
MANIPULATING OBJECTS USING COMPLIANT, UNACTUATED TAILS:

MODELING AND PLANNING

A Dissertation

by

YOUNG-HO KIM

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Dylan A. Shell
Committee Members, Ergun Akleman

Ricardo Gutierrez-Osuna
Dezhen Song

Head of Department, Dilma Da Silva

May 2017

Major Subject: Computer Engineering

Copyright 2017 Young-Ho Kim

ABSTRACT

Ropes and rope-like objects (e.g., chains, cords, lines, whips, or lassos) are compar-

atively cheap, simple, and useful in daily life. For a long time, humans have used such

structures for manipulation tasks in a qualitatively different ways such as pulling, fasten-

ing, attaching, tying, knotting, and whipping. Nevertheless, these structures have received

little attention in robotics. Because they are unactuated, such structures are regarded as

difficult to model, plan and control. In this dissertation, we are interested in a mobile robot

system using a flexible rope-like structure attached to its end akin to a ‘tail’.

Our goal is to investigate how mobile robots can use compliant, unactuated structures

for various manipulation tasks. Robots that use a tail to manipulate objects face challenges

in modeling and planning of behaviors, dynamics, and combinatorial optimization. In this

dissertation, we propose several methods to deal with the difficulties of modeling and

planning. In addition, we solve variants of object manipulation problems wherein multiple

classes of objects are to be transported by multiple cooperative robots using ropes.

Firstly, we examine motion primitives, where the primitives are designed to simplify

modeling and planning issues. We explore several sets of motion primitive where each

primitive contributes some aspect lacking in the others. These primitives are forward mod-

els of the system’s behavior that predict the position and orientation of the object being

manipulated within the workspace. Then, to solve manipulation problems, we design a

planner that seeks a sequence of motion primitives by using a sampling-based motion

planning approach coupled with a particle-based representation to treat error propagation

of the motions. Our proposed planner is used to optimize motion sequences based on a

specified preference over a set of objectives, such as execution time, navigation cost, or

collision likelihood. The solutions deal with different preferences effectively, and we an-

ii

alyze the complementary nature of dynamic and quasi-static motions, showing that there

exist regimes where transitions among them are indeed desirable, as reflected in the plans

produced.

Secondly, we explore a variety of interesting primitives that result in new approaches

for object manipulation problems. We examine ways two robots can join the ends of their

tails so that a pair of conjoined robots can encircle objects leading to the advantage of

greater towing capacity if they work cooperatively. However, individual robots possess the

advantage of allowing for greater concurrency if objects are distant from one another. We

solve a new manipulation problem for the scenarios of moving a collection of objects to

goal locations with multiple robots that may form conjoined pairs. To maximize efficiency,

the robots balance working as a tightly-knit sub-team with individual operation. We de-

velop heuristics that give satisfactory solutions in reasonable time. The results we report

include data from physical robots executing plans produced by our planner, collecting ob-

jects both by individual action and by a coupled pair operation.

We expect that our research results will help to understand how a flexible compliant

appendage when added to a robot can be useful for more than just agility. The proposed

techniques using simple motion models for characterizing the complicated system dynam-

ics can be used to robotics research: motion planning, minimalist manipulators, behavior-

based control, and multi-robot coordination. In addition, we expect that the proposed meth-

ods can enhance the performance of various manipulation tasks, efficient search, adaptive

sampling or coverage in unknown, unstructured environments.

iii

ACKNOWLEDGEMENTS

Looking back over my doctoral period for the last six years, I would not have com-

pleted my long and lonely journey, a doctoral program, without the help of many people

including my advisor, committee members, colleagues, friends, and family. I would like

to express my gratitude to them in this section. I will try to mention all of them, but please

note that it is likely I accidentally omitted some.

I would like to sincerely thank my academic father, Dr. Dylan A. Shell for his endless

devoted help for the academic achievement and doctoral life’s uncertainties over 6 years.

His constant encouragement as being the best researcher has always been a positive influ-

ence on my whole doctoral period. He has helped me to find my own answers by asking

insightful questions rather than giving answers. In particular, he supported me from the

start of my doctorate period so that I only can focus on my research. Although many of the

contributions presented in my doctoral research are derived from his mentorship, I believe

that all the research training that he has provided will be a great asset to my next career as

a researcher. I will be forever indebted to him.

I would like to thank my committee members, Dr. Ricardo Gutierrez-Osuna, Dr. Dezhen

Song, and Dr. Ergun Akleman for their insightful comments and constructive criticisms to

my research for better organizing my dissertation. Especially, during the qualifying and

prelim exams, without their constant encouragement and support, I could not have com-

pleted my degree program.

I would like to thank my fellow students in the Distributed AI Robotics Lab for their

support, helpful discussions, and friendship during my years in the doctoral program: Jung-

Hwan Kim, Changjoo Nam, Yong Song, Lantao Liu, Ben Fine, Sasin Janpuangtong, Yulin

Zhang, Reza Oftadeh, Eric Cochrane, Taahir Ahmed, Asish Ghoshal, Plamen Ivanov, Reza

iv

Hosseini Teshnizi, Shawn Kristek, Tanushree Mitra, Jing Zhou, and Rui Liu. I also want

to thank Sang-Wook Lee, Joseph Lee, Byung-Jun Yoon, Byung-Hak Kim, Yan Lu, Han

Ul Yoon, Sungtae Shin, and Woohyun Ko for helpful discussions and friendship during

my doctoral period. Many friends from Korean Church A&M gave me strength to keep

my spiritual life from getting tired and also made my graduate life enjoyable. I can not

comment on everyone, but I would like to take this opportunity to thank you. I am also very

grateful for the help provided by the administrative staff of the Department of Computer

Science and Engineering.

Last but not least, I would have never been able to accomplish anything in my life

without the devoted endless support of my family. I thank my parents’ love, prayers, and

encouragement. I thank my sisters Young-Mi and Young-In for having always believed

in me to pursue my dreams. I thank my mother-in-law Haeran and sister-in-law Yoon for

endless love, support, and prayer. Most importantly, I would like to thank my most pre-

cious, pretty, and wise wife, Jung. She always believed and encouraged me, and whenever

I was dejected, she has always been with me. Lastly, to my lovely kids Jion and Jian, I

always got strength from you two. Without your sweet strong hug, I could not endure my

long doctoral period. I thank God for everything that I have been given during my doctoral

period.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Dylan

A. Shell [advisor], Professor Ricardo Gutierrez-Osuna, and Professor Dezhen Song of the

Department of Computer Science and Engineering and Professor Ergun Akleman of the

Department of Visualization.

All works conducted for the dissertation were completed by the student independently.

Funding Sources

Graduate study was supported by the National Science Foundation (NSF) through

grants IIS-1302393 and IIS-1453652.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . x

LIST OF TABLES . xiv

1. INTRODUCTION . 1

1.1 Motivation: Manipulating Objects Using Tools 1
1.2 Challenges: Statement of the Problem 3
1.3 Research Objective . 4
1.4 Overview of Research Approach . 4
1.5 Contributions . 5
1.6 Dissertation Organization . 6

2. RELATED WORK . 8

2.1 Compliant, Underactuated Structures for Manipulation 9
2.2 Coordinated Manipulation using Multi-robot Systems 10

2.2.1 Manipulation of an Object by Multiple Coordinated Robots 10
2.2.2 Manipulation of Distributed Objects by Multiple Robots 11

2.3 Tail Robots . 13
2.4 Motion Primitives . 13
2.5 Planning under Motion Uncertainty . 14
2.6 Planning with Satisfiability Modulo Theories 15
2.7 Estimating System Parameters . 16

3. USING A COMPLIANT, UNACTUATED TAIL TO MANIPULATE OBJECTS 17

3.1 Introduction . 17
3.2 Preliminaries and Problem Description 18

vii

3.2.1 Simplifying Assumptions . 18
3.2.2 Problem Definition . 19

3.3 Modeling Motion Primitives . 20
3.3.1 Robot Motion Model . 22
3.3.2 Quasi-static Model: Simplified Analytic Model for Dragging Mo-

tions . 22
3.3.3 Dynamic Model: High-Speed Striking 25
3.3.4 Learning Model Parameters . 26
3.3.5 Recap of Motion Primitives: Initialization 27

3.4 Planning with the Motion Primitives . 31
3.5 Experimental Results . 34

3.5.1 System Setup . 34
3.5.2 Scenarios: Planners, Environments, and Objectives 35
3.5.3 Experimental Validation . 37

3.6 Extension of a Set of Motion Primitive 44
3.6.1 A Conjoining Motion Primitive 44
3.6.2 A Hooking Motion Primitive . 44
3.6.3 A Snaring Motion Primitive . 45

3.7 Discussion . 48
3.7.1 Implementation Challenges . 48
3.7.2 Object Geometry Oblivious: a Generalization of our Model 48
3.7.3 The Advantage of the Dynamics-based Motion Primitives 49

3.8 Summery of This Section . 56

4. COOPERATIVE MANIPULATION OF OBJECTS VIA COMPLIANT, UN-
ACTUATED TAILS . 57

4.1 Introduction . 57
4.2 Problem Setup and Notation . 60

4.2.1 The MOCCT Problem Formulation 61
4.3 NP-hardness of the MOCCT Problem . 66
4.4 Algorithms for the MOCCT problem . 69

4.4.1 The Basic Heuristic Search Algorithm 70
4.4.2 The Opportunistic Neighborhood Search (ONS) Algorithm 73

4.5 Experiments . 74
4.5.1 Random Environments . 76
4.5.2 Evaluation of Algorithms . 76
4.5.3 Physical Robot Experiments . 77
4.5.4 Other Experimental Results for Other Scenarios 85

4.6 Discussion . 87
4.6.1 Obstacle-free Paths in the Topological Graph 87
4.6.2 Loosely-coupled and Tightly-coupled Coordination 88

viii

4.6.3 How to Build a Tail for MOCCT Problems: Guidelines for a Practi-
tioner . 88

4.7 Summary of This Section . 90

5. CONCLUSION AND FUTURE WORK . 91

5.1 Suggestions for Future Research: Moving Closer to Practical Applications 93
5.1.1 Cleaning Polluted Water . 93
5.1.2 Environmental Sampling via Flexible Sensor Arrays 95
5.1.3 Separating Objects . 96

REFERENCES . 98

ix

LIST OF FIGURES

FIGURE Page

1.1 Manipulating objects using tools: (a) A dexterous arm manipulator moves
a specific object from one location to another location. (b) Robot using
a tool to drill into a wall. (c) Some animals use tools for prey capture,
demonstrating greater intelligence. 1

1.2 Motivating examples of manipulation with ropes and rope-like structures:
they are a class of useful tools possessing unrivaled versatility as used in
wrapping, dragging, tying, knotting, whipping. 7

2.1 Overview of Related Work . 8

3.1 An example scenario: the robot’s task is to move the object from the initial
pose to the goal. The novel idea in this work is that the robot only uses its
tail to translate and rotate the object. 17

3.2 An overview of the system showing sections with discussion. 20

3.3 A free body diagram for the dragging motion. 23

3.4 The object is located at (0,0,0), and the robot executes each motion primi-
tive with φ = 0. Settings match those in Figs 3.6 and 3.7. 26

3.5 A diverse set of motion primitives are used. From left to right, the object
travel distance per unit of time increases while the model tractability and
model accuracy decrease. 27

3.6 The initialization motion for ũ−0 and ũ−1 is from (a) to (b). Then, the robot
drags its tail to move the object through (c), (d) and (e). If the robot wants
to execute Ũ0 only, the robot might stop execution as shown in (d). For Ũ1,
the robot keeps dragging until the object stops moving, shown in (e). . . . 28

3.7 (a) The initialization, ũ−2 , positions the robot relative to the object. (b) This
shows a high-speed motion. The robot makes a circular motion. (c) The
tail configuration is a semi-rigid body after first round, and then the tail
hits the object. (d) The robot stops at some location relative to the object
(ũ+

2). 30

x

3.8 Motion primitives are sequenced together. The black line shows segments
of motion that the object undergoes. The green lines are the initialization
motions, ũ−, and the orange solid lines are termination motions, ũ+. The
purple lines are portions of the path which move the object. The broken
black lines show points of transition between primitives. 31

3.9 Ũ0-only is a gray path. Ũ1-only is a green path. Ũ2-only is a magenta path.
Ũ1+Ũ2 is a sky blue path. 36

3.10 An overview of our four scenarios: The small circles near the goal location
indicate the final object states (orientation as a red line). 38

3.11 An overview of our results with the simple planner: The small circles near
the goal location indicate the final object states (orientation as a red line). 39

3.12 An overview of our results with the adjustable planner: The small circles
near the goal location indicate the final object states (orientation as a red
line). 40

3.13 We apply the replanning phase after the result of Figure 3.12(c). Ten scat-
tered objects are moved to the near goal location with good accuracy and
precision. 41

3.14 The data in Figure 3.11 and Figure 3.12 summarized. 42

3.15 Analysis of the preferences in the obstacle environment. The black area
is the static obstacle area. Reported arrival time (seconds) is (µ, σ) for 10
trials of each path. We count the number of collisions. We also count the
number of arrivals at the destination (±30 cm radius). 43

3.16 We extended a small portfolio in Figure 3.5 to a diverse set of motion prim-
itives. 44

3.17 Initializing docking in (a). One robot stays at the given location. The sec-
ond robot crosses the tail of the first. Since each tail, made of chain, has a
magnet at the end, the two tails join naturally so long as the robot follows
the contour of the convex hull via (b) to (c). 45

3.18 The robot winds around the object with a clockwise direction through (a),
(b) and (c). To release the hooked object, the robot drives in the opposite
direction, seen in (d), (e) and, (f). 46

xi

3.19 We developed a snaring motion primitive, which is useful when the object
is heavy to move by a dragging motion. The object can be under control
by this snaring and dragging motion. 47

3.20 Experiments to determine whether the shapes of the object are critical for
our system. The initial object pose is (0, 0, 0). 50

3.21 Using Ũ2, the snapshots from (a) to (c) show how an object can be moved
through a narrow passage even though the robot is too wide to pass through
it (e.g., pushing a paper under the door); (d) shows an incremental tracking
information. 51

3.22 Using Ũ2, the snapshots from (a) to (c) show how an object can be moved
outwards from the wall; (d) shows an incremental tracking information. . 53

3.23 Using Ũ2, the snapshots from (a) to (c) show how an object can be moved
outwards from the wall; (d) shows an incremental tracking information. . 54

3.24 Using Ũ2, the snapshots from (a) to (c) show how stuck objects can be
scattered; (d) shows an incremental tracking information. Here we only
tracked the cylindrical shaped object. 55

4.1 Consider the problem of moving four objects to the chequered region,
with at least two objects being pink. To minimize cumulative distance, the
robots balance working as a tightly-knit pair versus operating separately.
Pairs have the advantage of greater towing capacity, while individuals may
fetch distant objects concurrently. 59

4.2 A directed graph representation for the example in Fig. 4.1(a). A green
circle indicates a node Xi and a curly bracket shows a set of objects btXi

.
Here (a) represents an initial configuration while (b) is a goal configura-
tion; (c) shows Step-1 in Fig. 4.1(a), while (d) shows Step-2 in Fig. 4.1(b).
Heuristics mean some edges (dotted) are unlikely to be explored. 63

4.3 Construction of a plan by searching a tree from the left (t = 0) to the right
(t = T). Each node consists of O,R, and G. 69

4.4 Five objects induce several choices. There are several subsets of B̂X1: The
blue dot line shows {bX5 , bX4}. The green dot line shows {bX5 , bX4 , bX3}.
The purple dot line shows {bX5 , bX4 , bX3 , bX2}. 71

4.5 State-space sizes, running times, and solution costs of the MOCCT prob-
lem. 75

xii

4.6 We have seven pink cylindrical objects to be towed to the center of the
room with two robots. 78

4.7 Planner and physical robot experimental results. 80

4.8 The single-only planner. 81

4.9 The pair-only planner. 82

4.10 The both planner . 83

4.11 This view is from the overhead tracking system. The accumulated trajec-
tories for objects and robots are displayed: the blue lines are the robots,
while the pink lines are the objects. 84

4.12 The simulation results are plotted using graph representation. There are
three pink and three yellow objects, two robots, and one goal; (a) is for the
example in Figure 4.1(a). Another example is shown in (b), which modified
the topological relationship of (a). We show the results of the planner for
the example (b) via (c) and (d). Finally, (d) satisfies F2. 86

4.13 The simulation results of a graph representation; (a) shows ten pink objects
and three goals. We used 4 robots located at XG

1 initially. We show the
results of the planner for the example (a) via (b) and (c). Finally (c) satisfies
F3. 87

5.1 Tethered robots can skim oil, drag garbages, and tow water hyacinth. . . . 94

5.2 In marine settings, passive compliant components are dragged by the ship
for oil exploration. The exploration ship pulls oil sensors that stretch sev-
eral miles behind the ship. 96

xiii

LIST OF TABLES

TABLE Page

3.1 We used a chain with 35 g and 70 cm. The mass of each object is 23 g± 2 g. 49

xiv

1. INTRODUCTION

1.1 Motivation: Manipulating Objects Using Tools

Object manipulation has been a major subarea of robotics research for several decades.

Most people are familiar with dexterous arm manipulators, which can move a specific ob-

ject from one location to another [1, 4] (shown in Figure 1.1(a)). These robots have already

been applied to industrial settings, for example in factories, where they have been used to

improve manufacturing productivity by performing many simple tasks in a repeatable fash-

ion. In recent robotics research, mobile robots have been carrying out difficult tasks (e.g.,

rearranging objects in warehouses, drilling holes, or unscrewing a cap) using various tools,

which have been usually employed by humans. Figure 1.1(b) shows a mobile humanoid

robot using an electric handdrill to make a hole in a wall [2].

(a) A robotic arm manipulator
moves varios objects to goal lo-
cations in DARPA Robotic Ma-
nipulation 2012 [1].

(b) Robots use many kinds of tools to complete
tasks in DARPA Robotics Challenge 2015 [2].

(c) A baboon uses a tool
for capturing termites [3].

Figure 1.1: Manipulating objects using tools: (a) A dexterous arm manipulator moves a specific
object from one location to another location. (b) Robot using a tool to drill into a wall. (c) Some
animals use tools for prey capture, demonstrating greater intelligence.

1

The use of elaborate tools has been regarded as mostly the exclusive capability of hu-

mans. Only limited species of animals use tools for prey capture (Figure 1.1(c)) to improve

their given capabilities [3]. Our work focuses on how robots can use tools. More specifi-

cally, our goal is to investigate how a mobile robot may use a flexible rope-like structure

attached as a ‘tail’ that it can use as a tool.

From the ancient Egyptian civilization to modern times, humans have used ropes and

rope-like objects (e.g., chains, cords, lines, whips, or lassos) for manipulation in a variety

ways such as pulling, fastening, attaching, carrying, lifting, and climbing. For example,

people working a kelly drive drilling rig (shown in Figure 1.2(a)) explore for oil by mak-

ing a connection to continue drilling downward. In this case, the flexible structure (a chain)

enables the worker to exploit constrictional, tensional, and frictional forces to restrain the

object being manipulated, sometimes also helping keep the object under control by grip-

ping it statically [5]. During World War II, people developed a mine flail, which consists

of a number of heavy chains, dynamically spinning and pounding the ground to detonate

a buried mine [6] (shown in Figure 1.2(b)). On the surface of water, floating flexible struc-

tures are used to drag water hyacinth by two tethered boats [7] (shown in Figure 1.2(c)).

In martial-arts cinema portrayals, whipping actions are most commonly used for reaching

and attacking enemies (e.g., Indiana Jones’s famous bull whip [8], cowboys with their las-

sos [9], and Spiderman [10] as well). Those whip-like actions shown in Figure 1.2(d), in

contrast to winding and tying actions, are produced with flexible cords by exploiting the

dynamics of their continuous, compliant structures.

However, despite offering versatility, such flexible, unactuated structures have received

little attention in robotics research. We think that the reason is that these passive structures

are unactuated, thus difficult to control. Nevertheless, they are comparatively simple and

cheap, and are easy to find (e.g., cords, belts, and even shoe laces). In addition, these flex-

ible structures are useful as tools with versatility in our daily lives. Also, these structures

2

minimize dependence on the shape of objects. Consequently, if we can use these flexible

structures as tools for robots, then one may avoid the cost of a special gripper.

1.2 Challenges: Statement of the Problem

Next, we take a closer look at why rope-like structures as tools are rarely used in real

robot systems. We hypothesize that a robot with a compliant passive structure attached as

a tail are seldom used for manipulation since modeling (below (1) to (3)) and planning

(below (4) to (5)) are difficult:

(1) System Modeling: The interplay of the object, the robot, and its tail involves mu-

tual influences that require non-trivial physics in order to describe their interactions. This

complicates the modeling of joint states (the object, robot, tail trio) and makes their full

description fairly daunting.

(2) Dynamics: An underactuated tail imposes severe limits on the scope and precision

with which the manipulator’s configuration can be controlled.

(3) State Estimation: The object’s state transitions are governed by the tail, which im-

poses a level of indirection —the tail itself being mediated by the robot’s motion— that

means the transitions are non-deterministic.

(4) Planning and Decision-making: Considering all possible motions with non-deterministic

state transitions, sequencing these motions to accomplish given tasks is complicated be-

cause there exist various interrelated objectives such as navigation cost, execution time, or

reliability.

3

(5). Coordination: When there are multiple objects to be manipulated, multiple robots

using rope-like structures can be used in can be used in variety ways (cf. Donald et al.

[11], Bhattacharya et al. [12]). Many interesting combinations of robots using rope-like

structures can be designed. For one typical example, imagine two robots can join the ends

of their rope-like structures, then the conjoined robots can encircle multiple objects. To

maximize efficiency, one might examine all combinations of multiple robots and objects,

which is a computationally challenging task.

1.3 Research Objective

In this dissertation, our goal is to investigate a novel robot system with flexible tail for

manipulating objects in various ways. Questions we plan to answer include: (1) Which mo-

tions can manipulate objects with what properties? And then, (2) how do we model those

motions? (3) How do we plan a path using those motions for specific manipulation tasks?

(4) How does a group of robots with flexible structures form a team to solve multi-object

collection tasks? (5) How do we assign tasks to a group of robots to optimize performance

of the multi-object collection problems?

1.4 Overview of Research Approach

Firstly, we explore possible motions by mobile robots with a flexible structure. Then,

we design motion primitives for manipulating objects, where the primitives simplify mod-

eling and planning issues. We demonstrate several sets of diverse motion primitives where

each contributes some aspect lacking in the others. These primitives are forward mod-

els of the systems’ behavior that predict the object positioning and orientation within the

workspace. Then, to solve the manipulation problem, we design a planner to seek a se-

quence of motion primitives by using a sampling-based motion planning approach cou-

pled with a particle-based representation to treat error propagation of the motions. Our

proposed planner optimizes motion sequences based on a specified preference over a set

4

of objectives, such as execution time, navigation cost, or collision likelihood. The results of

such a planner deal with diverse preferences effectively, and we analyze the complemen-

tary nature of dynamic and quasi-static motions, showing that there exist regimes where

transitions between the two are indeed desirable, as reflected in the plans produced.

Secondly, to deal with various object manipulation problems, we examine the manip-

ulation problem of moving a collection of objects to multiple goal locations with multiple

robots. To maximize efficiency, the robots must balance working as a tightly-knit sub-team

versus operating individually. Pairs have the advantage of greater towing capacity, while

individuals can fetch distant objects at the same time. We formulate the planning problem

for efficiently collecting multiple objects and transporting them to goal locations. We do

this within a general framework using logical formulas to express complex tasks. Since

this problem is proved as NP-hard, we explore heuristics that give satisfactory solutions in

reasonable time. The results we report include data from physical robots executing plans

produced by our planner, collecting objects both by individual action and by operation of

coupled pairs.

1.5 Contributions

The main contributions of this dissertation are:

• We make static, quasi-static, and dynamic models for mobile robots using flexible

rope-like structures: a) We use dynamic motions shown to be efficient for some

objectives (e.g., object distance per action); b) Our planning algorithm allows robots

to employ a diverse set of motions showing each motion has distinct complementary

value to one another; c) Our physical experiments show a successful demonstration

of manipulation therewith, the first to exploit the dynamics of a linear structure.

• We study a coordinated towing system where: a) All robots can be separated or con-

joined; b) This is chosen automatically by the algorithm; c) This is dynamic: changes

5

during execution— sometimes working as individually or sometimes operating as a

tightly-knit sub-team. We propose an efficient algorithm to reduce search space in

various environmental settings. We show the first known physical demonstration of

multiple robots solving manipulation problems in this way.

• We consider two problems together: multi-robot motion planning and logical speci-

fication of plan goals. We introduce a generalized framework using both in a multi-

robot manipulation setting, the first of this sort.

1.6 Dissertation Organization

In the following chapters, we demonstrate a new approach to employ flexible rope-

like structures as tools for various manipulation tasks. Section 2 details the current state

of robots with tools, and manipulating objects in terms of modeling and planning sys-

tems. Section 3 introduces modeling and planning methods for moving a single object by

the flexible rope-like structures.We propose an algorithm to use a diverse set of motion

primitives where each primitive contributes unique aspect lacking in the other primitives.

In Section 4, we formulate the planning problem for efficiently collecting multiple objects

and transporting them to goal locations, and then we explore analysis of the proposed algo-

rithms. The results we report include data from physical robots executing plans produced

by our proposed planner, collecting objects both by individual action and by a coupled pair

action. Finally, we conclude and present future works in Section 5.

6

(a) People run a kelly drive drilling rig ex-
ploring for oil by wrapping a chain around a
pipe [5].

(b) Rapidly rotating a number of heavy
chains is to detonate a buried mine [6].

(c) Water hyacinth is dragged by ropes [7].

(d) Whipping actions used for reaching and grapping ob-
jects [8].

Figure 1.2: Motivating examples of manipulation with ropes and rope-like structures: they are a
class of useful tools possessing unrivaled versatility as used in wrapping, dragging, tying, knotting,
whipping.

7

2. RELATED WORK

Figure 2.1: Overview of Related Work

Our research lies at the intersection of compliant manipulator, continuum manipulator,

non-prehensile manipulator, motion primitive, active tails, and multi-robot motion plan-

ning. Broadly speaking, we can split them into two categories: 1) rope-like structures,

and 2) modeling and planning, shown in Figure 2.1. We will briefly review those sub-

categories. First, Section 2.1 will review manipulation tasks in terms of robots with flexi-

ble structures. We will describe the state-of-the-art of soft robotics and continuum manip-

ulators. Second, we will briefly review coordinated manipulation for multi-robot systems

such as multi-object manipulation, object towing via ropes, non-prehensile manipulation,

and several rearrangement problems in Section 2.2. Section 2.3 will talk about tail robots,

which use tail-like appendages to enhance robot agility. Section 2.4 will review motion

8

primitives, which are used for modeling complicated dynamic systems. To solve the ob-

ject collection problem, we need a planner to sequence motion controls. In Section 2.5, we

will review planners that can sequence motion primitives. In Section 2.6, we review mo-

tion planning problems with satisfiability modulo theories where solvers provide greater

expressiveness and a high-level interface for expressing constraints in planning problems.

These SMT-solvers dynamically incorporate constraints at the task level. Section 2.7 will

talk about the estimation of system parameters for motion primitives. Since the estimation

of system parameters is intractable in uncertain environments, we will review three typical

methods.

2.1 Compliant, Underactuated Structures for Manipulation

In response to the desire to improve the versatility and grasping capabilities, many re-

searchers of robotic manipulators have begun using compliant underactuated structures [13].

There are several reasons: robotic manipulators with flexible structures are much cheaper

than an active controlled manipulators, and the flexibility can easily absorb impact forces

to increase dexterous performance with easy control [14, 15, 16]. Due to the inherent ad-

vantages of flexible structures, robotic manipulators have been designed by the combina-

tion of soft materials and rigid plastic (or metal parts) to do complex tasks [17]. For exam-

ple, if robotic arms are to work in close vicinity or in direct contact with fragile structures

in the environment, the properties of compliance and deformation might be able to help to

keep safe the target objects [18]. Our work is also motivated by the inherent advantages of

the flexible structures, but our robots use these structures to manipulate objects.

Inspired by elephant trunks and snakes in the natural world, there has been much re-

cent interest in continuum mechanisms, which are theoretically hyper-redundant, but in

practice, underactuated systems [19, 20]. The main line of research is in the design and

control of the continuum mechanisms with kinematic and dynamic models [20, 21]. These

9

hyper-redundant manipulators are highly controllable with complicated modeling. Walker

[22] suggested an actively-controlled, long, string-like robot as a next-generation space

robot, then Tonapi et al. [23], Walker et al. [24], Cohen et al. [25] proposed the design

and the kinematic models of a string-like robot. Cowan and Walker [16] also suggested

several possible dynamic motions, which may be feasible, such as using a flicking action

to manipulate objects via the active controlled continuum robots. In our work, we are less

concerned with specific models of flexible devices than with dynamic actions and their po-

tential for interaction with the environment. The planning methods and models introduced

in this dissertation allow both dynamic and quasi-static actions; the dynamic actions are

shown to be efficient motions for some objectives (e.g., object distance per action).

More broadly, the problem we study relates to prior efforts at manipulating objects

without special purpose effectors, which includes work on pushing [26, 27], caging [28],

striking [29], dragging [11, 30], or skimming [12]. Prior works controlled the rope motions

kinematically, but our work uses the dynamics of the rope-like structures. Thus, we needed

to consider the masses of the ropes, forces that lead to the motions, and tension induced

via accelerations.

2.2 Coordinated Manipulation using Multi-robot Systems

Most efforts at manipulating objects with multiple mobile robots fall into one of two

main categories based on the properties of objects being manipulated, either: (1) a large,

heavy, or cumbersome object to be manipulated by multiple coordinated robots at a given

time; or (2) a large number of distributed objects to be manipulated by multiple robots.

2.2.1 Manipulation of an Object by Multiple Coordinated Robots

Important early work in the first category includes: Rus et al. [31] demonstrated mul-

tiple robots cooperating in rearranging heavy furniture. Fink et al. [28, 32], Cheng et al.

[33] caged large objects using multiple smaller sized mobile robots. Sartoretti et al. [34]

10

pushed one object using multiple surface vehicles. Kube and Bonabeau [35] considered

the related question of cooperative transportation from the perspective of biology, pro-

viding examples of super-linear efficiency/capacity in several species of ant. In addition,

more recently, Wilson et al. [36] presented an insect-inspired controller for cooperative

transport by robots. The problem becomes more challenging when numerous objects must

be manipulated by few robots. An appealing way to deal with this challenge was explored,

first by Donald et al. [11], and by Bhattacharya et al. [30] more recently. They employ

a pair of robots connected by a rope to manipulate multiple differently shaped objects,

capitalizing on the rope’s ability to adapt to the geometry of the objects and environment.

We were greatly inspired by [30], but found that we needed to add several aspects (e.g.,

a tail length and a load capacity) into our formulation so the plans would satisfy practical

considerations.

Similarly, cooperative manipulations by towing objects via ropes are discussed by [37,

38, 39, 40, 41]. These rope-like structures are physically connected to objects, which are

pulled by robots. Thus, the main problem is to balance dragging force among multiple

robots. However, we are interested in robots using rope-like structures to enhance towing

capacity with time. Sometimes, robots join the ends of their rope-like structure to encircle

objects with greater towing capacity. Sometimes, individual robots fetch distant objects

simultaneously. We need to balance the mix to maximize towing efficiency.

2.2.2 Manipulation of Distributed Objects by Multiple Robots

Within the second category, several researchers have shown how multiple robots can

exploit parallelism to efficiently move objects spread throughout a large environment. Lev-

ihn et al. [42] studied what they term ‘assignment space’ to minimize task completion

time—the same objective we minimize but we can also deal with others too. Fujii et al.

[43], Oyama et al. [44], Inoue et al. [45] also considered robots that transport multiple ob-

11

jects simultaneously, allowing robots to grasp and drop multiple objects during sequential

operation. An early, under-appreciated paper, Yamashita et al. [46] proposed the use of

tools to allow the simultaneous manipulation of multiple objects by multiple robots, in-

cluding rope and cords. Our present work contains some of these elements, but deals with

a distinct problem in Section 4: (1) Our robots can form a sub-team to maximize efficiency

operating as a tightly-knit pair or separately; (2) We can solve a variety of different object

collection tasks.

The motion planning aspects of multi-objects collection via cooperative towing fall

within the class of vehicle routing problems [47]. Ralphs et al. [48] formulated a discrete

optimization routing problem and computed a solution using a sub-optimal heuristic which

subdivides the overall optimization into subproblems; the approach we employ can be said

to be in the same spirit. Similarly, Mathew et al. [49] proposed a heterogeneous multi-robot

delivery problem as a discrete optimization problem, and solved it using a reduction from

the Traveling Salesman Problem. Coltin and Veloso [50] introduced the pickup and deliv-

ery problems, and solved it by using auction-based scheduling algorithms that can transfer

items between robots. More generally, multi-robot path planning problems are discussed

by [51, 52, 53]. Luna and Bekris [51] proposed an efficient algorithm that can swap posi-

tions of any other robots until robots can navigate to goal positions. van den Berg et al. [53]

addressed centralized path planning that can partition the robots to minimize a composite

of all robots. Turpin et al. [54] presented the optimal trajectory planning for interchange-

able robots. Wagner et al. [55] and Wagner and Choset [56] proposed sub-dimensional

expansion to find optimal paths at low computational cost, and Solovey and Halperin [52]

addressed the k-color planning problem, and proposed an algorithm that can solve general

cases of multi-robot motion planning problems. We also address a discrete multi-robot

motion planning problem, but our method can cope with a variety of challenging scenar-

ios.

12

In terms of coordination, we can think of physically joining motions: docking and

rendezvous motions. Docking and rendezvous planning have been studied for several

decades. Docking (or rendezvous) to charge stations is a critical problem in the contexts

of long-term missions performed by multiple robots [57]. Roh et al. [58] demonstrated

robust docking mechanisms via magnetic force. Our previous work [59] showed inter-

vehicle docking via visual servoing on the surface water. In this dissertation, our robots

need inter-tail docking to work on cooperative missions similar to [12, 30]. This inter-tail

docking allows two tail robots to link tails, and then the conjoined tail robots are treated

as tethered robots.

2.3 Tail Robots

Recently, tails and tail-like structures have been used only in limited settings and pri-

marily to enhance a robot’s agility. Several researchers [60, 61, 62, 63] have shown a lizard-

inspired active tail that can enable the robot to leap with stabilization over broken rubble.

The elasticity of the active tail gives a fast response for stabilization on rough terrains [64].

A dynamic active tail makes rapid turning at high-speed possible for robots [65, 66, 67, 68,

69]. Unlike prior work, our work [70] was focused on object manipulation via the dynam-

ics of the compliant tail and its potential for interaction with its environment.

2.4 Motion Primitives

The work discussed in the preceding sections mostly focused on specific kinematic

and dynamic models of complicated flexible structures. However, our study is concerned

with how to use the dynamics of the compliant tail and its potential for interaction with

its environment. Motion primitives are well known methods to model complicated sys-

tem and have a merit in terms of simplicity, stability, and robustness to achieve a specific

task [71]. Jenkins and Matarić [72] proposed a data-driven approach for deriving human-

motion primitives from time-series data of human motion. Hauser et al. [73] used a small

13

set of high-quality motion primitives that have been generated off-line, and found a path

using sampling strategy for a probabilistic, sample-based planner for several different ter-

rains. Powell et al. [74] presented an approach dealing with multiple motion primitives for

walking and stair climbing by using the examination of experimental human data. We also

use a data-driven approach to get characteristics of primitives.

Motion primitives are employed to propagate forward motions in the Rapidly-exploring

Random Tree (RRT), called kinodynamic RRT [75]. State lattices (Lattice-based graphs)

are constructed of simple motion primitives connecting one state to another [76]. Butzke

et al. [77] introduced augmented lattice-based path planning by using controller-based mo-

tion primitives that can outperform in specialized regions such as GPS-denied areas. Our

approach is similar to Butzke et al. [77]. We have a set of stable motion primitives that

can be selected considering preferences and environmental settings.

There exist many applications using motion primitives to overcome the difficulties

of modeling and planning in different settings. Vonásek et al. [78] used simple motion

primitives to reduce computational time for modular robots. Krontiris and Bekris [79] used

different types of motions corresponding to the stable transit and transfer actions for an

object rearrangement problem. Gray et al. [80] employed parameterized motion primitives

to enhance agile drifting maneuvers. Paranjape et al. [81] applied motion primitives for

fast flight through a forest. Gupta et al. [82] used pick/drop, spread, and tumble motion

primitiives for object sorting in cluttered environment. In our studies, motion primitives

also help to reduce model complexity, and they allow new tasks.

2.5 Planning under Motion Uncertainty

Although motion primitives enable modeling complicated systems, and then allow for

a variety of manipulation tasks, they also require sophisticated sequencing to execute given

tasks. The most popular framework for planning under motion uncertainty is the Markov

14

Decision Process (MDP). The MDP works very well in discrete state spaces of moder-

ate size. For manipulation, it is non-trivial (or infeasible) to build analytical models that

capture the full complexity of the object-tool-environment interactions involved. The in-

evitable consequence is uncertainty, which must be dealt with in some way. Dogar and

Srinivasa [83] reduced the uncertainty of a pushing action by utilizing the funneling effect

of pushing. Related ideas include that of Meriçli et al. [27] who proposed an experience-

based approach that uses past motions, and Phillips et al. [84] developed an online motion

planning approach that makes use of information from previous searches. For motion plan-

ning in continuous space, sampling-based motion planning techniques have received much

attention over the past 15 years. In particular, the Rapidly-exploring Random Tree (RRT)

operates by growing a tree in state space, repeatedly sampling new states by picking the

closest existing node and steering towards that sample [85]. Berenson et al. [86] demon-

strated repair of paths from the past-learned paths using the RRT. This study uses the RRT

framework using manipulation primitives and, similar to Bry and Roy [87], motion errors

are propagated using a particle-based representation.

2.6 Planning with Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT)-solvers [88, 89, 90, 91] are fully automatic satis-

fiability checkers for a set of logical formulas, where the SMT is a combination of various

theories represented as formulas in first-order logic. This allows a powerful expressive and

high-level interfaces for representing constraints in robotics research [92]. SMT-solvers

explore the large combinatorial search space with considerable improvements in the scal-

ability of state space [92]. Recently, several people [93, 94, 95] have been introduced for

combining task and motion planning by SMT-solvers. Hung et al. [93] used SMT-solvers

for motion planning with rectangular obstacles. Nedunuri et al. [94] integrated task and

motion plans into SMT-solvers. Dantam et al. [95] extended task and motion planning

15

problems with incremental solving by adding and deleting constraints via SMT-solvers.

Saha et al. [96] introduced SMT solvers to synthesize trajectories by composing a set of

motion primitives. Our work also use the scalability and flexibility of SMT-solver’s proper-

ties in multi-robot motion planning problems for collecting multiple objects. We construct

logical formulas to represent various goal constraints so that we can handle quite general

object collection problems.

2.7 Estimating System Parameters

In practice, estimating system parameters is very important to control systems per-

forming tasks under uncertainty. There are several methods for system identification: an-

alytical models, physics-based simulations, and “calibration experiment of system” are

employed. Physics-based simulators are well known methods to predict physical inter-

actions in various complicated tasks [97, 98, 99]. There are various kinds of data-driven

approach: especially, reinforcement learning has been used for self-improvement of prim-

itives for several decades [100, 101, 102, 103]. Mahadevan and Connell [100] first showed

new behaviors are learned by trial and error using a performance feedback function. Soni

and Singh [102] demonstrated transportation of a ball by a robot, which was learned

with semi-automatically discovered options. Kolter and Ng [104] showed a local policy

search for learning a jumping behavior for a robot dog. Kober et al. [105] employed non-

parametric regression approaches in order to adjust the existing behaviors of a lower-level

controller for dart throwing and table tennis hitting tasks. Daniel et al. [103] executed a

learning method to sequence motion primitives with policy search. Lastly, Michels et al.

[106] demonstrated a task of driving a vehicle at high speeds through unstructured out-

door environments. This work [70] also uses a physics-based simulator and data-driven

approach to estimate system parameters.

16

3. USING A COMPLIANT, UNACTUATED TAIL TO MANIPULATE OBJECTS∗

3.1 Introduction

Object being
manipulated

Robot with a compliant tail

A static obstacle

Goal location

Figure 3.1: An example scenario: the robot’s task is to move the object from the initial pose to the

goal. The novel idea in this work is that the robot only uses its tail to translate and rotate the object.

This chapter investigates how a robot may use flexible rope-like structures as tools in

diverse ways, demonstrating high-speed dynamic (e.g., striking) and high-precision quasi-

static (e.g., dragging) actions, as well as mixtures thereof. Our novel robot system with a

flexible rope-like structure attached as a tail is shown in Figure 3.1. Four main challenges

arise in using this system for manipulation. We mentioned those challenges in Chapter 1.2.

This chapter details an approach that addresses these challenges.
∗Reprinted, with permission, from Young-Ho Kim and Dylan Shell, “Using a compliant, unactuated tail

to manipulate objects,” IEEE Robotics Automation Letters c©2017 IEEE [70].

17

We began by constructing a set of primitives that, while parsimonious, possesses suf-

ficient richness to enable useful manipulation. Associated with each primitive motion is

a forward model that is used to predict the object’s subsequent position and orientation

within the workspace. Finally, a sequence of primitive motion actions are sought to solve

a given manipulation problem instance. We employ a sampling-based motion planning

technique coupled with a particle-based representation to find such sequences.

3.2 Preliminaries and Problem Description

Let Mo, Mr, and Mt represent the mass of the object, the robot, and the tail, respec-

tively. We consider three coefficients of friction µo, µr, and µt for the object, robot, and

tail, in their contact with the workspace floor. One additional coefficient of friction, µo−t

is that between the object and tail. For a tail of length L, the physical system parameters

form a tuple p = 〈Mo, µo,Mr, µr,Mt, µt, L, µo−t〉. The object’s state Xo = (x, y, θ) ∈ χ,

has (x, y) as the position of the center of the object in R2 and θ its orientation. The robot’s

state Xr is defined analogously. We let X̃t be a vector describing the tail configuration,

either as an approximation via n segments, or a parametric function. Then the manipula-

tion system can be treated as a transition function F . Using control u ∈ U , F makes the

transition from X(k) to another state X(k + 1):

X(k + 1) = F (X(k), u(k); p), (3.1)

where X contains states of Xo, Xr, and X̃t.

3.2.1 Simplifying Assumptions

Our robot has an inelastic tail that it uses for manipulating a cylindrical object, and the

robot is assumed to be powerful enough to drag the tail along with the load of the object.

Also, we treat the robot and the object states as observable, while the tail configurations

18

are not.

3.2.2 Problem Definition

Let J (X) = (J1(X), . . . , JN(X)) be a vector-valued cost function, where the integer

N ≥ 1 is the number of objectives that describe aspects of the system’s performance. For

instance, Ji could correspond to a measure of path safety, a measure of path accuracy,

execution time, or navigation cost.

Problem: Given U and p, manipulate the object from the initial pose XS = (xs, ys, θs)

to the target pose XG = (xg, yg, θg), making all state transitions via the robot tail, finding

a sequence of motions π∗ = [u∗1, . . . , u
∗
N] that minimize J (X), constructed as a linear

combination of the individual objectives

J (X, ~α) =
N∑
i=1

αi · Ji(X), (3.2)

for some given ~α = α1,...,N ∈ R+.

The total cost function for a trajectory [X0, . . . , XN] is

J([X0,...,XN],~α) =
N∑
i=0

J (Xi, ~α). (3.3)

So the problem is to find

π∗ = argmin
[X0,...,XN]∈χ

J([X0,...,XN],~α), (3.4)

where ~α represents preferences over objectives, and N is the number of waypoints.

The overall system architecture appears in Fig 3.2.

19

6

Robot

Tail

Object

Overhead
tracking systemSystem(Sec. 3.5)

Motion Primitives

Multi-objective
optimization

(Sec. 3.3)

(Sec. 3.2)

Planner(Sec. 3.4)

Figure 3.2: An overview of the system showing sections with discussion.

3.3 Modeling Motion Primitives

To simplify both the modeling and planning problems, we use a small set of motion

primitives: each represents a simple and stable activity which is, ideally, helpful in achiev-

ing a goal. We desire a small portfolio of motion primitives, each contributing some aspect

lacking in the others. Additionally, an important factor is each primitive’s amenability

to modeling and, ultimately, its predictability; this is a function of primitive complex-

ity. Three motion primitives, broadly representative of three broader classes, are consid-

ered: 1) quasi-static motion primitive — modeled as deterministic, 2) quasi-static motion

primitive involving stick-slip frictional transitions — modeled as non-deterministic, and

3) dynamics-based motion primitive where the tail strikes the object — which is non-

deterministic. From 1) to 3), the tractability and accuracy of modeling decrease owing to

the inherent complexity of the physical phenomena involved. Our philosophy is to profit

from diversification: we resort to a data-driven approach when the system is highly non-

linear and transitions are too complicated for us to treat otherwise.

We consider a set of motions, each of which represents a sequence of controls, u,

executed over an interval of time, which results in a transition between two states in the

20

continuous state space. Each of these is characterized off-line, either through analytical

models, simulation, or calibration experiments (as will be described in Section 3.3.4). We

also allow primitives to be parametrized, exploiting regularity and symmetries in doing

so. Let ũ(φ) denote a set of motions, where we have expressed the fact that they are

parameterized by angle φ, representing the direction in which to move the object. Then we

define a motion primitive Ũ(φ) to be a tuple 〈ũ−(φ), ũ(φ), ũ+(φ)〉, where ũ− represents

an initialization motion, ũ represents a motion moving the object, and ũ+ represents a

termination motion. The following sections discuss these in further detail.

First we note that we make two design decisions:

Design Decision 1 We do not represent the tail explicitly.

Rationale: This vastly simplifies the planning and representation problems. Our ap-

proach is to have each motion primitive Ũ include an ‘initialization’ motion ũ−, which

normalizes the tail configuration, laying the tail out into some predictable configuration no

matter its prior condition. This allows Ũ to follow any state. In practice Ũ is imperfect so

the uncertainty of the tail configuration is implicitly included in the parameterized motion

primitives, as discussed later.

Design Decision 2 We assume the robot motion is deterministic, whereas we must treat the

object motion as non-deterministic for any Ũ .

Rationale: The robot state and the object state are coupled via the tail. It is possible

to estimate the robot state relative to the object state if the robot’s control policy seeks to

maximize this form of information. For example, the robot can stop the instant the object

stops moving. Then, given Ũ , the object state can be used to help determine the relative

location of the robot, a step which helps reduce planning complexity. There are small

errors in pose estimates in practice, but are incorporated in the motion primitive model

easily.

21

These two design decisions yield a simplification of Equation (3.1) to give a transition

function Fs as

Xo(k + 1) = Fs(Xo(k), Ũ(k), p), (3.5)

wherein we only need consider the object’s state, because the robot state is determined by

the object state.

3.3.1 Robot Motion Model

The robot has motion constraints that affect the feasible tail configurations and, ulti-

mately, the object motions. Here we assume a simple car model for the robot. We generate

the robot trajectories via Dubins paths that give the shortest path in the two-dimensional

Euclidean space, where paths consist of circular curves of maximum curvature and lin-

ear motions. The paths are also used in obstacle environments [107]. All robot motions

generated in this dissertation are made by Dubins paths, including atomic actions in each

Ũ .

3.3.2 Quasi-static Model: Simplified Analytic Model for Dragging Motions

First, consider a dragging motion where the tail and object make contact throughout:

The robot approaches the object’s side, wraps the tail around the object, and moves for-

ward, resulting in simultaneous rotation and translation of the object. There is no need for

explicit consideration of the tail’s configuration other than basic physical properties such

as its mass and coefficients of friction. The following analysis considers the quasi-static

regime, assuming small inertial forces compared to the tail’s contact forces.

A free body diagram for this scenario is shown in Figure 3.3. Suppose that the direction

of the object’s translation is in the horizontal x-direction (i.e., for φ = 0). The basic drag-

ging motion depends on tensions TL and TR, on the left and right sides of the tail, where

the object is taken as the dividing point. We denote the mass of the left hand side of the tail

22

Figure 3.3: A free body diagram for the dragging motion.

byMtL , and the force induced by the robot by Fr. While dragging, Fr may increase asMtL

increases, causing an increase in the left side of the tail’s static friction Ft. Still, Fr − Ft
is constant when the robot’s force Fr increases (e.g., via a feedback controller) to ensure

the quasi-static motion is maintained. Equation (3.6) and Equation(3.7) are applications of

Newton’s second law, here for translation in the x-direction. When the right side of the

tail is not moving due to friction with the floor, the operation is identical to the physics

of an ideal pulley, permitting us to write TL = TR in Equation (3.7). The object exerts the

total frictional force of TL + TR = 2T , meaning that if the robot moves distance of 2d, the

object moves distance of d.

TL = Fr − Ft, (3.6)

TL + TR = Fo. (3.7)

Ideal pulley physics is only applicable when friction fixes the right side of the tail. As

the robot drags its tail, the proportion of mass on the right (left) side decreases (increases,

23

respectively). Eventually TR cannot be sustained; the friction breaks down when the mass

on the tail’s right side is inadequate, which is dependent on the length of the tail. Let the

minimum length of the right side of the tail be Lmin, then there are two distinct frictional

phases: 1) the right position of the tail stays while the left position moves; 2) the whole

tail moves, slipping over the floor. For the first phase, we can get a closed-form solution as

it is identical with a pulley physics system.

Focusing on this first phase of motion, we call this our fine motion primitive, Ũ0,

Xo(x,y)(k + 1) = dA+Xo(x,y)(k),

Xo(θ)(k + 1) = Xo(θ)(k) +
2d

r
,

Xr(x,y)(k + 1) = 2dA+Xr(x,y)(k),

(3.8)

where d is a limited distance, depending on L, since the robot can move distance at

most L − Lmin. As before, φ denotes the direction of motion, but r is the object radius,

and A is [cosφ, sinφ].

The uncertainty in this motion primitive has its origins in the robot’s motions. The

robot executing Ũ0 must ensure that it operates in the first frictional phase only. This re-

quires that it stop during the dragging motion and then separate the tail from the object.

This additional step (a termination step, ũ+
0) is fairly complicated, but is the price de-

manded for a primitive that realizes such a simple model.

A second, more cavalier, primitive has the robot simply continue forward even after the

tail and object begin to slip (in Figure 3.3, it keeps going in the positive x-direction). Pass-

ing through the first frictional phase into the second, a highly non-linear transition from

sticking to slipping occurs manifesting itself as additional uncertainty for this primitive Ũ1.

24

The second dragging primitive, Ũ1, has a pair of stochastic state transition functions:

Xo(k + 1) = Xo(k) + ω1, ω1 ∼ N (Xµ1 ,Σ1),

Xr(k + 1) = Xo(k + 1) + ω2, ω2 ∼ N (XL,Σ2),

(3.9)

where Xµ1 and Σ1 are the mean and variance of the object state transitions via Ũ1. Here

XL and Σ2 describe the robot’s state error relative to Xo(k + 1), parameterized by φ. The

robot is dragging the object initially, but at some point the tail begins to slip, and eventually

friction causes the object to come to rest. Our controller ensures that the robot stops then

too. Thus, the robot’s state distribution depends on the object location, which facilitates

planning because the prediction of the robot state can be determined relative location of

the object (and φ, and the tail length).

3.3.3 Dynamic Model: High-Speed Striking

In addition, we investigated a high-speed primitive motion that has the robot exploiting

the dynamics of the tail to lash the object. The robot approaches the object from an angle

dependent on φ, then drives with constant velocity and at the maximum steering angle

while keeping a short separation distance. As the tail is moved at high speed, its internal

tension stiffens the rope along its extent, and when the object is struck both rotation and

translation result.

The striking primitive, Ũ2, has state transition function with a probability distribution:

Xo(k + 1) = Xo(k) + ω3, ω3 ∼ N (Xµ3 ,Σ3),

Xr(k + 1) = Xo(k + 1) + ω4, ω4 ∼ N (Xany,Σ4),

(3.10)

25

where Xµ3 and Σ3 are the mean and variance of the object state transitions via Ũ2.

The mean and variance of the relative robot state is given by Xany and Σ4, which capture

dependency on φ, and intrinsic robot control errors.

3.3.4 Learning Model Parameters

Specific learning model parameters of Xµ1 , Xµ3 , Σ1, Σ2, Σ3, and Σ4 are reported here.

Our motion primitives have several parameters. Primitive Ũ0 has an analytical model

(but does include a small variance). For Ũ0, we only need to know Lmin, which is approxi-

mately 20 cm in our tests. However, Ũ1 and Ũ2 are much more complicated, so we resorted

to collecting data. We placed the robot and tail in random initial configurations, then we

executed the primitives over 20 times while recording data.

The following summarize the collected parameters through the repeated execution of

each motion primitive in Figure 3.4.

(a) Ũ1 (b) Ũ2

Figure 3.4: The object is located at (0,0,0), and the robot executes each motion primitive with
φ = 0. Settings match those in Figs 3.6 and 3.7.

26

Motion Primitives

Properties
Statics-based
idealized &
interaction

Statics-based
stick/slip together

Dynamics-based

Model
Deterministic w/

small variance added
Stochastic

Data-driven
(Stochastic)

4
Portfolio Optimization?
Diversity of motion primitives

Figure 3.5: A diverse set of motion primitives are used. From left to right, the object travel distance
per unit of time increases while the model tractability and model accuracy decrease.

Xµ1 =

 26.9

5.23

4.899

 Σ1 =

5.1673 1.6611 0.2215

1.6611 1.4337 0.1414

0.2215 0.1414 0.0183


Xµ3 =

80.04

−4.57

4.51

 Σ3 =

122 5.6 0

5.6 6.99 0.902

0 0.902 0.4183


Σ2 and Σ4 are taken as [3, 0.1, 0], which are measured directly via execution of Dubins

paths.

3.3.5 Recap of Motion Primitives: Initialization

The motion primitives require initialization motions, ũ−, to ensure the tail is in a well-

defined configuration. Some motion primitives also need additional actions, ũ+, to sim-

plify the robot’s state estimation. This section reviews the motion primitives, detailing

these additional motions which have not yet been described. We summarize the set of

primitives we use in Figure 3.5: from left to right tractability and accuracy of modeling

decrease because the physical phenomena involved are complex. Data-driven models are

used when the system is highly non-linear and transitions are too complicated to treat oth-

erwise. Though not shown, primitive Ũ2, has merit in terms of the object travel distance

per unit of time.

27

(a) T= 0 sec.

(b) T= 6 sec.

(c) T= 12 sec. (d) T= 20 sec.

(e) T= 25 sec.

Figure 3.6: The initialization motion for ũ−0 and ũ−1 is from (a) to (b). Then, the robot drags its tail
to move the object through (c), (d) and (e). If the robot wants to execute Ũ0 only, the robot might
stop execution as shown in (d). For Ũ1, the robot keeps dragging until the object stops moving,
shown in (e).

28

The photos in Figure 3.6 show Ũ0 and Ũ1. There are four phases. The first sets the robot

and object some distance (and bearing φ) apart—shown in Figure 3.6(a). Then, the robot

executes a pre-planned path, ũ−, bringing the robot next to the object, as in Figure 3.6(b).

Next, in Figure 3.6(c), the robot makes a simple surrounding motion that wraps the ob-

ject, whereafter the robot drags the tail for distance of 2 d. For Ũ0, the robot will stop in

Figure 3.6(d). For Ũ1, the robot will continue until the object stops moving in Figure 3.6(e).

For Ũ0, the robot reverses over its tail to separate the tail from the object after the object

has stopped. These additional motions, ũ+
0 , involve execution of a pre-planned path. These

are not needed for Ũ1, thus ũ+
1 = ∅.

Figure 3.7 shows the three phases of Ũ2. Initially, the robot navigates to the initial-

ization location via ũ−2 , shown in Figure 3.7(a). Second, the robot executes its high-speed

motion with steering at hard lock. The tail configuration is predictable as it essentially

becomes a semi-rigid body—Figure 3.7(b). Next the tail hits the object, shown in Fig-

ure 3.7(c), and the object moves. Finally, to be consistent with the model, the robot moves

to a location relative to the object’s resting pose, which is shown in Fig 3.7(d). This last

motion is ũ+
2 .

29

(a) T= 0 sec. (b) T= 1 sec.

(c) T= 1.5 sec. (d) T= 2 sec.

Figure 3.7: (a) The initialization, ũ−2 , positions the robot relative to the object. (b) This shows a
high-speed motion. The robot makes a circular motion. (c) The tail configuration is a semi-rigid
body after first round, and then the tail hits the object. (d) The robot stops at some location relative
to the object (ũ+

2).

30

9

from to

backup motion

fr
o

m

to

Figure 3.8: Motion primitives are sequenced together. The black line shows segments of motion
that the object undergoes. The green lines are the initialization motions, ũ−, and the orange solid
lines are termination motions, ũ+. The purple lines are portions of the path which move the object.
The broken black lines show points of transition between primitives.

3.4 Planning with the Motion Primitives

Having outlined the primitives individually, the next step is to plan and execute se-

quences of motion primitives. Figure 3.8 provides an illustration of how to sequence mo-

tion primitives as an example: The path consists of the sequence Ũ0, Ũ1, and Ũ2. First, the

robot executes Ũ0. The robot path is generated via a Dubins curve and the robot follows

the green line as its initialization, ũ−0 . It then makes the motion shown by the purple line

to move the object. At some point, the robot stops, executes a backing up motion as ũ+
0 to

separate the tail from the object. Here a transition from Ũ0 to Ũ1 occurs. The robot moves

along the (green) initialization path as ũ−1 and then the robot executes the dragging mo-

tion (purple). The final transition is from Ũ1 to Ũ2. The robot initializes with ũ−2 and then

makes a high-speed circular motion. Once the object stops moving, the robot goes to its

final location via ũ+
2 .

31

How does a planner find such a sequence, especially since the primitives include

motion uncertainty? We use the Rapidly-exploring Random Tree (RRT) [75] and add a

particle-based representation for uncertainty of the object’s state transitions. The algo-

rithm operates on a graph describing the object’s state space. Each vertex has the object’s

current state, Xo and the robot current state Xr, and the belief states of each object state

have a weighted set ofN particles, {(Xo1 , w1), . . . , (XoN , wN)}. Each edge is labeled with

the motion primitive needed to traverse between the associated vertices for the object and

the robot trajectories in Sec. 3.3.1.

Algorithm 1 RRT PLANNING
1: INPUT: XS , XG, robot initial location Xr0 , initial tree τ0(XS)
2: OUTPUT: π∗ = (Ũ∗1 , . . . , Ũ∗N)
3: TREE BUILDING PHASE(XS , Xr0 , τ0(XS))
4: SEARCH PHASE(τ , ~α, XG)

Algorithm 2 TREE BUILDING PHASE(XS , Xr0 , τ0(XS),)

1: INPUT: [Ũ0, . . . , ŨN], XS , robot initial location Xr0 , an initial tree τ0(XS),
2: OUTPUT: τK .
3: for k = 1 to K do
4: (Xrand, Ũrand(φ)) = SAMPLE()
5: Xnear = NEAREST(Xrand, Ũrand(φ), τk)
6: if NEW STATE(Xrand, Ũrand(φ), Xnear, Xnew) then
7: Xnew.particles = PROPAGATE(Xnear, Ũrand(φ))
8: τ .add vertex(Xnew, Ũrand(φ))
9: τ .add edge(Xnear, Xnew, Ũrand(φ))

10: end if
11: end for

32

Algorithm 3 Xnew.particles = PROPAGATE(Xold, Ũ , φ)
1: for p = 1 to P do
2: Xnew.particlesp = Xold.particlesp + SAMPLE(Ũ , φ)
3: UPDATE WEIGHT(Xnew.particlesp)
4: Xnew.particlesp.cost = UPDATE COST(Xnew.particlesp)
5: end for

Algorithm 1 gives the RRT algorithm with a mechanism adapted for propagation of

errors. First, we build the tree with our motion primitives from the object’s start node.

Then we search for a low-cost path based on the scalarized cost function. (In our imple-

mentation these procedures are performed offline.) Algorithm 2 consists of following basic

functions: The SAMPLE function returns uniform samples of the object state Xo in χfree,

which is the collision-free space (x, y, θ). We also sample a heading angle φ ∈ [0, 2π) and

a specific motion primitive Ũ with object rotation direction. The NEAREST function finds

the nearest node Xnear from τk. Then, the NEW STATE function determines the new tree

node based on global constraints, such as being collision-free (including the object state

transitions and the robot trajectories). When new nodes are added, we propagate object

motion errors. In Algorithm 3, we compute a new particle state by sampling particles via

the probability distribution of the motion primitive. Then we update the weights, normal-

izing them based on the average of Xnew.particles, also updating J (X).

Once we have a random tree, the next step is to find a sequence of motion primitives

via the SEARCH PHASE in Algorithm 1. We use Dijkstra’s algorithm with J (Xi, ~α) in

Algorithm 4.

33

Algorithm 4 SEARCH PHASE(τ , ~α, XG)
1: INPUT: τ , ~α, object goal location XG

2: OUTPUT: π∗ = (Ũ1, . . . , ŨN)
3: costinit = 0
4: Q = Xinit and ClosedSet = {}
5: while Q 6= 0 do
6: Xcurrent = POP(Q)
7: ClosedSet.add(current)
8: for each neighbor of Xcurrent do
9: JXneighbor

= J (Xneighbor, ~α)
10: Q = Q ∪Xneighbor

11: end for
12: end while

3.5 Experimental Results

This section presents results from several physical robot experiments. The experiments

we report constitute a demonstration of manipulation through the use of an unactuated tail,

providing proof of sufficiency, and showing that though our approach involves simplifica-

tions, it nevertheless enables planning and successful execution of actions to manipulate

objects within the workspace. The work also provides a basis for exploring the importance

of several notions of path cost, complex preferences between objectives, and how a diverse

portfolio of primitives enables synergy.

3.5.1 System Setup

We used an RC car controllable to velocities between 0.4 m/s for Ũ0 and Ũ1, and over

1.5 m/s for Ũ2. An embedded computer on the car controls the robot and communicates

with a separate computer integrated with an overhead tracking system which localizes the

object and the robot. The software uses the ROS framework. All experiments are con-

ducted in our test arena of size 5.18 m × 4.27 m. Pose errors are estimated to be ± 5 cm

and± 10 rad, respectively. The tail configuration was not tracked. The following physical

properties were measured: the target object is a cylinder with mass = 30 g, µo = 0.6655,

34

and radius = 7.5 cm; the robot weighs 700 g; tail is a chain with mass = 35 g,

length = 70 cm, and µt = 0.5952.

3.5.2 Scenarios: Planners, Environments, and Objectives

3.5.2.1 Three planners

For comparison of the experimental results, we considered three types of planners.

(1) The simple naı̈ve planner in which the error propagated with a pre-planned fixed φ.

This planner’s anticipated uncertainty is greatly increased over the other two plan-

ners.

(2) The adjustable planner updates the φ parameter based on the current object state.

This update is in line 7 of Algorithm, 2.

(3) The adjustable + replanning planner extends the previous planner by generating a

new tree and a path to reduce any error that remains after the robot finishes each

motion.

3.5.2.2 Two environments

We have two scenarios. The first is obstacle-free, in which we validate the approach

extensively. The second environment has a static obstacle, and gives a clear demonstra-

tion of how different cost preferences (regarding collisions) are reflected in the resulting

sequence of motion primitives.

3.5.2.3 Three objectives

We are interested in total execution time, a measure of path accuracy, and a measure

of path safety, denoted J1, J2, and J3, respectively. Two scaling degrees-of-freedom are

suffice: α1 and α2, with α3 = 1 − α1 − α2. where α1 indicates a parameter of total

execution time, α2 is a parameter of path accuracy, and α3 is a parameter of path safety.

35

00.10.20.30.40.50.60.70.80.91
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

J2 = Prob(x,y,θ)

J 1
≈

N
av

ig
at

io
n

C
os

t
(c

m
)

Objective Space

Ũ0-only
Ũ1-only
Ũ1+Ũ2
Ũ2-only

(a) The Pareto front (in black); the x-axis is a measure of path accu-
racy; the y-axis is navigation cost.

(b) Four paths are plotted in 2-dimensional space (heading
has been omitted).

Figure 3.9: Ũ0-only is a gray path. Ũ1-only is a green path. Ũ2-only is a magenta path. Ũ1+Ũ2 is a
sky blue path.

36

At transitions between motion primitives, we compute J (X) by accumulating each cost

function. The execution time is the total robot navigation time. The total accuracy of the

path includes both the reliability of object transitions between nodes, and how close the

states are to the goal. They are computed via 1 − Pr(Xoi)X̂oi
and 1− Pr(Xoi)XG

, where

X̂ is our model’s prediction.

First, we examined the open space scenario to understand the basic characteristics of

the motion transitions. For this scenario, we set α3 = 0 because there are no obstacles.

Then, our four different preferences give four scaled parameters: the planner with α1 =

0.00001, Ũ0-only, is the most conservative planner which gives a most reliable path albeit

with most costly execution time. With α1 = 0.0001, Ũ1-only, is modestly conservative,

allowing a reliable path with high probability to go to the goal. The planner with α1 =

0.0003, Ũ2-only, is most optimistic, allowing only high-speed motions. The planner with

α1 = 0.0002, Ũ1 + Ũ2, is mixed.

As can be seen in Figure 3.9, we have four kinds of paths: (1) Ũ0-only has sequences

with twenty Ũ0s. (2) Ũ1-only has sequences with twelve Ũ1s. (3) Ũ2-only has sequences

with four Ũ2s. (4) Ũ1 + Ũ2 has sequences with one Ũ1, three Ũ2s, and two Ũ1s.

3.5.3 Experimental Validation

Two measurements are used for comparison: precision measures how consistent re-

sults are across repetitions; accuracy considers closeness of the mean of a set of measure-

ments to the actual goal.

Our tree was built so that the proportion of Ũ0, Ũ1 and Ũ2 were equally distributed

over 250,000 nodes. The start location is XS = (−100 cm, 100 cm, 0 rad) and the goal

location isXG = (100 cm,−100 cm, π rad). To simplify our experiments, we assume that

the object rotates in a clockwise direction, so all motion primitives have a fixed direction

of rotation.

37

(a) Ũ0-only (b) Ũ1-only

(c) Ũ1 + Ũ2 (d) Ũ2-only

Figure 3.10: An overview of our four scenarios: The small circles near the goal location indicate
the final object states (orientation as a red line).

Figure 3.10 – 3.13 shows the three different planners simple, adjustable, and adjustable

+ replanning with four preferences. Figure 3.10 shows four scenarios by plotting paths

(Figure 3.9) in the real world. This shows the initial state, and we can see a representative

initialization motion (in green) for each primitive. Ten trials are shown for each case as

follows: Figure 3.11 shows the results with simple planner of Ũ0-only, Ũ1-only, Ũ1+Ũ2,

and Ũ2-only. Figure 3.12 shows the results with adjustable planner analogously.

We can see that the adjustable planner has increased precision compared to the simple

planner. From Ũ0-only to Ũ2-only, we see that accuracy also decreases. From Ũ2-only of

38

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(a) Ũ0-only with the simple planner

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(b) Ũ1-only with the simple planner

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(c) Ũ1 + Ũ2 with the simple planner

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(d) Ũ2-only with the simple planner

Figure 3.11: An overview of our results with the simple planner: The small circles near the goal
location indicate the final object states (orientation as a red line).

Figure 3.11 and Figure 3.12, we might think that Ũ2 alone is useless. However, those pref-

erences can be effective with the adjustable + replanning planner; applying the adjustable

+ replanning planner for Ũ1+Ũ2 gives the (representative) result magnified in Figure 3.13.

The replanning phase greatly increases accuracy. The replanning phase takes consid-

erable computational time but certainly improves the quality of both Ũ2-only and Ũ1+Ũ2.

A detailed analysis of all the results appears in Figure 3.14. Figure 3.14(a) shows the

model’s prediction (blue), the simple planner (green), the adjustable planner (red), and

39

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(a) Ũ0-only with the adjustable planner

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(b) Ũ1-only with the adjustable planner

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(c) Ũ1 + Ũ2 with adjustable planner

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

x (cm)

y
(c

m
)

(d) Ũ2-only with the adjustable planner

Figure 3.12: An overview of our results with the adjustable planner: The small circles near the goal
location indicate the final object states (orientation as a red line).

the replanning planner (magenta). The models consistently underestimate execution cost,

likely due to difficulties in controlling the RC car robustly. The estimate’s deficiencies

were traced back to costs in the initialization steps for the primitives.When errors are big

enough, compared to given trajectories, re-planning the robot path takes additional time.

Primitive Ũ0 especially has a substantial gap between the model and reality, owing to the

reversing motions further exacerbated by a sequence of more than twenty Ũ0s.

From Figure 3.14(b), adjustment and/or replanning reduce distance errors. The bar

40

0 20 40 60 80 100 120

−140

−120

−100

−80

−60

−40

x (cm)

y
(c

m
)

Figure 3.13: We apply the replanning phase after the result of Figure 3.12(c). Ten scattered objects
are moved to the near goal location with good accuracy and precision.

shows the mean square error, the error-bars depict the maximum and the minimum val-

ues.

The additional execution time for replanning in Figure 3.14(a) comes from the execu-

tion time of additional motion primitives. Note that the times reported for replanning do

not consider the time necessary for generating the tree, as they only reflect execution costs

not computational ones.

Next, we briefly summarize results for an exploration of cost preferences in the en-

vironment with obstacle collisions. In this case, we use α2 for the scaled cost function.

We have three preferences, each shown in Figure 3.15. Path-1 ((α1, α3) = (0.0003, 0.1))

consists of three Ũ2s and two Ũ1s. Path-2 ((α1, α3) = (0.0003, 0.4)) has four Ũ2s and three

41

10

(a) Primitive execution times (mean and standard deviation).

(b) Error as distance from goal (mean, min, and max).

Figure 3.14: The data in Figure 3.11 and Figure 3.12 summarized.

42

12

Motion
Primitive

Arrival time (s) Collision rate Arrival rate

Path 1 (green) (84.2, 9.17) 40% 60%

Path 2 (purple) (110, 10) 0% 80%

Path 3 (red) (360, 15) 0% 100%

Figure 3.15: Analysis of the preferences in the obstacle environment. The black area is the static
obstacle area. Reported arrival time (seconds) is (µ, σ) for 10 trials of each path. We count the
number of collisions. We also count the number of arrivals at the destination (±30 cm radius).

Ũ1s. Path-3 ((α1, α3) = (0.0001, 0.1)) has twelve Ũ1s. Values are reported for 10 trials for

each path. Path-1 is the fastest method, but it highest risk of collision (at 40 %). Path-2 has

a reasonable execution time and no collision. Path-3 is the most conservative path.

43

Fine dragging
Appr.

dragging
Conjoining +

[Bhattacharya
et al., 2015]

Hooking
Snare +

dragging
Striking Hooking +

Striking

Properties
Statics-based
idealized &
interaction

Statics-based
stick/slip
together

Magnets
included

Either Statics or
dynamics-based

Statics-based
stick/slip together

Dynamics-based Dynamics-based

Model
Deterministic w/

small variance
added

Stochastic Simulation-based Simulation-based
Data-driven
(Stochastic)

Data-driven
(Stochastic)

Simulation-based
or

Data-driven
(Stochastic)

17
Portfolio Optimization?
Diversity of motion primitives

Figure 3.16: We extended a small portfolio in Figure 3.5 to a diverse set of motion primitives.

3.6 Extension of a Set of Motion Primitive

We reviewed a small set of motion primitives in Figure 3.5. In this section, we show

a diverse set of motion primitives as shown in Figure 3.16. We explain additional motion

primitives: conjoining, hooking, and snaring.

3.6.1 A Conjoining Motion Primitive

We developed a docking primitive that is necessary to conjoin two robots as a pair of

robots. Firstly, given objects to move together, one robot stays near one object, initializing

the robot’s orientation to transfer (Figure 3.17(a)), then the second robot crosses the tail

of the first (Figure 3.17(b)). Finally, the tails joined as the robot follows the contour of the

convex hull because each tail contains a magnet. See Figures 3.17(b) and 3.17(c). After

that, a pair of robots moves clustered objects to goal locations. To split conjoined tails, we

simply make a extra motion: one robot stops while the other moves past until the length of

the tails is exceeded.

3.6.2 A Hooking Motion Primitive

We devised this motion because this motion facilitates caging effectively objects and

moving to a goal location by one robot. To produce this hooking primitive, we put a fist-

44

(a) Docking: T = 0 sec. (b) Docking: T = 8 sec. (c) Docking: T = 12 sec.

Figure 3.17: Initializing docking in (a). One robot stays at the given location. The second robot
crosses the tail of the first. Since each tail, made of chain, has a magnet at the end, the two tails join
naturally so long as the robot follows the contour of the convex hull via (b) to (c).

size quarter sphere at the end of the tail (see Figure 3.18(a)). First, the robot winds around

the object, crossing near the end of its tail (Figure 3.18(b)). Then, the quarter sphere works

like a buckle (Figure 3.18(c)). Thereafter, the robot moves the hooked object to a goal

location. To release hooked objects, the robot turns around to the object reversing the

direction of the winding motions (Figure 3.18(d) to Figure 3.18(f)).

3.6.3 A Snaring Motion Primitive

We also developed a snaring motion primitive that winds around the objects. In con-

trast to the previous motion primitive Ũ1, this motion has one special advantage. When

objects are too heavy to move with a dragging motion, the snaring motion creates more

friction between the tail and an object so that the object is under control by the wrapped

tail. Figure 3.19(a) shows the robot winding the object for 5 times. By the end, the robot

can drag the gripped object into the next desired states with unwrapping the tail. Fig-

ure 3.19(b) shows the robot going to the desired orientation, then wrapped object follows

the robot’s trajectory by unwinding the tail. In this motion primitive, we might be able to

use a simple stochastic model same as a striking motion, Ũ2.

45

(a) Hooking: T = 0 sec. (b) Hooking: T = 5 sec.

(c) Hooking: T = 9 sec.

(d) Unhooking: T = 0 sec. (e) Unhooking: T = 3 sec.

(f) Unhooking: T = 12 sec.

Figure 3.18: The robot winds around the object with a clockwise direction through (a), (b) and (c).
To release the hooked object, the robot drives in the opposite direction, seen in (d), (e) and, (f).

46

(a) The robot winds around the objects for 5 times, and then keeps surrounding the object to
find the orientation to go.

(b) The robot goes to the desired orientation. Then, the object follows the robot’s trajectory by
unwinding the tail.

Figure 3.19: We developed a snaring motion primitive, which is useful when the object is heavy to
move by a dragging motion. The object can be under control by this snaring and dragging motion.

We will employ the hooking motion primitive and the conjoining motion primitive in

Chapter 4.

47

3.7 Discussion

3.7.1 Implementation Challenges

An issue we encountered with our implementation was that it was difficult to assure

that the robot maintained a fixed velocity. This is because friction varies depending on

whether the object (and tail, including just some segments of it) are moving or not. A

consequence is that the total execution time reported above is computed based on the

average velocity of the robot.

3.7.2 Object Geometry Oblivious: a Generalization of our Model

When we use a rope-like structure, it can wrap around an object, conforming to any

object geometry due to the flexibility of the tail. Thus we expect that the same wrap-

ping/striking model will work for many geometries.

To demonstrate the usefulness of a rope-like structure, we studied with several different

object shapes using the same model in our proposed work. Based on our experiments, we

conclude that our approach is not only limited to cylindrical objects. If the shapes have the

comparable enclosing length via the rope-like structure (i.e., perimeter), and approximate

locations of center of mass and center of friction, then they appear to work well with the

same parameterized models.

Moreover, this is not limited only to convex polygons; concave polygon such as a star

shapes work because they can be treated effectively as their convex hulls when the rope-

like structure surrounds them.

We explored four different objects (e.g., a circle, a square, a triangle, and a star-shape).

The robot and tail started in some randomly generated initial configurations, then we ex-

ecuted two primitives, Ũ1 and Ũ2 at least 10 times to collect sufficient data. The initial

pose of the object is (0, 0, 0). The dots in the Figure 3.20 indicate the final object position

(the orientation is not displayed here, but listed in Table 3.1). Figure 3.20(a) shows four

48

different shapes of the object executed by Ũ1, while Figure 3.20(b) is corresponds to the

Ũ2 execution. Table 3.1 shows an analysis (mean and standard deviation) of the collected

data.

For Ũ2, Figure 3.20(a) shows high accuracy and high precision results with regard to

the different shapes of the object. Figure 3.20(b) also shows high precision results for

each shape, but lower accuracy. The reason is that when the tail struck the object, the

orientation is less controllable for Ũ2. However, the object’s total distance moved shows

great consistency for all different shapes of the objects.

In conclusion, with the traditional approaches to non-prehensile manipulation [26, 28,

29, 108], the robot manipulates an object through a direct contact; in this case, depend-

ing on the shape of the object, manipulating an object might be intractable. However, if

the robot with a compliant, unactuated rope-like structure surrounds an object in some

particular ways (via dragging or striking), then the shapes of the object matters compara-

tively little in the same model. We might call this an object geometry oblivious approach,

suggesting the generalizability of our model.

3.7.3 The Advantage of the Dynamics-based Motion Primitives

We present some practical particular scenarios that show the advantage of the dynamics-

based motions. We mentioned that one of our contributions is employing the dynamics of

Ũ1 = (cm, cm, rad) Ũ2 = (cm, cm, rad)

Triangle (41.1,−1.2, 6.6)± (3.1, 2.5, 0.6) (84.5,−23.8, 4.5)± (10.7, 12.7, 0.9)

Square (41.5, 1.8, 6.4)± (3.0, 2.5, 0.5) (90.9,−47.2, 4.2)± (6.5, 11.5, 0.6)

Star (44.4, 1.2, 7.0)± (2.7, 2.8, 0.5) (99.1,−28.2, 4.3)± (7.4, 13.2, 0.9)

Cylinder (38.8, 2.1, 6.5)± (3.3, 2.2, 0.6) (92,−23.9, 3.6)± (11.3, 18.9, 1.0)

Table 3.1: We used a chain with 35 g and 70 cm. The mass of each object is 23 g ± 2 g.

49

(a) A dragging primitive Ũ1 with four different types of objects

(b) A striking primitive Ũ2 with four different types of objects

Figure 3.20: Experiments to determine whether the shapes of the object are critical for our system.
The initial object pose is (0, 0, 0).

50

(a) Penetrating a narrow passage: T = 0 sec. (b) Penetrating a narrow passage: T = 0.8 sec.

(c) Penetrating a narrow passage: T = 1.2 sec. (d) Penetrating a narrow passage: tracking by an
overhead camera

Figure 3.21: Using Ũ2, the snapshots from (a) to (c) show how an object can be moved through a
narrow passage even though the robot is too wide to pass through it (e.g., pushing a paper under
the door); (d) shows an incremental tracking information.

rope-like structures for manipulating objects. Here we demonstrate practical examples for

Ũ2 (a striking primitive).

The first scenario is that we manipulate an object to the goal location through a partic-

ular environment such as a corridor shown in Figure 3.21. In this scenario it is difficult to

manipulate an object via non-prehensile manipulation. For example, assuming the robot

cannot pass through the narrow passage due to its size. Then, by using Ũ2, we can gener-

ate a high-speed striking motion that can move an object quickly and reliably through the

51

passage. This narrow passage can be treated as obstacles (like a static obstacle environ-

ment in Section 3.5.3), and then we can easily generate a path using our framework in this

section. Figure 3.21 shows an object can be moved via a narrow passage using the striking

primitive, Ũ2.

Second and third scenarios are: the robot uses Ũ2 for moving an object that is stuck

near the obstacles. In non-prehensile manipulation, manipulating a stuck object is a chal-

lenging problem. Figures 3.22 and 3.23 show a stuck object can be whipped away from

the obstacles using Ũ2.

52

(a) A stuck object near the wall: T = 0 sec. (b) A stuck object near the wall: T = 0.5 sec.

(c) A stuck object near the wall: T = 1 sec. (d) A stuck object is whipped away from the
wall: tracking all is by an overhead camera.

Figure 3.22: Using Ũ2, the snapshots from (a) to (c) show how an object can be moved outwards
from the wall; (d) shows an incremental tracking information.

53

(a) A stuck object near the corner: T = 0 sec. (b) A stuck object near the corner: T = 0.5 sec.

(c) A stuck object near the corner: T = 1 sec. (d) A stuck object is whipped away from the

corner: tracking all is by an overhead camera.

Figure 3.23: Using Ũ2, the snapshots from (a) to (c) show how an object can be moved outwards

from the wall; (d) shows an incremental tracking information.

The last scenario is that the robot with a tail uses Ũ2 for splitting apart objects gathered

in a cluster, simultaneously, so that the robot can manipulate the right object into a desired

goal location. For example, when the robot wants to move gathered objects to a goal, we

might need to scatter stuck objects beforehand. Figure 3.24 shows how the robot with a

tail scatters stuck objects.

Overall, dynamics-based motions, such as Ũ2, are not merely a scientific curiosity, they

54

(a) stuck objects together: T = 0 sec. (b) stuck objects together: T = 0.5 sec.

(c) stuck objects together: T = 1 sec. (d) stuck objects together: tracking by an overhead
camera

Figure 3.24: Using Ũ2, the snapshots from (a) to (c) show how stuck objects can be scattered; (d)
shows an incremental tracking information. Here we only tracked the cylindrical shaped object.

55

can be useful in several practical scenarios. When a robot cannot access a narrow passage,

a high-speed striking motion can move an object quickly and reliably through the passage.

If an object is stuck near a wall or a corner, the robot can use Ũ2 to manipulate a stuck

object directing it outwards from afar. It is also possible for a robot with a tail to use Ũ2

to separate multiple gathered objects, so that each object can be brought into their desired

location, much like a billiards break.

3.8 Summery of This Section

Even though rope-like structures are simple, cheap, and versatile tools, compliant pas-

sive tails have received little attention for robotic manipulation. We speculate that this is a

consequence of the modeling difficulties inherent to such systems; this chapter’s response

to the challenge is to use a collection of models of varying verisimilitude. We have demon-

strated how the dynamics of a compliant, unactuated tail can be successfully exploited for

manipulation. We have shown the effectiveness of an approach that uses simple stochastic

models, each associated with a structured primitive. The planning algorithms used was

sampling-based motion planning with a particle-based representation for error propaga-

tion. We demonstrated our system with physical robot experiments and the results show

that various preferences can be expressed effectively, ultimately being reflected in different

mixes of primitives being executed.

56

4. COOPERATIVE MANIPULATION OF OBJECTS VIA COMPLIANT,

UNACTUATED TAILS

4.1 Introduction

Manipulation problems that involve transferring multiple objects to a set of goal lo-

cations arise in many applications and in surprisingly diverse settings. Familiar examples

include collecting toys strewn across the floor, removing debris on the surface of a pond,

or (more mundanely) handling materials in a warehouse. Such problems have inherent

parallelism ripe for exploitation if one can move multiple objects simultaneously. In cer-

tain circumstances, such as when the environment is large, a single robot’s performance

may be inadequate and a collaborative multi-robot team needed to perform such collection

tasks more efficiently.

The focus of this chapter is on robots equipped with an unactuated flexible structure at-

tached as a ‘tail’ that they can use as a tool. We examine how a group of robots equipped in

this way can form a team to solve multi-object collection tasks. It is apparent, in reflecting

on our everyday lives, that there are a huge variety of ways that people use strings, cords,

ropes, lines, and chains—they are used to bind and secure, they are used to connect and

pull, they are used to grip and whip. It isn’t easy to find another class of artefacts more ver-

satile! Still, most robots do not make use of ropes or strings, probably because modeling

flexible structures remains challenging. But the advantages for manipulation are apparent:

when wrapped to encircle a payload, ropes and strings can restrain objects through the in-

terplay of tension and friction. Perhaps best of all, little need be known about the geometry

of the objects being manipulated once the rope or string is constricted.

The present work employs two motion primitives in Figure 3.16: a hooking motion

primitive and a conjoining motion primitive. We developed a robot capable of manipulat-

57

ing single objects by using the hooking motion primitive. This hooking primitive contrasts

with research in which a pair of robots, connected by a rope using a conjoining motion

primitive, manipulate one or more objects (cf. [11, 30]). Both approaches (the hooking

and the conjoining primitives) are unified in this Section. Our robots can manipulate sin-

gle objects individually or, if they choose, they can link their tails together (by executing

a special manoeuvre) and act as a connected pair.

As an illustrative example, Figure 4.1 provides a small instance of the type of ma-

nipulation problem we tackle. The top image (Figure 4.1(a)) shows the initial state of the

environment and a plan that the robots can use to solve the problem. In this case, execution

of this plan involves two steps. The robots begin by manipulating objects individually by

securing their tails around the objects (upper-right in Figure 4.1(b)). Once the objects have

been delivered to the goal region and released, the robots connect their tails and cooperate

in dragging multiple objects to the goal (lower-left in Figure 4.1(b)). When operating as

a conjoined pair, we expect that robots will have greater towing capacity in concert than

when acting alone. But, two robots acting individually have the advantage of being able to

collect far-flung objects simultaneously.

Solutions to collection problems with these kinds of robots must resolve the question of

when robots should act jointly, as tightly-knit pairs, and when they should act individually.

Among other factors, the best choice depends on whether the objects are clustered within

the environment, the number of robots, and their capacity when operating as a conjoined

pair. Picking what we believe to be an appropriate level of abstraction, we formulate the

Multi-Object Collection via Cooperative Towing Planning Problem (MOCCT) as a discrete

optimal path planning problem, whose solution is a sequence of paths for all robots that

minimizes the total cost of manipulation.

58

(a) Two robots with flexible tails construct a plan to transport four objects: Step-1 is for the robots, acting
individually, to move o1 and o4 to the goal simultanously; Step-2 involves the pair of robots linking tails
and, together, bringing o2 and o3 to the goal.

(b) To perform Step-1, each robot tows an object on its own, hooking its tail around the object and
releasing it at the goal. In Step-2, the robots execute a primitive that physically couples the pair,
they then surround and drag o2 and o3 to the goal cooperatively.

Figure 4.1: Consider the problem of moving four objects to the chequered region, with at least
two objects being pink. To minimize cumulative distance, the robots balance working as a tightly-
knit pair versus operating separately. Pairs have the advantage of greater towing capacity, while
individuals may fetch distant objects concurrently.

59

4.2 Problem Setup and Notation

Let the set O = {o1, o2, . . . , on} represent n objects which can be transported by

our m robots: R = {r1, r2, . . . , rm}. We will write post(oi) to denote the position of

object i at time t, (and robots, similarly); t ∈ N0 is a temporal index, starting at zero.

We will use the term world configuration at time t, to describe the positions of all ob-

jects and robots at that instant. A set of goal locations, G = {g1, . . . , gk}, is given. By

extending pos in the natural way, post(gi) = XG
i ,∀t gives gi’s (fixed) position.We also

find it helpful to write the initial positions of the objects as Xi with Xi = pos0(oi), and

robots’ initial locations with XR
i = pos0(ri). Finally, we collect all these initial posi-

tions into the set X = {X1, . . . , Xn, X
R
1 , . . . , X

R
m, X

G
1 , . . . , X

G
k }. To describe the mass of

each object, we will write the function mass(oi) to denote the mass for oi, then let the set

D = {mass(o1), . . . ,mass(on)}.

Along with positions, each robot’s state represents that it is either operating alone or

has its tail connected to another robot. Let matcht(ri) = rj , with i = j if and only if ri is

operating solo and with i 6= j if and only if ri and rj form a couple together. We partition

R intoRt
s ∪Rt

p, where solo robots compriseRt
s, pairsRt

p.

Further, assume two sets of logical predicates are given:

Lstatic contains predicates describing static properties of the objects, like P : O → {True, False};

e.g., PINK(·), CYLINDER(·), WOOD(·), BOOK(·), BALL(·), etc.

Lpos with properties defined as P′ : O × X → {True, False}, that include position informa-

tion; e.g., LOCATEDAT(·, ·).

A set of desired final states is specified via a logical formula, F, written in terms of

Lstatic and Lpos, which, when satisfied in some world configuration, distinguishes it as a

goal. Rather than providing a complete BNF characterization of the formulas, which would

60

only belabor the point, we observe that in addition to the standard logical connectives (¬,

∧, ∨), SMT also enables one to write relationships between the cardinalities of sets (and

natural numbers) with ≤, <, 6=, etc. Note that the goal locations {XG
i |gi ∈ G} enter into

this specification as being part of the domain of predicates in Lpos.

To describe meaning to all sentences of a first-order logic, we define the domain of

discourse U for interpretations: Let the set O , {obj1, obj2, . . . , objn} represent n objects.

Let the set L , {Loc1, loc2, . . . , locv} represent v locations. We define interpretation I

at time t, which maps constant symbols, predicate symbols to relations on the domain of

discourse as follows:

It=



obji ∈ O 7→ oi ∈ O

Loci ∈ L 7→ Xi ∈ X

LOCATEDAT 7→ {〈oi, Xk〉 | oi ∈ O, Xk ∈ X , post(oi) = Xk}

etc.

(4.1)

We might be able to express complicated relations by using the firs-of-logic: We can

include sets, lists, natural numbers (by the Peano Axioms). We observe that in addition

to the standard logical connectives (¬, ∧, ∨), SMT also enables one to write relationships

between the cardinalities of sets (and natural numbers) with ≤, <, 6=, etc. Thus we can

design general constraints and solve it by using SMT-solver.

4.2.1 The MOCCT Problem Formulation

We formulate the MOCCT problem as a task planning problem using high-level motion

primitives [85] for the robots’ movements. The sequence of primitives comprises a motion

plan having semantics defined in terms of a C-space motion (details appear later).

In this chapter, manipulation proceeds, whether by a single robot or conjoined pairs,

61

by encircling a payload and then towing it to some position. Once multiple objects are

brought together, the robots are incapable of separating them again.

Modeling assumption: We impose the natural restriction that all the objects at each

X ∈ X must be moved together. It is useful to have notation for the set of all objects at

some location, with the mnemonic for a bundle, we write btX = {oi : O | post(oi) = X},

where X ∈ X ; the X for btX is the bundle’s site. One consequence of the preceding

modeling assumption is that we do not consider plans of sequences longer than the total

number of objects; we denote this maximum T̄ . Another is that we can talk meaningfully

about multiple objects at X ∈ X , because we treat them as indivisible thereafter so their

centroid suffices to characterize the state that is important to us.

The search space over world configurations is now clear: each element of the search

space consists of a set of bundles, their associated sites, and the robots’ state. We define

planning operators which transition one world configuration to another. It is easiest to un-

derstand the world configurations and the valid transitions between them by visual means.

Fig. 4.2 illustrates the scenario of Fig. 4.1(a). Bundles of objects appear in braces at each

location. If, at time t, elements from site Xi are moved to Xj , the result of the operation

will be bt+1
Xj

= btXi
∪ btXj

. The figure abstracts away several details, but these are clarified

by looking at the planning operators in terms of the motion primitives the robots use to

mediate their operation in the environment. In the following four primitives, we use r to

denote a set of robots, either a singleton r = {rk}, rk ∈ Rt
s, or a pair r = {rk, r`}, r ⊆ Rt

p.

1. TRANSIT(r, Xi): This primitive returns a path ∆1 for moving robot(s) in r toXi without

colliding with obstacles and objects. It changes the robot(s) locations to Xi, initializing

their orientation so they are ready to execute TRANSFER(·).

2. TRANSFER(r, Xi, Xj): This primitive returns a path ∆2 for collision-free motion of

robot(s) in r so that all ok ∈ btXi
arrive at Xj . This changes the locations of both robot(s)

62

(a) Initial configuration at t = 0. (b) A goal configuration at t = T .

(c) Step-1: two solo robots transfer o1 and o4 to
the goal concurrently.

(d) Step-2: a pair transfer o2 and o3 to the goal
working together.

Figure 4.2: A directed graph representation for the example in Fig. 4.1(a). A green circle indicates
a node Xi and a curly bracket shows a set of objects btXi

. Here (a) represents an initial configu-
ration while (b) is a goal configuration; (c) shows Step-1 in Fig. 4.1(a), while (d) shows Step-2 in
Fig. 4.1(b). Heuristics mean some edges (dotted) are unlikely to be explored.

and object(s) to Xj .

3. DOCK(r, Xi): For r = {rk, r`}, r ⊆ Rt
s, this primitive returns a path ∆3 which, when

executed, links rk and r` atXi ∈ X . This changes the configuration of robots, and places

both rk, r` inRt
p, matcht(rk) = r` and matcht(r`) = rk.

4. SPLIT(r): This primitive returns a path ∆4 for two robots r = {rk, r`}, r ⊆ Rt
p, to

split their previously joined tails at their current location. The operator is the inverse of

DOCK. When executed, unlinks rk and r` at Xi ∈ X . This changes the configuration of

63

robots, and places both rk, rl inRt
s, matcht(rk) = rk and matcht(r`) = r`.

If the requirements on r are not met in 3. and 4., the SPLIT or DOCK primitive cannot be

used in that context. The primitives are sequenced in triples to give high-level operators

which transform world configurations. We write πt(r, Xi, Xj), for a sequence that moves

the objects at Xi to Xj: either πt(r, Xi, Xj) = [∆4,∆1,∆2] for |r| = 1, or otherwise

πt(r, Xi, Xj) = [∆3,∆1,∆2] for a pair of robots, i.e. |r| = 2, if such collision-free paths

exist and can be found by our motion planner. In the preceding, the ∆x’s give paths for

the subset of robots involved, namely, r. When πt(·, ·)’s have been constructed for all m

robots in R, which we write as Πt(·, ·), the result is a path in the joint C-space for the

team.

Let J be a deterministic cost function estimating, say, the time to execute a path. Then,

to define a collective cost J , we lift J to Πt:

J (Πt) = COMBINE
πt(r,Xi,Xj)∈Πt

 J(∆4) + J(∆1) + J(∆2) if |r| = 1,

J(∆3) + J(∆1) + J(∆2) if |r| = 2,
(4.2)

where COMBINE is a function that describes the way concurrent operations are aggregated

for the optimization objective being considered. We use COMBINE in two ways:

• COMBINE = max for robots that stay idle until others complete their tasks.

• COMBINE =
∑

for computing a cumulative total navigation distance for all robots

as the cost function.

A few additional elements must be introduced into the model. Firstly, let Li be the tail

length, a physical parameter, for each robot i. Secondly, we define two predicates to deal

64

with towing constraints as follows:

C1 : R× 2O → {True, False},

C2 : R×R× 2O → {True, False},
(4.3)

where C1(ri,Op = {o1, . . . , ok}) is true if hooking primitives by a robot ri can move all

objects in Op and C2(ri, rj,Op = {o1, . . . , ok}) is true if dragging primitives by pairs ri

and rj can move all objects in Op.

The following makes explicit assumptions which have been tacit up to this point:

(i) All our mobile robots have an inelastic tail.

(ii) Robots can link and unlink the ends of their tails, but only to form a pair.

(iii) The tail cannot pass through any of the objects when the tail contacts the objects.

(iv) The robots’ and the objects’ states are observable, while the tail configurations are

not.

In the work hereafter, we are not interested in infeasible plans and so consider sys-

tems where there is at least one robot (or one pair of robots) that can manipulate objects,

ultimately can lead to satisfying F.

General Problem Definition: A Multi-Object Collection via Cooperative Towing (MOCCT)

Planning Problem: GivenO,R,G,X ,D, J,Lstatic,Lpos, and F, COMBINE, with C1 and C2

for all robots, compute a sequence of paths (Π̄0, . . . , Π̄T) which minimizes the total de-

livery cost, where the capacity constraints are never violated and the goal predicate F, is

satisfied in the configuration at time T . Formally:

[Π̄0, . . . , Π̄T] = argmin
[Π0,...,ΠT]

T∑
t=0

J (Πt), (4.4)

65

subject to

|=IT F, (4.5)

T ≤ T̄ , (4.6)C1(rk, b
t
Xi

) = True, r = {rk}

C2(rk, rp, b
t
Xi

) = True, r = {rk, rp}

 ,∀t ∈ {0, . . . , T},∀πt(r, Xi, Xj) ∈ Πt. (4.7)

The discrete formulation leads to a single-objective combinatorial optimization prob-

lem, where the search space contains the feasible, cooperative paths for all robots.

4.3 NP-hardness of the MOCCT Problem

We show that, quite separately from the satisfiability of F, the combinatorics of the

preceding optimization problem is NP-hard. To do so we define a Trivially Satisfiable

Multi-Object Collection via Cooperative Towing problem (TS-MOCCT), which is simpli-

fied in that all objects are to be moved to a single goal. Thus, the logical formula for

TS-MOCCT has the special trivial structure FTS := ∀i, LOCATEDAT(oi, X
G
1).

To show the hardness of the TS-MOCCT problem, we will show that (i) an instance

of the Vehicle Routing Problem (VRP), known to be NP-hard [109], can be reduced to an

instance of TS-MOCCT, and (ii) an optimal TS-MOCCT solution can be used to generate an

optimal VRP solution.

We describe the VRP [47, 109], briefly: an amount of some commodity di is to be

delivered to each customer o′i ∈ O where i ∈ {1, . . . , n′} from a central depot g′0 using

m′ independent delivery vehicles R = {r′1, . . . , r′m′}. Let pi be the position of customer

o′i. The central depot g′0 is at p0. Delivery is to be accomplished with the minimum total

cost. J ′(pi, pj) denotes the transit cost from pi to pj . The goal of VRP is to find a partition

of n′ customers into m′ cycles {s1, . . . , sm′} whose only intersection is the depot node

66

(starting and ending at the central depot). Overall, VRP = 〈O′ = {o′1, . . . , o′n′},R′ =

{v1, . . . , vm′},G ′ = {g′0},X ′ = {p0, p1, . . . , pn′},D′ = {d1, . . . , dn′},J ′〉

Lemma 1 The TS-MOCCT problem is NP-hard.

Proof : We give a polynomial-time transformation of VRP = 〈O′,R′,G ′,X ′,D′,J ′〉 into

the TS-MOCCT problem = 〈O,R,G,X ,D, C1, C2, J, Combine〉We map VRP inputs to an

instance of the MOCCT problem as follows:

1. n = n′, then O = O′ and D = D′.

2. We set C2 = true and C1 = false for all robots.

3. We consider only pairs of robots, which was already enforced by pickingC1 = false.

We let m = 2m′, soR = {r1, · · · , r2m′}.

4. We have a single goal, then G = {g′0} for the TS-MOCCT problem.

5. We have the set of positions X = {X1, . . . , Xn′ , XR
1 , . . . , X

R
m, X

G
1 }, where Xi = pi

for i ∈ {1, . . . , n′}. The robots’ initial locations XR
i map to p0 for all i. The goal

location XG
1 maps to p0.

6. The cost function from Xi to Xj for a pair of robots is J(∆3) + J(∆1) + J(∆2),

which results in the collective cost, J (Xi, Xj), mapping to J ′(pi, pj).

7. We set COMBINE =
∑

for computing a total navigation distance for all robots.

This transformation defines all inputs of the VRP problem in terms of the TS-MOCCT prob-

lem.

Next, we show that an optimal TS-MOCCT solution corresponds to the optimal VRP so-

lution. We consider the optimal TS-MOCCT solution {Π̄0, . . . , Π̄T} for m′ pairs of robots.

The optimal solution gives that each pair of robots can start and end at the goal location.

67

No optimal solution involves any pair of robots returning to the goal during traveling (ex-

cept the start and the end). Recall that the TS-MOCCT problem imposes the constraint (as

a modeling assumption) that all the objects at X must be moved together. Thus, the TS-

MOCCT solution consists of m′ cycles (potentially empty) for each pair of robots with no

repeated nodes except the goal location XG
1 . We rewrite the solution in terms of the m′

cycles:

[Π̄0, . . . , Π̄T] = [Π̄1(X0, Xi)
0, . . . , Π̄1(Xj, X0)T], . . . ,

[Π̄m′(X0, Xk)
0, . . . , Π̄m′(Xp, X0)T]

(4.8)

Since we have m′ number of pairs, we can see that the cost functions are equivalent

when we rewrite the summation over cycles.

m′∑
k=1

∑
Xi,Xj∈Π̄k

J (Π̄k(Xi, Xj))=
m′∑
k=1

∑
(pi,pj)∈sk

J ′k(pi, pj). (4.9)

Thus, an optimal solution of the TS-MOCCT problem must also be an optimal solution

of the VRP.

Theorem 1 The MOCCT problem is NP-hard

Proof : From Lemma 1, we proved the TS-MOCCT problem is NP-hard. The MOCCT

problem is the generalized version of the TS-MOCCT, which can have more goal locations

with complex goal conditions,TS-MOCCT ⊆ MOCCT. Thus the MOCCT problem is NP-

hard.

68

Figure 4.3: Construction of a plan by searching a tree from the left (t = 0) to the right (t = T).
Each node consists of O,R, and G.

4.4 Algorithms for the MOCCT problem

Searching the space of all possible motion combinations for multiple robots and objects

is prohibitive. Consequently, we are compelled to introduce heuristic simplifications. In

this section, we describe two algorithms we used for the MOCCT problem:

(1) We seek to produce solutions of reasonable quality in limited time via A? search.

The planner minimizes time to complete the task by searching over the full solution

space, but is guided by heuristics.

(2) We propose a more efficient algorithm which prunes some of the choices available

to the algorithm in (1), but which risks potentially overlooking plans with minimum

cost.

69

4.4.1 The Basic Heuristic Search Algorithm

The algorithms operate on a tree structure describing the objects and robots config-

uration: each node has the robots’ current states (positions in X and matcht(·)), and the

objects’ current states (position in X). Figure 4.3 shows how the search tree is constructed

by using the example of Figure 3.1. The initial configuration N0 (shown in Figure 4.2(a))

is the root node in Figure 4.3. Then, we expand a tree node based on all possible choices

satisfying the constraints (e.g., tail length and capacities).

An example helps to understand the expansion of tree nodes: take the two sequential

steps of Figure 4.1. Step-1 shows that r1 transfers o1 at X1 to the goal, XG
1 , while r2

transfers o4 at X4 to the goal, XG
1 . This takes time transition from N0 to N1 in Figure 4.3,

where the transition cost is max(J (r1, X1, X
G
1),J (r2, X4, X

G
1)). Step-2 shows a pair of

robots (r1, r2) transferring bX2 and bX3 to the goal, that is, a transition from N1 to N4 in

Figure 4.3, with cost max(J
(
(r1, r2), X2, X

G
1

)
,J
(
(r1, r2), X3, X

G
1

)
).

We see that there exist a set of goal configurations satisfying F (in this problem in-

stance we require four objects at the goal location, with at least two objects that are pink).

For example, N0, N2, N3, and N4 are transitions that reach another goal configuration in

Figure 4.3.

Assuming the towing capacity (maximum mass) is not exceeded, a pair of robots op-

erating together is capable of moving more than one set of objects at multiple locations to

Xj . In executing Step-2 from Figure 4.2(d), the pair move o2 from X2 and o3 from X3 to

XG
1 in one action. The search tree must include these kinds of actions because they repre-

sent part of the real cost savings that one obtains from pairs. Thus, to add extra such edges

departing Xi, we look for nearby Xj’s, sorting these in ascending order by Euclidean dis-

tance. Let B̂Xi
be the set of objects nearby Xi. Here “nearby” includes only those no more

than the length of the tail away.

70

Figure 4.4 gives an example of how these nearby objects introduce new choices. As-

sume the pair pick a route to transfer object(s) atX1 to the goalXG
1 . There are four subsets

of B̂X1 (red, blue, green, and purple dotted lines). For example, the red dotted line shows

one sibling, indicating B̂X1 = [o1, o5], in ascending order. Similarly, the blue dotted line

shows three siblings, indicating B̂X1 = [o1, o5, o4]. The purple dotted line shows five sib-

lings, B̂X1 = [o1, o5, o4, o3, o2]. We define a cost for this action, which we take to be the

perimeter of the convex hull of B̂Xi
. In Figure 4.4, the cost of the purple subset is the total

distance of the outer positions X1, X2, and X3. The transfer cost for o4 and o5 is zero be-

cause they are inside of the convex hull, so are transported effectively for free. Similarly,

the cost of the green subset is the total distance among X1, X4, and X3, and no cost is

incurred for o5.

The basis of Algorithm 5 is A? search, extended to include an implicit search for these

additional nearby objects. The first phase, Line 4, computes the set of nearby objects, B̂Xi
,

for all Xi ∈ X , satisfying the tail length constraints and the capacity constraints of robots.

Then, we start to enumerate the possible sets (Lines 12 to 20). Given m robots, we con-

struct the possible combinations of either role (independent or as half a pair). Then, we

find all combinations of choices for r, called Â ∈ A, which a kind of satisfy the capacity

Figure 4.4: Five objects induce several choices. There are several subsets of B̂X1 : The blue dot
line shows {bX5 , bX4}. The green dot line shows {bX5 , bX4 , bX3}. The purple dot line shows
{bX5 , bX4 , bX3 , bX2}.

71

Algorithm 5 Basic Search
1: INPUT: O,R,G,X ,J ,R,D,F
2: OUTPUT: (Π̄0, . . . , Π̄K)
3: Q = N0 = [pos0(O) ∪ pos0(R) ∪ pos0(G)] and ClosedSet = ∅
4: Compute B̂Xi

, ∀i
5: while Q 6= ∅ do
6: Ncurr = POP (Q)
7: if F = true then
8: return (Π̄0, . . . , Π̄K) from N0 to Ncurr
9: break

10: end if
11: ClosedSet.add(curr)
12: for each of possible robot settings r ofR do
13: for each possible motions Â of A do
14: for each possible BXi

of B̂Xi
do

15: J = Assignment(r,Â ∪BXi
)

16: Nnear.cost =max(J) + h(Nnear, XG
k)

17: Q = Q ∪ Nnear.
18: end for
19: end for
20: end for
21: end while

72

constraints in Equation (4.7). In Line 14, we increase the set by including nearby objects

(following the sequential ordering of B̂Xi
) until the maximum capacity C2 is exceeded,

and F is impossible to achieve. For example, in Figure 4.4, we pick the basis set {o1}

first, and then increase the range by accumulating an element of B̂Xi
to have the red area

[o1, o5], the blue area [o1, o5, o4], then the green one [o1, o5, o4, o3], and finally the purple

set [o1, o5, o4, o3, o2]. In Line 15, we have to match a set of robots with a set of choices. We

use the Hungarian method [110] to find the optimal assignment between them. In Line 16,

the maximum (not sum of) distances of r at the current step is used because all the robots

are working in parallel, and we add the heuristic estimate: the total distance between Xi

and goals,
∑

i∈[1,n] minj∈[1,k](post(oi), XG
j).

4.4.2 The Opportunistic Neighborhood Search (ONS) Algorithm

To reduce the search cost, we reduce the number of outgoing choices induced by the set

operation on nearby objects just described. We do this by being greedy in a manner we feel

represents a kind of opportunism. This algorithm is a modification of the basic algorithm,

in which we do not search over all possible subsets of objects in Line 14, instead we pick

the maximum sized set of objects satisfying constraints. This is efficient if we have objects

that are located within the boundary of the tail length.

73

4.5 Experiments

The basic heuristic search (called Basic) and the opportunistic neighborhood search

(called ONS) algorithms produce solutions for moderate numbers of objects and robots in a

reasonable time. The ONS algorithm produces solutions for even larger number of objects

and robots, though precise difference in costs depend on the constraints (e.g., a longer

tail with larger capacities). All algorithms were executed on an Intel Core i7 3.2GHz,

and implemented in Matlab with a SMT-solver [90]. For comparison purposes, we also

implemented an uninformed breadth first search, which we call Exact.

We have three goal predicates to validate our approach:

1. F1: transferring all PINK and CYLINDER objects to XG
1 .

F1 := ∀i, PINK(oi) ∧ CYLINDER(oi) ∧ LOCATEDAT(oi, X
G
1) (4.10)

2. F2: transferring four objects to XG
1 , where two objects are at least pink and NUM(X)

returns the number of objects at X .

F2 := ∀i, ∀j, i 6= j, PINK(oi) ∧ PINK(oj) ∧ LOCATEDAT(oi, X
G
1)

∧LOCATEDAT(oj, X
G
1) ∧ NUM(XG

1) = 4

(4.11)

3. F3: transferring objects to XG
1 , XG

2 , or XG
3 , such that 0 < NUM(XG

2) < NUM(XG
1) and

NUM(XG
3) = NUM(XG

1) + NUM(XG
2).

P1 := 0 < NUM(XG
2) < NUM(XG

1)

P2 := NUM(XG
3) = NUM(XG

2) + NUM(XG
1)

F3 := P1 ∧ P2

(4.12)

74

4 5 6 7 8

Object input size (n)

6

8

10

12

14

16

18

20
N

um
be

r
of

 S
ta

te
s

(lo
g(

n)
)

State Space Size

(a) State-space sizes for five settings.

4 5 6 7 8

Object input size (n)

0

0.5

1

1.5

2

T
im

e(
se

c)

#104 Running time

Exact
Basic
Opportunistic

(b) Running times for five settings.

4 5 6 7 8

Object input size (n)

400

600

800

1000

1200

C
os

t (
cm

)

Cost

Exact
Basic
Opportunistic

(c) Solution Costs for five settings.

Figure 4.5: State-space sizes, running times, and solution costs of the MOCCT problem.

The formulation given on page 65 involved modeling robot towing feasibility with

two predicates, C1 for single robots, C2 for pairs. In our physical implementation, we

used simple instances of these two aspects. We assume identical tails, so treat all physical

parameters (e.g., length, mass, the coefficient of friction, etc.) as the same. We use a chain

for the tail, so impose no curvature constraint— i.e., the smallest radius is zero. Also, in

our experiments, all objects have identical masses and shapes. Using all the preceding

simplifications if suffices to have a condition that depends only on the number of objects.

75

Thus we define C1(ri,Op) = (|Op| ≤ C̄1) and C2(ri, rj,Op) = (|Op| ≤ C̄2). In other

words, C̄1 is the maximum capacity for a single robot and C̄2 is the maximum capacity for

a pair of robots.

We use F1 from Section 4.5.1 to Section 4.5.3. First, we show how the combinatorial

aspects of the MOCCT problem means it has an enormous state-space even with few ob-

jects. See the plot in Figure 4.5(a). For example, even 6 objects with fixed parameters (a

tail length L = 100 cm, m = 2, C̄1 = 1, C̄2 = 3) has over one million states.

Second, we evaluate the efficiency and performance of our algorithms by randomly

generating environments and measuring plan cost and computational time. The evaluation

was conducted with the following fixed parameters: two tail robots, C̄1 = 1, C̄2 = 3, and

L = 100 cm.

And then, we use F2 and F3 to demonstrate how our planner solves the complex tasks

in Section 4.5.4.

4.5.1 Random Environments

Our simulated environments are 3 m × 3 m open spaced regions. We have several

parameters: the number of objects n, the number of robots m, maximum capacities for C1

and C2 functions, and the tail length L. To test the algorithms, we increased n from 4 to

8 with fixed number of robots m = 2. We generated 10 random environments for each

number of objects.

4.5.2 Evaluation of Algorithms

As visible in Figure 4.5(b), The Basic finds an optimal solution in a reasonable time

on small instances (n ≤ 6); even a small problem has a huge search space (approximately

a hundred thousand states when n = 8). In our tests, The ONS reduces a search space as

reflected in its running-time improved, while the quality of solutions it finds is acceptable

(see Figure 4.5(c)).

76

4.5.3 Physical Robot Experiments

4.5.3.1 System Setup

We demonstrate that the proposed solution works in practice. We used two RC cars,

controllable at velocities approximately 0.4 m/s. An embedded computer on the car con-

trols the robot and communicates with a separate computer integrated with an overhead

tracking system which localizes the objects and the robots. Our software uses the ROS

framework. All experiments are conducted in our test arena of size 5 m× 5 m.

4.5.3.2 Robot Motion Model

We use a simple car model for the robot same as Section 3.

For a single robot, we use a hooking primitive in the TRANSIT(·) primitive, which

sets up the robot’s orientation to work on the TRANSFER(·) primitive. To produce this

hooking primitive, we put a fist-size quarter sphere at the end of the tail. First, the robot

winds around the object, crossing near the end of its tail (Figure 3.18(b)). Then, the quarter

sphere works like a buckle (Figure 3.18(c)). Thereafter, the robot moves the hooked object

via the TRANSFER(·) primitive. To release hooked objects, the robot turns around to the

object reversing the direction of the winding motions (Figure 3.18(d) to Figure 3.18(f)).

For a pair of robots, we developed a DOCK(·) primitive. Firstly, given a subtask (move

objects from Xi to Xj), one robot stays near Xi, initializing the robot’s orientation for the

TRANSFER(·) primitive (Figure 3.17(a)), then the second robot crosses the tail of the first

(Figure 3.17(b)). Finally, the tails become connected (because each tail contains a magnet)

as the robot follows the contour of the convex hull consisting of the outer positions Xi.

See Figures 3.17(b) and 3.17(c). After that, we use TRANSFER(·) primitive to move the

gathered objects. To split conjoined tails, we simply make an extra motion: one robot

stops while the other moves past until the length of the tails is exceeded, breaking their

connection.

77

Figure 4.6: We have seven pink cylindrical objects to be towed to the center of the room with two
robots.

4.5.3.3 Three Planners

For experimental comparison, we considered three kinds of planners:

(1) The single-only planner uses only two single robots.

(2) The pair-only planner uses only one pair of robots.

(3) The both planner uses both roles of robots.

4.5.3.4 Experimental Validation Planners

To validate our model, we set n = 7 objects with two tail robots where C̄1 = 1, C̄2 = 5,

and L = 100 cm. Figure 4.6 shows the basic settings for all planners. All types of planners

use the ONS algorithm to compute their solution: The planning execution time of (i) takes

349 seconds with 4404 states, while (ii) takes 123 seconds with 1684 states and (iii) takes

24 seconds with 691 states.

Figures 4.8 to 4.10 show the single result of the three different planners: single-only,

pair-only, and both as shown in the first row, the second row, and the third row, respec-

tively. For each row, from left to right, we see the snapshots of the physical experiments

over time.

78

The single-only planner uses two robots acting individually and simultaneously. There

are K = 4 transitions in the solution. In addition to that, the single-only planner completes

this task in 285 seconds. The snapshot at the arrival time is shown in Figure 4.11(a). The

blue lines indicate the robots’ trajectories and the pink lines are the objects’ trajectories,

showing how the robots work and the objects are moved. Since each robot needs space to

release a hooked object, the final position of objects is distributed near the goal boundary.

The pair-only planner uses that a pair of robots are bringing each object together.

Firstly, they move a single object at upper-left shown in Figure 4.9(a). Next, they move a

single object at lower-left shown in Figure 4.9(b). Finally, they move five objects together

in Figure 4.9(d). Figure 4.9(c) shows the releasing of the gathered objects. There are the

K = 3 transitions in the solution. This solution of the pair-only planner completes the task

in 225 seconds. The snapshot at the arrival time appears in Figure 4.11(b).

The both planner shows that two robots first manipulate objects individually by using

a hook primitive, and then the robots connect their tails and cooperatively drag multiple

objects. There are theK = 2 transitions in the solution. Firstly, two robots move objects at

upper-left and lower-left shown in Figure 4.10(a), and then they release objects at the goal

(Figure 4.10(b)) individually (but simultaneously). Lastly, they use a docking primitive

(Figure 4.10(c)), and drag five objects to the goal together (Figure 4.10(d)). This solution

of the both planner completes the task in 223 seconds. The snapshot at the final time is in

Figure 4.11(c).

A detailed analysis of all the results appears in Figure 4.7, shows how the algorithm’s

expected costs are good predictions of reality. The blue bar is the estimate cost (cm) ob-

tained by the proposed algorithm, while the red bar is a real cost (sec) based on real test

with ten trials. Obviously calibration could relate these two cost metrics—but the data

show that ordering between plans is already satisfaction. We observe that the pair robots-

only planner and the both planner do not have a large disparity from reality. The reason

79

Single robot-only Pair robots-only Both
0

200

400

600

800

1000

1200

1400

C
os

t (
cm

)

0

50

100

150

200

250

300

350

E
xe

cu
tio

n
tim

e
(s

)

Planning results Vs. Experimental results

Planner
Real test

Figure 4.7: Planner and physical robot experimental results.

is that the both planner must pay the cost of the docking procedure, but pair-only planner

need not execute the DOCK(·) primitive.

In addition to that, the primitives that the pairs of robots use are simpler and more

efficient to realize in practice than the hooking and unhooking operations.

80

(a) The single-only at 97 seconds: two single tail

robots release the hooked objects individually.

(b) The single-only at 134 seconds: two single tail

robots release the next objects individually.

(c) The single-only at 238 seconds: two single tail

robots release the next object.

(d) The single-only at 280 seconds: one single tail

robot releases the hooked object alone at the goal.

Figure 4.8: The single-only planner.

81

(a) The pair-only at 70 seconds: one pair of robots

moves one object (upper-left) to the goal together.

(b) The pair-only at 110 seconds: one pair of

robots moves one object (lower-left) to the goal to-

gether.

(c) The pair-only at 143 seconds: this shows the

procedure of releasing objects by a pair of robots.

(d) The pair-only at 216 seconds: one pair of

robots move five objects to the goal together.

Figure 4.9: The pair-only planner.

82

(a) The both at 70 seconds: two single tail robots

move two objects individually.

(b) The both at 106 seconds: two single tail robots

release two objects individually using an unhook-

ing primitive.

(c) The both at 160 seconds: two single tail robots

use a docking primitive, and then conjoined via the

contact of each tail.

(d) The both at 210 seconds: a conjoined two

robots drags five objects together at the same time.

Figure 4.10: The both planner

83

(a) single-only completes the task at 285 seconds.

(b) pair-only completes the task at 225 seconds.

(c) both completes the task at 223 seconds.

Figure 4.11: This view is from the overhead tracking system. The accumulated trajectories for

objects and robots are displayed: the blue lines are the robots, while the pink lines are the objects.
84

4.5.4 Other Experimental Results for Other Scenarios

We verify our planner in richer goal states using by F2. Here we have two robots and

6 objects (3 yellow, 3 pink) where C̄1 = 1, C̄2 = 5, and L = 70 cm for all robots. We

used the ONS algorithm to demonstrate here. We showed two cases of ‘scenario-2’ that

can have different solutions: (1) One is shown in Figure 4.12(a) as a topological graph. (2)

Another is shown in Figure 4.12(b), showing that the yellow o5 is closely located to the

pink o1, and the pink o4 is located little far away from the goal compared to (1).

Our planning time for F2 took 26.4 seconds with 517 states for the first case. The initial

graph of the first case is shown in Figure 4.12(a). There are three pink objects and three

yellow objects with two robots and one goal XG
1 . The planning results for the first case

is shown in Figures 4.2(c) and 4.2(d). First, two single robots transfer o1 and o4 indepen-

dently, and then a pair of robots transfer o2 and o3 together. The initial graph of the second

case is shown in Figure, 4.12(b), which took 12.5 seconds with 223 states. The results are

shown in Figure 4.12. A pair of robots transfers o1 and o5 first (Figure 4.12(c)) to the goal,

and then transfers o2 and o3 to the goal (Figure 4.12(d)). Both results have two transitions

(T = 2) in the solution. Here, we can see that the change of the topological relationship

among objects makes for different solutions. We also expect that several parameters such

as the tail length and the maximum capacities for a pair of robots alter the solutions found.

But, the detailed results are not included here.

We also used our planner on the complex goal predicate F3 as ‘scenario-3’. It is a

fairly large problem with 4 robots and 10 objects, all pink, where C̄1 = 1, C̄2 = 5, and

L = 50 cm for all robots. Only the ONS algorithm was used. Our planning time for

F3 took 1353 seconds with 4469 states. The initial graph is shown in Figure 4.13(a). The

planning result is shown in Figures 4.13(b) and 4.13(c). First, two single robots transfer

o2 and o5 to XG
1 independently, while one pair of robots transfer o3 and o9 to XG

3 together.

85

Second, one pair of robots transfers o6 to XG
2 , while another pair of robots transfers o7 to

XG
3 . Then the final result satisfies F3. Here the result shows two transitions (T = 2) in the

solution.

(a) Initial graph of Figure 3.1 . (b) Another initial graph.

(c) Step-1: from (b) to (c), one pair of robots
transfers o1 and o5 to the goal XG

1 .
(d) Step-2: from (c) to (d), one pair of robots
transfers o2 and o3 to the goal XG

1 . This satis-
fies F2.

Figure 4.12: The simulation results are plotted using graph representation. There are three pink
and three yellow objects, two robots, and one goal; (a) is for the example in Figure 4.1(a). Another
example is shown in (b), which modified the topological relationship of (a). We show the results of
the planner for the example (b) via (c) and (d). Finally, (d) satisfies F2.

86

(a) There are three goals,XG
1 , XG

2 ,
XG

3 We use four robots and ten ob-
jects. Initially, all robots are located
at XG

1 .

(b) Step-1: from (a) to (b), two sin-
gle robots transfers o2 and o5 toXG

1

individually while one pair of robots
transfers o3 and o9 to XG

3 together.

(c) Step-2: from (b) to (c), one pair
of robots transfers o6 to XG

2 while
another pair of robots transfers o7
to XG

3 . This satisfies F3.

Figure 4.13: The simulation results of a graph representation; (a) shows ten pink objects and three
goals. We used 4 robots located at XG

1 initially. We show the results of the planner for the example
(a) via (b) and (c). Finally (c) satisfies F3.

4.6 Discussion

4.6.1 Obstacle-free Paths in the Topological Graph

We explored several scenarios to validate our approaches. We mentioned that we have

obstacle-free path for the robots. Before the algorithm execution, we have a pre-computation

step to construct the initial set of topological relationships. When we examine other pos-

sible choices, we include the choice when it satisfies a geometric constraint. This geo-

metric constraint comes from the primitives: when the robots execute the primitives, the

robots need a specific working boundary for surrounding objects, docking, and splitting

two robots. If the robot’s working boundary intersects objects and other static obstacles

in the configuration space, then we remove the choice from Xi to Xj by r. For example,

assuming an object is located near a static obstacle. If the objects are very close to the

obstacle, then the robots cannot move objects because there is insufficient space between

87

objects and obstacles to execute a hooking primitive. Consequently, choices must repre-

sent collision-free paths, not only for robots, but also for the length of tail that can actually

manipulate objects. This helps to simplify our approach.

4.6.2 Loosely-coupled and Tightly-coupled Coordination

Discussions of multi-robot systems often uses qualifiers like ‘loosely-coupled’ or ‘tightly-

coupled’ to indicate the frequency of information exchange. In the present work, when the

robots operate as conjoined pairs, they are literally physically coupled so that the mo-

tions of one robot directly constrains the other. The cases where robots operate as separate

individuals certainly involves less direct interaction. In this regard, this work represents

an instance where the planner is automatically making decisions about whether loose or

tight coordination is best, rather than having a single form of coordination predetermined

beforehand.

4.6.3 How to Build a Tail for MOCCT Problems: Guidelines for a Practitioner

In this section, we want to discuss design criteria for the tail robot. The physical pa-

rameters for tails are not explained in detail in the preceding text in the formulation of

Section 4.2.1. There we simply abstracted these parameters into the capacity constraints.

Here, we revisit terminologies first described in Section 3. There are three forces at

play: the force induced by the robot Fr, the tail’s static friction Ft, and the object’s static

friction Fo. We consider two coefficients of friction; let µt be the coefficient of friction

between tails and the workspace floor and let µo be the coefficient of friction between

objects and the workspace floor. Let Li represent the tail length for a robot i and mt be the

mass of the tail per unit length. Then, the following condition must be satisfied if the robot

is to move the object:

Fr ≥ Ft + Fo, (4.13)

88

where Ft = µt ·mt · Li · g and Fo = µo ·Mo · g.

The predicate C1 is also determined by the perimeter of the object boundaries do

(cf. Figure 3.18 on page 46). The hooking and releasing primitives need the extra length

dr to surround and release the secured object owing to the extent of the robot (cf. Fig-

ures 3.18 and 3.19 on pages 46 and 47). Then, to drag objects with a single robot, the

following second condition for the tail length Li must be satisfied:

Li ≥ do + dr. (4.14)

The predicate C2 depends on: (1) the force induced by two robots, (2) the perime-

ter of the clustered object boundaries, (3) the total length of two conjoined tails. Then,

Equation (4.13) can be modified as follows: Fr is for two robots and Ft is for two tails.

Equation (4.14) can also be modified as follows: Have do be the perimeter of the convex

hull of the clustered objects, and dr can be extended for two robots, analogously.

Consequentially, Equation (4.14) gives the lower bound by Li because there are rela-

tionships among length of tails, mass of tails, and forces produced robots. Equation (4.13)

gives the upper bound depending on the perimeter of the object boundaries and the length

of tails.

However, in our experience, a tail length should be more moderate than the maximum

length bound in Equation (4.13). For example, if robots have tails that are excessively long,

then the initializing steps for hooking, releasing, and docking primitives can be infeasible

when obstacles hinder motions. In such cases the possible actions from Xi to Xj will be

removed by the planner, and the problem could be found to be infeasible.

Similarly, tail stiffness can be considered as a curvature constraint. Let κ be the non-

zero radius of the smallest circle which can be bent (see Teshnizi and Shell [111]). This

requires tails to have at least 2πκ: (1) one robot should wrap objects by hooking. (2) a pair

89

of robots should come back together. Thus, the following third condition for the tail length

Li must be satisfied:

Li ≥ 2πκ. (4.15)

Finally, suppose we have different dragging forces for each robot. How do we handle

these by C1 and C2? Suppose we have two robots ri and rj , where ri’s dragging force is

greater than rj’s one. Then, let the total dragging force be double that of rj’s dragging

force. Consequentially, a robot ri reduces the dragging force to tow objects in balance.

Similarly, if we have different κ values for two robots, then the sufficient condition is that

we take two κ values, where each is proportional to the length of its tail, respectively.

Finally, we can compute the minimum length of tails to make a circle with different κ

values. Thus Equation (4.15) becomes:

Li ≥ 2π(ωiκi + ωjκj), (4.16)

where ωi is a tail length ratio for ri to the overall tail length and ωj is defined analogously

(ωi + ωj = 1).

4.7 Summary of This Section

In this chapter, we considered the problem of collecting multiple objects to satisfy

some complex predicate with a coordinated team of mobile robots. Here, we allow a pair

of robots to join their tails to act as a single unit. Also we employed individual robots that

each of robots tow objects by wrapping their tail around an item. We formulated a general

planning problem using logical formulas to deal with complex tasks by such robots. We

proved it to be NP-hard, and developed and evaluated practical planning algorithms for the

problem. We showed the first known physical demonstration of multiple robots solving

manipulation problems in this way.

90

5. CONCLUSION AND FUTURE WORK

Robots using compliant passive structures (e.g., chains, cords, lines, whips, or las-

sos) have received little attention in robotics, even though rope-like structures are simple,

cheap, and versatile tools. In this dissertation, we investigated how mobile robots can

use compliant, unactuated structures for various manipulation tasks. We proposed several

methods to deal with the difficulties of modeling and planning. In addition, we solved vari-

ants of object manipulation problems wherein multiple classes of objects were transported

by cooperative robots using the rope-like structures.

In Section 3, we examined motion primitives for manipulating objects, where the prim-

itives are designed to simplify modeling and planning issues. We demonstrated a diverse

range of motion primitives, where each primitive contributes some aspect lacking in the

others. We proposed a planning algorithm that seeks a sequence of motion primitives by

using a sampling-based motion planning approach, which is coupled with a particle-based

representation to treat error propagation of the motions. Our proposed planning algorithm

can optimize motion sequences based on specified preferences over a set of objectives,

such as execution time, navigation cost, or collision likelihood. We demonstrated how

the dynamics of a compliant, unactuated tail can be successfully exploited for manipula-

tion. We showed the effectiveness of an approach that uses simple stochastic models, each

associated with a structured primitive. We demonstrated our system with physical robot

experiments and the results show that various preferences can be expressed effectively,

ultimately being reflected in different mixes of primitives being executed.

In Section 4, we tackled the problem of moving multiple objects to goal locations via a

coordinated team of robots. Each robot is equipped with a compliant, unactuated structure

attached as a tail; individually, robots can use their tails by wrapping around an object,

91

securing it by hooking the end of the tail onto itself, and towing the object toward a goal

location. In addition, two robots can link the ends of their respective tails to form a con-

joined pair that is capable of skimming a region of space and clustering a set of objects

together. We devised such motion primitives that can link and unlink robots’ tails through

a specific series of manoeuvres executed autonomously. Then, we studied the planning

problem for efficiently collecting multiple objects and transporting them to goal locations

and proposed a general framework using logical formulas to express complex tasks. Lastly,

we developed heuristics that give satisfactory solutions in reasonable time. The results we

reported included data from physical robots executing plans produced by our planner and

collecting objects both by an individual action and by a coupled pair operation.

As a summary, our contributions are fourfold. 1) We made static, quasi-static, and

dynamic models for mobile robots using flexible rope-like structures. Then, we showed

that dynamic motions are efficient for some objectives. In addition, our proposed algorithm

dealt with a diverse set of motions, showing that each motion has a distinct complementary

value to the other motions. 2) We studied a coordinated towing system where all robots

can be separated or conjoined. Our algorithm dealt with how to form a sub-team and

reduced a search space in various environmental settings. 3) We combined multi-robot

motion planning with logical specification of plan goals and proposed the first generalized

framework using both in a multi-robot manipulation setting. 4) We showed the first known

physical demonstration of robots using flexible passive structures to solve manipulation

problems: robots use a high-speed motion to manipulate objects; a group of robots changes

form operating by a tightly-knit pair or separately.

We expect that our research results will lead to an understanding of how flexible com-

pliant components can be coupled with robots. The proposed research for representing

and reasoning the motion planning of a compliant passive tail robot will have a broader

impact on several aspects of robotic research: motion planning, minimalist manipulators,

92

behavior-based control, and multi-robot coordination.

We showed several physical robot experiments in a lab environment. We believe that

there are many ways to use these kinds of robots in real world applications.

Consequentially, our proposed techniques can be employed in practical applications:

various object manipulation tasks, efficient search and rescue, adaptive environmental

monitoring, or localization in complicated environments. We believe that compliant, un-

actuated tails can enhance the performance of these suggested applications in unknown,

unstructured environments. The following sections are ideas for the robotic applications

in the near future.

5.1 Suggestions for Future Research: Moving Closer to Practical Applications

In this section, we want to address interesting questions and applications in terms of

using compliant unactuated structures for robotic applications.

5.1.1 Cleaning Polluted Water

We know that the oil skimming is useful in preventing the spreading of spilled oil as

shown in Figure 5.1(b). Bhattacharya et al. [12] explored how to autonomously control

a tethered robot to skim the surface. Similarly, Bhattacharya et al. [30] investigated how

to move objects on the surface of water. In this section, we mention a case of a pair of

robots manipulating floating objects on the surface water. Water is essential to life, yet

water pollution is one of the most serious ecological threats we face today. The United

Nations Environment Programme [112] report estimated that there is an average of 46,000

pieces of plastic debris floating near the surface of every square mile of ocean (shown in

Figure 5.1(b)). Further instances of the water pollution are in lakes and rivers. For example,

Water hyacinth covers lakes and rivers entirely; this blocks sunlight from reaching native

aquatic plants, leads lack of oxygen, often killing fish. Thus people use a specialized boat

to remove water hyacinth as seen in Figure 5.1(c). Even though people use two boats to

93

(a) Oil skimming vessels. (b) Plastic pollution in the oceans.

(c) Two boats are connected by the flexible structure, and they drag a pile of water hyacinth.

Figure 5.1: Tethered robots can skim oil, drag garbages, and tow water hyacinth.

94

drag efficiently, considering a large spatial field, individual tail robots might be useful

to efficiently remove floating objects such as water hyacinth and plastic debris. In our

empirical experiments, the objects on the surface can be surrounded and be moved by

the surface vehicle with a tail. This problem can be simplified. Given a large spatial area,

many scattered objects, and some number of tail robots, we want to use these tail robots to

move all water hyacinth on the surface of a lake to an incineration site. Theoretically, this

problem can be solved by our framework in Section 4.

We expect that dragging objects on the water surface using the flexible structures might

be a big challenge. There are several ways to manipulate objects directly or indirectly.

There are several related works worth examining. First, Leftwich et al. [113] investigated

how a passive flexible tail can effect anguilliform swimming. This work might help to

understand how tail structures can change the swimming speeds, wake structures, and

momentum estimations of such structures. In our empirical studies, dragging objects re-

quires the consideration of many factors such as length, stiffness, or cross sectional areas

of structures. Most importantly, since we use various motions, each motion needs different

settings; a striking motion needs a high speed, while a hooking motion needs an accu-

rate slow motion. For example, when the robot wants to generate a short turn motion to

push objects, the stiffness of the structures are a critical factor affecting the robot speed,

momentum and turn radius. Second, Punzmann et al. [114] investigated Quasi-standing

Faraday waves to fetch an object at a distance. If we can generate these kinds of waves

by using the tail, robots can be used to merely generate motions which will manipulate

objects to goal locations.

5.1.2 Environmental Sampling via Flexible Sensor Arrays

Large-scale robotic sampling is a promising application for robotics [115]. Over the

past few decades, robotics has emerged as a new tool to collect spatially dense infor-

95

(a) Seismic survey vessel: mapping out
the sea bed rapidly using sound waive
sources/receivers [116].

(b) The oil exploration ship Western Neptune pulls stream-
ers, sensors, that stretch four miles behind the ship, and
record data from the ocean floor [117].

Figure 5.2: In marine settings, passive compliant components are dragged by the ship for oil explo-
ration. The exploration ship pulls oil sensors that stretch several miles behind the ship.

mation from hazardous environments such as deep oceans [116, 117], lakes [118, 119],

seafloors [120], volcanos [121], and hurricanes [122]. The underlying challenge addressed

by such systems stems from the fact that the measured data are relatively sparse compared

to the large spatial areas/volumes of interest.

Our wish is that robots equipped with a long sensor array can solve environmental

monitoring problems efficiently. We believe that one robot dragging a flexible structure as

a sensor array gives advantages. First, one robot can gather more information of attributes

simultaneously at different locations similar to the exploration ship in Figure 5.2. Second,

depending on the robots’ motions (e.g., a winding path, a straight path), we can control

resolution differently at the specific areas. We think this allows robots to gather efficiently

more data at the important area.

5.1.3 Separating Objects

We explored many possible motions using a flexible rope-like structure to manipulate

objects in Section 3. Manipulation problems that involve transferring multiple objects to

96

goal locations arise in many applications and in surprisingly diverse settings. Familiar ex-

amples include collecting toys strewn across the floor, removing debris on the surface of

a pond, or (more mundanely) handling materials in a warehouse. If the ratio between the

number of objects manipulated at a time, and the number of robots required for doing

that is small, then a pair of robots can manipulate a large number of objects at one time.

However, if we have many different kinds of objects manipulating to different goal loca-

tions, we need to separate them first. To separate a large number of objects, Bhattacharya

et al. [30] proposed how to separate two kinds of objects using a topological approach,

but we are more interested in separating more than two kinds of objects. Our idea is to

surround objects using a long flexible rope-like structure, but the robot surrounds objects

to separate them by constructing multiple clustering. Then, we can have several snares to

represent separated objects. In this case, how do we plan this sequence of snaring mo-

tions? Another idea is to use a team of multiple tail robots, whose all tails are physically

connected at the end (cf. a rat king [123]). Given n classes of objects and m tail robots

(assuming n ≤ m), how do we plan robots to separate n classes of objects?

97

REFERENCES

[1] The U.S. Defense Advanced Research Projects Agency, “Au-

tonomous Robotic Manipulation — A DARPA Challenge,” Mar. 2012,

http://www.darpa.mil/program/autonomous-robotic-manipulation.

[2] ——, “DARPA Robotics Challenge,” 2015. [Online]. Available: http://www.darpa.

mil/program/darpa-robotics-challenge

[3] Wikipedia, “Tool use by animals,” 2008. [Online]. Available: https://en.wikipedia.

org/wiki/Tool use by animals

[4] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser, K. Okada,

A. Rodriguez, J. M. Romano, and P. R. Wurman, “Analysis and observations from

the first amazon picking challenge,” IEEE Transactions on Automation Science and

Engineering, vol. PP, no. 99, pp. 1–17, 2016.

[5] YouTube, “Drilling Rig Pipe Connection,” 2014, https://youtu.be/KZxUiFFVEAQ.

[6] Wikipedia, “Mine flail,” 2005. [Online]. Available: https://en.wikipedia.org/wiki/

Mine flail

[7] Reuters, “Polluted Waters of China,” 2015. [Online]. Available: http://www.reuters.

com/news/picture/polluted-waters-of-china?articleId=USRTR4WTPW

[8] S. Spielberg, Indiana Jones. United States: Lucasfilm Ltd., 1984.

[9] Wikipedia, “Lasso,” 2003. [Online]. Available: https://en.wikipedia.org/wiki/Lasso

[10] S. Lee and S. Ditko, The Amazing Spider-Man. Marvel Comics, 2003, vol. 2.

[11] B. Donald, L. Gariepy, and D. Rus, “Distributed Manipulation of Multiple Objects

using Ropes,” in Proceedings of the International Conference on Robotics and Au-

tomation, San Francisco, CA, USA, Apr. 2000, pp. 450–457.

[12] S. Bhattacharya, H. Heidarsson, G. S. Sukhatme, and V. Kumar, “Cooperative Con-

98

http://www.darpa.mil/program/darpa-robotics-challenge
http://www.darpa.mil/program/darpa-robotics-challenge
https://en.wikipedia.org/wiki/Tool_use_by_animals
https://en.wikipedia.org/wiki/Tool_use_by_animals
https://en.wikipedia.org/wiki/Mine_flail
https://en.wikipedia.org/wiki/Mine_flail
http://www.reuters.com/news/picture/polluted-waters-of-china?articleId=USRTR4WTPW
http://www.reuters.com/news/picture/polluted-waters-of-china?articleId=USRTR4WTPW
https://en.wikipedia.org/wiki/Lasso

trol of Autonomous Surface Vehicles for Oil Skimming and Cleanup,” in Proceed-

ings of the International Conference on Robotics and Automation, Shanghai, China,

May 2011, pp. 2374–2379.

[13] S. Thrun and J. J. Leonard, “Robots with Flexible Elements,” in Springer Handbook

of Robotics, B. Siciliano and O. Khatib, Eds. Springer-Verlag Heidelberg, 2008,

ch. 13.

[14] R. Deimel and O. Brock, “A Novel Type of Compliant, Underactuated Robotic

Hand for Dexterous Grasping,” in Proceedings of Robotics: Science and Systems

Conference, Berkeley, CA, USA, Jun. 2014.

[15] L. U. Odhner, L. P. Jentoft, M. R. Claffee, N. Corson, Y. Tenzer, R. R. Ma,

M. Buehler, R. Kohout, R. D. Howe, and A. M. Dollar, “A compliant, underactu-

ated hand for robust manipulation,” The International Journal of Robotics Research,

vol. 33, no. 5, pp. 1–17, 2014.

[16] L. S. Cowan and I. D. Walker, “The Importance of Continuous and Discrete Ele-

ments in Continuum Robots,” International Journal of Advanced Robotic Systems,

vol. 10, no. 165, pp. 1–13, 2013.

[17] A. D. Marchese and D. Rus, “Design, kinematics, and control of a soft spatial fluidic

elastomer manipulator,” The International Journal of Robotics Research, vol. 35,

no. 7, pp. 840–869, 2016.

[18] G. Smoljkic, G. Borghesan, D. Reynaerts, J. D. Schutter, J. V. Sloten, and E. V.

Poorten, “Constraint-Based Interaction Control of Robots Featuring Large Compli-

ance and Deformation,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1252–

1260, Oct 2015.

[19] G. Robinson and J. Davies, “Continuum Robots—A State of the Art,” in Proceed-

ings of International Conference on Robotics and Automation, Detroit, Michigan,

USA, May 1999.

99

[20] S. Chiaverini, G. Oriolo, and I. D. Walker, “Kinematically Redundant Manipula-

tors,” in Springer Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Springer-

Verlag Heidelberg, 2008, ch. 11.

[21] R. J. Webster and B. A. Jones, “Design and Kinematic Modeling of Constant Cur-

vature Continuum,” International Journal of Robotics Research, vol. 29, no. 13, pp.

1661–1683, 2010.

[22] I. D. Walker, “Robot Strings: Long, Thin Continuum Robots,” in Proceedings of

IEEE Aerospace Conference, Big Sky, MT, USA, Mar. 2013.

[23] M. M. Tonapi, I. S. Godage, A. M. VijayKumar, and I. D. Walker, “Spatial Kine-

matic Modeling of a Long and Thin Continuum Robotic Cable,” in Proceedings

of the International Conference on Robotics and Automation, Seattle, Washington,

USA, May 2015.

[24] I. D. Walker, D. Nahar, S. Verma, M. B. Wooten, and A. D. Kapadia, “Challenges

in creating long continuum robots,” in Proceedings of International Conference on

Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland,

Aug 2016, pp. 339–344.

[25] C. Cohen, B. Hiott, A. D. Kapadia, and I. D. Walker, “Robot tongues in space:

continuum surfaces for robotic grasping and manipulation,” in Proceedings of SPIE,

vol. 9836, 2016, pp. 98 362B–98 362B–12.

[26] K. M. Lynch and M. T. Mason, “Stable Pushing: Mechanics, Controllability, and

Planning,” The International Journal of Robotics Research, vol. 15, no. 6, pp. 533–

556, Dec. 1996.

[27] T. Meriçli, M. Veloso, and H. L. Akin, “Push-manipulation of complex passive

mobile objects using experimentally acquired motion models,” Autonomous Robot,

vol. 38, pp. 317–329, 2015.

[28] J. Fink, M. A. Hsieh, and V. Kumar, “Multi-Robot Manipulation via Caging in

100

Envirionments with Obstacles,” in Proceedings of the International Conference on

Robotics and Automation, Pasadena, CA, USA, May 2008, pp. 1471–1476.

[29] W. H. Huang, E. P. Krotkov, and M. T. Mason, “Impulsive Manipulation,” in Pro-

ceedings of International Conference on Robotics and Automation, May 1995.

[30] S. Bhattacharya, S. Kim, H. Heidarsson, G. S. Sukhatme, and V. Kumar, “A topo-

logical approach to using cables to separate and manipulate sets of objects,” The

International Journal of Robotics Research, vol. 34, no. 6, pp. 799–815, 2015.

[31] D. Rus, B. Donald, and J. Jennings, “Moving furniture with teams of autonomous

robots,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), vol. 1, Aug 1995, pp. 235–242.

[32] J. Fink, N. Michael, and V. Kumar, “Composition of Vector Fields for Multi-Robot

Manipulation via Caging,” in Proceedings of Robotics: Science and Systems Con-

ference, Atlanta, Georgia, USA, Jul. 2007.

[33] P. Cheng, J. Fink, and V. Kumar, “Abstractions and Algorithms for Cooperative

Multiple Robot Planar Manipulation,” in Proceedings of Robotics: Science and Sys-

tems Conference, Seattle, USA, Jun. 2009, pp. 143–150.

[34] G. Sartoretti, S. Shaw, and M. A. Hsieh, “Distributed planar manipulation in flu-

idic environments,” in Proceedings of International Conference on Robotics and

Automation (ICRA), Stockholm, Sweden, May 2016, pp. 5322–5327.

[35] C. Kube and E. Bonabeau, “Cooperative transport by ants and robots,” Robotics and

Autonomous Systems, vol. 30, no. 1–2, pp. 85 – 101, 2000.

[36] S. Wilson, T. P. Pavlic, G. P. Kumar, A. Buffin, S. C. Pratt, and S. Berman, “De-

sign of ant-inspired stochastic control policies for collective transport by robotic

swarms,” Swarm Intelligence, vol. 8, no. 4, pp. 303–327, 2014.

[37] T. Maneewarn and P. Detudom, “Mechanics of cooperative nonprehensile pulling

by multiple robots,” in Proceedings of IEEE/RSJ International Conference on In-

101

telligent Robots and Systems (IROS), Alberta, Canada, Aug. 2005, pp. 2004–2009.

[38] P. Cheng, J. Fink, V. Kumar, and J.-S. Pang, “Cooperative Towing With Multiple

Robots,” Journal of Mechanisms and Robotics, vol. 1, no. 1, 2008.

[39] Q. Jiang and V. Kumar, “The inverse kinematics of 3-D towing,” Advances in Robot

Kinematics: Motion in Man and Machine, pp. 321–328, 2010.

[40] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and transportation

with aerial robots,” Autonomous Robots, vol. 30, no. 1, pp. 73–86, 2011.

[41] J. Fink, N. Michael, S. Kim, and V. Kumar, “Planning and control for cooperative

manipulation and transportation with aerial robots,” The International Journal of

Robotics Research, vol. 30, no. 3, pp. 321–328, 2011.

[42] M. Levihn, T. Igarashi, and M. Stilman, “Multi-robot multi-object rearrangement in

assignment space,” in Proceedings of IEEE Conference on Intelligent Robots and

Systems, Vilamoura, Algarve, Portugal, Oct. 2012, pp. 5255–5261.

[43] N. Fujii, R. Inoue, Y. Takebe, and J. Ota, “Multiple robot rearrangement planning

using a territorial approach and an extended project scheduling problem solver,”

Advanced Robotics, vol. 24, no. 1-2, pp. 103–122, 2010.

[44] N. Oyama, Z. Liu, L. B. Gueta, and J. Ota, “Rearrangement task of multiple robots

using task assignment applicable to different environments,” in Proceedings of In-

ternational Conference on Robotics and Biomimetics (ROBIO), Tianjin, China, Dec.

2010, pp. 300–305.

[45] R. Inoue, N. Fujii, R. Takano, and J. Ota, “Realization of a multiple object rear-

rangement task with two multi-task functional robots,” Advanced Robotics, vol. 25,

no. 11-12, pp. 1365–1383, 2011.

[46] A. Yamashita, J. Sasaki, J. Ota, and T. Arai, “Cooperative manipulation of objects

by multiple mobile robots with tools,” in Proceedings of the 4th Japan-France/2nd

Asia-Europe Congress on Mechatronics, Fukuoka, Japan, 1998, pp. 310–315.

102

[47] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,” Management

Science, vol. 6, no. 1, pp. 80–91, 1959.

[48] T. K. Ralphs, L. Kopman, W. R. Pulleyblank, and L. E. Trotter, “On the capacitated

vehicle routing problem,” Mathematical Programming, vol. 94, no. 2, pp. 343–359,

2003.

[49] N. Mathew, S. L. Smith, and S. L. Waslander, “Planning Paths for Package Delivery

in Heterogeneous Multirobot Teams,” IEEE Transactions on Automation Science

and Engineering, vol. 12, no. 4, pp. 1298–1308, Oct 2015.

[50] B. Coltin and M. Veloso, “Optimizing for transfers in a multi-vehicle collection

and delivery problem,” in Proceedings of Distributed Autonomous Robotic Systems,

Baltimore, Maryland, 2012, pp. 91–103.

[51] R. Luna and K. E. Bekris, “Efficient and complete centralized multi-robot path

planning,” in Proceedings of International Conference on Intelligent Robots and

Systems (IROS), San Francisco, California, USA, Sept 2011, pp. 3268–3275.

[52] K. Solovey and D. Halperin, “k-color multi-robot motion planning,” The Interna-

tional Journal of Robotics Research, vol. 33, no. 1, pp. 82–97, 2014.

[53] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha, “Centralized Path Planning

for Multiple Robots: Optimal Decoupling into Sequential Plans,” in Proceedings of

Robotics: Science and Systems, Seattle, USA, 2009.

[54] M. Turpin, K. Mohta, N. Michael, and V. Kumar, “Goal assignment and trajectory

planning for large teams of interchangeable robots,” Autonomous Robots, vol. 37,

no. 4, pp. 401–415, 2014.

[55] G. Wagner, M. Kang, and H. Choset, “Probabilistic path planning for multiple

robots with subdimensional expansion,” in Proceedings of International Confer-

ence on Robotics and Automation (ICRA), Saint Paul, Minnesota, USA, May 2012,

pp. 2886–2892.

103

[56] G. Wagner and H. Choset, “Subdimensional expansion for multirobot path plan-

ning,” Artificial Intelligence, vol. 219, pp. 1–24, 2015.

[57] N. Mathew, S. L. Smith, and S. L. Waslander, “Multirobot Rendezvous Planning for

Recharging in Persistent Tasks,” IEEE Transactions on Robotics, vol. 31, no. 1, pp.

128–142, 2015.

[58] S.-G. Roh, J. H. Park, Y. K. Song, K. Yang, M. Choi, H.-S. Kim, H. Lee, and H. R.

Choi, “Flexible Docking Mechanism Using Combination of Magnetic Force with

Error-Compensation Capability,” in Proceedings of IEEE Conference on Automa-

tion Science and Engineering, Washington DC, USA, Aug. 2008.

[59] Y.-H. Kim, S.-W. Lee, H. S. Yang, and D. A. Shell, “Toward autonomous robotic

containment booms: visual servoing for robust inter-vehicle docking of surface ve-

hicles,” Intelligent Service Robotics, vol. 5, no. 1, pp. 1–18, 2012.

[60] T. Libby, T. Y. Moore, E. Chang-Siu, D. Li, D. J. Cohen, A. Jusufi, and R. J. Full,

“Tail-assisted pitch control in lizards, robots and dinosaurs,” Nature Letter, vol. 481,

pp. 181–186, 2012.

[61] E. Chang-Siu, T. Libby, M. Tomizuka, and R. J. Full, “A lizard-Inspired Active

Tail Enables Rapid Maneuvers and Dynamic Stabilization in a Terretrial Robot,”

in Proceedings of the International Conference on Intelligent Robots and Systems,

San Fransisco, CA, USA, Sep. 2011.

[62] J. Zhao, T. Zhao, N. Xi, F. J. Cintron, M. W. Mutka, and L. Xiao, “Controlling

Aerial Maneuvering of a Miniature Jumping Robot Using Its Tail,” in Proceedings

of the International Conference on Intelligent Robots and Systems, Tokyo, Japan,

Nov. 2013.

[63] W. S. Rone and P. Ben-Tzvi, “Continuum Robotic Tail Loading Analysis for Mo-

bile Robot Stabilization and Maneuvering,” in Proceedings of International Design

Engineering Technical Conferences & Computers and Information in Engineering

104

Conference, Buffalo, New York, USA, Aug. 2014.

[64] J. Ackerman, X. Da, and J. Seipel, “Mobility of Legged Robot Locomotion with

Elastically-suspended Loads over Rough Terrain,” in Proceedings of the Fifteenth

International Conference on Climbing and Walking Robots and the Support Tech-

nologies for Mobile Machines, Baltimore, MD, USA, Jul. 2012.

[65] A. Patel and M. Brrae, “Rapid Turning at High-Speed: Inspirations from the Chee-

tah’s Tail,” in Proceedings of the International Conference on Intelligent Robots

and Systems, Tokyo, Japan, Nov. 2013.

[66] N. J. Kohut, A. O. Pullin, D. W. Haldane, D. Zarrouk, and R. S. Fearing, “Precise

Dynamic Turning of a 10 cm Legged Robot on a Low Friction Surface Using a

Tail,” in Proceedings of the International Conference on Robotics and Automation,

Karlsruhe, Germany, May 2013.

[67] R. Briggs, J. Lee, M. Haberland, and S. Kim, “Tails in Biomimetic Design: Anal-

ysis, Simulation, and Experiment,” in Proceedings of the International Conference

on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, Oct. 2012.

[68] G.-H. Liu, H.-Y. Lin, H.-Y. Lin, S.-T. Chen, and P.-C. Lin, “A Bio-Inspired Hopping

Kangaroo Robot with An Active Tail,” Journal of Bionic Engineering, vol. 11, no. 4,

pp. 541–555, Oct. 2014.

[69] T. Libby, A. M. Johnson, E. Chang-Siu, R. J. Full, and D. E. Koditschek, “Compar-

ative Design, Scaling, and Control of Appendages for Inertial Reorientation,” IEEE

Transactions on Robotics, vol. 32, no. 6, pp. 1380–1398, Dec 2016.

[70] Y.-H. Kim and D. A. Shell, “Using a compliant, unactuated tail to manipulate ob-

jects,” IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 223–230, Jan. 2017.

[71] D. A. Shell and M. J. Matarić, “Behavior-Based Methods for Modeling and Struc-

turing Control of Social Robots,” in Cognition and Multi-Agent Interaction: From

Cognitive Modeling to Social Simulation, R. Sun, Ed. Cambridge University Press,

105

2005, ch. 11.

[72] O. C. Jenkins and M. J. Matarić, “Performance-Derived Behavior Vocabularies:

Data-driven Acqusition of Skills from Motion,” International Journal of Humanoid

Robotics, vol. 1, no. 237, May 2004.

[73] K. Hauser, T. Bretl, K. Harada, and J.-C. Latombe, “Using Motion Primitives in

Probabilistic Sample-Based Planning for Humanoid Robots,” in Proceedings of

Workshop on the Algorithmic Foundations of Robotics, New York City, USA, 2006.

[74] M. J. Powell, H. Zhao, and A. D. Ames, “Motion Primitives for Human-Inspired

Bipedal Robotic Locomotion: Walking and Stair Climbing,” in Proceedings of IEEE

Conference on Robotics and Automation (ICRA), Saint Paul, Minnesota, USA,

2012.

[75] S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic Planning,” Interna-

tional Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[76] M. Pivtoraiko and A. Kelly, “Efficient Constrained Path Planning Via Search In

State Lattices,” in Proceedings of International Symposium on Artificial Intelli-

gence, Robotics, and Automation in Space, Munich, Germany, Sep. 2005.

[77] J. Butzke, K. Sapkota, K. Prasad, B. MacAllister, and M. Likhachev, “State Lat-

tice with Controllers: Augmenting Lattice-Based Path Planning with Controller-

Based Motion Primitives,” in Proceedings of International Conference on Intelli-

gent Robots and Systems, Chicago, USA, Sep. 2014.

[78] V. Vonásek, L. winkler, J. Liedke, M. Saska, karel Kosnar, and L. Preucil, “Fast

on-board motion planning for modular robots,” in Proceedings of the International

Conference on Robotics and Automation, Hong Kong, China, May 2014.

[79] A. Krontiris and K. Bekris, “Dealing with difficult instances of object rearrange-

ment,” in Proceedings of Robotics: Science and Systems, Rome, Italy, July 2015.

[80] A. Gray, Y. Gao, T. Lin, J. K. Hedrick, H. E. Tseng, and F. Borrelli, “Predictive Con-

106

trol for Agile Semi-Autonomous Ground Vehicles using Motion Primitives,” in Pro-

ceedings of American Control Conference, Fairmont Queen Elizabeth, Montréal,

Canada, Jun. 2012.

[81] A. A. Paranjape, K. C. Meier, X. Shi, S.-J. Chung, and S. Hutchinson, “Motion

primitives and 3D path planning for fast flight through a forest,” The International

Journal of Robotics Research, vol. 34, no. 3, pp. 357–377, 2015.

[82] M. Gupta, J. M’́uller, and G. S. Sukhatme, “Using Manipulation Primitives for Ob-

ject Sorting in Cluttered Environments,” IEEE Transactions on Automation Science

and Engineering, vol. 12, no. 2, pp. 608–614, Apr. 2015.

[83] M. R. Dogar and S. S. Srinivasa, “A Planning Framework for Non-Prehensile Ma-

nipulation under Clutter and Uncertainty,” Autonomous Robots, vol. 33, no. 3, pp.

217–236, Jun. 2012.

[84] M. Phillips, B. Cohen, S. Chitta, and M. Likhachev, “E-graphs: Bootstrapping plan-

ning with experience graphs,” in Proceedings of Robotics: Science and Systems,

Sydney, Australia, Jul. 2012.

[85] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cambridge University

Press, 2006.

[86] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning framework that

learns from experience,” in Proceedings of International Conference on Robotics

and Automation, Saint Paul, Minnesota, USA, May 2012.

[87] A. Bry and N. Roy, “Rapidly-exploring Random Belief Trees for Motion Planning

Under Uncertainty,” in Proceedings of the International Conference on Robotics

and Automation, Shanghai, China, May 2011.

[88] C. Barrett and C. Tinelli, “CVC3,” in Proceedings of the 19th International Con-

ference on Computer Aided Verification (CAV ’07), ser. Lecture Notes in Computer

Science, W. Damm and H. Hermanns, Eds., vol. 4590. Berlin, Germany: Springer-

107

Verlag, Jul. 2007, pp. 298–302.

[89] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Proceedings of In-

ternational Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS), Budapest, Hungary, Mar. 2008, pp. 337–340.

[90] T. Bouton, D. Caminha B. de Oliveira, D. Déharbe, and P. Fontaine, “veriT: An

Open, Trustable and Efficient SMT-Solver,” in Automated Deduction – CADE-22:

22nd International Conference on Automated Deduction, Montreal, Canada, Au-

gust 2-7, 2009. Proceedings, R. A. Schmidt, Ed. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2009, pp. 151–156.

[91] G. Fedyukovich, O. Sery, and N. Sharygina, “eVolCheck: Incremental Upgrade

Checker for C,” in Proceedings of International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems (TACAS), Rome, Italy, Mar.

2013, pp. 292–307.

[92] L. De Moura and N. Bjørner, “Satisfiability Modulo Theories: Introduction and

Applications,” Commun. ACM, vol. 54, no. 9, pp. 69–77, Sep. 2011.

[93] W. N. N. Hung, X. Song, J. Tan, X. Li, J. Zhang, R. Wang, and P. Gao, “Mo-

tion planning with Satisfiability Modulo Theories,” in Proceedings of International

Conference on Robotics and Automation (ICRA), May 2014, pp. 113–118.

[94] S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, and L. E. Kavraki, “SMT-based

synthesis of integrated task and motion plans from plan outlines,” in Proceedings

of International Conference on Robotics and Automation (ICRA), May 2014, pp.

655–662.

[95] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “Incremental Task

and Motion Planning: A Constraint-Based Approach,” in Proceedings of Robotics:

Science and Systems Conference, Michigan, USA, Jun. 2016.

[96] I. Saha, R. Ramaithitima, V. Kumar, and G. J. P. andSanjit A. Seshia, “Automated

108

composition of motion primitives for multi-robot systems from safe LTL specifica-

tions,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), Sept 2014, pp. 1525–1532.

[97] T. Igarashi and M. Stilman, “Homotopic Path Planning on Manifolds for Cabled

Mobile Robots,” in Proceedings of International Workshop on the Algorithmic

Foundations of Robotics, Singapore, Dec. 2010.

[98] J.-H. Kim and D. A. Shell, “A new model for self-organized robotic clustering:

Understanding boundary induced densities and cluster compactness,” in Proceed-

ings of International Conference on Robotics and Automation (ICRA), Seattle, WA,

USA, May 2015, pp. 5858–5863.

[99] J. Wu, I. Yildirim, J. J. Lim, W. T. Freeman, and J. B. Tenenbaum, “Galileo: Perceiv-

ing Physical Object Properties by Integrating a Physics Engine with Deep Learn-

ing,” in Proceedings of International Conference on Neural Information Processing

Systems (NIPS), Cambridge, MA, USA, 2015, pp. 127–135.

[100] S. Mahadevan and J. Connell, “Automatic Programming of Behavior-based Robots

using Reinforcement Learning,” in Proceedings of AAAI Conference on Artificial

Intelligence, Anaheim, California, USA, Jul. 1991.

[101] J. Morimoto and K. Doya, “Reinforcement learning of dynamic motion sequence:

Learning to stand up,” in Proceedings of IEEE Conference on Intelligent Robots

and Systems, Victoria, BC, Oct. 1998.

[102] V. Soni and S. Singh, “Reinforcement learning of hierarchical skills on the Sony

AIBO robot,” in Proceedings of Conference on Development and Learning (ICDL),

May 2013.

[103] C. Daniel, G. Neumann, and J. Peters, “Learning Concurrent Motor Skills in Versa-

tile Solution Spaces,” in Proceedings of IEEE Conference on Intelligent Robots and

Systems, Vilamoura, Algarve, Portugal, Oct. 2012.

109

[104] J. Z. Kolter and A. Y. Ng, “Policy Search via the Signed Derivative,” in Proceedings

of Robotics: Science and Systems Conference, Seattle, USA, Jun. 2009.

[105] J. Kober, E. Oztop, and J. Peters, “Reinforcement Learning to Adjust Robot Move-

ments to New Situations,” in Proceedings of Robotics: Science and Systems Con-

ference, Zaragoza, Spain, Jun. 2010.

[106] J. Michels, A. Saxena, and A. Y. Ng, “High Speed Obstacle Avoidance using

Monocular Vision and Reinforcement Learning,” in Proceedings of IEEE Confer-

ence on Machine Learning, Bonn, Germany, 2005.

[107] P. R. Giordano and M. Vendittelli, “Shortest Paths to Obstacles for a Polygonal

Dubins Car,” IEEE Transactions on Robotics, vol. 25, no. 5, pp. 1184–1191, 2009.

[108] T. Meriçli, M. Veloso, and H. L. Akin, “Achievable Push-Manipulation for Complex

Passive Mobile Objects using Past Experience,” in Proceedings of International

Conference on Autonomous Agents and Multiagent Systems, Saint Paul, Minnesota,

USA, May 2013.

[109] J. K. Lenstra and A. H. G. R. Kan, “Complexity of vehicle routing and scheduling

problems,” Networks, vol. 11, no. 2, pp. 221–227, Jun. 1981.

[110] H. Kuhn, “The hungarian method for the assignment problem,” Naval Research

Logistic Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[111] R. H. Teshnizi and D. A. Shell, “Planning motions for a planar robot attached to a

stiff tether,” in Proceedings of International Conference on Robotics and Automa-

tion, Stockholm, Sweden, May 2016, pp. 2759–2766.

[112] The United Nations Environment Programme, “Ecosystems and Biodiversity in

Deep Waters and High Seas,” United Nations Environment Programme, Tech. Rep.

178, 2006.

[113] M. C. Leftwich, E. D. Tytell, A. H. Cohen, and A. J. Smits, “Wake structures behind

a swimming robotic lamprey with a passively flexible tail,” Journal of Experimental

110

Biology, vol. 215, no. 3, pp. 416–425, 2012.

[114] H. Punzmann, N. Francois, H. Xia, G. Falkovich, and M. Shats, “Generation and

reversal of surface flows by propagating waves,” Nature Physics, vol. 10, pp. 658–

663, Jun. 2014.

[115] V. Kumar, D. Rus, and G. S. Sukhatme, “Networked Robots,” in Springer Handbook

of Robotics, B. Siciliano and O. Khatib, Eds. Springer-Verlag Heidelberg, 2008,

ch. 41.

[116] Popular Mechanics, “This Colossal Oil-Hunter Is Largest Mobile Manmade

Object in the World,” 2016. [Online]. Available: http://www.popularmechanics.

com/technology/infrastructure/a19081/polarcus-largest-manmade-mobile-object/

[117] The New York Times, “Drilling Deep in the Gulf of Mexico,” 2006.

[Online]. Available: http://www.nytimes.com/2006/11/08/business/worldbusiness/

08gulf.html

[118] Y.-H. Kim, D. A. Shell, C. Ho, and S. Saripalli, “Spatial Interpolation for Robotic

Sampling: Uncertainty with two Models of Variance,” in Proceedings of Interna-

tional Symposium on Experimental Robotics, Quebec, Canada, Jun. 2012.

[119] Y.-H. Kim and D. A. Shell, “Distributed Robotic Sampling of Non-Homogeneous

Spatio-Temporal Fields via Recursive Geometric Sub-division,” in Proceedings of

the International Conference on Robotics and Automation, Hong Kong, China, May

2014.

[120] L. Whitcomb, “Underwater robotics: Out of the research laboratory and into the

field,” in Proceedings of the International Conference on Robotics and Automation,

San Francisco, CA, USA, May 2000.

[121] S. Guccione, G. Muscato, G. Nunnari, G. Virk, A. Azad, A. Semerano, T. White,

and C. Glazebrook, “Robots for volcanos: The state of the art,” in Proceedings of the

International Conference on Climbing and Walking Robots (CLAWAR), Oct. 2000.

111

http://www.popularmechanics.com/technology/infrastructure/a19081/polarcus-largest-manmade-mobile-object/
http://www.popularmechanics.com/technology/infrastructure/a19081/polarcus-largest-manmade-mobile-object/
http://www.nytimes.com/2006/11/08/business/worldbusiness/08gulf.html
http://www.nytimes.com/2006/11/08/business/worldbusiness/08gulf.html

[122] P.-H. Lin and C.-S. Lee, “The Eyewall-Penetration Reconnaissance Observation of

Typhoon Longwang (2005) with unmanned aerial vehicle, aerosonde,” J. Atmos.

Oceanic Technol, vol. 25, no. 1, pp. 15–25, 2008.

[123] Wikipedia, “Rat king,” 2009. [Online]. Available: https://en.wikipedia.org/wiki/

Rat king

112

https://en.wikipedia.org/wiki/Rat_king
https://en.wikipedia.org/wiki/Rat_king

	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Motivation: Manipulating Objects Using Tools
	Challenges: Statement of the Problem
	Research Objective
	Overview of Research Approach
	Contributions
	Dissertation Organization

	Related Work
	Compliant, Underactuated Structures for Manipulation
	Coordinated Manipulation using Multi-robot Systems
	Manipulation of an Object by Multiple Coordinated Robots
	Manipulation of Distributed Objects by Multiple Robots

	Tail Robots
	Motion Primitives
	Planning under Motion Uncertainty
	Planning with Satisfiability Modulo Theories
	Estimating System Parameters

	Using a compliant, unactuated tail to manipulate objects
	Introduction
	Preliminaries and Problem Description
	Simplifying Assumptions
	Problem Definition

	Modeling Motion Primitives
	Robot Motion Model
	Quasi-static Model: Simplified Analytic Model for Dragging Motions
	Dynamic Model: High-Speed Striking
	Learning Model Parameters
	Recap of Motion Primitives: Initialization

	Planning with the Motion Primitives
	Experimental Results
	System Setup
	Scenarios: Planners, Environments, and Objectives
	Experimental Validation

	Extension of a Set of Motion Primitive
	A Conjoining Motion Primitive
	A Hooking Motion Primitive
	A Snaring Motion Primitive

	Discussion
	Implementation Challenges
	Object Geometry Oblivious: a Generalization of our Model
	The Advantage of the Dynamics-based Motion Primitives

	Summery of This Section

	Cooperative manipulation of objects via compliant, unactuated tails
	Introduction
	Problem Setup and Notation
	The mocct Problem Formulation

	NP-hardness of the mocct Problem
	Algorithms for the mocct problem
	The Basic Heuristic Search Algorithm
	The Opportunistic Neighborhood Search (ONS) Algorithm

	Experiments
	Random Environments
	Evaluation of Algorithms
	Physical Robot Experiments
	Other Experimental Results for Other Scenarios

	Discussion
	Obstacle-free Paths in the Topological Graph
	Loosely-coupled and Tightly-coupled Coordination
	How to Build a Tail for mocct Problems: Guidelines for a Practitioner

	Summary of This Section

	Conclusion and Future Work
	Suggestions for Future Research: Moving Closer to Practical Applications
	Cleaning Polluted Water
	Environmental Sampling via Flexible Sensor Arrays
	Separating Objects

	REFERENCES

