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ABSTRACT 

Endogenous Fluorescence Lifetime Imaging (FLIM) is a noninvasive technique 

that has been explored with promising results in a wide range of biomedical applications, 

including clinical diagnosis. A central issue for the translation of FLIM into the medical 

field is the development of a robust, fast and cost-effective FLIM instrumentation suitable 

for in vivo tissue imaging. This thesis directly addressed some of the technical limitations 

that must be overcome to enable clinical applications of FLIM. The following specific 

aims were accomplished. 

First, endogenous FLIM imaging and high-resolution reflectance confocal 

microscopy (RCM) were integrated into a multimodal bench-top optical system. This 

multimodal system was used to image oral epithelial cancer in a hamster cheek pouch 

model. Second, an endoscopic system for fast (0.5-4 frames/second) endogenous wide-

field FLIM imaging of oral lesions was developed. The FLIM endoscope system is being 

evaluate at Texas A&M University College of Dentistry, where more than 80 patients 

presenting oral lesions suspected of pre-cancer or cancer have been imaged up to date. 

Third, a novel fluorescence lifetime estimation algorithm was developed to achieve 

robust, accurate, and real-time fluorescence lifetime estimation. This algorithm is 

enabling real-time FLIM image processing and visualization during the endoscopic 

examination of patients with suspicious oral lesions. Finally, the endoscopic endogenous 

FLIM data from suspicious oral lesions collected at the Texas A&M College of Dentistry 

was used to develop machine learning algorithms for automated identification of pre-

cancerous and cancerous lesions from benign oral epithelial lesions. Our results indicate 
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that endogenous FLIM endoscopy can detect oral epithelial pre-cancer and cancer from a 

wider range of benign conditions, with levels of sensitivity and specificity above 85%. 

Altogether, this work has demonstrated the potentials of endogenous FLIM 

endoscopy as a clinical tool for early detection of oral epithelial cancer. 
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1. INTRODUCTION  

1.1 Motivation 

Fluorescence lifetime imaging (FLIM) is a noninvasive technique that acquire the 

temporal decay of the fluorescence allowing us to calculate the fluorescence lifetime. 

FLIM has been used with promising results in a wide range of biosciences applications 

such as cancer diagnosis [1-3], cardiovascular diseases [4, 5] and monitoring cellular 

parameters[6, 7]. A central issue for the translation of FLIM into the medical field is the 

development of a robust, fast and cost-effective FLIM instrumentation suitable for in vivo 

tissue imaging [8].  Real time tissue imaging can help the physician to locate tumors and 

define borders between normal and abnormal tissues [9]. Being able to identify tissue 

abnormalities and composition in real time has the potential to significantly advance 

patient care [9]. 

The motivation of this work is to develop technologies that allow us to achieve 

real-time FLIM data acquisition and data processing. As a particular application, this work 

has been focused on the early detection of oral cancer.  

 

1.2 Oral Cancer 

Close to 50,000 Americans will be diagnosed with oral or pharyngeal cancer in 

2017 and only 64% will be alive in 5 years[10]. In 2017 it will cause over 9,000 deaths. 

The death rate of oral cancer is higher than that of more common cancers such as cervical 

cancer, Hodgkin’s lymphoma, cancer of the testes, and endocrine system cancers[11]. 

However, when detected in early stages, oral cancers can have a five-year survival rate as 



 

2 

 

high as 80% [10]. Sometimes, oral cancer is only detected when it has metastasized to 

another location. This can be mainly attributed to the current method of diagnosis of oral 

lesions, which are based on a visual inspection followed by biopsies when needed and also 

because in its early stages, oral cancer may not be noticed by the patient, as it can 

frequently prosper without producing pain or symptoms [11]. There are several types of 

oral cancers, but around 90% are squamous cell carcinomas (SCC), squamous cell 

compose most of the skin’s upper layers (the epidermis) [11].  

Due to the superficial location of oral lesions, optical techniques have shown 

considerable promise towards early detection of pathological changes and are being 

explored for noninvasive detection of early cancer. The progression of a malignant lesion 

is accompanied by both biochemical changes (such as alterations in the relative 

abundances of tissue autofluorophores) and morphological changes (such as epithelial 

thickening or changes in the nucleus-to cytoplasm ratio). However imaging systems are 

typically designed to either have a macroscopic view with low resolution or to have high 

resolution within a limited field of view [2]. An optical system that can provide 

information about tissue biochemistry and morphology, has the potential to improve 

diagnosis and diagnostic yield by identifying the most advanced state of disease within 

the oral cavity [12, 13]. 

 

1.3 Computer Aided Decision Support Systems 

 Computer Aided Decision Support Systems (CADSS) has become one of the 

major research topics in medical imaging field [14]. Such systems are designed to detect 
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and/or classify abnormalities and thus assist a medical expert in improving the accuracy 

of medical diagnosis and reduce variability amongst expert opinions. The concept of 

CADSS has been widely applied into real clinical practice because the correct computer 

output has the ability to assist clinicians in improving their medical decisions. So far, 

CADSS can play an  important role in medical imaging of cancer by differentiating 

between benign and malignant lesions.[15].  

There are three main components in CADSS: feature detection, feature extraction, 

and classification algorithm. A feature is any property you can measure from the tissue; 

in our particular case, features could include tissue autofluorescence intensities and 

lifetimes at certain emission wavelengths. Feature detection is the process to calculate 

these features from the measured data. Feature extraction is the process to transform the 

detected features into a lower dimensional space. Most of the times, the number of features 

is high and even for low number of features, the number of combinations become very 

large. One of the most used feature extraction algorithms is Principal Component Analysis 

(PCA), which is a process to reduce the data dimension by removing correlations among 

the data and to describe the sample by fewer feature vectors while retaining the necessary 

information of recognition [16]. Another popular feature extraction algorithm is the 

Minimum Redundancy Maximum Relevance (mRMR) algorithm, a filter based approach 

to perform feature selection [17]. mRMR aims at selecting features that are mutually 

different but are highly relevant for classification. A special type of feature extraction is 

feature selection, in which each original feature is simply either retained or discarded. 

Finally, classification is the process of assigning each input vector of features into one of 
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a finite number of discrete categories. In this work we proposed using a quadratic 

discriminant analysis (QDA) as the classification algorithm. QDA models the likelihood 

of each class as a Gaussian distribution, then uses the posterior distributions to estimate 

the class for a given input [18].  

 

1.4 Objectives Dissertation Outline  

 A central issue for the translation of FLIM into the medical field is the 

development of a robust, fast and cost-effective FLIM instrumentation suitable for in vivo 

tissue imaging. This thesis directly addressed some of the technical limitations of FLIM 

needed to overcome to enable clinical applications of FLIM. The following objectives 

were accomplished. First, endogenous FLIM imaging and high-resolution reflectance 

confocal microscopy (RCM) were integrated into a multimodal bench-top optical system. 

Second, an endoscopic system for fast (0.5-4 frames/second) endogenous FLIM imaging 

of oral lesions was developed and tested on patients. Third, a novel fluorescence lifetime 

estimation algorithm was developed to achieve robust, accurate, and real-time 

fluorescence lifetime estimation. Finally, the data collected with the endoscopic FLIM 

system was used to develop a classifier for automated identification of pre-cancerous 

and/cancerous from benign oral epithelial lesions 

The remaining sections of this dissertation are organized as follows. Section 2 

provides an introduction to basic concepts of fluorescence and an overview of FLIM. 

Section 3 focuses on the bench-top combined FLIM-RCM system. Section 4 presents the 

handheld FLIM endoscope which has been used to collect data from patients at Texas 
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A&M College of Dentistry. Section 5 describes the novel bi-exponential deconvolution 

algorithm for real-time FLIM. Section 6 describes the classifier for automated 

identification of pre-cancerous and cancerous from benign oral epithelial lesions, and 

present the results. Finally in Section 7, some concluding remarks and future work are 

discussed. 
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2. FLUORESCENCE LIFETIME IMAGING  

2.1 Fluorescence 

Fluorophore is the term commonly used to define fluorescent substances. When a 

fluorophore absorbs a photon it gets excited from its ground state to a higher energy state. 

Once in the higher energy state, the fluorophore can return to its ground state through 

different methods such as internal conversion or vibrational relaxation (no light emission), 

fluorescence, intersystem crossing and phosphorescence, as illustrated in the Jablonski 

diagram provided in Figure 1. The singled ground, first and second electronic states are 

depicted by S0, S1, and S2, respectively. At each electronic energy levels the molecule can 

exist in a number of vibrational energy levels, depicted by 0, 1, 2, etc. The transition 

between states are depicted as vertical lines. 

Again, after light absorption, several processes can occur. The fluorophore is 

excited to a higher vibrational level, S1 or S2. Then the fluorophore rapidly relax to the 

lowest vibrational levels of S1 through internal conversion. Once in the S1 state, the 

fluorophore can relax to one of the vibrational states of S0 through a radiative process. 

This process is called fluorescence and is typically in the order of nanoseconds. Molecules 

in the S1 state can also undergo a spin conversion to the first triplet state T1 through 

intersystem crossing. Transition from T1 to the S0 is also a radiative process and is called 

phosphorescence. Since this transition is forbidden, the rate of phosphorescence is several 

orders of magnitude smaller than those for fluorescence [19].  

As mentioned before, there are several vibrational levels per electronic level, and 

since the transitions can go from and to any of this vibrational levels, the fluorophore can 
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absorb and emit fluorescence in a broad spectrum. Some transitions are more likely than 

others; the most probable transition from S0 to an excited state yields to the peak of the 

absorption spectrum. In the same way, the most probable transition from an excited state 

to the ground state yields to the peak of the emission spectrum. Since the vibrational 

energy levels have similar spacing in S0 and S1, the absorption and the emission spectrum 

in general have a symmetric nature. 

 

  

Figure 1. Jablonski diagram illustrating the various electronic and vibrational 

states of a molecule. 

 

 

2.2 Fluorescence Lifetime and Quantum Yield 

 Fluorophores are often conjugated to a macromolecule and can be used as 

fluorescent dyes. Quantum yield and fluorescence lifetime are perhaps the most important 

characteristics of a fluorophore [19]. The fluorescence quantum yield is the ration of the 

number of photons emitted to the number of photons absorbed and is given by:  

 � � ���� � ���  (1) 
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where kr is the radiative rate constant, and knr the non-radiative rate constant. The quantum 

yield is always less than unity because of Stokes losses [19]. The closer the quantum yield 

to 1, the easiest it is to measure the emitted fluorescence and the higher signal to noise 

ratio (SNR) we can obtain from the fluorescence system. This become important when 

imaging in vivo tissue, since there is a limited amount of power you can use in order to 

not damage the tissue. Quantum yield can be measured by steady-state fluorescence 

measurements, in which the sample is excited by a constant light source and fluorescence 

intensity is recorded. Since the fluorescence decay is in the order of nanoseconds, when 

the sample is excited, steady state is reached essentially instantaneously. 

The fluorescence lifetime is defined as the average time the fluorophore spends in 

the excited state and is given by: 

� � 1�� � ��� (2) 

The actual time the molecule spends in the excited state before emitting a 

fluorescent photon and returning to the ground state is a random variable with a 

characteristic probability distribution which is specific to that fluorophore. Because of 

this, the fluorescence intensity over time follows an exponential decay [19] and in the case 

of a single decay it can be expressed as: 

	
�� � 	
��� �� (3) 

where 	
 is the intensity at t = 0, t is time and � is the lifetime.



2.3 Fluorescence Lifetime Imaging 

FLIM is a noninvasive time-resolved technique that calculates the fluorescence 

lifetime in a two-dimensional space. FLIM techniques can be divided in time-domain and 

frequency-domain. Time-domain and frequency-domain are related via the Fourier 

transform and provide equivalent information on the fluorescence decay. In frequency- 

domain, the excitation light is modulated at certain frequencies and the phase difference 

is measured between the fluorescence emission and the excitation light [19]. In time- 

domain, the fluorescence decay is directly measured as a function of time upon excitation 

with a pulse of light [19]. Time-domain can be implemented using a time-correlated single 

photon counting (TCSPC) , time gated imaging or pulse sampling using a digitizer. The 

work presented in this dissertation is focused on the time-domain technique.  

In time-domain FLIM by TCSPC the sample is scanned by a high-frequency 

pulsed laser. Data recording is done by detecting single photons, and measuring the arrival 

times of the photons with respect to the pulse excitation time at each pixel of the image 

[20]. For each pixel a histogram of the arrival time is generated. This histogram 

represents the fluorescence intensity decay as a function of time. The main advantages 

of TCSPC are: high sensitivity, high temporal resolution, low pulse energy and low 

noise. The main disadvantages are its slow acquisition speed and high cost. 

In time-domain FLIM by pulse sampling a relatively high energy pulse generate a 

complete temporal decay, then this temporal decay is sampled using a high speed 

digitizer. The advantage of this method is the pixel rate speed, which could reach the 

laser  repetition  rate.  The main  disadvantages are the low temporal resolution, limited 

9 
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by the instrument response, high noise, due to the low photon efficiency, and the use of 

a relatively high energy pulses which can damage the sample. 

In time-domain FLIM by time gated, the imaging is usually accomplished in 

wide field by a gated intensified charge coupled device (ICCD). As in the pulse 

sampling, a relatively high energy pulse generate a complete temporal decay but now the 

temporal decay is recorded by the image intensifier. The gate of the ICCD opens at 

specific time to detect the fluorescence intensity. By taking successive images for 

different delay of the gate, an exponential decay can be reconstructed. Gated image 

intensifiers are typically used in combination with wide-field excitation. The benefit of 

wide-field imaging is that the spatial information is acquired at the same time for all 

pixels. The disadvantage is the low sensitivity, low temporal resolution and poor spatial 

resolution. 

2.4 Literature Review – Lifetime Calculation Algorithms 

In time-domain FLIM, the measured fluorescence decay �
�� is the convolution 

of the fluorescence impulse response function (fIRF) ℎ
 �� and the instrument    

response �
��: 

�
�� � ℎ
�� ∗ �
�� (4) 

In order to estimate the fluorescence lifetime, ℎ
�� must be estimated, and in order 

to estimate ℎ
��, the instrument response must be deconvolved from the measured 

fluorescence decay [19-21]. The most common deconvolution method is the least-square 



iterative reconvolution (LSIR)  [21]. Using a multi-exponential model, LSIR can estimate 

the parameters of the model that minimizes the residuals between its convolution with the 

instrument response and the measured fluorescence decay. The main disadvantage of 

LSIR is that even with numerical methods such as Gauss-Newton and Levenberg- 

Marquardt algorithms, the method involves iterative computations, making real-time 

calculations impossible. 

There are several different algorithms that have been implemented to estimate 

fluorescence lifetimes and can be divided in two. Algorithms that implement the 

deconvolution of the instrument response to the measured decay and algorithms that do 

not implement the deconvolution. In general the algorithms that do not implement the 

deconvolution are faster, but they are less precise, more sensitive to noise and only 

accurate for mono-exponential decays. In the other hand, algorithms for FLIM processing 

based on deconvolution offer a better estimation of the fluorescence decay, are more 

robust to noise, can solve multi-exponential models but in consequence they are time 

consuming and not suitable for real-time FLIM.  A review of the more used fast algorithms 

are presented next. 

2.4.1 Rapid Lifetime Determination (RLD) 

A class of techniques for faster lifetime calculation called Rapid Lifetime 

Determination methods (RLD) has been developed for real time applications [22]. RLD 

calculates the lifetime by dividing the fluorescence decay curve into areas of fixed time 

width,  which  then are used to  calculate  the  lifetime.  Since the RLD collects the decay 
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data in only a few areas, it is less precise but considerably faster than multiple methods. 

2.4.2 Center of Mass Method (CMM) 

Assuming a mono-exponential decay this method calculate the coordinate t of its 

center of mass which corresponds to the average fluorescence lifetime. The advantage of 

this method is the simplicity and speed to estimate the average lifetime. Its main 

limitation is the high sensitivity to noise. 

2.4.3 Method of Successive Integration 

An extension from the linear regression of the sum method [23] and is based on 

the fact that integration of an exponential function is another exponential function. In this 

way, the original function can be found again in integral form and solved using numerical 

methods [24, 25]. This method has better performance than the RLD and CMM methods 

but is slower. 

2.4.4 Fluorescence Lifetime Estimation via Rotational Invariance Techniques (FLERIT) 

Based on an algorithm called estimation of signal parameters via rotational 

invariance techniques, since this algorithm use more complex calculations like, correlation 

matrices, singular value decomposition and eigenvalues, it is considerably slower than the 

previous methods. Its advantage is that it can resolve multi-exponential decays [26]. 

12 
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2.4.5 Artificial Neural Network FLIM (ANN-FLIM) 

ANN-FLIM uses an ANN to estimate the fluorescence lifetime. The ANN is 

trained with synthesized samples using the fluorescence decay as input and the 

biexponential parameters as their matching vectors. Once trained, ANN-FLIM is able to 

estimate the parameters from an unknown fluorescence decay. This technique can be 

extremely fast and accurate, unfortunately is very susceptible to noise.  

 

2.4.6 Phasor Approach 

The phasor approach is used in the frequency domain, the idea is to transform the 

acquired data of each pixel into a phasor. The resulting coordinates can be represented in 

a phasor plot as a two dimensional histogram. Single exponential lifetimes are located on 

the edge of the semicircle. For multi-exponential lifetime decays, the phasor is given by 

the normalized linear combination of the component phasors [27]. The advantage is that 

it’s fast, the disadvantage is that is performed in the frequency domain. 

 

2.4.7 Laguerre Deconvolution Method 

The Laguerre deconvolution method is a model-free method based on the Laguerre 

expansion of the kernel technique [28]. The fIRF is expanded on orthonormal sets of 

discrete Laguerre functions, and allows fast converging kernel estimation [28, 29]. This 

method has been proven to be a fast, robust, and model-free algorithm to estimate the 

fIRF. The original algorithm has two limitation, the first is that the resulting fIRF might 

not have a monotonic decay [30], the second limitation is the need to choose a priori 
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optimal values of the Laguerre parameter α to get good estimation of the fIRF. These two 

limitations can been addressed, first, by imposing a constrained quadratic optimization to 

compute the scaling coefficients [31] and second, by a method to automatically select the 

best value of α [29, 32]. 

 

2.4.8 Legendre Space Fitting and Filtering 

In this method the measured fluorescence decay is transformed into the Legendre 

domain (L-domain) reducing the dimensionality of the signal into a few Legendre 

components. Moreover, removing the higher components in the L-domain e.g. just keep 

the first 10 components, acts as a filter in the time-domain, reducing even more the 

dimensionality. After the transformation, a nonlinear least square fitting is conducted. The 

advantage of this method, in addition that filters the signal, is that the fitting algorithm is 

done in the L-domain with a few Legendre components instead of all the samples. The 

limitation of this method is that you still need to do a nonlinear fitting method. 

 

2.4.9 Blind Deconvolution Estimation (BDE) 

The BDE algorithm solves a quadratic approximation problem, where the decision 

variables are the samples of the instrument response and the scaling coefficients of the 

fluorescence impulse response modeled by Laguerre functions. The problem is solved 

using an alternating least squares methodology that iteratively estimates the instrument 

response and scaling variables [30]. The advantage of this method is that it does not require 

previous knowledge of the instrument response, while its main limitation is speed.  
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2.4.10 Global Fit Analysis  

The Global analysis can simultaneously fit the fluorescence decay of all pixels in 

an image or dataset to a multi-exponential model under the assumption that the lifetime 

components are invariant across the image [33]. By doing this the algorithm can be used 

to simultaneously fit an entire dataset assuming that only the fractional contributions of a 

limited number of unknown but spatially invariant lifetime components vary from pixel 

to pixel [33]. The advantage of this method is that it can fit the fluorescence decay even 

when the number of detected photons per pixel is low. The main limitation is that it only 

fits the fluorescence decay to a combination of a fixed number of fluorescence lifetime 

components, and even that is faster than a nonlinear analysis is not fast enough for real-

time applications. 

 

2.4.11 Library of Exponentials 

This method assumes that the fluorescence impulse response at each can be 

represented by the conical combination of a library of N pre-defined exponential 

functions. This method searches for the scaling coefficients of the library by non-negative 

least squares approximations plus Thikonov/l2 or l1 regularization terms [34].  

 

 



2.5 Literature Review – High-Speed FLIM Systems 

In this section several FLIM systems attempting real-time FLIM measurements 

are being reviewed. In most cases, in order to achieve real-time frame rates, fast but not 

accurate lifetime calculation algorithms were adopted. 

A single-shot wide-field FLIM instrument based on a segmented gated optical 

imager (SGOI) was reported by Elson et. al. [35]. In this image intensifier the 

photocathode is split into quadrants, which provide channels that can be gated at 

different delay times. They were able to acquired FLIM data at 20 frames per second 

using a two gates RLD algorithm to display the FLIM images. A wide-field fluorescence 

lifetime imaging reported by McGinty et.al. [36] used the RLD method in a wide-filed 

FLIM microscope to achieve frame rates of ~7.7 Hz. In this system a CCD camera 

acquired 2 time-gated images at different delays. Another approach using a CCD camera 

by Grant et. al. [37] achieved full frame rate (336 x 256 pixels) of 10 fps. Using the 

CMM algorithm Shrestha et. al. [8] reported a multispectral FLIM system capable of 

image at a pixel rate of 20 kHz. Becker et. al. [38] built an eight-channel parallel FLIM 

system were they use 8 TCSPC channel in parallel and a multichannel PMT detector to 

increase the counting capability 8 times. They report acquisition of 256 x 256 pixels 

images at 4 frames per second or 262 kHz pixel rate for lifetimes between 200 ps and 

600 ps. Gersbach et. al. [39] combined wide-field with TCSPC using an array of 32 x 32 

single-photon avalanche diodes. They reported frame rates of 14.5 frames per second, 

almost 15 kHz pixel rate for lifetimes between 900 ps and 1800 ps.  
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3. MULTIMODAL BENCH-TOP OPTICAL SYSTEM1

3.1 Combined FLIM-RCM System 

In this section, a description of the combined FLIM-RCM system is presented. 

More details about the design of the optical system and its validation can be found in [2]. 

In order to determine specific design parameter for the endoscope system and characterize 

the system’s performance for detecting oral precancer and cancer, a bench-top combined 

FLIM-RCM system was built[2]. The bench-top system was designed to probe the 

biochemical properties of tissue on a macroscopic scale (FLIM subsystem) and the cellular 

morphology with a high resolution (RCM subsystem). In this way FLIM is being used to 

provide real-time macroscopic images of the tissue detecting suspicious sites to where the 

RCM can be placed and scan the morphological imaging of the sub-cellular structure of 

the tissue with small field of view (FOV). A schematic of the integrated system is shown 

in Figure 2. 

1 Reprinted with permission from “Fluorescence lifetime imaging and reflectance confocal microscopy for 
multiscale imaging of oral precancer” by Jabbour J.M., Dheng S., Malik B.H., Cuenca R., Jo J.A., Wright 
J., Cheng Y-S.L., Maitland K.C., 2013. Journal of Biomedical Optics, 18(4), p. 046012, copyright [2013] 
by Society of Photo-Optical Instrumentation Engineers. 
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Figure 2. Schematic of both subsystems [2]. 
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3.2 Instrumentation 

 As shown in Figure 2, a frequency-tripled Q-switched ND: YAG laser (355 nm, 

<1ns pulse duration, 100 kHz maximum repetition rate, AOT-YVO-100QSP/MOPA, 

Advanced Optical Technology) was used as excitation. The laser light was coupled into a 

multimode fiber with a core diameter of 50 µm (FVP050055065, Polymicro 

Technologies) and delivered to the bench-top system. The output of the excitation fiber 

was collimated and then reflected by a dichroic mirror (DM1: NC176741-z355rdc, 

Chroma) to a pair of galvanometer mirror scanners (6200HM40, Cambridge Technology) 

for two-dimensional raster scanning. A UV-NIR corrected triplet (f=45mm, NT64-837, 

Edmunds Optics) was used to focus light onto the sample. The fluorescence emission was 

collected by the same triplet and passed the dichroic mirror (DM1) to the collection fiber 

with a core diameter 200 µm (BFL22-200, Thorlabs). The output of the collection fiber 

was launched to a multispectral detection unit which consisted of dichroic mirrors (DM2: 

T>95%@439-647 nm, LM01-427-25, DM3: T>95%@492-950 nm, FF484-Fdi01, 

Semrock), bandpass filters (F1: FF01-390/40, F2: FF01-452/45, Semrock), a long pass 

filter (F3: FF01-496, Semrock) and three multimode fibers with lengths of 1m, 13m and 

25m (BFL22-200, Thorlabs). The detection unit separated the fluorescence emission into 

three spectral bands which were selected based on emission spectrum of the three 

endogenous fluorophores of interest: collagen (F1: 390 ± 20 nm), nicotinamide adenine 

dinucleotide (NADH) (F2: 452 ± 22.5 nm) and flavine adenine dinucleotide (FAD) (F3: 

>500 nm). The three multimode fibers with different lengths provided a time delay of 60ns 

with 12 meter length difference and helped temperately separate the signals from the three 
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spectral bands. Therefore, for each laser pulse, three fluorescence decays for three spectral 

channels could be detected simultaneously with one single detector. The outputs of the 

three fibers were then detected by a high-speed micro-channel plate photomultiplier tube 

(MCP-PMT, 180 ps rise time, 90 ps transit time spread, R5916U-50, Hamamatsu), 

amplified by a preamplifier (C5594-12, Hamamatsu) and sampled by a digitizer at 6.25 

GHz (PXIe-5185, National Instruments) using custom software programmed in LabVIEW 

(National Instruments). For the RCM subsystem a near infrared (NIR) continuous wave 

diode-pumped solid state laser (1064 nm, 1 W, CL1064-1W0, Crystalaser, Reno, NV) was 

used as the illumination source. A combination of a half-wave plate and a linear polarizer 

in the beam path served as a variable attenuator to control the optical power incident on 

the sample. A spatial filter in the beam path was used to produce a clean Gaussian beam. 

An 8 kHz resonant scanner and a galvanometer scanner operating at 7 Hz (CRS 8K and 

6215HM40, Cambridge Technology) were close-coupled to raster scan the NIR beam. A 

2× beam expander filled the back aperture of a water immersion objective lens (60×, 1.0 

NA, 2 mm working distance, LUMPLFLN60X/W, Olympus, Center Valley, PA), which 

focused the light onto the sample. A combination of linear polarizer, polarizing beam 

splitter, and quarter wave plate were used to remove specular reflections within the optical 

system. Finally, a spatial filter with a confocal pinhole of 30 µm diameter for optimized 

system characterization and 50 µm diameter for tissue imaging rejected the out of focus 

light prior to signal detection by an avalanche photodiode (APD) module (APD110C, 

Thorlabs). An automated translation stage (XYZ stage) was used to move the sample 

between the FOVs of the FLIM and the RCM subsystems. A 1951 positive USAF 
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resolution target placed on a white paper was used to acquire co-registered images from 

the two subsystems. 

 

3.3 Computer Program 

Because both subsystems are custom made, in order to integrate both subsystems, 

a computer program was developed to control them and keep track of the sample position 

to co-register the images. The computer program consist of 5 stages: Control Signal 

Generation, Image Acquisition, Image Processing, Image Visualization and Saving, and 

Graphic User Interface (GUI). 

 

3.3.1 Control Signal Generation 

For the FLIM subsystem, a square signal and two sawtooth signals are generated 

to trigger the laser and control the galvo mirrors, respectively. To keep the tissue exposure 

to the laser excitation at a minimum, the laser is turned off during the flyback of both galvo 

mirrors. Figure 3 shows an example of the signals for an image of 10 x 10 pixels, the green 

signal is the laser trigger and it can be notices that there are no pulses during the x-axis 

flyback (blue signal) nor during the y-axis flyback (red signal). For the RCM subsystem, 

only a sawtooth signal for the galvo mirror is generated. The resonant mirror doesn’t need 

a signal and act as the trigger to synchronize the image acquisition.  
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Figure 3. Generated signals for the FLIM subsystem. 

 

 

3.3.2 Image Acquisition 

For the FLIM subsystem we need to be able to acquire and fetch the data to the 

computer at a faster rate than the trigger repetition rate. Because the action of fetching 

data consumes a fixed amount of time independently of the number of pixels, it is better 

to read multiple pixels (1 packet) at the same time than only one pixel. In addition, 

software pipelining was implemented to avoid dead times between the stages. Figure 4, 

shows an example of a time diagram for the different stages. In this example, each packet 

consists of 4 pixels, and one frame consists of 4 packets. In reality, the packet size can 

vary from 1,600-10,000 pixels and the number of packets can vary from 4-25, depending 

upon the image size. For the RCM subsystem, since there is only one sample per pixel we, 

can fetch the whole frame at once. Once the acquisition starts, we wait until we collect the 

total number of pixels and then fetch them to the computer. 
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Figure 4. Time diagram for an image size of 4 x 4 pixels. 

 

 

3.3.3 Image Processing 

In this stage we need to process the acquired data to generate the images. For both 

subsystems we condition the signal by removing some noise, removing the offset and 

flipping the signal, as depicted in Figure 5. For the FLIM images we also calculate for 

each pixel: the integrated fluorescence intensity, the normalized integrated fluorescence 

intensity and the average fluorescence lifetime for each spectral band. The fluorescence 

impulse response function h(n) is approximated directly from the recorded decay by using 

only the falling part.  

The integrated fluorescence intensity was calculated as: 

 

 	���_� �  � ℎ
���
��


 (5) 

 

where  	���_� is the integrated intensity of the spectral band i. 

  The normalized intensity 	����_� of the spectral band i was calculated as: 

 	����_� � 	���_�	���_ �  	���_! �  	���_" (6) 
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The average lifetime was calculated as: 

�#$% �  ∑ �ℎ
��∑ ℎ
�� (7) 

Figure 5. Example of removing the offset and flipping the signal. 

3.3.4 Visualization and Saving 

In this stage we need to reconstruct the images for each calculated parameter. In 

the case of the FLIM images, 3 integrated intensities, 3 normalized intensities, and 3 

lifetimes are displayed (one for each spectral channel) and the user have the option to save 

the raw data for a complete frame. In the case of the RCM images, only the intensity is 

acquired and the frames are always saved as a video.  

3.3.5 Graphic User Interface 

The GUI let the user modify the laser repetition rate, image size in pixels, field of 

view in mm, and the sampling rate. Also, the user is able to start and stop the acquisition, 



 

25 

 

and save the raw data. For the co-registration, the user is able to pick an area on the FLIM 

image to image with the RCM subsystem. The program automatically translates the 

selected area onto the RCM subsystem FOV. 

 

 

3.4 Combined FLIM-RCM System Validation - Tissue Phantom Imaging 

A two-layer tissue phantom was developed to test the system’s capability to detect 

the macroscopic biochemical and microscopic morphological properties of a relatively 

complex sample. The phantom was produced with a thin top layer of 100-120 µm 

consisting of polymer beads to model the epithelial nuclei. NADH and FAD (Sigma-

Aldrich) were also added to the top layer to mimic autofluorescent metabolic coenzymes 

in the epithelium. The NADH powder was concentrated towards the center and FAD was 

uniformly distributed throughout this layer. The top layer was set on top of a thick lower 

layer of collagen matrix which represented of stroma layer. In order to get a homogenous 

collagen matrix, collagen solution (rat tail tendon type I collagen, BD Biosciences) was 

used instead of collagen fiber. The dissolved collagen solution was added to 10×phosphate 

buffered saline (PBS) solution and 1 M sodium hydroxide (NaOH) along with deionized 

water. The solution was allowed to gel at 37°C for 30 minutes.  

Figure 6 shows the results, For the FLIM images only the second and third 

channels are displayed because we found that the collagen used was only fluorescent at 

wavelengths lower than 390 nm. As we can see from the normalized intensity images, 

Figure 6(a) and Figure 6(b), the center of the phantom were NADH and FAD are present, 

display fluorescent signal in both spectral channels and is impossible to know if the signal 
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is coming from FAD alone or from both FAD and NADH. Figure 6(c) and Figure 6(d) 

shows the fluorescent lifetime maps, and Figure 6(e) and Figure 6(f) are their 

corresponding histograms. As we can see form the histograms the average lifetime for the 

center of the phantom in the 452 nm channel is 0.32 ± 0.15 ns corresponding to the lifetime 

of unbound NADH. The average lifetime in the >500 nm channel is 2.08 ±0.15 ns at the 

periphery which represents FAD, and 1.72 ±0.14 ns in the center which is the lifetime 

combination of NADH and FAD, probing that with the fluorescent lifetime maps we can 

differentiate between FAD alone and FAD and NADH together. Figure 6(g) and Figure 

6(h) show the confocal images from the top-layer of the tissue phantom at depths of 

approximately 30 µm and 60 µm, respectively. The polystyrene beads appear as white 

dots in the reflectance images, and are fairly uniformly distributed over the entire FOV. 

These results demonstrate that such a two-layer phantom is well-suited to validate our 

multimodal imaging system. 
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Figure 6. FLIM-RCM images of the two-layer phantom [2]. 

 



28 

3.5 Combined FLIM-RCM System Validation – Hamster Cheek Pouch Model 

A hamster cheek pouch model of oral cancer was performed to evaluate the 

system’s performance to differentiate cancer from normal tissue.  The right buccal pouch 

of the hamsters was treated 3 times a week for 8 weeks with 0.5% solution of 7,12-

dimethylbenz[α]anthracene (DMBA) dissolved in mineral oil. The left pouch was treated 

with mineral oil to serve as a normal control. Samples were first imaged with the FLIM 

subsystem, then moved with a translation stage to the RCM subsystem. The FLIM-RCM 

system software recorded the mapping coordinates of RCM imaging sites for accurate 

registration to the FLIM image and for localization relative to the edge of the tissue mount. 

After imaging, the cheek pouches were excised, fixed in 10% formalin, and processed for 

hematoxylin and eosin (H&E) histology. The software controlled the stage and the user 

was able to select the locations to image with the RCM from the FLIM images. 

Figure 7 show the results for the normal and the DMBA-treated hamster cheek 

pouch, respectively. Figure 7(a)-(f) show the normalized fluorescence intensity and 

average lifetime maps for the normal hamster cheek pouch. The results for the normal 

cheek pouch are consistent with normal tissue where collagen fluorescence is dominant 

because of the thin epithelium. The RCM images taken from the center of the FLIM FOV 

at different depths are shown in Figure 7(h) and Figure 7(i), Figure 7(j) is a zoomed view 

of Figure 7(i) where we can clearly see cell membranes and nuclei identified by arrows. 

RCM images doesn’t show nothing abnormal. Figure 7(l)-(q) show the normalized 

fluorescence intensity and the average lifetime maps for the DMBA-treated hamster cheek 

pouch. The label on the arrows 1 and 2 correspond to Region 1 and Region 2 which were 
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diagnosed as cytologic atypia and low-grade dysplasia respectively. We can notice some 

differences if we compare both regions and against the normal cheek pouch, for instance 

the fluorescence lifetime in the 452 nm channel is shorter, we can attribute this to the 

presence of NADH, and the fluorescence lifetime in the 500 nm channel is longer, 

indicating contribution of both FAD and porphyrin. The RCM images of Region 1 just 

below the surface (Figure 7 (s)) and deeper in the epithelium (Figure 7 (t) and Figure 7(u) 

zoomed in) show very small features that may be epithelial nuclei or possibly nucleoli that 

can be seen in the corresponding histology section in Figure 7(v). In contrast, the RCM 

images of the epithelium in Region 2, shown in Figure 7(w), Figure 7(x) and Figure 7(y) 

zoomed in, show much larger nuclei indicative of precancerous changes. Arrows in RCM 

images identify cell nuclei. 
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Figure 7. In vivo FLIM-RCM images of normal hamster cheek pouch [2]. 
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3.6 Discussion and Conclusion 

 This work shows that our dual-modality multispectral FLIM and RCM imaging 

system can effectively image biochemical and morphological features in tissue. While 

large-field FLIM enables fast macroscopic tissue evaluation, it lacks the ability to provide 

optical sectioning and high spatial resolution for cellular evaluation. The RCM subsystem 

can provide much higher spatial resolution and optical sectioning necessary for cellular 

imaging but has a limited FOV. The combination of these two imaging techniques on a 

single platform offers an important and powerful tool utilizing the strengths of the 

individual subsystems. The complementary information acquired from the integration of 

the two modalities is important for the study of biological changes such as those seen in 

the progression of early cancer.  

In all instances, FLIM imaging provides macroscopic biochemical maps which 

represent the relative contribution of the endogenous fluorophores, both with respect to 

fluorescence intensity and lifetime. While the FLIM images of the tissue phantom show 

some physical features due to the geometry of the phantom and the distribution of NADH 

and FAD, the images of the biological samples showed differences in intensity and 

lifetime signals between normal and cancer. In comparison, the hamster tissue has a wide 

range of pathologies, resulting in spatial features in both the intensity and lifetime images. 

Additionally, the spectral and lifetime data of the DMBA-treated pouch is different than 

the normal control pouch, indicating the ability to detect precancerous changes. By 

comparing the normalized intensity and average lifetime values in Table 1, differentiation 

between normal and tumorous tissue may be achieved with intensity measurements alone. 
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However, based on some similarity in normalized intensity values and differences in 

lifetimes between normal tissue and the DMBA-treated RCM Regions 1 and 2, the more 

challenging and relevant problem of distinguishing between benign and precancerous 

lesions may be realized with FLIM. It should be noted that the histopathological difference 

between the normal and pre-cancerous lesions being compared are very subtle; yet, 

difference in the FLIM signal could already be observed. Nevertheless, the high resolution 

of RCM is still necessary for identifying cellular changes indicative of precancer.  

The results from the high-resolution reflectance confocal microscope demonstrate 

the potential of the imaging system towards characterization of sub-cellular morphological 

features of the epithelial tissue. The brighter nuclei against the darker background can be 

delineated in the RCM images. The normal cell nuclei in the porcine tissue are on the same 

scale as the normal human epithelial cell nuclei. Although the normal hamster epithelial 

nuclei are smaller, they are still detectable with our RCM imaging system. An increase in 

nuclear size is distinguished between normal and dysplastic tissue in hamster cheek pouch. 

The RCM system was able to distinguish between two pathologically different regions that 

look similar using FLIM. This shows the importance of these two complementary techniques. 
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Table 1. Normalized fluorescence intensity and average lifetime for phantom, 

normal hamster and DMBA treated hamster. 

Sample 
λem 390 nm 452 nm >500 nm 

 Intensity Lifetime Intensity Lifetime Intensity Lifetime 

Phantom 
Center -- 0.48 ± 0.08 0.32 ± 0.15 0.45 ± 0.08 1.72 ± 0.14 
Outer -- -- 0.88 ± 0.09 2.08 ± 0.15 

Normal 

Hamster 

Entire 
FOV 

0.42 ± 
0.04 

5.61 ± 0.13 0.30 ± 0.01 4.60 ± 0.25 0.28 ± 0.03 4.22 ±0.29 

DMBA 

Treated 

Hamster 

Tumor 
0.06 ± 
0.03 

5.43 ± 0.14 0.19 ± 0.11 2.62 ± 0.79 0.75 ± 0.14 5.62 ± 1.27 

Region 1 
0.49 ± 
0.02 

5.49 ± 0.16 0.28 ± 0.01 4.32 ± 0.18 0.23 ± 0.02 4.03 ± 0.21 

Region 2 
0.42 ± 
0.02 

5.43 ± 0.14 0.27 ± 0.01 4.29 ± 0.29 0.30 ± 0.01 5.16 ± 0.34 

 

 

In conclusion, we have presented the design and development of a dual-modality 

multi-scale bench-top FLIM—RCM imaging system applied to the characterization of oral 

epithelial tissue. The integrated system is capable of identifying both morphological and 

biochemical features, which together can potentially serve as a powerful diagnostic aid 

towards classification of pathological condition of the tissue. 
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4. HANDHELD MULTISPECTRAL FLIM ENDOSCOPE2 

4.1 Handheld Multispectral FLIM Endoscope System 

In order to use the previous FLIM subsystem on human patients and be able to 

image them in vivo, the FLIM subsystem was converted into an endoscope probe. The 

endoscope was validated with standard dyes, hamster cheek pouch, human oral biopsy 

imaging ex vivo and human oral imaging in vivo. The system is based on the point scanning 

direct pulse recording implementation, using safe and permissible exposure levels at pixel 

rate of several tens of kHz. Taking advantage of this high pixel rate, we were able to 

perform the fastest in vivo multispectral FLIM imaging in the human oral cavity. Also 

with this system we were able to report the first demonstration of real-time deconvolution 

of the instrument response from the fluorescence decay at each pixel of the image, which 

allowed accurate real-time lifetime map estimation and visualization at multiple spectral 

bands simultaneously. The system is currently in use at Texas A&M University College 

of Dentistry in Dallas, where more than 80 patients presenting oral lesions have been 

imaged up to date. 

 

                                                 

2 Reprinted with permission from “Handheld multispectral fluorescence lifetime imaging system for in vivo 
applications” by Cheng S., Cuenca R.M., Liu B., Malik B.H., Jabbour J.M., Maitland K.C., Wright J., Cheng 
Y-S.L., Jo J.A., 2014. Biomedical Optics Express, 5(3), p. 921-931, Copyright [2014] by The Optical 
Society.   
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Figure 8. Photograph of the handheld rigid endoscope and schematic of the system 

[40]. 

 

 

4.2 Instrumentation 

 The system consists of a handheld box (volume: 7 × 13 × 5 cm3, mass: 450 g) 

fitted with a custom-designed rigid endoscope (length: 14 cm, diameter: 1.7 cm) as shown 

in Figure 8. The schematic of the proposed system is also shown in Figure 8. A frequency-

tripled Q-switched Nd:YAG laser (355 nm, 1 ns pulse width, 100 kHz max. rep. rate, 

Advanced Optical Technology) is used as the excitation source. A multimode fiber with 

core diameter of 25µm (0.10 NA, HPSC25, Thorlabs) or 50 µm (0.22 NA, 

FVP050055065, Polymicro Technologies) delivers the excitation light to the handheld 

box. Inside the handheld box, the excitation light is collimated (L2: f = 11 mm, ARC 350-

700 nm, CFC-11X-A, Thorlabs) and scanned by a pair of galvanometer mirrors (5 mm 

beam aperture, ± 5 mechanical degrees, Cambridge Technology) on the proximal end of 

the rigid endoscope. The rigid endoscope was built using standard 0.5 inch lens tubes and 
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consists of three lenses. The first two lenses from the proximal end (L3, L4: f = 30 mm, 

LB003, Thorlabs) serve as an image relay, while the third lens (L4: Near UV achromat 

doublet; f = 30 mm, 50 mm or 60 mm; Edmund Optics) works as the objective. In this 

configuration, the excitation fiber core diameter and the focal length of the objective 

determine the lateral resolution and the FOV of the system. Finally, a lens tube with length 

equal to the objective’s focal length is added at the distal end, which allows the sample to 

be placed in contact with the probe. Such a configuration can potentially reduce motion 

artifact during image acquisition. 

 

4.3 Data Processing 

 The multispectral FLIM data consisted of three fluorescence decays per pixel (one 

per emission band). The relatively long excitation pulse width (FWHM: ~1 ns) 

necessitated the temporal deconvolution of the instrument response from the measured 

fluorescence decay in order to obtain accurate estimation of the fluorescence lifetime. 

Time deconvolution was performed offline using an optimized Laguerre expansion 

technique algorithm [32]. After deconvolution, nine images were generated to quantify 

the fluorescence emission of the samples: absolute integrated fluorescence intensity, 

normalized integrated fluorescence intensity, and average lifetime maps for each of the 

three emission bands. In addition, to demonstrate real-time estimation and visualization of 

the multispectral FLIM maps, an online deconvolution method was applied.  
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4.3.1 Fluorescence Lifetime Online Algorithm 

 To calculate the fluorescence lifetime online, the measured decay for each pixel 

was compared against a lookup table of decays generated by convolving the instrument 

response with single exponential decays with time constants ranging from 0.2 to 8 ns (in 

steps of 0.2 ns). The best match in terms of the minimum means squared error (MSE) was 

selected and used as the estimation of the fluorescence lifetime, the MSE was calculated 

as follows: 

 '() �  1* �
�
�� −  �,
���!�
��


 (8) 

 

where N is the total number of samples, n is the sample time, �
�� is the measured 

fluorescence decay and �,
�� is the simulated measured fluorescence decay. 

  Figure 9 shows an example using 3 possible fIRF’s (ℎ-
��) of 1 ns, 4 ns and 8 ns. 

The 3 possible fIRF’s are convolved with the instrument response to get 3 simulated 

measured decays (�,
��). The MSE between each of this 3 exponential decays and the 

measured fluorescence decay (y(n)) is calculated and the simulated measured decay with 

the minimum MSE is selected, in this example, the decay with the average lifetime of 1 

ns is selected. 
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Figure 9. Online algorithm example using 3 single exponential decays: 1 ns, 4 ns 

and 8 ns. 

 

 

4.4 Validation 

 The handheld imaging system was first validated with 1 mM solutions of 1,4-bis 

(5-phenyloxazol-2-yl) benzene-POPOP (in ethanol), NADH and FAD (in PBS). The 

standard dye solutions were loaded into three quartz capillary tubes and placed side by 

side under the probe. A video was recorded at ~1.33 frames per second. 

To demonstrate its ability for in vivo application in animal models, the handheld 

system was validated by imaging a normal hamster cheek pouch in vivo. The imaging 

protocol was approved by the Institutional Animal Care and Use Committee at Texas 

A&M University. During imaging, the hamster was first anesthetized, and a cheek pouch 

was pulled out and extended, and the rigid probe was gently placed on the mucosal surface. 
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A video was recorded during the movement of the probe on top of the mucosa tissue at 

~1.33 frames per second. 

The clinical potential of this system was further demonstrated by imaging a human 

oral biopsy ex vivo and the ventral surface of a human tongue in vivo. The respective 

imaging protocols were approved by the Institutional Review Boards at Texas A&M 

University and Baylor College of Dentistry. For the ex vivo study, the oral tissue biopsy 

was transported immediately in PBS to the imaging system following excision. A single 

FLIM image was recorded with the epithelium in contact with the probe. One end of the 

biopsy was sutured to mark the image orientation to allow comparison with the respective 

histology section. Finally, the tissue specimen was fixed in 10% formalin and processed 

for hematoxylin and eosin (H&E) histological analysis. For the in vivo study, the ventral 

tongue region of a human volunteer was imaged. The probe was inserted into the 

volunteer’s month and gently placed on the target location. Only one frame was collected 

to minimize exposure to UV radiation. 

For all the aforementioned experiments, the following working parameters were 

used. The laser pulse energy at the sample was set at ~1 µJ/pulse, resulting in adequate 

signal-to-noise ratio (SNR ≥ 30 dB). Since only one pulse is required per pixel, the pixel 

rate is equal to the laser repetition rate. The laser repetition rate was set at 30 kHz and the 

total number of pixels per frame was set at 150 × 150, corresponding to an acquisition 

speed of ~1.33 Hz. The 50 µm excitation fiber and the 50 mm focal objective lens were 

used, corresponding to a lateral resolution of ~110 µm. 
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4.5 Results 

4.5.1 Capillary Tubes with Fluorophores 

 For 355 nm excitation wavelength, the emission peaks for POPOP, NADH and 

FAD are approximately at 390 nm, 450 nm and 540 nm, respectively [8]. The normalized 

intensity maps (Figure 10) confirmed strong emission of POPOP at both the 390 nm and 

452 nm channels, strongest emission of NADH at the 452 nm channel, and emission of 

FAD only at the >500 nm channel. The average lifetime maps (Figure 10) were also in 

good agreement with the previously published values for the corresponding fluorophores 

[8].  
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Figure 10. In vitro validation imaging of quartz capillaries loaded with FAD, 

NADH, and POPOP [40]. 

 

The average lifetime values for each fluorophore estimated using the offline and 

the online methods are compared in Table 2 (calculated pixel-to-pixel for the areas 

corresponding to the entire capillary). 
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Table 2. Comparison of offline and online fluorescence lifetime estimations (mean ± 

standard deviation). 

 Offline Estimates (ns) Online Estimates (ns) 

POPOP (390 nm) 1.26 ± 0.07 1.03 ± 0.13 

NADH (452 nm) 0.67 ± 0.04 0.32 ± 0.08 

FAD (>500 nm) 2.75 ± 0.03 1.91 ± 0.14 

Pouch (390 nm) 5.86 ± 0.17 3.91 ± 0.58 

Pouch (452 nm) 4.44 ± 0.13 2.36 ± 0.45 

Pouch (>500 nm) 3.40 ± 0.19 1.92 ± 0.41 

 

 

4.5.2 In Vivo Hamster Cheek Pouch 

 Results from an imaged region are shown in Figure 11. The FLIM maps indicate 

strong fluorescence intensity at the 390 nm and 452 nm channels (Figure 11(a) and Figure 

11(b)), and lifetime values between 4 and 6 ns (Figure 11(c)), reflecting a collagen-

dominant autofluorescence expected in normal epithelial tissue. Notice that the 

vasculature network can be observed in the absolute fluorescence intensity maps, as blood 

absorption attenuates the fluorescence signal. The normalized intensity and lifetime maps, 

on the other hand, were insensitive to blood absorption, and indicated spatially uniform 

spectral and lifetime properties of the autofluorescence emission of normal cheek pouch 

epithelial tissue. This was expected, since both the layered structure and the relative 

concentration of endogenous fluorophores (NADH and FAD in the epithelium, and 

collagen in the underlying stroma) are maintained throughout the normal epithelial tissue. 

The average lifetime from these two normal cheek pouch regions estimated using either 

of the methods (offline or online) are compared in Table 2 (calculated pixel-to-pixel for 

the area corresponding to the entire FOV). 
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Figure 11. In vivo validation imaging of normal hamster cheek pouch. (a) Absolute 

integrated fluorescence intensity maps. (b) Normalized integrated fluorescence 

intensity maps. (c) Fluorescence lifetime maps. FOV: 10 x 10 mm2  [40]. 

 

 

4.5.3 Ex Vivo Human Oral Biopsy 

 The absolute intensity, normalized intensity and average lifetime maps are shown 

in Figure 12(a), Figure 12(b), and Figure 12(c), respectively. For the intensity maps, strong 

emission was observed at the 452 nm channel, followed by comparatively lower 

fluorescence at the 390 nm and >500 nm channels. For the average lifetime maps, the 452 

nm channel showed relative shorter lifetime than 390 nm channel attributed to NADH, 
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which shows a short lifetime and peak emission at ~450 nm. While most of the FLIM 

parameters (intensity and lifetime) did not show significant variation across different 

regions of the biopsy, a small region (marked as Region 1 in Figure 12(c)) in the lifetime 

map for >500 nm channel showed larger value of lifetime (5.19 ± 0.30 ns) in contrast to 

rest of the biopsy. This area was later diagnosed as superficial invasive squamous cell 

carcinoma. The corresponding histology image is shown in Figure 12(d). For comparison, 

the histology image of a region which represented the rest area of this biopsy (marked as 

Region 2 in Figure 12(c)) with relatively lower lifetime values (4.03 ± 0.19 ns) was also 

included and shown in Figure 12(e). This particular region in Figure 12(e) was diagnosed 

as dysplasia as most of the biopsy. The increase in lifetime in Region 1 can be attributed 

to porphyrin, the presence of which is known to increase with progression of precancer 

[41]. 
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Figure 12. Ex vivo human oral biopsy. (a) Absolute integrated fluorescence intensity 

maps. (b) Normalized integrated fluorescence intensity maps. (c) Fluorescence 

lifetime maps. FOV: 10 x 10 mm2. (d) Histology image for the position marked in 

(c) as Region 1. (e) Histology image for the position marked in (c) as Region 2 [40]. 

 

 

4.5.4 In Vivo Ventral Region of Human Tongue 

 The absolute intensity, normalized intensity and average lifetime maps are shown 

in Figure 13. Strong emission was observed in 452 nm channel, followed by comparatively 
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lower fluorescence at 390 and >500 nm channels. The average lifetime maps showed 

similar lifetime of 4.04 ± 0.29 ns, 4.22 ± 0.28 ns and 4.19 ± 0.28 ns for 390 nm, 452 nm 

and >500 nm channels, respectively. Notice also here that spatial contrast was evident in 

the absolute fluorescence intensity maps, while little contrast was observed in the 

normalized intensity and lifetime maps, as expected for normal epithelial tissue. 

 

 

 

Figure 13. In vivo imaging of the ventral tongue from a normal human volunteer. 

(a) Absolute integrated fluorescence intensity maps. (b) Normalized integrated 

fluorescence intensity maps. (c) Fluorescence lifetime maps. FOV: 10 x 10 mm2  

[40]. 

 



 

47 

 

4.6 Discussions and Conclusion 

 In order to use this system in a clinical setting in vivo, the laser energy levels should 

not exceed the tissue damage threshold which can be estimated in terms of the maximum 

permissible exposure (MPE) provided by the American National Standards Institute 

(ANSI) standards for the safe use of lasers [42]. The single pulse limit for a 1 ns pulse at 

355 nm is 303 µJ for both eye and skin. Therefore, we are limited by the average irradiance 

in the limiting aperture (3.5 mm diameter) which was calculated to be 29.8 µJ. For our 

system, the actual energy deposited is 2.8 µJ, which is an order of magnitude lower than 

the MPE for both ocular and skin use. We are thus confident that in vivo imaging can be 

performed safely with the proposed handheld FLIM imaging system. 

One significant advantage of the proposed multispectral FLIM endoscope design 

is that, unlike previous implementations, it can achieve relatively high imaging speed 

without sacrificing temporal resolution. The achieved high temporal resolution allows 

correcting for the non-ideal instrument response through time deconvolution. In addition, 

since the entire fluorescence decay is measured directly, the full complexity of its temporal 

dynamics can be captured and is no longer limited to a single exponential approximation.  

Although our imaging systems allows measuring time-resolved fluorescence data 

with high temporal resolution, accurate estimation of fluorescence lifetimes still requires 

computationally expensive iterative deconvolution methods. Our fully validated Laguerre 

deconvolution method is significantly faster than standard nonlinear least square 

deconvolution algorithms, but it is still not suitable for online processing and visualization 

of FLIM data [32]. To take advantage of the relative high pixel rate achieved by our system 
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and to demonstrate real-time FLIM data processing and visualization, the online 

deconvolution method described above was proposed. An interesting observation was the 

fact that the online processing and visualization of the multispectral FLIM maps were 

insensitive to movement. In Table 2, the values of the online lifetime estimations are 

compared against the offline estimation obtained with the Laguerre deconvolution 

method. The reported fluorescence lifetime values correspond to the average fluorescence 

lifetime. If the fluorescence decay follows a single exponential dynamic, the average 

fluorescence lifetime and the single exponential time constant should have the same value. 

However, when the measured fluorescence decay follows more complex dynamics, as it 

is usually the case for endogenous fluorescence measured in our experiments, the 

corresponding average fluorescence lifetime will be underestimated is the data is treated 

as a single-exponential decay. As expected, the online values were underestimated with 

respect to the offline values due to the single exponential approximation. Nevertheless, 

the online FLIM maps provided fluorescence lifetime contrast similar to that of the offline 

FLIM maps. 

In conclusion, we report the first demonstration of a time-domain multispectral 

FLIM endoscope that requires only one excitation pulse per pixel; thus, the pixel rate 

equates to the laser repetition rate. Taking advantage of this relatively high pixel rate, we 

were able to perform the fastest in vivo multispectral FLIM imaging in the human oral 

cavity reported thus far. Finally, we also report the first demonstration of real-time 

deconvolution of the instrument response from the fluorescence decay at each pixel of the 

image, which allowed accurate real-time lifetime map estimation and visualization at 
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multiple spectral bands simultaneously. This design will facilitate the evaluation of 

multispectral FLIM for in vivo applications, and is currently being explored to image oral 

cancer, which is our target clinical application. 
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5. NOVEL BI-EXPONENTIAL DECONVOLUTION FOR REAL-TIME FLIM 

5.1 Introduction  

As discussed in Section 2.4, in time-domain FLIM, the measured fluorescence 

decay �
�� is the convolution of the fIRF ℎ
�� and the instrument response �
��: 

 

 �
�� � ℎ
�� ∗ �
�� (2) 
  

 
 

 

In order to estimate the fluorescence lifetime, ℎ
�� must be estimated, and in order 

to estimate ℎ
��, the instrument response must be deconvolved from the measured 

fluorescence decay [19, 21]. In order to deconvolve the instrument response, first we need 

to estimate it. Usually the instrument response is measured by imaging a sample with 

extremely short lifetime, in this case the instrument response will be very close to the 

measured fluorescence decay. Another method is to measure the scattered light from the 

excitation pulsed source. Also, as mentioned in Section 2.4.9, BDE is an algorithm that 

can estimate de instrument response without measuring directly the instrument response. 

The right measurement of the instrument response will have a direct impact in the 

fluorescence lifetime estimation. For our proposed algorithm we only need to know the 

instrument response and the range of possible fluorescence lifetimes (for instance, 

between 0.5 and 10 ns). In section 2.4 we reviewed several deconvolution algorithms; 

however, as it was discussed, none of them are fast enough for real-time FLIM analysis 

and visualization. 

In this section, we described a biexponential model fitting algorithm based on a 
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lookup table and pattern recognition techniques. Because of its robustness to noise and 

speed, this method has the potential to estimate fluorescence lifetimes in real-time 

allowing real-time FLIM application. 

 

5.2 Algorithm 

Our novel approach works by comparing the measured fluorescence decay against 

a database of synthetic fluorescence decays and picking the best match based on a set of 

features. Figure 14 shows the block diagram of the algorithm. First, a library of fIRF’s 

ℎ-
�� is generated using a bi-exponential model and convolved with the instrument 

response �
��. Each of these conlvolved decays �,
�� is characterized by a feature vector 

.
�,�. Then, these feature vectors, along with the exponential model parameters and the 

average lifetime are saved in a database. At this point our algorithm is ready to start 

processing data. Each new measured fluorescence decay �
�� is characterized by the same 

feature vector .
�� and compared against the feature vectors .
�,� from the database. 

Finally, based on the selection criteria, the exponential model parameters and the average 

lifetime of the selected feature vector are extracted from the database. Since these values 

are calculated directly from the fIRF’s there is no need for any deconvolution algorithm. 
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Figure 14. Algorithm diagram concept. 

 

 

5.2.1 Database of Synthetic Data 

To create the database, first we generated the possible fIRF’s (ℎ-
��) using a bi-

exponential model: 

 

 ℎ-
�� � /��� �0 � � 
1 − /���� �1�  (9) 

 

 

where n is the sample time, β and (1- β) are the relative contributions, and τ1 and τ2 are 

their respective lifetimes. Table 3 show the settings to create the library of fIRF’s. In total 

there are 64,380 different bi-exponential fIRF’s.  
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Table 3. Synthetic exponential decay library parameters settings. 

 2 34 (ns) 35 (ns) 
Range 0 – 1 0.125 – 15 0.125 - 15 

Resolution 0.1 0.125 0.125 
 

After we had all the possible bi-exponential IRF’s, we convolved each of them 

with the impulse response �
�� to obtain: 

 

 �,
�� � ℎ-
�� ∗ �
�� (10) 

 

where �,
�� is the simulated measured decay. Each of these simulated measured decays 

was characterized by a feature vector .
�,�. These feature vectors, along with the 

exponential model parameters and the average lifetime were saved in the database. Finally, 

we sorted the database by one of the features; this feature will be used to select a subset 

of the database later on. 

 

5.2.2 Features 

The feature set is the most important part of our algorithm, they need to be able to 

distinguish between similar exponential decays and also be robust to noise. Because of the 

latter characteristic we proposed a set of transformations �6 to the original measured 

decay �
�� as follows: 

 � 
�� �  1* � �
���
��


; � > 0 (11) 
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 �!
�� �  1* � � ⋅ �
���
��


; � > 0 (12) 

 
  

 �"
�� �  1* � � ⋅ �
���
��


; � > 0 (13) 

 
  

 �;
�� �  1* � �" ⋅ �
���
��


; � > 0 (14) 

 
  

 �<
�� �  1* � y
��!�
��


; � > 0 (15) 

 

where n is the time sample and N is the number of time samples. 

To make the features invariant to size we are normalizing the signal and its 

transformation between 0 and 1. Figure 15 shows two simulated exponential decays of τ 

= 1 ns and τ = 1.5 ns at 20 dB, as observed it is easier to differentiate them in 

transformations φ1 and φ2. We can also notice that the transformations are less noisy than 

the original signal.  

Therefore, we end with 6 signals, the original signal (�

�� �  y
n�) and its five 

transformations. For each signal (�?
��, k � 0,1, . . ,5 ), the following 5 features are 

calculated: 

1. 1st Moment defined as: 

 D6 �  � � ⋅ �?
���
��


 (16) 
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2. 2nd Moment defined as: 

 E6 �  � �! ⋅ �?
���
��


 (17) 

 

3. 3rd Moment defined as: 

 F6 �  � �" ⋅ �?
���
��


 (18) 

 

4. Area defined as: 

 G6 �  � �?
���
��


 (19) 

 

5. Square defined as: 

 )6 �  � �?
��!�
��


 (20) 

 

 

In total we have 30 features that the classifier can use to select the best match from 

the database. 
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Figure 15. Original and its five normalized transformations of two simulated 

sampled decay of 1 ns and 1.5 ns at 20 dB. 

 

 

5.2.3 Classifier 

For each simulated measured decay in the database, a feature vector, with the 

resulting best feature set, will be pre-computed and stored. The same feature vector will 

also be computed for each pixel measured fluorescence decay. The classifier algorithm 

used is a minimum distance classifier, in which each simulated measured decay in our 

database is a class and a new input (a pixel measured fluorescence decay) is assigned to 

the class that minimizes the squared Euclidian distance between the class and the input 

feature vectors. The squared Euclidian distance is measured as follows: 

 

 H! �   �
.�
�� − .�
�,��!I
��


 (21) 
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where d is the Euclidian distance,  .
�� is the feature vector of the measured decay, .
�,� 

is the feature vector of the simulated measured decay, and L is the size of the feature 

vector. 

To compensate for different variance between features, we normalized each 

feature between 0 and 1 as follows: 

 

 

.JK � .K − minK∈I .6,KmaxK∈I .6,K − minK∈I .6,K  k �  1, … , 64380 (22) 

 

where .JK is the normalized feature l,  minK∈I .6,K is the minimum value of feaure l from all 

the simulated measured decays, and maxK∈I .6,K is the maximum value of feature l from all 

the simulated measured decays. 

Since our database has 64,380 different “classes” it´s not feasible to calculate the 

Euclidean distance between the input and each of the 64,380 classes. Instead, we use a 

subset of classes; this subset is determined by two parameters: an initial index “k” and a 

subset of size “α”. Figure 16 shows an example of a subset for values of k = 250 and α = 

5. The smaller the size the faster our classifier is going to be, but also the higher the risk 

to misclassify. The initial guess of “k” is going to be based on one of the features. The 

database is going to be sorted by this particular feature so we can easily find the closest 

value. 
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Figure 16. Example of a subset of the database for k = 250 and αααα = 5. 

 

 

5.2.4 Feature Selection 

From the 30 possible features we need to select a subset of features. It may seem 

logical that using all the features is the best option, but that’s not the case in pattern 

recognition. Including “bad features,” for example, features that are very sensitive to 

noise, decrease the performance of the classifier. In addition, using too many features 

increases the processing time and the chances of overfitting. 

The method used for feature selection was a Sequential Forward Search (SFS) 

wrapped around the classifier algorithm. We start the SFS with the best combination of 

three features and stopped the search when the number of features equals six. The best 

combination of three features was obtained by exhaustive search. The criterion used to 
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select the best set of features was the Root Mean Square (RMS) value of the average 

lifetime error percentage between our algorithm and the non-linear LSIR method. The 

RMS and error percentage (EP) was calculated as follows: 

 

 RMS �  Y1� Z)[ ! �  )[!! � ⋯ � )[�!] (23) 

 
  

 EP �  �̂Iabc − �̂�d�e�̂Iabc �100 (24) 

 

where n is the number of bi-exponential decays in the test,  �̂Iabc is the estimated lifetime 

using LSIR and �̂�d�e is the estimated lifetime using our method. 

 

5.3 Validation Methods 

Our algorithm was tested using synthetic data and experimental FLIM data from 

standard fluorescent dyes and human tissue. The performance of our algorithm was 

compared against the LSIR method and the goodness of fit was evaluated using the Ljung-

Box test [43]. 

 

5.3.1 Synthetic Data 

Synthetic data was generated using the bi-exponential model for the fIRF, with 

random values of β between 0 and 1, and random values of τ1 and τ2 between 0.1 and 10 

ns. To simulate measured data, the simulated fIRF’s were convolved with a pre-measured 

instrument response. The instrument response was obtained by imaging Erythrosine B, a 
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fast decaying dye. Finally Gaussian and Poisson noise contributions were added to yield 

different SNR levels between 15-40 dB.  The resulting synthetic data was normalized 

against its peak intensity. 

 

5.3.1.1 Comparison against True Lifetime and LSIR 

Synthetic data allow us to compare the estimated average lifetime against the 

“true” average lifetime. To test the performance of our algorithm we compared the results 

against the LSIR method with a bi-exponential model. The average lifetime of both 

methods was calculated using equation (25).  The error percentage of each method against 

the “true” average lifetime was calculated using equation (24) and compared. 

 

 �̂ �  /� ! � 
1 − /��!!/� � 
1 − /��!  (25) 

 

 

5.3.2 Experimental Data 

Experimental FLIM data acquired with the handheld system described in Section 

4 were used for our method validation.  

 

5.3.2.1 Standard Dyes 

The algorithm was validated with 1mM solutions of Fluorescein and 9-

cyanoanthracene (9-CA) (in ethanol), and nicotinamide adenine dinucleotide (NADH) and 
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flavine adenine dinucleotide (FAD) (in PBS). The solution were loaded into four quartz 

capillary tubes and imaged. 

5.3.2.2 Tissue Data 

The algorithm was validated with existing tissue samples from the system 

described above. Data were collected from consented patients. 

5.3.3 Whiteness of Residual Test 

To test the goodness of fit we use the Ljung-Box test. The Ljung-Box test, 

assesses the randomness of a time series based on its autocorrelation and is defined as: 

fIg �  �
� � 2� � i6!� − �
6�j
6� 

 (26) 

where rk is the autocorrelation at lag k, n is the number of samples, and M is the number 

of lags being tested. Under the hypothesis that the residual is a random signal, the statistic 

Q follows a chi-squared distribution with h degrees of freedom (k!
l�), where h = M – 3,

since the bi-exponential model has 3 parameters. The test rejects the hypothesis that the 

residual is a random signal if: 

fIg > k! �#,l (27)
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where  k! �#,l is the a-quantile of the chi-squared distribution with h degrees of freedom. 

We used M = 20 and a = .05. 

 

5.4 Results 

5.4.1 Feature Selection 

The feature selection method was implemented using synthetic and experimental 

data. The synthetic data consisted of 4000 synthetic decays covering the whole lifetime 

range (0.1-10 ns) with varying SNR levels between 20-30 dB. The experimental data 

consisted of 3000 random pixel decays from 20 random datasets, which included standard 

fluorescence dyes (NADH and FAD), tissue from in vivo human oral mucosa and tissue 

form ex vivo human coronary arteries. In our first attempt, we tried to identify a single 

subset of features that would result adequate performance (in terms of the RMS-EP) for 

the entire range of average lifetimes. Unfortunately, the overall performance was not 

adequate. We noticed that a specific feature subset that was adequate for a specific range 

of average lifetimes was not adequate for decays with average lifetimes outside that range. 

To address this problem, we modified our classification strategy as follows. First, we 

identified the input measured signal as corresponding to an either ‘fast’ or ‘slow’ decay in 

terms of the value of one of our features: G
 �  ∑ �

�� (the area under the normalized 

signal). Input measured decays with values of G
 < 28 were considered fast decays, while 

those with G
 > 28 were identified as slow decays. The threshold of G
 � 28 was 

empirically selected. Then, we performed a feature selection for each of these two groups 

of decays. These results are also summarized in Table 4. 
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Table 4. Feature selection results. 

Fast Decays (G
 ≤ 28) Slow Decays (G
 > 28) 

Number of 

Features 
RMS-EP  

Number of 

Features 
RMS-EP 

3 17.57% 3 6.78% 
4 15.23% 4 6.23% 
5 15.19% 5 6.13% 

6 15.08% 6 6.08% 
 

 

These results indicate that four features are sufficient to attain adequate 

performance for the fast decays (G
 ≤ 28), while three features were sufficient for the slow 

decays (G
 > 28). The selected features are summarized in Table 5.  

 

Table 5. Selected features for the different groups. 

 Fast Decays (G
 ≤ 28) Slow Decays (G
 > 28) 

Features 

Feature G
 Feature D
 
Feature )! Feature D! 
Feature )" Feature E" 
Feature D< - 

 

 

5.4.2 Parameters for Selecting the Database Region 

As indicated before, the search was not performed on the entire database, but a 

region of it was selected based on a specific feature computed from the input measured 

decay, in order to accelerate the search speed. The selection of both such feature and the 

size (α, in terms of number of rows) of the selected database region will define the 

performance of our algorithm. The feature that resulted on the best performance (smallest 
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RMS-EP) was FeatureE<. To select the value of α we plot the performance of our 

algorithm versus α and the processing time versus α (Figure 17). The speed results show 

an exponential relationship between α and the pixels per second and the box plots from 

the error percentage shows a minimal improvement after α = 30 at a SNR level of 40 dB 

and minimal improvement after α = 20 at a SNR level of 25 dB. Based on these results 

we selected a value of α = 30. 

 

 

Figure 17. Performance and speed results to select the value of α. α. α. α.    
 

 

5.4.3 Synthetic Data 

5.4.3.1 Lifetime Results 

 An image map with the 40,000 pixels were created for visual display. Figure 18(a) 

shows the average lifetime maps at different SNR’s. Our method shows a very similar 

performance than LSIR in the entire range of lifetimes, even at low SNR levels. Figure 

18(b), shows the error percentage box plots of each method at 40, 30, 20 and 15 dB SNR. 

Our method shows an overestimation of the average lifetime values at low SNR. This is 
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expected since our features are summations of the measured decay and its transformation, 

and, since the expected value of Poisson noise is always positive, the values of the features 

are overestimated. 

 

5.4.3.2 Goodness of Fit Results 

The same 40,000 pixels were used to compute the Ljung-Box test. Figure 18(c) 

shows the passing percentage of the Ljung-Box test. The passing percentage indicates the 

percentage of pixels that their fitting residuals are considered a random signal based on 

the Ljung-Box test. Our method got similar results than LSIR between 40 and 20 dB SNR. 

Even at 15 dB our method have good results with almost 85% of passing rate. 
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Figure 18. Synthetic data results. (a) Lifetime maps at different SNRs. (b) 

Distribution of relative error in average lifetime values at different SNRs. (c) 

Ljung-Box test results at different SNRs. 

 

 

5.4.4 Experimental Data 

5.4.4.1 Standard Dyes Results 

The four capillaries were imaged with our system and the lifetime maps of both 

methods are shown it Figure 19(a). Figure 19(b) shows the lifetime histogram of both 

methods. We can see from these two figures that the values are similar.  
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Figure 19. Standard dyes results. (a) Lifetime maps. Color scale in nanoseconds. (b) 

Lifetime histogram. 

 

 

Table 6 compare these values with the ones reported by other groups for the same 

fluorescence dyes. 
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Table 6. Lifetime results from fluorescence standard dyes. Values are shown as       

(mean ±SD). 

Dye Our Method LSIR Literature 
9-CA 9.27 ± 0.63 ns 8.99 ± 0.57 ns 10.3 – 12.28 ns 
FAD 2.64 ± 0.29 ns 2.72 ± 0.26 ns 2.3 – 2.85 ns 

NADH 0.56 ± 0.17 ns 0.67 ± 0.31 ns 0.3 – 0.5 ns 
Fluorescein 4.25 ± 0.21 ns 4.23 ± 0.16 ns 4.0 – 4.2 ns 

 

 

5.4.4.2 Tissue Data Results 

Human oral mucosa from a consented patient was imaged in vivo and the lifetime 

maps of both methods are shown in Figure 20(a). Figure 20(b) shows the lifetime 

histogram of both methods. The results are consistent with the ones from the dyes 

experiment, the lifetime values of both methods are very similar. Figure 19(c), Figure 

19(e) and Figure 19 (g) shows the maps of the bi-exponential model parameters β, τ1 and 

τ2 correspondently, and Figure 19(d), Figure 19(f) and Figure 19(h) shows their 

correspondent histograms. As we can see even the individual bi-exponential parameters 

are similar between both methods, the biggest difference happens on the β parameter and 

this was expected since we have a poor resolution of 0.1 for this parameter in our method. 
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Figure 20. Human oral mucosa results. (a) Average lifetime maps. (b) Average 

lifetime histogram. (c) ββββ value maps. (d) ββββ value histogram. (e) ττττ1 maps. (f) ττττ1 

histogram. (g) ττττ2 maps. (h) ττττ2 histogram. 

 

 

5.4.5 Speed 

The most important characteristic of our algorithm is the reduction in 

computational time to estimate the deconvolved fIRF. We measured the speed of the 

algorithms by averaging the time to estimate 100,000 decays. Table 7, shows the speed in 

pixels per second of both methods. As we can see, an improvement of more than 600 times 

in speed compared to the LSIR method was achieved. To validate that the algorithm is 

able to estimate the average lifetime in real-time, we are presenting two videos (see 
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additional material). In the first video, showing 2 fluorescence dyes (FAD and 

Fluorescein) loaded into capillary tubes being imaged at 4 frames per second, it can be 

noticed from the histogram that there are no motion artifacts. In the second video, showing 

a fingerprint being imaged at 1 frames per second, no motion artifacts is noticed and it 

further demonstrates that our algorithm not only works for single exponential decays. 

 

Table 7. Speed results for both methods. 

*Computer: Processor i7-5820K (6 Cores @ 3.3 GHz) and 60 GB RAM. 

Method Speed (Pixels/Second)* 

LSIR 908 
Our Algorithm 552,334 

 

 

5.5 Discussions and Conclusions 

We have proposed a fast bi-exponential deconvolution algorithm for real time 

FLIM data processing. This algorithm selects the best match for the measured 

fluorescence decay from a database of simulated decays with known bi-exponential 

parameters. Since the database is built by convolving the instrument response with a 

family of bi-exponential decays covering a predefined range of lifetimes, deconvolution 

is no longer required to estimate the fIRF and calculate the average lifetime.  

A set of transformations were applied to the measured signal to improve the 

differentiation between close lifetime values and also to reduce the noise. The features 

used in this algorithm are fast to calculate, and showed that they are also robust to noise 

and able to differentiate between similar lifetime values and ranges.  
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The algorithm described in this paper was successfully validated with both, 

synthetic and experimental data, proving that it can fit bi-exponential decays and showing 

similar results and performance than the nonlinear LSIR method. 

In terms of accuracy our method was similar to the true lifetime values for the 

synthetic data tests even at average lifetime values of less than 1 ns, at different SNR, 

proving that our method is deconvolving the instrument response from the measured 

decay. Our method showed some overestimation at high levels of noise and this was 

expected since our features are summations of the measured decay and its transformation, 

and the expected value of Poisson noise is always positive. As a result of this, our features 

calculate higher values, similar to the ones of slower decays.  

One of our goals with this method was to be able to calculate the average lifetime 

in real-time and our method showed an increase in speed of more than 600 times compared 

to the LSIR method. Moreover, it showed a processing speed of 500,000 pixels per second 

which is faster than the laser repetition rate of the lasers used for pulse sampling FLIM.  

FLIM has been also explored for non-destructive tissue characterization and tissue 

classification, analyzing the fluorescence decay and extracting a set of features (such as 

the fluorescence intensity, average fluorescence lifetime or the Laguerre coefficients). We 

believe that the features used in our proposed algorithm can be also utilized for tissue 

characterization and tissue classification. 

In summary, we have developed a fast and accurate bi-exponential algorithm for 

real-time processing of time-domain FLIM data, which will facilitate practical 

applications of FLIM, including clinical diagnosis.  Furthermore, since this is a general 
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bi-exponential fitting algorithm, it can be also used in a different variety of applications, 

including flow cytometry [44, 45], magnetic resonance imaging [46], fluorescence 

resonance energy transfer [47], among others.  
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6. FLIM BASED DETECTION OF PRE-CANCEROUS AND CANCEROUS 

LESIONS FROM BENIGN ORAL LESIONS 

6.1 Introduction 

Despite of the ease accessibility of the oral cavity, the majority of oral cancers are 

diagnosed at advantage stages, when the cancer has already metastasized to other 

locations, most commonly to the lymph nodes of the neck [11]. There are several factors 

that contribute to the low rate of early detection of oral cancer. One reason is that early 

stage oral cancer lesions are frequently asymptomatic and therefore unnoticed by the 

patient. Another reason is that premalignant and malignant oral lesions are very difficult 

to distinguish from most common benign lesions during clinical visual examination, even 

for the most experienced health providers. Finally, sampling error during biopsy 

procedures is also common, particularly in large and diffuse lesions in which the decision 

on where to take the tissue biopsy is made often randomly.  As mentioned in Section 1.3, 

CADSS systems have emerge to help physicians in their clinical diagnosis by providing 

them additional information about the lesions. CADSS systems have been used to detect 

other types of pathologies, including breast cancer [48-50], acute stroke care [51], 

gastrointestinal lesions [52] and melanoma [53]. 

Progression of oral cancer is accompanied by alterations in the intrinsic 

fluorescence properties of the oral tissue as a consequence of changes in the relative 

abundance of tissue endogenous fluorophores, specifically collagen, nicotinamide adenine 

dinucleotide (NADH) and flavine adenine dinucleotide (FAD) [54-57]. These changes 

occur due to difference in metabolism between healthy and malignant cells, as well as to 
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degradation of stromal collagen. The ability of FLIM to detect biochemical changes makes 

it suitable for the diagnosis of oral cancer. In Sections 3, a combined FLIM-RCM system 

was presented. This system was used on a hamster cheek pouch model of oral 

carcinogenesis to differentiate between dysplastic and normal tissue. In Section 4, a 

handheld probe FLIM system was used in a clinical study of human oral tissue ex vivo and 

in vivo. In this Section the handheld probe from Section 4 was used in an in vivo human 

study aiming to demonstrate the ability to differentiate between precancer and cancer from 

benign oral lesions. 

The in vivo human data collected with the FLIM system was separated into benign 

and malignant lesions based on the histopathological diagnosis. The objective of this study 

was to use the FLIM data for each patient to design a classifier that can help the 

differentiation between benign and malignant lesions.  Several characteristics or features 

from the FLIM data were evaluated to perform the classification task. The performance of 

these features was compared based on the sensitivity and specificity of the correspondent 

classifier.  

 

6.2 Methods 

6.2.1 Subjects 

 The imaging protocols were approved by the Institutional Review Boards at Texas 

A&M University and Texas A&M University College of Dentistry. Patients undergoing 

tissue biopsy examination of suspicious premalignant and malignant oral lesions were 

recruited. Written informed consent was obtained from all patients recruited. A total of 80 



 

75 

 

patients were recruited to this study. In 38 of these patients, either FLIM images were not 

collected (due to the anatomical location of the lesion and/or technical issues with the 

FLIM endoscopic system) or the quality of the FLIM images was too poor for further 

processing, see Table 8. It is worth mentioning that the last 9 patients has been successfully 

imaged. Therefore, the FLIM data from only 42 patients were used. The distribution of 

imaged oral lesions based on their anatomical location and histopathological diagnosis is 

provided in Table 9. 

 

Table 8. Distribution of unsuccesful imaging per reason. 

Reason 
Anatomical 

Location 
Technical 

Issues 
Poor 

Quality 
Total 

Number of 
Patients 

9 10 19 38 

 

 

Table 9. Number of patients per location and diagnosis. 

 Benign 
Mild 

Dysplasia 
SCC Total 

Tongue 8 5 5 18 
Gingiva 9 0 5 14 

Oral Mucosa 8 0 2 10 
Total 25 5 12 42 

 

 

6.2.2 Imaging 

 FLIM data were acquired using the multispectral handheld probe from Section 4. 

The target oral lesion was first imaged by placing the probe at the center of the lesion. 

Then, an additional image from a visually healthy region on the contralateral side of the 
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lesion was also acquired. Therefore, for each patient, a pair of FLIM images was collected 

(lesion site, contralateral healthy looking site). The multispectral FLIM data consisted of 

three fluorescence decays per pixel (one per emission band), with 160 x 160 pixels per 

scan over a FOV of 10 x 10 mm2.  

 

6.2.3 Histology and Pathological Evaluation 

 After in vivo imaging, a biopsy was taken from the target oral lesion. After surgical 

excision, the tissue samples were placed in 10% buffered formalin and processed routinely 

for histopathological evaluation using standard hematoxylin and eosin (H&E) staining. 

The histological sections were reviewed by two oral pathologists (Drs. Wright and Cheng, 

TAMU College of Dentistry), and each lesion was diagnosed in one of the following 

categories: benign, dysplasia, or squamous cell carcinoma (SCC). 

 

6.2.4 Image Preprocessing 

 The FLIM data was preprocessed as follows before further analysis for tissue 

classification.  Pixels with either a low SNR (less than 25 dB) or saturated intensities were 

masked and not including in subsequent analysis. A 4 x 4 spatial median filter was applied 

to improve the SNR of the time-resolved FLIM data. Finally, the integrated intensities for 

each channel were calibrated to compensate for the different overall spectral response of 

the emission spectral channels. 
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6.2.5 Feature Extraction 

 For each decay (per emission spectral band and per pixel), the following features 

were extracted: features used during the bi-exponential deconvolution algorithm, average 

lifetime, highest component of the bi-exponential model, normalized peak intensity and 

normalized integrated intensity. In addition, the ratios between the peak and integrated 

intensities per emission band were also included as features. In total 42 features per pixel 

were extracted. In addition, the FLIM image collected at the contralateral healthy looking 

side was also used to provide relative values of the previous 42 features, as follows. First, 

the median pixel value of the feature from the contralateral FLIM image was computed as 

the reference feature value. Then, this reference feature value was subtracted to each of 

the corresponding feature pixel values of the lesion image, resulting in 42 relative features. 

Therefore, a total of 84 features were extracted per pixel. Table 10 summarizes all these 

features extracted from the FLIM data. The following is a detailed definition of these 

different features. 

 

6.2.5.1 Bi-exponential Deconvolution Algorithm Features 

 The bi-exponential deconvolution algorithm described in Section 5 was used to 

obtain the fIRF. The 8 features used to calculate the fIRF, were used as features of the 

classifier algorithm, see Table 11. 
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Table 10. Table showing all the features used for the feature selection step. 
# Description Ch Feature ID # Description Ch Feature ID 

1 Feature D0 described in Section 5.2.2 1 Alg_1_1 43 Alg_1_1 minus reference 1 Alg_1_1_Ref 

2 Feature A0 described in Section 5.2.2 1 Alg_2_1 44 Alg_2_1 minus reference 1 Alg_2_1_Ref 

3 Feature A2 described in Section 5.2.2 1 Alg_3_1 45 Alg_3_1 minus reference 1 Alg_3_1_Ref 

4 Feature E2 described in Section 5.2.2 1 Alg_4_1 46 Alg_4_1 minus reference 1 Alg_4_1_Ref 

5 Feature B3 described in Section 5.2.2 1 Alg_5_1 47 Alg_5_1 minus reference 1 Alg_5_1_Ref 

6 Feature E3 described in Section 5.2.2 1 Alg_6_1 48 Alg_6_1 minus reference 1 Alg_6_1_Ref 

7 Feature B5 described in Section 5.2.2 1 Alg_7_1 49 Alg_7_1 minus reference 1 Alg_7_1_Ref 

8 Feature A5 described in Section 5.2.2 1 Alg_8_1 50 Alg_8_1 minus reference 1 Alg_8_1_Ref 

9 Average Lifetime 1 Avg_Lif_1 51 Avg_Lif_1 minus reference 1 Avg_Lif_1_Ref 

10 Highest Component 1 Hst_Lif_1 52 Hst_Lif_1 minus reference 1 Hst_Lif_1_Ref 

11 Feature D0 described in Section 5.2.2 2 Alg_1_2 53 Alg_1_2 minus reference 2 Alg_1_2_Ref 

12 Feature A0 described in Section 5.2.2 2 Alg_2_2 54 Alg_2_2 minus reference 2 Alg_2_2_Ref 

13 Feature A2 described in Section 5.2.2 2 Alg_3_2 55 Alg_3_2 minus reference 2 Alg_3_2_Ref 

14 Feature E2 described in Section 5.2.2 2 Alg_4_2 56 Alg_4_2 minus reference 2 Alg_4_2_Ref 

15 Feature B3 described in Section 5.2.2 2 Alg_5_2 57 Alg_5_2 minus reference 2 Alg_5_2_Ref 

16 Feature E3 described in Section 5.2.2 2 Alg_6_2 58 Alg_6_2 minus reference 2 Alg_6_2_Ref 

17 Feature B5 described in Section 5.2.2 2 Alg_7_2 59 Alg_7_2 minus reference 2 Alg_7_2_Ref 

18 Feature A5 described in Section 5.2.2 2 Alg_8_2 60 Alg_8_2 minus reference 2 Alg_8_2_Ref 

19 Average Lifetime 2 Avg_Lif_2 61 Avg_Lif_2 minus reference 2 Avg_Lif_2_Ref 

20 Highest Component 2 Hst_Lif_2 62 Hst_Lif_2 minus reference 2 Hst_Lif_2_Ref 

21 Feature D0 described in Section 5.2.2 3 Alg_1_3 63 Alg_1_3 minus reference 3 Alg_1_3_Ref 

22 Feature A0 described in Section 5.2.2 3 Alg_2_3 64 Alg_2_3 minus reference 3 Alg_2_3_Ref 

23 Feature A2 described in Section 5.2.2 3 Alg_3_3 65 Alg_3_3 minus reference 3 Alg_3_3_Ref 

24 Feature E2 described in Section 5.2.2 3 Alg_4_3 66 Alg_4_3 minus reference 3 Alg_4_3_Ref 

25 Feature B3 described in Section 5.2.2 3 Alg_5_3 67 Alg_5_3 minus reference 3 Alg_5_3_Ref 

26 Feature E3 described in Section 5.2.2 3 Alg_6_3 68 Alg_6_3 minus reference 3 Alg_6_3_Ref 

27 Feature B5 described in Section 5.2.2 3 Alg_7_3 69 Alg_7_3 minus reference 3 Alg_7_3_Ref 

28 Feature A5 described in Section 5.2.2 3 Alg_8_3 70 Alg_8_3 minus reference 3 Alg_8_3_Ref 

29 Average Lifetime 3 Avg_Lif_3 71 Avg_Lif_3 minus reference 3 Avg_Lif_3_Ref 

30 Highest Component 3 Hst_Lif_3 72 Hst_Lif_3 minus reference 3 Hst_Lif_3_Ref 

31 Normalized Peak Intensity 1 N_Peak_Int_1 73 N_Peak_Int_1 minus reference 1 N_Peak_Int_1_Ref 

32 Normalized Peak Intensity 2 N_Peak_Int_2 74 N_Peak_Int_2 minus reference 2 N_Peak_Int_2_Ref 

33 Normalized Peak Intensity 3 N_Peak_Int_3 75 N_Peak_Int_3 minus reference 3 N_Peak_Int_3_Ref 

34 Normalized Integrated Intensity 1 N_Integrated_Int_1 76 N_Integrated_Int_1 minus reference 1 N_Integrated_Int_1_Ref 

35 Normalized Integrated Intensity 2 N_Integrated_Int_2 77 N_Integrated_Int_2 minus reference 2 N_Integrated_Int_2_Ref 

36 Normalized Integrated Intensity 3 N_Integrated_Int_3 78 N_Integrated_Int_3 minus reference 3 N_Integrated_Int_3_Ref 

37 N_Peak_Int_1 / N_Peak_Int_2 - R_Peak_1_2 79 R_Peak_1_2 minus reference - R_Peak_1_2_Ref 

38 N_Peak_Int_1 / N_Peak_Int_3 - R_Peak_1_3 80 R_Peak_1_3 minus reference - R_Peak_1_3_Ref 

39 N_Peak_Int_2 / N_Peak_Int_3 - R_Peak_2_3 81 R_Peak_2_3 minus reference - R_Peak_2_3_Ref 

40 Integrated_Int_1 / Integrated_Int_2 - R_Integrated_1_2 82 R_Integrated_1_2 minus reference - R_Integrated_1_2_Ref 

41 Integrated_Int_1 / Integrated_Int_3 - R_Integrated_1_3 83 R_Integrated_1_3 minus reference - R_Integrated_1_3_Ref 

42 Integrated_Int_2 / Integrated_Int_3 - R_Integrated_2_3 84 R_Integrated_2_3 minus reference - R_Integrated_2_3_Ref 
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Table 11. Features used from the bi-exponential deconvolution algorithm. 

Features Used 
Feature G
 Feature D
 
Feature )! Feature D! 
Feature )" Feature E" 
Feature D< Feature E< 

 

 

6.2.5.2 Average Lifetime 

 The average lifetime feature is calculated as: 

 

 � � ∑ �ℎ
�����
∑ ℎ
�����
  (28) 

 

where h(n) is the fIRF. 

 

6.2.5.3 Highest Component 

 The highest component feature is the lifetime with the highest weight of the bi-

exponential model obtained by the bi-exponential deconvolution algorithm and is 

calculated as: 

 nopℎ�q� Frstr���� � u� , / ≥ 0.5�!, r�ℎ�iwoq� (29) 

 

where � , �! and / are the parameters of the bi-exponential model. 

 

6.2.5.4 Normalized Peak Intensity 

 The normalized peak intensity feature is calculated for each channel as: 
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where 	����_xy#6_� is the normalized intensity of channel i, 	xy#6_� is the peak intensity of

channel i and hi(n) is the fIRF of channel i. 

6.2.5.5 Normalized Integrated Intensity 

The normalized integrated intensity feature is calculated for each channel as: 
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where 	����_���y%�#�y�_� is the normalized integrated intensity of channel i, 	���y%�#y��_� is
the integrated intensity of channel i and hi(n) is the fIRF of channel i. 

6.2.6 Feature Selection 

The number of features is critical to the success of a classifier. Too many features 

can lead to overfitting and poor performance in data independent to the training data. 

Noisy features or irrelevant features can also decrease the classification performance and 

increase the computational load. To select only relevant features and reduce the feature 

80 
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space dimensions, feature selection algorithms could be applied. Feature selection 

algorithms can be generally divided into wrapper and filter algorithms. Wrapper 

algorithms utilize the classifier algorithm to score the feature subsets based on the 

classifier performance. Filter algorithms select subsets of features independently of the 

classifier. The following wrapper algorithm was adopted and applied in our data, in which 

feature subsets were selected based on the highest leave-one-out classification 

performance. First, an exhaustive search of all possible combinations of 3 features was 

performed. The best 80 3-feature combinations were selected, and a sequential forward 

search was used, in which features are progressively added. At each iteration, the best 80 

combinations were kept. Following this feature selection strategy, the best feature vector 

of sizes 3, 4, 5 and 6 were identified. 

  

6.2.7 Classifier Algorithm 

 As mentioned in Section 1.3, a QDA algorithm was used to classify each pixel in 

one of two categories: 1) benign (B), 2) dysplasia (Dys) or SCC (Dys/SCC). In QDA, the 

class-conditional probability densities are assumed to me multivariate normal distributions 

having different mean vectors and different covariance matrices. QDA has been used to 

differentiate different types of cancer like prostate cancer [58, 59], breast cancer [60, 61], 

and ovarian and fallopian tube cancer [62]. 
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6.2.8 Validation 

 Validating a classifier involves testing it on a set of samples that are independent 

of the training set. This can be done by dividing the dataset into a training set and a 

validation set. When the dataset is small, it is recommended to use all the dataset for 

training [63, 64]; however, the classifier cannot be validated using the same data that were 

used to train the classifier. One approach to overcome this problem is to apply leave-one-

out cross-validation (LOOCV) strategies. In this approach, one sample is removed from 

the training set and used as the test set. This process is repeated for each member of the 

available dataset. This gives us the advantage of testing with a part of the data that has not 

been involved in the training, hence it can be considered as being independent, and at the 

same time using, eventually, all the data both for training and testing [63].  

The QDA classifier was trained to classify each pixel of the entire FLIM image as 

either B or Dys/SCC. However, the LOOCV was applied by excluding a whole entire 

lesion FLIM data of the training set at every iteration in order to minimize sharing pixels 

from the same lesion between the training and validation set. Since each lesion 

corresponds to one independent patient, we named this strategy as Leave-OnePatient-Out 

cross-validation (LOOPCV). Once all pixels of the testing lesion image had been 

classified, the entire lesion was classified as Dys/SCC if 25% or more pixels were 

classified as Dys/SCC; otherwise, the entire lesion was classified as benign. The threshold 

(25%) for the percentage of Dys/SCC classified pixels was determined by means of giving 

more importance to malignant pixels and minimize the case of false negatives. 
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 Sensitivity of a classifier is the proportion of patients with disease who test positive 

(true positive rate). Specificity of a classifier is the proportion of patients without a disease 

who test negative (true negative rate). The classifier performance was evaluated by 

computing the sensitivity and specificity for classifying Dys/SCC lesions by pooling the 

results of all the cross-validation folds. 

 

6.3 Results 

As indicated before, a binary classification algorithm was developed to distinguish 

Dys/SCC from Benign lesions. The following four binary classification problems were 

solved and their LOOPCV performance quantified: 

1) Classification of ALL lesions regardless of their anatomical locations. 

2) Classification of all lesions of the tongue. 

3) Classification of all lesions of the gingiva. 

4) Classification of all lesions of the mucosa. 

 

6.3.1 All Lesions Classification Results 

Four different classifiers were trained, each one with either 3, 4, 5 or 6 features. 

The best features selected for each classifier are summarized in Table 12, and their 

corresponding LOOPCV confusion matrixes are shown in Table 13. The sensitivity and 

specificity values of each classifier are shown in Table 14. The pixel classification maps 

and the percentage of Dys/SCC pixels per image are shown in Figure 21, Figure 22, Figure 

23 and Figure 24. As we can see from Table 14, the classification performance increased 
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with the number of features. The maximum sensitivity of 88% is reached with 6 features 

and adding one more feature didn’t improve the performance (result not shown).  

 

 

Table 12. Table showing the best subsets for the 4 classifiers using the datasets of 

all lesions. 

 
3 Features 4 Features 5 Features 6 Features 

# Feature ID # Feature ID # Feature ID # Feature ID 

Features 

31 N_Peak_Int_1 32 N_Peak_Int_2 4 Alg_4_1 4 Alg_4_1 
37 R_Peak_1_2 37 Ratio_Peak_1_2 33 N_Peak_Int_3 33 N_Peak_Int_3 
45 Alg_3_1_Ref 74 N_Peak_Int_2_Ref 46 Alg_4_1_Ref 37 R_Peak_1_2 
-  84 R_Integrated_2_3_Ref 60 Alg_8_2_Ref 46 Alg_4_1_Ref 
-  -  80 R_Peak_1_3_Ref 60 Alg_8_2_Ref 
-  -  -  80 R_Peak_1_3_Ref 

 

 

Table 13. Confusion matrixes for the 4 classifiers using the datasets of all lesions. 

3 Features  4 Features 
  Predicted    Predicted 
  Positive Negative    Positive Negative 

O
bs

er
ve

d Positive 9 8  

O
bs

er
ve

d Positive 12 5 

Negative 1 24  Negative 0 25 

         

5 Features  6 Features 
  Predicted    Predicted 
  Positive Negative    Positive Negative 

O
bs

er
ve

d Positive 14 3  

O
bs

er
ve

d Positive 15 2 

Negative 0 25  Negative 0 25 
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Table 14. Sensitivity and specificity of detecting Dys/SCC lesions for the 4 

classifiers using the datasets of all lesions. 

Subset 

Sensitivity Specificity 

Estimated 
Value 

95% Confidence 
Interval 

Estimated 
Value 

95% Confidence 
Interval 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

3 Features 0.53 0.29 0.76 0.96 0.77 0.99 
4 Features 0.70 0.44 0.88 1 0.83 1 
5 Features 0.82 0.55 0.95 1 0.83 1 
6 Features 0.88 0.62 0.97 1 0.83 1 

 

 

 

Figure 21. Pixels classification map using 3 features using the datasets of all lesions. 

Percentage under each image is the percentage of malignant pixels. 
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Figure 22. Pixels classification map using 4 features using the datasets of all lesions. 

Percentage under each image is the percentage of malignant pixels. 
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Figure 23. Pixels classification map using 5 features using the datasets of all lesions. 

Percentage under each image is the percentage of malignant pixels. 
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Figure 24. Pixels classification map using 6 features using the datasets of all lesions. 

Percentage under each image is the percentage of malignant pixels. 

 

 

6.3.2 Tongue Classifier Results 

Four different classifiers were trained, each one with either 3, 4, 5 or 6 features. 

The best features selected for each classifier are summarized in Table 15, and their 

corresponding LOOPCV confusion matrixes are shown in Table 16. The sensitivity and 

specificity values of each classifier are shown in Table 17. The pixel classification maps 

and the percentage of Dys/SCC pixels per image are shown in Figure 25, Figure 26, Figure 
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27 and Figure 28. As we can see from Table 17, the sensitivity and specificity is already 

100% with a feature set of size 3, which suggest that the algorithm is not overfitting. 

 

 

Table 15. Table showing the best subsets for the 4 classifiers using the datasets of 

all tongue lesions. 

 
3 Features 4 Features 5 Features 6 Features 

 Feature ID  Feature ID  Feature ID  Feature ID 

F
ea

tu
re

s 

 Alg_6_1_Ref  R_Integrated_1_2  Alg_1_2  Alg_1_3 
 N_Integrated_Int_2_Ref  Algo_8_1_Ref  N_Peak_Int_3  Alg_5_1_Ref 
 R_Peak_1_3_Ref  N_Peak_Int_2_Ref  R_Peak_1_3  Alg_1_3_Ref 
 -  R_Peak_1_3_Ref  Algo_8_1_Ref  N_Integrated_Int_2_Ref 
 -    N_Peak_Int_1_Ref  N_Integrated_Int_3_Ref 
 -    -  R_Peak_1_3_Ref 

 

 

Table 16. Confusion matrixes for the 4 classifiers using the datasets of all tongue 

lesions. 

3 Features  4 Features 
  Predicted    Predicted 
  Positive Negative    Positive Negative 

O
bs

er
ve

d Positive 10 0  

O
bs

er
ve

d Positive 10 0 

Negative 0 8  Negative 0 8 

         

5 Features  6 Features 
  Predicted    Predicted 
  Positive Negative    Positive Negative 

O
bs

er
ve

d Positive 10 0  

O
bs

er
ve

d Positive 10 0 

Negative 0 8  Negative 0 8 
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Table 17. Sensitivity and specificity of detecting Dys/SCC lesions for the 4 

classifiers using the datasets of all tongue lesions. 

Subset 

Sensitivity Specificity 

Estimated 
Value 

95% Confidence 
Interval 

Estimated 
Value 

95% Confidence 
Interval 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

3 Features 1 0.65 1 1 0.59 1 
4 Features 1 0.65 1 1 0.59 1 
5 Features 1 0.65 1 1 0.59 1 
6 Features 1 0.65 1 1 0.59 1 

 

 

 

 

Figure 25. Pixels classification map using 3 features using the datasets of all tongue 

lesions. Percentage under each image is the percentage of malignant pixels. 
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Figure 26. Pixels classification map using 4 features using the datasets of all tongue 

lesions. Percentage under each image is the percentage of malignant pixels. 
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Figure 27. Pixels classification map using 5 features using the datasets of all tongue 

lesions. Percentage under each image is the percentage of malignant pixels. 
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Figure 28. Pixels classification map using 6 features using the datasets of all tongue 

lesions. Percentage under each image is the percentage of malignant pixels. 

 

 

6.3.3 Gingiva Classifier Results 

Four different classifiers were trained, each one with either 3, 4, 5 or 6 features. 

The best features selected for each classifier are summarized in Table 18, and their 

corresponding LOOPCV confusion matrixes are shown in Table 19. The sensitivity and 

specificity values of each classifier are shown in Table 20. The pixel classification maps 

and the percentage of Dys/SCC pixels per image are shown in Figure 29, Figure 30, Figure 

31 and Figure 32. As we can see from Table 20, the sensitivity and specificity is already 

100% with a feature set size 3, which again indicates that the algorithm is not overfitting. 
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Table 18. Table showing the best subsets for the 4 classifiers using the datasets of 

all gingiva lesions. 

 
3 Features 4 Features 5 Features 6 Features 

# Feature ID # Feature ID # Feature ID # Feature ID 

F
ea

tu
re

s 

33 N_Peak_Int_3 21 Alg_1_3 21 Alg_1_3 5 Alg_5_1 
41 R_Integrated_2_3 22 Alg_2_3 22 Alg_2_3 40 R_Integrated_1_2 
67 Alg_5_3_Ref 41 R_Integrated_1_3 41 R_Integrated_1_3 41 R_Integrated_1_3 

  75 N_Peak_Int_3_Ref 73 N_Peak_Int_1_Ref 53 Alg_1_2_Ref 
  - - 75 N_Peak_Int_3_Ref 66 Alg_4_3_Ref 
  - - - - 78 N_Integrated_Int_3_Ref 

 

 

Table 19. Confusion matrixes for the 4 classifiers using the datasets of all gingiva 

lesions. 

3 Features  4 Features 
  Predicted    Predicted 
  Positive Negative    Positive Negative 

O
bs

er
ve

d 

Positive 5 0  

O
bs

er
ve

d 

Positive 5 0 

Negative 0 9  Negative 0 9 

         

5 Features  6 Features 
  Predicted    Predicted 
  Positive Negative    Positive Negative 

O
bs

er
ve

d Positive 5 0  

O
bs

er
ve

d Positive 5 0 

Negative 0 9  Negative 0 9 
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Table 20. Sensitivity and specificity of detecting Dys/SCC lesions for the 4 

classifiers using the datasets of all gingiva lesions. 

Subset 

Sensitivity Specificity 

Estimated 
Value 

95% Confidence 
Interval 

Estimated 
Value 

95% Confidence 
Interval 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

3 Features 1 0.46 1 1 0.62 1 
4 Features 1 0.46 1 1 0.62 1 
5 Features 1 0.46 1 1 0.62 1 
6 Features 1 0.46 1 1 0.62 1 

 

 

 

Figure 29. Pixels classification map using 3 features using the datasets of all gingiva 

lesions. Percentage under each image is the percentage of malignant pixels. 
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Figure 30. Pixels classification map using 4 features using the datasets of all gingiva 

lesions. Percentage under each image is the percentage of malignant pixels. 
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Figure 31. Pixels classification map using 5 features using the datasets of all gingiva 

lesions. Percentage under each image is the percentage of malignant pixels. 
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Figure 32. Pixels classification map using 6 features using the datasets of all gingiva 

lesions. Percentage under each image is the percentage of malignant pixels. 

 

 

6.3.4 Oral Mucosa Classifier Results 

Four different classifiers were trained, each one with either 3, 4, 5 or 6 features. 

The best features selected for each classifier are summarized in Table 21, and their 

corresponding LOOPCV confusion matrixes are shown in Table 22. The sensitivity and 

specificity values of each classifier are shown in Table 23. The pixel classification maps 

and the percentage of Dys/SCC pixels per image are shown in Figure 33, Figure 34, Figure 

35 and Figure 36. Even though the performance of the algorithm is perfect, due to the few 
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samples, this performance is probably overoptimistic and additional samples are needed 

to estimate the true performance of this classifier. 

 

 

 

Table 21. Table showing the best subsets for the 4 classifiers using the datasets of 

all oral mucosa lesions. 

 
3 Features 4 Features 5 Features 6 Features 

# Feature ID # Feature ID # Feature ID # Feature ID 

F
ea

tu
re

s 

24 Alg_4_3 23 Alg_3_3 23 Alg_3_3 23 Alg_3_3 
65 Alg_3_3_Ref 59 Alg_7_2_Ref 27 Alg_7_3 28 Alg_8_3 
72 Hst_Lif_3_Ref 66 Alg_4_3_Ref 43 Alg_1_1_Ref 36 N_Integrated_Int_3 
  67 Alg_5_3_Ref 66 Alg_4_3_Ref 44 Alg_2_1_Ref 
  - - 67 Alg_5_3_Ref 66 Alg_4_3_Ref 
  - - - - 67 Alg_5_3_Ref 

 

 

 

Table 22. Confusion matrixes for the 4 classifiers using the datasets of all oral 

mucosa lesions. 

3 Features  4 Features 
  Predicted    Predicted 
  Positive Negative    Positive Negative 

O
bs

er
ve

d 

Positive 2 0  

O
bs

er
ve

d 

Positive 2 0 

Negative 0 8  Negative 0 8 

         

5 Features  6 Features 
  Predicted    Predicted 
  Positive Negative    Positive Negative 

O
bs

er
ve

d Positive 2 0  

O
bs

er
ve

d Positive 2 0 

Negative 0 8  Negative 0 8 
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Table 23. Sensitivity and specificity of detecting Dys/SCC lesions for the 4 

classifiers using the datasets of all oral mucosa lesions. 

Subset 

Sensitivity Specificity 

Estima
ted 

Value 

95% Confidence 
Interval Estima

ted 
Value 

95% Confidence 
Interval 

Lower 
Limit 

Upper 
Limit 

Lower 
Limit 

Upper 
Limit 

3 Features 1 0.19 1 1 0.59 1 
4 Features 1 0.19 1 1 0.59 1 
5 Features 1 0.19 1 1 0.59 1 
6 Features 1 0.19 1 1 0.59 1 

 

 

 

Figure 33. Pixels classification map using 3 features using the datasets of all oral 

mucosa lesions. Percentage under each image is the percentage of malignant pixels. 
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Figure 34. Pixels classification map using 4 features using the datasets of all oral 

mucosa lesions. Percentage under each image is the percentage of malignant pixels. 

 

 

Figure 35. Pixels classification map using 5 features using the datasets of all oral 

mucosa lesions. Percentage under each image is the percentage of malignant pixels. 
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Figure 36. Pixels classification map using 6 features using the datasets of all oral 

mucosa lesions. Percentage under each image is the percentage of malignant pixels. 

 

 

6.4 Discussion and Conclusion 

 This study demonstrates the potential of FLIM to differentiate between 

precancerous (mild Dysplasia) and cancerous (SCC) lesions from a wide range of benign 

lesions. The best classifier (using 6 features) trained on all the lesions misclassified only 

two lesions, which corresponded to the only two Dys/SCC samples from oral mucosa. 

These might indicate that the two malignant images are different that all the other 

malignant cases and the performance can be improved by increasing the FLIM database 

of oral mucosa lesions. 

  The other three location-specific classifiers were able to reach sensitivity and 

specificity of 100%. Although these values are probably overoptimistic due to the small 

sample size, these results are encouraging. In addition, in all cases only three features were 
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needed, which reduces the probability of overfitting. Although cross-validation method 

can remove the bias, there is still the possibility that we are overestimating the data by 

selecting the best possible result. This also applies to the feature selection search, by using 

all the data in the process we can get overly optimistic results [65, 66]. Nevertheless it 

shows the potential of this classifiers to become a CADSS system. 

 There are several limitations to this study. First, the sample size is small and many 

more patients need to be recruited into our ongoing study. Second, when annotating our 

data based on the histopathology evaluation, the whole lesion was assigned to a single 

category in spited of the fact that not all the pixels for that lesion corresponds to the same 

class. This problem can perhaps be mitigated by exploring unsupervised training 

algorithms, such as clustering or association rule learning[67]. Another issue we need to 

address is how the entire lesion is assessed based on the pixel classification maps. We are 

currently using a threshold of 25% pixels classified as Dys/SCC in order to favor 

sensitivity over specificity, since for cancer diagnosis it is preferable to have a higher rate 

of false positives than that of false negatives.  

In conclusion, we have demonstrated that FLIM has the potential to distinguish 

dysplastic and SCC lesions from many benign conditions. Our results also show that our 

proposed bi-exponential deconvolution algorithm can be also used to extract valuable 

FLIM features for diagnostic purposes. Altogether, this work has demonstrated the 

potentials of endogenous FLIM endoscopy as a clinical tool for early detection of oral 

epithelial cancer. Our future efforts will be focused on continue collecting more data and 
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improving our classification algorithms to fully demonstrate the capabilities of 

endogenous FLIM for early detection of oral epithelial cancer.  
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7. CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

There is no doubt that FLIM has the potential to become a clinical diagnosis 

technique for several diseases. A central issue for the translation of FLIM into the medical 

field is the development of a robust, fast and cost-effective FLIM instrumentation suitable 

for in vivo tissue imaging [8]. The main goal of this dissertation was to develop tools that 

can help to the transition of FLIM systems into the medical field.  First, an endoscopic 

system for fast (0.5-4 frames/second) endogenous FLIM imaging of oral lesions was 

developed. The FLIM endoscope system is currently being evaluated at Texas A&M 

University College of Dentistry. This system enable the fast acquisition and large field of 

view needed for clinical diagnosis. Second, a novel fluorescence lifetime 

estimation algorithm was developed to achieve robust, accurate, and real-time 

fluorescence lifetime estimation. This algorithm is enabling real-time FLIM image 

processing and visualization during the endoscopic examination of patients with 

suspicious oral lesions. The results showed that the performance of the algorithm are in 

the same order as the one from the nonlinear LSIR algorithm but more than 2 orders of 

magnitude faster. Finally, the endoscopic endogenous FLIM data from suspicious oral 

lesions collected at the Texas A&M College of Dentistry was used to develop machine 

learning algorithms for automated identification of pre-cancerous and cancerous from 

benign oral epithelial lesions. Our results indicate that endogenous FLIM endoscopy can 

detect oral epithelial pre-cancer and cancer from a wider range of benign condition, with 

levels of sensitivity and specificity above 85%.  
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All this tools together allow us to acquire, process, display and diagnose an oral 

lesion in real time. Moreover, with some modifications this tools can be applied to other 

cancer locations and diseases. 

 

7.2 Future Work 

 The system is still collecting data at Texas A&M College of Dentistry, by 

collecting data we’ll be improving the algorithms performance, and also allow us to try 

new algorithms like unsupervised training algorithms and neural networks. 

 Also a new FLIM system will be collecting data in a hospital in Qatar, the system 

will be imaging patients that undergo surgery. An implementation of the classifier 

algorithm will be performed to be able to test the classification maps and the diagnosis in 

real-time.  
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