem-

ory Pressure Aware (MPA) ballooning. MPA ballooning dynamically allocates memory

resources to each virtual machine (VM) based on the current memory pressure regime.

Moreover, MPA ballooning proactively reacts and adapts to sudden changes in memory

demand from guest VMs. MPA ballooning requires neither additional hardware support,

nor incurs extra minor page faults in its memory pressure estimation. We show that MPA

ballooning provides an 13.2% geomean speed-up over the current ballooning techniques

with hypervisor caching technology Tmem [49] across a set of application mixes running

in guest VMs.

IV.1 Introduction

To dynamically adjust memory allocation, Waldspurger [50] introduced the “balloon-

ing” technique as a kernel module driver with VMware ESX Server [51]. The memory

allocation is based on a share-based allocation scheme [52] where the share of VM is de-

termined by its memory utilization. When the host machine is under memory pressure and

needs to reclaim memory from guest VMs, reclamation is done by measuring the portion

of idle memory in each guest VM. To measure the idle memory, VMware ESX tracks ran-

domly selected pages by invalidating their associated TLB entries. Subsequent accesses

to the sampled pages trigger TLB misses and increase the count of touched pages. The

fraction of inactively accessed memory is estimated from the ratio of untouched pages to

sampled pages. Similarly, recent studies [53, 54, 55] force TLB misses to estimate the

∗Reprinted with permission from "Dynamic Memory Pressure Aware Ballooning" by J. Kim, V. Fe-
dorov, P. V. Gratz, and A. L. Narasimha Reddy, 2015. Proceedings of the 2015 International Symposium on
Memory Systems, Pages 103-112, Copyright 2015 by ACM

67

4.9%

10.8%

0%

5%

10%

15%

20%

25%
Memory

Sensitive
Memory

Insensitive

Figure IV.1: Performance degradation of ballooning with Tmem

working set size of each VM. Invalidating TLB entries, however, incurs a substantial per-

formance overhead in virtualized systems, since it forces a context switch and requires

multiple memory accesses to refill the entries [56].

Further, the current memory allocation policies bear significant performance over-

head due to insufficient knowledge about global memory pressure. Hypervisor exclusive

cache [54] or Tmem [49], manage an additional layer between physical RAM and the disk,

to cache pages evicted by the guest VMs in a common pool controlled by the hypervisor.

However, they aggressively and obliviously claw-back file cache pages from VMs to the

hypervisor, even when sufficient memory is available in the host machine. This causes

substantial performance impact due to excess page movement and page faults regardless

of global memory pressure. Figure IV.1 shows the overhead of ballooning with Tmem

on individual applications from the PARSEC suite, running in a guest VM with no other

load in the system. In the figure, we observe that ballooning with Tmem results in 10.8%

of performance overhead compared to a system without ballooning support on memory

68

sensitive applications. In contrast to Tmem, VMware ESX adopts the concept of global

memory pressure and activates ballooning driver only when the host free memory drops

towards statically predefined threshold [51]. This approach also degrades the memory uti-

lization and responsiveness of ballooning because most of physical memory is likely to be

consumed by the guest VMs without actually being used.

Ideally, the memory allocation strategy for virtualized systems should adapt dynam-

ically to the global memory pressure with minimal overhead. This is the goal of MPA

ballooning. The key concept of MPA ballooning is that the hypervisor unobtrusively mea-

sures the current system memory pressure and adaptively changes memory allocation pol-

icy. For example, if the host machine is under low memory pressure, MPA ballooning

allows guest VMs to have additional memory cushion so that they can reduce the over-

head of acquiring pages from the hypervisor. On the other hand, if the host machine is

under heavy memory pressure, the hypervisor perceives increased memory pressure and

reclaims the inactive pages from guest VMs. Unlike prior works [55, 51] which considered

memory cushion only when the host machine has enough free memory, MPA ballooning

dynamically changes the amount of base and bonus memory with respect to the different

memory pressure regimes. We implement MPA ballooning in Xen hypervisor and Linux

kernel with minor modifications. We show that the MPA ballooning allows guest VMs to

share memory across all ranges of memory pressure, thus enabling their wider adoption.

MPA ballooning makes the following major contributions:

• We identify different regimes of memory pressure in a system and employ this iden-

tification to drive the memory allocation and sharing policies in a virtualized envi-

ronment.

• We develop mechanisms to measure the memory pressure state of the virtualized

system to guide the memory allocation policy. These mechanisms require neither

69

additional hardware support, nor incur significant performance overhead in memory

pressure estimation.

• We implement MPA ballooning and evaluate it on real workloads. The proposed

technique improves performance by 18.2% with multiple VMs repeating single ap-

plications. In more realistic scenario with high memory pressure, MPA ballooning

improves performance by 13.2% with multiple VMs repeating random ordered ap-

plications. All experiments were evaluated under various memory pressure on the

host system.

70

IV.2 Design Motivation

We observe that traditional ballooning drivers incur a high performance penalty be-

cause the algorithm is oblivious to system conditions and often incorrectly sets the mem-

ory target for the guest VM. Prior work in ballooning are neither capable of reacting fast

enough to deal with rapidly changing application memory demands, nor adaptive to the

system memory pressure regimes described in Section IV.3.

IV.2.1 Adaptation to System Conditions

Typically the ballooning driver chooses its target based on memory resource require-

ments. For instance, the ballooning driver implemented in Linux as part of Xen, sets

the balloon target equal to the sum of the malloc’ed memory at any given time. On the

other hand, memory reclamation policies can be classified into two categories: aggressive

and speculative. Hypervisor exclusive cache [54] and Tmem [49] belong to aggressive

management policies. These approaches implement a hypervisor-level cache which stores

evicted pages from guest VMs to reduce the number of disk I/Os in near future. A critical

problem with aggressive reclamation, however, is that the guest VMs are forced to evict

file cache pages without considering current system state.

Figure IV.2 illustrates how a typical ballooning driver with Tmem results in perfor-

mance degradation by evicting and reloading file pages. In the figure, the lightly shaded

area Total represents the memory assigned by the hypervisor to the VM, while the darker

area Used is the amount of memory actually being used. The application is vips, an im-

age processing application from the PARSEC suite [57], which reads a large input image

file using memory mapped I/O. After a file has been loaded, all image operations are ap-

plied to the loaded input file. In this experiment vips is iterated four times to analyze the

overhead that comes from accessing evicted file pages in Tmem. Since the input image

mapped in memory is identical to the content of physical disk, they are not accounted as

71

0

1000

2000

3000

4000

0 50 100 150 200

Execution Time (sec)

Anon Used Total

(a) Ballooning + Tmem

Anon Used Total

0

1000

2000

3000

4000

0 50 100 150 200

Execution Time (sec)

(b) Ballooning off

Figure IV.2: False balloon target due to clean pages in vips from the PARSEC suite

Anon (shown in the black line). The baseline ballooning driver, therefore, does not change

the balloon target (Figure IV.2a) though the actual memory usage is much larger than the

target. Consequently, the guest OS evicts file pages to make more space to read the input

image file. Evicted pages are copied into the Tmem managed cache area. Each time vips

reloads the file, the pages in the Tmem cache are accessed again so that the hypervisor can

avoid disk I/O, resulting in another copy back (reloading) to the guest VM. Figure IV.2b

shows the actual memory usage of vips running in a VM without ballooning. In this case,

each time vips reloads the file, it reuses the file pages maintained in a guest VM’s mem-

ory from the previous iteration. The file pages kept with ballooning off is shown as Used

above the Anon line in Figure IV.2b.

Comparing the execution time of Figure IV.2a and IV.2b, reloading pages stored in the

Tmem cache results in 20% performance overhead. It is clear that the hypervisor should

not reclaim pages aggressively from VMs. In other words, if actively used pages can be

kept in the guest VMs, the performance degradation will significantly decrease. Based on

this motivation, MPA ballooning adaptively changes memory allocation and deallocation

72

policy according to the memory pressure state.

Other works based on speculation [50, 53, 55, 58] are less aggressive than Tmem

because they let the guest VMs keep pages based on memory access speculation without

implementing a hypervisor-level shared cache. Only when the memory pressure exceeds

a certain threshold, these pages are slowly reclaimed by the hypervisor. This approach,

however, can suffer performance degradation when the host machine is under memory

pressure, particularly when the memory consumption is changing rapidly. Under these

conditions page reclamation should be accelerated such that pages can be reallocated to

the VM which can use it most effectively.

IV.2.2 Slow Reclamation and Reallocation

To address the performance cost of latency in memory reclamation and reallocation,

changes in the memory demands of each guest VMs should be communicated to the hyper-

visor immediately. With more accurate and timely information about guest VM memory

needs, the hypervisor can better manage each VM’s memory allocation based on a view

of current system demands. Current ballooning drivers [54, 49] do not react dynamically

with the varying system conditions since the activation period is statically set by the hyper-

visor. For example, Xen self-ballooning driver is invoked every five seconds to update the

balloon target [59]. Thus, sudden changes of memory demand are not processed until the

end of the current five second period, potentially impacting performance. Similarly, the

VMware ESX Server uses sampling to activate memory reclamation. By default, VMware

ESX Server samples 100 guest pages for each 60-second period [51].

To analyze the impact of slow response in memory allocation and deallocation process,

we set two VMs to execute dedup at different time. Figure IV.3a shows VM1 starting

dedup at 15 seconds and Figure IV.3b shows VM2 starting the same application at 85

seconds. In this experiment, the host machine memory is limited to 4.5GB so that we can

73

0

1000

2000

3000

4000

0 5 10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

(MB)

Execution Time (sec)

Anon Used Total

A	

B	 C	

(a) VM1 executes dedup at t = 15

0

1000

2000

3000

4000

0 5 10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

(MB)

Execution Time (sec)

Anon Used Total

C	

(b) VM2 executes dedup at t = 85

Figure IV.3: Slow response to memory allocation and deallocation

clearly observe memory allocation and deallocation process.

Point A and B in Figure IV.3a illustrate how latency in responding to dynamic memory

demand can affect memory allocation. At point A, dedup requests a large chunk of mem-

ory, causingAnon to instantly jump to 2.5GB. This occurs in the middle of the five second

interval, thus the ballooning driver does not respond to this change and the Total mem-

ory assigned to the VM does not change. Meanwhile, dedup rapidly attempts to use the

memory it requested leading to major page faults because insufficient memory is assigned

to the VM. Point B in Figure IV.3a illustrates a further hazard of latency in responding to

memory demand. Here, Anon varies dramatically within the five-second sampling period

due to a large allocation, use and deallocation. The ballooning driver is not aware of any

of these changes and does not adjust the target.

On the contrary, Point C illustrates how slow memory deallocation impacts the other

VMs running. At 85 seconds, VM2 starts running dedup and its Anon jumps up to 2.5GB

seeking for more memory. However, VM1 slowly returns memory to the hypervisor which

in turn slows down the memory reallocation to VM2. Therefore, VM2 cannot achieve

enough memory to execute dedup and suffers from major page faults. Both Xen hypervisor

and VMware ESX Server adopt slow deallocation process inspired from control theory

and networking domain [50]. To control the rate of variation in reclaim process, they

74

both adopt hysteresis value. In other words, the memory target is determined not just on

current data but also on past data stored in the system. However, this approach only covers

local memory usage in each VM and does not consider global memory pressure state. As

a result, the memory reallocation speed does not adapt to other VM’s memory demand or

global memory pressure status.

Naïvely, one might consider increasing the sampling frequency of the ballooning driver,

however, this approach could incur high overheads from the additional hypercalls. Instead,

we propose to capture the exact moment when the memory demand increases or decreases

unexpectedly and invoke ballooning driver without delay.

IV.2.3 Working Set Estimation Overhead

Several prior work memory allocation policies [50, 53, 55, 54] have adopted a memory

trap technique to sample the memory accesses by setting a privilege bit in a page table en-

try. In doing so, the hypervisor samples memory accesses to build a page miss ratio curve

which can provide an estimation of working set size (WSS). These techniques, however,

often come at a significant performance cost due to the required TLB and page walk cache

entry invalidations. For example, the TLB invalidation instruction in x86 architecture in-

validates all entries in all page walk caches associated with the current PCID, regardless of

the virtual addresses to which they correspond [60]. In virtualized environments, invalidat-

ing TLB and page walk cache results in more memory accesses than that of native machine

since each pointer in the guest page table must be translated through the hypervisor page

table [56].

Instead of estimating the memory footprint using high-overhead TLB and page walk

cache invalidations, in MPA ballooning, we propose to exploit information directly ex-

ported by the guest OS’s to the hypervisor. Specifically, as part of the ballooning driver,

the guest OS reports the active and inactive list up to the hypervisor [61]. Although this

75

approach does come at the cost of a limited number of additional hypervisor calls, these

calls have much less performance overhead than the invalidations used in the ampling ap-

proaches. We note that this use of back-channel information is similar to the information

passing utilized by the Xen hypervisor’s guest OS ballooning drivers, however, as we dis-

cuss in the next section, we greatly extend the interface to provide a much more detailed

and timely picture of the guest OS’s memory usage state.

76

IV.3 Design

The proposed MPA ballooning addresses the oblivity to memory pressure shown in

existing ballooning techniques, as discussed in the previous section. The overall design of

MPA ballooning can be divided into two components. First, MPA ballooning implements

an adaptive memory cushion which dynamically changes its size based on the system

memory pressure. Second, MPA ballooning implements an instant response mechanism

which dynamically reacts to changes in memory pressure through accelerated memory

reclamation and reallocation. Similar to Ginkgo [58], the approach devised in MPA bal-

looning is hypervisor-agnostic in that the framework only requires a ballooning driver to

dynamically control the memory size of a VM, which is already available in most of hy-

pervisors such as VMware ESX Server [51], Xen [31], and KVM [62].

IV.3.1 Adaptive Memory Cushion

As noted in Section IV.2, the hypervisor must dynamically adapt to the current mem-

ory pressure in order to avoid unnecessary page movement and disk I/O. We design an

adaptive memory cushion in MPA ballooning so that the memory can be efficiently real-

located among guest VMs. The adaptive cushion is managed by the hypervisor and the

size of cushion dynamically varies as the memory pressure changes. Figure IV.4 describes

how the MP aware ballooning calculates the memory cushion and balloon target based on

different memory pressure regimes. In the Low pressure regime (Figure IV.4a), the host

machine does not suffer from memory pressure because the total memory demand is al-

ways lower than MEMhost. Therefore, the hypervisor splits Free memory with N + 2

instances where N is the number of guest VMs. Each guest VM then receives a cushion

slice of Free/(N + 2) above their local memory demand (Anoni + Filei). This cushion

allows the guest VMs to absorb dynamic changes in memory demand in the VM without

further intervention from the hypervisor. The balloon target for each guest VM is set by

77

MEMhost

∑Anoni

∑Filei

Free

Free

N+2

Cushion

VM1

VMN

Host

Balloon Target

Anoni + Filei + Cushion

(a) Low pressure

MEMhost

∑Anoni

∑Filei

Inactive

N+1

Cushion

VM1

VMN

Host

Balloon Target

Anoni + Filei + Cushion (Active)	

(Active)	

∑Filei
(Inactive)	

∑Anoni
(Inactive)	

+

(Active)	 (Active)	

(b) Mild pressure

MEMhost

∑Anoni

Inactive

N+1

Cushion

VM1

VMN

Host

Balloon Target

Anoni + Cushion
(Active)	

∑Anoni
(Inactive)	

(Active)	

(c) Heavy pressure

Figure IV.4: Adaptive memory cushion.

adding the adaptive memory cushion on the top of local memory demand. We reserve two

memory cushions of Free/(N+2) for the hypervisor as spare memory that can be quickly

allocated to a given guest OS in the event of a sudden demand.

When the total memory demand exceeds the MEMhost limit, the host machine enters

the Mild pressure regime and the memory cushion must be rebalanced. Since active pages

are more likely to be used by guest VMs, while inactive pages are less likely, MPA balloon-

ing uses the inactive memory in the guest VMs as an adaptive cushion in the Mild pressure

regime. As shown in Figure IV.4b, MPA ballooning divides up inactive pages with N + 1

instances of memory cushion in Mild pressure regime. Rebalancing with N + 1 cushions

forces guest VMs to yield a portion of its inactive pages to other VMs. These reclaimed

pages can be used for guest VMs with high active memory demands. By reclaiming inac-

tive pages from guest VMs, the system may return to the Low pressure regime. If the guest

VMs do not change their local memory demands, the retrieved memory remains Free in

the hypervisor. The VMWare ESX Server also falls back to the low memory pressure state

when reclaiming pages from guest VMs when the host free memory is below 6% of its

total memory. In this scheme, however, the memory pressure state is purely based on host

memory size [51], thus this policy in the VMWare ESX Server can lead to underutilized

memory. On the other hand, MPA ballooning reclaims and rebalances pages based directly

78

0

1000

2000

3000

4000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Execution Time (sec)

(MB) AnonUsedTotal

A

B

(a) Slow response

0

1000

2000

3000

4000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
Execution Time (sec)

(MB) AnonUsedTotal

A

B

(b) Improved response

Figure IV.5: Improved response time with trigger

on guest VM’s memory demands.

If the total memory demand is overwhelmed by ΣAnoni, file pages are mostly evicted

and the host machine may see performance degradation due to increased file I/O. In this

regime, an adaptive memory cushion is built by dividing up the inactive anonymous pages.

Note that the size of cushion dynamically adapts to varying system conditions because the

cushion determined by inactive portion of memory.

IV.3.2 Memory Reallocation Trigger

Compared to the guest VM scheduling time slice, which is usually 30ms in Xen hy-

pervisor [63], the five second response interval of ballooning driver is relatively slow.

VMware ESX Server has better response since it activates ballooning driver when the hy-

pervisor detects 6% threshold of host free memory. However, the detection mechanism,

based on a 60 second sampling period [51] potentially slows down the response of memory

reallocation process. MPA ballooning resolves this problem by implementing a memory

use threshold trigger which immediately activates the ballooning driver rather than waiting

for the next response interval. Thus, memory reallocation is accelerated and the guest VM

can avoid major page faults.

Figure IV.5 shows the effect of our memory reallocation trigger. Since an abrupt

change in Anon occurs within the response interval (five seconds here), the ballooning

79

Threshold Th (%)

-4%

-2%

0%

2%

4%

6%

8%

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

G
eo

m
ea

n
S

pe
ed

-u
p

Figure IV.6: Performance analysis on trigger threshold

driver cannot detect the change in malloc’ed memory and fails to set a correct target in

Figure IV.5a. As a result, the amount of memory given to a guest VM (Total) remains

unchanged at Point A, starving the guest VM of memory to meet the sudden demand

and leading to performance loss due to major page faults. In MPA ballooning, shown

in Figure IV.5b, the memory reallocation trigger detects the change in memory demand

and immediately activates ballooning driver. Thus MPA ballooning, improves reaction

time dramatically and reduces the gap between Total and Anon. The reallocation trigger

activates ballooning driver based on a threshold formula as follows.

|Totalc − Anonc| × Th < Rsize (IV.1)

Here, Totalc is the current total memory given to a particular guest VM, Anonc is the

current malloc’ed memory prior to the coming change andRsize is size of change inAnonc

requested. If Rsize is larger than Th% of the difference between Totalc and Anonc, the

ballooning driver is immediately triggered via hypervisor call. As shown in Figure IV.6,

we examined a wide range of threshold values and Th = 50% was empirically determined

to be optimal.

80

IV.3.3 Adaptive Hysteresis

Typically, increasing memory allocation in MPA ballooning occurs quickly via the re-

allocation trigger, while decreasing memory allocation is relatively slow so that the guest

OS can adapt to any unexpected change of its local memory demand. When the host

machine is under memory pressure (i.e., Mild or Heavy pressure), however, the hyper-

visor should control the hysteresis value so guest VMs with inactive pages can quickly

return pages to other VMs with high memory demands. As noted in Section IV.2.2, if

hysteresis value does not adapt to global memory pressure, the slow memory reallocation

will degrade overall system performance. MPA ballooning uses the following formula to

dynamically adapt its hysteresis to the current memory pressure regime:

HMP = Hdefault ×
Global Inactive Page(GIP)

Inactivei
(IV.2)

GIP =
ΣInactivei

Number of VMs
(IV.3)

Equations (2) and (3) are inspired by prior work [50] which considered the amount of idle

pages for page reallocation. Similarly, MPA ballooning dynamically changes the hystere-

sis value for each guest VM by comparing its inactive page count to the global average.

If the hysteresis value HMP is high, the system responds slowly to both increasing and

decreasing memory requests. Alternately, when the hysteresis value is low, the algorithm

responds quickly to requests in both directions. In the Low pressure regime, HMP is set

to a high default value (Hdefault) because the host machine has enough memory to cover

requests without rapid hypervisor intervention. When the memory pressure regime enters

the Mild or Heavy pressure regime, MPA ballooning compares GIP which represents the

81

average number of inactive pages across the all VMs with the guest VM’s inactive page

count (Inactivei). If Inactivei is higher thanGIP , it implies that the reclamation process

can be accelerated in VM2 because it has more inactive pages than average. On the other

hand, if local Inactivei is less than the global average, we maintain the previous HMP

value. By comparing the local inactive pages with the global average, the MPA balloon-

ing accelerates memory allocation and deallocation process. Note that HMP is related to

the speed of memory management and has nothing to do with the size of allocation or

deallocation.

IV.3.4 Implementation

The MPA ballooning is a pure software approach and requires minimal changes to

the ballooning driver and Hypervisor to implement. To evaluate the technique we imple-

mented MPA ballooning in the Linux kernel and Xen hypervisor. Table IV.1 shows the

number of modified/additional lines of code required to implement each component of

MPA ballooning. Since the memory reallocation trigger is activated by the guest OS side,

it does not require any change in the hypervisor. To set a new balloon target with an adap-

tive memory cushion, the MPA ballooning requires only one additional hypercall from the

guest OS. Furthermore, the design is hypervisor-agnostic because the implementation only

requires a ballooning driver which is already widely adopted in most hypervisors.

Component Linux Kernel Hypervisor
Adaptive Cushion 15 lines 120 lines

Reallocation Trigger 25 lines -
Adaptive Hysteresis 20 lines 20 lines

Total 60 lines 140 lines

Table IV.1: Design overhead of MP aware ballooning

82

Domain Component Configuration

Host

CPU Intel Xeon E5-2420 1.90GHz
Cores 6

L1I & D cache 32KB 8-way
L2 cache 256KB 8-way

Shared LLC 15MB 20-way
DRAM 32GB

VM Technology VT-x, VT-d, EPT
Host OS Ubuntu Linux 12.04.3

Hypervisor Xen 4.2.3

Guest
Virtualized CPUs 4

DRAM/guest 4GB
Guest OS Ubuntu Linux 12.04.3

Table IV.2: Baseline configuration

IV.4 Evaluation

In this section we first describe our experimental methodology. We then explore the

MPA ballooning’s performance under different workloads.

IV.4.1 Methodology

All experiments were performed in real hardware, on an Intel Xeon E5-2420 1.90GHz

machine. The baseline hardware configuration is shown in Table IV.2. All experimental

results are normalized to an ideal, non-memory constrained case where the hypervisor can

fully accommodate the sum of each VM’s configured main memory (4GB each). Addi-

tionally, the ballooning driver is disabled so that the hypervisor does not reclaim any pages

from the guest VMs. In this configuration, a minimal number of page faults and file I/O

requests to load pages from disk to memory occur during the very first execution. By com-

paring the speedup against the non-memory constrained, ideal case, we clearly show that

Tmem causes significant performance degradation and how MPA outperforms Tmem by

reducing major page faults and file I/O.

83

0	

4	

8	

12	

16	

20	

24	

28	

32	

0	 50	 100	 150	 200	 250	 300	 350	

Execution Time (sec)

(GB) ∑Anon ∑File Free

20% Pressure

40% Pressure

60% Pressure

Figure IV.7: Create memory pressure by restricting MEMhost

MPA ballooning is evaluated under three different memory restriction models: 20%,

40%, and 60% pressure (20% represents 20% less DRAM is available than the sum of

configured guest VM’s main memory). These models are illustrated in Figure IV.7, each

dashed line represents memory restriction we applied to the physical memory. In each

restriction model, the hypervisor experiences different memory pressure regimes described

in Figure IV.7. For example, with 20% restriction model, the hypervisor always stays in

Low pressure while the 40% restriction model experiences transition from Low to Mild

regime. Similarly the 60% model experiences all three memory pressure regimes. With

greater restriction amounts, there is a greater likelihood to be in the Mild or Heavy regimes.

MPA ballooning is evaluated using applications from the PARSEC suite [57] of shared

memory multiprocessor benchmarks executing in guest VMs. The PARSEC suite includes

benchmarks selected from different computation fields and the memory usage of each

benchmark is diverse enough to represent applications running in large scale servers. We

test MPA ballooning in two different test scenarios. In the first experiment, we execute 8

VMs simultaneously, with each VM repeatedly executing a single benchmark, selected as

one of the memory sensitive applications shown in Figure IV.1. The second experiment

runs multiple VMs where each VM repeats multiple applications mixed in random order.

84

MIX Benchmark 1 Benchmark 2 Benchmark 3
VM1 bodytrack dedup x264
VM2 blackscholes raytrace canneal
VM3 freqmine dedup x264
VM4 bodytrack blackscholes x264
VM5 vips raytrace canneal
VM6 bodytrack vips canneal
VM7 freqmine vips dedup
VM8 freqmine blackscholes raytrace

Table IV.3: Randomized mixes

To avoid biased selection on a certain type of benchmarks, we generate 8 randomized

mixes of the PARSEC suite (Table IV.3). Between each iteration, the VM executes a sleep

time randomly selected from 0 to 20 seconds in order to evaluate the response time of

Tmem and MPA ballooning.

IV.4.2 Repeating Single Application

We first evaluate a scenario where each guest VM iterates a specific application. Mem-

ory sensitive applications are assigned to guest VMs and the experiment is stopped when

all applications have executed more than five instances. The average execution time of

each of those first five instances is used for performance evaluation.

As Figure IV.8a shows, MPA ballooning shows performance nearly identical to that

of the non-memory constrained system (Ideal). Compared to Ideal, MPA shows less than

2% slowdown, 18.2% better than that of Tmem across all mixes under the 20% physical

memory restriction model. With this relatively small memory restriction, the host machine

remains in Low pressure regime. As a result, the adaptive cushion of MPA ballooning is

able to absorb both anonymous and clean page demands, thereby dramatically reducing the

amount of page movement between the guest VM and Tmem (seen as major page faults in

the guest). Here, the reduction in major page faults (Figure IV.8b) and file read operations

85

(Figure IV.8c) corresponds to the speedup of MPA ballooning. The right most bar of

Figures IV.8b and IV.8c, Norm. Reduction, shows the normalized geomean reduction in

faults and file reads respectively, across all benchmarks.

There are exceptions where reduced file I/O does not match the speedup value. For

example, with Tmem, freqmine and dedup generate more page faults and file reads but

80.0%

23.4%

98.2%

6.9%
0%

20%
40%
60%
80%

100%
120%
140%

Tmem MPA

(a) Normalized performance to
Ideal

92.5%

0%

20%

40%

60%

80%

100%

0

50

100

150

200
Tmem MPA Ideal 18,236

(b) Number of major page faults

81.3%

0%

20%

40%

60%

80%

100%

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Tmem MPA Ideal x 106

(c) Number of file reads

Figure IV.8: Performance analysis in 20% pressure

76.3%

28.5%

91.6%

20.1%

0%
20%
40%
60%
80%

100%
120%
140%

Tmem MPA

(a) Normalized performance to
Ideal

76.0%

0%

20%

40%

60%

80%

100%

0

50

100

150

200
Tmem MPA Ideal 18,562 16,949

(b) Number of major page faults

x 106

65.0%

0%

20%

40%

60%

80%

100%

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

Tmem MPA Ideal

(c) Number of file reads

Figure IV.9: Performance analysis in 40% pressure

73.0%

33.1%

86.0%

28.0%

0%
20%
40%
60%
80%

100%
120%
140%

Tmem MPA

(a) Normalized performance to
Ideal

83.8%

0%

20%

40%

60%

80%

100%

0

100

200

300

400

500
Tmem MPA Ideal 19,266 2,099 17,737 1,244

(b) Number of major page faults

x 106

60.2%

0%

20%

40%

60%

80%

100%

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

Tmem MPA Ideal

(c) Number of file reads

Figure IV.10: Performance analysis in 60% pressure

86

they run faster than MPA and Ideal. This is because freqmine and dedup are frequently

rescheduled than other applications which wait for file I/O. Thus, with Tmem, freqmine

and dedup steal scheduled slices from other applications because of those applications’ in-

creased file I/O. As a result we see higher performance degradation and standard deviation

with Tmem, also bringing into question scheduling fairness. Tmem exhibits a standard

deviation of 23.4% while MPA shows only 6.9%. Overall, the system wide major page

faults decrease by 92.5% and the number of file reads decreases by 81.3% compared to

Tmem.

In the 40% and 60% memory restriction experiments, MPA ballooning outperforms

Tmem by 15.3% and 13.0% respectively. Since there is not enough memory to allo-

cate, Tmem stores most of evicted anonymous pages and file pages in the hypervisor-

level cache. MPA ballooning allows VMs to keep their actively used pages, avoiding

page faults. As a result, MPA ballooning reduces page faults and file reads by 76.0%

and 65.0% respectively under the 40% restriction model (Figure IV.9b and IV.9c). Simi-

larly, the numbers decreases by 83.8% and 60.2% under the 60% restriction model (Fig-

ure IV.10b and IV.10c). In speedup, Tmem still shows outliers in both memory restriction

models, with higher performance degradation and standard deviation compared to MPA

ballooning. This result clearly shows that traditional ballooning technique does not work

efficiently as the memory pressure increases.

IV.4.3 Multiple Applications in Random Order

In this experiment, we assume a scenario in which different applications are run in each

VM. Based on Table IV.3, we assign multiple applications to each VM and execute them

in random order. The experiment is stopped when all applications have repeated more

than three instances. Due to the limited space, we show the experiment results from the

worst and most realistic scenario (60% memory pressure) where the system experiences

87

66.8%

11.5%

80.0%

12.6%

0%

20%

40%

60%

80%

100%
Tmem MPA

(a) Normalized performance to
Ideal

21,544
86.2%

0%

20%

40%

60%

80%

100%

0

4,000

8,000

12,000

16,000
Tmem MPA Ideal

(b) Number of major page faults

x 106

14.5%

0%

20%

40%

60%

80%

100%

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

Tmem MPA Ideal

(c) Number of file reads

Figure IV.11: Performance analysis with random ordered applications

transitions from Low, Mild and Heavy pressure regimes. The performance improvement

in random ordered applications shows more consistent trend than in the single application

repetition scenario. The MPA ballooning provides adaptive memory cushion so that the

guest VMs can avoid major page faults and maintain file pages locally. In particular, the

reallocation trigger and adaptive hysteresis become more important when multiple appli-

cations are mixed. The trigger increases the responsiveness of each VM when there is an

urgent memory demand. At the same time, the adaptive hysteresis controls VMs with a

large amount of inactive pages to return their pages quickly for other VMs with urgent

needs. Combining these techniques together, as shown in Figure IV.11a, MPA balloon-

ing achieves a 13.2% geomean speedup compared to Tmem. The number of major page

faults dramatically decreases by 86.2% (Figure IV.11b) while the number of file I/Os de-

creases by 14.5% (Figure IV.11c). As a result, MPA ballooning reaches 80% performance

of non-memory constrained system. Note that MPA ballooning always shows consistent

performance improvement with any guest VM in a highly memory constrained model.

IV.4.4 Hypercall Overheads

Since MPA ballooning requires additional hypercalls to report the number of differ-

ent types of pages from guest OS to hypervisor, one might be concerned that it results in

greater hypercall overhead. Figure IV.12 measures the number of hypercalls from the ran-

88

78.2%

0.01%

0%

20%

40%

60%

80%

100%

VM1 VM2 VM3 VM4 VM5 VM6 VM7 VM8 Geomean

Original Extra

Figure IV.12: Number of hypercalls normalized to Tmem

domly mixed applications experiment (Section IV.4.3). In the figure, “Original” represents

the fraction of hypercalls used by MPA to control page movement and change page table

entries (similar to those used by Tmem). “Extra” represents the fraction of new hypercalls

in MPA ballooning used to report malloc’ed/file pages and activate memory reallocation

trigger. Since MPA ballooning leaves actively used pages in the guest VMs, it reduces

useless page movement from VMs to the hypervisor. As a result, MPA ballooning greatly

reduces the number of “Original” hypercalls, by 21.8% on average. Furthermore, the ad-

ditional “Extra” hypercalls are less than 0.01% on average relative to Tmem’s hypercalls.

Thus, Figure IV.12 clearly shows MPA, in fact, significantly reduces the overall number of

hypercalls relative to Tmem.

89

IV.5 Summary

In this chapter, we propose MPA ballooning, a VM memory management technique

which dynamically adapts to the system memory pressure state. Prior works in VM mem-

ory management are oblivious to the system memory pressure and thus incur substantial

performance overheads under different memory pressure regimes. We classify memory

pressure into the Low, Mild, and Heavy pressure regimes based on the committed memory

and file page usage. MPA ballooning leverages back-channel information from the guest

VMs to dynamically allocate memory resources to each VM based on the current memory

pressure regime. Moreover, the MPA ballooning proactively reacts and adapts to sudden

changes in memory demand from guest VMs. To the best of our knowledge, MPA bal-

looning is the first VM memory management technique which dynamically changes the

memory allocation policy based on the system’s memory pressure regime. We show that

MPA ballooning substantially improves performance versus baseline ballooning, regard-

less of memory pressure regime.

90

CHAPTER V

CONCLUSION

Due to the strict power and energy constraints on microprocessor design, it is imprac-

tical to naively increase the number of cores or the size of cache structures. Prior study [3]

shows that regardless of chip organization and topology, multi-core scaling is power lim-

ited and does not achieve the projected performance gain. Under this severe restriction,

intelligent memory management skills require minimal hardware or software complex-

ity without losing significant performance benefits. Therefore, in modern microprocessor

design, speculation-based memory management becomes an essential part to attain high-

performance because its performance cost is far cheaper than increasing the actual memory

capacity.

In this dissertation, we discussed three intelligent speculation mechanisms that ef-

ficiently manage the memory usage. First, we introduce SPP: a path-confidence data

prefetcher covering a wide range of memory access patterns with prefetching confidence.

Since each prefetch request in SPP holds a unique confidence value, it allows prefetcher to

dynamically control the aggressiveness of speculation. Second, we present KPC: a holistic

memory management for multi-level cache hierarchy. Unlike traditional LLC management

techniques, KPC exploits the prefetching confidence as a mean of data placement and pro-

motion in the LLC. In doing so, KPC integrates prefetching and replacement policy as a

one unified speculation mechanism and provides superior performance compared to exist-

ing LLC management schemes. Third, we propose MPA: an efficient memory reallocation

mechanism in virtualized system. MPA dynamically allocates memory across multiple

virtual machines based on the total global pressure experienced by the main host system.

The aforementioned speculation techniques can be easily adopted by existing infras-

91

tructure without major modifications. For example, both SPP and KPC do not rely on the

PC register which removes the complex logic between processor and on-chip caches. Also,

MPA balooning requires less than 500 lines of code in Linux kernel and Xen hypervisor.

The principle of minimal design complexity allows hardware/software engineers to com-

fortably work on the proposed ideas. As we emphasized in this dissertation, we certainly

believe that an advanced prediction mechanism for future memory usage is an important

feature of memory system designs and we expect more opportunities in this research area.

92

REFERENCES

[1] W. A. Wulf and S. A. McKee, “Hitting the memory wall: implications of the obvi-

ous,” SIGARCH Comp. Arch. News, vol. 23, pp. 20–24, 1995.

[2] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. Leblanc, “De-

sign of ion-implanted mosfet’s with very small physical dimensions,” IEEE Journal

of Solid-State Circuits, vol. 9, pp. 256–268, 1974.

[3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark

silicon and the end of multicore scaling,” in Proceedings of the 38th Annual Interna-

tional Symposium on Computer Architecture (ISCA), pp. 365–376, ACM, 2011.

[4] A. J. Smith, “Sequential program prefetching in memory hierarchies,” Computer,

vol. 11, pp. 7–21, 1978.

[5] T. Chen and J. Baer, “Effective hardware-based data prefetching for high-

performance processors,” IEEE Transactions on Computers, vol. 44, pp. 609–623,

1995.

[6] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos, “Spatial mem-

ory streaming,” in Proceedings of the 33th Annual International Symposium on Com-

puter Architecture (ISCA), pp. 252–263, IEEE Computer Society, 2006.

[7] I. Hur and C. Lin, “Memory prefetching using adaptive stream detection,” in Pro-

ceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitec-

ture, pp. 397–408, IEEE Computer Society, 2006.

[8] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-temporal memory

streaming,” in ISCA, pp. 69–80, 2009.

93

[9] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved correlated

prefetching.,” in MICRO, pp. 247–259, 2013.

[10] Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern matching for high performance

data cache prefetch,” Journal of Instruction-Level Parallelism, vol. 13, pp. 1–24,

2011.

[11] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H. Pugsley, and

Z. Chishti, “Efficiently prefetching complex address patterns,” in Proceedings of the

48th Annual IEEE/ACM International Symposium on Microarchitecture, 2015.

[12] P. Michaud, “A best-offset prefetcher,” in High Performance Computer Architecture

(HPCA), 2016 IEEE 20th International Symposium on, IEEE, 2016.

[13] J. W. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetching in scalar pro-

cessors,” ACM SIGMICRO Newsletter, vol. 23, no. 1-2, pp. 102–110, 1992.

[14] S. Khan, Y. Tian, and D. A. Jiménez, “Sampling dead block prediction for last-level

caches,” in Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM International

Symposium on, pp. 175–186, IEEE, 2010.

[15] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive insertion

policies for high performance caching,” in ACM SIGARCH Computer Architecture

News, vol. 35, pp. 381–391, ACM, 2007.

[16] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High performance cache

replacement using re-reference interval prediction (rrip),” in ACM SIGARCH Com-

puter Architecture News, vol. 38, pp. 60–71, ACM, 2010.

[17] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr, and J. Emer,

“Ship: Signature-based hit predictor for high performance caching,” in Proceed-

94

ings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture,

pp. 430–441, ACM, 2011.

[18] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry, “The evicted-address filter:

A unified mechanism to address both cache pollution and thrashing,” in Proceed-

ings of the 21st international conference on Parallel architectures and compilation

techniques, pp. 355–366, ACM, 2012.

[19] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme to reduce data

access penalty,” in Supercomputing, 1991. Supercomputing’91. Proceedings of the

1991 ACM/IEEE Conference on, pp. 176–186, IEEE, 1991.

[20] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt, “Feedback directed prefetching: Im-

proving the performance and bandwidth-efficiency of hardware prefetchers,” in High

Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th International

Symposium on, pp. 63–74, IEEE, 2007.

[21] D. Kadjo, J. Kim, P. Sharma, R. Panda, P. Gratz, and D. Jimenez, “B-fetch: Branch

prediction directed prefetching for chip-multiprocessors,” in Proceedings of the 47th

Annual IEEE/ACM International Symposium on Microarchitecture, pp. 623–634,

IEEE Computer Society, 2014.

[22] S. H. Pugsley, Z. Chishti, C. Wilkerson, P.-f. Chuang, R. L. Scott, A. Jaleel, S.-

L. Lu, K. Chow, and R. Balasubramonian, “Sandbox prefetching: Safe run-time

evaluation of aggressive prefetchers,” in High Performance Computer Architecture

(HPCA), 2014 IEEE 20th International Symposium on, pp. 626–637, IEEE, 2014.

[23] J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and Z. Chishti, “Path

confidence based lookahead prefetching,” in Microarchitecture (MICRO), 2016 49rd

Annual IEEE/ACM International Symposium on, IEEE, 2016.

95

[24] P. Michaud, “A best-offset prefetcher,” in High Performance Computer Architecture

(HPCA), 2016 IEEE 20th International Symposium on, IEEE, 2016.

[25] S. Khan, A. R. Alameldeen, C. Wilkerson, O. Mutlu, and D. A. Jiménez, “Improving

cache performance by exploiting read-write disparity,” in Proceedings of the 20th In-

ternatial Symposiym on High Performance Computer Architecture (HPCA), pp. 452–

463, IEEE, 2014.

[26] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction & dead-block correlat-

ing prefetchers,” in Computer Architecture, 2001. Proceedings. 28th Annual Interna-

tional Symposium on, pp. 144–154, IEEE, 2001.

[27] E. Teran, Y. Tian, Z. Wang, D. A. Jim, et al., “Minimal disturbance placement and

promotion,” in 2016 IEEE International Symposium on High Performance Computer

Architecture (HPCA), pp. 201–211, IEEE, 2016.

[28] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely Jr, and J. Emer, “Pacman: prefetch-

aware cache management for high performance caching,” in Proceedings of the 44th

Annual IEEE/ACM International Symposium on Microarchitecture, pp. 442–453,

ACM, 2011.

[29] Y. Ishii, M. Inaba, and K. Hiraki, “Unified memory optimizing architecture: mem-

ory subsystem control with a unified predictor,” in Proceedings of the 26th ACM

international conference on Supercomputing, pp. 267–278, ACM, 2012.

[30] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C.

Mowry, “Mitigating prefetcher-caused pollution using informed caching policies

for prefetched blocks,” ACM Transactions on Architecture and Code Optimization

(TACO), vol. 11, no. 4, p. 51, 2015.

96

[31] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,

and A. Warfield, “Xen and the art of virtualization,” in ACM SIGOPS Operating

Systems Review (SOSP), vol. 37, pp. 164–177, 2003.

[32] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution: An alternative

to very large instruction windows for out-of-order processors,” in Proceedings of the

9th International Symposium on High Performance Computer Architecture (HPCA),

pp. 129–140, 2003.

[33] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith, “Ac/dc: An adaptive data cache

prefetcher,” in Proceedings of the 13th International Conference on Parallel Archi-

tectures and Compilation Techniques, pp. 135–145, IEEE Computer Society, 2004.

[34] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global history buffer,”

in Software, IEE Proceedings-, pp. 96–96, IEEE, 2004.

[35] S. H. Pugsley, A. R. Alameldeen, C. Wilkerson, and H. Kim, “The 2nd Data Prefetch-

ing Championship (DPC-2).”

[36] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder, “Using

simpoint for accurate and efficient simulation,” in ACM SIGMETRICS Performance

Evaluation Review, vol. 31, pp. 318–319, ACM, 2003.

[37] “Standard Performance Evaluation Corporation CPU2006 Benchmark Suite..”

[38] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,

A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds: a study of emerg-

ing scale-out workloads on modern hardware,” in ACM SIGPLAN Notices, vol. 47,

pp. 37–48, ACM, 2012.

[39] Y. Ishii, M. Inaba, and K. Hiraki, “Unified memory optimizing architecture: mem-

ory subsystem control with a unified predictor,” in Proceedings of the 26th ACM

97

International Conference on Supercomputing, pp. 267–278, ACM, 2012.

[40] N. D. Enright Jerger, E. L. Hill, and M. H. Lipasti, “Friendly fire: understanding the

effects of multiprocessor prefetches,” in International Symposium on Performance

Analysis of Systems and Software (ISPASS), pp. 177–188, 2006.

[41] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: a comprehensive

benchmarking suite for in memory data analytic platform spark,” in Proceedings of

the 12th ACM International Conference on Computing Frontiers, p. 53, ACM, 2015.

[42] J.-Y. Won, P. Gratz, S. Shakkottai, and J. Hu, “Having your cake and eating it too:

Energy savings without performance loss through resource sharing driven power

management,” in Low Power Electronics and Design (ISLPED), 2015 IEEE/ACM

International Symposium on, pp. 255–260, IEEE, 2015.

[43] D. A. Jiménez, “Insertion and promotion for tree-based pseudolru last-level caches,”

in Proceedings of the 46th Annual IEEE/ACM International Symposium on Microar-

chitecture, pp. 284–296, ACM, 2013.

[44] V. V. Fedorov, S. Qiu, A. Reddy, and P. V. Gratz, “Ari: Adaptive llc-memory traffic

management,” ACM Transactions on Architecture and Code Optimization (TACO),

vol. 10, no. 4, p. 46, 2013.

[45] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts: A new approach

for eliminating dead blocks and increasing cache efficiency,” in Proceedings of

the IEEE/ACM International Symposium on Microarchitecture, (Los Alamitos, CA,

USA), pp. 222–233, IEEE Computer Society, 2008.

[46] R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram, N. A. Mehta, and A. G.

Gray, “MLPACK: A scalable C++ machine learning library,” Journal of Machine

Learning Research, vol. 14, pp. 801–805, 2013.

98

[47] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,” ACM

Transactions on Interactive Intelligent Systems (TiiS), vol. 5, no. 4, p. 19, 2016.

[48] R. Hegde, “Optimizing application performance on intel core microarchitecture us-

ing hardware-implemented prefetchers,” Intel Software Network, 2008.

[49] D. Magenheimer, C. Mason, D. McCracken, and K. Hackel, “Transcendent memory

and linux,” in Proceedings of the Ottawa Linux Symposium (OLS), pp. 191–200,

Linux Symposium, 2009.

[50] C. A. Waldspurger, “Memory resource management in vmware esx server,” in ACM

SIGOPS Operating Systems Review, vol. 36, pp. 181–194, USENIX Association,

2002.

[51] VMware, “Understanding memory resource management in vmware vsphere 5.0,” in

Technical White Paper, pp. 1–19, VMware, 2011.

[52] C. A. Waldspurger and W. E. Weihl, “Lottery scheduling: Flexible proportional-share

resource management,” in Proceedings of the 1st USENIX conference on Operating

Systems Design and Implementation, p. 1, USENIX Association, 1994.

[53] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Kumar, “Dy-

namic tracking of page miss ratio curve for memory management,” in ACM SIGOPS

Operating Systems Review, vol. 38, pp. 177–188, ACM, 2004.

[54] P. Lu and K. Shen, “Virtual machine memory access tracing with hypervisor exclu-

sive cache.,” in Usenix Annual Technical Conference (ATC), pp. 29–43, USENIX

Association, 2007.

[55] W. Zhao, Z. Wang, and Y. Luo, “Dynamic memory balancing for virtual machines,”

ACM SIGOPS Operating Systems Review, vol. 43, no. 3, pp. 37–47, 2009.

99

[56] T. W. Barr, A. L. Cox, and S. Rixner, “Spectlb: a mechanism for speculative ad-

dress translation,” in Computer Architecture (ISCA), 2011 38th Annual International

Symposium on, pp. 307–317, IEEE, 2011.

[57] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite: charac-

terization and architectural implications,” in Proceedings of the 17th International

Conference on Parallel Architectures and Complication Techniques (PACT), pp. 72–

81, ACM, 2008.

[58] A. Gordon, M. Hines, D. Da Silva, M. Ben-Yehuda, M. Silva, and G. Lizarraga,

“Ginkgo: Automated, application-driven memory overcommitment for cloud com-

puting,” Proc. RESoLVE, 2011.

[59] D. Magenheimer, “Add self-ballooning to balloon driver,” Discussion on Xen Devel-

opment mailing list and personal communication, 2008.

[60] Intel, “Intel 64 and ia-32 architectures software developer’s manual,” vol. 3A,

pp. 125–136, 2014.

[61] D. P. Bovet and M. Cesati, Understanding the Linux kernel. " O’Reilly Media, Inc.",

2005.

[62] I. Habib, “Virtualization with kvm,” Linux Journal, vol. 2008, no. 166, p. 8, 2008.

[63] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and S. Yajnik, “Supporting

soft real-time tasks in the Xen hypervisor,” in Proceedings of the 6th ACM SIG-

PLAN/SIGOPS International conference on Virtual Execution Environments (VEE),

pp. 97–108, ACM, 2010.

100

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Memory Wall
	Data Prefetching
	Cache Replacement Policy
	Memory Management in Virtualized System

	Dissertation Statement
	Dissertation Organization

	Confidence-based Memory Access Prediction
	Introduction
	Motivation and Prior Work
	Speculating complex memory access patterns
	Adapting Aggressiveness
	Prefetching and Page Boundaries
	Other Prior Prefetchers

	Design
	Design Overview
	Learning Memory Access Patterns
	Path Confidence-based Prefetching
	Page Boundary Learning
	Prefetch Filter

	Evaluation
	Methodology
	Single Core Performance
	Prefetching Coverage and Accuracy
	Average Lookahead Depth
	Contribution to Performance Improvement

	Multi-programmed Mix Performance
	Sensitivity Study

	Summary

	Holistic Multi-level Cache Management
	Introduction
	Motivation
	Why do we need a holistic cache management?
	Why is a PC-based policy insufficient?
	Impact of Compiler Optimizations
	The PC can be replaced

	Design
	KPC-P: Confidence-based Prefeching
	KPC-P Overview
	KPC-P Training
	KPC-P Prefetching

	KPC-R: Global Hysteresis Replacement
	KPC-R Overview
	KPC-R Training
	KPC-R Placement/Replacement

	Evaluation
	Methodology
	Performance
	Analysis

	Summary

	Dynamic Memory Reallocation in Virtualized System
	Introduction
	Design Motivation
	Adaptation to System Conditions
	Slow Reclamation and Reallocation
	Working Set Estimation Overhead

	Design
	Adaptive Memory Cushion
	Memory Reallocation Trigger
	Adaptive Hysteresis
	Implementation

	Evaluation
	Methodology
	Repeating Single Application
	Multiple Applications in Random Order
	Hypercall Overheads

	Summary

	Conclusion
	REFERENCES

