
IMPROVING THE ROBUSTNESS OF MONOCULAR VISION-AIDED

NAVIGATION FOR MULTIROTORS THROUGH INTEGRATED ESTIMATION AND

GUIDANCE

A Thesis

by

WILLIAM DANIEL WHITTEN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, John Hurtado
Co-Chair of Committee, John Junkins
Committee Member, Sivakumar Rathinam

Head of Department, Rodney Bowersox

May 2017

Major Subject: Aerospace Engineering

Copyright 2017 William Daniel Whitten

ABSTRACT

Multirotors could be used to autonomously perform tasks in search-and-rescue, recon-

naissance, or infrastructure-monitoring applications. In these environments, the vehicle

may have limited or degraded GPS access. Researchers have investigated methods for

simultaneous localization and mapping (SLAM) using on-board vision sensors, allowing

vehicles to navigate in GPS-denied environments. In particular, SLAM solutions based

on a monocular camera offer low-cost, low-weight, and accurate navigation indoors and

outdoors without explicit range limitations. However, a monocular camera is a bearing-

only sensor. Additional sensors are required to achieve metric pose estimation, and the

structure of a scene can only be recovered through camera motion. Because of these chal-

lenges, the performance of monocular-based navigation solutions is typically very sen-

sitive to the environment and the vehicle’s trajectory. This work proposes an integrated

estimation and guidance approach for improving the robustness of monocular SLAM to

environmental uncertainty. It is specifically intended for a multirotor carrying a monocular

camera, downward-facing rangefinder, and inertial measurement unit (IMU). A guidance

maneuver is proposed that takes advantage of the metric rangefinder measurements. When

the environmental uncertainty is high, the vehicle simply moves up and down, initializing

features with a confident and accurate baseline. In order to demonstrate this technique,

a vision-aided navigation solution is implemented which includes a unique approach to

feature covariance initialization that is based on consider least squares. Features are only

initialized if there is enough information to accurately triangulate their position, providing

an indirect metric of environmental uncertainty that could be used to signal the guidance

maneuver. The navigation filter is validated using hardware and simulated data. Finally,

simulations show that the proposed initialization maneuver is a simple, practical, and ef-

ii

fective way to improve the robustness of monocular-vision-aided-navigation and could

increase the amount of autonomy that GPS-denied multirotors are capable of achieving.

iii

ACKNOWLEDGMENTS

I first heard about the field of vision-aided navigation in the fall of 2014 and immedi-

ately knew that I wanted to gain expertise in this area. However, it has taken several years

to develop the skills and knowledge necessary to achieve this goal. Many individuals and

organizations have helped me to obtain these requirements. I have greatly enjoyed and

benefited from the company and knowledge of the faculty and students associated with

the Land, Air, and Space Robotics (LASR) lab. I am particular grateful for Dr. Hurtado’s

AERO 622 class where I developed a strong understanding of and appreciation for attitude

parameterizations. I also benefited greatly from the study of Dr. Junkin’s book “Optimal

Estimation of Dynamic Systems.” In addition I am grateful for my summer experience at

the Autonomous Vehicles Lab at the University of Florida Research and Education Facil-

ity (REEF). I am particularly thankful for conversations with Dr. Brink. From Dr. Brink

I gleaned a strong appreciation for the covariance matrix and the idea of using vertical

motion to establish an accurate baseline for feature initialization. More generally I am

thankful to my family for supporting me in endless ways throughout my education and to

God for giving me the resources and talents to pursue a subject that I am passionate about.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professors John Hurtado

and John Junkins of the department of Aerospace Engineering and Professor Sivakumar

Rathinam of the department of Mechanical Engineering.

Dr. Kevin Brink, an Air Force Research Lab engineer, originally suggested the idea

of using a downward-facing rangefinder and vertical motion to improve the quality of

monocular-vision-aided navigation. Dr. Brink also provided advice for the implementa-

tion and demonstration of the work. All other work conducted for the thesis was completed

by the student independently.

Funding Sources

This material is based upon work supported by the National Science Foundation Grad-

uate Research Fellowship Program under Grant No. DGE-1252521. Any opinions, find-

ings, and conclusions or recommendations expressed in this material are those of the au-

thor(s) and do not necessarily reflect the views of the National Science Foundation.

v

NOMENCLATURE

IMU Inertial Measurement Unit

SLAM Simultaneous Localization and Mapping

GPS Global Positioning System

EKF Extended Kalman Filter

DOF Degree of Freedom

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

1. INTRODUCTION AND LITERATURE REVIEW 1

1.1 GPS-Denied Navigation . 1
1.2 Monocular Simultaneous Localization and Mapping 4
1.3 Challenges of Monocular SLAM for Multirotor Navigation 6
1.4 An Integrated Monocular-Vision-Aided-Navigation and Guidance Solution 10
1.5 Overview of Sensor Package and SLAM Implementation 11

2. MONOCULAR VISION-AIDED NAVIGATION IN AN EXTENDED KALMAN
FILTER FRAMEWORK . 15

2.1 Background and Notation . 15
2.1.1 General Variable Conventions 15
2.1.2 Attitude and Reference Frames 16
2.1.3 True States, Estimated States, and Error States 17

2.2 EKF SLAM System State Models . 19
2.2.1 System Model . 21
2.2.2 State Estimates . 23
2.2.3 Error Model . 25

2.3 Time Update . 28
2.4 Feature Models . 30

2.4.1 Measurement Model . 31
2.4.2 Measurement Estimate . 32
2.4.3 Measurement Error Model . 32

2.5 Rangefinder Models . 33

vii

2.5.1 Measurement Model . 33
2.5.2 Measurement Estimate . 34
2.5.3 Measurement Error Model . 35

2.6 Measurement Update . 35
2.7 Discussion . 36

3. FEATURE TRACKING AND DELAYED INITIALIZATION 38

3.1 Feature Detection and Matching . 38
3.1.1 Matching New Features . 38
3.1.2 Matching Mapped Features . 39

3.2 Changing the Keyframe State . 39
3.3 Feature Initialization . 41

3.3.1 Inverse Depth Feature Position Estimate 42
3.3.2 Covariance Estimate . 45
3.3.3 Adding a Feature to the Map . 47

4. PERFORMANCE ON EXPERIMENTAL AND SIMULATED DATA 48

4.1 Hardware Setup . 48
4.2 Hardware Experimental Results . 51
4.3 Simulated Experimental Setup . 53
4.4 Simulated Experimental Results . 54
4.5 Discussion and Conclusions . 56

5. A GUIDANCE LAW TO IMPROVE ROBUSTNESS 57

5.1 Altitude: A Confident Baseline . 57
5.2 Guidance Law . 58
5.3 Guidance Law Demonstration . 60
5.4 Estimator Performance: Without Guidance Law 62
5.5 Estimator Performance: With Guidance Law 64
5.6 Discussion . 65

6. SUMMARY AND CONCLUSIONS . 66

REFERENCES . 67

viii

LIST OF FIGURES

FIGURE Page

1.1 Pinhole projection model. The pixel coordinates u and v encode the az-
imuth and elevation angle of the ray (red line) that connects the camera
origin to the point feature. The camera model relates the pixel coordinates
of a projected feature to these angles. 7

1.2 2D representation of feature initialization. From a single camera image at
pose C1, only the bearing to f is observed. From this one image, f ′ or f ′′

are equally valid solutions. However, by taking another image at C2, only
f satisfies the constraints posed by the two images. 7

1.3 Sensors mounted on experimental setup. 12

1.4 The pose and images corresponding to the keyframe and current IMU
poses. At each pose, the camera observes the 2D projection of features.
New features are matched with features that were previously observed in
the keyframe image (pink lines and circles). The observations of mapped
features (green circles) are used to update the filter state. Each mapped
feature has an associated 3D position (green, yellow, and red squares). . . 13

2.1 2D diagram of the current IMU pose and feature positions. 20

2.2 Between time tk and tk+1, the IMU translates according to pIIk and under-
goes a rotation parameterized by q̄IIk . 22

2.3 The position of the feature in the camera frame can be constructed from
the global pose of the camera and the global position of the feature. . . . 32

2.4 The distance of the rangefinder to the ground along the rangefinder z-axis
can be constructed from the global pose of the rangefinder. 34

3.1 2D diagram of feature initialization geometry. 43

4.1 Sample image from hardware experiment. 49

4.2 Position estimates and errors between the estimates and motion capture
data. All units are in meters. 50

ix

4.3 Attitude estimates and errors between the estimates and motion capture
data. All units are in degrees. The biases in the roll and pitch errors are
likely partially due to misalignment between the motion capture frame and
the gravity-aligned navigation frame. 50

4.4 SLAM visualization. The camera translates primarily along the x-axis
(red arrow on triad). The primary component of the depth of most of the
mapped features (green, yellow, and red squares) lies along the world y-
axis (green arrow on triad). Note that the red features are features that
were once in the map but have been “forgotten” because they moved out
of view or no new observations were recorded. 52

4.5 Top: the filter performs well when there are 30-50 feature observations
available. Due to limitations with the feature tracker and camera motion,
not all mapped features will always be associated with an observation.
Bottom: the total length of the trajectory was 20 meters. The error at any
point in time is small compared with the total distance traveled. 52

4.6 Position estimates and errors between the estimates and ground truth. All
units are in meters. 55

4.7 Attitude estimates and errors between the estimates and ground truth. All
units are in degrees. 55

5.1 “IMU-only” inertial navigation. The error of the position estimate in the
z (altitude) direction is much lower than the errors in the other two direc-
tions. 59

5.2 Two trajectories are analyzed. The nominal path without the proposed
guidance law is shown in blue. This path was augmented per the proposed
guidance law to produce the red path. 61

5.3 True and estimated pose on trajectory without guidance solution. 63

5.4 True and estimated pose on trajectory with guidance solution. 63

5.5 Immediately after the yaw rotations there are few mapped features avail-
able. Moving up and down establishes a baseline for more features to be
initialized. The number of mapped features could be used as a threshold
for when to execute the altitude changes. 64

x

1. INTRODUCTION AND LITERATURE REVIEW

1.1 GPS-Denied Navigation

Multirotors are helicopters with more than one rotor. Thanks to the recent prolifer-

ation of small exteroceptive sensors (e.g. cameras) and microelectromechanical systems

(MEMS), small multirotors have become commonplace and increasingly sophisticated.

These helicopters range in size from those that can fit in the palm of a hand to larger

units that weigh several kilograms [1]. Researchers have taken advantage of these vehi-

cles’ agility and small size while demonstrating multi-vehicle swarm flight [2], high speed

maneuvers [3], and even cooperative ball throwing and catching [4].

The capabilities of these vehicles make them ideal for inspection, surveillance, search

and rescue, and surveying applications in numerous industries. Currently, such applica-

tions require highly trained human pilots. Fully autonomous multirotors could signifi-

cantly decrease the cost associated with deployment in these applications. In addition, the

helicopters could operate in environments that are particularly dangerous or difficult to

reach for humans. In these environments, the vehicle may not have access to GPS (e.g.

building interiors, urban canyons) or GPS may lack accuracy or consistency.

Ideally, a GPS-denied vehicle would have the ability to navigate using only on-board

sensors and computation in an a priori unknown and unstructured environment. The nav-

igation solution should ideally have negligible drift over long trajectories and the algo-

rithm’s computational requirements should remain constant. Achieving these design ob-

jectives remains challenging for small multicopters. The limited payload and electrical

power greatly constrain the sensor selection and computational resources available. A

ground robot can, if necessary, stop and process batch measurements to update the state

estimate. An airborne multirotor, on the other hand, has fast and unstable dynamics that

1

require real-time state estimates.

Despite the difficulties, researchers have investigated the use of onboard sensors and

computation to provide GPS-denied state estimation. Early work required a priori scene

knowledge [5] and/or offboard computation [6]. Blösch et al. demonstrated a micro aerial

vehicle capable of control and navigation using exclusively onboard exteroceptive and pro-

prioceptive sensors [7]. Their system used an inertial measurement unit (IMU) and monoc-

ular camera for sensing. The Parallel Tracking and Mapping (PTAM) SLAM algorithm

[8] provided an accurate up-to-scale pose estimate. This vision-based pose estimate was

fused with IMU measurements in a separate extended Kalman filter (EKF) to provide a full

6 degree of freedom (DOF) pose estimate. Extended versions of the work were used for

a European Union-funded vision-controlled swarm project [1] and autonomous waypoint

navigation in a simulated disaster area [9]. This so-called loosely-coupled vision-aided

navigation approach has remained popular. NASA researchers fused PTAM estimates with

IMU measurements to demonstrate autonomous landing [10]. This system has also been

successfully implemented on the low-cost commercial AR Drone [11]. More recently, an

alternative monocular SLAM algorithm known as semi-direct visual odometry (SVO) has

also been effectively used in a loosely-coupled navigation scheme [12].

Researchers have considered sensors other than monocular cameras. Bachrach achieved

impressive GPS-denied autonomy indooors using 2D laser scan-matching [13]. This plat-

form was capable of autonomous navigation and flight through windows and doors. Laser

scans were also used to enable onboard navigation, mapping, control, and planning through

multi-level buildings [14]. With the addition of an RGB-D camera, this system success-

fully mapped sections of an earthquake-damaged building in Japan [15].

The use of RGB-D sensors for multirotor navigation has also been investigated. Huang,

et. al. stabilized and controlled a quadcopter in a cluttered indoor environment using a

Microsoft Kinect sensor [16]. Researchers have also used the RGB-D sensor in a relative

2

navigation and control framework [17].

Stereo cameras are also a viable sensor for quadcopter navigation. Heng, et. al. demon-

strated indoor obstacle avoidance and path planning based on a stereo camera [18]. The

camera pose was taken from a motion camera system. However, [19] uses a forward-facing

stereo and downward facing monocular camera for autonomous mapping and navigation

without the need for an external motion capture reference. More recently, Schmid, et. al

demonstrated extensive indoor and outdoor flights using a forward-facing stereo camera

[20]. The stereo algorithm was implemented on a field programmable gate array (FPGA).

Each sensor type has strengths and weaknesses for multicopter navigation. It is not

possible to reconstruct the scale of the estimated position and map coming from monoc-

ular SLAM without secondary sensors. Laser-scan matching algorithms typically require

environmental assumptions such as flat walls or floors. These assumptions are generally

applicable only to indoor applications. RGB-D sensors currently detect patterns in infrared

structured light or the time of flight of infrared light. For this reason, they are of limited

use outdoors or in bright sunlight. Stereo reconstruction is computationally expensive.

Real-time operation on a computationally constrained vehicle may require a secondary

processor or FPGA devoted to stereo processing. All sensors and associated algorithms,

except for monocular SLAM, have explicit range limitations. All vision-based approaches

require adequate lighting. Finally, many odometry/SLAM algorithms require a “cluttered”

environment with a sufficient set of distinct visual features or depth gradients.

Due to the many restrictions and limitations of exteroceptive perception, it is unlikely

that navigation using a single sensor will be robust to the environmental changes encoun-

tered during realistic missions [21] [22]. However, monocular cameras have a number

of features that make them highly suitable as general purpose primary or complemen-

tary navigation sensors. Monocular cameras are inexpensive, have a high information to

weight ratio, do not have explicit range limitations, and work well in both indoor and out-

3

door settings. Most unmanned vehicles already have cameras onboard. Even if a laser

rangefinder, stereo camera, or RGB-D sensor is used as the primary exteroceptive sensor,

monocular visual odometry can serve as a complementary navigation solution or act as the

main input when needed. Due to the practical advantages of cameras, developing monoc-

ular SLAM solutions that are accurate and efficient is of critical importance for achieving

robust autonomous GPS-denied flight.

1.2 Monocular Simultaneous Localization and Mapping

Monocular SLAM has been studied extensively. The first real-time implementations

were based on filtering methods. Davison introduced one of the first successful real-time

algorithms [23] [24]. This implementation relies on an EKF. The EKF state vector con-

sists of the vehicle state and the map. The vehicle state vector includes the current pose

and velocity while the map state consists of the Cartesian coordinates of distinct features

that are tracked between camera frames. The global positions of the features are initially

unknown. Using a process model and camera measurement model, the vehicle state and

map are simultaneously estimated. The covariance matrix accounts for uncertainty as

well as the correlations between the vehicle state and the feature locations and also the

correlations between different feature position estimates. In [25], the Cartesian feature

coordinates were replaced with the so-called inverse depth parameterization. The inverse

depth parameterization has a more linear measurement model for small feature baselines,

leading to better convergence from initial condition errors. However, inverse depth has six

parameters, leading to a higher computational burden.

In the Kalman filter, computational complexity scales quadratically with the number

of feature states. This limits the number of features that can be included in the map. The

multi-state constraint Kalman (MSKF) attempts to address this problem by estimating a

sliding window of past camera poses rather than actively estimating the global positions

4

of features [26]. The complexity of the MSKF is linear in the number of features. Using

a novel observability rule [27], the MSKF has shown excellent accuracy and consistency.

However, this filter is not reliable if the camera has little motion with respect to the ob-

served environment. The hybrid MSCKF/SLAM visual-inertial odometry described in

[28] attempts to overcome this limitation by combining the MSKF with an EKF-SLAM

implementation that uses an anchor point feature parameterization.

Monocular SLAM can also be formulated as a bundle adjustment (i.e. batch) prob-

lem. Once thought to only be useful for offline processing, bundle adjustment (BA) uses

global optimization to reconstruct the motion of a camera and the environmental struc-

ture from a sequence of images [29]. PTAM was the first real-time BA monocular SLAM

implementation [8]. It achieved real-time performance by heuristically selecting certain

images as keyframes. In one thread, the pose of each new image with respect to the most

recent keyframe is determined. This tracking thread operates at a high frame rate. A sep-

arate thread executes a more computationally expensive process that optimizes the global

pose of each keyframe with respect to the sparse feature map. PTAM also includes loop

closure. Loop closure is recognizing when a current image includes features that have

been mapped in the past and updating the current estimated global pose to reflect this

constraint. ORB-SLAM implements a number of enhancements to the feature-based BA

concept introduced by PTAM [30]. As the name suggests, ORB-SLAM uses the ORB

features and detectors [31] rather than the patches used in PTAM. The ORB-features and

additional modifications enable loop closing that is more invariant to viewpoint and more

robust feature initialization.

The previously discussed monocular SLAM implementations rely on features that are

identified and tracked from monocular camera images. However, features only make up

a small portion of the amount of information in an image; the remaining information is

discarded. In addition, some environments do not contain a sufficient amount of readily-

5

identifiable features. Edge landmarks have been used instead of features in man-made

environments where tracking edges is more robust [32]. The so-called direct monocular

SLAM methods attempt to use all of the information contained in an image by estimating

the camera pose using the image intensity (i.e. gradient). Large-Scale Direct Monocular

SLAM (LSD-SLAM) was one of the first real-time direct monocular SLAM implemen-

tations [33]. The authors demonstrate accurate localization and semi-dense mapping on

long indoor and outdoor trajectories. Semi-direct visual odometry (SVO) utilizes both

direct image alignment and feature-based techniques [34].

1.3 Challenges of Monocular SLAM for Multirotor Navigation

A monocular camera image only contains information about the bearing of a point

feature in the camera frame. Using a camera projection model, the azimuth and elevation

angles of the ray that connects the camera origin to the point feature can be recovered. A

simple model is shown in fig. 1.1 . This model, which does not account for distortion or

pixel aspect ratio, requires knowledge of the lens focal length f and the principle point

(cx, cy). These parameters can be determined by taking images of a known calibration

target [35] or tracking distinct features [36].

Because monocular cameras are bearing-only sensors, monocular SLAM has two key

challenges: scale ambiguity and feature initialization. The result of scale ambiguity is that

the position estimates and the structure of the scene are only accurate up to a scale factor.

If the camera is moving and the originally observed features are no longer in view then

the scale factor estimate is likely to drift over time. Feature initialization is the process

of estimating the relative position of a feature to other features and/or to the camera pose.

From a single camera image, only the bearing to the feature can be determined. Fig 1.2

illustrates this challenge. Thus, two images of the feature, taken at two poses, are required

to initialize a feature into the map. These two positions are separated by a distance known

6

Figure 1.1: Pinhole projection model. The pixel coordinates u and v encode the azimuth
and elevation angle of the ray (red line) that connects the camera origin to the point feature.
The camera model relates the pixel coordinates of a projected feature to these angles.

Figure 1.2: 2D representation of feature initialization. From a single camera image at
pose C1, only the bearing to f is observed. From this one image, f ′ or f ′′ are equally valid
solutions. However, by taking another image at C2, only f satisfies the constraints posed
by the two images.

7

as the baseline. The baseline must be large enough that the difference between the two

feature projections is measurable. The required baseline depends on the physical distance

of the feature to the imaging plane and the focal length of the lens.

The scale ambiguity must be accounted for if monocular odometry will be used to close

the loop on multirotor control. One option is to initialize SLAM using a priori information

such as an initialization target [24]. This fixes the initial scale but does not prevent scale

drift unless the target is always in view. The use of an initialization target may not be

practical for autonomous multirotor flight.

An alternative solution to the scale ambiguity is the use of additional sensors. An

IMU provides metric state estimates and has been used extensively as a complement to

monocular SLAM. However, due to the integration of noise and errors in the estimated

biases, the use of an IMU will not entirely eliminate scale drift, particularly if features are

observed for short periods of time. The use of sensors that measure altitude can be used to

resolve the scale with proper motion [37].

Feature initialization is also a serious concern for autonomous quadrotor navigation,

particularly if there are no features currently initialized. Without manual control or a

guidance law, the vehicle will not "know" that it needs to translate or the magnitude and

direction of the required translation. If an IMU is the only navigation aid, the position

of the vehicle will be highly uncertain. In this scenario, even if the vehicle knows that

it needs to translate, it will have almost no idea about its own position. Thus even with

sufficient translation to form a baseline, the amount of uncertainty in the baseline will

result in feature initialization with an unusable amount of uncertainty and accuracy.

The challenges of scale ambiguity and initialization are particularly severe in three

scenarios:

1. The quadrotor has just been powered on and is required to begin an autonomous

8

mission. It has no information about the environment. The vehicle must take off

and begin the mission despite not having any position reference other than double

integration from the IMU.

2. The vehicle has been flying for enough time that the original features it observed

are no longer visible. Due to accumulated errors, the position and velocity states

are drifting and becoming increasingly uncertain. New features are being initialized

with increasing uncertainty and inaccuracy.

3. The vehicle pose suddenly changes relative to the features that it was observing such

that none of these features are now visible. This is possible if, for instance, a vehicle

with a forward-facing camera suddenly yaws 90 degrees. Now the multirotor has no

information about the environment.

These three scenarios are examples of “significant environmental uncertainty.” For

vehicles without additional exteroceptive sensors, researchers have handled the first sce-

nario by manually or remotely translating the vehicle and relying on the scale to converge

from integrated accelerometer measurements [37]. This provides the baseline necessary

to initialize features into the map but convergence is slow. The authors of [11] used a

rangefinder and commanded a vertical motion. The scale is calculated using a closed-

form solution and assumed to remain constant.

The second scenario is typically handled by using a downward-facing camera, using a

wide-field-of-view lens, and limiting the trajectory to relatively small distances compared

to the size of the initial map. This minimizes the drift of states, but limits the environments

in which monocular SLAM can be used as the primary or complementary navigation so-

lution.

Researchers recently addressed the third scenario in [38]. The authors demonstrate ini-

tialization after aggressive flight by stabilizing attitude and altitude (thanks to a downward

9

facing rangefinder) and allowing the subsequent position drift to provide the required base-

line for feature initialization. While good results were obtained, this technique is limited

to downward-facing cameras over flat ground.

1.4 An Integrated Monocular-Vision-Aided-Navigation and Guidance Solution

This work builds on these results and presents a solution that could provide improved

robustness in these scenarios of significant environmental uncertainty. The robustness of

monocular-vision-aided navigation to environmental uncertainty is improved through an

altitude measurement and an integrated estimation and guidance solution. The specific

methods and contributions of this work are:

1. A filter-based SLAM approach is presented. This implementation differs from pre-

vious work through the use of a unique feature initialization method that emphasizes

the importance of not assuming a prior distribution for newly initialized feature

states. The consider least squares algorithm [39] is used to estimate a covariance

matrix that includes correlation with all current states. The feature is initialized if

the largest eigenvalue of the feature covariance matrix is less than some threshold.

2. The system is tested using an experimental platform that includes a forward-facing

monocular camera with wide field of view, downward-facing rangefinder, and in-

ertial measurement unit. The platform is moved throughout a room in a trajectory

and environment that is challenging for monocular-vision-aided navigation. A mo-

tion capture system tracks the global position and orientation for reference. The

hardware results are compared to a simulation closely modeled after the hardware

experiment.

3. A guidance law designed to reduce scale drift is introduced. Using the proposed fea-

ture initialization technique, features should not be initialized if there is not enough

10

information to confidently create a depth prior. Thus, features will not be initialized

if metric information is needed. If the number of initialized features drops below

a threshold, the vehicle is commanded to first stabilize attitude. This first step is

similar to [38]. After stabilization, the vehicle is instructed to increase thrust. This

results in increasing altitude and some inevitable drift parallel to the ground. A

confident measurement of altitude, which could come from a rangefinder or other

exteroceptive odometry, provides the scale necessary to initialize features. A sonic

altimeter is considered in this work.

4. The proposed guidance law is analyzed using two simulated trajectories. The per-

formance of the estimator with and without the altitude change is compared.

1.5 Overview of Sensor Package and SLAM Implementation

The full navigation sensor package consists of a MEMS IMU, forward-facing monoc-

ular camera with wide field of view (FOV) lens, and downward-facing rangefinder. Fig.

1.3 shows an example of such a system. This platform will be used for the hardware

experiments in ch. 4.

A forward-facing camera was chosen because it represents a more general and chal-

lenging case than a downward-facing camera. Although a downward-facing camera has

been used for monocular-vision-aided navigation for quadrotors, many ground surfaces

lack a significant number of identifiable features. In addition, initialized features from a

downward-facing camera cannot easily be used for obstacle avoidance unless the vehicle

is moving downward. For this work, a downward-facing camera would be advantageous

because the downward-facing rangefinder would directly provide metric information about

the most uncertain (i.e. depth) direction. Thus the methods proposed in this work could

also be applied to a downward-facing camera.

In this navigation solution, the 6 DOF pose of the IMU must be estimated. In order

11

Figure 1.3: Sensors mounted on experimental setup.

to take advantage of features in the camera images, the 3D locations of these features

must be simultaneously estimated. At any point in time the SLAM algorithm contains

estimates of the IMU pose and the global position of m features. This information is

depicted graphically in fig. 1.4 . Estimates for the IMU velocity, gyroscope bias, and

accelerometer bias must also be maintained in order to use the IMU measurements.

Camera images are received every so often. In this work, the first received image will

be designated as the “keyframe image”. Some number of features will be identified in the

keyframe image (pink circles in fig. 1.4). The initial IMU pose estimate is recorded and

designated as the keyframe pose.

Some time later a new image will become available. However, before the arrival of

the new image, IMU and/or rangefinder measurements will have been received. These

measurements will be used to propagate and/or update, respectively, the filter state. Thus

by the time the new image is received, there exists a prior estimate of the current IMU

pose. In this new image, features are again detected. The feature descriptors are matched

with some of the feature descriptors previously found in the keyframe image (pink lines

in fig. 1.4). Using the current IMU pose estimate, the keyframe pose estimate, and the

measured pixel locations of the feature in the current and keyframe images, the global

12

Figure 1.4: The pose and images corresponding to the keyframe and current IMU poses.
At each pose, the camera observes the 2D projection of features. New features are matched
with features that were previously observed in the keyframe image (pink lines and circles).
The observations of mapped features (green circles) are used to update the filter state. Each
mapped feature has an associated 3D position (green, yellow, and red squares).

position of the feature is triangulated. Using the consider least squares approach, the

uncertainty of this triangulated feature position is estimated. If the uncertainty of the depth

of the feature is below a threshold, the feature descriptor and associated position estimate

are added to the “map” by appending it to the state vector.

Soon another image will become available. Feature matches will once again be made

between this image and the keyframe image. In addition, features matches should be

made to the mapped feature descriptors. These observations of mapped features are used

to update the filter state.

This process is repeated as new IMU data, rangefinder measurements, and images are

received. As the camera moves, there will become increasingly fewer matches between

13

the current image and the keyframe image. Thus, the keyframe image and pose will need

to be changed every so often.

Ch. 2 describes how IMU, rangefinder, and camera measurements are used to update

the filter state. Ch. 3 details the process for matching features and delayed feature initial-

ization. It also explains how the state is dynamically augmented with the keyframe pose

and new features. The monocular-vision-aided navigation system is tested using exper-

imental and simulated data. The results are presented in ch. 4. Using this system, the

guidance law is proposed and tested. This is explained in ch. 5. Conclusions are provided

in ch. 6.

Though the vision-aided navigation solution provided here produces accurate estimates

with simulated and hardware experimental data, it is not intended to be a “complete“

SLAM solution that would work in every environment. There are many improvements

that could be made, many of which are described throughout this work. Rather, the present

implementation contains the elements necessary to demonstrate and complement the pro-

posed guidance law on a multirotor platform with a specific sensor package.

14

2. MONOCULAR VISION-AIDED NAVIGATION IN AN EXTENDED KALMAN

FILTER FRAMEWORK

As described in ch. 1, there is an extensive body of work on monocular SLAM. There

are dozens of methods that can be used. For this work, an extended Kalman filter frame-

work was chosen. As opposed to other classes of monocular SLAM solutions (e.g. sparse

bundle adjustment methods), the EKF-framework readily allows multiple sensor measure-

ments to be “fused” together without the need for a separate filter as in [9] and [34]. In

addition, using the IMU directly helps the odometry to “distinguish” between a rotation

and a translation (specifically transformations with significant components in directions

perpendicular to the camera’s optical axis). Finally, many bundle adjustment methods do

not provide a covariance or pose uncertainty metric. Having a confidence metric is im-

portant in many robotic and aerospace applications. For these reasons, an EKF-SLAM

solution was designed and implemented for this work.

2.1 Background and Notation

This section describes the notational conventions used in this work. Various attitude

parameterizations and approximations are presented. Finally, a careful distinction is made

between the true state, estimated state, and error states of the Kalman filter.

2.1.1 General Variable Conventions

In this work, vectors and matrices are written as bold Roman characters. Vectors are

lowercases letters (e.g. v). Matrices are uppercase letters (e.g. A). The element of the rth

row and cth column of matrix A is denoted by Arc. Scalars are written as lowercase italic

letters or symbolic characters (e.g. α). Reference frames are written using uppercase italic

characters (e.g. F). The characters i and j are reserved to represent elements of a set or

15

rows/columns of a matrix.

2.1.2 Attitude and Reference Frames

The quaternion is used to express the rotation from one frame to another. It consists of

an imaginary vector component q and a scalar component q4.

q̄ =

[
q

q4

]
=
[
q1 q2 q3 q4

]T
(2.1)

The rotation between two frames, A and B, is represented by q̄BA . A vector expressed

in the A frame can be coordinatized in the B frame using the direction cosine matrix

CBA = C(q̄BA).

vB = CBA vA (2.2)

C(q̄) = I3×3 − 2q4bq ×c+ 2bq ×cbq ×c (2.3)

Where bq ×c is the skew symmetric matrix composed of the elements of q. In general,

the skew symmetric matrix ba ×c formed from the matrix a =
[
a1 a2 a3

]T
has the

property that ba ×c = −ba ×cT and

ba ×c =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (2.4)

The rotation matrix RBA = CBA
T and

vA = RBA vB = R(q̄BA) vB (2.5)

The quaternion is closely related to the axis-angle attitude representation. The axis-

16

angle parameterization consists of a rotation θ about the unit vector k̂.

q̄ =

[
q

q4

]
=

[
sin(θ/2) k̂

cos(θ/2)

]
(2.6)

Additionally,

C(k̂, θ) = cos(θ)I3×3 − sin(θ)bk̂ ×c+ (1− cos(θ) k̂ k̂T) (2.7)

In the case of a small rotation δq̄ , the rotation angle θ is also small. The small angle

approximation can be used to rewrite eq. (2.6) as

δq̄ =

[
sin(θ/2)k̂

cos(θ/2)

]
≈

[
1
2
θk̂

1

]
=

[
1
2
δθ

1

]
(2.8)

where δθ = θk̂.

Similarly, eq. (2.7) can be approximated as

C ≈ I3×3 − bδθ ×c CT ≈ I3×3 + bδθ ×c (2.9)

Eq. (2.9) can also be found by substituting eq. (2.8) into eq. (2.3) and neglecting the

small bq ×cbq ×c term.

A vector between the origin of frame A and the origin of frame B is written as vBA . If

this vector is coordinatized in the A frame it can be written as vA B
A . This will usually be

simplified to vA B

2.1.3 True States, Estimated States, and Error States

The Extended Kalman filter (EKF) extends the results of the Kalman filter to nonlinear

system models. The filter is driven by a system model and a linearized approximation of

17

the associated error model.

A nonlinear system model with continuous dynamics and discrete measurements is

considered:

ẋ(t) = f(x(t),u(t),w(t), t) (2.10)

E[w(t)] = 0 (2.11)

E[w(t+ τ)wT(t)] = Q(t)δ(τ) (2.12)

ỹk = h(xk) + vk (2.13)

E[vk] = 0 (2.14)

E[vkv
T
k] = Rk (2.15)

Where w(t) and vk are the process and measurement noise, respectively. E[g] is the

expected value of a random variable g.

The true state x(t) is unknown. The EKF algorithm uses the system model to provide

a state estimate x̂(t) and measurement estimate ŷk. The error state x̆(t) encodes the error

between the truth and estimates. Similarly, the measurement error y̆k represents the error

between the actual measurement and the estimated measurement. Though the error state

and measurement error are unknown (except for simulated cases), it is possible to develop

a mathematical model for the errors. In this work, two types of errors will be considered:

additive and multiplicative. Additive error is denoted with ∆. The additive error between

a vector v and its estimate v̂ is

∆v = v − v̂ (2.16)

The error in a quaternion is better represented as multiplicative error. Multiplicative

18

error is defined using δ. The quaternion error δq̄ is defined as

δq̄(t) = q̄(t)⊗ ˆ̄q−1(t) (2.17)

Where ⊗ indicates quaternion multiplication and ˆ̄q−1 is the quaternion inverse of ˆ̄q.

Similarly, the error in an attitude matrix is defined as

δC = CĈT (2.18)

x̆(t) and y̆k may, in general, contain states and measurements, respectively, that are

modeled with additive or multiplicative error.

The EKF requires a linearized approximation of the error state and measurement error:

˙̆x(t) ≈ Fx̆(t) + Gw(t) = F(x̂(t),u(t), t) x̆(t) + G(x̂(t),u(t), t) w(t) (2.19)

y̆k ≈ Hx̆ + vk = H(x̂k) x̆ + vk (2.20)

The F, G, and H matrices are used in the Kalman filter to approximate the covariance

P of the error states, where

P(t) = E[x̆(t)x̆T(t)] (2.21)

2.2 EKF SLAM System State Models

In this work, the state of the system is composed of the IMU state xI , the kefyrame

state xL, and the feature state xF . Some of the pose states are illustrated in fig. 2.1 .

x =

xIxL
xF

 (2.22)

19

Figure 2.1: 2D diagram of the current IMU pose and feature positions.

xI consists of the quaternion representing the attitude of the IMU in the world frame,

the position of the IMU in the world frame, the velocity of the IMU in the world frame, the

gyroscope bias, and the accelerometer bias. The third axis of the world frame is aligned

with gravity.

xI =
[

q̄IW
T pW T

I vW T
I bT

g bT
a

]T
(2.23)

The feature map consists of m features F1, ...Fi, ...Fm. xF contains the position of

each mapped feature in the world frame.

xF =
[

pW T
F1

... pW T
Fi

... pW T
Fm

]T
(2.24)

In order to initialize features, it is necessary to observe the features in two or more

images and to have an estimate of the baseline between the images. Features are first

observed in the keyframe image. The pose of the IMU when the keyframe image was

recorded is the keyframe pose. As the camera moves, features are detected and matched

with features in the keyframe image. The position and orientation of the IMU in the world

frame when the keyframe image was taken make up the keyframe state xL. The purpose

20

and usage of the keyframe state is discussed in more detail in sec. 3.2.

xL =
[

q̄IL
W

T pW T
IL

]T
(2.25)

The Kalman filter uses the process model to estimate the state and covariance of the

system at some time tk+1 given the estimates at some previous time tk. In this work, the

process model is driven by IMU measurements as the inputs. The expected value of the

process model is used to provide estimates for the rate of change of the state estimates.

Using the process model, estimates, and the previously defined error definitions, the error

state equations are linearly approximated.

2.2.1 System Model

The gyroscope provides a measurement of the angular velocity ω̃(t). ω̃(t) relates to

the true angular velocity ω(t) according to the following model:

ω(t) = ω̃(t)− bg(t)− ng(t) (2.26)

ḃg(t) = nwg(t) (2.27)

ng(t) and nwg(t) are white noise processes.

The rotation from the world frame to the current IMU frame, q̄IW (t), is desired. How-

ever, between tk and tk+1, integration of the gyroscope measurements provides q̄IIk , the

rotation from the IMU frame at time tk to the IMU frame at time t. These poses are

illustrated in fig. 2.2 . q̄IW (t) can be recovered using the relationship

q̄IW (t) = q̄IIk (t)⊗ q̄IkW (2.28)

Where ⊗ indicates quaternion multiplication.

21

Figure 2.2: Between time tk and tk+1, the IMU translates according to pIIk and undergoes
a rotation parameterized by q̄IIk .

The angular velocity of the IMU is related to ˙̄qIIk (t):

˙̄qIIk (t) =
1

2

[
−bω(t) ×c ω(t)

−ωT(t) 0

]
q̄IIk (t) (2.29)

The accelerometer provides a measurement of the specific force s̃(t). s̃(t) relates to

the true specific force according to the following model:

s(t) = s̃(t)− ba(t)− na(t) (2.30)

ḃa(t) = nwa(t) (2.31)

na(t) and nwa(t) are white noise processes.

The acceleration of the IMU is modeled as

v̇W
I(t) = aW

I(t) = (CIIk CIkW)Ts(t) + gW (2.32)

= CIkW
T CIIk

Ts(t) + gW (2.33)

22

where

CIIk ≡ C
(
q̄IIk (t)

)
, CIkW ≡ C

(
q̄IkW
)

(2.34)

The rate of change of the IMU position is equivalent to the IMU velocity

ṗW
I = vW

I (2.35)

The keyframe pose of the IMU does not change over time:

ẋL = 0 (2.36)

Similarly, the feature positions are static and do not change:

ẋF = 0 (2.37)

2.2.2 State Estimates

The EKF will use IMU measurements as inputs with which to evaluate the rates of the

IMU state estimates. IMU measurements are only available at discrete points in time, tk

and tk+1. At times tk and tk+1, the IMU provides measurements of the angular velocity

ω̃k and ω̃k+1, respectively. The IMU also provides measurements of the specific forces s̃k

and s̃k+1 at tk and tk+1, respectively.

The IMU state estimates x̂I are considered first

x̂I =
[

ˆ̄qIW
T p̂W T

I v̂W T
I b̂T

g b̂T
a

]T
(2.38)

In order to develop equations for the rate of change of the attitude, the measured angu-

23

lar velocity is first linearly interpolated:

ω̃(t) = ω̃k + (ω̃k+1 − ω̃k)
t− tk

tk+1 − tk
, tk ≤ t ≤ tk+1 (2.39)

Taking the expected value of eq. (2.26) and eq. (2.27) , the estimates ω̂(t) and b̂g(t)

are
˙̂
bg(t) = 0→ b̂g(t) = b̂gk (2.40)

ω̂(t) = ω̃(t)− b̂g(t) = ω̃(t)− b̂gk (2.41)

Using ω̂(t) and ˆ̄qIIk (t) in eq. (2.29) provides the estimate ˙̄̂qIIk (t):

˙̄̂qIIk (t) =
1

2

[
−bω̂(t) ×c ω̂(t)

−ω̂T(t) 0

]
ˆ̄qIIk (t) (2.42)

In order to develop equations for the rate of change of the velocity, the measured

specific force is linearly interpolated:

s̃(t) = s̃k + (s̃k+1 − s̃k)
t− tk

tk+1 − tk
, tk ≤ t ≤ tk+1 (2.43)

Taking the expected value of eq. (2.30) and eq. (2.31) , the estimates ŝ(t) and b̂a(t)

are
˙̂
ba(t) = 0→ b̂a(t) = b̂ak (2.44)

ŝ(t) = s̃(t)− b̂a(t) = s̃(t)− b̂ak (2.45)

Using the state estimates in eq. (2.32) yields the estimate ˙̂v
W

I(t)

˙̂v
W

I(t) = ĈIkW
T ĈIIk

Tŝ(t) + gW (2.46)

24

The keyframe state estimate follows from eq. (2.36)

˙̂xL = 0 (2.47)

Similarly, the feature state estimate follows from eq. (2.37)

˙̂xF = 0 (2.48)

2.2.3 Error Model

For the covariance propagation, it is necessary to find the F and G matrices as defined

in eq. (2.19) . The IMU error states will be considered first. To work in the EKF form, it

is necessary to find an equation for ˙̆xI that is a linear combination of the error states and

noise vector:

˙̆xI ≈ FI x̆I + GIw (2.49)

The noise vector w is composed of the noise states:

w =
[
nT
g nT

a nT
wg nTwa

]T
(2.50)

The IMU error state x̆I is composed of the individual error states:

x̆I =
[
δθTI ∆pT

I ∆vT
I ∆bT

g ∆bT
a

]T
, (2.51)

The position, velocity, and bias error terms use additive error. The attitude error (δq̄)

is modeled as a multiplicative error:

q̄IW = δq̄ ⊗ ˆ̄qIW (2.52)

25

CIW = C(δq̄) ĈIW (2.53)

The error is assumed to be small and the small angle approximation of eq. (2.9) is

used to define the attitude angle error δθI :

C(δq̄) ≈ C(δθI) = I3×3 − bδθI ×c (2.54)

It can be shown (see [40], sec. 2.4), that the rate of change of the attitude error δθ̇I can

be approximated as a linear combination of the error states and noise:

δθ̇I = −ω̂ × δθI −∆ba − ng (2.55)

Using eqs. (2.32), (2.53), and (2.54):

v̇W
I = CIW

T(s) + gW

= CIW
T(s̃− ba − na) + gW

≈ ĈIW
T(I3×3 + bδθI ×c)(s̃− ba − na) + gW

= ĈIW
T(I3×3 + bδθI ×c)(s̃− b̂a −∆ba − na) + gW

= ĈIW
T(s̃− b̂a −∆ba − na) + ĈIW

TbδθI ×c(s̃− b̂a −∆ba − na) + gW

(2.56)

Using eqs. (2.46) and (2.56), ∆v̇I can be written as

∆v̇I = v̇W
I − ˙̂v

W

I

= ĈIW
T
(
−∆ba − na + bδθI ×c(s̃− b̂a −∆ba − na)

)
(2.57)

Some interesting properties of eq. (2.57) will be discussed in sec. 5.1. For now,

26

eq. (2.57) can be approximated as

∆v̇I ≈ − ĈIW
T(∆ba + na + b(ŝ− b̂a) ×cδθI) (2.58)

Using the additive error definition, equations for the position and bias error rates are

easily derived:

∆ṗI = ṗW
I − ˙̂p

W

I = ∆vI (2.59)

∆ḃg = bg − b̂g = nwg (2.60)

∆ḃa = ba − b̂a = nwa (2.61)

Using eqs. (2.55)-(2.61), ˙̆xI can be written in the form of eq. (2.49) , with

FI =

−bω̂ ×c 03×3 03×3 −I3×3 03×3

03×3 03×3 I3×3 03×3 03×3

− ĈIW b(s̃− b̂a) ×c 03×3 03×3 03×3 − ĈIW
03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

 (2.62)

GI =

−I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3

03×3 − ĈIW 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3

 (2.63)

Next the keyframe state error is considered. Using eqs. (2.36) and (2.47):

˙̆xL = ẋL − ˙̂xL = FLx̆L + GLw = 06×1 (2.64)

Then

FL = 06×6 (2.65)

27

GL = 06×6 (2.66)

Now the feature error state is considered. Using eqs. (2.37) and (2.48):

˙̆xF = ẋF − ˙̂xF = FF x̆F + GFw = 03m×1 (2.67)

Then

FF = 03m×3m (2.68)

GF = 03m×12 (2.69)

The linearized error state equation for the full state can be written:

F =

 FI 015×6 015×3m

06×15 FL 06×3m

03m×15 03m×6 FF

 =

 FI 015×6 015×3m

06×15 06×6 06×3m

03m×15 03m×6 03m×3m

 (2.70)

G =

GI

GL

GF

 =

 GI

06×12

03m×12

 (2.71)

2.3 Time Update

Using the models developed in sec. 2.2, the state and covariance can be propagated

forward in time from tk to tk+1. The particular form of the integration of the IMU states

and the distinction between q̄IIk and q̄IW is based largely on [27] and [41]. [41] uses this

form to derive a filter that is more robust to initial attitude uncertainty. [27] takes advantage

of this form to find an analytical solution for the state transition matrix. Neither of these

extensions are used here but could be incorporated.

28

Integration of eq. (2.46) yields an expression for v̂W
I(t):

v̂W
I(t) = ˙̂p

W

I = v̂W
Ik

+ gW ∆t+ CIkW
T

∫ t

tk

CIIk
Tŝ(τ)dτ

= v̂W
Ik

+ gW ∆t+ CIkW
Tν̂(t) (2.72)

where ˙̂ν(t) = CIIk
Tŝ(t) and ∆t = t − tk. Integration of eq. (2.72) yields an expression

for p̂W
I(t):

p̂W
I(t) = p̂W

Ik
+ v̂W

Ik
∆t+ gW (∆t)2 + CIkW

T

∫ t

tk

ν̂(τ)dτ

= p̂W
Ik

+ v̂W
Ik

∆t+ gW (∆t)2 + CIkW
Tρ̂(t) (2.73)

= p̂W
Ik

+ p̂W I
Ik

where ˙̂ρ(t) = ν̂(t) and p̂W I
Ik

= v̂W
Ik

∆t+ gW (∆t)2 + CIkW
Tρ̂(t).

The covariance P(t) evolves as a function of P(t), G
(
x̂(t)

)
, and F

(
x̂(t)

)
[42]:

Ṗ(t) = F
(
x̂(t)

)
P(t) + P(t)

(
F
(
x̂(t)

))T
+ G

(
x̂(t)

)
Q(t)

(
G
(
x̂(t)

))T
(2.74)

P(t) can be partitioned into submatrices. To conserve space, the notation of each element

as a function of time has been dropped.

P =

PII PIL PIF

PT
IL PLL PLF

PT
IF PT

LF PFF

 (2.75)

Using the sparse structure of F(x̂) and G(x̂), eq. (2.74) can be rewritten to improve

computational time. To conserve space and improve clarity, the notation of F and G as a

29

function of x̂ has been dropped.

Ṗ =

FIPII + PIIF
T
I + GIQGT

I FIPIL FIPIF

PT
ILF

T
I 06×6 06×3m

PT
IFF

T
I 03m×6 03m×3m

 (2.76)

In order to solve for P(tk+1) and the remaining elements of x̂(tk+1), it is necessary to

numerically solve the following system of first order differential equations for tk ≤ t ≤

tk+1 using 4th order Runge-Kutta:

˙̄̂qIIk (t) ˆ̄qIIk (tk) =
[
0 0 0 1

]T
˙̂ν(t) ν̂(tk) = 0

˙̂ρ(t) ρ̂(tk) = 0

Ṗ(t) P(tk) = Pk

(2.77)

Now ˆ̄qIW (tk+1) can be solved using the relationship ˆ̄qIW (tk+1) = ˆ̄qIIk (tk+1) ˆ̄qIW (tk).

Similarly, v̂W
I(tk+1) and p̂W

I(tk+1) can be found by using ν̂(tk+1) and ρ̂(tk+1) in eqs.

(2.72) and (2.73), respectively.

2.4 Feature Models

The monocular camera provides images at some rate. Each time an image is received,

unique features are identified in the scene. As previously discussed, only the bearing of

a feature is observable in a single camera image. In this work, only initialized features

are processed by the EKF camera update. Initialized features have an associated global

position estimate. Uninitialized features are processed separately until they are initialized.

This is known as delayed initialization. Feature matching and initialization are described

in detail in ch. 3.

This section is concerned with using observations of initialized features to update the

30

filter state. The feature matcher will provide a measurement vector

ỹF =

ỹF1

...
ỹFi

...
ỹFm

 (2.78)

ỹFi
=

[
ũi
ṽi

]
(2.79)

where ũi and ṽi are the pixel coordinates of feature Fi. Fi is located at some position

pW
Fi

.

2.4.1 Measurement Model

The pinhole projection model relates the position of a feature in the camera frame to

its projection on the image plane (see fig. 1.1):

ỹFi
=

[
ũi
ṽi

]
=

[
fx(hx/hz) + cx
fy(hy/hz) + cy

]
+ vFi

(2.80)

where vFi
is a white noise process with variance RFi

and

[
hx hy hz

]T
= pC Fi

= CCI
(

CIW (pW
Fi
− pW

I)− pI C

)
(2.81)

where CCI represents the attitude of the IMU with respect to the camera and pI C is the

position of the camera in the IMU frame (see fig. 2.3). These are assumed to be known

without uncertainty.

31

Figure 2.3: The position of the feature in the camera frame can be constructed from the
global pose of the camera and the global position of the feature.

2.4.2 Measurement Estimate

The estimated measurement ŷFi
is found by using the state estimates in eqs. (2.81) and

(2.80) [
ĥx ĥy ĥz

]T
= p̂C Fi

= CCI
(

ĈIW (p̂W
Fi
− p̂W

I)− pI C

)
(2.82)

ŷFi
=

[
fx(ĥx/ĥz) + cx
fy(ĥy/ĥz) + cy

]
(2.83)

2.4.3 Measurement Error Model

It is necessary to obtain a model for the measurement error y̆Fi
in the form of eq. (2.20)

.

y̆Fi
≈ HFi

x̆ + vFi
(2.84)

HFi
=

δỹFi

δ pC Fi

[
δ pC Fi

δx̆I
02×6

δ pC Fi

δx̆F

]
(2.85)

δỹFi

δ pC Fi

=
1

ĥz

[
fx 0 −fxĥx/ĥz
0 fy −fyĥy/ĥz

]
(2.86)

32

δ pC Fi

δx̆I
= CCI

[
b
(

ĈIW (p̂C Fi
− p̂W

I)
)
×c − ĈIW 03×3 03×3 03×3

]
(2.87)

δ pC Fi

δx̆F
is a 1×m block matrix. The ith block column is ĈIW . All other block columns

contain 03×3.

The total measurement Jacobian, HF , is a block column matrix composed of matrices

HF1 . . .HFi
. . .HFm:

HF =

HF1

...
HFi

...
HFm

 (2.88)

2.5 Rangefinder Models

The downward facing rangefinder provides a scalar distance measurement. Assuming

a flat floor, the returned measurement ỹR is the distance from the rangefinder emitter to the

ground along the axis of the rangefinder.

2.5.1 Measurement Model

The rangefinder measurement axis is aligned with the z-axis of a frame R. In the

global frame, the attitude of R is expressed as the product of the rotation of the IMU and

the rotation of the rangefinder:

RRW = CRW
T = (CRI CIW)T = RIW RRI (2.89)

The position of the rangefinder can be expressed in the world frame as

pW
R = pW

I + RIW pI R (2.90)

33

Figure 2.4: The distance of the rangefinder to the ground along the rangefinder z-axis can
be constructed from the global pose of the rangefinder.

where pI R is the position of the rangefinder emitter in the IMU frame (see fig. 2.4). RRI

and pI R are assumed to be known without uncertainty.

Using these definitions, the measurement equation for ỹR can be expressed as

ỹR = − 1

RRW 33

pW
R31

+ vR = − 1

RRW 33

(pW
I31

+ RIW 3j pI R) + vR (2.91)

where vR is a white noise process with variance rR. RRW 33 is the element at the third

column and third row of RRW . pW
I31

is the third element of pW
I . RIW 3j is the third row of

RIW .

2.5.2 Measurement Estimate

From eq. (2.91) , the estimated measurement is

p̂W
R31

= p̂W
I31

+ R̂IW 3j pI R (2.92)

ŷR = − 1

R̂RW 33

p̂W
R31

(2.93)

34

2.5.3 Measurement Error Model

It is necessary to obtain a model for the measurement error y̆R in the form of eq. (2.20)

.

y̆R ≈ HRx̆ + vR (2.94)

HR =

[
δỹR
δ(δθI)

01×2
δỹR

δ(∆pI31)
01×9 01×3m

]
(2.95)

δỹR
δ(δθI)

=
1

(R̂RW 33)
2

p̂W
R31

(− R̂IW 3jb RRI i3 ×c)−
1

R̂RW 33

pI R
Tb R̂IW 3j ×c (2.96)

δỹR
δ(∆pI31)

= − 1

R̂RW 33

(2.97)

where RRI i3 is the third column of RRI .

2.6 Measurement Update

Using the models in secs. 2.4 and 2.5, the state can be updated according to the normal

EKF procedure. The prior state and covariance, x̂− and P−, respectively, are the state

and covariance found using the propagated process model. The values for Hk, Rk, ỹk,

and ŷk should be selected based on whether the state is to be updated using a feature or

rangefinder measurement.

Kk = P−k H
T
k (HkP

−
k H

T
k + Rk)

−1 (2.98)

P+
k = (I−KkH

T
k)P−k (2.99)

ˆ̆x+
k = Kk(ỹk − ŷk) (2.100)

ˆ̆x+
k is the estimated state error that must be “applied” to update the state. The additive

error states are updated using the additive error definition. For example, the estimate p̂W
I

35

is updated using

p̂W
I
+ = p̂W

I
− + ∆p+

I (2.101)

The attitude states are updated using the small quaternion error approximation

q̄+ =

[
1
2
δθ+

1

]
⊗ q̄− (2.102)

The quaternions are re-normalized after this update.

2.7 Discussion

There are several ways in which this filter could be extended to improve performance.

It is well known that the global pose of monocular SLAM is not fully observable [27]

[43] [44] [45]. The global position and yaw states are expected to become inconsis-

tent over time. There have been many techniques proposed to improve the consistency

of filter-based SLAM. Civera showed improvements using a robo-centric/camera-centric

state [45]. The authors of [43] offer an "observability-constrained" measurement Jacobian

that allows the linearized filter to have the same observability properties as the full non-

linear system. [27] shows that using an analytical state transition matrix and only using

propagated positions and velocities in the measurement Jacobians also results in a more

consistent filter. One of these techniques could be applied to improve the consistency of

this filter.

The current implementation assumes that the inter-sensor parameters and camera cal-

ibration parameters are known without uncertainty. In many cases this is not a valid as-

sumption. Many researchers have seen improvements in the consistency of monocular

SLAM by including such parameters in the state vector [46] [27]. Another option is to use

least squares or another batch optimization technique to estimate the parameters and asso-

ciated covariance beforehand. This uncertainty could be accounted for using the consider

36

EKF [39].

The EKF is not guaranteed to converge, particularly in the presence of large errors.

For this reason, the filter may not converge if there are significant initial attitude errors.

The initial pitch and roll angles of the vehicle can be accurately estimated by sampling

a few accelerometer measurements when the system is at rest. When the system has no

acceleration, the accelerometer measurements provide the direction of the gravity vector

if the magnitude of the acceleration due to gravity is well-known.

37

3. FEATURE TRACKING AND DELAYED INITIALIZATION

The models described in ch. 2 assume that features are extracted from monocular cam-

era images and do not explain the use of the keyframe state. These models also assume that

each observed feature has an associated global position estimate. This chapter describes

how features are observed and initialized. It also explains the usage of the keyframe state.

3.1 Feature Detection and Matching

Each time a new image is received, ORB [31] keypoints and descriptors are detected

and computed, respectively, using the OpenCV ORB classes. The descriptors uniquely

“describe” the feature. These new descriptors are matched with the descriptors of initial-

ized features. If certain criteria are met (see 3.2), the image is declared as the current

keyframe image. Otherwise, the new descriptors are matched with keyframe descriptors.

3.1.1 Matching New Features

The feature tracking module matches new image descriptors with keyframe image de-

scriptors. First, the OpenCV “brute force” search algorithm tries to match each keyframe

descriptor with two of the new image descriptors. The fast approximate nearest neighbor

(FLANN) search algorithm [47] was also considered. However, FLANN is not determin-

istic and the resulting filter performance varied widely from run to run even with the same

data. When adding new features, it is advantageous to choose features that cover as much

of the image as possible and do not overlap. For this reason, matches are only made to

features that are outside of some radius to observations of any mapped features. Some

keyframe descriptors have multiple likely matches. These ambiguous descriptors cannot

be matched reliably. The ratio test [48] is applied to remove matches made between an

ambiguous keyframe descriptor and new image descriptors. This eliminates many of the

38

matching outliers. If at least 8 matches pass the ratio test, the remaining matches are

used to find a fundamental matrix by way of the eight-point algorithm [49]. Finally, the

keyframe and new keypoints are reprojected using this fundamental matrix. The variance

of the differences between the measured and ideal keypoint locations is calculated and

used as the measurement variance.

The matches are further pruned such that no two features are within a certain radius of

one another. The remaining matches are passed on to the feature initialization module.

3.1.2 Matching Mapped Features

The “brute force” matcher is used to match each mapped feature descriptor with a

keyframe image descriptor. Because an estimate of the global position of each feature

exists, the location of the feature in the image can be predicted using eqs. 2.82 and 2.83.

If the mapped feature is matched to a location that is within some radius of the predicted

location, the match is accepted. This greatly eliminates faulty matches in environments

with repeated texture. Observations of mapped features are used to update the estimates

in the manner described in ch. 2.

3.2 Changing the Keyframe State

The keyframe image is replaced if the average number of new feature matches in the

last w images is less than some value. The number of feature matches will decline over

time because the camera will move away from the scene described by the keyframe image.

In addition, as previously described, only matches that are “far” from the observations of

mapped features are accepted. Eventually it may not be possible to match any features that

are “far enough” from mapped feature observations. In these cases, a new keyframe image

is necessary.

When a new keyframe is declared, the keyframe state is cloned from the current state

in a manner similar to [50]. This is an application of the stochastic cloning technique

39

[51]. However, unlike [50], in this work only one keyframe state is kept in the state vector.

The declaration of a new keyframe is declaring that the current IMU pose should replace

the existing keyframe pose. It is an entirely different keyframe; it is not “updating” the

existing keyframe. Rather the existing keyframe is deleted from the state and the newly

declared keyframe is added to the state vector.

When a new keyframe is declared, the keyframe state estimate x̂L(tk) at time tk takes

on the value of the current IMU pose:

x̂L(tk) =
[

ˆ̄qIW (tk)
T p̂W

I(tk)
T]
]T

(3.1)

The error state equation can be partitioned into 4 subvectors:

x̆ =
[
x̆T
IP

x̆T
IO

x̆T
L x̆TF

]T
(3.2)

x̆IP contains the IMU pose states.

x̆IP =
[
δθTI ∆pT

I

]T
(3.3)

x̆IO contains the other IMU states.

x̆IO =
[
∆vT

I ∆bT
g ∆bT

a

]T
(3.4)

When the existing keyframe is deleted, the keyframe covariance and all cross-correlation

terms are removed such that the covariance can be partitioned into the following block

40

columns and rows:

P(tk) =

PIP IP (tk) PIP IO(tk) PIPF (tk)

PT
IP IO

(tk) PIOIO(tk) PIOF (tk)

PT
IPF

(tk) PT
IOF

(tk) PFF (tk)

 (3.5)

When a new keyframe is declared, the covariance and cross-correlation terms associ-

ated with the IMU pose are cloned and augmented into the covariance matrix:

P(tk) =

PIP IP (tk) PIP IO(tk) PIP IP (tk) PIPF (tk)

PT
IP IO

(tk) PIOIO(tk) PT
IP IO

(tk) PIOF (tk)

PIP IP (tk) PIP IO(tk) PIP IP (tk) PIPF (tk)

PT
IPF

(tk) PT
IOF

(tk) PT
IPF

(tk) PFF (tk)

 (3.6)

3.3 Feature Initialization

Many techniques have been suggested in the literature for feature initialization. In

filter-based SLAM, the techniques can be broadly divided into two classes: delayed and

undelayed initialization. In undelayed initialization, a feature is immediately added to the

map upon first observation. Because no depth information is available from the single ob-

servation, the feature covariance must be large enough to include the true (but unknown)

position. Features using a Euclidean parameterization in undelayed initialization are un-

likely to converge. The authors of [25] showed that a 6 parameter inverse depth parameter-

ization could successfully be used for undelayed initialization. Other parameterizations,

including 4 and 7 parameter sets, have also been studied [52].

A problem with undelayed initialization techniques is that the features have to be ini-

tialized with some prior covariance. Usually each feature is initialized with the same

covariance and is assumed to be uncorrelated with the existing filter states. Neither of

these assumptions are true in general and can contribute to filter inconsistency.

Other work has focused on delayed initialization techniques. In delayed initialization,

41

the feature position is not added to the EKF state until the feature position and covari-

ance have been estimated using a separate process. Undelayed initialization methods vary

widely, but most record observations of a feature while the camera moves throughout a

scene. The feature position can be recursively updated (e.g. with a particle filter [53]), in

a single batch update (e.g [28]), or even batch EKF updates (e.g. [50]).

In practice, these techniques have the disadvantage of having to track and store features

over a potentially long period of time. This increases the amount of computer memory

required. If the camera is still, numerous redundant measurements will be acquired. In

addition, many features that are observed once may never “move” enough to be intialized

(e.g. points that are very far from the camera).

In this work, a delayed feature initialization technique is applied. Every time a new

image is received, the feature matching module finds new feature matches. Each of these

matches is a candidate for initialization. Features are initialized if their global position

can be determined with a confidence that exceeds a specified threshold. If the candidate is

rejected, the new measurement is discarded.

3.3.1 Inverse Depth Feature Position Estimate

Each candidate is passed to the feature initialization module. The first step is finding

an estimate for the position of the feature in the world frame. Nonlinear least squares is

used to find the position p̂W
Fn

of feature Fn.

For initialization, an inverse depth parameterization is used rather than the Euclidean

position for the iterative solver. The inverse depth parameterization is more linear and

has better numerical properties for small baselines. The feature initialization procedure

presented here closely follows [27]. In this work, however, only two camera poses are

used.

Consider a feature Fn first observed when the camera had pose C1 (see fig. 3.1). In

42

Figure 3.1: 2D diagram of feature initialization geometry.

this inverse depth parameterization, pC1
Fn

is re-parameterized

h1,xh1,y
h1,z

 = pC1
Fn

=

xnyn
zn

 = zn

xn/znyn/zn
1

 = 1/ρn

αnβn
1

 (3.7)

ρn = 1/zn αn = xn/zn βn = yn/zn (3.8)

Some time later the camera has pose C2. The baseline vector bC2 points from the

origin of the C2 frame to the origin of the C1 frame (see fig. 3.1). The vector pC2
Fn

points from the origin of C2 to Fn and is the concatenation of the baseline vector with the

vector pointing from C1 to Fn.

h2,xh2,y
h2,z

 = pC2
Fn

= bC2 + (CC2
C1

) pC1
Fn

(3.9)

If C1 is the keyframe pose of the camera and C2 is the current pose of the camera, the

43

baseline vector can be determined:

bC2 = CC2
W (pW

C1
− pW

C2
)

= CC2
W

(
(pW

IL
+ CIL

W
T pI C)− (pW

I + CIW
T pI C)

)
= CCI CIW

(
pW
IL
− pW

I + (CIL
W − CIW)T pI C

)
(3.10)

Similarly, the rotation between C1 and C2 can be written as

CC2
C1

= (CCI CIW)(CCI CIL
W)T (3.11)

The candidate match contains pixel coordinates of the feature when the camera was at

poses C1 and C2. These can be stacked into ỹFn

ỹFn =
[
ũ1,n ṽ1,n ũ2,n ṽ2,n

]T
(3.12)

where [
ũj,n
ṽj,n

]
=

[
fx(hj,x/hj,z) + cx
fy(hj,y/hj,z) + cy

]
+ vFn

j ∈ 1, 2 (3.13)

The Gauss-Newton algorithm [42] can be used to iteratively determine the estimates

of αn, βn, and ρn that best satisfy the measurement model. This algorithm requires the

Jacobian JFn
of eq. (3.12) with respect to x̄ =

[
αn βn ρn

]T
.

JFn
=

δỹFn

δ pC1
Fn

δ pC1
Fn

δx̄

δỹFn

δ pC2
Fn

δ pC2
Fn

δx̄

 (3.14)

δỹFn

δ p
Cj

Fn

=
1

hj,z

[
fx 0 −fxhj,x/hj,z
0 fy −fyhj,y/hj,z

]
j ∈ 1, 2 (3.15)

44

δ p
Cj

Fn

δx̄
=

1

ρn

Cji1 Cji2 − 1
ρn
Cj

αnβn
1

 j ∈ 1, 2 (3.16)

C1 = I3×3 (3.17)

C2 = CC2
C1

(3.18)

Cji1 and Cji2 are the first and second columns, respectively, of matrix Cj .

After several iterations, the nonlinear least squares algorithm converges to estimates

α̂n, β̂n, and ρ̂n. Using α̂n, β̂n, and ρ̂n, the position of the feature in Euclidean coordinates

can be constructed using eq. (3.7) and

p̂W
Fn

= p̂W
IL

+ (ĈIL
W

T) pC1
Fn

(3.19)

3.3.2 Covariance Estimate

In addition to the state estimate, the new feature state must have an associated covari-

ance. Rather than assume a prior covariance, the initial covariance will be approximated

using the linear consider least squares approach [39]. This unique approach to feature

initialization considers the uncertainty of the keyframe and current IMU poses in addi-

tion to the measurement uncertainty. This is important because the uncertainty due to

measurement noise will usually be small and approximately constant. In reality, feature

initialization accuracy and uncertainty is heavily dependent on accurate knowledge of the

poses from which the images were taken. The technique presented here takes both un-

certainties into account. If only the measurement uncertainty was considered, the feature

initialization criteria described in sec. 3.3.3 would not be robust to pose uncertainty. This

technique also immediately provides cross-correlation terms with all of the EKF states.

45

First, the measurement error y̆Fn is approximated as

y̆Fn ≈ HFn∆pFn
+ HX x̆ + vFn

(3.20)

HFn =

δỹFn

δ pC1
Fn

CCI CIL
W

δỹFn

δ pC2
Fn

CCI CIW

 (3.21)

HX =

[
HX1

HX2

]
(3.22)

HX1 = CCI

[
02×15 b

(
CIL

W (pW
Fn
− pW

IK
)
)
×c − CIL

W 02×3m

]
(3.23)

HX2 = CCI

[
b
(

CIW (pW
Fn
− pW

I)
)
×c − CIW 02×15 02×3m

]
(3.24)

HFn and HX are matrices that indicate how sensitive the measurement errors are to

errors in the feature position and EKF state, respectively. Using these matrices and the

state estimate covariance P, the covariance of the errors in p̂W
Fn

can be estimated using

consider analysis.

PFnFn = (HT
Fn
RFn

−1HFn−HT
Fn
RFn

−1HX(HT
XRFn

−1HX+P−1)−1HT
XRFn

−1HFn)−1

(3.25)

PFnX = −PFnFnH
T
Fn
RFn

−1HX(HT
XRFn

−1HX)−1 (3.26)

PFnFn is the covariance of p̂W
Fn

. PFnX contains the cross-correlation terms with the

EKF error state.

This technique has an important disadvantage of requiring the inverse of two poten-

tially large matrices: P−1 and (HT
XRFn

−1HX +P−1)−1. There are several ways that this

computational burden could be reduced. One is to only use the consider update if P is

“large”. For example, the trace or determinant of P could be used as a metric for the total

46

uncertainty of P. If the uncertainty is small, the traditional linear least squares covariance

that only considers measurement uncertainty would be used.

A second option would be to use the following approximation for P−1 � HT
XRFn

−1HX :

(HT
XRFn

−1HX + P−1)−1 ≈ (P−1)−1 = P (3.27)

A third option is to only consider a portion of P. For example, only the portion of P

corresponding to the pose states could be considered. In this case, the feature would be

initialized without correlations to the other states.

3.3.3 Adding a Feature to the Map

In general the most uncertain direction of the feature position lies along the line of

sight of the feature to the camera. The variance of this direction dominates compared with

any orthogonal directions. Thus it is expected that the largest eigenvalue of PFnFn will

correspond to the depth direction. This eigenvalue, denoted as σ2
d, is used as a threshold

for feature initialization. Only features with a σ2
d less than some value are added to the

map.

To add a feature to the state, it is simply appended to the state vector:

x̂ =

[
x̂

p̂W
Fn

]
(3.28)

The covariance is augmented using PFnFn and PFnX :

P =

[
P PT

FnX

PFnX PFnFn

]
(3.29)

47

4. PERFORMANCE ON EXPERIMENTAL AND SIMULATED DATA

The data fusion system described in chs. 2 and 3 was tested using experimental and

simulated data. This section describes the results and performance. The hardware dataset

demonstrates that the proposed system is capable of accurate navigation under realistic

conditions. Next, the motion capture data from this experiment is used to generate a

realistic simulation. This simulation was designed to mimic the hardware test conditions.

It indicates how well the system would perform with less parameter/calibration error and

more robust feature tracking.

4.1 Hardware Setup

Although the proposed EKF-SLAM method is designed specifically for multirotors, in

this work the algorithm is validated using the hand-held platform shown in fig. 1.3 . This

is a highly modular platform that allows different sensors and single-board-computers to

easily be mounted. For this work, the platform is outfitted with a forward-facing Pointgrey

BFLY-PGE-13E4C-CS camera, Vectornav VN-100 IMU, Pixhawk flight controller, and

PX4FLOW optical flow sensor. Only the rangefinder on the PX4FLOW is used in this

work. The Pixhawk is only used as an interface between the PX4FLOW sensor and the

computer recording the data. All of these components were designed for or fit the payload

requirements of a medium-sized multirotor. In this experiment, the data was taken and

recorded using the Robot Operating System (ROS) distributed computing framework.

The measurements were run through the previously described SLAM system offline.

The measurement rates were maintained using the measurement timestamps. Monochrome

images were recorded at 20 Hz with 640x512 pixel resolution using a copy of the Ed-

mund Optics 4.5mm C-mount lens. Shutter speed, aperture, gain, and focus were held

constant during the test. Pixel binning improved the signal-to-noise ratio in the dark lab

48

environment. The IMU accelerometer and gyroscope were sampled at 200 Hz while the

rangefinder operated at 10 Hz.

The tests were conducted at the Texas A&M Land Air and Space Robotics (LASR) lab.

LASR has a Vicon motion capture system that provides inertial pose measurements with

millimeter accuracy. The motion capture data serves as the ground truth for these exper-

iments. The motion capture space is limited (approximately 3x3 meters) so experiments

must stay within this region.

Figure 4.1: Sample image from hardware experiment.

The sensor package was moved through the motion capture space. It was desirable to

find a realistic scene that would show the strengths and weaknesses of the SLAM system.

The camera faced a scene consisting of features at depths ranging from 1-6 meters. A

sample image from the sequence is shown in fig. 4.1 . The camera moves far enough

through the scene that few, if any, of the features seen at the beginning of the scene are

visible throughout the entire sequence. For this reason the estimates were expected to drift.

49

2
1
0
1
2
3

x
 [

m
]

0.2

0.1

0.0

0.1

0.2

1.8

1.6

1.4

1.2

1.0

y
 [

m
]

0.2
0.1
0.0
0.1
0.2
0.3

0 20 40 60

Time [s]

0.0

0.5

1.0

1.5

z
[m

]

0 20 40 60

Time [s]

0.2

0.1

0.0

0.1

0.2

Motion Capture Estimate Error 3σ̂

Figure 4.2: Position estimates and errors between the estimates and motion capture data.
All units are in meters.

70

80

90

100

110

Y
a
w

 [
d
e
g
]

5

0

5

10

10

0

10

20

30

P
it

ch
 [

d
e
g
]

2

0

2

4

6

0 20 40 60

Time [s]

10

5

0

5

10

R
o
ll

[d
e
g
]

0 20 40 60

Time [s]

10

5

0

5

Motion Capture Estimate Error 3σ̂

Figure 4.3: Attitude estimates and errors between the estimates and motion capture data.
All units are in degrees. The biases in the roll and pitch errors are likely partially due to
misalignment between the motion capture frame and the gravity-aligned navigation frame.

50

There is no loop closure so although the camera "revisits" some areas of the environment

it cannot benefit from this prior information. Another challenging aspect of the sequence

is that the majority of each image in the sequence consists of a black floor, wall, or ceiling

with no discernible features. The lighting is poor and highly directional, leading to deep

shadows.

4.2 Hardware Experimental Results

Figs. 4.2 and 4.3 show the motion capture and estimated IMU position during the

sequence. The filter is clearly not consistent; the reported errors are significantly outside

the estimated covariance bounds. For this experimental case, much of the inconsistency

comes from not taking into account the uncertainty in the camera calibration parameters

and the relative position and orientation of the rangefinder and camera with respect to the

IMU. Having better estimates of these parameters would improve filter consistency.

There is also uncertainty in the origin and attitude of the motion capture body with

respect to the IMU. This particular experimental error may account for some of the bias

seen particularly in the attitude and altitude (position: z) results.

Despite the inconsistency, the visual odometry solution provides an accurate pose es-

timate. It is apparent that there is a scaling error in the x and y position estimates. This

is most pronounced during the period between 20-60 seconds. The altitude estimate (z) is

also affected by scale drift during this time. However, the metric rangefinder measurement

prevented the scale from drifting significantly in any axis. The largest relative errors occur

in the y-direction. The primary component of the depth of most of the mapped features

lies along the y-axis (see fig. 4.4). For this reason it is understandably the most inaccurate

direction. Overall, fig. 4.5 shows that the position errors are relatively small compared

with the linear distance traveled.

The pitch and roll angles are observable states [27]. Although inconsistent, the errors

51

Figure 4.4: SLAM visualization. The camera translates primarily along the x-axis (red
arrow on triad). The primary component of the depth of most of the mapped features
(green, yellow, and red squares) lies along the world y-axis (green arrow on triad). Note
that the red features are features that were once in the map but have been “forgotten”
because they moved out of view or no new observations were recorded.

0

20

40

60

80

100 Visible Features Features in Map

0 10 20 30 40 50 60 70

Time [s]

0

5

10

15

20
Linear Distance Traveled
Position Error

Figure 4.5: Top: the filter performs well when there are 30-50 feature observations avail-
able. Due to limitations with the feature tracker and camera motion, not all mapped fea-
tures will always be associated with an observation. Bottom: the total length of the trajec-
tory was 20 meters. The error at any point in time is small compared with the total distance
traveled.

52

do not drift considerably. Yaw is not an observable state and is expected to drift over time.

4.3 Simulated Experimental Setup

In order to study how well the proposed EKF-SLAM solution might perform without

the current limitations of the parameter uncertainties and feature tracking module, a sim-

ulation that mimics the hardware test was created. In this simulation, the hardware was

modeled to match the setup described in sec. 4.1 as closely as possible. This includes

camera calibration parameters, intersensor parameters, and sensor noise parameters.

Next, the second derivative of the motion capture position and first derivative of the

motion capture attitude were numerically evaluated using the 5-point-stencil. These deriva-

tives were assumed to be piecewise-linear and approximate the acceleration and rate of

change of the attitude of the IMU, respectively. The trapezoidal rule and Simpson’s rule

were then used to integrate the numerical acceleration to find exact time histories for veloc-

ity and position given the piecewise-linear acceleration. The first order quaternion integra-

tor from [40] was used to find exact time histories for attitude given the piecewise-linear

attitude rate. The “re-integrated” pose is not identical to the original motion capture pose

but is nearly so. There is no reason that they must match precisely; the goal is just to

mimic the hardware experiment.

These kinematic time histories were used to generate IMU and rangefinder measure-

ments using the sensor models of ch. 2. Noise terms were sampled from the appropriate

normal distributions at each time step.

120 feature positions were randomly generated to generally match the distribution of

features seen in the hardware experiment. 40 features were distributed along the virtual

“back wall”. The remaining 80 features were distributed in front of the wall. These fea-

ture positions and the kinematic time histories were used to create a time history of feature

observations. Simulating feature measurements in this way allows vision-based estima-

53

tors to be evaluated separately from their feature tracking and matching implementation.

However, the Guassian independent white noise samples used for the simulated measure-

ments are not likely to accurately reflect the performance of most feature detectors and

matchers under real lighting conditions. In addition, the simulated features are able to be

observed in every frame while inside the camera’s field of view. Due to camera motion

blur and noise, a real feature matcher will not necessarily return observations to features in

every frame. Finally, the simulated features are never occluded. This is another significant

“advantage” of the simulated feature measurements.

Under these conditions, the simulated camera could “see” 40-50 features at a time. As

shown in fig. 4.5 , this is approximately the same amount of features that the feature-

tracking-and-matching module returned in each frame of the hardware experiment. The

performance of the system is greatly dependent on the number of feature observations that

can be made in each frame. Thus if a comparison will be made between the hardware

and simulated results it is necessary that each case have access to approximately the same

number of features.

4.4 Simulated Experimental Results

Figs. 4.6 and 4.7 compare the ground truth to the EKF estimates. Unlike the hardware

case, most of the state estimates are relatively consistent for the first 20 seconds. This is

most likely because there are no calibration or intersensor parameter uncertainties. How-

ever, like the hardware experimental results, most of the states begin to drift and become

inconsistent after 20 seconds.

Because of the efforts to mimic the hardware testing conditions, the estimates are still

not “perfect”. By adding more features, reducing sensor noise, etc., a simulation that re-

turns essentially perfect estimates could easily be constructed if desired. The performance

of the simulated case shows improvement over the hardware case but, due to the attempted

54

2
1
0
1
2
3

x
 [

m
]

0.10
0.05
0.00
0.05
0.10
0.15

1.8
1.6
1.4
1.2
1.0
0.8

y
 [

m
]

0.06
0.04
0.02
0.00
0.02
0.04

0 20 40 60

Time [s]

0.0

0.5

1.0

1.5

z
[m

]

0 20 40 60

Time [s]

0.02

0.00

0.02

0.04

0.06

Ground Truth Estimate Error 3σ̂

Figure 4.6: Position estimates and errors between the estimates and ground truth. All units
are in meters.

70

80

90

100

110

Y
a
w

 [
d
e
g
]

0.5

0.0

0.5

1.0

1.5

20
10

0
10
20
30

P
it

ch
 [

d
e
g
]

0.4

0.2

0.0

0.2

0.4

0 20 40 60

Time [s]

10

0

10

20

R
o
ll

[d
e
g
]

0 20 40 60

Time [s]

0.6

0.4

0.2

0.0

0.2

Ground Truth Estimate Error 3σ̂

Figure 4.7: Attitude estimates and errors between the estimates and ground truth. All units
are in degrees.

55

realism, demonstrates some of the same trends.

4.5 Discussion and Conclusions

The hardware and simulated test cases validate the navigation solution described in

chs. 2 and 3. Many modifications have been previously suggested that could improve the

overall filter performance. It is expected that these additions could improve performance

over long trajectories. However, both the hardware and simulated test cases demonstrated

that the proposed system produced estimates that are accurate compared with the distance

traveled.

56

5. A GUIDANCE LAW TO IMPROVE ROBUSTNESS

The hardware and simulated experiments in ch. 5 demonstrate that the proposed sensor

package and visual odometry can provide accurate pose estimates. Critically, these experi-

ments also show that the rangefinder provides enough information to render estimates and

maps with minimal scale ambiguity.

To minimize scale drift and inconsistency, a guidance law is proposed that takes advan-

tage of the downward-facing rangefinder. Thanks to the rangefinder, changes in altitude

are fully observable and produce a well-defined stereo baseline. For this reason, vertical

motion allows new features to be initialized with greater accuracy than motion in another

direction would permit. Strategically changing altitude could increase the performance of

the estimator.

5.1 Altitude: A Confident Baseline

The use of a downward-facing rangefinder allows changes in altitude to be estimated

directly. If the rangefinder has low measurement noise, it is intuitively clear that confident

and accurate altitude measurements should be possible.

Interestingly, for small accelerations, the expected error in altitude estimates from

purely integrating IMU measurements is less than the error in the x and y axes. This

is independent of the use of a rangefinder. Consider again eq. (2.57) . This is the error

model for acceleration assuming small attitude errors. The equation is rewritten here:

∆v̇I = ĈIW
T
(
−∆ba − na + bδθI ×c(s̃− b̂a −∆ba − na)

)
The term ∆v̇Is = ĈIW

TbδθI ×c(s̃− b̂a) is of interest. For a small acceleration ε and

57

gravity aligned world frame:

(s̃− b̂a) = ĈIW

 ε1
ε2

g + ε3

 (5.1)

For small ε and δθI :

∆v̇Is = ĈIW
TbδθI ×c(s̃− b̂a) ≈ g (ĈIW

TbδθI ×c ĈIW i3) =

∆v̇Is1
∆v̇Is2

0

 (5.2)

where ĈIW i3 is the third column of ĈIW and g ≈ 9.81 m/s2.

Because of the ∆v̇Is term, attitude errors have nearly 10 times the impact on accelera-

tion errors in the x and y directions as they do in the z direction.

Fig. 5.1 shows an experimental case. An IMU was carried for 40 seconds while the

Vicon motion capture system recorded the pose. The filter described in ch. 2 propagated

the model without any measurement updates. It is clear that the altitude (z) estimate has

less error and estimated uncertainty than the other two directions. For short time peri-

ods, the IMU can provide locally accurate estimates of the change in altitude relative to

translations in the other two axes.

5.2 Guidance Law

Thanks to the rangefinder and the role of gravity, changes in altitude can be estimated

metrically and accurate. This motivates the idea of deliberately initializing features us-

ing motion dominated by changes in altitude. Features initialized while changing alti-

tude should be initialized accurately because the baseline between measurements is well

known.

There are several ways that vertical motion could be used in a guidance law with the

58

2
0
2
4
6
8

x
 [

m
]

6

4

2

0

2

0
10
20
30
40
50

y
 [

m
]

40

20

0

0 10 20 30

Time [s]

2

1

0

1

2

z
[m

]

0 10 20 30

Time [s]

0.5

0.0

0.5

1.0

1.5

Motion Capture Estimate Error

Figure 5.1: “IMU-only” inertial navigation. The error of the position estimate in the z
(altitude) direction is much lower than the errors in the other two directions.

intention of improving state estimates. An autonomous vehicle will have some type of

guidance or path planning associated with it’s mission objective. Potential missions in-

clude mapping a room, picking up an object, or going from point A to point B while

avoiding obstacles. The path planning associated with these missions could be augmented

to include strategic vertical motion.

However, multirotor vehicles have stringent restrictions on battery power. Increasing

altitude requires additional thrust. This reduces the amount of energy that could be spent

on the primary mission objective. A more desirable approach is an integrated navigation

and guidance system. The navigation system would provide a metric that indicates when

the estimation performance needs the information provided by the altitude change. Only

then would the primary mission be halted or augmented to include the vertical motion.

This basic idea is capture in algorithm 1.

59

Algorithm 1 Guidance Law 1
Input: γ, where γ is a pose uncertainty metric
Input: Γ, where Γ is a preset threshold on the allowable pose uncertainty metric
Input: h, where h is the altitude

if γ < Γ then
h0 ⇐ h
while γ < Γ do

Command altitude increase
end while
while hk > h0 do

Command altitude decrease
end while

else
Command input to achieve nominal mission objective (e.g. map a room)

end if

Algorithm 1 is intended to be generally applicable to any monocular-vision-aided nav-

igation solution with a suitable criteria γ. The monocular SLAM solution in this work

is well-suited for this integrated estimation and guidance approach due to the feature ini-

tialization criteria specified in sec. 3.3.3. Features are only added to the map if there is

enough information to confidently triangulate it’s position. Thus, the number of features

in the map can be used as the threshold γ.

5.3 Guidance Law Demonstration

The impact of the proposed guidance law is demonstrated via simulation. Throughout

the course of this work it has been clear that moving up and down greatly reduces scale

drift in hardware test cases. However, the performance of monocular visual odometry is

very sensitive to the environment and the amount of features that are visible. Because

the current implementation does not have local-loop closure, feature information is rou-

tinely “forgotten” if the camera yaws away from the current scene. This reduces filter

performance.

60

In order to demonstrate the impact of the proposed guidance law on the accuracy of

the estimates, it is necessary to show the state estimates for two trajectories: one with

the guidance law implemented and one without. It essential to eliminate as many vari-

ables between test cases as possible. This naturally leads to the use of simulation, where

most extraneous variables can be controlled. Ch. 4 demonstrated that a realistic simula-

tion could be constructed and that the EKF-SLAM system had similar, though improved,

performance between simulated and hardware data.

x

1.5
1.0

0.5
0.0

0.5
1.0

1.5

y

1.5
1.0

0.5
0.0

0.5
1.0

1.5

z

0.0

0.5

1.0

1.5

2.0

2.5

3.0

With Guidance No Guidance Camera Pointing Direction

Figure 5.2: Two trajectories are analyzed. The nominal path without the proposed guid-
ance law is shown in blue. This path was augmented per the proposed guidance law to
produce the red path.

To demonstrate the effect of the guidance law, a highly challenging scenario for monoc-

ular SLAM was constructed. In this scenario, a quadrotor is asked to map a virtual room

with four walls. Two paths were considered. First, a nominal path was planned to achieve

the mapping objective. In this path (blue line, fig. 5.2), the camera translates parallel to

61

each wall. At the end of each wall, the vehicle quickly yaws approximately 90 degrees to

view the next wall. Since yaw is not globally observable, and rotation does not add infor-

mation about features, this is a very “dangerous” maneuver for a vehicle using monocular

SLAM. After the yaw rotation, the camera can no longer observe the vast majority of the

features in the current map. The kinematics from this trajectory were generated from mo-

tion capture data using the methods of sec. 4.3. In the second path, the nominal path was

augmented with 1.5 meter altitude changes (red line, fig. 5.2) immediately after the yaw

rotations began.

95 features were distributed along each virtual wall. The feature positions were identi-

cal in both test cases. All other simulation parameters are the same as in sec. 4.3. It should

be noted that because the sensor noise is randomly sampled, the sensor measurements

in each test case are not identical. Otherwise, all extraneous variables are held constant

between the two trajectories.

5.4 Estimator Performance: Without Guidance Law

Fig. 5.3 compares the true trajectory to the estimated pose for the nominal path with-

out the guidance law. The estimator diverges dramatically after the second corner turn

around t = 40s. After this turn, all mapped features fell outside the camera’s field of view

and the subsequent translation along the y-axis did not provide sufficient information to

initialize new features because the “IMU-only” navigation quickly became inaccurate and

unconfident.

One may ask whether or not the feature initialization criteria is too “stringent” and

whether features should be allowed to be added to the map with less confidence. This was

considered and the resulting estimates diverged even before the second turn was reached.

It is possible that using the inverse depth parameterization proposed by Civera [25] rather

than Euclidean coordinates would make this a viable alternative. This 6-parameter set has

62

50

0

50

100

150

x
 [

m
]

0

50

100

150

200

Y
a
w

 [
d
e
g
]

2

0

2

4

y
 [

m
]

5

0

5

10

15

P
it

ch
 [

d
e
g
]

0 20 40 60

Time [s]

0.0

0.5

1.0

1.5

z
[m

]

0 20 40 60

Time [s]

10

5

0

5

10

R
o
ll

[d
e
g
]

Ground Truth EstimateGround Truth Estimate

Figure 5.3: True and estimated pose on trajectory without guidance solution.

2

1

0

1

2

x
 [

m
]

0

50

100

150

200

Y
a
w

 [
d
e
g
]

2

1

0

1

2

y
 [

m
]

10
5
0
5

10
15

P
it

ch
 [

d
e
g
]

0 20 40 60

Time [s]

0

1

2

3

z
[m

]

0 20 40 60

Time [s]

10

5

0

5

10

R
o
ll

[d
e
g
]

Ground Truth EstimateGround Truth Estimate

Figure 5.4: True and estimated pose on trajectory with guidance solution.

63

been shown to have better convergence with poor initial conditions.

5.5 Estimator Performance: With Guidance Law

Fig. 5.4 compares the true trajectory to the estimated pose for the path that utilizes the

guidance solution. Though there is non-negligible drift, the estimator is able to provide

stable pose estimates during the entire length of the difficult trajectory. Fig. 5.5 shows the

number of mapped features over time. During each turn, existing features quickly leave the

field of view of the camera and are removed from the map. No depth information is gained

for features during the yaw rotation. The feature tracking uncertainty criteria correctly and

“automatically” prevents new features from being admitted to the map during the rotation.

However, as the vehicle translates vertically, the metric information allows features to

confidently be initialized and added to the map. The “troughs” of the red line in fig. 5.5

are indicative of this portion of the trajectory. The blue line of fig. 5.5 is a threshold on

the number of features that could have been used to determine when to execute the altitude

change.

0 10 20 30 40 50 60

Time [s]

0

20

40

60

80

100

120

140

160 Features in Map
Potential Threshold Γ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Altitude: Nominal
Altitude: Guided

Figure 5.5: Immediately after the yaw rotations there are few mapped features available.
Moving up and down establishes a baseline for more features to be initialized. The number
of mapped features could be used as a threshold for when to execute the altitude changes.

64

5.6 Discussion

In addition to or instead of relying on an uncertainty metric, the vertical motion could

be added in the path planning stage to maneuvers that are considered “high risk”. In the

simulated scenario, for instance, increasing altitude during the yaw rotation might have

limited some of the drift present in the present solution. However, in general the need for

the vertical motion to initialize new features may not be so easily predicted.

65

6. SUMMARY AND CONCLUSIONS

A filter-based monocular SLAM solution was described in detail. The filter uses IMU

and rangefinder measurements in addition to camera images. This navigation solution uses

a consider least squares approach to estimate the feature covariance and avoid the use of

an arbitrary prior. The consider initialization approach is simple to implement and imme-

diately provides cross-correlation covariance terms with other states. Only features that

can be initialized with a confident depth estimate are added to the map. This minimizes

the likelihood of adding features to the map which will contribute little useful information.

The navigation solution is validated using experimental data and a simulated trajectory de-

rived from motion capture data. A simple guidance law was proposed that takes advantage

of the downward-facing rangefinder. Vertical motion creates a metric and accurate base-

line that can be used to confidently initialize new features. A simulated scenario shows

that changing altitude dramatically improves the performance of the estimator over a chal-

lenging trajectory.

Due to the feature initialization criteria of the filter, the number of features in the map

serves as a strong indication for when the guidance maneuverer is required. However,

there are many alternative integrated estimation and guidance approaches that could be

used. The guidance law is not limited to a particular state estimation scheme. Thus the

key concepts of this work could be applied to a variety monocular-vision-aided navigation

systems.

66

REFERENCES

[1] D. Scaramuzza, M. C. Achtelik, L. Doitsidis, F. Friedrich, E. Kosmatopoulos,

A. Martinelli, M. W. Achtelik, M. Chli, S. Chatzichristofis, L. Kneip, et al., “Vision-

controlled micro flying robots: from system design to autonomous navigation and

mapping in GPS-denied environments,” IEEE Robotics & Automation Magazine,

vol. 21, no. 3, pp. 26–40, 2014.

[2] G. Vásárhelyi, C. Virágh, G. Somorjai, N. Tarcai, T. Szörényi, T. Nepusz, and T. Vic-

sek, “Outdoor flocking and formation flight with autonomous aerial robots,” in 2014

IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3866–

3873, IEEE, 2014.

[3] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple learning strategy

for high-speed quadrocopter multi-flips,” in Robotics and Automation (ICRA), 2010

IEEE International Conference on, pp. 1642–1648, IEEE, 2010.

[4] R. Ritz, M. W. Müller, M. Hehn, and R. D’Andrea, “Cooperative quadrocopter ball

throwing and catching,” in 2012 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 4972–4978, IEEE, 2012.

[5] J. Courbon, Y. Mezouar, N. Guénard, and P. Martinet, “Vision-based navigation of

unmanned aerial vehicles,” Control Engineering Practice, vol. 18, no. 7, pp. 789–

799, 2010.

[6] S. Ahrens, D. Levine, G. Andrews, and J. P. How, “Vision-based guidance and control

of a hovering vehicle in unknown, GPS-denied environments,” in Robotics and Au-

tomation, 2009. ICRA’09. IEEE International Conference on, pp. 2643–2648, IEEE,

2009.

67

[7] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision based MAV nav-

igation in unknown and unstructured environments,” in Robotics and Automation

(ICRA), 2010 IEEE International Conference on, pp. 21–28, IEEE, 2010.

[8] G. Klein and D. Murray, “Parallel tracking and mapping on a camera phone,” in

Mixed and Augmented Reality, 2009. ISMAR 2009. 8th IEEE International Sympo-

sium on, pp. 83–86, IEEE, 2009.

[9] S. Weiss, M. W. Achtelik, S. Lynen, M. C. Achtelik, L. Kneip, M. Chli, and R. Sieg-

wart, “Monocular vision for long-term micro aerial vehicle state estimation: A com-

pendium,” Journal of Field Robotics, vol. 30, no. 5, pp. 803–831, 2013.

[10] R. Brockers, S. Susca, D. Zhu, and L. Matthies, “Fully self-contained vision-aided

navigation and landing of a micro air vehicle independent from external sensor in-

puts,” in SPIE Defense, Security, and Sensing, pp. 83870Q–83870Q, International

Society for Optics and Photonics, 2012.

[11] J. Engel, J. Sturm, and D. Cremers, “Camera-based navigation of a low-cost quadro-

copter,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, pp. 2815–2821, IEEE, 2012.

[12] M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli, and D. Scaramuzza,

“Autonomous, vision-based flight and live dense 3D mapping with a quadrotor micro

aerial vehicle,” Journal of Field Robotics, vol. 1, 2015.

[13] A. Bachrach, S. Prentice, R. He, and N. Roy, “RANGE–robust autonomous naviga-

tion in GPS-denied environments,” Journal of Field Robotics, vol. 28, no. 5, pp. 644–

666, 2011.

[14] S. Shen, N. Michael, and V. Kumar, “Autonomous multi-floor indoor navigation with

a computationally constrained MAV,” in Robotics and Automation (ICRA), 2011

68

IEEE International Conference on, pp. 20–25, IEEE, 2011.

[15] N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Nagatani, Y. Okada,

S. Kiribayashi, K. Otake, K. Yoshida, et al., “Collaborative mapping of an

earthquake-damaged building via ground and aerial robots,” Journal of Field

Robotics, vol. 29, no. 5, pp. 832–841, 2012.

[16] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N. Roy,

“Visual odometry and mapping for autonomous flight using an RGB-D camera,” in

International Symposium on Robotics Research (ISRR), vol. 2, 2011.

[17] R. Leishman, J. Macdonald, T. McLain, and R. Beard, “Relative navigation and con-

trol of a hexacopter,” in Robotics and Automation (ICRA), 2012 IEEE International

Conference on, pp. 4937–4942, IEEE, 2012.

[18] L. Heng, L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “Autonomous

obstacle avoidance and maneuvering on a vision-guided MAV using on-board pro-

cessing,” in Robotics and automation (ICRA), 2011 IEEE International Conference

on, pp. 2472–2477, IEEE, 2011.

[19] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanskanen, and

M. Pollefeys, “Vision-based autonomous mapping and exploration using a quadro-

tor MAV,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp. 4557–4564, IEEE, 2012.

[20] K. Schmid, P. Lutz, T. Tomić, E. Mair, and H. Hirschmüller, “Autonomous vision-

based micro air vehicle for indoor and outdoor navigation,” Journal of Field Robotics,

vol. 31, no. 4, pp. 537–570, 2014.

[21] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, “Multi-sensor fusion for robust

autonomous flight in indoor and outdoor environments with a rotorcraft MAV,” in

69

2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4974–

4981, IEEE, 2014.

[22] D. P. Koch, T. W. McLain, and K. M. Brink, “Multi-sensor robust relative estima-

tion framework for GPS-denied multirotor aircraft,” in Unmanned Aircraft Systems

(ICUAS), 2016 International Conference on, pp. 589–597, IEEE, 2016.

[23] A. J. Davison, “Real-time simultaneous localisation and mapping with a single cam-

era,” in Computer Vision, 2003. Proceedings. Ninth IEEE International Conference

on, pp. 1403–1410, IEEE, 2003.

[24] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM: Real-time

single camera SLAM,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 29, no. 6, pp. 1052–1067, 2007.

[25] J. Civera, A. J. Davison, and J. M. Montiel, “Inverse depth parametrization for

monocular SLAM,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 932–945,

2008.

[26] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint Kalman filter for

vision-aided inertial navigation,” in Proceedings 2007 IEEE International Confer-

ence on Robotics and Automation, pp. 3565–3572, IEEE, 2007.

[27] M. Li and A. I. Mourikis, “High-precision, consistent EKF-based visual–inertial

odometry,” The International Journal of Robotics Research, vol. 32, no. 6, pp. 690–

711, 2013.

[28] M. Li, “Visual-inertial odometry on resource-constrained systems,” 2014.

[29] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle adjustment

– a modern synthesis,” in International Workshop on Vision Algorithms, pp. 298–372,

Springer, 1999.

70

[30] R. Mur-Artal, J. Montiel, and J. D. Tardós, “ORB-SLAM: a versatile and accurate

monocular SLAM system,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–

1163, 2015.

[31] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative

to SIFT or SURF,” in 2011 International Conference on Computer Vision, pp. 2564–

2571, IEEE, 2011.

[32] E. Eade and T. Drummond, “Edge landmarks in monocular SLAM,” Image and Vi-

sion Computing, vol. 27, no. 5, pp. 588–596, 2009.

[33] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-scale direct monocular

SLAM,” in European Conference on Computer Vision, pp. 834–849, Springer, 2014.

[34] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct monocular vi-

sual odometry,” in 2014 IEEE International Conference on Robotics and Automation

(ICRA), pp. 15–22, IEEE, 2014.

[35] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.

[36] O. D. Faugeras, Q.-T. Luong, and S. J. Maybank, “Camera self-calibration: The-

ory and experiments,” in European Conference on Computer Vision, pp. 321–334,

Springer, 1992.

[37] S. Lynen, M. W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A robust and mod-

ular multi-sensor fusion approach applied to MAV navigation,” in 2013 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 3923–3929, IEEE,

2013.

[38] M. Faessler, F. Fontana, C. Forster, and D. Scaramuzza, “Automatic re-initialization

and failure recovery for aggressive flight with a monocular vision-based quadro-

71

tor,” in 2015 IEEE International Conference on Robotics and Automation (ICRA),

pp. 1722–1729, IEEE, 2015.

[39] D. P. Woodbury, M. Majji, and J. L. Junkins, “Considering measurement model pa-

rameter errors in static and dynamic systems,” The Journal of the Astronautical Sci-

ences, vol. 58, no. 3, pp. 461–478, 2011.

[40] N. Trawny and S. I. Roumeliotis, “Indirect Kalman filter for 3D attitude estimation,”

University of Minnesota, Dept. of Comp. Sci. & Eng., Tech. Rep, vol. 2, p. 2005,

2005.

[41] T. Lupton and S. Sukkarieh, “Visual-inertial-aided navigation for high-dynamic

motion in built environments without initial conditions,” IEEE Transactions on

Robotics, vol. 28, no. 1, pp. 61–76, 2012.

[42] J. L. Crassidis and J. L. Junkins, Optimal estimation of dynamic systems. CRC press,

2011.

[43] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, “Camera-IMU-

based localization: Observability analysis and consistency improvement,” The Inter-

national Journal of Robotics Research, vol. 33, no. 1, pp. 182–201, 2014.

[44] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Observability-based rules for

designing consistent EKF SLAM estimators,” The International Journal of Robotics

Research, vol. 29, no. 5, pp. 502–528, 2010.

[45] J. Civera, O. G. Grasa, A. J. Davison, and J. Montiel, “1-point RANSAC for EKF-

based structure from motion,” in Intelligent Robots and Systems, 2009. IROS 2009.

IEEE/RSJ International Conference on, pp. 3498–3504, IEEE, 2009.

[46] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart, “Robust visual inertial odometry

using a direct EKF-based approach,” in Intelligent Robots and Systems (IROS), 2015

72

IEEE/RSJ International Conference on, pp. 298–304, IEEE, 2015.

[47] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic algo-

rithm configuration.,” VISAPP (1), vol. 2, no. 331-340, p. 2, 2009.

[48] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Interna-

tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[49] R. I. Hartley, “In defense of the eight-point algorithm,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 19, no. 6, pp. 580–593, 1997.

[50] M. Bryson and S. Sukkarieh, “Building a robust implementation of bearing-only

inertial SLAM for a UAV,” Journal of Field Robotics, vol. 24, no. 1-2, pp. 113–143,

2007.

[51] S. I. Roumeliotis and J. W. Burdick, “Stochastic cloning: A generalized framework

for processing relative state measurements,” in Robotics and Automation, 2002. Pro-

ceedings. ICRA’02. IEEE International Conference on, vol. 2, pp. 1788–1795, IEEE,

2002.

[52] J. Sola, “Consistency of the monocular EKF-SLAM algorithm for three different

landmark parametrizations,” in Robotics and Automation (ICRA), 2010 IEEE Inter-

national Conference on, pp. 3513–3518, IEEE, 2010.

[53] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM: Real-time

single camera SLAM,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 29, no. 6, pp. 1052–1067, 2007.

73

