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ABSTRACT

Both type Ia supernovae and variable stars are important distance indicators in astron-

omy. The peak luminosity of type Ia supernovae and the period-luminosity relation of

Miras can be employed for relative distance determination. For both SNIa and Mira, we

develop light curve models with noisy, sparse and irregularly-sampled data.

We develop a functional principal component method for SNIa light curves. Each SNIa 

light curve is expressed as a linear combination of a mean function and several principal 

component functions. The coefficients o f t he p rincipal c omponent f unctions a re called 

scores. The proposed method takes into account peak registration, shape constraints and 

is equipped with a fast training algorithm. The resulting model provides high quality fit to 

each light curve. In addition, the scores present powerful characterization of SNIa. They 

demonstrate connection with interstellar dusting, spectral classes and other physical prop-

erties. Moreover, the method provides a functional linear form in place of the commonly 

used ∆M15 parameter for distance predictions.

We also develop a semi-parametric model for Mira period estimation. The proposed

method has a close relation with a Gaussian process model, and is solved in an empirical

Bayesian framework. The empirical Bayesian is solved by a fast quasi-Newton algorithm

with warm start, and combined with a grid search in the frequency parameter due to the

related high multimodality. The proposed method is compared with the traditional Lomb-

Scargle method in a large-scale simulation and shows considerable improvement.
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1. INTRODUCTION

Both Type Ia supernovae and Mira variables are important tools to measure the distance

between their hosting galaxies and us. SNIa have consistent peak magnitude (brightness)

when they explode, and our observed brightness is inverse proportional to the squared dis-

tance. These two facts make SNIa “standardizable candles” for distance measurement. On

the other hand, Miras and other variable stars have their brightness changes periodically.

They can also be employed for distance measurement because of the period luminosity re-

lation, which states that their average magnitudes and the logarithm of their periods follow

a linear relation. When we observe SNIa or Mira variables, we are also looking into the

past due to the light has a constant and finite speed. As a result, we are measuring the scale

of the universe at its different ages. Astronomers are interested in these measurements be-

cause they want to test cosmology models at a large scale. It is these measurements that

give the evidence that our universe is expanding at an accelerating rate. The accuracy of

these measurement and data processing reduces the distance prediction uncertainty, and as

a result, to provide tight constraints for cosmology parameters.

1.1 Type Ia Supernova and its Light Curve Models

Type Ia supernovae (SNIa) have relatively constant intrinsic luminosity when they ex-

plode. They provide us a a very important tool for distance measurement based on the

inverse square law, which states that the observed luminosity is inverse proportional to

the squared distance. When observing SNIa, we are looking into the past due to constant

speed of light. This helps us to measure the scale of the universe at its different ages. The

observation of SNIa provided the direct evidence of acceleratingly expanding universe

(Riess et al., 1998; Perlmutter et al., 1999).

The most common observation of SNIa is its light curves. The light curves are sparse

1



and irregularly sampled time series data. They record how the object brightness changes

over time, and the brightness is measured in terms of “magnitude”. Moreover, the light

curves are usually observed in several filters (bands), covering different wavelength ranges.

In the left panel of Figure 1.1 are four light curves of supernova SN 1998dh, observed by

the Lick Observatory Supernova Search (LOSS) (Ganeshalingam et al., 2010). These four

light curves are recorded in four optical bands, denoted by B, V,R, I . Their observation

points are plotted as red, blue, green and black, respectively. Notice the vertical axis is

plotted in reverse order. This is because brighter object has smaller value of magnitude. In

the right panel of Figure 1.1 are the transmission curves of the four filters. The transmis-

sion curve depicts the proportion of light passes through the filter at a given wavelength.

The key interest of cosmology studies lies around the peak epoch, the time when the

supernova has brightest luminosity. However, SNIa have small inhomogeneity in their

peak magnitudes. Generally, the brighter SNIa have wider light curve and bluer color,

and the dimmer SNIa have narrower light curves and redder color. One classical measure

of light curve width is the ∆M15 parameter (Phillips, 1993). It gauges the change in

magnitude 15 days after the peak. Adjusting these light curve width and color effects, the

dispersion of distance prediction can be reduced to about 15% (Fakhouri et al., 2015).

When the SNIa samples are employed for distance prediction, the general workflow

consists of the following steps. Firstly, their light curve is corrected for dust extinction

and K-corrected to rest-frame magnitude (Nugent et al., 2002; Hsiao et al., 2007). After

that, the peak magnitude is adjusted for the observed color and light curve width. All these

processes rely on an accurately estimated peak magnitude, color evolution and light curve

shape. Either directly or indirectly, the uncertainty in these steps depends on an employed

light curve model. These uncertainties will accumulate to the final uncertainty of distance

prediction and cosmology parameter constraints. The performance of the employed light

curve model is therefore critical for the accuracy of cosmology study.

2
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Figure 1.1: The left are the light curves of SN 1998dh observed by LOSS. The light curves
are observed in four optical filters, B, V,R, I . The right plots the wavelength coverage
(transmission) of the four filters.

The light curve models also underly many supernova classification algorithms (Kessler

et al., 2010). Several classification schemes simply rely on naive spline fitting to individual

light curve (Ishida and de Souza, 2013; Richards et al., 2012). After independent spline

fitting, the fitted curve is vectorized on a grid for their next step analysis. This approach is

problematic especially when the light curves are too sparse or with a low signal-to-noise

ratio. A pre-specified fixed templates can be used to match actual observations. Newling

et al. (2011) match the observation to a template with the gamma function shape. The

templates can also be drived from observation empirically (Hamuy et al., 1996; Prieto

et al., 2006). These empirical templates are parametrized by a single ∆M15, and they are

among the classical light curve models. Although these pre-specified templates are easy

to use, they also neglect the diversity of light curve shapes and may suffer a low fitting

quality for some light curves.

Several sophisticated light curve models exists in the astronomy literature. Among

them are the popular SALT2 model (Guy et al., 2007), SiFTO model (Conley et al., 2008),

3



and MLCS2k2 model (Riess et al., 1996; Jha et al., 2007). The commonly used param-

eters of these light curve models include B band maximum epoch, B band maximum

magnitude, a shape parameter and a color parameter. The SALT2 and SiFTO model

build on spectrum template. On the other hand, the MLCS2k2 are empirically derived

light curve model with second order correction terms. These methods also have a rela-

tively rigid underlying structure, and still can not account for various light curve shapes.

The MLCS2k2 also has vectorized template structure, as the naive spline fitting approach.

Sampling curves to a grid lose accuracy, and it is cumbersome for modeling with the result-

ing vectors. This vectorized template approach also constitutes the hierarchical Bayesian

model of Mandel et al. (2009) and Mandel et al. (2011).

Fortunately, the SNIa light curve observation fits into the well-established functional

data analysis framework in statistics. For sparse and irregularly sampled functional data,

there exists a collection of tools for dimensional reduction and the whole curve reconstruc-

tion. Among them is the functional principal component analysis (FPCA, see for example

Ramsay and Silverman, 2010). With FPCA, each sample curve can be reconstructed by

a linear combination of a mean function and several principal component functions. The

principal component functions are orthonormal to each other and capture most of the vari-

ability in the dataset. Besides, the mean function and principal component functions can

be constructed from spline, and therefore avoid the cumbersome effort to vectorize obser-

vations.

However, the FPCA can not be directly applied to SNIa light curves. Light curves of

distinct supernovae are collected over years of survey. A curve registration step to align

the peak is required before the analysis. The accuracy to estimate the peak is also the

cornerstone for cosmology study. Moreover, when reconstructing a sparsely sampled light

curve, the FCPA sometimes results in a weird and impossible SNIa light curve shape.

Additional shape constraints should be built into the reconstruction process.

4



We will modify the functional principal component analysis for SNIa light curves. The

resulting method incorporates the necessary curve registration and the shape constraints

method proposed by Meyer (2012). We also develop a fast model training algorithm for

FPCA. The model is trained through penalized least squares, with the nuclear norm penalty

and the roughness penalty. These penalties encourage the low rank structure and smooth-

ness of the solution.

The employed nuclear penalty is a popular tool for low rank structure learning (Cai

et al., 2010; Chen et al., 2014; Rohde et al., 2011; Wright et al., 2009). Suppose the sin-

gular values of a matrix A ∈ Rp×q are σ1(A) ≥ σ2(A) ≥ · · · ≥ σp∧q(A) ≥ 0, then

the nuclear penalty is defined as ‖A‖S1 =
∑p∧q

i=1 σj
(
A
)
. This is a convex approxima-

tion to rank(A). An efficient algorithm in application of matrix completion is via soft

thresholding of its singular values (Cai et al., 2010).

Our functional data modeling approach is purely data driven, without any specific

structure for color and stretching. The resulting model from training dataset still provides

abundant information about the intrinsic color and light curve shapes for SNIa. Through a

numeric analysis on the real data set and simulated data set, we demonstrate an improve-

ment in estimating peak magnitude and light curve shape.

1.2 Mira Variables and the M33 Survey*

The determination of reliable periods for variable stars has been an area of interest in

astronomy for at least four centuries, since the discovery of the variability of Mira (o Ceti)

by Fabricius in 1596 and the first attempts to determine its period by Holwarda & Bouil-

laud in the mid-1600s. The availability of electronic computers for astronomical research

half a century ago enabled the development of many algorithms to estimate periods quickly

∗Reprinted with permission from “Period estimation for sparsely-sampled quasi-periodic light curves
applied to Mira” by Shiyuan He, et al., 2016. The Astronomical Journal, Volume 152, Number 6, 152–164.
Copyright 2016 by the American Astronomical Society.
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and reliably, such as Lafler and Kinman (1965); Lomb (1976); Scargle (1982).

The aforementioned algorithms work best in the case of periodic variations with con-

stant amplitude and Mira variables present several challenges in this regard. While their

periods of pulsation are stable except for a few intriguing cases (Templeton et al., 2005),

Mira light curves can exhibit widely varying amplitudes from cycle to cycle (see, for ex-

ample, the historical light curve of Mira compiled by Templeton and Karovska, 2009). In

the case of C-rich Miras, the stochastic changes in mean magnitude across cycles (e.g.,

Marsakova, 1999) only complicate the problem further. The wide variety of light curves

for long-period variables, already recognized by Campbell (1925) and Ludendorff (1928),

may complicate the identification of Miras among other stars. Lastly, from a purely prac-

tical standpoint, it is simpler to obtain light curves spanning several cycles for RR Lyraes

or Cepheids (with periods ranging from ∼ 0.5 to ∼ 100 d) than for Miras (with periods

ranging from ∼ 100 to ∼ 1500 d).

Despite these challenges, the identification and determination of robust periods for

Miras — especially in the regime of sparsely sampled, low signal-to-noise light curves

— would be very beneficial for the determination of distances to galaxies of any type.

Thanks to the unprecedented temporal coverage of the Large Magellanic Cloud (LMC)

by microlensing surveys, the availability of large samples of extremely well-observed Mi-

ras has led to a thorough characterization of their period-luminosity relations at various

wavelengths (Wood et al., 1999; Ita et al., 2004; Soszynski et al., 2007). The dispersion

of the K-band period-luminosity relation (Glass and Evans, 2003, σ = 0.13 mag), is quite

comparable to that of Cepheids at the same wavelength (Macri et al., 2015, σ = 0.09 mag)

and makes them competitive distance indicators.

The third phase of the OGLE survey (Udalski et al., 2008) imaged most of the LMC

with little interruption over 7.5 years and resulted in the discovery of 1663 Miras (Soszyński

et al., 2009) with a median of 466 photometric measurements per object. The temporal
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Figure 1.2: Representative Mira light curves observed by OGLE-III in the Large Magel-
lanic Cloud (top) and DIRECT/M33SSS in M33 (bottom).

sampling of these light curves and their photometric precision are exceptional relative to

typical astronomical surveys and make period estimation relatively easy. In comparison,

a similar span of observations of M33 by the DIRECT (Macri et al., 2001) and M33SSS

projects (Pellerin and Macri, 2011) in the I-band consists of a median number of 44 some-

what noisy measurements, heavily concentrated in a few observing seasons. Representa-

tive Mira light curves from the OGLE & DIRECT/M33SSS surveys are shown in Fig. 1.2.

There are several reasons for the striking difference in quality between these two data sets.

The LMC Miras are among the brightest objects in the OGLE fields, whereas their M33

counterparts are among the faintest in the aforementioned surveys of this galaxy. While

the effective exposure times of all these surveys are quite comparable, after taking into ac-

count differences in collecting area of their respective telescopes, M33 lies approximately

7



6.2 mag farther in terms of its I-band apparent distance modulus. Furthermore, the main

goal of the OGLE project (detection of microlensing events) requires a very dense tem-

poral sampling of the survey fields; this is achieved by using a dedicated telescope and is

helped by the fact that the LMC is observable nearly all year long from the site. In con-

trast, the observations of M33 were carried out using shared facilities (available only a few

nights per month) with the primary purpose of studying Cepheids and eclipsing binaries

(which do not require exceptionally dense temporal sampling), and the galaxy is only ob-

servable all night long for∼ 1/3 of the year. Standard period estimation algorithms, which

work well for high signal-to-noise, well-sampled light curves such as those obtained by

OGLE, will fail on more typical data sets represented by the M33 observations. The pur-

pose of this work is to develop and test a methodology for estimating periods for sparsely

sampled, noisy, quasi-periodic light curves such as those of Miras observed in M33 by the

aforementioned projects.
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2. FUNCTIONAL PRINCIPAL COMPONENT METHOD FOR TYPE IA

SUPERNOVA LIGHT CURVES

In this chapter, we develop a light curve model based on functional principal compo-

nent analysis. This model is incorporated with peak registration, shape constraints, as well

as a fast training algorithm. We will demonstrate its power to capture the shape of light

curves on real data and simulated data.

2.1 Review of FPCA

This section reviews the functional principal component analysis (FPCA). A thorough

discussion can be found in Ramsay and Silverman (2010), Tran (2008) and Shang (2014)

Generally, the functional data analysis models random function X in L2(T ), and the

function X has domain T . Its mean function and covariance function can be defined. The

mean function is given by φ0 = E(X), and the covariance functionK(u, v) : T ×T → R

by

C(u, v) = E [(X(u)− φ0(u))(X(v)− φ0(v))] .

Suppose there exists an sequence of functions (φk)
∞
k=1 and a sequence of decreasing pos-

itive numbers (κk)
∞
k=1 such that C(u, v) =

∑∞
k=1 κkφk(u)φk(v). The function φk’s are

orthonormal, which means 〈φk, φj〉 =
∫
φk(u)φj(u) du = δjk, and δjk = 1 if j = k and

δjk = 0 otherwise. The random function X has corresponding Karhunen-Loève expan-

sion, X(u) = φ0(u) +
∑K

k=1 βkφk(u). The βk is a random variable with variance κk, and

they are uncorrelated with each other E(βkβj) = δkj
√
κkκj .

For the sequence of (κk), suppose its first few elements have large values and then

decrease very fast toward zero. To some extant, the variability related to φk(k > K) can

be ignored for some value ofK > 0. Functional PCA aims to estimate the leading compo-
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nents of the covariance expansion and the Karhunen-Loève expansion. The truncated ver-

sion corresponds to C(u, v) =
∑K

k=1 κkφk(u)φk(v), and X(u) = φ0(u) +
∑K

k=1 βkφk(u).

The first K leading functions are called principal component functions, and the random

variable βk’s are called principal component scores or scores.

Suppose there are n samples of the random function X1, · · · , Xn, and they are ob-

served on a dense grid of T . The mean and covariance function ca be directly estimated

by the sample mean and sample covariance. The principal component functions can then

be found by solving eigensystems, and finally the k-th score for the n-th sample are calcu-

lated via numerical integration βnk =
∫
Xn(u)φk(u)du. The smoothness of the estimated

φk’s can be encouraged by incorporating a roughness penalty
∫

(φ′′k(u))2du (Pezzulli and

Silverman, 1993; Silverman et al., 1996).

When each sample is observed sparsely at irregular grid points, one estimation ap-

proach is to employ a reduced rank model that solved by the EM algorithm (James et al.,

2000; Zhou et al., 2008; Kayano and Konishi, 2010). Peng and Paul (2009) proposed the

restricted maximum likelihood by solving over Stiefel manifold. They noticed in their

paper their algorithm is not guaranteed to converge and may be trapped in local optimal

solution. The work of Yao et al. (2005) relied on local linear and quadratic regression

to estimate the covariance function C(·, ·), and the scores are predicted by conditional

expectation instead of numerical integration.

2.2 The FPCA for SNIa

This section develops the functional principal component analysis for SNIa. The FPCA

method in statistics assumes the function is defined on a common domain T . This sec-

tion extends it with a curve registration mechanism. In particular, the model will convert

a function of observation date to a function of phase relative to the peak. A fast algo-

rithm for FPCA estimation with rank penalty and roughness penalty will be developed in
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Section 2.3. The score prediction with shape constraints will be addressed in Section 2.4.

Suppose we need to model the light curves of S SNIa. For s = 1, 2, · · · , S, let lsλ(t)

be the light curve of the s-th supernova with band λ ∈ {B, V,R, I}. It is a function of the

Julian date t. Let bsλ be the epoch of its peak magnitude msλ, i.e.,

msλ = min
t
lsλ(t) = lsλ(bsλ) . (2.1)

The observed light curve is usually recorded at sparsely sampled time points and corrupted

by noise. Suppose for this light curve there are totally nsλ observation points. They

are observed at time tsλj with magnitude ysλj and magnitude uncertainty σsλj for j =

1, 2, · · · , nsλ. This time series of magnitude is an observation of the underlying light

curve lsλ(t) corrupted by gaussian noise, i.e.,

ysλj = lsf (tsλj) + σsfjεsλj.

The noise εsλj’s are assumed to follow the independent standard normal distribution.

The light curve around the peak epoch is of central interest for cosmology. We can

transform the light curve lsλ(t), as a function of time t, to a function of phase q. Let zs be

the redshift of the corresponding supernova, and the transformation of time into phase is

defined by q = (t− bsλ)/(1 + zs). The denominator 1 + zs accounts for time dilation for

SNIa with various redshifts. Our model concentrates on the phase range from qmin(< 0)

to qmax(> 0) around the peak epoch (q = 0). Let us denote the light curve in phase q as

gsλ(q) = lsλ(t) = lsf (q(1 + zs) + bsλ) for q ∈ [qmin, qmax].

From the truncated version of Karhunen-Loève expansion, each light curve in phase

gsλ can be represented as a linear combination of the mean function and several principal
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component functions,

gsλ(q) = msλ + φ0(q) +
K∑
k=1

β
(k)
sλ φk(q) . (2.2)

In the above, the β(k)
sλ ’s are the principal component scores. For each light curve, all

its scores are denoted by a vector βsλ = (β
(1)
sλ , β

(2)
sλ , · · · , β

(K)
sλ )T . We assume this score

vector βsλ is a random variable following N (0,Σ) with unknown diagonal covariance

matrix Σ. As in classical FPCA, the principal component function φk(q)’s are set to be

orthonormal to each other, and they are ordered with decreasing ability to explain the

observation. Furthermore, recall from (2.1) msλ is the peak magnitude at phase q = 0. For

the identifiability issue, we also require that φk(0) = 0 for k = 0, · · · , K.

Now we have finished the discussion of the proposed model structure (2.2), and we

conclude this section by summarizing its components. In particular, its the mean function

φ0(q), the principal component functions φk(q)’s, and the covariance matrix Σ of β will

be trained from a dataset. When fitting a new light curve observation, the following pa-

rameters should be determined: (1) the peak magnitude msf ; (2) the peak Julian date bsf ;

(3) the scores vector βsf .

2.3 Model Training

This section develops the procedure of model training on a collection of SNIa light

curves. The first step is to represent the model (2.2) by spline. Then after initial peak

alignment, the mean function and principal component functions will be learned in a two-

step procedure.

2.3.1 Spline Representation

In our work, all the template functions are represented by spline. This avoids the effort

to vectorize the observation or template as in the work of Ishida and de Souza (2013),
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Richards et al. (2012) and Jha et al. (2007).

The the spline basis is constructed from natural quadratic spline. We put P −2 equally

spaced knots in the phase interval [qmin, qmax]. These knots are denoted as d1, d2, · · · , dP−2.

The natural quadratic spline is orthornormalized by a QR decomposition of its dense eval-

uation matrix. The resulting orthonormal spline basis is denoted as

b(q) =
(
b1(q), b2(q), · · · , bQ(q)

)T
for q ∈ [qmin, qmax] . These spline bases satisfy

∫
bj(q)bk(q)dq = δjk, with δjk = 1

if j = k and δjk = 0 if j 6= k. Let θ0 be a P dimensional vector such that the

mean function can be expressed as φ0(q) = b(q)Tθ0. Let Θφ be a Q × K matrix of

spline coefficients, such that the K principal component functions can be represented by

φ(q)T = (φ1(q), · · · , φK(q)) = b(q)TΘφ. The matrix Θφ is required to have orthonormal

columns, i.e. ΘT
φΘφ = IR. This guarantees the K principal component functions are also

orthonormal to each other. Now, the model (2.2) can be expressed by the spline basis as

gsλ(q) = msλ + φ0(q) +
K∑
k=1

β
(k)
sλ φk(q) (2.3)

= msλ + b(q)Tθ0 + b(q)TΘφβsλ .

In this representation, the fixed and unknown parameters θ0 and Θφ will be estimated

from a training dataset. The parameters msλ, bsλ and βsλ’s are unique to each light curve.

Notice the parameter bsλ is implicitly coded in phase q.

2.3.2 Initial Peak Alignment

Recall we need to transform all light curves into phase by the transformation qsλj =

(tsλj − bsλ)/(1 + zsλ). This transformation aligns all the light curves such that their peaks
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are at phase zero. However, the peak epoch bsλ is unknown. An initial estimate of the

peak magnitude msλ and peak epoch bsλ are obtained by local quadratic regression. With

this initial estimates, a two-step procedure is carried out for model training, i.e., sepa-

rately learning the mean function φ0(q) and learning the principal component functions

φk(q), k = 1, · · · , K.

2.3.3 Learning the Mean Function

For the light curve of s-th supernova with band λ, If we stack related spline basis

vectors into a matrix Bsλ =
(
b(qiλ1), · · · ,b(qiλnsλ)

)T , the model (2.3) in matrix form is

ysλ = msλ1nsλ + Bsλθ0 + BsλΘφβsλ + Wsλεsλ , (2.4)

where 1nsλ is a vector of length nsλ with all elements equal to one, εi is a random vector of

length nsλ following a standard normal distribution, and Wsλ = diag{σsλ1, · · · , σsλnsλ} is

a diagonal matrix of magnitude uncertainty. This representation summarizes all the light

curve observations of the s-th supernova with band λ.

The last two terms in (2.4) has an expectation of zero. Although their covariance

matrix is unknown, the general least square estimate is still consistent with least square

estimation. With the estimated m̂sf and b̂sf in the previous subsection, the mean function

φ0(q) is learned by minimizing

min
θ0

∑
s,λ

1

nsλ
‖(Wsλ)

−1(ysλ − m̂sλ1nsλ −Bsλθ0)‖2
2 + µ tr

(
θT0 Ωθ0

)
, (2.5)

where Ω =
∫

b′′(t)Tb′′(t)dt. The last term is the roughness penalty to encourage a

smooth solution, and µ is the tuning parameter. Essentially, the smoothness is achieved

by controlling the integral of the squared second order derivative of the solution, i.e.,

14



∫
(φ′′0(q))2dq = tr

(
θT0 Ωθ0

)
. The explicit solution of θ0 in (2.5) is

θ̂0 =

(∑
s,λ

(Bsλ)
T (Wsf )

−2Bsλ + λΩ

)−1

×(∑
s,λ

(Bsλ)
T (Wsλ)

−2
(
ysλ − m̂sλ1nsλ

))
.

The resulting mean function is µ̂(q) = b(q)T θ̂µ.

2.3.4 Learning the Principal Component Functions

Now we discuss the algorithm to learn the principal component functions φk(q) for k =

1, · · · , K. In the following, the rank K is encouraged to be small by a low rank penalty,

and principal component functions are also encouraged to be smooth by the roughness

penalty.

Now, with the estimated information from previous steps, align the peak and subtract

the mean function from the observed light curves by ỹsλ = ysλ−m̂sλ1nsλ−Bsλθ̂µ . This is

the remaining difference to be fitted by the principal component functions, φk(q) (k ≥ 1).

Let ssλ = Θφβsλ and put them a in P × 4 matrix Ss = (ssB, ssV , ssR, ssI) for the

s-th supernova. Combine all of them in a P × (4S) matrix S =
(
S1,S2, · · · ,SS

)
for all

supernovae. Notice the column ssλ’s of S are indexed by (s, λ), and the rank of the matrix

S is K ≤ min{P, 4S}. This matrix is estimated by the following penalized least square,

min
S

∑
s,f

1

nsf
‖(Wsf )

−1(ỹsf −Bsfssf )‖2
2 + µ1 ‖S‖S1 + µ2 tr

(
STΩS

)
. (2.6)

In the above, the nuclear norm ‖ · ‖S1 serves to encourage a small value of K, and the last

term encourages smoothly fitted light curves. The µ1 and µ2 are tuning parameters chosen

by cross-validation.

The optimization problem (2.6) is solved by the ADMM algorithm (Boyd et al., 2011).
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This is done by breaking the objective function into two parts: one part involving the

quadratic forms and the other part involving the nuclear norm. Notice (2.6) is equivalent

to

min
S=P

∑
s,λ

1

nsλ
‖W−1

sλ (ysλ −Bsλssλ)‖2
2 + µ1 ‖P‖S1 + µ2 tr

(
STΩS

)
,

with an additional matrix P, being forced to equal to S. The augmented Lagrangian form

of this problem is

min
S,P

∑
s,λ

1

nsλ
‖W−1

sλ (ysλ −Bsλssλ)‖2
2+µ1 ‖P‖S1 + µ2 tr

(
STΩS

)
+ρ‖P− S‖2

F + tr
(
UT (P− S)

)
,

where U is the Lagrangian parameter. The matrices P and U have the same size as S, and

their columns are also indexed by (s, λ) accordingly.

The ADMM algorithm then iterates through steps updating S, P and U sequentially.

This algorithm is summarized in Algorithm 1. In the algorithm, Line 2 updates the matrix

S while P and U are fixed. The updating is through directly finding the minimizer of a

quadratic form for each column of S. Line 4 updates the matrix P while S and U are fixed.

This is done with the singular value soft-thresholding operator (Cai et al., 2010). Finally,

Line 5 updates the Lagrangian parameter U.

Now, let Ŝ be the solution of the optimization problem (2.6), and Ŝ = ÛD̂V̂T be its

SVD decomposition. Suppose ûj is the j-th column of Û for j = 1, 2, · · · ,min{P, 4S}.

Define Θ̂φ = (û1, û2, · · · , ûK) with the first K columns of Û, then the estimated princi-

pal component functions are φ̂(s)T = b(s)T Θ̂φ. Also recall the columns of S are indexed

by (s, λ), the rows of V̂ are indexed in the same way corresponding to the SVD decom-

position. Let v̂sλ be the row vector of V̂ indexed by (s, λ). For the light curve of s-th

supernova with band λ, its score vector is computed as β̂sλ = D̂v̂Tsλ, and the covariance
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Algorithm 1 The ADMM algorithm for learning FPCA.
1: repeat
2: Update ssλ for s = 1, 2, · · · , S and λ ∈ {B, V,R, I}, by solving(

µ2Ω +
1

nsλ
BT
sλW

−2
sλ Bsλ + ρI

)
ssλ =

1

nsλ
BT
sλW

−2
sf ysλ + ρpsλ +

1

2
usλ .

3: Update R := S− 1
2ρ

U.
4: Update P by solving ‖P−R‖2

F + µ1
ρ
‖P‖∗. With the SVD of R = UDVT ,

P :=
∑
sλ

(
dsλ −

µ1

ρ

)
+
usfv

T
sf .

5: U := U + 2ρ×
(
P− S

)
.

6: until Convergence

matrix of βsλ estimated by Σ̂ =
∑

s,λ β̂sλβ̂
T

sλ/(4S).

2.4 Fitting a New Light Curve

When our model fits a new light curve, the same procedure is applied to individual

light curve across different filters and different supernovae. In the following, the subscript

sf is dropped from the notation in Section 2.3 for simplicity.

Suppose we have a new light curve observation. Its magnitude y = (y1, y2, · · · , yn)T is

observed at time t1, · · · , tn with the standard deviation of measurement error σ1, σ2, · · · , σn.

The supernova with this light curve has redshift z.

Again, with the transformation qj = (tj − b)/(1 + z) for j = 1, · · · , n, the new light

curve in phase is expanded by the template functions as

g(q) = m+ φ0(q) +
K∑
k=1

β(k)φk(q) . (2.7)
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Define B =
(
b(q1), · · · ,b(qn)

)T . The matrix form of the model (2.3) is

y = m1n + Bθµ + BΘφβ + Wε

where the noise ε follows a standard normal distribution and W = diag{σ1, · · · , σn} is a

diagonal matrix representing measurement error of the magnitude. Recall the score vector

β = (β(1), · · · , β(K))T is regarded as random coefficient and it follows N (0,Σ).

In Section 2.3, we have obtained estimates of θ0, Θφ and Σ from a group of train-

ing samples. In this section, we treat them as fixed and known quantities. Our primary

interests include: (1) to estimate the peak magnitude m and peak Julian date b, (2) to pre-

dict the random coefficient β for the new light curve, and (3) to assess all the associated

uncertainty.

As regards to these tasks, the starting point is the joint distribution of the observed

magnitude y and the score vector β. They jointly follow a normal distribution, z =

(yT ,βT )T ∼ N (µz,Σz), with mean and covariance,

µz =

 µy

0

 , Σz =

 Σy BΘφΣ

ΣΘT
φBT Σ

 , (2.8)

where µy = m1n + Bθµ and Σy = BΘφΣΘT
φBT + W2.

2.4.1 Peak Search

At first, the estimates of the peak date b and peak magnitude m are obtained by maxi-

mizing the marginal likelihood of y. From (2.8), we know the marginal distribution of y
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is N (µy,Σy). The maximum likelihood estimates of m and b are computed by

b̂, m̂ = arg max
m,b

log p(y|b,m), (2.9)

log p(y|b,m) ∝ −(y −m1n −Bθµ)TΣ−1
y (y −m1n −Bθµ) .

Notice the matrix B implicitly depends on b through the phase transformation qj = (tj −

b)/(1 + z). The optimization (2.9) is evaluated by a profile likehood approach. At each

value of b, the m has explicit solution by generalized least squares method, i.e.,

m(b) = (1TnΣ−1
y 1n)−11TnΣ−1

y (y −Bθµ).

Plug in this m(b) into (2.9) and compute p(y|b,m(b)) at a dense grid of b. Suppose

p(y|b,m(b)) is maximized at b̂. In this way, we get the optimizer of (2.9) as (b̂, m̂) =

(b̂, m(b̂)).

2.4.2 Fitting Template

The next step involves the prediction of the random coefficients β to fit the shape of the

light curve. With the joint normal distribution (2.8), it is well known that the best unbiased

linear prediction of β given y is computed by the conditional expectation, E(β|y, m̂, b̂).

The uncertainty is quantified by the conditional variance Var(β|y, m̂, b̂). Direct computa-

tion formulas for both of them are available as

E(β|y, m̂, b̂) = ΣΘT
φBTΣ−1

y (y − m̂1l −Bθµ), (2.10)

Var(β|y, m̂, b̂) = (Σ−1 + ΘT
φBTW−2BΘφ)−1. (2.11)

Although E(β|y, m̂, b̂) provides a direct way to predict the random coefficients β, the

final fitted light curve g(q) in (2.7) could have weird light curve shape when there are not
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enough data points. This sometimes happens at the left and right boundary of the phase

interval [qmin, qmax]. Ideally, g(s) should be monotone decreasing and concave in the phase

interval [qmin, 0], where the supernova luminosity gradually increases. The monotoncity

and concavity stated here are in terms of the numerical values of the magnitude. The light

curve function in phase g(q) should also be monotone increasing in the phase interval

[35, qmax]. In terms of derivatives, we have g′(q) ≤ 0 and g′′(q) ≤ 0 for s ∈ [qmin, 0];

meanwhile g′(q) ≥ 0 for s ∈ [35, qmax].

To impose the above shape constraint, we adopt the method of Meyer (2012). Because

our basis functions are constructed from natural quadratic spline (Section 2.3.1), we only

need to impose constraint at the spline knots d1, d2, · · · , dP−2. The constraints g′(q) ≤ 0

and g′′(q) ≤ 0 at dp ∈ [qmin, 0] are equivalent to

g′(dp) = φ′0(dp) +
K∑
k=1

β(k)φ′k(dp) ≤ 0 , (2.12)

g′′(dp) = φ′′0(dp) +
K∑
k=1

β(k)φ′′k(dp) ≤ 0 , (2.13)

for all the knots in the related phase interval [smin, 0]. At the same time, we have

g′(dp) = φ′0(dp) +
K∑
k=1

β(k)φ′k(dp) ≥ 0 (2.14)

for all the knots dp ∈ [35, qmax]. Notice (2.12), (2.13) and (2.14) impose a group of linear

constraints on random coefficient β.

Our final prediction of β is the one maximizing the conditional probability p(β|y, b̂, m̂)

under the group of constraints (2.12), (2.13) and (2.14). Denote the conditional expecta-

tion E(β|y, m̂, b̂) in (2.10) by e, and the conditional variance matrix Var(β|y, m̂, b̂) in

(2.11) by V. The distribution of β given y, m̂, b̂ is multivariate normal N (e,V). The
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most probable β satisfying the shape constraints is obtained by

β̂ = arg max
β

log p(β|y, b̂, m̂)

= arg min
β

(β − e)TV−1(β − e),

subject to the constraints



∑K
k=1 β

(k)φ′r(dp) ≤ −φ′0(dp), dp ∈ [qmin, 0]∑K
k=1 β

(k)φ′′r(dp) ≤ −φ′′0(dp), dp ∈ [qmin, 0]∑K
k=1−β(k)φ′j(dp) ≤ φ′0(dp), dp ∈ [35, qmax].

However, the conditional variance matrix (2.11) is no longer a valid quantification of the

uncertainty of this β̂. This issue will be addressed in Section 2.4.3.

The shape constraints above are chosen for our data set in Section 2.5.1. The con-

straints can be adjusted to specific light curve type and observation cadence. For example,

to fit a B band light curve without a re-brightening second peak, it can impose the fitted

light curve to be concave over the entire phase range, monotone decreasing over [qmin, 0],

and monotone increasing over [0, qmax].

2.4.3 Fitting Uncertainty

In this subsection, we discuss the method to quantify the uncertainty of the estimates

m̂, b̂ and the predicted β̂. This is computed via the bootstrap method.

During the bootstrap, we fix the m̂, b̂ and β̂ from the actual observation. Then several

light curve samples are generated from a parametric bootstrap procedure. Suppose the

total number of generated light curves is G. For g = 1, 2, · · · , G, we generate a sequence
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of magnitude y(g)
1 , · · · , y(g)

n at the original observation time. They are computed as

y
(b)
j = m̂+ φ0(qj) +

K∑
k=1

β̂(k)φk(qj) + ε
(g)
j

where ε(b)j is sampled fromN (0, σ2
j ) for j = 1, · · · , n. The observation uncertainty for the

g-th generated light curve y(g) = (y
(g)
1 , · · · , y(g)

n )T is unchanged as σ1, · · · , σn.

The same estimation and prediction procedure is applied to the generated light curve

magnitude y(g)
1 , · · · , y(g)

n with observation time t1, · · · , tn and uncertainty σ1, · · · , σn. Sup-

pose its parameters are computed as m̂(g), b̂(g), β̂
(g)

. The standard deviation of all m̂(1), · · · , m̂(G)

is an estimation of the uncertainty of our actual estimate m̂. The uncertainty of b̂ and β̂ is

evaluated in a similar way.

2.5 Numerical Analysis and Methods Comparison

2.5.1 The Real Data Analysis

We select 115 relatively well-observed SNIa from the release of the Lick Observatory

Supernova Search (LOSS) (Ganeshalingam et al., 2010), the Carnegie Supernova Project

(CSP) (Contreras et al., 2010; Stritzinger et al., 2011), and the Harvard-Smithsonian Cen-

ter for Astrophysics (CfA) (Hicken et al., 2009, 2012). Each selected sample has at least

one observation within 5 days before the peak, and at least one observation within 5 days

after the maximum. These SNIa samples are nearby supernovae, with cosmic microwave

background (CMB) redshift z < 0.1. The light curve bands we use are four optical bands.

A cross-filter K-correction is applied so that all the light curve magnitude are transformed

to the standard rest-frame Kron-Cousins filters. This K-correction is performed using the

SNooPy package of Burns et al. (2010). The Galactic extinction is corrected with the dust

map of Schlafly and Finkbeiner (2011).

The proposed FPCA model is trained on the selected light curves, and constrained to
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Figure 2.1: The first seven singular values and cumulatively explained proportion of vari-
ability. The first four bases together accounts for 99.24% variability in the dataset. The
vertical axis is on the logarithmic scale.

the phase range (−10, 40). The tuning parameters are selected by cross-validation. The

number of basis functions is determined to be R = 7. Figure 2.1 plots the eigenvalues of

the covariance matrix Σ of the scores β. The vertical axis is in the logarithmic scale. The

percentage number is the cumulative proportion of variability explained in the dataset. For

example, the first four bases together explained 99.24% of the total variability.

The estimated template functions are in Figure 2.2. Each panel shows the mean func-

tion and the effects of one basis function. The solid line is the the mean function φ0(q).

The “+” points represent φ0(q) + 2φj(q), and the “−” points represent φ0(s)− 2φj(s) for

j = 1, 2, 3, 4. The first template basis curve φ1(q) (in the upper left panel) reflects the the

decline rate about 15 days after the peak. The second template basis curve φ2(q) (in the

upper right panel) is sensitive to the light curve width around the peak. Meanwhile, it also

reflects a constrast of decline rate before and after 20 days in phase. The third template (in

the lower left panel) basis curve adjusts the bump around 20 days after the peak.

The left panel of Figure 2.3 indicates the first two scores are nonlinearly correlated.
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Figure 2.2: Plots of φ0(q)± 2φj(q) for the first four template basis functions. This shows
how the template basis curves change the shape of the template mean curve. The solid line
is the template mean curve. The “+” points represent φ0(q) + 2φj(q), and the “−” points
represent φ0(q)− 2φj(q)
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Figure 2.3: Relation of first the two scores the β(1), β(2) and ∆M15. The left panel is the
plot of β(1) and β(2); the middle panel is the plot of β(1) and ∆M15; and the right panel is
the plot of β(2) and ∆M15. The B, V, R, I band are colored as red, blue, green and black
respectively.

This suggests nonlinear dimensional reduction technique should be more effective, and

this is left for future research. Notice in Figure 2.2, the first two basis functions adjust the

width of different parts of the light curve. It is not a surprise that their scores β(1) and β(2)

are correlated with the ∆M15 parameter (Phillips, 1993). It is shown as in the middle and

right panels of Figure 2.3.

Figure 2.4 show the first and second scores are nonlinearly correlated the observed

color (B − V )max at the B band maximal. Phillips et al. (1999), Nugent et al. (2002) and
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Figure 2.4: Plot of the first two scores β(1), β(2) against color.

etc have noticed the reddening affects the shape of the light curves, For V , R and I band

light curves, intrinsically redder supernovae tend to have smaller value of β(1). At the

same time, for B, V and R band light curves, intrinsically redder supernovae tend to have

smaller value of β(2).

2.5.2 Method Comparison

Now, we compare the proposed FPCA model with several existing methods for SNIa

in the literature. These methods include the popular SALT2 model (Guy et al., 2007),

and the MLCS2k2 method (Jha et al., 2007). In addition, we will also compare with the

naive independent spline fitting approach (Spline Method). In some works such as Ishida

and de Souza (2013) and Richards et al. (2012), this approach provided the basis for their

next step analysis. For this approach in our comparison, the natural cubic spline is used

with six equally spaced knots inside the phase range (−10, 40). Then spline is fitted to

the observations with a roughness penalty, and the tuning parameter is chosen to minimize

overall cross-validation error.
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The quality of model fitting is assessed by cross-validation in the real dataset. In each

round of the cross-validation procedure, one supernova is selected at random, and then

for this supernova one observation point of each band light curve is randomly chosen and

removed. For each round of the cross-validation, the following three steps are carried out

1. The model is trained on the all SNIa samples except the one selected for prediction.

2. The trained model is fitted to this selected supernova sample without the removed

observation points.

3. The fitted light curves predict the magnitude at the removed observation points. This

gives the absolute deviation error for the prediction.

This procedure is repeated 4,000 times, each time with one randomly selected supernova.

The prediction errors are averaged for each band, and the standard errors are also com-

puted. Lastly, note the model training step only applies to the FPCA method. The spline

method is applied to the new data directly. The SALT2 and MLCS2k2 already have fixed

trained models.

This cross-validation result is in Table 2.1. The table reports the mean absolute error

(MAE), and its corresponding standard errors in parentheses. The results for the four bands

are reported in four columns separately. Notice the proposed FPCA method consistently

has smaller mean absolute CV error across all bands. The naive spline method has a close

performance. For the selected SNIa samples, they have relatively low redshifts and high

signal-to-noise ratio. The naive spline method takes the advantage of its flexibility and the

data quality.

On the other hand, the proposed FPCA method captures the light curve shape much

better than the well established SALT2 and MLCS2k2 methods. The latter two methods

have a very rigid underlying struture. They can not guarantee the fitting quality for a
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Table 2.1: Cross validation error (MAE) of light curve fitting on the real data. All numbers
are of order 10−2 mag.

Method
Band

B V R I
FPCA 4.002(0.086) 2.965(0.070) 3.072(0.056) 3.763(0.072)

Spline Method 4.615(0.119) 3.307(0.086) 3.443(0.087) 4.435(0.088)
SALT2 8.535(0.162) 6.877(0.110) 8.881(0.167) 19.818(0.250)

MLCS2k2 14.211(0.214) 13.264(0.173) 9.415(0.162) 15.891(0.211)

large number of SNIa light curves. For our dataset, some light curve fitting examples are

presented in Figure 2.6. In the figure, the first, second and third columns correspond to

the results of FPCA, SALT2, and MLCS2k2 methods, respectively. Each row corresponds

to one selected SNIa sample. For some light curves, the fitted light curves of SALT2 and

MLCS2k2 have high discrepancy with the observed light curve points.

Figure 2.5 shows the CV error against the phase. The lines are fitted locally for absolute

CV errors against the phase of the prediction points. These plots show the model perfor-

mance at various phase ranges across bands. It is easy to see the SALT2 and MLCS2k2

methods have relatively poor performance, especially for the I band light curves. The I

band light curve may have a second bump around 15 days to 35 days in phase, as shown

by the black points in Figure 2.6. The exact phase of this bump varies across different

SNIa. This bump is difficult for light curve model to capture. The CV errors are highest

during this phase for SALT2 and MLCS2k2 methods. Also notice, toward the later days

in phase for all bands, especially when phase > 20, as the observation points get sparser.

the CV errors grow larger for all methods. This is evident at the right end of all panels

in Figure 2.5. Although the naive spline method takes the advantage of the high dataset

quality, its performance deteriorates fast toward the right boundary.
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Figure 2.5: Compare methods on the real data set by cross-validation. The plots show the
phase of the removed points against its prediction error. The lines are fitted locally for
the prediction points selected in the cross-validation. The prediction error is measured by
mean absolute error (MAE).

2.5.3 Simulation Comparison

We have assessed the four methods using the real dataset. In this subsection, we take a

further analysis based on simulated dataset.

Estimating the peak magnitude m and the ∆M15 parameter is of core importance for

the SNIa distance prediction models (Kattner et al., 2012; Wang et al., 2003). We wish to

compare the light curve models’ ability to estimate them. However, these quantities are

unknown in the actual observations. In this subsection, a simulation study is carried out

for comparison purpose. Note in practice, the peak magnitude and ∆M15 for B band light

curve are the most commonly used. For completeness, these parameters of other bands are

also considered in the simulation.

Generating SNIa light curve observation is not an easy task. For SNIa samples, the

peak magnitudes, color, light curve shape, redshift and etc. are all correlated in a non-
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Figure 2.6: Light curve fitting comparison for SNFT (first column), SALT (second col-
umn) and MLCS2k2 (third column). Four SNIa are illustrated here. From the first row to
the last row are: SN 1998de, SN 1998dh, SN1999ac. The red, blue, green and black points
are B + 3, V + 2, R + 1 and I band data.
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Figure 2.7: The relation between magnitude m and measurement uncertainty σ. An em-
pirical relation σ = am−b + c is fitted with a = 1.428, b = 26.288 and c = 0.006.

trivial way. Their observation cadence and noise are also affected by the weather and

equipment condition. In this simulation, we take the approach to generate light curve of

different bands separately. The generated light curves are made to match actual senario as

much as possible.

To generate theB band light curve, the empirical model (2.7) trained in Section 2.5.1 is

exploited. For the fairness to compare methods, after generating a collection of simulated

light curves, the trained empirical model is blind to all methods. The FPCA method is

re-trained on the simulated light curves.

To generate one fake light curve with trained model (2.7), we need to (1) specify its

peak magnitude m̄, its redshift z̄ and its sampling cadence in phase q̄1, · · · , q̄n; (2) to

generate its score vector β̄, and then compute the magnitude values at the sample cadence;

(3) to add noise to the computed magnitude, to get the observed magnitude ȳ1, ȳ2, · · · , ȳn.
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Table 2.2: Simulation result. Estimation accuracy of the peak magnitude m and ∆M15 of
each band. The accuracy is measured in mean absolute error. The L2 loss of the whole
reconstructed light curve is also reported.

Method
B V

m ∆M15 L2 m ∆M15 L2

FPCA 0.013 0.032 0.297 0.012 0.041 0.348
(0.001) (0.003) (0.021) (0.001) (0.005) (0.030)

Spline Method 0.028 0.078 0.872 0.021 0.070 0.919
(0.003) (0.004) (0.042) (0.002) (0.005) (0.042)

SALT 0.015 0.093 0.622 0.015 0.089 0.587
(0.000) (0.003) (0.013) (0.000) (0.002) (0.012)

MLCS2k2 0.019 0.109 0.631 0.020 0.103 0.622
(0.001) (0.003) (0.011) (0.001) (0.003) (0.011)

Method
R I

m ∆M15 L2 m ∆M15 L2

FPCA 0.014 0.039 0.330 0.013 0.038 0.275
(0.001) (0.003) (0.030) (0.001) (0.004) (0.016)

Spline Method 0.026 0.076 0.984 0.027 0.078 0.866
(0.003) (0.005) (0.046) (0.004) (0.005) (0.039)

SALT 0.014 0.095 0.614 0.016 0.100 0.624
(0.000) (0.003) (0.013) (0.001) (0.003) (0.013)

MLCS2k2 0.020 0.111 0.667 0.020 0.110 0.634
(0.001) (0.003) (0.011) (0.001) (0.003) (0.012)

For the first part, one B band light curve is randomly selected from the real data set

in Section 2.5.1. Its peak magnitude, redshift and sampling cadence in phase are reserved

to generate the simulated light curve. This procedure also helps to match the real world

relation between the redshift and peak magnitude. The actual sampling cadence is directly

employed, because the result will have the closest match to actual survey conditions. Be-

sides, for each generated light curves, it has peak epoch b̄ = 0, such that the observed

time points are t̄1 = z̄q̄1, · · · , t̄n = z̄q̄n. The peak epoch information b̄ = 0 is blind to all

methods.

In the second step, we need to compute the magnitudes at selected sampling cadence
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in phase. However, the light curve shape has not been specified yet. With the empirical

model trained in Subsection 2.5.1, we only need to generate the score vector β to specify

the light curve shape. In particular, the B band score vector is drawn from a multivariate

normal distribution N(µ̂B, Σ̂B). The mean µ̂B and the covariance matrix Σ̂B of B band

scores are obtained from the training data in Subsection 2.5.1. They are computed by

µ̂B = 1
S

∑
s β̂sB and Σ̂B = 1

S−1

∑
s(β̂sB − µ̂B)(β̂sB − µ̂B)T for λ = B, where the B

band score vector β̂sB belongs to the s-th supernova in the training data set. With a β̄B

sampled from this distribution, the constructed whole light curve signal is

g(q) = m̄+ φ̂0(q) +
K∑
k=1

β̄
(k)
B φ̂k(q)

where φ̂0(q), · · · , φ̂K(q) are from the empirical model Subsection 2.5.1. Now, we are able

to compute the signal magnitude at the sampling cadence in phase q̄1, · · · , q̄n. The signal

corresponding magnitude is computed as g(q̄1), · · · , g(q̄n).

The last step is to add noise to the signal magnitude. Figure 2.7 plots the sigma-

magnitude relation for all the observation points in the real data set. Generally, larger

uncertainty sigma values are associated with larger magnitude values. The uncertainty

is also affected by actual weather and equipment condition. An empirical relation σ =

am−b + c is fitted with a = 1.428, b = 26.288 and c = 0.006. This is shown as the black

curve in Figure 2.7. From this empirical relation, the σ̄j value can be computed for each

signal magnitude value g(q̄j). Then a gaussian noise to the signal magnitude value via

ȳj = g(q̄j) + σ̄j ε̄j , where ε̄j ∼ N (0, 1).

Now, from the above procedure, we generate a light curve with sampling cadance

t̄1, · · · , t̄n, observed magnitude ȳ1, · · · , ȳn and magnitude uncertainty σ̄1, · · · , σ̄n. This

procedure is repeated to generate 2,000 B band light curves.

All the methods are applied these light curves, with only the information of the sam-
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pling cadence, observed magnitudes and magnitude uncertainties. We assess methods’

ability to estimate the peak magnitude m̄ and ∆M15. The accuracy is measured by the

mean absolute error (MAE). In addition, we also assess methods’ ability to reconstruct the

whole light curve, and this accuracy is measured by L2 loss. The L2 loss is the integral of

the squared difference between the true light curve and reconstructed light curve, and the

integral is taken over the phase range (−10, 40).

Table 2.2 presents the result of the simulation. This simulation procedure is also re-

peated for V,R, I band separately. The message is the same as in the previous subsection.

The proposed FPCA method consistently produces more accurate estimates of the peak

magnitude m and the ∆M15 parameter, as well as better reconstruction of the whole light

curve. The empirical relation fitted in Figure 2.7 makes the generated light curves have

relatively lower signal to noise ratio than the real dataset. This makes the naive spline

method has the worst performance among all methods.
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3. SNIA CHARACTERIZATION AND DISTANCE MODELLING

In the previous chapter, we have dicussed a funcitonal principal component model for

SNIa light curves. The obtained principal component scores parametrize the shape of the

light curve and provide abundant information of SNIa. The primary goal of this chapter

is to explore the potential of the extracted scores in explaining important physical quanti-

ties, such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral

classes. We show that our FPCA light curve model provides a flexible and effective light

curve shape characterization. One direct application is a better constrained color excess

estimation. Moreover, by exploring the relations between the scores and spectral features,

we open the possibility of inferring SNIa spectral information from purely light curve data

and therefore provide the opportunity of more precise K-correction and distance predic-

tion within subgroups of SNIa. Finally, our light curve model is used to produce a new

light curve shape parameterization as a better constrained alternative to the classical ∆M15

parameter in distance prediction.

3.1 Estimation of Color Excess

This section explores the potential of using the principal component scores to deter-

mine the intrinsic color and color excess of SNIa. The first panel in Figure 2.3 exhibits a

nonlinear relation between the first two dominant scores β(1), β(2). Thus, a more effective

dimension reduction is possible for SNIa light curves with nonlinear dimension reduction

techniques. Both β(1) and β(2) are correlated with color. We would expect all the color

information could be absorbed into one score after the nonlinear dimension reduction.
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Figure 3.1: The nonlinear scores β̃(1), β̃(2) are calculated via fitting curves to the original
scores β(1), β(2).
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Figure 3.2: Relation between the nonlinear scores β̃(1), β̃(2) and ∆M15, color. The SNIa
with β̃(1)

R < 0.2, shown as purple points, are SN 1991bg-like events.

35



●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6

β~V

(1)

β~
B(1

)

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6

β~V

(1)

β~
R(1

)

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6

β~V

(1)

β~
I(1

)

Figure 3.3: The relation between the first nonlinear V band score β̃(1)
V (on horizontal axes)

with β̃(1)
B , β̃(1)

R , β̃(1)
I (on vertical axes).

3.1.1 Nonlinear Dimension Reduction and Nonlinear Scores

For simplicity, consider the two dimensional space of β(1) and β(2). These first two

dimensions alone already account for 96.31% cumulative variance of the dataset. We

adapt the concept of principal ridge (Ozertem and Erdogmus, 2011). A curve is fitted for

β
(1)
B and β(2)

B of B band, as the left black solid line in Figure 3.1. This nonlinear curve is

treated as the first nonlinear dimension forB band scores. The second nonlinear dimension

is the one locally perpendicular to the curve. Given the original scores β(1), β(2) from our

model, the new nonlinear scores β̃(1), β̃(2) are calculated as follows. Consider the left red

point in Figure 3.1, it is projected onto the B band curve. The projection is identified by

the nearest point on the curve. The nonlinear score β̃(1) is the geodesic distance from the

leftmost point of the curve to the projection point. The geodesic distance along the curve

is indicated by the red dashed curve. The new score β̃(2) is the usual Euclidean distance

of the original point to the projection point, as indicated by the red vertical dashed line.

In a similar manner, a curve is fitted for V , R, I band together (the right solid curve in

Figure 3.1), and the linear scores for V , R, I band are projected onto this curve to obtain

the new nonlinear score.
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Figure 3.4: Average light curve shapes parametrized by the nonlinear score β̃(1)
V .

In the original linear system, the first dimension explains 91.69% of the total variabil-

ity. The first two dimension together explains 96.31% of the total variability. Now in the

nonlinear system, the explained proportion of the first nonlinear score should be larger

than 91.69%, but smaller than 96.31%. More light curve information is absorbed into

the first dimension. The first score alone can provide adequate fit to SNIa light curves.

Figure 3.2 plots the relation of the nonlinear scores β̃(1), β̃(2) with ∆M15 and the color

(B− V )max. Compared with the orignal score β(2), the second nonlinear score β̃(2) shows

less correlation with the color and ∆M15 parameters.

The more thorough dimension reduction can be made by describing the correlation

among β̃(1)
B , β̃

(1)
V , β̃

(1)
R , β̃

(1)
I . The shape of light curves across these optical bands should

be well correlated due to their common spectral evolution. The relation of β̃(1)
V with

β̃
(1)
B , β̃

(1)
R , β̃

(1)
I is plotted in Figure 3.3. For most of the cases, the V band nonlinear score

37



β̃
(1)
V is a reliable predictor of β̃(1)

B , β̃
(1)
R and β̃(1)

I . Therefore we can use a single parameter,

β̃
(1)
V , to describe all the SNIa light curve shapes. For each β̃(1)

V , the predicted values of

β̃
(1)
B , β̃

(1)
R and β̃(1)

I are obtained by the fitted curves in Figure 3.3. This single parameter-

ization of light curve shape is especially useful for fitting high redshift supernovae with

sparse and noisy observations, because only one parameter is required to be constrained

by the data. Using this scheme with a single parameter β̃(1)
V , Figure 3.4 depicts all four

band light curve shapes for β̃(1)
V = 0.05, 0.2, 0.35, 0.5. These light curves are the expected

shapes accounting for first order correction of the mean curve with β̃(1)
V .

3.1.2 Nonlinear Scores and Color Excess

Figure 3.2 reveals a relation between the observed color at B maximum, (B − V )max

and the first nonlinear score β̃(1), especially for V ,R, I band light curves. This relation can

be exploited to obtain an estimate of the color excess of the supernova. For example, here

we use the relationship between the R band nonlinear score β̃(1)
R and the observed color

at B maximum. As in Figure 3.5, we try to estimate a lower envelope (the black solid

line), and treat it as an extinction free curve for SNIa. This lower envelope is estimated by

lower 10% quantile regression with B-spline basis. The quantile regression is iterated by

removing points with large positive residuals. This lower envelop eR(β̃
(1)
R ) as a function

of R band β̃(1)
R serves to estimate the intrinsic color (B − V )0 of the supernova. The color

excess is obtained by

E(B − V ) = (B − V )max − eR(β̃
(1)
R ) . (3.1)

In other words, the color excess is the vertical distance from the observation points to the

lower envelope, as illustrated in Figure 3.5.

The same method can be used to estimate extinction using similar relations appeared in

other filter bands. The values and precisions from these different measurements however,
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can be quite different. For example, the lower bound to the B band β̃(1)
B shows very little

correlation with color, and one would get an estimate of E(B − V ) by approximately

assuming the intrinsic B− V is nearly zero. In the V , R, I bands, β̃(1) appears to produce

very good intrinsic color estimators.

The popular method to estimate the color excess is from the work of Phillips et al.

(1999). They used the empirical linear relation of the intrinsic color (B − V )0,

(B − V )0 = 0.725− 0.0118 (qV − 60) ,

for the phase qV with respect to the V band maximum. This linear relation holds for

30 ≤ qV ≤ 90. The color excess can be estimated via the observed color minus the

(B − V )0 above. The observed color should be corrected by K-correction and Galactic

reddening. Figure 3.6 compares the color excess computed via this classical method and

the color excess estimated from the R band β̃(1)
R at a reference phase qV = 35. The figure

shows that the color excess given by the method of Phillips et al. (1999) has negative values

for a considerable portion of the supernovae. Riess et al. (1998) eliminated this problem

by imposing a one-sided (positive-sided) Gaussian prior with zero mean and sigma 0.3.

The figure also shows that the uncertainty deduced from β̃
(1)
R is much smaller than that

based on Phillips et al. (1999). This is not surprising, because the method of Phillips et al.

(1999) uses only light curve observations beyond 30 days after V band maximum, which

are usually very sparse, while the estimation of β̃(1)
R uses observations from the whole light

curve.

3.2 Spectral Information

This section examines the relationship between the scores in model (3) and spectral

features and discuss the possibility of using the scores for identifying spectral classes.

There exists some analysis regard light curve width and spectral features such as Si II λ4000
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Figure 3.5: The lower envelope (black solid line) for the observed color and R band non-
linear score β̃(1)

R . The color excess is estimated by the vertical distance of the observation
points to the envelope line.

in the literature. With the aid of model (2.2), we are able to present more details on how

light curve shape (not just its width) changes with spectral features. We will also demon-

strate the light curve scores can be linked to spectroscopically different SNIa, although

with limited precision. This linkage is important. With refined spectral sub-classification,

the K-correction can be applied with higher precision. Identifying sub-classes of SNIa

based is of ultimate importance in assessing systematic evolutionary effect in applying

them as standard candles.

3.2.1 The Scores and Spectral Features

Now we compare the first four scores across all bands with the spectral features. The

dataset of SNIa with comprehensive spectral data is even more sparse, and the measure-

ment of the strength of spectral features usually suffers from severe systematic errors due

to difficulties in defining the level of continuum and observational noise, the latter is usu-
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Figure 3.6: The y-axis is the color excess computed from Phillips et al. (1999), and the
horizontal axis is the color excess computed from the R band score β̃(1)

R .

ally not even available for most published SNIa spectra. Wagers et al. (2010) developed a

mathematical framework based on wavelet decomposition of the spectra to reconstruct the

noise and signal from published data. It was shown in Wagers et al. (2010) that large noise

can easily bias estimate of spectral line strength, and Monte-Carlo simulation can be used

to simulate the effect and correct the bias. However, there is no overlap of the SNIa sample

in Wagers et al. (2010) and the current sample. A more recent derivation of spectral line

strength is given in Zhao et al. (2016), but its data sample size is small.

High quality spectral feature measurements are scarce. They provide information on

the details of spectral features which can significantly affect the measured colors and lead

to abnormal extinction behavior. We show in this paper the correlations of the most sig-

nificant spectral features with the light curve features produced from our method. We

emphasize that spectral features provide further constraints on the properties of the intrin-

sic properties of supernovae and associated extinction. Measurement of spectral features
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Figure 3.7: The heatmap of correlation between the scores of our model and the spectral
features. The horizontal axis corresponds to the first four scores across all of the B, V , R,
I bands. The vertical axis corresponds to various spectral features.

may prove to be critical for the WFIRST program (Spergel et al., 2013) which aims at

unprecedented precision.

Here we will only use the spectral features extracted by Silverman et al. (2012b). The

work of Silverman et al. (2012b) provides pseudo-equivalent width (pEW), spectral feature

depths, and fluxes at the center and end points of nine spectral feature complexes. The nine

spectral feature complexes are Ca II H&K, Si II λ4000, Mg II, Fe II, Si II ‘W’, Si II λ5972,

Si II λ6355, O I triplet, Ca II near-IR triplet. We will compare the first four original scores

β(1), β(2), β(3), β(4) with the pseudo-equivalent width (pEW) of these spectral feature.

The pEW of the spectral features within 5 days of the B maximum are obtained,

and their Spearman correlation coefficients with the scores are computed. The correla-

tion is visualized as heatmap in Figure 3.7. These nine spectral features corresponds to
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Figure 3.8: The first two scores of four bands against the pseudo-equivalent width (pEW)
of Si II λ4000.

the first nine rows in the figure. Its columns from left to right correspond to the scores

β
(1)
B , β

(1)
V , β

(1)
R , β

(1)
I , β

(2)
B , · · · , β(4)

I respectively. Saturated red (blue resp.) implies a strong

positive (negative resp.) correlation; and white color implies a very weak correlation.

The spectral feature Si II λ4000 and Si II λ5972 are important spectral luminosity

indicator (Nugent et al., 1995). With the light curve width parameter from the SALT2

model, Silverman et al. (2012a) notice these two features are correlated with light curve

width. This is also confirmed in our dataset. Both of them have strong (negative) anti-

correlation with the first two scores across four optical bands. The exception is that β(2)
R

has weak correlation with these two spectral features. We have also shown in Figure 2.3 the

correlation of ∆M15 with the first two scores. The correlations among the spectral feature,

the first two scores, and the ∆M15 imply that with sufficient amount of well calibrated data

it would be possible to construct light curve templates for different spectral sub-classes of

SNIa.

Our work provides more details on how these two spectral features correlate with

light curve shape. Figure 3.8 is the scatter plot of the first two scores with the pEW of
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Figure 3.9: The “average” light curve shape at four different levels of the pseudo-
equivalent width (pEW) of Si II λ4000.

Si II λ4000. In the first row of Figure 3.8, the first scores of all bands are negatively

correlated with the pEW of Si II λ4000. However, as the central wavelength of the band

increases, the first score β(1) becomes less sensitive to this spectral feacture. The I band

score β(1)
I starts to drop when pEW(Si II λ4000) increase to 17; it almost remains at a

constant level for pEW(Si II λ4000) in the interval [5, 15].

Meanwhile, for the second score β(2) and pEW(Si II λ4000), their correlation changes

from negative correlation to positive correlation as the central wavelength of the filter in-

creases. This is shown in the second row of Figure 3.8. TheB band score β(2)
B is negatively

correlated with pEW(Si II λ4000); and the I band score β(2)
B is positively correlated with

pEW(Si II λ4000)

Recall from Figure 2.2, the first score mainly affects the decline rate after 15 days from

the peak. The second score affects the light curve width around the peak, and the decline
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rate contrast before and after +15 days in phase. As both β
(1)
B and β

(2)
B are negatively

correlated with pEW(Si II λ4000), stronger Si II λ4000 will shrink the B band light curve

width across the entire phase range [−10, 40]. On the other hand, in the last column of

Figure 3.8, the correlation pattern for β(1)
I and β(2)

I implies that strong Si II λ4000 tend to

make the I band light curve wider around the peak and decrease faster after +15 days in

phase.

This effect on light curve shape is illustrated in Figure 3.9. They are the “average”

light curve shapes for each band at different levels of pEW(Si II λ4000). The first two

scores as a function of pEW(Si II λ4000) is fitted by a LOESS curve (which is a robust

local regression), as the solid line in Figure 3.8. Then we compute the value of β(1)
f , β

(2)
f

at pEW≈ 7.49, 15.73, 23.97, 32.21 for each band f . After that, the average light curve

shapes are computed as φ0(q)+β
(1)
f φ1(q)+β

(2)
f φ2(q). Of special interest is the lower right

panel of Figure 3.9. As expected from previous analysis, when the strength of Si II λ4000

increases, the I band light curve becomes wider around the peak, but narrower after +15

days in phase. The B band light curve become uniformly narrower across the entire phase

range.

Next, we also consider five spectral ratios as defined by Silverman et al. (2012a). The

first is the Si II ratio as the pEW of Si II λ5972 divided by the pEW of Si II λ6355.

R(Si II) =
pEW(Si II λ5972)

pEW(Si II λ6355)
.

The second is the ratioR(Ca II) of the flux at the red and blue end of Ca II H&K.

R(Ca II) =
Fr(Ca II H&K)

Fb(Ca II H&K)
.

These two spectral feature ratios are among the first spectral luminosity indicators (Nugent
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et al., 1995). Three additional spectral ratios are defined as

R(SiS) =
Fr(Ca II W)

Fr(Ca II λ6355)
,

R(SSi) =
pEW(Ca II W)

pEW(Ca II λ5972)
,

R(SiFe) =
pEW(Ca II λ5972)

pEW(Fe II)
.

These five ratios correspond to the last five rows in Figure 3.7. They also have strong

correlation (or anti-correlation) with the first two scores across all four bands. Notice the

exception is the second score of the R band β(2)
R . It has very weak correlation with all the

spectral features. Furthermore, the correlation of β(2)
I tend to have opposite sign with the

correlations involving β(1)
B , β

(1)
V , β

(1)
R , β

(1)
I , β

(2)
B , β

(2)
V .

3.2.2 The Scores and Spectral Classes
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Figure 3.10: Spectral classes separation using the scores. The spectral classes from left
to right corresponds to the results of Benetti et al. (2005), Branch et al. (2009), and Wang
et al. (2009), respectively.

Section 3.2.1 explains that the scores from our model provide abundant information

about spectral features. The next step is to determine supernova spectral class based on
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the scores. This task could be modeled as a classification problem. We can possibly

treat spectral classes as the response, and our scores as predictors. To keep the analysis

simple, we try to separate spectral classes with only two selected scores. The two scores

are selected with the aid of sparse linear discriminant analysis (LDA). A reference of LDA

can be found in Murphy (2012). The sparse LDA tries to linearly combine predictors to

separate classes. The linear combining coefficients are called loadings. The number of

predictors used is encouraged to be small. We control the sparsity of the loading so that

only one variable is allowed in each of the first two loading vectors (introducing more

variables only gives marginal improvement). Then we examine the ability of the selected

two scores to separate spectral classes. In the following, we take the spectral classes from

Benetti et al. (2005), Branch et al. (2009), and Wang et al. (2009). We will use all the SNIa

in our sample with spectral classes assigned by these papers.

Firstly, we consider the three spectral classes in Benetti et al. (2005). The three classes

are FAINT, high temporal velocity gradient (HVG) and low temporal velocity gradient

group (LVG). The average velocity gradients in the three groups are 87, 97, and 37, re-

spectively. The three classes are plotted as red circle, blue triangle, and green square in the

left panel of Figure 3.10. The classification is carried out with the first and second score

of the I band light curve, β(1)
I , β

(2)
I . The three classes are quite well separated. The HVG

and LVG classes have a small overlap regions.

Branch et al. (2009) provided spectral classification on the basis of the absorption fea-

tures near 5750Å and 6100Å. The absorption features are measured by pseudo equivalent

width. Their four groups are core normal (CN), broad line (BL), cool (CL), and shallow

silicon (SS). The CN is a homogeneous class, and its absolute magnitude has small cor-

relation with light curve width ∆M15. The BL class tends to have strong absorption near

6100Å. For the CL class, the absorption features near 5750Å and 6100Å are both strong;

and the SS class is another extreme with both features weak. On average, the CL class
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tends to have higher ∆M15 values and fainter absolute magnitude; on the contrary, the SS

class tend to have lower ∆M15 values and brighter absolute magnitude.

The middle panel of Figure 3.10 presents the four class separation based on the B

band first score and R band fourth scores β(4)
R . The CL (blue triangle) and SS (black cross)

classes are separated in the lower right and lower left corner of the plot. The CN (green

square) and BL (red circle) classes are mixed in the top.

In Wang et al. (2009), the supernova samples are classified into two groups Normal

(N) and high velocity (HV) according to the observed velocity of Si II λ6355. They found

that the HV group has narrower distribution in peak luminosity and decline rate, and this

group also prefers a lower extinction ratio. The distance prediction model is applied to

these two groups separately to reduce the dispersion. The right panel in Figure 3.10 shows

the spectral class separation by the first and third score of the R band light curve. These

two classes have a considerable overlap in the scatterplot.

When only light curve observation is available, Figure 3.10 shows we may still be

able to classify the observation into their corresponding spectral class. However, even

if a quantitative scheme proves to be difficult, based on the class separation relation in

Figure 3.10, we could still try to extract a subgroup of SNIa which could be more ho-

mogeneous than the entire sample. This can be useful in controlling systematic errors in

distance determination.

3.3 Distance Prediction

Our FPCA light curve model can produce the entire shape of a light curve, which

in turn can be used for intrinsic luminosity adjustment in distance prediction. In this

section, we consider an adjustment using a functional linear form and compare it with the

standard adjustment using ∆M15. We consider both the peak magnitude and the CMAGIC

magnitude as distance indicators in separate subsections. Note that in this comparative
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study, the purpose is to show the potential advantage of using the entire light curve shape,

and we still use our FPCA model to determine the value of ∆M15.

3.3.1 Distance Models

Distance models fit a linear model for the distance modulus. The distance modulus µ

is a function of redshift. In particular,

µ(z) = 25 + 5 log10(DL(z)Mpc−1) ,

whereDL(z) is the luminosity distance under a fixed cosmology with Ωm = 0.3, ΩΛ = 0.7

and Hubble constant h = 0.7. With type Ia supernova, the standard model for predicting

distance is

(M1) µ = mB −M − α(C − 〈C〉)− δ(∆M15 − 〈∆M15〉). (3.2)

In the above, mB is the apparent B band peak magnitude, M is the absolute B band peak

magnitude. All these are magnitudes in the rest-frame filter. C is the observed color at B

maximum, (B−V )max. ∆M15 is the magnitude change 15 days after B maximum for the

B band light curve.

Although simple by concept, ∆M15 is not a quantity that can be directly measured

accurately. Its calculated value is highly influenced by light curve fitting errors. In practice,

because of the rapid luminosity decay at 15 days past optical maximum, a small error in

determining the peak epoch can lead to large inaccuracy of ∆M15.

With our proposed FPCA light curve model, we consider an alternative adjustment of

intrinsic luminosity using the entire shape of the light curve. The shape parameter ∆M15
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is replaced by a functional linear term

Q =

∫
δ(q)(gB(q)−mB − µ(q))dq , (3.3)

where δ(s) is a fixed function to be determined by the data. Note that in Equation (3.3),

the peak magnitude mB and the mean function µ(q) are subtracted, so that only the light

curve shape may influence the value of Q. With this functional linear form, the distance

model becomes

(M2) µ = mB −M − α(C − 〈C〉)− (Q− 〈Q〉). (3.4)

Since the light curve shape enters the model as a functional linear term, we refer to (9) as

a functional linear distance model. This model has some similarity to the functional linear

regression model studied in statistics (Müller and Stadtmüller, 2005).

For each supernova, the associated distance prediction uncertainty includes the parts

due to peculiar velocity, measurement error in the apparent magnitude, and intrinsic Type

Ia supernova property variation. In the following we assume a peculiar velocity of vpec =

300 km s−1 and it introduces a magnitude uncertainty of σpec = (5/ ln 10)(vpec/cz) =

0.002173/z. The uncertainty of the apparent peak magnitude σm is computed from the

bootstrap method. The associated distance prediction uncertainty is computed as σ2
s =

σ2
pec + σ2

m.

The standard distance model (3.2) is trained by minimizing the χ2,

S∑
s=1

1

σ2
s

[µ−mB +M + α(C − 〈C〉) + δ(∆M15 − 〈∆M15〉)]2 ,

where ∆M15 is determined using our FPCA model. The minimization is taken with re-

spect to M,α, δ. A similar χ2 minimization applies to model (3.4). The functional linear

50



distance model (3.4) is trained by minimizing

S∑
s=1

1

σ2
s

[µ−mB +M + α(C − 〈C〉) + (Q− 〈Q〉) + λ

∫
[δ′′(q)]2dq.

The minimization is taken with respect to M , α and δ(q) in Q. The last term is the

integration of the squared second order derivative of δ(q). This is a roughness penalty to

encourage the smoothness of the solution of δ(q). The λ parameter controls the amount

of penalty imposed and is chosen by the cross-validation. In the χ2 minimization, the

solution of δ(q) is searched among the span of the principal component functions φk(q),

i.e., δ(q) =
∑K

k=1 δ
(k)φk(q). Using the principal component functions, we only need to

solve for the scalar δ(k)’s to get an estimate of the function δ(q).

3.3.2 Comparing the Distance Prediction Models

The leave-one-out cross-validation is used to compare the distance prediction models:

M1 (Equation 3.2), and M2 (Equation 3.4). Cross-validation is a commonly used method

in statistics to evaluate the out-of-sample performance of a prediction model. It works

as follows. Each time one sample (i.e. one SNIa) is removed from the dataset, and the

remaining dataset is used to to train the distance prediction model. The resulted model

is then applied to the removed sample to get a predicted distance modulus µ̂. The cross-

validated error of this prediction is denoted as ∆µ = µ− µ̂. We repeat this procedure for

all SNIa samples in the dataset and summarize the cross-validated errors by the weighted

mean squared errors (WMS),

WMS = (
∑
s

∆µ2
s/σ

2
s)/(

∑
s

1/σ2
s) ,

whose square-root is WRMS = WMS1/2.

Before applying the model to our dataset, we make a further selection of the dataset.
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Table 3.1: Comparison of the distance models. Comparison of the WRMS and χ2 for two
models: M1 (Equation 3.2) and M2 (Equation 3.4). The comparison is based on different
observed color (B − V )max cutoffs and a common redshift cut z > 0.01. The column N
is the sample size after the cutoff.

M1 M2
CC N WRMS χ2 WRMS χ2

0.05 35 0.109 136.30 0.110 128.85
0.1 48 0.123 245.48 0.123 224.78
0.2 65 0.127 347.48 0.119 278.85
0.3 69 0.130 381.49 0.126 333.51
0.4 71 0.131 391.44 0.127 345.79

We select the SNIa observations with CMB redshift z > 0.01 and the observed color (B−

V )max < CC for several values of CC. The cut 0.01 on redshift restricts the uncertainty

due to peculiar velocity. In addiction, the cut CC on the observed color helps us to select

a homogenous group of supernovae.

The result is shown in Table 4.1. In the table, the WRMS is computed using cross-

validated errors. The χ2 is computed using in-sample errors. For example, the result for

CC = 0.05 is given on the first row. With the cut of z > 0.01 and (B − V )max < (0.05),

there are 35 SNIa in the remaining sample. The ∆M15 model (3.2) results in a WRMS of

0.109, and the functional linear distance model (3.4) has a close WRMS of 0.110.

In general, the difference of the two models is not significant. With only shape and

color information, both models appear to have approached the statistical limits of the data

in constructing a Hubble diagram with minimal dispersion. The dispersion is dominated by

the peculiar velocity. However, the functional linear distance model (3.4) still consistently

produces smaller WRMS across different sample groups.

At last, we present more detailed results for model (3.4) at the color cut CC = 0.4,

where the sample size is the largest in our consideration. The upper panel of Figure 3.11

shows the predicted distance modulus versus redshift velocity. The lower panel of Fig-
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ure 3.11 plots the cross-validated residuals and associated error bars. The dashed curves

represent the uncertainty due to the assumed peculiar velocity. Note the scatter of the

residuals is dominated by peculiar velocity at redshifts around 300 km · s−1. In addition,

the estimated functional coefficient δ(q) is presented in Figure 3.12. This functional co-

efficient δ(q) is positive over the phase range (−10, 30). This suggests that the functional

linear form still tries to measure the width of the light curve in its own way, and the mea-

surement is adjusted by the phase range (30, 40). Figure 3.13 compares the quantity ∆M15

with the calculated value of the the functional linear form
∫
δ(q)(gB(q)−mB − µ(q))dq.
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Figure 3.11: Predicted distance and residuals of the functional linear distance model. The
dashed lines represent the uncertainty due to the peculiar velocity.

3.3.3 The CMAGIC for Distance Prediction

We now evaluate the effectiveness of using the entire light curve shape to adjust in-

trinsic luminosity for distance predication when the CMAGIC magnitude is used as the

distance indicator. The CMAGIC magnitude is proposed by Wang et al. (2003). They
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Figure 3.12: The estimated δ(q) of the functional linear form (3.3). The solid line is the
estimated δ(q), the dashed lines represent one standard deviation uncertainty.
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exploited the linear relation of the color evolution for about 30 days after the B maximum.

During this phase the B and B − V magnitude follow a linear trend, as illustrated by the

red line in Figure 3.14.

B = BBV + γ(B − V − 0.6) (3.5)

where γ is the slope of the linear relation. The exact starting and ending epochs of this

linear evolution vary among supernovae with their intrinsic brightness. Some supernovae

with a small ∆M15 show a “bump” feature in the color magnitude evolution immediately

after B maximum. For our supernova samples, the observation points in the B band phase

range [+3,+25] are used to fit the linear relation. Wang et al. (2003) noticed that the slope

γ has a small scattering 0.18 around the mean of 2.07.

The CMAGIC magnitude, denoted by BBV , is defined as the B band magnitude when

B − V = 0.6. Wang et al. (2003) replaced the peak magnitude mB in (3.2) by BBV and
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Table 3.2: Comparison of the distance models. Comparison for the CMAGIC among two
models: M3 (Equation 3.6) and M4 (Equation 3.7). The comparison is on different cutoff
of the color at B maximum, (B − V )max < CC; and a redshift cut of z > 0.01. The
column N indicates the number of selected samples.

M3 M4
CC N WRMS χ2 WRMS χ2

0.05 31 0.135 173.40 0.102 83.06
0.1 43 0.148 288.67 0.125 184.68
0.2 57 0.138 345.88 0.125 258.09
0.3 61 0.144 403.25 0.138 337.25

considered the following model

(M3) µ =BBV −M − δ(∆M15 − 〈∆M15〉)− (b2 − γ)×

[
mB −BBV

γ
+ 0.6 + 1.2(

1

γ
− 〈1

γ
〉)] , (3.6)

where ∆M15 is determined using our FPCA model. Now, as an alternative model, the

∆M15 is replaced by the functional linear form Q defined in Equation (3.3),

(M4) µ =BBV −M − (Q− 〈Q〉)− (b2 − γ)×

[
mB −BBV

γ
+ 0.6 + 1.2(

1

γ
− 〈1

γ
〉)] . (3.7)

In order to fit the linear color evolution, at least five observation points is required in the

B band phase range [+3,+25]. We select those samples with z > 0.01 and make various

levels of cut on the observed color (B−V )max at B maximum. The color cut is necessary,

due to the fact that the linear color evolution and CMAGIC can be best constrained among

low (B − V )max samples. For the 61 samples with color cut of 0.3, their slopes γ have a

mean of 2.14 and standard deviation 0.17.

Over the selected SNIa samples, the model M3 (Equation 3.6), and model M4 in
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(Equation 3.7) are tested using the leave-one-out cross-validation procedure as described

in Section 3.3.2. Table 3.2 presents their WRMS and χ2 at different levels of cutoff at the

observed color at B maximum. The model M4 clearly outperforms the model M3 at all

scenarios. At the cut 0.05 of the color at B maximum, the model M4 has a remarkable

WRMS of 0.102. Notice the sample size N in Table 3.2 is smaller than in Table 4.1, be-

cause we require at least 5 observational points in the B band phase range [+3,+25] to

constraint the color evolution.
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4. PERIOD ESTIMATION FOR SPARSELY SAMPLED QUASI-PERIODIC LIGHT

CURVES APPLIED TO MIRAS*

In this chapter, we review several existing period estimation methods. Then we intro-

duce a new semi-parametric (SP) model for Mira variables which uses a Gaussian process

to account for deviations from strict periodicity. The maximum likelihood is used to esti-

mate the period and the parameters of the Gaussian process, while other nuisance param-

eters in the model are integrated out with respect to some prior distributions using earlier

studies. Since the likelihood is highly multimodal for the period/frequency parameter, we

implement a hybrid method that applies the quasi-Newton algorithm for Gaussian pro-

cess parameters and a grid search for the period/frequency parameter. In order to assess

the effectiveness of the SP model, we carefully construct a simulated data set by fitting

smooth functions to the light curves of well-observed OGLE LMC Miras and resampling

them at the cadence, noise level, and completeness limits of the aforementioned M33 ob-

servations. Using the simulated data, we are able to compare the performance of existing

period estimation methods to our SP model. We find that our proposed model shows an

improvement over the generalized Lomb-Scargle (GLS) model under various metrics.

4.1 Period Estimation Techniques

Let yi be the magnitude of a variable star observed at time ti (in units of days) with

uncertainty σi. The data set for this object, obtained as part of a time-series survey with

n epochs is {(ti, yi, σi)}ni=1. One common approach to estimate the primary frequency of

such an object is to assume some parametric model for brightness variation and then use

maximum likelihood to estimate parameters. Zechmeister and Kürster (2009) define the

∗Reprinted with permission from “Period estimation for sparsely-sampled quasi-periodic light curves
applied to Mira” by Shiyuan He, et al., 2016. The Astronomical Journal, Volume 152, Number 6, 152–164.
Copyright 2016 by the American Astronomical Society.
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GLS model as

yi = m+ a sin(2πfti + φ) + σiεi, (4.1)

where εi ∼ N (0, 1), m is the mean magnitude, a is the amplitude, φ ∈ [−π, π] is the

phase, and f is the frequency (see Reimann, 1994, for early work in this model). Using

the sine angle addition formula and letting β1 = a cos(φ) and β2 = a sin(φ) one obtains

yi = m+ β1 sin(2πfti) + β2 cos(2πfti) + σiεi. (4.2)

The likelihood function of this model is highly multimodal in f . However at a fixed f the

model is linear in the parameters (m,β1, β2). These two facts motivate the computation

strategy of performing a grid search across frequency and minimizing a weighted least

squares

(m̂(f), β̂1(f), β̂2(f))

= arg min
m,β1,β2

n∑
i=1

1

σ2
i

{yi −m− β1 sin(2πfti)− β2 cos(2πfti)}2 ,
(4.3)

at every frequency f on the grid. Under the normality assumption, the weighted least

squares minimization is equivalent to maximizing the likelihood. Since the model is linear,

computation of m̂(f), β̂1(f), β̂2(f) is straightforward. The residual sums of squares at f

is

RSS(f) =
n∑
i=1

1

σ2
i

{yi − m̂(f)− β̂1(f) sin(2πfti)− β̂2(f) cos(2πfti)}2, (4.4)

and the maximum likelihood estimator for f is

f̂ = arg min
f

RSS(f). (4.5)
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Define RSS0 as the (weighted) sum of squared residuals when fitting a model with only an

intercept term m. The periodogram is defined as

SLS(f) =
(n− 3)(RSS0 − RSS(f))

2RSS(f)
. (4.6)

The periodogram has the property that if the light curve of the star is white noise (i.e.,

yi = m + εi), SLS(f) has an F2,n−3 distribution. Thus the periodogram may be used for

controlling the “false alarm probability,” the potential that a peak in the periodogram is

due to noise (Schwarzenberg-Czerny, 1996).

A large number of period estimation algorithms in astronomy are closely related to

GLS. The LS method is identical to GLS but first normalizes magnitudes to mean 0 and

does not fit the m term (Lomb, 1976; Scargle, 1982). The “harmonic analysis of variance”

includes an arbitrary number of harmonics in Equation (4.1) (Quinn and Thomson, 1991;

Schwarzenberg-Czerny, 1996). Bretthorst (1988) incorporates Bayesian priors on the pa-

rameters β1 and β2. The method is similar to performing a discrete Fourier transform and

selecting the frequency which maximizes the Deeming (1975) periodogram. However,

Reimann (1994) showed that GLS has better consistency properties than the Deeming pe-

riodogram.

It is also possible to use non-sinusoidal models but compute and minimize the residual

sum of squares as above. For example, Hall et al. (2000) consider the Nadaraya-Watson

estimator and Reimann (1994) uses the Supersmoother algorithm. Wang et al. (2012) used

Gaussian processes with a periodic kernel and found the period with maximum likelihood

or minimum leave-one-out cross-validation error.

None of the above methods account for the non-periodic variation present in Miras.

While these methods are adequate for densely sampled Mira light curves (where the quan-

tity of data overwhelms model inadequacy), their performance deteriorates in the sparsely
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Figure 4.1: Light curve of a Mira in the LMC observed by OGLE (black points), decom-
posed following Eqn. 4.7. Top panel: fitted light curve; middle panel: periodic signal,
m+ q(t); bottom panel: stochastic variations, m+ h(t).

sampled regime. In Section 4.4, we compare our proposed model with the LS method.

4.2 The SP Model

Suppose the data {(ti, yi, σi)}ni=1 are modeled by yi = g(ti) + σiεi, where g(ti) is the

light curve signal and the εi ∼ N(0, 1) is independent of other εjs. The signal of the light

curve is further decomposed into three parts,

g(t) = m+ q(t) + h(t)

= m+ β1 cos(2πft) + β2 sin(2πft) + h(t) ,

(4.7)

61



where m is the long-run average magnitude, q(t) = β1 cos(2πft) + β2 sin(2πft) with

frequency f is the exactly periodic signal, and h(t) is the stochastic deviation from a

constant mean magnitude, caused by the formation and destruction of dust in the cool

atmospheres of Miras. Fig. 4.1 provides an example of the decomposition for a Mira light

curve. The first two terms m + q(t) in Eqn. 4.7 are exactly the same as the GLS model

of Eqn. 4.2. To simplify notation, we define bf (t) = (cos(2πft), sin(2πft))T , so that

q(t) = bf (t)
Tβ. The subscript in bf (t) emphasizes that the basis is parameterized by the

frequency f .

An SP statistical model is constructed in Eqn. 4.7 if we assume h(t) is a smooth func-

tion that belongs to a reproducing kernel Hilbert spaceH with norm ‖ ·‖H and a reproduc-

ing kernel K(·, ·). For this model, if the frequency f is known, we obtain a least squares

kernel machine considered in Liu et al. (2007). Because the frequency is unknown, the

response function is nonlinear in f . This nonlinearity and the multimodality in f of the

residual sum of squares provide additional challenges that require a novel solution.

Besides the additive formulation in Eqn. 4.7, another possible solution to account for

the quasi-periodicity is a multiplicative model such as g(t) = m + h(t)q(t), where the

amplitude of the strictly periodic term q(t) is modified by a smooth function h(t). How-

ever, the multiplicative model is more computationally intensive in nature and requires

imposing a positive constraint on h(t). As we will show in the following subsections,

the h(t) term in the additive model can be easily absorbed into the likelihood function.

Nevertheless, the multiplicative approach is an interesting alternative approach to model

formulation and is open to future study.
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4.2.1 Equivalent Formulations

Following §5.2 of Rasmussen and Williams (2005), for fixed f , the parametersm,β1, β2

and h(t) in Eqn. 4.7 are jointly estimated by minimizing

n∑
i=1

1

σ2
i

[yi −m− β1 cos(2πfti)

− β2 sin(2πfti)− h(ti)]
2 + λ‖h(·)‖2

H,

(4.8)

where λ is a regularization parameter. A smoothing/penalized spline model for h(t) is

a special case of the general formulation of Eqn. 4.8 with a specifically defined kernel;

see §6.3 of Rasmussen and Williams (2005). For fixed λ, the solution of h(t) is a linear

combination of n basis functions K(ti, t), i = 1, 2, · · · , n, by the representer theorem

(Kimeldorf and Wahba, 1971; O’sullivan et al., 1986). It is still left for us to choose the

regularization parameter λ to balance data fitting and the smoothness of the function h(t).

An equivalent point of view to the above regularization approach is to impose a Gaus-

sian process prior on the function h(t); see §5.2.3 of Rasmussen and Williams (2005).

The benefit of this view is that it provides an automatic method for selecting the regular-

ization parameter λ. In particular, we can absorb λ into the definition of the norm ‖ · ‖H

and assume the term h(t) in Eqn. 4.7 follows a Gaussian process, h(t) ∼ GP(0, kθ(t, t′)),

with the squared exponential kernel kθ(t, t′) = θ2
1 exp

(
− (t−t′)2

2θ22

)
, and parameters θ =

(θ1, θ2). The Gaussian process assumption implies that at any finite number of time

points t1, t2, · · · , ts, the vector (h(t1), · · · , h(ts)) is multivariate normally distributed, with

zero mean and covariance matrix K = (k(ti, tj)). This imposes a prior on the function

space of h(t). We also impose priors on m and β in Eqn. 4.7. In particular, we assume

m ∼ N (m0, σ
2
m) and β ∼ N (0, σ2

b I). The prior mean m0 can be interpreted as the aver-

age magnitude of Miras in a certain galaxy, and σ2
m is the variance of Miras in that galaxy;
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the prior variance σ2
b is the variance of the light curve amplitude. These prior parameters

can be determined using previous studies. For example, in §4.4, we use well-sampled light

curves of LMC Miras (Soszyński et al., 2009) to obtain values of these parameters. It is

advisable to check the sensitivity of these prior specifications.

The benefit of using priors onm and β is three-fold: first, they introduce regularization

by using information from early studies; second, they provide a natural device for sepa-

rating the estimation of frequency and the light curve signal component using Bayesian

integration when the parameter of interest is the frequency; lastly, the regularization pa-

rameter θ of the non-parametric function is allowed to be chosen by the maximum likeli-

hood, without resorting to the computationally expensive cross-validation method.

In summary, we have built the following hierarchical model for a Mira light curve:

yi|m,β, g(ti) ∼ N (g(ti), σ
2
i ),

g(t) = m+ bf (t)
Tβ + h(t),

m ∼ N (m0, σ
2
m),β ∼ N (0, σ2

b I),

h(t)|θ ∼ GP(0, kθ(t, t′)),

(4.9)

where θ and f are fixed parameters. In this model, the frequency parameter f is of key

interest to our study. We do not perform a fully Bayesian inference by imposing a prior

distribution on f because the likelihood function of f is highly irregular, with numerous

local maxima, and Monte Carlo computation of the posterior is expensive and intractable

for large astronomical surveys.

Previously, Baluev (2013) applied a Gaussian process model to study the impact of

red noise in radial velocity planet searches. While his maximum likelihood method is a

classical frequentist approach in statistics, our approach can be considered as a hybrid of
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Bayesian and frequentist approaches. We treat the parameter of interest f , and the param-

eters for the kernel θ of the Gaussian process as fixed, and impose a prior distribution on

other parameters. This is similar to the type-II maximum likelihood estimation of parame-

ters of a Gaussian process or regularization parameters in function estimation; see §5.2 of

Rasmussen and Williams (2005). From the Bayesian point of view, θ and f are treated as

hyper-parameters that in turn are estimated by the empirical Bayes method. Because the

Gaussian process plays a critical role in modeling departure of light curves from periodic-

ity, we may also refer to our model more precisely as the nonlinear SP Gaussian process

model.

4.2.2 Estimation of the Frequency and the Periodogram

Let y = (y1, y2, · · · , yn) be the observation vector of the magnitudes of a light curve.

By integrating out m,β and h from the joint distribution given by Eqn. 4.9, we get the

marginal distribution of y, p(y|θ, f), which is a multivariate normal with mean µ = m01

and covariance matrix

Ky =
(
σ2
m + σ2

bbf (ti)
Tbf (tj) + kθ(ti, tj) + σ2

i δij
)
n×n ,

where δij = 1 if i = j and δij = 0 if i 6= j. Therefore, the log likelihood of θ and f is

Q(θ, f) = log(p(y|θ, f))

=− 1

2
(y −m01)TK−1

y (y −m01)− 1

2
log det Ky −

n

2
log(2π).

(4.10)

The maximum likelihood estimator of θ and f is obtained by maximizing Q(θ, f).

Since the likelihood function is differentiable with respect to θ but highly multimodal in

the parameter f , standard optimization methods cannot be directly used to jointly maxi-

mize over θ and f .
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We adopt a profile likelihood method as follows. For each frequency f over a dense

grid, we compute the maximum likelihood estimator θ̂f = arg maxθQ(θ, f). This can be

done using the quasi-Newton method. Then we perform a grid search to find the maximum

profile likelihood estimator of f , i.e.,

f̂ = arg max
f

Q(θ̂f , f) , (4.11)

the estimated period is P̂ = 1/f̂ . The details of the algorithm are given in §4.2.3. The

profile log-likelihood as a function of the frequency f is adopted as the periodogram for

our model,

SSP (f) = Q(θ̂f , f) . (4.12)

It contains the spectral information of the signal. The frequency of the dominant harmonic 

component is expected to be the location of the peak of this profile likelihood.

4.2.3 Computation of the Periodogram

Now we present the details of computing the profile l ikelihood. Because Q(θ, f ) is 

highly multimodal in the frequency parameter f , we follow the commonly used strategy 

of optimization through grid search. On the other hand, since Q(θ, f) is differentiable in 

parameter θ, the quasi-Newton method can be employed to optimize over θ for fixed f , 

and obtain the profile likelihood (Eqn. 4.12). The gradient of the log likelihood (Eqn. 4.10) 

with respect to θj (j = 1, 2) is

∂

∂θj
Q(θ, f)=

1

2
tr

(
(ααT−K−1

y )
∂Ky

∂θj

)

where α = K−1
y (y − m01). In general, the objective function for the Gaussian process

model is not convex in its kernel parameters θ and global optimization cannot be guaran-
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Figure 4.2: The three dimensional surface plot of Q(θ, f) in Eqn. 4.10, for the simulated
light curve in Fig. 4.6. Notice Q(θ, f) is plotted as a function of θ and f is fixed at its true
frequency.

teed. Fig. 4.2 shows a surface plot of Q(θ, f) as a function of θ for one simulated light

curve, with f fixed at the true frequency. The surface exhibits unimodality in this case,

although it is not convex.

The computation involved in calculating the profile likelihood through the quasi-Newton

method can be intensive. Since the objective function (Eqn. 4.10) is non-convex in θ,

generally multiple starting points should be attempted to find the global optimizer when

applying the quasi-Newton method. In addition, evaluating the objective function and the

gradient function requires inversion of the covariance matrix whose computation cost is of

the order O(n3). During each quasi-Newton iteration, these evaluations could be repeated

several times because multiple step size might be attempted. To make the computation

more challenging, all of the above needs to be repeated at hundreds or even thousands of

densely gridded fs per light curve. Furthermore, the method may need to be applied to

hundreds of thousands or millions of light curves from large astronomical surveys.

In order to speed up computation over the dense grid of frequency values, we use the
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Algorithm 2 Quasi-Newton’s Method with Grid Search.
procedure QUASINEWTON()
Input: Maximal and minimal trial frequencies fM > fm > 0; frequency step ∆f ; n
observations {ti, yi, σi}.
Output: Periodogram S(f) evaluated at the trial frequencies.

1: Initialize θ(0) and H(0), and f ← fm;
2: for f ∈ {fm, fm + ∆f, fm + 2∆f, · · · , fM} do
3: p← 0;
4: repeat
5: tp ← −H(p) ∂

∂θ
Q(θ(p), f);

6: θ(p+1) ← θ(p) + αptp and the step size αp satisfying the Wolfe condition;
7: dp ← θ(p+1) − θ(p), ep ← ∂

∂θ
Q(θ(p+1), f)− ∂

∂θ
Q(θ(p), f);

8: ρp = 1/dTp ep;
9: H(p+1) ← (I− ρpdpeTp )H(p)(I− ρpepdTp ) + ρpdpd

T
p ; . BFGS update

10: p← p+ 1;
11: until ‖dp−1‖ < ε

12: θ̂f ← θ(p), and S(f)← Q(θ̂f , f);
13: H(0) ← H(p) and θ(0) ← θ(p); . Save warm start value for next trial frequency
14: end for

result of applying the quasi-Newton method at one frequency value as a warm start for

the subsequent frequency value. Specifically, the optimizer θ̂f and its approximate inverse

Hessian matrix are provided as quantities to start the quasi-Newton iterations for the next

frequency value on the dense grid. When the initial point is near the local minimizer

and the inverse Hessian matrix is a good approximation to the true Hessian matrix, the

quasi-Newton algorithm will converge at superlinear rate; the step size of α = 1 will be

accepted by the Wolfe descent condition, avoiding evaluation of the objective function

multiple times to determine the appropriate step size during each iteration (see Ch. 6 of

Nocedal and Wright, 2006, for a more rigorous mathematical discussion). We find that a

warm start can speed up the computation significantly but sometimes we need to restart

with random initial values to ensure convergence to the global optimum. The pseudocode

provided in the Algorithm X describes our algorithm.
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4.2.4 Estimation of the Signal and its Components

After the parameters f and θ are fixed at their maximum likelihood estimates f̂ and

θ̂f̂ , we can perform the inference of the light curve signal g(t) and its components in the

standard Bayesian framework. Interested readers may consult Ch. 2 of Rasmussen and

Williams (2005) for a detailed discussion of this topic.

Firstly, we could obtain the posterior distribution of γ = (m,βT ), the parameters for

the long run average magnitude and the exactly periodic term. The prior of γ isN (γ0,Σγ)

with γ0 = (m0, 0, 0)T and Σγ = diag(σ2
m, σ

2
b , σ

2
b ). Its posterior distribution is γ|y ∼

N (γ̄, Σ̄γ) with

γ̄ =
(
HTK−1

c H + Σ−1
γ

)−1

(
Σ−1
γ γ0 + HTK−1

c y
)
,

Σ̄γ =
(
HTK−1

c H + Σ−1
γ

)−1
,

(4.13)

where

h(t)=(1,bf̂ (t)
T )T ,H=(h(t1),h(t2), · · · ,h(tn))T ,

and Kc=
(
kθ̂f̂

(ti,tj)+σ2
i δij
)
n×n with f̂ and θ̂f̂ plugged in.

Consider the prediction of light curve magnitude at a specific time point t∗. Define

the vector k∗ = (kθ̂(t∗, t1), · · · , kθ̂(t∗, tn))T . Conditional on (y,γ), the distribution

of g(t∗)|y,γ is a multivariate normal with mean h(t∗)Tγ + kθ(t∗, t)K−1
c (y − Hγ) and

variance kθ̂(t∗, t∗)− (k∗)TK−1
c k∗. With the posterior distribution of γ given in Eqn. 4.13,

we are able the remove γ from the above conditional distribution of g(t∗). Finally, we get
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the posterior distribution of the signal at t∗ as g(t∗)|y ∼ N (ḡ∗, σ̄2
g∗) with

ḡ∗ =h(t∗)T γ̄ + k(t∗, t)K−1
c (y −Hγ̄) ,

σ̄2
g∗ =kθ̂(t∗, t∗)− (k∗)TK−1

c k∗ + rT Σ̄γr ,

(4.14)

where r = h(t∗)−HTK−1
c k∗.

4.3 Simulation of M33 Light Curves

It is not possible to evaluate the period estimation accuracy of our method directly on

the M33 data because the “ground truth” is unknown. Instead, we construct a test data set

by smoothing the well-sampled OGLE light curves to infer continuous functions, then re-

sample these functions to match the observational patterns of the M33 data, and at last add

noise to the light curves. This data set can serve as a testbed for future studies of compar-

ing different period estimation methods. We will now describe the M33 observations and

the construction of the test data set. As the whole simulation procedure is a complicated

process, we will discuss its components in detail from §4.1 to §4.4. The whole simulation

procedure will be summarized in §4.5.

4.3.1 Characteristics of the M33 Observations

Most of the disk of M33 was observed by the DIRECT (Macri et al., 2001) and

M33SSS (Pellerin and Macri, 2011) projects in the BV I bands, with a combined base-

line of 7 − 9 years and a sampling pattern that depends on the exact location within the

disk (see Fig. 4.3). The large area of coverage and long baseline of these observations

make them suitable for Mira searches. We use the I-band observations to carry out the

simulations, as this is the wavelength range where Miras are brightest (out of the three

bands used by these projects). Detailed descriptions of the M33 observations can be found

in the above referenced papers. We use the data products from a new reduction that will
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Figure 4.3: Observation patterns for 31 fields in M33, labeled as 0, 1, . . . , 9, a, b, . . . , u.
The horizontal axis shows the Julian date (bottom) and the calendar year (top).

.

be presented in a companion paper (W. Yuan et al. 2016, in prep.). I-band light curves are

available for∼ 2.5×105 stars, with a median of 44 measurements and a maximum of 170.

We model the relation between a magnitude measurement m and its uncertainty σ as

σ = a(t′i, F )[m−b(t′i,F )] + c(t′i, F ) , (4.15)

for each observation field F and each observation night t′i, where a(t′i, F ), b(t′i, F ) and

c(t′i, F ) are field- and night-specific constants. There are 31 different fields in total, F =
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Figure 4.4: m − σ relation for a given night and field within M33. The solid red line is
the best-fit relation using the empirical function σ = a(m−b) + c, with a = 2.666, b =
23.117, c = 0.008.

0, 1, · · · , 9, a, b, · · · , u. The parameters are determined via least-squares fitting using all

the measurements for the specific field F and night t′i. Fig. 4.4 shows the m − σ relation

for a typical field.

In order to test the SP periodogram we need sparsely sampled, moderately noisy Mira

light curves with known periods. Thus, we characterize the sampling patterns and noise

levels of the M33 observations and simulated Mira light curves of known periods using

the OGLE observations of these objects in the LMC.

4.3.2 Matching the M33 Observation Pattern

The first step in simulating a Mira light curve is to randomly select a sampling pattern

based on the light curve of an actual star in some field F , {t′i}ni=1 with n ∈ [10, 170]. A

random time shift s is added, ti = t′i + s for i = 1, 2, · · · , n. The random shift s follows

a uniform distribution over the interval [0, P0], where P0 is the true period of the LMC

Mira selected during the artificial light curve generation process. This helps to simulate a

large number of unique light curves sampled at random phases using the limited number

of template light curves.
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4.3.3 The Mira Template Light Curves

The template Mira light curves are obtained by using our SP model to fit the Mira

light curves in the LMC, collected by the OGLE project (Soszyński et al., 2009). A total

number of 1663 Miras have been observed in I with very high accuracy, excellent phase

coverage, and a long baseline (the median and mean number of observations are 466 and

602, respectively, with a baseline of ∼ 7.5 years for most fields). Because the LMC light

curves are densely sampled with high quality, we can adopt a more complicated model to

provide a higher fidelity fit. Following §5.4.3 of Rasmussen and Williams (2005), instead

of Eqn. 4.7, the signal light curve g(t) is decomposed into

g(t) = m+ l(t) + q(t) + h(t), (4.16)

where m is the long run average magnitude, l(t) is the long-term (low-frequency) trend

across different cycles, q(t) is the periodic term, and h(t) is small-scale (high-frequency)

variability within each cycle. The latter three terms are modeled by the Gaussian process

with different kernels. In particular, we use the squared exponential kernel kl(t1, t2) =

θ2
1 exp(−1

2
(t1−t2)2

θ22
) for l(t), another squared exponential kernel kh(t1, t2) = θ2

6 exp(−1
2

(t1−t2)2

θ27
)

for h(t), and lastly a periodic kernel

kq(t1, t2) = θ2
3 exp

(
− 1

2

(t1 − t2)2

θ2
4

− 2 sin2(2πf(t1 − t2))

θ2
5

)

for q(t). Note the periodic kernel allows the light curve amplitude to change across cy-

cles. The maximum likelihood method is applied to fit each LMC light curve, fixing f to

the OGLE value and solving for the unknown parameters (θ1, θ2, · · · , θ7). Fig. 4.5 is an

illustration of the model fitting result using Eqn 4.16 based on the same light curve as in

Fig. 4.1. Notice that the more complex model in Fig. 4.5 is only suitable for a densely
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Figure 4.5: Light curve of a Mira in the LMC observed by OGLE (black points), de-
composed following Eqn 4.16. Top panel: the fitted light curve; second panel: long-term
signal, m+ l(t); third panel: periodic term, m+ q(t); bottom panel: stochastic variations,
m+ h(t).

sampled light curve.

Once the sampling pattern is chosen, one of the template light curves will be selected

according to the luminosity function described in the next subsection. With the selected

template, the magnitude of the simulated light curve signal at t′i with shift s is g(t′i + s),

which is computed with Eqn. 4.16 in a similar way as Eqn. 4.14.

4.3.4 Matching the Luminosity Function to the M33 Observations

While the OGLE observations of LMC Miras are deep enough to detect these objects

over their entire range of luminosities, the M33 observations become progressively more

incomplete for fainter and redder objects. We derived an empirical completeness function
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for the M33 observations as follows. We fitted the observed luminosity function F0(I) us-

ing an exponential for I ∈ [18.5, 20] mag and extrapolated to fainter magnitudes, obtaining

F1(I). The empirical completeness function is then C(I) = F1(I)/F0(I).

We randomly picked {t′i}ni=1 from the M33 light curves. For each {t′i}ni=1, we selected

a (LMC-based) template using C(I + 6.2) as the probability distribution. The value of

+6.2 mag accounts for the approximate difference in distance modulus between the LMC

and M33. In this way the resulting luminosity function of the simulated light curves is

statistically the same as that of the real M33 observations.

4.3.5 The Simulation Procedure

With all the components discussed above, we are able to present the whole simulation

procedure here. In order to generate one simulated Mira light curve matching the sampling

characteristics of the M33 observations, the first step is to randomly select a sampling

pattern {t′i}ni=1, and then add a random shift s, ti = t′i + s, i = 1, 2, · · · , n. The second

step is to randomly select a template light curve according to the luminosity function, then

compute the light curve signal g(t′i+s) for the selected sampling pattern {t′i}ni=1. The third

step is to use the best-fit relations (Eqn. 4.15) to add photometric noise via

yi = g(t′i + s) + 6.2 + σiεi ,

where +6.2 mag is the approximate relative distance modulus, εi is drawn from N (0, 1),

and σi is computed from

σi = a(t′i, F )[g(ti)+6.2−b(t′i,F )] + c(t′i, F ).

for the selected observation pattern t′i and field F . Following this procedure, we generate

one simulated light curve {t′i, yi, σi}ni=1. The procedure is repeated until 105 suitable light
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curves are generated, excluding any with < 10 data points or sampling on < 7 nights.

4.4 Performance Evaluation

Having generated the test data set, we evaluate the performance of the SP model and

compare it with the GLS model. We choose prior parameters for the SP model of m0 =

15.62 + 6.2, σm = 10 and σb = 1. The adopted value of m0 is the average I magnitude

of Miras in the LMC and once again +6.2 is the approximate relative distance modulus

between M33 and the LMC. The values of σm and σb are larger than those derived from

the LMC samples in order to make those priors non-informative. Although fitting the

SP model is computationally slower than the LS model, we find that our model gives an

overall improvement in various metrics. For both methods, the periodograms are computed

on a dense frequency grid from 1/2000 to 1/100 with a spacing of the order of 10−5. For

the GLS method, we chose a spacing of (0.05/time span) or∼ 2.5×10−5, which results in

optimal performance for this simulation. For our SP method, we chose a slightly smaller

value of 10−5 to facilitate the warm start mechanism in our algorithm (see Appendix) given

that small changes in frequency result in tiny changes of the objective function.

4.4.1 The Aliasing Effect

We fit the entire simulated data set using the SP model. Fig. 4.6 gives an example

of a simulated light curve and its SP periodogram (Eqn. 4.12). In this example, the true

frequency (labeled by the blue dotted line) is successfully recovered.

Aliasing frequencies at f ± 1/365 d affect most periodograms when dealing with

sparsely observed astronomical data. The red dashed line in Fig. 4.6 indicates the aliasing

frequency at f + 1/365 where a strong peak exists. This is not a rare case, and for some

light curves the one-year beat aliasing frequencies have higher log likelihoods than the true

frequencies. Fig. 4.7 compares the recovered and true frequencies for all simulated light

curves. Two secondary strips parallel to the main one and offset by ±0.00274 represent
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Figure 4.6: Simulated light curve (top) and periodogram SSP (f) based on our model
(bottom). Error bars are derived from the M33 observations. In the top panel, a large gap
in temporal coverage was removed to make the plot compact (also note the different time
spans). The lines in the bottom panel correspond to the true (solid blue) and the one-year
aliasing (dashed red) frequencies.

f̂ = f ± 1/365, respectively. Other aliasing frequencies, such as 2f , 3f , 0.5f , etc., are

also noticeable. Lastly, due to the sampling pattern of some light curves, the side lobes of

the main peak can be higher than the central value. These manifest as close parallel strips

to the aforementioned features.

4.4.2 Accuracy Assessment

The estimated frequency is considered as correct if ∆f = |f̂ − f0| < Cf for each light

curve. The estimation accuracies for the two methods are summarized in Table 4.1 for

several different values of Cf . We choose Cf = 2.7× 10−4 to stringently bind the one-to-

one strip in Fig. 4.7. Overall, the SP correctly estimates the period for 69.4% of the light

curves, while the LS model has an accuracy of 63.6%. The improvement of SP over LS is

more evident for C-rich Miras, with about 10% higher accuracy, while the improvement for

O-rich Miras is smaller, with about 3% higher accuracy. The difference in performance

arises because C-rich Miras often exhibit larger stochastic deviations that can be better

captured by the SP model, while O-rich Miras have more stable light curves that can be

modeled reasonably well with the LS method. We also compute the estimation accuracy
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of each method by grouping the light curves according to the number of observations, as

shown in the left panels of Fig. 4.8. The top and bottom rows show results for C- and

O-rich Miras, respectively. The performance difference is once again more evident in the

C-rich category.

Note that accuracy is not a monotonic function of the number of observations, implying

this is not a good indicator per se of the information content of the light curves for fre-

quency (period) estimation. Thus, we define another metric, called phase coverage. Recall

that the times of observation for a given light curve are t1, t2, · · · , tn. Given a period of P ,

these are converted into corresponding phases by si = (ti mod P )/P, i = 1, 2, · · · , n in
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Figure 4.8: Accuracy comparison using different metrics. Light curves are grouped by
number of observations (first column), phase coverage (second column), and conf values
(third column). The estimation accuracies in each group is computed and plotted as above.
The red circles represent the SP model, while blue triangles denote the GLS model. The
upper panels are for C-rich Miras, and the lower panels are for O-rich Miras.
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Figure 4.9: Actual and reconstructed Period-Luminosity relations for C-rich (top) and O-
rich (bottom) Miras. The leftmost column shows the actual PLRs using periods and WI

magnitudes from Soszyński et al. (2009). The other columns use the same magnitudes but
periods based on the SP or LS algorithms, as indicated in each panel. Recovered PLRs
are plotted for various subsets selected according to the conf values obtained with the
respective method.
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the closed interval [0, 1]. Now, define

J =
(⋃

i

(si − l, si + l)
)
∩ [0, 1] ,

for a specific l > 0, the phase coverage can be measured by λ(J) where λ(·) is the

Lebesgue measure (we choose l = 0.02). λ(J) describes the “length” of the union of

the intervals J . For example, λ(J) = 0.1 for J = (0.1, 0.2), and λ(J) = 0.2 for

J = (0.1, 0.2) ∪ (0.5, 0.6).

We divide the light curves into 100 groups such that their λ(J) is in one of the intervals

(k/100, (k + 1)/100] for k = 0, 1, · · · , 99 and compute the estimation accuracy for each

subset. The results for the two models are plotted in the middle column of Fig. 4.8. Now

the estimation accuracy is monotonically increasing as a function of phase coverage. The

accuracy improvement of our method is highest when the phase coverage is around 0.5 for

C-rich Miras. As the phase coverage approaches the extremes (0 or 1), the performance

difference between the two methods diminishes. At λ(J) ≈ 0, both methods will fail

because this is a hopeless situation. At the other extreme, when λ(J) ≈ 1 and abundant

information is available for frequency estimation, both methods have an accuracy close to

1.

The periodogram SSP(f) of our model defined in Eqn. 4.12 provides more information

than just the optimal frequency. Suppose f1 is the largest local maximal (global maximum)

of SSP(f), and f2 is the second largest local maximal of SSP(f). Now define conf =

SSP(f1) − SSP(f2) ≥ 0. The value of conf serves as a confidence measurement of the

global optimal estimate in Eqn. 4.11. Larger values of conf indicate smaller uncertainty

in our estimate, and thereby the estimate is more reliable. Now, let c0 be the smallest value,

and let c1, . . . , c100 be the 1st–100th percentiles of all the conf values computed for all

the light curves. Each light curve can be assigned to a percentile group if its conf is in
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(ck−1, ck] for some k ∈ {1, 2, · · · , 100}. After assigning all light curves by conf to their

corresponding percentile groups, the estimation accuracy in each group can be computed.

The same procedure is applied to the GLS model, with the p-value of the F-statistics given

in Eqn. 4.6 for the top peak being used as its conf measurement. The result is plotted in

the right column of Fig. 4.8. The accuracy of our SP method is much higher than the LS

model in the top 40 groups. In particular, the accuracy of our method is higher than 90%

in the top 20 groups for both C- and O-rich Miras.
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Figure 4.10: Dispersion of reconstructed Wesenheit PLRs for different sets of artificial
light curves, based on their conf value. Top: O-rich PLRs. Bottom: C-rich PLRs. The
starred symbols show the dispersion of the actual OGLE periods and WI magnitudes. The
filled symbols show the dispersion of the recovered PLRs based on SP-derived periods.
The open symbols show the corresponding values for LS-derived periods.

Light curves with high values of conf are particularly reliable for constructing Period-

Luminosity relations (hereafter, PLRs) based on the “Wesenheit” function (Madore, 1982).

This function enables a simultaneous correction for the effects of dust attenuation and finite

width of the instability strip by defining a new magnitude WI = I−1.55(V −I), where V
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Table 4.1: Comparison of estimation accuracies (%)

Cf Method
Class

(10−4) C-rich O-rich Both

1.0
SP 58.1 55.3 56.5
LS 49.4 51.6 50.6

2.0
SP 69.6 63.8 66.3
LS 60.1 60.6 60.4

2.7
SP 73.5 66.2 69.4
LS 63.7 63.5 63.6

N light curves 43,116 56,884 105

and I are the mean magnitudes in those filters. Figure 4.9 compares PLRs based on WI

magnitudes and periods determined by OGLE and estimated with each of the two models.

The top and bottom rows display the PLRs for C- and

O-rich Miras, respectively. The leftmost column shows the PLRs based on the actual

OGLE periods, while the next two sets of columns show the corresponding relations based

on SP or LS periods for the simulated light curves with the top 10% and 40% values of

conf.

In order to provide a quantitative comparison of the improvement obtained with our

SP method, we calculated the dispersion of the actual WI PLRs and their recovered coun-

terparts as a function of conf value as follows, separately for C- and O-rich Miras. First,

we selected all objects of a given class with 2< logP < 3. If the Soszyński et al. (2009)

catalog did not provide a V measurement for a given variable, the missing value was esti-

mated through linear interpolation of the (I, V −I) relation for objects of the same class

within |∆ logP | < 0.05 dex. We fitted a quadratic PLR

m = a+ b(logP − 2.3) + c(logP − 2.3)2

with iterative 3σ clipping (removing ∼ 5% of the data). We then computed the dispersion

83



of the initially selected OGLE sample about the best-fit relation, including outliers. This

yielded “benchmark” dispersions of 0.45 & 0.54 mag for C- & O-rich variables, respec-

tively. Keeping the best-fit relation fixed, we computed the dispersion of recovered PLRs

using all artificial light curves within a certain range of conf (top 10%, top 20%, . . . ),

using the periods and conf values derived by the SP or the LS method. As in the case

of the OGLE samples, we only considered objects with 2 < logP < 3. The results are

plotted in Fig. 4.10. The SP subsamples exhibit lower (or at worst, equal) dispersions than

their LS counterparts for all percentiles and for both subtypes. As discussed previously,

the improvement provided by our method is strongest for C-rich Miras and diminishes in

significance as one includes light curves with progressively lower confidence values.

84



5. SUMMARY

In our work, we propose two light curve models for SNIa and Mira variables. They are

developed in the framework of functional data analysis in statistics, and demonstrated to

improve over existing methods. The Mira light curve model combines a dominant sinusoid

component with Gaussian process. It has stronger power to estimate period, and is tested

on a large-scale simulation.

In addition, we have presented an empirical model for SNIa light curves. Using this

model, the entire light curve of a SNIa can be represented by a few scores. These scores

characterize light curve shape, intrinsic color, and color excess for SNIa. Some light curve

scores are even correlated with spectral features measured independently of SNIa light

curves. In previous studies, the absorption features of SNIa spectra have been empirically

compared with the color and the light curve width parameter. For example, Silverman et al.

(2012a) showed the strength of Si II λ4000 is anti-correlated with SALT II width param-

eter and no correlation with color. This anti-correlation only implies stronger Si II λ4000

correlated with narrower light curve shape. However it is interesting to explore further how

the light curve shape in multi-bands changes with the strength of this line. The score pa-

rameters from our model reveal more such information. Regarding this, we have presented

a more detailed morphology analysis of light curve with respect to the feature strength.

Moreover, by examining the correlation among scores, especially the first two domi-

nant scores, we find the SNIa light curve resides in a tight nonlinear subspace. A more

dramatic dimension reduction is possible by nonlinear dimension reduction techniques.

This tight nonlinear subspace specifies plausible parameter domains for SNIa light curves.

A new light curve can be classified as SNIa if its scores are inside this subspace. On the

other hand, a photometrically different SN can also be identified if its score vector is far
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away from this subspace. Our algorithm may produce a quantitative photometric classi-

fication scheme for supernovae. These classification and outlier detection task have been

carried out previously by Hsiao et al. (2014), Ishida and de Souza (2013). In this paper,

an initial analysis of nonlinear dimension reduction shows some promises. More thorough

work is left for future study.

Beyond these empirical investigations, the proposed model embraces more potential in

cosmology model fitting. Although the primary light curve shape parameter such as ∆M15,

the stretch parameter, or the parameter in SALT II is effective, it is still worthwhile to

explore other constructions using the shape of the entire light curve. Estimation of ∆M15

is sensitive to local observations around the peak and around the +15 days in phase. If we

lack enough observations to constraint light curve shapes around these days in phase, the

estimated ∆M15 would have large uncertainty. Besides, the ∆M15 parameter only captures

the declining part of the light curves, and fails to capture the light curve shape at the rising

side. The stretch parameter may not be applicable for SN wavelength bands longer than I

band, and may not always fit well for both the rising and falling part of a SNIa light curve.

A product of our model is to replace the ∆M15 term in the existing distance prediction

models by a functional linear term. This functional linear term is a more flexible, robust

and data-driven way to adjust the light curve shape for distance prediction. By comparing

with the previous distance models using ∆M15 adjustment, we have demonstrated that

using the functional linear form of the entire light curve consistently gives smaller residual

scattering and robust distance prediction.

Among the effort to reduce distance prediction scatter, one common conjecture is that

SNIa is not a homogeneous group. There exist subclasses of their own characteristics.

Each subclass has its own dust correction and K-correction. Picking out a more homo-

geneous subclass help to further reduce the dispersion. Some works endeavor to identify

subclasses based on spectral data (Benetti et al., 2005; Branch et al., 2009; Wang et al.,
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2009). The dispersion reduction is more significant by pairing supernovae with identical

spectral features and applying pairwise dust correction (Fakhouri et al., 2015). Our study

finds that, when only light curve data is available, the scores extracted from the light curve

can still help to determine spectral classes, although with limited precision. After that, the

dispersion can be reduced by fitting the distance and dust correction model within a sub-

class of SNIa observations. Another potential application of this result is to improve the

precision of K-correction, as the spectral template from the corresponding spectral class

can be applied for this subclass of observations.
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