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ABSTRACT

The notion of matrix rigidity was introduced by L. Valiant in 1977. He proved a

theorem that relates the rigidity of a matrix to the complexity of the linear map

that it de�nes, and proposed to use this theorem to prove lower bounds on the

complexity of the Discrete Fourier Transform. In this thesis, I study this problem

from a geometric point of view. We reduce to the study of an algebraic variety

in the space of square matrices that is the union of linear cones over the classical

determinantal variety of matrices of rank not higher than a �xed threshold. We

discuss approaches to this problem using classical and modern algebraic geometry and

representation theory. We determine a formula for the degrees of these cones and we

study a method to �nd de�ning equations, also exploiting the classical representation

theory of the symmetric group.
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1. INTRODUCTION

The topic of matrix rigidity lies in the intersection of several areas of research in math-

ematics and computer science, including algebraic geometry, representation theory

and algebraic complexity theory.

The origin of the subject is in a plan proposed by L. Valiant to prove lower bounds

on the complexity of performing the Discrete Fourier Transform (DFT), that is the

map Cn → C
n given by x 7→ DFTnx where DFTn is the n × n matrix DFTn =(

ω(j−1)(k−1)
)
j,k

with ω = exp(2πi/n). This linear map is of great importance in

many areas of mathematics and computer science such as signal processing and data

compression as well as representation theory and the study of di�erential equations.

Its importance motivates the study of algorithms to perform the DFT matrix-vector

multiplication using a small number of arithmetic operations.

In 1965, J.W. Cooley and J.W. Tukey ([CT65]) rediscovered an algorithm that was

already known to Gauss to perform the DFT using O(n log(n)) arithmetic opera-

tions (the so-called Fast Fourier Transform algorithm - FFT), whereas the standard

multiplication algorithm uses O(n2) arithmetic operations. After the discovery of

the FFT, people asked if it was possible to �nd an algorithm that was even faster. In

1977, L. Valiant ([Val77]) proposed an approach to determine lower bounds on the

complexity of the DFT (and more generally of any sequence of linear maps) based on

the notion of matrix rigidity. The r-rigidity of a matrix A is the minimum number

of entries of A that one needs to change so that the rank of the resulting matrix is

at most r. More formally

De�nition 1.1. Let A be an n × n matrix with complex coe�cients and let r
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be a nonnegative integer. The r-rigidity of A is the smallest integer s such that

A = B +C, where rank(B) ≤ r and C is s-sparse (namely it has at most s non-zero

entries). More precisely, the r-rigidity of A is

Rigr(A) := min
{
s : A = B + C with rank(B) ≤ r and C is s-sparse

}
.

If a matrix A can be written as A = B + C with B of low rank and C sparse, then

the linear map x 7→ Ax is easy to evaluate. For instance, using the standard multi-

plication algorithm, the evaluation of x 7→ Ax requires O(n2) arithmetic operations.

If A has rank r < n, then one can write A = B1B2, where B1 is an n× r matrix and

B2 an r×n matrix; in this case the standard multiplication algorithm would require

only O(nr) arithmetic operations. On the other hand, if A is s-sparse, then the

standard multiplication algorithm requires only O(s) arithmetic operations. What

is surprising is that if a matrix fails to have low r-rigidity (for r in a certain range)

then the associated linear map is hard to evaluate.

Indeed, in [Val77], Valiant proved that the r-rigidity of A is a measure of the com-

plexity of the linear map x 7→ Ax. The complexity measure that is used is expressed

in terms of linear circuits. We refer to Appendix A for the precise de�nitions. The

following result (and its re�ned version, see Theorem A.2), is our main motivation

for the study of matrix rigidity.

Theorem 1.2 ([Val77], Cor. 6.3). Let {An} be a sequence of matrices with An ∈

Matn(C). If there exist ε, δ ∈ (0, 1) such that Rigεn(An) ≥ n1+δ then any linear

circuit of logarithmic size depth computing An must have size Ω(n log log n).

In his work, Valiant proposed to use Theorem 1.2 to prove lower bounds for the

2



complexity of the DFT, or of any linear map. More generally, he posed the problem

of �nding any sequence of explicit matrices that would satisfy the hypotheses of

Theorem 1.2:

Problem 1.3. Find an explicit in�nite family of matrices An such that there exist

ε, δ > 0 with Rigεn(An) ≥ n1+δ.

In this context �explicit� has a precise meaning: we say that a sequence {An} is

explicit if the entries of An are computable by a deterministic Turing machine in

time polynomial in n.

Problem 1.3, posed in 1977, is still open. More recently B. Barak (personal commu-

nication) proposed to restrict to the case where the matrix C of De�nition 1.1 has

the support of a permutation matrix:

Problem 1.4. Find an explicit in�nite sequence of matrices An ∈ Matn with the

property that there exists ε ∈ (0, 1) such that An cannot be written as Bn + Cn if

rank(Bn) ≤ εn and Cn has at most one non-zero entry on each row and each column.

We will see in Chapter 5 that Problem 1.4 has a simple solution if ε < 1/2. It

becomes interesting when ε is close to 1: for instance, it is wide open if ε ≈ 9/10.

A straightforward parameter count shows that if {An} is a sequence of matrices with

An ∈ Matn(C) generic, then Rigεn(An) ≥ (1 − ε)2n2 (we will see this argument in

detail in Chapter 3); in particular, any su�ciently general sequence of matrices is a

non-explicit solution for Problem 1.3. For this reason, questions such as Problems 1.3

and 1.4 in the computer science literature are associated to the expression �nding hay

in a haystack, referring to the fact that we seek an explicit object with some property

in a set where almost every object has the required property. The expression was

coined by Howard Karlo� and is used in [AB09] in the context of explicit construction
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of expander graphs; another example is the problem of �nding explicit examples of

elusive functions, as discussed in [Raz08]. In our setting, in the haystack of all

matrices, it is surprisingly easy to �nd the needles, namely the very rare matrices

with low rigidity, and it is surprisingly hard to explicitly determine the hay, that is

matrices with high rigidity.

In this thesis, following work started in [LTV03], [Lok06] and [KLPS14], we study the

problem of matrix rigidity from a geometric point of view. Our goal is to determine

su�cient conditions to have high rigidity and use these conditions to determine lower

bounds for the rigidity of particular classes of matrices. This idea is common to many

problems where algebraic geometry is used to determine lower bounds in complexity

theory: the strategy consists in �nding an algebraic variety that contains all the

matrices with r-rigidity under some �xed threshold and determining equations for

this algebraic variety; these equations are tests for high rigidity, in the sense that

if a matrix A does not satisfy one of the equations, then we can conclude that its

rigidity is higher than the �xed threshold. The same plan has been used, for instance,

to determine lower bounds for the complexity of matrix multiplication and for the

determinantal complexity of the permanent polynomial (see e.g. [Lan15]).

Part of this work is based on [GHIL16], of which we present the main results, while

part is original. The main new achievement of this thesis is a method to determine

equations providing tests for high rigidity, in a restricted range (in particular, in the

setting of Problem 1.4) using a sequence of iterated determinants. We present some

results that describe the equations we obtain in terms of the representation theory

of the symmetric group that acts on Matn via conjugation by a permutation matrix.

In Chapter 5, we use the methods we have developed to prove lower bounds on the

rigidity of some class of matrices.
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1.1 Previous work

We extensively explained the main contribution of [Val77]. Several results were

achieved in this subject throughout the decades, mainly using combinatorial and

graph-theoretic techniques; we refer to [Lok09] for a survey and to [Cod00] for a list

of related problems. As for the problem of constructing explicit matrices with high

rigidity, the state of the art is as follows. Over �nite �elds [Fri93] provides an explicit

sequence of matrices An with Rigr(An) = Ω(n
2

r
log(n

r
)); a similar bound is provided

by [SSS97] using a sequence of Cauchy matrices over in�nite �elds; the same bound is

achieved in [Lok00] using the sequence DFTn. Notice that in Valiant's range (namely

with r = εn according to Theorem 1.2) this bound becomes the trivial Ω(n).

The use of geometry started essentially with [LTV03], where the �rst results trans-

lating matrix rigidity into a membership problem in algebraic geometry have been

proved. With a similar approach, �rst [Lok06] and then [KLPS14] use e�ective upper

bounds on the possible degrees of equations for certain varieties to construct rigid

matrices: the solution of [Lok06] is obtained using primitive roots of one with order

exponential in n, while [KLPS14] uses matrices whose entries are of the form
√
pjk

(where pjk are the �rst n2 primes). In these cases the quadratic bound in Valiant's

range is reached (namely Rigεn(An) = Ω(n2)), but the matrices are not explicit in

the sense explained above. In [GHIL16], we continued the study of matrix rigidity

via geometry started in [LTV03] and [KLPS14]; most of these results are presented

in detail in this thesis.
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1.2 Structure of the thesis

In Chapter 2, we recall classical results in Algebraic Geometry and Representation

Theory, that will be useful in the rest of the work. In particular, we describe in

detail the construction of the Young symmetrizer associated to a standard Young

tableau, that will be a fundamental tool in part of this work. In Chapter 3, we begin

the study of the geometry of matrix rigidity: we de�ne the notion of border rigidity,

more suitable for geometry and we characterize the irreducible components of an

algebraic variety that contains matrices of low border rigidity. These irreducible

components are linear cones over determinantal varieties, classically studied objects

in algebraic geometry. In Section 3.3, we present the results of [GHIL16] concerning

the degrees of these linear cones. In Chapter 4, we determine several equations for

the cones that we mentioned: these equations will be our tests for high rigidity, as

explained above. In Section 4.1 we present some of the equations that we determined

in [GHIL16] in the extreme cases r = 1 and r = n − 2. In Section 4.2, we focus on

the restricted setting of 1.4: we provide a new method to determine equations via a

sequence of iterated determinants in this restricted range; we prove the correctness

of the method in Theorem 4.10. In Section 4.3, we study the sequence of iterated

determinants from a representation theoretic point of view; Theorem 4.19 proves that

some of the equations that we obtain are invariant under the action of a particular

(rather natural) subgroup of the permutation group acting on the space of matrices

by simultaneous permutation of rows and columns. In Chapter 5, we use some of the

equations that we determined to prove that, in a restricted range, some sequences

of matrices have high rigidity, namely they are hays in the haystack of all matrices.

Finally, in Section 5.2, we give a speci�c result concerning Cauchy matrices in the

setting of Problem 1.4 (Theorem 5.9). We conclude in Chapter 6 with a summary
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of the results, and a brief discussion on the di�culties we encountered and possible

future research.
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2. BACKGROUND IN ALGEBRAIC GEOMETRY AND REPRESENTATION

THEORY

In this chapter we introduce basic notions of Algebraic Geometry and Representation

Theory and we state the main classical results that will be needed in the rest of this

work. We will work over the complex �eld C.

2.1 Algebraic geometry

Algebraic Geometry is the study of zero sets of polynomials. We will work both in

a�ne and projective space. References for this section are [Har92], [Mum95] and

[Sha77]. Let V be a �nite dimensional vector space over C. If U is a subset of V ,

we denote by 〈U〉 its linear span in V . We denote by C[V ] the ring polynomials

on V ; if v1, . . . , vn is a basis of V and x1, . . . , xn is its dual basis in V ∗ then C[V ]

can be identi�ed with the ring of polynomials in x1, . . . , xn. We write SdV ∗ for

the d-th symmetric power of V ∗, or equivalently, in coordinates, the vector space of

homogeneous polynomial of degree d in x1, . . . , xn. If S is a set of polynomials, we

denote by (S) the ideal generated by S in C[V ]. Given an ideal J , we denote by
√
J

its radical ideal.

2.1.1 Varieties and functions between them

De�nition 2.1. An a�ne algebraic variety is a subset X in V that is the common

zero set of a set of polynomials F in C[V ]:

X = {x ∈ V : f(x) = 0 for every f ∈ F};
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in this case, we write Z(F ) := X.

We denote by PV the projective space of V , namely the space of 1-dimensional

subspaces of V , or equivalently the quotient (V r {0})/ ∼ where, for every v1, v2 ∈

V r {0}, v1 ∼ v2 if and only if v1 = λv2 for some λ ∈ C. For v ∈ V , we denote by

[v] the class of v in PV . If X is a subset of PV , we write X̂ for the a�ne cone over

X, namely X̂ := {v ∈ V : [v] ∈ X}.

Given a homogeneous element f ∈ C[V ], we say that f vanishes at [v] ∈ PV if f

vanishes identically on the line 〈v〉 ⊆ V .

De�nition 2.2. A projective algebraic variety is a subset X in PV that is the

common zero set of a set of homogeneous polynomials F in C[V ]. As in the a�ne

case, we write Z(F ) := X.

The family of a�ne algebraic varieties de�nes the closed sets of a topology on V , that

is called Zariski topology of V . The Zariski topology is coarser than the Euclidean

topology. Similarly, projective algebraic varieties de�ne the closed sets of a topology

in PV , the Zariski topology on PV . The Zariski topology of PV is the quotient of

the Zariski topology of V r{0} and it is coarser than the Euclidean topology on PV .

We say that a property P holds generically in an algebraic variety X, or that it

holds at a generic (or general) point of X, if there exists a Zariski open subset U in

X such that P holds at every point of X.

Given X ⊆ V (resp. X ⊆ PV ), let I(X) := {f ∈ C[V ] : f(x) = 0 for every x ∈ X}.

I(X) is an ideal (resp. homogeneous ideal) of C[V ] that is called the ideal of X.

The quotient C[X] := C[V ]/I(X) is called the a�ne (resp. homogeneous) coordinate

ring of X.
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Theorem 2.3 (Nullstellensatz, [Mum95], Thm. 1.5). Let I be an ideal of C[V ].

Then I(Z(I)) =
√
I. In particular, Z(I) = ∅ in V if and only if 1 ∈ I and Z(I) = ∅

in PV if and only if SDV ∗ ⊆ I for some D su�ciently large.

If X ⊆ V is an a�ne variety, and f ∈ C[V ] is a polynomial, f de�nes a function

on X by restriction. The kernel of the restriction map is I(X), therefore C[X] may

be regarded as the ring of functions on X that can be obtained as restriction of

polynomials on V . An element ϕ ∈ C[X] is called a regular function on X. Notice

that if X is a projective variety, then C[X] is the ring of regular functions on X̂. The

ideal I(X) of a projective variety is a homogeneous ideal with respect to the natural

grading of the polynomial ring; the grading descends to the homogeneous coordinate

ring C[X], making it into a graded ring.

If X, Y are a�ne varieties and Y ⊆ Cm, we say that Φ : X → Y is a regular map if

Φ = (ϕ1, . . . , ϕm) if its components as a map to Cm are elements of C[X].

Similarly, if X, Y are projective varieties and Y ⊆ PC(m+1), we say that Φ : X →

Y is a regular map if its components as a map to PCm+1 are elements of C[X]

homogeneous of the same degree and with no common zero set in X.

Regular maps de�ne, via composition, a ring homomorphism between the coordinate

rings; if Φ : X → Y is a regular map of a�ne varieties then we can de�ne a ring

homomorphism as follows:

Φ∗ : C[Y ]→ C[X]

ϕ 7→ ϕ ◦ Φ.

Proposition 2.4 ([Sha77], Thm. 1.10). Let Φ : X → Y be a regular map of projec-
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tive varieties. Then the image Φ(X) ⊆ Y is a projective variety.

The map Φ∗ sends equations for subvarieties of Y to equations for their preimage

via Φ. More precisely

Lemma 2.5. Let Φ : X → Y be a regular map and let Z ⊆ Y be a subvariety. Let

f ∈ C[Y ] such that f vanishes identically on Z. Then Φ∗(f) vanishes identically on

Φ−1(Z).

Proof. Directly by the de�nition, if z ∈ Φ−1(Z), then Φ∗(f)(z) = f ◦ Φ(z) =

f(Φ(z)) = 0 since Φ(z) ∈ Z.

De�nition 2.6. Let X be an algebraic variety. We say that X is reducible if there

exist algebraic varieties Y1, Y2 ( X such that X = Y1 ∪ Y2. We say that X is

irreducible otherwise.

The following statement gives a su�cient condition for when Zariski and Euclidean

closure coincide:

Proposition 2.7 ([Mum95], Thm. 2.33). Let X ⊆ V (or X ⊆ PV ) and let X
Z

and X
E
be respectively its Zariski and its Euclidean closures in V (or in PV ). Then

X
E ⊆ X

Z
and equality holds if X

Z
is irreducible and X contains a Zariski open

subset of X
Z
.

Every algebraic variety can be expressed uniquely as �nite irreduntant union of

irreducible varieties (see e.g. [Sha77], Thm. 1.4 and Thm. 1.5). The irreducible

varieties appearing in such union are called irreducible components. The ideal I(X)

of an irreducible (a�ne or projective) variety is a prime ideal, and its coordinate ring

is an integral domain.

De�nition 2.8. If X is an irreducible a�ne variety in V , de�ne C(X) := Q(C[X])

11



the �eld of fractions of C[X]. The �eld C(X) is called the �eld of rational functions

of the a�ne variety X. If X is projective, we de�ne

C(X) :=

{
f

g
∈ Q(C[X]) : f, g are homogeneous of the same degree

}
.

C(X) is a �eld and it is called the �eld of rational functions of the projective variety

X. Both in the a�ne and projective case, the elements of C(X) are called rational

functions on X.

If X, Y are a�ne varieties and Y ⊆ Cm, we say that Φ : X 99K Y is a rational map

if its components as a map to Cm are elements of C(X).

Similarly, if X, Y are projective varieties and Y ⊆ PC(m+1), we say that Φ : X 99K Y

is a rational map if its components as a map to PCm+1 are elements of C(X), not

all identically 0.

De�nition 2.9. Let Φ : X → Y be a rational map between projective irreducible

varieties such that Φ−1(y) is �nite for a generic y ∈ Φ(X). Then there exists an

integer d such that d = |Φ−1(y)| for a generic y ∈ Φ(X) (see e.g. [Mum95], Prop.

3.17). The integer d is called degree of the map Φ; we write deg Φ := d.

De�nition 2.10. Let dimW = n+ 1. The projective space PW can be covered by

n + 1 copies of a n-dimensional a�ne spaces V0, . . . , Vn; we call them a�ne charts

of PW . If X ⊆ V is an a�ne variety, we de�ne X
P

to be its projective completion,

namely X
P

:= X ⊆ PW , where W is an n + 1-dimensional vector space and V is

regarded as one of the a�ne charts of PW .
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2.1.2 Dimension, degree, tangent space and tangent cone

A projective subspace of PV is the zero set of a set of linear forms; in particular, if

X ⊆ PV is a subspace, then X̂ ⊆ V is a linear subspace of V . We write X = Pm if

dim X̂ = m+ 1.

Proposition 2.11 ([Har92], Prop. 11.4 and Prop. 7.16). Let X ⊆ PV be an

irreducible projective variety. Then there exists a unique nonnegative integer c such

that every every Pc+1 intersects X in in�nitely many points and at least one Pc−1

does not intersect X. Moreover, there exists a unique integer d with the property that

a generic Pc intersects X in exactly d points.

De�nition 2.12. Let X ⊆ PV be an irreducible variety. The codimension of X (in

PV ) is the unique integer c such that everyPc+1 intersectsX in in�nitely many points

and at least one Pc−1 does not intersect X. The dimension of X is dimPV − c. We

write codimX := c and dimX := dimPV − c. The dimension of an a�ne variety is

de�ned to be the dimension of its projective completion. IfX is reducible, then de�ne

dimX := dimX0, where X0 is an irreducible component with maximal dimension.

We say that X is equidimensional if all its components have the same dimension.

De�nition 2.13. Let X ⊆ PV be an irreducible variety. The degree of X is the

unique integer d such that a generic Pc intersects X in d points, where c = codimX.

We write degX := d. The degree of an a�ne variety is de�ned to be the degree of

its projective completion. If X is reducible, then de�ne degX =
∑

i degXi where

Xi's are the irreducible components of maximal dimension.

Remark 2.14. Let X be an algebraic variety (a�ne or projective). If codimX = 1,

then we say that X is a hypersurface. In this case I(X) is a principal ideal (see e.g.

[Sha77], Thm. 1.21); let f ∈ PV be a generator of I(X). Then degX = deg(f).
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Let f ∈ C[V ] and let v ∈ V . Write v =
∑

i civi where ci = xi(v) are the coordinate

of v with respect to the basis v1, . . . , vn. Then f admits a Taylor expansion at v of

the form

f = f0 + f1 + · · ·+ fd

where d = deg f and fj is a homogeneous polynomial of degree j in the (xj − cj)'s.

If α is a multi-index, the coe�cient of a monomial (x− c)α in f|α| is 1

(nα)
∂|α|f

∂xα
(v). In

particular f0 = f(v) and f1 = dvf , the di�erential of f at v.

De�nition 2.15. Let X be an a�ne variety, let x ∈ X and assume I(X) =

(g1, . . . , gr). The tangent space to X at x is

TxX := Z(dxg1, . . . , dxgr).

De�nition 2.16. Let X be an a�ne variety, let x ∈ X and assume I(X) =

(g1, . . . , gr). For every j write gj = gj,1+, . . . ,+gj,d for the Taylor expansion of

gj at x (since x ∈ X, we have gj,0 = 0). The tangent cone to X at x is

TCxX := Z(g1,m1 , . . . , gr,mr),

where mj = min{` ∈ {1, . . . , d} : gj,` 6= 0}.

De�nition 2.17. Let X be a projective variety and let x ∈ X. The a�ne tangent

space to X at x is

T̂xX := TvX̂

where v is any non-zero vector in x̂ (the de�nition does not depend on the choice of

v).
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Similarly, the a�ne tangent cone to X at x is

T̂CxX := TCvX̂

where v is any non-zero vector in x̂ (the de�nition does not depend on the choice of

v).

Notice that T̂CxX (and of course T̂xX) is a cone over the line x̂. In particular, its

image PT̂CxX in the projective space PV (and similarly the image PT̂xX) de�nes

a cone over the point x. This is called the embedded tangent cone to X at x (and the

embedded tangent space toX at x). We denote them as TCxX and TxX, respectively.

De�nition 2.18. Let X be an a�ne (resp. projective) variety and let x ∈ X. We

say that x is a smooth point of X if dimTxX = dimX (resp. dim T̂xX = dimX+1).

Proposition 2.19 ([Sha77], Thm. 2.3). Let X be an algebraic variety and let Xsmooth

be the set of its smooth points. Then Xsmooth is Zariski open in X and at every

smooth point the tangent space and the tangent cone coincide. Moreover the function

x 7→ dimTxX (or x 7→ dim T̂xX−1) is upper semicontinuous and generically equal to

dimX. For every x ∈ X, if X is a�ne then dimX = dimTCxX, if X is projective

then dimX = dim T̂CxX − 1.

When it is irreducible and reduced, the (embedded) tangent cone to X at x can be

interpreted as the union of tangent lines to X at x (see e.g. [Sha77], Sec. II.1.5.

2.2 Representation theory

Representation Theory is the systematic study of symmetries or, more precisely, of

group actions on vector spaces via linear transformation. We will focus on represen-

tation theory of �nite groups and in particular of the symmetric group. References
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for this sections are [FH91], [Ser96] and [Sag13].

De�nition 2.20. Let G be a group. A representation of G, or a G-module, is a

vector space V with a group homomorphism

ρV : G→ GL(V );

we often drop ρV in our notation: for instance, if v ∈ V , gv will denote the image of

v via ρV (g).

De�nition 2.21. Let G be a group and V a G-module. Let X ⊆ V be a subset.

We say that X is invariant under the action of G if gx ∈ X for every x ∈ X and

g ∈ G. An algebraic variety that is invariant under the action of a group G is called

a G-variety. We say that X is a set of G-invariants if gx = x for every x ∈ X and

every g ∈ G.

De�nition 2.22. Let G be a group and V a G-module. We say that V is irreducible

if V 6= 0 and there is no (non-trivial) invariant subspace in V under the action of G.

De�nition 2.23. Let G be a group and let V,W be representations of G. A linear

map f : V → W is called G-equivariant, or a G-map, if it commutes with the action

of G namely, for every g ∈ G and every v ∈ V , f(g · v) = g · f(v).

The following elementary result is an extremely useful tool in representation theory

(we refer to [FH91], Lemma 1.7 for the proof):

Lemma 2.24 (Schur's Lemma). Let G be a group and let V,W be irreducible repre-

sentations of G, let f : V → W be a G-equivariant map. Then either f ≡ 0 or f is

an isomorphism. Moreover, if V = W , then f = c · idV for some c ∈ C.

De�nition 2.25. Let V be a representation of a group G and let V0 be an irreducible

representation of G. We say that V0 has multiplicity k in V if k is the largest integer
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such that there exists an injective G-equivariant map V ⊕k0 → V .

Theorem 2.26 ([Ser96], Thm. 2 and Cor. 1). Let G be a �nite group. Then every

representation V of G is direct sum of irreducible representations:

V = V ⊕k11 ⊕ · · · ⊕ V ⊕k`` ,

with Vi non-isomorphic irreducible representations. The multiplicities ki are uniquely

determined.

De�nition 2.27. Let G be a �nite group. The group algebra C[G] is the |G|-

dimensional vector space ofC-valued functions onG. For every g ∈ G, let δg : G→ C

be the function de�ned by

δg(h) :=

 1 if h = g,

0 otherwise

The δg's form a basis of C[G] and the multiplication structure is extended linearly

from the product in G: δg1 · δg2 = δg1g2 .

Every representation of G is naturally a module over the ring C[G] (see e.g. [Ser96]

for details); an irreducibleG-representation de�nes aC[G]-module that has no proper

submodules; a G-equivariant map is a C[G]-linear map of modules. In particular,

the representation theory of G is equivalent to the theory of C[G]-modules.

The group G acts on C[G] in two ways: via multiplication and via pull-back of

functions. More precisely, C[G] is acted on by G×G as follows:

(g1, g2) · δh(−) := δg−1
1
· δh(g2 · −) = δg−1

1 hg2
(−),
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and the action is extended linearly to C[G].

The following result describes the irreducible representations of a �nite group:

Theorem 2.28 ([Ser96], Ch.2, Thm. 7). Let G be a �nite group. Then there is

a one-to-one correspondence between the conjugacy classes of G and the irreducible

representations of G. Moreover, if V1, . . . , Vr are the irreducible representations of

G, then the group algebra C[G] decomposes as

C[G] =
r⊕
i=1

Vi ⊗ V ∗i . (2.1)

It is straightforward to verify (see e.g. [Ser96], Ch.2) that the group algebra C[G]

acts on a module V by contracting the irreducible components of V on the second

factors of the decomposition (2.1); more precisely, if V = Vj is irreducible, and

g = u⊗ α ∈ Vi ⊗ V ∗i ⊆ C[G], then g : V → V is de�ned by g · v = α(v)u, where the

elements of V ∗i are identically 0 on Vj if j 6= i and they have a natural contraction

on Vj if j = i.

In the next section, we will present in detail the irreducible representations of the

symmetric group and we de�ne projection operators (so-called Young symmetrizers)

that are useful to construct explicitly the irreducible representations.

2.2.1 Specht modules and Young symmetrizers

Let Sd denote the symmetric group over {1, . . . , d}. We will represent permutations

in a two-rows notation or as product of disjoint cycles. For instance

σ = ( 1 2 3 4
2 1 4 3 ) = (1, 2)(3, 4)
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denotes the permutation of S4 de�ned by the bijective map

σ(1) = 2, σ(2) = 1, σ(3) = 4, σ(4) = 3.

The sign of a permutation σ is +1 if σ can be written as product of an even number

of 2-cycles and it is −1 if σ can be written as an odd number of 2-cycles. We denote

by (−1)σ the sign of the permutation σ.

A partition is a non-increasing sequence of positive integers λ = (λ1, . . . , λ`). The

integer |λ| :=
∑`

i=1 is called the order (or the number of boxes) of λ and `(λ) := `

is called the length (or the number of parts) of λ. If |λ| = d and `(λ) = `, we say

that λ is a partition of d with ` parts, and we write λ �
` d. It is useful to represent

partitions via Young diagrams which are top-left justi�ed collections of boxes. The

partition λ �
` d is represented by a Young diagram with d boxes, where the i-th row

has λi boxes. For example, the diagram

represents the partition (4, 2, 1) of 7.

Every permutation σ ∈ Sd decomposes uniquely as product of disjoint cycles: we say

that σ has cycle type λ = (λ1, . . . , λ`) if the cycles in its decomposition have lengths

λ1 ≥ · · · ≥ λ`. Two permutations σ1, σ2 ∈ Sn are conjugate in Sd if and only if

they have the same cycle type. In particular, conjugacy classes in Sd are indexed

by partitions of d and so are the irreducible representations of Sd by Theorem 2.28.

Denote by [λ] the irreducible representation corresponding to the partition λ: it is
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called the Specht module of type λ.

Even though [λ]∗ ' [λ] (see e.g. [Ike12], Sec. 4.1), in order to avoid confusion, we

tend to denote explicitly with [λ]∗ the modules appearing on the right hand side of

(2.1).

A Young tableau is a function that assigns a positive integer to each box of a Young

diagram. Pictorially, it corresponds to a �lling of the Young diagram with positive

integers. If a Young tableau Tλ is a �lling of a Young diagram λ, we say that Tλ

has shape λ. The content of a Young tableaux is the function that counts how many

times each integer appears in a �lling.

There is a natural action of Sd on the set of all Young tableaux that permutes the

integers appearing in each box.

A standard Young tableau of shape λ is a Young tableau of content (1|λ|) that is

increasing in every row from left to right and in every column from top to bottom.

1 2 5 7
3 6
4

1 2 5 7
4 6
3

Figure 2.1: A standard and a non-standard

Young tableaux of shape (4, 2, 1)

Every standard tableaux has an associated Young symmetrizer, a particular element

of the group algebra C[Sd] that de�nes a projection operator on the Specht modules.

We follow [FH91], �4, for the construction of the Young symmetrizers.
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Let Tλ be a standard Young tableau of shape λ �
` d. De�ne:

RTλ = {σ ∈ Sd : σ · Tλ has the same rows (as sets) as Tλ},

CTλ = {τ ∈ Sd : τ · Tλ has the same columns (as sets) as Tλ}.

Respectively, we call RTλ and CTλ the stabilizer of the rows and the stabilizer of the

columns of Tλ.

De�ne two elements of C[Sd] as follows:

aTλ :=
∑
RTλ

σ, bTλ :=
∑
CTλ

(−1)ττ ;

they are called, respectively, the symmetrizer of the rows and the symmetrizer of the

columns of Tλ.

The Young symmetrizer associated to Tλ is the element YTλ = bλaλ ∈ C[Sd]. The

importance of this element is due to the following theorem:

Theorem 2.29 (see e.g. [FH91], Thm 4.3). The right ideal YTλC[Sd] is isomorphic

to [λ]∗ ' [λ], as right-C[G]-module: more precisely, left multiplication by YTλ de�nes

a Sd-equivariant projection

C[Sd]→ vλ ⊗ [λ]∗,

for some vλ ∈ [λ].

More generally, if V is a Sd-representation, then YTλ can be regarded as a projection

operator in V whose image is contained in the subspace [λ]⊕kλ (where kλ is the

multiplicity of [λ] in V . More precisely, we have the following results
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Lemma 2.30. Let λ, µ � d be two partitions and let YTλ be the Young symmetrizer

of a Young tableau Tλ of shape λ. Then

YTλ [µ] =

 〈vλ〉 for some non-zero vλ ∈ [µ] if µ = λ

0 otherwise.

We can exploit the projection de�ned by YTλ ∈ EndSd(V ) to detect the multiplicity

of [λ] in a representation V of Sd.

Corollary 2.31. Let Tλ be a Young tableau of shape λ and let YTλ be its Young sym-

metrizer. Let V =
⊕

µ[µ]⊕kµ be a Sd-representation. Then YTλ de�nes a projection

V → V whose image is a space of dimension kλ.

Indeed, Young symmetrizers of a given shape provide a basis of the corresponding

Specht module. If T1, . . . , TN are all the standard Young tableaux of shape λ, and

Y1, . . . ,YN are the corresponding Young symmetrizers, let vi be a non-zero vector

in the one-dimensional space Yi[λ]. We have that {vi : i = 1, . . . , N} is a basis for

[λ], that we call the basis of standard Young tableaux of shape [λ]. In particular, the

dimension of [λ] is the number of standard Young tableaux of shape λ.

The action of Sd on the set Tλ of Young tableaux of shape λ and content (1|λ|)

provides another interpretation of the Specht module [λ]. Let VTλ be the vector

space of linear combinations of elements of Tλ; for T ∈ Tλ, write vT for the basis

vector corresponding to Tλ.

We de�ne three type of straightening operations or Garnir operations :

· substitute vT1 with −vT2 if T1, T2 di�er only in one column by a single trans-

position of two entries;
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· substitute vT1 with vT2 if T1, T2 di�er only by a transposition of two columns

of the same length;

· substitute vT with
∑

T ′ vT ′ where the sum is over all T ′ that can be obtained

from T by exchanging, for �xed j, k, the top k elements of column j + 1 with

any k elements of the column j.

Consider the subspace K(λ) ⊆ VTλ , generated by di�erences w2 − w1 of elements

of VTλ with the property that w2 can be obtained from w1 with a �nite number of

straightening operations. Then the action of Sd passes to the quotient VTλ/K(λ) and

there is an isomorphism of Sd-representations [λ] = VTλ/K(λ). If YT is the Young

symmetrizer of T ∈ Tλ, then YT (VTλ/K) = 〈vT 〉. We refer to Sec. 4.1 in [Ike12] and

Sec. 8.1 in [Ful97] for details on this construction and generalizations.

2.2.2 Induced representations

If H is a subgroup of G, then every representation W of H de�nes naturally a

representation of G, that we denote IndGH(W ), the induced representation of W from

H to G. In this section, we discuss induced representations, with a focus on the

symmetric group.

First, we construct IndGH(W ) explicitly. Let k := |G : H| be the index of H in G and

let g := {g1, . . . , gk} be a set of representatives for the left cosets of H in G, namely

g1H, . . . , gkH are the cosets of H in G.

Let Mg = 〈g1, . . . , gk〉 be a vector space having g as basis.

We de�ne functions h(·) and j(·) as follows: for g in G, write h(g) ∈ H and j(g) =

1, . . . , k for the unique elements such that g = gj(g)h(g).
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Then de�ne IndGH(W ) as Mg ⊗W with the left G-action given on basis elements as

follows and extended by linearity: for every g ∈ G, gi ∈ g, w ∈ W , set:

g · (gi ⊗ w) = gj(ggi) ⊗ h(ggi)w.

It is straightforward to verify that the action is well de�ned. Moreover, we can see

that (the isomorphism class of) IndGH(W ) does not depend on the set of representa-

tives g.

In terms of group algebras, we have IndGH(W ) = W ⊗C[H] C[G], where C[H] is

regarded as a subring of C[G] and therefore C[G] is a C[H]-module.

In Chapter 4, we will be particularly interested in the induced representations from

Sd ×Se to Sd+e. Let µ and ν be partitions of d and e respectively, so that [µ]⊗ [ν]

is an irreducible representation of Sd ×Se: then

Ind
Sd+e
Sd×Se([µ]⊗ [ν]) =

⊕
λ
�
d+e

[λ]⊕c
λ
µ,ν

where cλµ,ν are nonnegative integers called Littlewood-Richardson coe�cients.

Several combinatorial techniques to compute Littlewood-Richardson coe�cients are

known; we refer to [Ike12] for an extensive discussion. We will use Littlewood-

Richardson coe�cients only in a very particular case:

Lemma 2.32 (Pieri's Rule [Mac98], I.5). Let µ be a partition of e and let ν = (d)
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and π = (1d). Then

cλµ,ν =

 1 if λ can be obtained from µ by adding d boxes
no two of them in the same column,

0 otherwise,

cλµ,π =

 1 if λ can be obtained from µ by adding d boxes
no two of them in the same row,

0 otherwise.
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3. GEOMETRY OF MATRIX RIGIDITY

In this chapter, we explain how algebraic geometry plays a role in the study of matrix

rigidity. In particular, we will show how algebraic geometry will provide su�cient

conditions for high rigidity. We will introduce the notion of border-rigidity that is

more suitable for geometry and we will determine the irreducible decomposition of

the variety of matrices of low border rigidity. We will give a formula for the degree

of these components in a restricted case.

The main reference for this chapter is [GHIL16].

We introduce some notation and some basic notions that will be useful. We denote by

Matn the vector space of n× n matrices with complex coe�cients. The polynomial

ring C[Matn] is generated by variables xij, for i, j = 1, . . . , n, where xij ∈ Mat∗n

outputs the (i, j)-th entry of a matrix.

Given two sets of indices I, J ⊆ {1, . . . , n} with the same cardinality |I| = |J | = k,

we write M I
J for the minor of the matrix

(
xij
)
i,j=1,...,n

obtained by considering the

rows in I and the columns in J . M I
J ∈ C[Matn] is a homogeneous polynomial of

degree k in the xij's.

If S ⊆ {1, . . . , n} × {1, . . . , n} is a set of pairs, we write LS ⊆ Matn for the linear

space of matrices supported at the entries of S, namely

LS = {A ∈ Matn : Aij = 0 if (i, j) ∈ S}.

It will be useful to represent S pictorially by marking with 8 the entries in S. For
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instance, if n = 3 and S = {(1, 1), (1, 2), (2, 1)}, we represent it as


8 8

8

 .

Sometimes, it will be useful to represent the entries that are not in S. In this case

we use the symbol ♦. For instance, if S consists of all the entries of a 3 × 3 matrix

except {(1, 1), (1, 2), (2, 1)}, then we represent it as


♦ ♦

♦

 .

3.1 Algebraic geometry useful for matrix rigidity

3.1.1 Joins of algebraic varieties

Given two points p, q ∈ PV , we denote by 〈p, q〉 := P(p̂ + q̂) the projective span of

p and q. The span 〈p, q〉 is a P1 if p and q are distinct (and it coincides with the

projective line joining them) and it is the point p if p = q.

De�nition 3.1. Let X, Y ⊆ PV be projective varieties. The join of X and Y is

J(X, Y ) :=
⋃

x∈X,y∈Y

〈x, y〉.

It is possible to give an upper bound for the dimension of J(X, Y ) in terms of the
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dimension of X and Y .

Proposition 3.2. Let X, Y ⊆ PV be irreducible projective varieties. Then J(X, Y )

is irreducible and dim J(X, Y ) ≤ dimX + dimY + 1.

Proof. De�ne

J o(X, Y ) :=
{

(x, y, p) ∈ X × Y ×PV : x ∈ X, y ∈ Y, x 6= y, p ∈ 〈x, y〉
}
,

and J (X, Y ) := J o(X, Y ), the closure in the Zariski topology of X × Y × PV .

Consider the two projections

J (X, Y )
π1

$$

π2

xx

X × Y PV

The projection π1 surjects onto X × Y and the image of π2 is J(X, Y ).

Consider the restriction of the projections π1, π2 to J o(X, Y ): π1 surjects onto (X ×

Y )r∆(X×Y ), where ∆(X×Y ) = {(x, y) ∈ X×Y : x = y}, that is a Zariski open subset

of X × Y ; on the other hand π2 surjects onto a Zariski dense subset of J(X, Y ).

The �ber of the projection π1 over (x, y) ∈ (X × Y ) r ∆(X×Y ) is the line 〈x, y〉. In

particular all �bers are irreducible and of dimension 1. By Thm. 1.25 in [Sha77], we

deduce that J (X, Y ) is irreducible and that its dimension is dim(X×Y )+dim〈x, y〉 =

dimX + dimY + 1.

Since π2 surjects onto J(X, Y ), we conclude dim J(X, Y ) ≤ dimX + dimY + 1.

For two projective varieties X, Y ⊆ PV , we say that J(X, Y ) has the expected di-
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mension if dim J(X, Y ) = min{dimX + dimY + 1, dimPV }.

If X̂, Ŷ ⊆ V are cones over two projective varietiesX, Y ⊆ PV , we de�ne J(X̂, Ŷ ) :=

Ĵ(X, Y ). Notice that J(X̂, Ŷ ) =
{
x+ y ∈ V : x ∈ X̂, y ∈ Ŷ

}
. The join J(X, Y ) has

the expected dimension if and only if dim J(X̂, Ŷ ) = dim(X̂) + dim(Ŷ ) and in this

case we will say that J(X̂, Ŷ ) has the expected dimension.

Joins between an algebraic variety and a linear space can be obtained as preimages

of projection maps; we characterize them in the following result, whose proof is

immediate.

Lemma 3.3. Let X ⊆ PV be a projective algebraic variety and let L ⊆ V be a linear

subspace. Let π : V → V/L be the projection map. Then J(X̂, L) = π−1(π(X̂)).

3.1.2 Determinantal varieties

De�nition 3.4. Given a nonnegative integer r ≤ n, de�ne σ(n)
r to be the set of n×n

matrices of rank at most r, that is

σ(n)
r := {A ∈ Matn×n(C) : rank(A) ≤ r}.

The set σ(n)
r is an a�ne algebraic variety and it is called the general r-th determinantal

variety of n×n matrices. We drop the superscript if the size of the matrices is clear

from the contest.

The ideal of σ(n)
r is generated by minors of size (r+1) (see e.g. [ACGH85], Sec. II.3),

namely

I(σr) =
(
M I

J : |I| = |J | = r + 1
)
.

In particular, σr is the a�ne cone over a projective variety. We have codimσr =
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(n− r)2 and dimσr = r(2n− r).

The variety σr is irreducible. It is singular and its singular locus coincides with

σr−1 ⊆ σr. In particular, the subset of σr consisting of matrices of rank exactly r

is the set of the smooth points of σr. The group GLn × GLn acts on Matn, via

(g, h)A := g−1Ah for every g, h ∈ GLn and A ∈ Matn. For every r, let Xr = ( Ir 0
0 0 ),

where Ir is the r × r identity matrix and the blocking is (r, n− r)× (r, n− r). The

orbit of Xr under the action of GLn ×GLn is the set of matrices of rank exactly r.

The variety σr is the closure of the orbit of Xr.

Proposition 3.5 (see e.g. [Har92], Example 14.16 and Example 20.5). Let A ∈ σr

with rank(A) = ` ≤ r. Then

TAσr = {B ∈ Matn : B · kerA ⊆ Im A},

TCAσr = {B ∈ Matn : kerA
B−−→ C

n → (Cn/Im A) has rank at most k − `}.

In particular, if A = X1 = ( 1 0
0 0 ) (with blocking (1, n− 1)× (1, n− 1)), then

TCAσr = J(TAσ1, τr)

where τr :=
{
B = ( 0 0

0 B′ ) : B′ ∈ σ(n−1)
r

}
.

The degree of σr is (see [ACGH85], Sec. II.5)

deg σr =
n−r−1∏
j=0

(n+ j)!j!

(r + j)!(n− r + j)!
(3.1)
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and the degree of its tangent cone at A, with rank(A) = ` is

deg TCAσr = deg σ
(n−`)
r−` =

n−r−1∏
j=0

(n− `+ j)!j!

(r − `+ j)!(n− r + j)!
.

3.2 Variety of matrices of low rigidity

In this section, we de�ne an algebraic variety R[n, r, s] that contains all matrices

with r-rigidity at most s. Our strategy to prove lower bounds for the rigidity of a

matrix A will be to prove that A does not lie in R[n, r, s].

We follow the discussion of [GHIL16], Sec. 2.1. Given n, r, s, de�ne

Ro[n, r, s] := {A ∈ Matn : Rigr(A) ≤ s},

the set of all matrices having r-rigidity at most s. We could use necessary conditions

for membership in Ro[n, r, s] in order to prove lower bounds on the rigidity of a given

matrix. In particular, we will be interested in polynomials f ∈ C[Matn] that vanish

identically on Ro[n, r, s]: if we determine such a polynomial and a matrix A ∈ Matn

such that f(A) 6= 0, we can deduce that Rigr(A) > s.

If f is a polynomial vanishing identically on Ro[n, r, s], then it vanishes identically

on the Zariski (or equivalently Euclidean by Theorem 2.7) closure Ro[n, r, s].

De�nition 3.6. De�ne

R[n, r, s] := Ro[n, r, s].

We say that a matrix A has r-border rigidity s if s is the minimum integer such that

A ∈ R[n, r, s]; in this case we write Rig
r
(A) := s.
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Notice that Rigr(A) ≥ Rig
r
(A). According to De�nition 1.1, A ∈ Ro[n, r, s] if and

only if A = B+C where B ∈ σr and C has at most s nonzero entries, namely C ∈ LS

for some S consisting of s pairs of indices. We deduce

R[n, r, s] =
⋃
|S|=s

{
A = B + C : B ∈ σr, C ∈ LS

}
,

or equivalently

R[n, r, s] =
⋃
|S|=s

J(σr, L
S). (3.2)

We have the following result

Proposition 3.7. If s < (n− r)2 then the a�ne variety R[n, r, s] is a proper subva-

riety of Matn with at most
(
n2

s

)
irreducible components. Moreover, it is equidimen-

sional of dimension r(2n− r) + s.

Proof. The joins J(σr, L
S) of (3.2) are irreducible by Proposition 3.2. Moreover the

value dimσr + dimLS = r(2n − r) + s is the expected dimension of J(σr, L
S). We

are going to show that if J(σr, L
S) does not have the expected dimension then there

exists an S∗ with |S∗| = s such that J(σr, L
S) ⊆ J(σr, L

S∗) and J(σr, L
S∗) has the

expected dimension. In particular, this will show that only the joins of expected

dimension are irreducible components of R[n, r, s].

First, we observe that if S ′ is such that J(σr, L
S′) does not coincide with the ambient

space Matn, then there exists S ′′ ⊇ S ′ such that |S ′′| = |S ′|+ 1 and dim J(σr, L
S′′) =

dim J(σr, L
S′) + 1. If this was not the case, then, by the irreducibility of the joins,

J(σr, L
S′) = J(σr, L

S′′) for every S ′′ ⊇ S ′ with |S ′′| = |S ′| + 1, and recursively

J(σr, L
S′) = J(σr, L

S∗) for every S∗ ⊇ S ′; since J(σr, L
S′) ( Matn, we obtain a
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contradiction.

Now, if dim J(σr, S) = r(2n − r) + s′ with s′ < s (and it is not the entire Matn),

consider S ′ ⊆ S with |S ′| = s′ and J(σr, L
S′) has the expected dimension, so by

irreducibility dim J(σr, S) = dim J(σr, S
′). Now consider S∗ ⊇ S ′ with |S∗| = s and

J(σr, S
∗) has the expected dimension. Then dim J(σr, S) ⊆ dim J(σr, S

∗) and the

latter is an irreducible component of R[n, r, s].

Remark 3.8 (A short detour on matroids). The irreducible decomposition of the va-

rietyR[n, r, s] provides amatroid structure on the power set of {1, . . . , n}×{1, . . . , n}.

We refer to [Oxl06] for generalities on Matroid Theory.

Fix n, r and de�ne the independent sets of a matroid as follows:

In,r = {S ⊆ {1, . . . , n} × {1, . . . , n} : J(σr, L
S) has the expected dimension}.

Bases of the matroid are given by

Bn,r = {S : |S| = (n− r)2 and J(σr, L
S) = Matn}.

The rank function is given by S 7→ dim J(σr, L
S)− r(2n− r). In particular the �ats

are sets S such that if S1 ⊇ S then J(σr, L
S) ( J(σr, L

S1).

A geometric version of Problem 1.3 can be phrased as follows:

Problem 3.9 (Valiant's Problem from a Geometric Perspective). Find an explicit

in�nite family of matrices An ∈ Matn such that there exist ε, δ > 0 with An /∈

R[n, εn, n1+δ].

A solution to Problem 3.9 would provide a solution to Problem 1.3 because Rigr(A) >
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Rig
r
(A) for every A.

Proposition 3.7 shows that if An is a generic point of Matn, then An /∈ R[n, r, (n −

r)2 − 1] for every n, r; in particular Rigεn(An) ≥ Rigεn(An) = (1− ε)2n2.

Similarly, we can rephrase Problem 1.4 in terms of membership in an algebraic vari-

ety. De�ne

D[n, r] :=
⋃
τ∈Sn

J(σ(n)
r , LS

τ

)

where Sτ = {(1, τ(1)), . . . , (n, τ(n))} so that LS
τ
is the linear space of matrices

supported at the support of the permutation matrix corresponding to τ . The same

argument that we used in Proposition 3.7 shows the following:

Proposition 3.10. If n ≤ (n− r)2− 1, then the a�ne variety D[n, r] has exactly n!

irreducible components. Moreover, it is equidimensional of dimension r(2n− r) + n.

Proof. Notice all the J(σr, L
Sτ ), for τ ∈ Sn, are isomorphic and distinct. In partic-

ular this proves that the number of irreducible components if n! and the equidimen-

sionality. Finally, if S has exactly one element in each row and each column, then

J(σr, L
S) has the expected dimension. This follows from the same argument as 3.7,

and the fact that J(σr, L
S) is invariant under simultaneous permutation of rows and

columns.

We rephrase Problem 1.4 as follows

Problem 3.11 (Barak's Problem from a Geometric Perspective). Find an explicit

sequence of matrices {An}, with An ∈ Matn and An /∈ D[n, εn].

Every solution for Problem 3.9 is a solution for Problem 3.11

Notice that Problem 3.9 and Problem 3.11 are potentially harder than Problem 1.3
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and Problem 1.4, because working with Zariski closed objects we will not be able to

detect matrices of high rigidity if their border rigidity is low. However R[n, r, s] and

D[n, r] are proper subvarieties of Matn in the range that we are interested in, therefore

these problems can be still regarded as problems of �nding hay in a haystack, as the

original problems.

The next section studies the degrees of the irreducible components J(σr, L
S).

3.3 Degree of cones over determinantal varieties

Bounds on the degree of R[n, r, s] were used in [Lok06] and [KLPS14] to construct

matrices of high rigidity in Valiant's range (according to Problem 3.9). The con-

struction provides indeed in�nite sequences of rigid matrices in the range of Valiant's

problem, but it does not satisfy the requirement of explicitness. More precisely, the

sequence of [Lok06] uses roots of unity of order that grows exponentially in n; the

construction of [KLPS14] makes use of roots of large primes: in both cases, the al-

gebraic numbers that are used cannot be produced in polynomial time by a Turing

machine, which makes the construction non-explicit.

This section deals with the degrees of the joins J(σr, L
S), in the restricted range where

s ≤ n. We start with a classical result: it is a generalization of the classical Bezout's

Theorem that will be useful in determining a recursive relation for the degrees of

the joins that we are interested in. Only for this section, we work exclusively in

projective space, using the same notation that we used before. Notice that all the

varieties that we deal with are a�ne cones over projective varieties. Only for this

section, it will be useful to work with the projective version of these varieties. We will

not change the notation, so σr, LS and J(σr, L
S) are the projective varieties whose
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a�ne cones are the a�ne varieties that have been de�ned in the previous sections.

Proposition 3.12. Let X ⊆ PV be a projective variety and let x ∈ X such that

J(X, x) 6= X. De�ne

πX : X 99K P(V/x̂)

to be the restriction of the projection π : PV 99K P(V/x̂). Then πX is generically

�nite to 1 and

deg J(X, x) =
1

deg πX
[deg(X)− deg TCxX] .

Proof. The condition J(X, x) 6= X implies that πX is �nite to 1: if it was not, the

�ber over πX(p) (for a generic p ∈ X) would contain the line 〈x, p〉 and by genericity

we would have 〈x, p〉 ⊆ X for every p ∈ X, thus J(X, x) = X.

Moreover J(X, x) ) X implies, by irreducibility, that J(X, x) has the expected

dimension, dim J(X, x) = dimX + 1 and c = codim J(X, x) (in PV ) is the same as

codim πX(X) (in P(V/x)). From [Mum95], Thm. 5.11, we have

deg πX(X) =
1

deg πX
[deg(X)− deg TCxX] .

Let L = Pc be a generic linear space not containing x, so that J(X, x) ∩ L contains

exactly deg(J(X, x)) points. Since x /∈ L, the linear projection π maps it isomor-

phically to a subspace π(L) of P(V/x) that intersects πX(X) in deg(πX(X)) points.

Thus, we conclude that deg J(X, x) = deg πX(X).

Fix S = {(i1, j1), . . . , (is, js)}, and de�ne S0 = ∅, Sk = Sk−1 ∪ {(ik, jk)}. Clearly, for

every k, L̂Sk = L̂Sk−1 + L̂(ik,jk), therefore

J(σr, L
Sk) = J

(
J(σr, L

Sk−1), L{(ik,jk)}) . (3.3)
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In the case where S has not two entries in the same row or column, we will use the

relation (3.3) and Proposition 3.12 recursively to determine the degree of J(σr, L
S).

Without loss of generality, we may assume S = {(1, 1), . . . , (s, s)} is diagonal, and

s ≤ (n− r)2, otherwise J(σr, L
S) = Matn.

First, we show that in this setting, the degree of the map πX of Proposition 3.12 is

1.

Proposition 3.13. Fix n, r, s with s ≤ min{n, (n−r)2}. Let S = {(1, 1), . . . , (s, s)},

S ′ = Sr{(1, 1)} and let Z be the matrix with 1 in the top left entry and 0 elsewhere.

Let π : J(σr, L
S′) → P(Matn/〈Z〉) denote the projection from [Z] ∈ PMatn. Then

deg π = 1.

Proof. We want to prove that the generic �ber of π has 1 point. Equivalently,

a generic line through [Z] that intersects J(σr, L
S′), does it in a single point. By

genericity, it su�ces to �nd one point [A] ∈ J(σr, L
S′) such that the �ber π−1(π([A]))

consists of the single point {[A]}; equivalently it su�ces to �nd a matrix A = B+C

with [B] ∈ σr, [C] ∈ LS′) with the property that does not exist [B′] ∈ σr, [C ′] ∈ LS′

such that B + C = uZ + v(B′ + C ′) for some u, v ∈ C unless u = 0, B′ = B and

C ′ = C. This guarantees that the line through [A] and [Z] intersects J(σr,PL
S′)

only at [A] and [Z].

Let A be the matrix

A =

 0

A1


where the blocking is (1, n− 1)× (1, n− 1), and A1 = B1 + C1 is a generic point of

Ĵ(σ
(n−1)
r , LS

′
) ⊆ Matn−1; let B,C be respectively B1, C1 extended with a row and a

column of zeros. If A = uZ + v(B′ + C ′) with u 6= 0, [B′] ∈ σr and [C ′] ∈ LS′ , then
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the top left entry of B′ has to be nonzero and the rest of the �rst row and column has

to be 0. In particular rank(B′) = 1 + rank(B′1) ≤ r, where B′1 is the (n− 1)× (n− 1)

bottom right block of B. This means that A1 = v(B′1 + C ′1) ∈ Ĵ(σ
(n−1)
r−1 , LS

′
); since

[A1] is generic in J(σ
(n−1)
r , LS

′
) this is possible only if J(σ

(n−1)
r−1 , LS

′
) = PMatn−1; but

we have codim J(σ
(n−1)
r−1 , LS

′
) = (n− r)2 − (s− 1) > 0 because s ≤ (n− r)2.

This shows that the �ber of π over π([A]) consists of exactly the point [A], namely

deg π = 1.

The following result was conjectural in an early version of [GHIL16]; it was then

proved in a stronger form in [Alu15]. We propose here a version that is suitable to

our setting, with an elementary proof.

Proposition 3.14. Let X ⊆ PV and let x ∈ X. Let p ∈ PV , p 6= x, with the

property that π : X 99K P(V/p̂) is generically �nite and deg π = 1. If TCxJ(X, p) is

reduced and TCxX is not a cone over p, then TCx(J(X, p)) = J(TCxX, p).

Proof. First, observe that TCx(J(X, p)) and J(TCxX, p) have the same dimension

dimX + 1. Since J(X, p) 6= X, we have that J(X, p) has the expected dimension

dimX+1, so dimTCx(J(X, p)) = dimX+1. On the other hand, dimTCxX = dimX

and J(TCxX, p) has the expected dimension unless TCxX is a cone over p, but this

would be in contradiction with the hypothesis.

We show the equality between TCx(J(X, p)) and J(TCxX, p) by proving a double

inclusion. Suppose x = [x0] for x0 ∈ X̂ and p = [p0].

Let z ∈ Ĵ(TCxX, p), so z = w+αp0 for some w ∈ TCx0X̂ and α ∈ C. The vector w is

tangent to X̂ at x0, so w = d
dt
|t=0(ω(t)), for a curve ω(t) in X̂ with ω(0) = x0. De�ne

ζ(t) = ω(t) + αtp0. Then ζ(t) is a curve Ĵ(X, p); since ζ(0) = x0 and z = d
dt
|t=0ζ(t),
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we conclude [z] ∈ TCx0(J(X, p)).

Conversely, suppose z ∈ TCx0 Ĵ(X, p). Then z = d
dt
|t=0ζ(t) for a curve ζ(t) in Ĵ(X, p).

By genericity assumption, we have ζ(t) = ξ(t) + α(t)p0 for a curve ξ(t) ∈ X and

α(t) ∈ C; since deg π = 1, ξ and α are uniquely determined by ζ, ξ(0) = x0 and

α(0) = 0. We conclude z = d
dt
|t=0ζ(t) = d

dt
|t=0(ξ(t) + α(t)p0) = v + α′p0 for some

v ∈ TCx0X and α′ ∈ C, showing z ∈ J(TCxX, p).

By applying 3.14 recursively, we deduce

Corollary 3.15. Let X ⊆ PV and let x ∈ X. Let L ' Ps ⊆ PV , x /∈ L, with the

property that π : X 99K P(V/L̂) is generically �nite and deg π = 1. If TCxJ(X,L)

is reduced and TCxX is not a cone over any point of L, then TCx(J(X,L)) =

J(TCxX,L).

We recall this easy remark (see [Har92], Sec. 18.17, Calculation III):

Lemma 3.16. Let X ⊆ PV and let L = P
m ⊆ PV such that L is disjoint from

the span of X. The π : PV 99K P(V/L̂) is regular, �nite and of degree 1 on X.

Moreover degX = deg π(X) = deg(J(X,L)).

Write dn,r,s := deg J(σ
(n)
r , LS), where S is the set of the �rst s diagonal entries,

S = {(1, 1), . . . , (s, s)}; set dn,r,s = 0 if r is negative. In particular, dn,r,0 = deg σ
(n)
r

is given by (3.1).

Proposition 3.17. For every n, r, s with s ≤ min{(n− r)2}, we have

dn,r,s = dn,r,s−1 − dn−1,r−1,s−1.

Proof. Let p be the class in PMatn of the matrix with 1 at the (s, s) entry and 0
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elsewhere. Let S ′ = S r {(s, s)}. We have L̂S = L̂S
′
+ p̂. From 3.15, we have

TCpJ(σ(n)
r , LS

′
) = J(TCpσ

(n)
r , LS

′
) =

= J(J(Tpσ
(n)
1 , σ

(n−1)
r−1 ), LS

′
) =

= J(J(σ
(n−1)
r−1 , LS

′
), Tpσ

(n)
1 ).

Here Ĵ(σ
(n−1)
r−1 , LS

′
) spans the subspace of matrices that are identically 0 in the s-

th row and the s-th column. In particular the space Tpσ
(n)
1 is disjoint from the

space spanned by J(σ
(n−1)
r−1 , LS

′
) in PMatn. Therefore deg J(J(σ

(n−1)
r−1 , LS

′
), Tpσ

(n)
1 ) =

deg J(σ
(n−1)
r−1 , LS

′
) by Lemma 3.16.

Observe J(σ
(n)
r , LS) = J(J(σ

(n)
r , LS

′
), {p}). Using Proposition 3.12, since deg π = 1

by Proposition 3.13, we have

dn,r,s = deg J(σ(n)
r , LS) =

= deg J(J(σ(n)
r , LS

′
), {p}) =

= deg J(σ(n)
r , LS

′
)− deg TCpJ(σ(n)

r , LS
′
) =

= deg J(σ(n)
r , LS

′
)− deg J(σ

(n−1)
r−1 , LS

′
) = dn,r,s−1 − dn−1,r−1,s−1.

We can use the recursive formula given by Proposition 3.17 to derive a formula for

deg J(σ
(n)
r , LS):

Theorem 3.18. For every n, r, s with s ≤ (n− r)2

dn,r,s =
s∑
`=0

(
s

`

)
(−1)`dn−`,r−`,0 (3.4)
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Proof. From the recursion dn,r,s = dn,r,s−1−dn−1,r−1,s−1 of Proposition 3.17, we obtain

by induction, for every p ≤ s

dn,r,s =

p∑
`=0

(
s

`

)
(−1)`dn−`,r−`,s−`.

For p = s, we obtain (3.4).

In [Alu15], Paolo Alu� investigates these degrees more thoroughly, using advanced

techniques based on Fulton-MacPherson intersection theory (see [Ful84]). He stud-

ies the image πS(σ
(n)
r ) via the projection πS : PMatn 99K P(Matn/L

S) for several

con�gurations S. To do this, he resolves the indeterminacy of πS by blowing-up

σ
(n)
r along ϑn,r,S := σ

(n)
r ∩ PLS, and obtains a surjective, generically �nite, regular

map Blϑn,r,Sσ
(n)
r → πS(σ

(n)
r ). He proves a generalization of Proposition 3.14 and

reduces the problem of computing deg(Blϑn,r,S) to a problem of excess intersection.

The solution of the problem is obtained in terms of the Segre class s(ϑn,r,S, σ
(n)
r )

and a modi�ed version of it obtained by a twisting operation described in [Alu94].

The computation of these characteristic classes is via the classical resolution of the

singularities of σ(n)
r (see e.g. [ACGH85]).

This method leads to an alternative proof of the results of this section, and several

generalizations. In particular, [Alu15] provides a recursive technique that applies

when LS has a block diagonal structure: this generalizes our method, where we

consider a diagonal S, so the blocks are of size 1. With this method and some base

cases that play as fundamental bricks of LS, the calculation of deg(J(σ
(n)
r , LS) for a

several di�erent con�gurations S follows.
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4. EQUATIONS FOR CONES OVER DETERMINANTAL VARIETIES

In this chapter we study equations for R[n, r, s]. Recall that our main goal is to

�nd necessary conditions for a matrix to have low (border-)rigidity, in order to prove

lower bounds on the rigidity of a given matrix A by showing that A does not satis�es

these necessary conditions. Polynomial equations vanishing identically on R[n, r, s]

are the conditions that we seek.

We saw that in general R[n, r, s] ( Matn is a reducible variety; to obtain an equa-

tion for a reducible variety, we can multiply an equation for each of its irreducible

components. Therefore, our goal reduces to determining an equation for J(σr, L
S)

for every choice of S with |S| = s.

From Lemma 3.3, we have that J(σr, L
S) = π−1

S (πS(σr)), where πS : V → V/LS is

the canonical projection. The pull back map

π∗S : C[V/LS]→ C[V ]

is, in coordinates, the ring embedding

C[xij : (i, j) /∈ S]→ C[xij : i, j = 1, . . . , n].

By Lemma 2.5, we observe that equations for J(σr, L
S) can be obtained from equa-

tions of πS(σr). There is a rich theory that develops methods to produce equations for

(the closures of) a projection of an algebraic variety: it is called elimination theory.

Elimination theory has been studied in many forms in commutative algebra, alge-
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braic geometry and invariant theory; it has connection with logic, as the quanti�er

elimination can be regarded as an instance of elimination theory: indeed, quanti�ed

formulas in �rst order logic are equivalent to statements about membership in the

image of a projection.

The following result is of great importance in our strategy to determine equations

for J(σr, L
S).

Theorem 4.1 (Fundamental Theorem of Elimination Theory, see e.g. [CLO07],

Thm. 3.2.3). Let X ⊆ V be an a�ne variety with ideal I ⊆ C[V ]. Let L be a linear

subspace of V and let π : V → V/L be the projection. Then I(π(X)) = I ∩C[V/L]

(where C[V/L] is viewed as a subring of C[V ]). In coordinates, if x1, . . . , xn are

coordinates on V and L = {x1 = · · · = x` = 0}, then I(π(X)) = I ∩C[x`+1 · · ·xn].

In general, elimination theory can be performed using Groebner bases techniques,

which makes the calculation of elimination ideals computationally hard. We refer to

[CLO07] for the theory of Groebner bases. Here, we only state the main result that

allows us to compute elimination ideals.

Theorem 4.2 (see e.g. [CLO07], Thm. 3.1.2). Let I ⊆ C[x1, . . . , xn] be an ideal

and let G be a Groebner basis of I with respect to the monomial order Lex with

x1 > · · · > xn. Then, for every ` = 1, . . . , n

G` = G ∩C[x1, . . . , x`]

is a Groebner bases for I ∩C[x1, . . . , x`].

Theorem 4.2 is the main tool used by software packages that perform elimination

theory, for instance Macaulay2 (see [GS]). In [GHIL16], we computed the ideal of
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J(σr, L
S) in several cases for small values of n and r (especially in the case where

J(σr, L
S) is a hypersurface).

From Theorem 4.1, we deduce that equations for πS(σr) (and so for J(σr, L
S)) are

(generated by) polynomials in I(σr) ∩ C[Matn/L
S] = I(σr) ∩ C[xij : (i, j) /∈ S]. In

particular, f is an equation for J(σr, L
S) if the following hold:

· f is generated by minors of size r + 1;

· f does not involve entries in S.

A particular case occurs when there exists a minor of size r+ 1 that does not involve

entries in S; in this case these minors provide equations of degree r+1 for J(σr, L
S),

that we call avoiding minors. We will see that avoiding minors alone are enough to

solve Problem 3.11 in the trivial case ε < 1/2. However, the presence of avoiding

minors is only possible if either r or s are small or if S has a particular structure; in

most cases, this is not what happens.

In this chapter, we present some explicit methods to determine equations for the

varieties J(σr, L
S). Since J(σr, L

S) is a component of R[n, r, s] if and only if it has

the expected dimension, we can restrict to this case. Moreover, since we are only

interested in determining a single equation for every J(σr, L
S), it is not restrictive

to consider only the case where J(σr, L
S) is a hypersurface since for every S there

exists S∗ such that J(σr, L
S) ⊆ J(σr, L

S∗) and the latter is a hypersurface of the

expected dimension. Ideally, one would like to work with the �ats of the matroid

de�ned in Remark 3.8, but these seem hard to describe in general.

If J(σr, L
S) is a hypersurface of the expected dimension, then s = (n− r)2 − 1.
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The following result is useful to rule out con�gurations S that do not give to a join

of expected dimension

Lemma 4.3 ([GHIL16], Lemma 3.4). Let S ′ = {(1, 1), . . . , (n − r, 1)} and S =

S ′ ∪ {((n− r + 1, 1), . . . , (n, 1)}. Then J(σr, L
S′) = J(σr, L

S).

Proof. Since S ′ ⊆ S, J(σr, L
S′) ⊆ J(σr, L

S).

To prove the other inclusion, consider a generic A ∈ J(σr, L
S); the submatrix of

A obtained removing the �rst column has rank r. Let Ã be the r × r bottom

right submatrix of A: by genericity Ã is non singular, therefore there are unique

cn−r+1, . . . , cn such that


an−r+1

1

...

an1

 =
n∑

j=n−r+1

cj


an−r+1
j

...

anj

 .

Let B be the matrix de�ned by bij = aij if j ≥ 2


b1

1

...

bn1

 =
n∑

j=n−r+1

cj


a1
j

...

anj

 .

Then B ∈ σr and A = B + C with C ∈ LS′ , so A ∈ J(σr, L
S′).

Lemma 4.3 implies that if S contains more than n − r entries in a single row or

column, then J(σr, L
S) does not have the expected dimension unless it is the entire

space Matn.
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In Section 4.1, we present the results of Section 3.2 and 3.4 of [GHIL16]. In Section

4.2, we develop a new method to produce equations in the case where S has only one

element in each row and column: in particular, this can be an approach to attack

Problem 3.11. In section 4.3, we study the new method that we introduce from a

representation theoretic point of view.

4.1 Extreme cases: r = 1 and r = n− 2

In this section, we completely characterize the components of R[n, r, s] in the cases

r = 1 and r = n− 2, in the hypersurface case.

4.1.1 Case r = 1

If r = 1, then dimσ
(n)
1 = 2n−1, that is codimσ

(n)
1 = n2−2n+1, so that R[n, 1, n2−

2n + 1] is a hypersurface. We will analyze J(σ1, L
S) where |S| ≥ n2 − 2n + 1. It

will be convenient to describe the con�gurations S by describing their complement

con�gurations Sc.

Proposition 4.4. Let 2 ≤ k ≤ n and Sc ⊇ {(1, 1), . . . , (k, k), (1, 2), . . . , (k −

1, k), (k, 1)}. Then

x1
1 · · ·xkk − x1

2 · · ·xk−1
k xk1 (4.1)

is an equation for J(σ1, L
S). Moreover, if Sc = {(1, 1), . . . , (k, k), (1, 2), . . . , (k −

1, k), (k, 1)}, then J(σ1, L
S) is a hypersurface and (4.1) is its (unique up to scale)

equation.

Proof. Let f = x1
1 · · ·xkk−x1

2 · · · xk−1
k xk1. We will show that f ∈ I(σ1), namely that f

is generated by 2× 2 minors. Since f does not involve entries in S, we will conclude
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f ∈ I(J(σ1, L
S)). If k = 2, then f = M12

12 . De�ne recursively

f2 := M12
12 = x1

1x
2
2 − x1

2x
2
1,

fj := xjjfj−1 − x1
2 · · ·x

j−2
j−1M

j−1,j
1,j .

By induction, we have fj = x1
1 · · ·x

j
j − x1

2 · · ·x
j
1 ∈ I(σ1) for all j = 3, . . . , k and

fk = f .

The last assertion follows from Lemma 4.3 and the discussion in the proof of Propo-

sition 3.7: indeed, for any S ′ ) S, iterated applications of Lemma 4.3 implies

J(σ1, L
S′) = Matn; if J(σ1, L

S) had codimension greater than 1, then there would

be a S ′ ⊇ S such that J(σ1, L
S′) was a hypersurface, providing a contradiction.

It turns out that, up to permutations of rows and columns, Proposition 4.4 describes

every hypersurface of the form J(σ1, L
S) as we will see in Theorem 4.7.

Lemma 4.5. Let S be a con�guration omitting at least two entries in each row and

in each column. Then there exists k ≥ 2 such that, up to a permutation of rows and

columns, Sc ⊇ {(1, 1), . . . , (k, k), (1, 2), . . . , (k, 1)}.

Proof. After a permutation, we may assume (1, 1) ∈ Sc, and, since S omits at least

another entry in the �rst column, (2, 1) ∈ Sc. Since S omits at least 2 entries in

the second row, assume (2, 2) ∈ Sc. S omits at least one more entry in the second

column: if that entry is (1, 2), then k = 2 and S omits a 2× 2 minor; otherwise we

may assume (3, 2) ∈ Sc. Again S omits another entry on the third row: if that entry

is (3, 1) (resp. (3, 2)), then k = 3 (resp. k = 2) and S omits a set of the desired form.

After at most 2n steps, this procedure terminates, and we obtain that Sc contains a
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subset of entries in a k×k submatrix K with the following con�gurations, as desired:



♦ ♦

. . .
. . .

. . . ♦

♦ ♦


.

Lemma 4.6. Let S be a con�guration of n2 − 2n entries. Then there exist k ∈

{1, . . . , n} and a k × k submatrix K such that, up to a permutation of rows and

columns, at least 2k entries of the complement Sc of S lie in K in the following

con�guration 

♦ ♦

. . .
. . .

. . . ♦

♦ ♦


. (4.2)

Moreover, if J(σ1, L
S) is a hypersurface then these are the only omitted entries in K

and the ideal of J(σ1, L
S) is generated by

(
x1

1 · · ·xkk − x1
2 · · ·xk1

)
.

Proof. To prove the �rst assertion, we proceed by induction on n. The case n = 2

provides s = 0 and k = 2 trivially satis�es the statement.

First, suppose that S contains an entire row (or an entire column). Then Sc is

concentrated in a (n−1)×n submatrix. In this case we may consider an (n−1)×(n−1)

submatrix obtained by removing a column that contains at most 2 entries of Sc.

Thus, up to reduction to a smaller matrix, we may always assume that S omits at

least one entry in every row (and at least one entry in every column).
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If S omits at least (and therefore exactly) 2 entries in each row and in each column,

then we conclude by Lemma 4.5. So assume there is at least one row that omits only

one entry.

After a permutation, we may assume (1, 1) ∈ Sc is the only entry in Sc in the �rst

row. If the �rst column omits at most one more entry, then S omits at least 2(n− 1)

entries in the the submatrix obtained by removing the �rst row and the �rst column.

We conclude by induction that, in this submatrix, there exists a k and a k × k

submatrix with the desired con�guration in the submatrix.

Finally, if the �rst column omits at least 2 entries other than x1
1, then there is another

column omitting only 1 entry. Consider the submatrix obtained by removing this

column and the �rst row: S omits exactly 2(n − 1) entries in this submatrix, and

again we conclude by induction.

To prove the last assertion, if other omitted entries lie in K, then by Lemma 4.5 they

provide another equation for J(σ1, L
S).

Theorem 4.7 ([GHIL16], Thm 3.8). The variety R[n, 1, n2 − 2n] is a reducible

hypersurface and the number of its irreducible components coincides with the number

of cycles of the complete bipartite graph Kn,n, that is

n∑
k=2

(
n

k

)2
k!(k − 1)!

2
.

Moreover, every ideal of an irreducible component is generated by a binomial of the

form

xi1j1 · · ·x
ik
jk
− xi1jτ(1) · · ·x

ik
jτ(k)

,

for some k, where τ ∈ Sk is a cycle of length k and I, J ⊂⊆ 1, . . . , n have k elements
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each.

Proof. R[n, 1, n2 − 2n] is equidimensional and its irreducible components are the

J(σ1, L
S) where S is a con�guration of n2−2n entries providing a join of codimension

1.

Let S be a con�guration of n2 − 2n entries such that the corresponding join is a

hypersurface. By Lemma 4.6 there exists a k such that, up to a permutation of rows

and columns, S omits the entries x1
1, . . . , x

k
k, x

1
2, . . . , x

k
1 and the equation of J(σ1, L

S)

is x1
1 · · ·xkk−x1

2 · · ·xk1 = 0. In particular, entries in Sc that do not lie in the submatrix

K of Lemma 4.2 are free to vary. Let S∗ be the set of entries whose complement

is {x1
1, . . . , x

k
k, x

1
2, . . . , x

k
1}; we obtain J(σ1, L

S) = J(σ1, L
S∗). This shows that the

irreducible components are determined by the choice of a k × k submatrix and by

the choice, in this submatrix, of a con�guration of 2k entries such that, after a

permutation of rows and columns, it has the form of (4.2).

Every con�guration of this type, viewed as the adjacency matrix of a (n, n)-bipartite

graph, determines a subgraph of the complete bipartite graph Kn,n that is a cycle.

This shows that the number of irreducible components of R[n, 1, n2 − 2n] is the

number of such cycles.

4.1.2 Case r = n− 2

We have codimσ
(n)
n−2 = 4, therefore R[n, n − 2, 3] is a hypersurface. We analyze

joins J(σn−2, L
S) with |S| = 3. Up to permutations of rows and columns and up to

transpose, the entries in S are concentrated in the top left 3 × 3 submatrix, in one

of the following forms
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(1) 8 8

8

(2) 8 8

8

(3) 8

8

8

(4) 8 8 8

(4.3)

We will deal with each of the four cases. If i is an index, we denote by ic the

complement of {i} in {1, . . . , n}. In con�gurations (1) and (2), the minor M1c

1c is an

avoiding minor, because it does not involve entries in S, therefore it is the equation

of J(σn−2, L
S); in con�guration (3), consider the two minors M12(123)c

13(123)c and M
13(123)c

12(123)c ;

they have size n−1 and the only entry of S that they involve is (1, 1). The polynomial

M
3(123)c

2(123)cM
12(123)c

13(123)c −M
2(123)c

3(123)cM
13(123)c

12(123)c (4.4)

is irreducible of degree 2n − 3 and does not involve x1
1; therefore it is the equation

for J(σn−2, L
S). Finally, con�guration (4) does not provide a hypersurface, because

of Lemma 4.3.

We conclude

Theorem 4.8 ([GHIL16], Thm 3.14). The variety R[n, n − 2, 3] is a hypersurface

and its irreducible components J(σn−2, L
S) are of two types up to isomorphism:

· If S corresponds to type (1) or (2) of (4.3), then deg J(σn−2, L
S) has degree

n− 1. There are n2 such components.
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· If S corresponds to type (3) of (4.3), then deg J(σn−2, L
S) has degree 2n − 3.

There are 6
(
n
3

)
such components.

Proof. From the discussion above, we have that there are only two types of com-

ponents and the degrees are the ones claimed in the statement. The number of

components of the �rst type is n2, as many as the minors of size n− 1. The number

of components of the second type is 6
(
n
3

)2
, as may as the choices of a 3×3 submatrix

and three entries in it not sharing a row or a column.

We conclude this section with an elementary observation on the equation correspond-

ing to type (3) in (4.3). M
3(123)c

2(123)c is the derivative in x1
1 of M13(123)c

12(123)c and similarly

M
2(123)c

3(123)c is the derivative of M12(123)c

13(123)c . We can rewrite (4.4) as

det

 M
13(123)c

12(123)c M
12(123)c

13(123)c

M
3(123)c

2(123)c M
2(123)c

3(123)c

 (4.5)

or equivalently

det

 M
13(123)c

12(123)c M
12(123)c

13(123)c

∂
∂x11
M

13(123)c

12(123)c
∂
∂x11
M

12(123)c

13(123)c

 .

In the next section, we will see that a generalization of this construction will provide

a method to �nd equations for J(σr, L
S), when S is diagonal.

4.2 Equations for J(σr, L
S) via iterated determinants

In this section, we propose a more general approach that uses recursively the idea

used to obtain (4.4), in order to determine equations for J(σr, L
S) when S has exactly

one entry in each row and each column. This is the case of Problems 1.4 and its
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Zariski closed version (Problem 3.11). Without loss of generality, we will consider

the diagonal case S = {(1, 1), . . . , (n, n)}.

So, �x n and let S = {(1, 1), . . . , (n, n)} be the entire diagonal. Fix r ≤ n−
√
n, so

that J(σr, L
S) ( Matn is a proper subvariety. Let ω = 2(r + 1) − n. Notice that ω

is the minimum number of diagonal entries that a minor of size r+ 1 has to involve.

In particular, if ω ≤ 0, then there are avoiding minors of size r + 1 (for instance the

top right minor of size r+ 1). These minors provide equations for J(σr, L
S). We will

develop a method to obtain equations when ω ≥ 1.

In order to gain some intuition, before presenting the general construction, we present

it in the particular cases where ω = 1 and ω = 2.

4.2.1 Case ω = 1

If we have n = 2r + 1, then ω = 2(r + 1) − n = 1. In this case, we can obtain

an equation for J(σr, L
S) using the same method that we used in (4.5). Figure 4.1

represents pictorially how the equations arise. We �x an index c ∈ {1, . . . , s} (the

central index c = r + 1 in the picture), and two pairs of complementary sets of r

indices (I1, J1) and (I2, J2) with I1 ∩ J1 = I2 ∩ J2 = ∅, so that I1 ∪ J1 = I2 ∪ J2 =

{1, . . . , n}r{c} (in the picture I2 = J1 = {1, . . . , r} and I1 = J2 = {r+2, . . . , 2r−1}.

Notice that the minors M I1
J1

and M I2
J2

(the determinants of the submatrices boxed in

dashed lines), do not involve diagonal entries. Therefore, the only diagonal entry in

M c,I1
c,J1

and M c,I2
c,J2

(the determinants of the submatrices boxed in continuous lines) is

xcc, that appears in degree at most 1 in every monomial in each of the two minors;

moreover M c,I1
c,J1

= xccM
I1
J1

+ h1 where h1 is a polynomial not involving xcc (nor other

diagonal entries) and similarly M c,I2
c,J2

.
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J1 J2

8

. . .

8

8

8

. . .

8





I2

I1

Figure 4.1: An equation when ω = 1

The polynomial

M I2
J2
M c,I1

c,J1
−M I1

J1
M c,I2

c,J2

does not involve the entry xcc, so it is an equation for J(σr, L
S). We can rewrite this

equation as

det

 M c,I1
c,J1

M c,I2
c,J2

M I1
J1

M I2
J2

 (4.6)

and notice that the second row of the matrix is the derivative in xcc of the �rst row.

More generally, we consider all minors of size r + 1 of the form M cI
cJ with I ∩ J = ∅

and de�ne a map that performs the operation (4.6) on pairs of them. Let

E
(n,r)
1 =

〈
M cI

cJ : |I| = |J | = r, I ∩ J = ∅
〉
,

that is the space of polynomials generated by minors of size r + 1 involving the
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diagonal entry xcc and no other diagonal entries.

De�ne

E
(n,r)
1 × E

(n,r)
1 → S2r+1Mat∗n

(f1, f2) 7→ det

 f1 f2

∂
∂xcc
f1

∂
∂xcc
f2

 ;

the image of this map is a space of equations for J(σr, L
S).

Since we prefer to work with linear maps, we will consider the induced map on

E
(n,r)
1 ⊗E

(n,r)
1 ; moreover, since the determinant is a skew-symmetric function, we can

observe that we obtain the same image by restricting to the subspace
∧2 E

(n,r)
1 ⊆

E
(n,r)
1 ⊗ E

(n,r)
1 .

4.2.2 Case ω = 2

If n = 2r, then ω = 2(r + 1)− n = 2. In this case, we �x two indices c1, c2; without

loss of generality, suppose they are 1 and 2. We will consider all minors of size

(r + 1) of the form M12I
12J , with I ∩ J = ∅, so that I ∪ J = {3, . . . , n}. In particular

M12I
12J = x1

1x
2
2M

I
J + h, where h is a polynomial that is (a�ne) linear in x1

1 and x
2
2 and

does not involve other diagonal entries.

We apply the same technique we used before to a pair of minors of this form, in order

to eliminate the term that is quadratic in x1
1x

2
2. Given M12I1

12J1
and M12I2

12J2
as above,
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consider the polynomial

g = det

 M12I1
12J1

M12I2
12J2

M I1
J1

M I2
J2

 (4.7)

and notice that the second row of the matrix is the second derivative in x1
1, x

2
2 of the

�rst row. The polynomial g is (a�ne) linear in the variables x1
1, x

2
2.

From a choice of 6 pairs (I, J), we can obtain three such polynomials g1, g2, g3. At

this point, we can consider the following 3× 3 determinant:

f = det


g1 g2 g3

∂1g1 ∂1g2 ∂1g3

∂2g1 ∂2g2 ∂2g3

 , (4.8)

where ∂1 and ∂2 denote respectively the derivative in x1
1 and x2

2.

It is easy to show that f does not involve x1
1 and x2

2 (nor other diagonal variables).

In particular, with this method we obtain equations for J(σr, L
S) when ω = 2.

As we did in the case ω = 1, it is useful to de�ne a linear map that performs the

operations of (4.7) and (4.8). Let

E
(n,r)
2 =

〈
M12I

12J : |I| = |J | = r − 1, I ∩ J = ∅
〉

that is the space of polynomials generated by minors of size r + 1 involving the

diagonal entries x1
1 and x2

2 and no other diagonal entries.

We de�ne two linear maps as follows. The �rst map produces polynomials that are

56



a�ne linear in x1
1, x

2
2

∧2 E
(n,r)
2 → E

(n,r)
1 ⊆ S2rMat∗n

f1 ∧ f2 7→ det

 f1 f2

∂1∂2f1 ∂1∂2f2

 ;

here E(n,r)
1 denotes the image of the map in S2rMat∗n (notice that the degree 2r arises

as (r + 1) + (r − 1)). The second map uses the image of the �rst map to produce

polynomials not involving diagonal entries:

∧3 E
(n,r)
1 → E

(n,r)
0 ⊆ S6r−2Mat∗n

g1 ∧ g2 ∧ g3 7→ det


g1 g2 g3

∂1g1 ∂1g2 ∂1g3

∂2g1 ∂2g2 ∂2g3

 ;

here the degree arises as 2r + (2r − 1) + (2r − 1) = 6r − 2; the image of this second

map is a space of equations for J(σr, L
S).

4.2.3 General construction

De�ne

E(n,r)
ω :=

〈
M1,...,ω,I′

1,...,ω,J ′ : |I ′| = |J ′| = r + 1− ω, I ′ ∩ J ′ = ∅
〉
⊆ Sr+1(Matn)∗. (4.9)

The space E
(n,r)
ω is the vector space generated by all minors of size r + 1 involving

no diagonal entries except x1
1, . . . , x

ω
ω.
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If τ = {t1, . . . , t|τ |} is a set of indices, write ∂τ :=
∂|τ |

∂xt1t1 · · · ∂x
t|τ |
t|τ |

; if τ = ∅, then

∂τ := 1.

For every ` = ω, ω − 1, . . . , 1, let Ω` := {τ ⊆ {1, . . . , ω} : |τ | = `}, the set of subsets

of {1, . . . , ω} with cardinality `; let Ω+
` := Ω` ∪ {∅}, so that |Ω+

` | = 1 +
(
n
`

)
. Let

dω := r + 1 and for every ` = ω, . . . , 1 de�ne d`−1 :=
(
n
`

)
(d` − `) + d`.

For every ` = ω, . . . , 1, we recursively de�ne a map ψ(n,r)
` as follows

ψ
(n,r)
` :

∧1+(ω`) E
(n,r)
` → Sd`−1(Matn)∗

∧ρ∈Ω+
`
fρ 7→ det(∂τfρ)τ,ρ∈Ω+

`
.

(4.10)

Set E
(n,r)
`−1 := Im ψ

(n,r)
` . We will drop the superscript in ψ

(n,r)
` if it does not create

confusion. Every ψ` associates to the wedge product of 1 +
(
ω
`

)
polynomials the

determinant of a matrix size 1 +
(
ω
`

)
whose rows are given by derivatives of order `

of the polynomials.

Proposition 4.9. The elements of E
(n,r)
` have degree at most ` in the diagonal

entries.

Proof. First, notice that the variables xω+1
ω+1, . . . , ω

n
n do not appear in E

(n,r)
` for any `.

We proceed by reverse induction on `. For ` = ω, E(n,r)
ω is generated by the minors

of the form M1,...,ω,I′

1,...,ω,J ′ with I ′ ∩ J ′ = ∅. In particular these minors have degree ω

in the diagonal entries: the terms of highest degree in these variables are given by

x1
1 · · ·xωωM I′

J ′ .

For every ρ ∈ Ω+
` consider fρ ∈ E

(n,r)
` . By inductive hypothesis every fρ has degree

at most ` in the diagonal entries, so if τ ∈ Ω+
` and τ 6= ∅, we obtain that ∂τfρ does
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not depend on the diagonal entries.

Write ρ0, . . . , ρN` for the elements of Ω+
` , with ρ0 = ∅. The image of ∧ρ∈Ω+

`
fρ is (up

to sign) the determinant of the following matrix of size N` + 1:

F` :=



fρ0 · · · fρN`

∂ρ1fρ0 · · · ∂ρ1fρ0
...

...

∂ρN`fρ0 · · · ∂ρN`fρ0


. (4.11)

Our goal is to show that the determinant of F` is of degree at most ` − 1 in the

diagonal entries, namely that if τ ∈ Ω+
` , then ∂τ det(F`) = 0.

By inductive hypothesis, the diagonal entries x1
1, . . . , x

ω
ω only appear in the �rst row

of F`. Therefore

∂τ det(F`) = det



∂τfρ0 · · · ∂τfρN`

∂ρ1fρ0 · · · ∂ρ1fρ0
...

...

∂ρN`fρ0 · · · ∂ρN`fρ0


that is 0 because τ = ρp for some p, so the matrix has two rows that are equal.

Finally, we can prove that this method provides equations testing for non-member-

ship in J(σr, L
S) when S = {(1, 1), . . . , (n, n)}.

Theorem 4.10. E
(n,r)
0 is a space of equations for J(σr, L

S).

Proof. From Proposition 4.9, we obtain that the elements of E(n,r)
0 do not involve

the diagonal entries so it is an element of the elimination ideal.
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In order to show that they are generated by minors of size r+1, it su�ces to observe

that for every `, E(n,r)
` is a subspace of the ideal generated by E

(n,r)
`+1 because the

image of ∧ρ∈Ω+
`+1
fρ lies in the ideal generated by the fρ's because the determinant of

F` from (4.11) is a combination of the entries in the �rst row of F` with polynomial

coe�cients.

This shows that E(n,r)
0 is a subspace of the elimination ideal obtained from the ideal

I(σr) of minors of size r + 1, by eliminating the diagonal entries. In particular, the

elements of E(n,r)
0 are equations for J(σr, L

S).

There is of course the possibility that the space E(n,r)
0 contains only the 0 polynomial.

This happens for instance when n = 7, r = 4 (so that ω = 3); in this case E
(7,4)
1 = 0

and so E
(7,4)
0 = 0. The following two results suggest that this should not be frequent :

Proposition 4.11. Fix n, r and let ω = 2(r + 1)− n. Then for every ` = ω, . . . , 0,

there exists a surjective map E
(n+2,r+1)
` → E

(n,r)
` . In particular, if E

(n,r)
0 6= 0, then

E
(n+2,r+1)
0 6= 0.

Proof. For every `, write ψ` for the maps of (4.10) at lever (n, r) and ψ′` for the

ones at level (n + 2, r + 1). We de�ne a restriction map ev(n+2,r+1) : C[xij : i.j =

1, . . . , n+ 2]→ C[xij : i, j = 1, . . . , n] to be the evaluation at the matrix



x1
1 · · · x1

n 0 0

...
...

...
...

xn1 · · · xnn 0 0

0 · · · 0 0 1

0 · · · 0 0 0


.
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Write ev(n+2,r+1)
` := ev(n+2,r+1)|

E
(n+2,r+1)
`

for the restriction to E(n+2,r+1)
` . In this proof,

denote ev(n+2,r+1)
` by ev`.

For every ` = ω, . . . , 1 consider the diagram

∧1+(ω`) E
(n+2,r+1)
`

ψ′` //

ev`
��

E
(n+2,r+1)
`−1

ev`−1

��∧1+(ω`) E
(n,r)
`

ψ` //
ψ` // E

(n,r)
`−1

(4.12)

We use reverse induction on ` to show that the vertical arrows are well-de�ned

and surjective. If ` = ω, consider I ′, J ′ ⊆ {ω + 1, . . . , n} with I ′ ∩ J ′ = ∅ and

|I ′| = |J ′| = r + 1− ω. Then

M1,...,ω,I′

1,...,ω,J ′ = evn+2,n
ω (M1,...,ω,I′,n+1

1,...,ω,J ′,n+2).

This shows that evn+2,n
ω surjects onto E

(n,r)
ω .

Now, by induction, we assume that the left vertical arrow of (4.12) is well de�ned and

surjective. The diagram clearly commutes because the di�erentials in the de�nition

of ψ` and ψ′` do not involve variables in the last two rows or the last two columns.

The horizontal arrows are surjective by the de�nition of E(n,r)
` , therefore also the

right vertical arrow has to be surjective.

Proposition 4.12. The map ψω :
∧2 E

(n,r)
ω → E

(n,r)
ω−1 is injective (so it is an isomor-

phism).

Proof. Denote ω = (1, . . . , ω) and consider the basis of E(n,r)
ω given by minors of size

r+1 of the formMωI
ωJ with I ∩J = ∅ and I ∪J = {ω+1, . . . , n}. Choose an ordering
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of the basis (namely an ordering of the pairs (I, J)) so that

MωI1
ωJ1
∧MωI2

ωJ2
for (I1, J1) < (I2, J2)

is a basis of
∧2 E

(n,r)
ω . We obtain a spanning set for E(n,r)

ω−1 by applying ψω:

E
(n,r)
ω−1 =

〈
f I1,I2J1,J2

: (I1, J1) < (I2, J2)
〉

where

f I1,I2J1,J2
:= det

 MωI1
ωJ1

MωI2
ωJ2

M I1
J1

M I2
J2

 .

We prove that the f I1,I2J1,J2
's are linearly independent. Consider coe�cients aI1,I2J1,J2

such

that ∑
(I1,J1)<(I2,J2)

aI1,I2J1,J2
· f I1,I2J1,J2

= 0; (4.13)

we will prove aI1,I2J1,J2
= 0 for every (I1, J1) < (I2, J2).

Consider the result of the di�erentiation of (4.13) by the monomial x1
1 · · · xω−1

ω−1; denote

by gI1,I2J1,J2
the derivative of f I1,I2J1,J2

, so that

gI1,I2J1,J2
:= det

 MωI1
ωJ1

MωI2
ωJ2

M I1
J1

M I2
J2


and ∑

(I1,J1)<(I2,J2)

aI1,I2J1,J2
· gI1,I2J1,J2

= 0. (4.14)

First notice that gI1,I2J1,J2
6= 0 for every (I1, J1) < (I2, J2): indeed, if that was the case,
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then MωI1
ωJ1
M I2

J2
= MωI2

ωJ2
M I1

J1
, but by the unique factorization in C[xij : i, j = 1, . . . , n]

this would imply (I1, J1) = (I2, J2) because minors are irreducible polynomials.

Fix (I1, J1) and (I2, J2). We will show aI1,I2J1,J2
= 0. Let I∗ := I1∩ I2 and J∗ := J1∩J2.

Notice that |I∗| = |J∗| and I∗∩J∗ = ∅. Write I∗ = {i∗1, . . . , i∗p} and J∗ = {j∗1 , . . . , j∗p}.

Notice that I1 r I∗ = J2 r J∗ (call this set K) and I2 r I∗ = J1 r J∗ (call this set

L), with |K| = |L|, K ∩ L = ∅ and suppose K = {k1, . . . , kq} and L = {`1, . . . , `q}.

Di�erentiate (4.14) by the monomial

(x
i∗1
j∗1
· · ·xi

∗
p

j∗p
)2 · (xωk1x

`1
k2
· · ·x`qω ) · (xk1`1 · · ·x

kq
`q

).

The result of the di�erentiation is, up to scale, aI1,I2J1,J2
. This shows that aI1,I2J1,J2

= 0.

We conclude that the f I1,I2J1,J2
's form a basis for E(n,r)

ω−1 , so the map ψω is injective.

4.3 Representation theory of the determinantal sequence

In this section, we study the maps de�ned in (4.10) and the spaces E
(n,r)
` via the

representation theory of the symmetric group.

The symmetric group Sn acts on Matn via simultaneous permutation of rows and

columns (namely via conjugation by a permutation matrix). The varieties σ(n)
r as well

as the subspace of diagonal matrices are Sn-varieties. Therefore, the join J(σ
(n)
r , LS)

is a Sn-variety as well.

The action of Sn on Matn induces naturally an action on Mat∗n and therefore on

the spaces of polynomials SqMat∗n. Since J(σr, L
S) is a Sn-variety, the subspace of

SqMat∗n that vanish on J(σr, L
S) is a Sn-subrepresentation of SqMat∗n.
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The space E(n,r)
ω of (4.9) is preserved by the action of the subgroup Sω×Sn−ω ⊆ Sn.

The following Lemma, whose proof is immediate, shows that the maps ψ` commute

with the action of Sω ×Sn−ω. This implies that every E
(n,r)
` is a representation for

Sω ×Sn−ω as the intuition suggests.

Lemma 4.13. For ` = ω, . . . , 1, the map ψ` : E
(n.r)
` → E

(n.r)
`−1 is Sω × Sn−ω-

equivariant.

Now consider the map evn+2,r+1
` de�ned in the proof of Proposition 4.11. Notice that

Sω ×Sn−ω acts on E
(n+2,r+1)
` via the restriction of the action of Sω ×Sn+2−ω. We

have the following easy, but important, result

Lemma 4.14. For ` = ω, . . . , 1, the map evn+2,r+1
` : E

(n+2,r−1)
` → E

(n,r)
` is Sω ×

Sn−ω-equivariant.

In particular, Lemma 4.13 and Lemma 4.14 show that the diagram in (4.12) com-

mutes with the action of Sω×Sn−ω. It is immediate to verify that the action of Sω

is trivial, since it is trivial on E
(n,r)
ω and all the maps in (4.12) are surjective.

The action of Sn−ω is more complicated. Notice that n− ω = 2(r + 1− ω) is even;

write m := r + 1 − ω and denote Sn−ω as S2m. The following result describes how

S2m acts on E
(n,r)
ω .

Proposition 4.15. As a S2m-representation

E(n,r)
ω ' IndS2m

Sm×Sm([1m]⊗ [1m]) = [12m]⊕ [2, 12m−2]⊕ · · · ⊕ [2m].

Proof. Consider f := M1,...,ω,ω+1,...,ω+m
1,...,ω,ω+m+1,...,n . It is an element of E(n,r)

ω . A pair of permu-

tations (σ, τ) ∈ Sm ×Sm ⊆ S2m acts on the line 〈f〉 by multiplication by the sign

of (−1)σ(−1)τ . Therefore 〈f〉 = [1m] ⊗ [1m]. Representatives for the left cosets of
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Sm ×Sm in S2m permute the minors M1,...,ω,I
1,...,ω,J .

The second inequality follows by Pieri's rule (Lemma 2.32).

From Proposition 4.12, we have that ψω is an isomorphism of S2m-modules between∧2 E
(n,r)
ω and E

(n,r)
ω−1 . In particular, we obtain

E
(n,r)
ω−1 =

∧2
(

[12m]⊕ [2, 12m−2]⊕ · · · ⊕ [2m]
)
.

In the next paragraph we focus on a particular case: we prove that when ω =

2(r + 1)− n = 2, the space of equations E(n,r)
0 contains a Sn−2 invariant.

4.3.1 Invariant equations for ω = 2

In this paragraph, we restrict to the case ω = 2. Let n, r such that ω = 2(r+1)−n =

2, so that n− ω = n− 2 = 2(r − 1), giving m = r − 1; in particular n is even. The

sequence de�ned in (4.10) consists of two maps, that are S2m-equivariant

∧3
(∧2 E

(n,r)
2

)
ψ∧32−−−→

∧3 E
(n,r)
1

ψ1−−−→ E
(n,r)
0 . (4.15)

We will prove in this section that E
(n,r)
0 contains an invariant under the action of

S2m. We will realize the invariant as follows. From Proposition 4.15, we have

E
(n,r)
2 = IndS2m

Sm×Sm([1m]⊗ [1m]) = [12m]⊕ [2, 12m−2]⊕ · · · ⊕ [2m].

From standard manipulations with exterior powers (see e.g. [Lan12], Formula (6.7.2)
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at p.157), we obtain ∧2 E
(n,r)
2 ⊇

∧2[2m]⊕
∧2[2, 12m−2].

We will prove
∧2[2m] ⊇ [2m− 3, 1, 1, 1] and

∧2[2, 12m−2] = [2m− 2, 1, 1].

In particular, using (6.7.2) of [Lan12] again, we obtain

∧3∧2 E
(n,r)
2 ⊇

∧3([2m− 3, 1, 1, 1]⊕ [2m− 2, 1, 1]
)
⊇

⊇
∧2[2m− 3, 1, 1, 1]⊗ [2m− 2, 1, 1]

and the latter contains a S2m-invariant. We will show that this invariant does not

map to 0 via the composition ψ1 ◦ (ψ∧3
2 ).

Lemma 4.16. For every m ≥ 2, [2m − 3, 1, 1, 1] occurs in the decomposition of∧2[2m] as S2m-representation.

Proof. Consider the standard Young tableaux of shape (2m) de�ned by

T1 = 1 2

3 4

...
...

2m− 1 2m

, T2 = 1 3

2 4

...
...

2m− 1 2m

.

From 2.30, we have YT1 [2m] and YT2 [2m] are distinct one-dimensional subspaces of

[2m]; let vi be an element of YTi [2m].
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Consider the standard Young tableau of shape (2m− 3, 1, 1, 1) de�ned by

Pm = 1 5 · · · 2m− 2 2m− 1 2m

2

3

4

.

Let YPm be the corresponding Young symmetrizer. We will show that YPm(v1∧v2) 6=

0.

We use induction on m. For m = 2, the claim is true and can be checked by an

explicit calculation (see Appendix C).

For m ≥ 3 consider the restriction of the action of S2m to S2m−2 on [2m]. By Pieri's

rule, we have

ResS2m
S2m−2

([2]) = [2m−1]⊕ [2m−2, 1, 1].

De�ne π : [2m]→ [2m−1] to be the projection on the �rst summand. Let T̂ be Young

tableaux obtained from a tableau T by removing the last row. We have

π(vT ) =

 vT̂ if the last row of T is (2m− 1, 2m),

0 otherwise.

On the other hand

∧2[2m] =
∧2[2m−1]⊕ [2m−1]⊗ [2m−2, 1, 1]⊕

∧2[2m−2, 1, 1].

Denote by π∧ :
∧2[2m] →

∧2[2m−1] the projection. We show π∧ ◦ YPm(v1 ∧ v2) =

YPm−1 ◦ π∧(v1 ∧ v2).
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It is clear that YPm−1 ◦ π∧(v1 ∧ v2) = π∧ ◦ YPm−1(v1 ∧ v2) because YPm−1 does not

a�ect the last row of the diagrams associated to v1 and v2.

Notice that Pm and Pm−1 have the same symmetrizer of the columns, that is bPm =

bPm−1 =
∑

τ∈S4
(−1)τδτ . Let aPm and aPm−1 be the symmetrizers of the rows of

Pm and Pm−1 respectively. We have aPm =
∑

σ∈S{1,5,...,2m} σ and similarly aPm−1 .

Here, for a �nite set Σ, we denote by SΣ the symmetric group acting on the set

Σ. Using id, (2m− 1, 2m) and (i, 2m− 1)(j, 2m) (for i, j ∈ {1, 5, . . . , 2m}, not both

in {2m − 1, 2m} as a set of representatives for the left cosets of S{1,5,...,2m−2} in

S{1,5,...,2m}, we have

aPm = aPm−1 + δ(2m−1,2m)aPm−1 +

 ∑
i,j=1,5,...,2m

i 6=j,{i,j}6={2m−1,2m}

δ(i,2m−1)(j,2m)

 aPm−1 ;

so we have

YPm = bPmaPm = bPm−1aPm−1 + δ(2m−1,2m)b
Pm−1

aPm−1 +G =

= (δid + δ(2m−1,2m)))YPm−1 +G

where G =

(∑
i,j=1,5,...,2m

i 6=j,{i,j}6={2m−1,2m}
δ(i,2m−1)(j,2m)

)
YPm−1 .

We can observe that π(G(v1 ∧ v2)) = 0. On the other hand YPm−1 ◦ π∧(v1 ∧ v2) =

π∧ ◦ YPm−1(v1 ∧ v2) as observed above. Moreover, an elementary application of the

straightening algorithm provides δ(2m−1,2m)v1 = v1 +w where π(w) = 0 and similarly

for v2; therefore π∧(δ(2m−1,2m)YPm−1(v1∧v2)) = π∧(YPm−1(v1∧v2)) = YPm−1 ◦π∧(v1∧

v2).

This shows that the image of v1 ∧ v2 via YPm−1 ◦ π∧ is the same as its image via
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π∧ ◦ YPm .

Moreover π∧(v1 ∧ v2) = v′1 ∧ v′2 where v′1, v
′
2 are the vectors in [2m−2] associated to

the Young tableaux obtained from T1, T2 removing the last row. So, by inductive

hypothesis YPm−1 ◦ π∧(v1 ∧ v2) 6= 0. This shows that YPm(v1 ∧ v2) 6= 0 because its

image via π∧ is nonzero.

We conclude that [2m − 3, 1, 1, 1] appears in the decomposition of
∧2[2m] as S2m-

representation.

Lemma 4.16 and Proposition 4.12 imply that E(n,r)
1 contains a copy of [2m−3, 1, 1, 1].

Moreover, by Schur's Lemma, we deduce that the map π in the proof of Lemma 4.16

coincides, up to scale, with (the restriction to [2m−1] of) the map ev(n,r)
2 of Proposition

4.9, because they both de�ne an equivariant map between the same two irreducible

S2m-representations.

Lemma 4.17. For every m ≥ 1, we have
∧2[2, 12m−2] = [2m− 2, 1, 1].

Proof. We use the following two facts (see e.g. [FH91], Sec. 4.1, 4.2): for any p, q

with q ≤ p−1,
∧q[p−1, 1] = [p− q, 1q]; for every partition π � d, π⊗ [1d] = π′, where

π′ is the conjugate partition of π (that is the partition whose Young diagram is the

transpose about the main diagonal of the diagram of π).

In particular, we have

[2, 12m−2] = [2m− 1, 1]⊗ [12m],
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so that, using Formula (6.7.4), p.157 of [Lan12] (notice that
∧2[12m] = 0),

∧2[2, 12m−2] =
∧2([2m− 1, 1]⊗ [12m]) =

=
∧2[2m− 1, 1]⊗ S2[1d] =

= [2m− 2, 1, 1]⊗ [d] = [2m− 2, 1, 1].

Lemma 4.18. For every m ≥ 3, the module
∧2[2m − 3, 1, 1, 1] contains a copy of

[2m− 2, 1, 1].

Proof. We brie�y outline the proof, that is essentially the same as Lemma 4.16.

Consider standard Young tableaux T1 and T2 of shape (2m− 3, 1, 1, 1) as follows:

T1 = 1 5 6 · · · 2m− 1 2m

2

3

4

T2 = 1 4 6 · · · 2m− 1 2m

2

3

5

,

so that vi ∈ YTi [2m − 3, 1, 1, 1] (for i = 1, 2 are two linearly independent vectors in

[2m− 3, 1, 1, 1].
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Let Pm be the standard Young tableaux of shape (2m− 2, 1, 1)

Pm = 1 2 3 6 · · · 2m− 1 2m

4

5

,

and let YPm be its Young symmetrizer. Using an inductive argument as in Lemma

4.16, we can show that YPm(v1 ∧ v2) 6= 0. The base of the induction is an explicit

calculation (see Appendix C).

The inductive step can be performed with the exact same calculation as Lemma

4.16.

It is an elementary fact, that follows from Schur's Lemma, that for every partition

λ � d, [λ]⊗ [λ] contains exactly one copy of [d]. Indeed, [λ]⊗ [λ] = Hom([λ]∗, [λ]) =

Hom([λ], [λ]), because [λ] ' [λ]∗. The Sd-invariant subspace is the subspace of

Sd-equivariant homomorphism, namely HomSd([λ], [λ]), that is one-dimensional by

Schur's Lemma.

Finally, we are able to prove

Theorem 4.19. For every n = 2(m + 1) ≥ 4 even and r = m + 1, we have ω = 2

and E
(n,r)
0 contains a S2m-invariant polynomial.

Proof. The space E(n,r)
0 is contained, asS2m-module, into

∧3 E
(n,r,)
1 . Lemma 4.16 and

Lemma 4.17, with Proposition 4.12, show that E(n,r)
1 contains a copy of [2m−3, 1, 1, 1]
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and a copy of [2m− 2, 1, 1]. Therefore

∧3 E
(n,r,)
1 ⊇

∧3
(

[2m− 3, 1, 1, 1]⊕ [2m− 2, 1, 1]
)
⊇

⊇ [2m− 2, 1, 1]⊗
∧2[2m− 2, 1, 1, 1] ⊇

[2m− 2, 1, 1]⊗ [2m− 2, 1, 1] ⊇ [2m]

where we used again Formula (6.7.2) in [Lan12] and Lemma 4.18.

It su�ces to show that this invariant is not mapped to 0 via ψ(n,r)
1 : E

(n,r)
1 → E

(n,r)
0 .

This can be shown via an explicit calculation for m = 3 (that corresponds to the case

n = 4) (see Appendix C). The general statement follows via an induction argument

and Proposition 4.11.
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5. RIGID MATRICES

In this chapter we use the tests for non membership in J(σr, L
S) (that is the equations

that we developed in Chapter 4) to determine matrices that are rigid in the restricted

range in which we are able to evaluate our equations. The results from Section 5.1

are from [GHIL16], while the ones of Section 5.2 are original.

5.1 Maximal rigidity and border rigidity

De�nition 5.1. We say that A ∈ Matn is maximally r-rigid if Rigr(A) = (n− r)2.

We say that A ∈ Matn is maximally r-border rigid if A /∈ R[n, r, s] (or equivalently

Rig
r
(A) = (n − r)2) whenever R[n, r, s] is a proper subvariety of Matn, so for s <

(n− r)2.

Notice that if A is maximally r-border rigid then it is maximally r-rigid. In order to

prove that A is maximally r-border rigid, we only need equations for R[n, r, s] when

it is a hypersurface, so when s = (n−r)2−1. In particular if f1, . . . , fr are equations

for the irreducible components of the hypersurface R[n, r, (n− r)2− 1], then a given

A is maximally r-border rigid if and only if fi(A) 6= 0 for every i = 1, . . . , r.

Both [Val77] and [Lok09] suggest that one should study the rigidity of families of

matrices commonly used in mathematics; we focus on Cauchy matrices and Vander-

monde matrices.
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De�nition 5.2. De�ne the Cauchy map:

Caun : Cn ×Cn 99K Matn

((wi)i=1,...,n, (zj)j=1,...,n) 7→
(

1

wi + zj

)
ij=1,...,n

.

The closure of the image of Caun in Matn is an algebraic variety called the variety

of Cauchy matrices : denote it by Caun.

The Cauchy variety Caun is invariant under permutations of rows and columns; this

means that it is a Sn ×Sn-variety.

Proposition 5.3. A general Cauchy matrix is both maximally 1-border rigid and

maximally (n− 2)-border rigid.

Proof. We use the equations from Theorem 4.7 and Theorem 4.8.

First we prove that a general element A ∈ Caun is not in R[n, 1, n2 − 2n]. Up

to permutations of rows and columns, we consider the irreducible components of

R[n, 1, n2 − 2n] having equation

x1
1 · · ·xkk − x1

σ(1) · · · xkσ(k) = 0,

for some k-cycle σ of Sn.

Since the xij's are not identically 0 on Caun, rewrite the equations as

1

x1
1

· · · 1

xkk
=

1

x1
σ(1)

· · · 1

xkσ(k)

.
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Evaluation at Caun gives

(z1 + w1) · · · (zk + wk) = (z1 + wσ(1)) · · · (zk + wσ(k))

On the left-hand side, the term z1 · · · zk−1wk appears; this term does not appear on

the right-hand side because wk 6= wσ(k). This proves that a general Cauchy matrix

is maximally 1-border rigid.

To prove that a general element A ∈ Caun is not in R[n, n− 2, 3], �rst observe that

every submatrix of a Cauchy matrix is a Cauchy matrix; moreover, we have (see e.g.

[Sch59])

det(Caun((wi), (zj))) =

∏
i<j(wi − wj)(zi − zj)∏

ij(wi + zj)
,

that is non-zero if the wi's are distinct and the zj's are distinct. In particular, all the

minors of an invertible Cauchy matrix are non-zero, so A certainly does not belong

to the components of R[n, n− 2, 3] de�ned by avoiding minors.

Up to permutation of rows and columns, consider the irreducible component of

R[n, n− 2, 3] having equation

det

 M
13(123)c

12(123)c M
12(123)c

13(123)c

M
3(123)c

2(123)c M
2(123)c

3(123)c

 = 0

as in (4.5). Evaluation at a generic element of Caun provides, after cancellation

det

 (w1−w3)(z1−z2)
(w1+z2)(w3+z1)

(w1−w2)(z1−z3)
(w1+z3)(w2+z1)

1 1

 = 0.

This does not hold for generic choice of w1, w2, w3, z1, z2, z3, therefore a generic ele-
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ment of Caun does not satisfy the equation. This shows that a generic Cauchy matrix

is maximally (n− 2)-border rigid.

De�nition 5.4. De�ne the Vandermonde map:

V ann : Cn → Matn

(zj)j=1,...,n 7→
(
zi−1
j

)
ij=1,...,n

.

The closure of the image of V ann in Matn is an algebraic variety called the variety

of Vandermonde matrices, or Vandermonde variety : denote it by Vandn.

The Vandermonde variety Vandn is invariant under permutation of columns; this

means it is a Sn-variety, where Sn acts by right multiplication by permutation

matrices.

Notice that the DFT matrix DFTn is a particular Vandermonde matrix, the image

via V ann of (ωj)j=0,...,n−1, where ω is a primitive n-th root of 1.

Proposition 5.5. A general Vandermonde matrix is both maximally 1-border rigid

and maximally (n− 2)-border rigid.

Proof. Let A ∈ Vandn be a general element. We prove A /∈ R[n, 1, n2 − 2n]. Up to

permutation of columns, consider the component having equation

xi11 · · ·x
ik
k − x

i1
σ(1) · · ·x

ik
σ(k) = 0

for some choice of rows i1, . . . , ik and some k-cycle σ ∈ Sn. When we evaluate this
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equation at A = V andn(z1, . . . , zn), we obtain

zi1−1
1 · · · zik−1

k − zi1−1
σ(1) · · · z

ik−1
σ(k) = 0

where now the upper indices are exponents. Since the ij's are distinct and σ is not

the identity, this expression cannot be identically 0 as a polynomial in z1, . . . , zn.

Therefore, we conclude that A does not satisfy the equations for R[n, 1, n2 − 2n], so

it is maximally 1-border rigid.

To prove that A is maximally (n − 2)-border rigid, �rst observe that all the mi-

nors of a generic Vandermonde matrix are non-zero (they are so-called alternating

polynomials, see e.g. [Mac98], Sec. I.3, p.40). In particular, A does not belong to

the components of R[n, n − 2, 3] de�ned by avoiding minors. Up to permutation of

columns, consider the components having equation

det

 M
ij(ijk)c

12(123)c M
ik(ijk)c

13(123)c

M
j(ijk)c

2(123)c M
k(ijk)c

3(123)c

 = 0

for some i, j, k distinct row indices. Let B be the evaluation of the above 2×2 matrix

at A = V ann(z1, . . . , zn): then det(B) is a polynomial in z1, . . . , zn. We show that it

is not identically 0.

First suppose 2 /∈ {i, j, k} so 2 ∈ (i, j, k)c. Regard det(B) as a polynomial in z1, z2

and consider the coe�cient of the monomial z1z2 of degree 2: it has coe�cient 0 in

the product b11b22 because b22 does not depend on z1, z2 and b11 has coe�cient 0 in

z1z2; on the other hand, z1z2 has a non-zero coe�cient in the product b12b21, given

by the product of two minors; therefore det(B) 6= 0 if 2 /∈ {i, j, k}.
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If 2 ∈ {i, j, k}, without loss of generality suppose i = 2. Regard det(B) as a polyno-

mial in z2 and observe that the coe�cient of the linear term is non-zero because it

is the product of two minors.

This shows that the equation given by det(B) is not identically 0 on Vandn, so a

generic Vandermonde matrix is maximally (n− 2)-border rigid.

The following two results suggest that matrices with strong symmetry cannot be

maximally rigid.

Lemma 5.6. If A is symmetric or symmetric about the anti-diagonal then A is not

maximally 1-border rigid.

Proof. Let S be the set of n2 − 2n entries omitting xii+1 (for i = 1, . . . , n − 1), xn1 ,

x1
n, x

i+1
i (for i = 1, . . . , n− 1).

Then J(σ1, L
S) is a hypersurface of equation

x1
2 · · · xn1 − x2

1 · · ·x1
n

that is satis�ed by every symmetric matrix.

The argument is similar for a matrix that is symmetric about the anti-diagonal.

In particular, DFTn is not maximally 1-border rigid. Moreover

Lemma 5.7. If A is a generic matrix with an eigenvalue with multiplicity k, then

Rign−k(A) ≤ n.

Proof. Let c be an eigenvalue of A with multiplicity k and let B = A− cI (where I
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is the identity matrix). Since A is generic, rank(B) = n− k and A = B +C with C

diagonal (and so n-sparse). This shows Rign−k(A) ≤ n.

5.2 Barak's problem for ε ≤ 1/2

In this section we give a simple answer to Problem 1.4 when ε < 1/2. A non-explicit

solution is also given when ε = 1/2.

Proposition 5.8. Let r ≤ n/2 − 1. Let A be a matrix such that all minors of size

(r + 1) are non-zero. Then A is not in D[n, r].

Proof. Since r ≤ n/2 − 1, for every σ there is at least a minor of size r + 1 that

avoids the entries of Sσ, so that it is an equation for J(σr, L
Sσ). If all (r + 1) are

non-zero, then for every σ ∈ Sn at least one equations of J(σ
(n)
r , LS

σ
) is non-zero,

namely A /∈ D[n, r].

Proposition 5.8 provides a very simple method to obtain a solution to Problem 1.4

when ε < 1/2. In particular a sequence of general Cauchy matrices or a sequence of

general Vandermonde matrices are non-explicit solutions to Problem 1.4. Moreover,

since every minor of an invertible Cauchy matrix is nonzero, we can easily construct

explicit sequences of Cauchy matrices that solve Problem 1.4. For instance, let wi, zj

be both the sequence of natural numbers. De�ne for every n An := Caun((wi)i, (zj)j).

Then {An} is an explicit solution to Problem 1.4 when ε < 1/2. Similarly, sequences

of totally positive matrices (in the sense of [FZ00]) provide explicit solutions in this

range.

We provide a non-explicit solution for the case ε = 1/2. If n = 2r then we can apply

the method that we developed in Chapter 4. In this range, we have ω = 2(r+1)−n =
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2. We will prove that a generic Cauchy matrix is not in the variety D[n, r] in this

range.

Theorem 5.9. If r ≥ 3, a generic Cauchy matrix does not belong to D[n, r] if

n = 2r.

Proof. Because of the Sn×Sn invariance of Caun, without loss of generality we can

consider the case where S is diagonal.

We will consider the equation of J(σr, L
S) that arises as follows. Fix three distinct

pairs (I1, J1), (I2, J2), (I3, J3) such that, for ` = 1, 2, 3, I`, J` ⊆ {3, . . . , n}, I` ∩ J` = ∅

and |I`| = |J`| = r − 1. In particular, for ` = 1, 2, 3, M12I`
12J`

and M12J`
12I`

are elements

of E(n,r)
2 .

De�ne g` := ψ
(n,r)
2

(
M12I`

12J`
∧M12J`

12I`

)
∈ E

(n,r)
1 , and f = ψ

(n,r)
1 (g1∧g2∧g3) ∈ E

(n,r)
0 . We

will show that for a suitable choice of I1, I2, I3 (and a consequent choice of J1, J2, J3),

the equation f does not vanish on a generic Cauchy matrix.

Fix I ′, J ′ ⊆ {7, . . . , n}, disjoint of cardinality r − 3, so that I ′ ∪ J ′ = {7, . . . , n}; let

I1 = {3, 4} ∪ I ′, J1 = {5.6} ∪ J ′,

I2 = {3, 5} ∪ I ′, J1 = {4.6} ∪ J ′,

I3 = {3, 6} ∪ I ′, J1 = {4, 5} ∪ J ′.

Recall that every square submatrix of a Cauchy matrix is a Cauchy matrix itself and

that

det(Caun((wi), (zj))) =

∏
i<j(wi − wj)(zi − zj)∏

ij(wi + zj)
.
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Fix ` and write I = I`, J = J` so that I = {p1, p2} ∪ I ′ and J = {q1, q2} ∪ J ′ with

{p1, p2, q1, q2} = {3, 4, 5, 6}. Let

g := ψ
(n,r)
2

(
M12I

12J ∧M12J
12I

)
= det

 M12I
12J M12J

12I

M I
J MJ

I


so that, letting {k, k′} = {1, 2}, we have

∂kg =
∂

∂xkk
g = det

 Mk′I
k′J Mk′J

k′I

M I
J MJ

I

 .
Let

QI
J =

∏
(i,j)∈I×J(wi + zj)∏

i,i′∈I,i<i′(wi′ − wi)
∏

j,j′∈J,j<j′(zj′ − zj)
.

and similarly QJ
I . Also, for sets of indices K,L de�ne

UK
L =

∏
k∈K(wk − w1)(wk − w2)

∏
`∈L(z` − z1)(z` − z2)∏

k∈K(wk + z1)(wk + z2)
∏

`∈L(w1 + z`)(w2 + z`)
,

V K
L (1) =

∏
k∈K(wk − w1)

∏
`∈L(z` − z1)∏

k∈K(wk + z1)
∏

`∈L(w1 + z`)
,

and similarly V K
L (2).

By restricting the minors to Caun, we have

M12I
12J = QI

J ·
(w2 − w1)(z2 − z1)

(z1 + w1)(z1 + w2)(z2 + w1)(z2 + w2)
· Up1,p2

q1,q2
· U I′

J ′ .

MkI
kJ = QI

J ·
1

(zk + wk)
· V p1p2

q1q2
(k) · V I′

J ′ (k)

M I
J = QI

J ,

and similar relations exchanging the roles of I and J .
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From these relations, we obtain

g(A) = ψ
(n,r)
2 (M12I

12J ∧M12J
12I ) =

= QI
JQ

J
I ·

(w2 − w1)(z2 − z1)

(z1 + w1)(z1 + w2)(z2 + w1)(z2 + w2)
·

· det

 Up1,p2
q1,q2
· U I′

J ′ U q1,q2
p1,p2
· UJ ′

I′

1 1

 .

Similarly, for k = 1, 2,

(∂kg)(A) = QI
JQ

J
I ·

1

(zk′ + wk′)
· det

 V p1p2
q1q2

(k′) · V I′

J ′ (k
′) V q1q2

p1p2
(k′) · V J ′

I′ (k′)

1 1

 .
We specialize to a Cauchy matrix A with the property that U I′

J ′ = UJ ′

I′ and V
I′

J ′ (k) =

V J ′

I′ (k) for k = 1, 2. To do this, �x a bijection τ : I ′ → J ′ and let w1 = z1, w2 = z2

and wi = zτ(i) for i ∈ I ′ and wj = zτ−1(j) for j ∈ J ′. Let w` and z` be generic for

` ∈ {3, 4, 5, 6}. We obtain

g(A) = QI
JQ

J
I · C12 · U I′

J ′ ·
(
Up1,p2
q1,q2
− U q1,q2

p1,p2

)
,

where C12 :=
(w2 − w1)(z2 − z1)

(z1 + w1)(z1 + w2)(z2 + w1)(z2 + w2)
and similarly

(∂kg)(A) = QI
JQ

J
I ·

1

(zk′ + wk′)
· V I′

J ′ (k
′) ·
(
V p1,p2
q1,q2

(k′)− V q1,q2
p1,p2

(k′)
)
.

By applying these relations to the pairs (I`, J`) for ` = 1, 2, 3, we obtain the equation
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f as a determinant of a 3× 3 matrix whose columns are, for ` = 1, 2, 3


g`

∂1g`

∂2g`

 =


QI`
J`
QJ`
I`
· C12 · U I′

J ′ ·
(
Up1,p2
q1,q2
− U q1,q2

p1,p2

)
QI`
J`
QJ`
I`
· 1

(z2+w2)
· V I′

J ′ (2) ·
(
V p1,p2
q1,q2

(2)− V q1,q2
p1,p2

(2)
)

QI`
J`
QJ`
I`
· 1

(z1+w1)
· V I′

J ′ (1) ·
(
V p1,p2
q1,q2

(1)− V q1,q2
p1,p2

(1)
)
 ;

in particular, by multilinearity, we obtain

f(A) =

( ∏
`=1,2,3

QI`
J`
QJ`
I`

)
· C12 ·

1

(z1 + w1)(z2 + w2)
· U I′

J ′ · V I′

J ′ (1) · V I′

J ′ (2)·

· det


U34

56 − U56
34 U35

46 − U46
35 U36

45 − U45
36

V 34
56 (2)− V 56

34 (2) V 35
46 (2)− V 46

35 (2) V 36
45 (2)− V 45

36 (2)

V 34
56 (1)− V 56

34 (1) V 35
46 (1)− V 46

35 (1) V 36
45 (1)− V 45

36 (1)

 .
(5.1)

Notice that the factors on the �rst line of (5.1) are nonzero if the wi's are distinct

among themselves and the zj's are distinct among themselves. Moreover, notice that

the matrix at the second line of (5.1) does not depend on wi or zj for i, j ≥ 7.

In particular, it su�ces to check that this determinant is non zero for a 6×6 Cauchy

matrix Cau6(w, z) with w1 = z1 and w2 = z2. This explicit calculation is performed

in Appendix C.
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6. CONCLUSIONS

In this chapter we brie�y discuss possible improvements, further techniques and

future work concerning the results of this thesis.

A great part of our results are limited to the case considered in Problem 1.4 (and

its Zariski closed version, Problem 3.11) and in Chapter 5, we observed how this

problem is almost trivial when ε < 1/2. Notice that in the range r = εn, one obtains

ω = 2(r + 1) − n = 2(εn + 1) − n = (2ε − 1)n + 2; therefore if ε > 1/2, the value

ω increases as n increases; this makes di�cult to use the equations that we obtain

in Section 4.2, because it would not be possible to apply the propagation result of

Proposition 4.11 or even a modi�ed ad hoc version as we did in Theorem 5.9. In

order to use our method in a more ample range, one needs to develop techniques

to evaluate the equations for large ω. There are several possible paths that one can

follow. One can investigate techniques to evaluate these equations on matrices of a

particular form, such as Vandermonde matrices, whose minors can be expressed in

terms of Schur functions, and known results on symmetric functions can be used to

reduce the expressions of the equations to a form easy to evaluate. This approach

is similar to the one we followed in Chapter 5 in the case of Cauchy matrices, but

it would be necessary to develop a method that does not rely on Proposition 4.11.

For a second possible approach recall that in the construction of the maps ψ(n,r)
` , we

took all possible derivatives of order ` in the chosen subset of diagonal entries, and

in that case we could guarantee that the diagonal variables were eliminated; one can

hope to achieve the same result by taking fewer derivatives, and so control the degree

of the resulting equations. This approach relates the equations that we obtained in
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Chapter 4 to the study of resultants. Appendix B discusses this approach. Finally,

one can certainly improve the results obtained via representation theory and probably

one can prove similar results in a more general setting. Indeed the arguments that

we used in Section 4.3 rely on non-decreasing properties of multiplicities of certain

Specht modules inside tensor products (so-called Kronecker coe�cients) and can

likely be applied whenever these stability results hold. However, our techniques use

the propagation result of Proposition 4.11 and one would need further insights to

avoid it.

Another challenge is the problem of explicitness. It is often useful to restrict to partic-

ular classes of matrices, as we did in Chapter 5, in order to exploit their symmetries:

for instance we saw how the Sn-invariance of Vandn and the Sn × Sn-invariance

of Caun were useful in reducing the number equations to check. However, if one

further restricts to a single explicit matrix there are usually two possibilities: either

the chosen matrix is too symmetric and the equation we are evaluating vanishes, or

the symmetry breaks down and one has to check a much higher number of equations.

Finally, one would like to eventually have results in Valiant's range. A natural

continuation of the work of [GHIL16] is the study of the hypersurface cases for r = 2

and r = n − 3. We found several di�culties in both cases. If r = n − 3, then the

components of R[n, r, s] are hypersurfaces when s = 8, so every con�guration S is

concentrated in a 8 × 8 submatrix; if we were able to generalize the method that

we used in Section 4.1 in the case n = 3, r = 1, we could in principle determine the

equation for each con�guration S of 8 entries, by propagating the equation that we

have in the case n = 8, r = 5. This task is computationally challenging both for

the di�culty in applying direct elimination in C[Mat8] and for the high number of

di�erent cases. As for the case n = 2, we get new con�gurations (namely that are
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not covered by previous cases) when n ≥ 5. We can perform direct elimination for

n = 5 and n = 6, but we were not able to discover a pattern that could lead to a

general form of the equations. Since the challenge in this case is to understand which

are the maximal S such that J(σr, L
S) is a hypersurface, we recall here Remark 3.8.

Techniques to study bases and �ats of a matroid can be useful to determine the

number of irreducible components of R[n, r, s] and more in particular to characterize

the con�gurations S that give a hypersurface.
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APPENDIX A

LINEAR CIRCUITS

This appendix deals with the basic de�nition of linear circuit, the complexity measure

that is used in [Val77] to study matrix-vector multiplication.

De�nition A.1. A linear circuit is a directed acyclic graph L, with n sources and

m sinks. Edges are labeled with constants. Input vertices are labeled with variables

x1, . . . , xn. The other vertices are labeled as follows: if a vertex of L has in-degree

r with in-going edges a1, . . . , ar from vertices labeled u1, . . . , ur, then we label the

vertices by u = a1u1 + · · ·+ arur and we say that the vertex computes u.

We say that L computes an n× n matrix A if its sinks compute the entries of Ax.

The size of a linear circuit L is the number of edges of L. The depth of a linear

circuit L is the maximum length of a directed path in L.

A linear circuit L that computes a matrix A encodes an algorithm to compute x 7→

Ax and the size of the linear circuit counts the number of arithmetic operations used

in the algorithm. See [Lok09] for details on this complexity model. For instance

the linear circuit in Figure A.1 represents the standard matrix-vector multiplication

algorithm for a 3× 2 matrix A = (aij).

Similarly, Figure A.2 represents the standard algorithm for a 3× 2 matrix A = (aij)

with a22 = 0, and Figure A.3 represents the algorithm for a 3× 2 matrix A = v⊗w

of rank 1 (with v ∈ C3 and w ∈ C2).
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x1 x2

y1 y2 y3

a11 a32

a12a31

a21 a22

Figure A.1: Standard algorithm for A ∈Mat3×2

x1 x2

y1 y2 y3

a11 a32

a12a31

a21

Figure A.2: Standard algorithm for A ∈Mat3×2 with a22 = 0

x1 x2

•

y1 y2 y3

w1 w2

v1 v2v3

Figure A.3: Standard algorithm for A = v ⊗w ∈Mat3×2 of rank 1

Valiant proposed to use matrix rigidity as a measure of the complexity of the linear

map associated to A in terms of linear circuits. The following is a more re�ned

version of Theorem 1.2.
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Theorem A.2 ([Val77], Thm. 6.1). Let An be a sequence of matrices, with An ∈

Matn(C). Let Ln be a sequence of in-degree 2 linear circuit of size sn and depth dn

such that Ln computes An. Fix t > 1 and let ρn = sn log(t)
log(dn)

. Then

Rigρn(An) ≤ 2O(d/t)n.

The proof is based on a graph-theoretic argument, that we omit. We refer to [Lok09]

or to the original source.
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APPENDIX B

RESULTANTS

In this section, we propose an approach to the elimination problem in the case where

S is diagonal that uses so called resultants. Consider a polynomial system in two

sets of variables x = (x1, . . . , xk) and y = (y1, . . . , ym) and k + 1 equations:

f0(x,y) = 0

...

fk(x,y) = 0.

(B.1)

Let I = (f0, . . . , fk) ⊆ C[x1, . . . , xk, y1, . . . , ym]. From Theorem 4.1, the elimination

ideal (f0, . . . , fk)∩C[y1, . . . , ym] cuts out the projection of V (I) modulo the subspace

x1 = · · · = xk = 0. If the fj's are su�ciently general, this projection is a hypersurface

and its equation is a polynomial in the yi's that is called resultant of f0, . . . , fk with

respect to x1, . . . , xk.

The theory of resultants is a rich subject that makes use of deep results in algebraic

geometry. We refer to [GKZ94] (Ch. 3 and Ch. 4) and [ESW03] for the theory

behind resultants and [CLO97] (Ch. 3 and Ch. 7) and [Stu02] for a computational

approach.

We are interested in the multilinear resultant, that is the resultant of a system of

polynomials as in (B.1) that is (a�ne) multilinear in the x variables, namely in every

monomial of every fj, each variable xi appears in degree at most 1. This approach
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is used in [DSS07] to determine equations for J(σ
(n),sym
r , LS), where σ(n),sym

r is the

variety of n× n symmetric matrices of rank at most r and S is diagonal.

Consider p+1 multilinear polynomials f0, . . . , fp in the variables t1, . . . , tp and ajε1,...,εp

(for j = 0, . . . , p, εi ∈ {0, 1}), where ajε1,...,εp is the coe�cient of tε11 · · · t
εp
p in the

polynomial fj:

fj :=
∑

ε1,...,εp∈{0,1}

ajε1,...,εp · t
ε1
1 · · · tεpp . (B.2)

We regard I := (f0, . . . , fn) as an ideal in the polynomial ring C[a,p].

Theorem B.1 ([DSS07], Thm 19). The elimination ideal I ∩ C[a] is principal,

generated by an irreducible polynomial R(a) which is homogeneous of degree n! in

the a variables.

The polynomial R(a) is called n-th multilinear resultant.

We consider the space of polynomials E(n,r)
ω of (4.9). We regard these polynomials

as elements of the polynomial ring C[xjk : j 6= k][xii : i = 1, . . . , ω]; they are (a�ne)

multilinear in the ω diagonal variables appearing in E
(n,r)
ω . Select ω + 1 elements of

E
(n,r)
ω , and express them in the form of (B.2) (with p = ω), where now the a's are

polynomials in the o� diagonal variables xjk. The evaluation of the ω-th multlinear

resultant at these ω+1 selected polynomials provides a polynomial in the elimination

ideal of the ideal generated by E
(n,r)
ω .

Similarly to [DSS07], Thm. 23, we obtain

Theorem B.2. Let f0, . . . , fω ∈ E
(n,r)
ω and let ajε1,...,εω be the coe�cient of the mono-

mial (x1
1)ε1 · · · (xωω)εω in fj. Then R(a) is an equation for J(σr, L

S) (possibly zero).

We believe that this approach can lead to equations for J(σr, L
S) that have lower
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degree and are easier to evaluate compared to the ones that we construct in Chapter

4.
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APPENDIX C

COMPUTER CALCULATIONS

This appendix deals with explicit computer calculations to prove the base cases of

the inductive arguments of Lemma 4.16, Lemma 4.18, Theorem 4.19 and Theorem

5.9. These calculations are performed via the software Macaulay2 ([GS]). We assume

some basic knowledge of Macaulay2, and in this appendix, we explain the methods

that we used to prove our results; we work over rational number is exact arithmetic;

the complete scripts are available at www.math.tamu.edu/~fulges.

Specht Modules and Young symmetrizers

A fundamental tool that we used in the proof of the results of Chapter 4 is the Young

symmetrizer associated to a standard Young tableau Tλ of shape λ
� d (for some non

negative integer d). Since indices in Macaulay2 start from 0, it is useful to regard

the symmetric group Sd as acting on the integers {0, . . . , d − 1}. We represent a

Young tableau Tλ as a list of lists whose elements are the labels of the boxes of Tλ,

listed row by row: for instance

T = {{0,1,3}, {2,5}, {4,6}};

is the standard Young tableau

Tλ = 0 1 3
2 5
4 6

.

of shape λ = (3, 2, 2).
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Given a partition λ, in Chapter 2, we realize the Specht module [λ] as the quotient

space VTλ/K(λ), the space spanned by Young tableaux modulo the straightening

relations. Here, we work with a polynomial ring Vd whose variables are the Young

tableaux (so Vλ is the homogeneous component of degree 1 of Vλ and we consider

K(λ), the ideal generated by the straightening relations: therefore [λ] is realized

as the homogeneous component of degree 1 of the quotient ring Vλ/K(λ). This

construction is performed by the �le SpechtModule.m2. In our construction, the

variables of Vd (namely the Young tableaux) are sorted in such a way that, with the

default GRevLex monomial order in Macaulay2, the standard monomials of the

quotient [λ] are the standard Young tableaux.

Moreover, we explicitly construct the Young symmetrizer associated to a partition λ

as explained in Chapter 2. This is performed by the �le YoungSym.m2, where several

functions are de�ned. In particular, the function YsProj, takes as input an element

f of a tensor product of Specht modules [λ1]⊗ · · · ⊗ [λr] (expressed as a multilinear

polynomial in variables that are in bijections with the standard Young tableaux of

shape λ1, . . . , λr) and a standard Young tableaux Tµ; the output is the projection of

f via the Young symmetrizer.

Although one could work with vector spaces and tensor products of them, working

with polynomial rings on the set of Young tableaux makes particularly easy to encode

the action of the symmetric group, using the substitute function of Macaulay2.

This will likely a�ect the performance of the scripts already for moderately small

cases but it was useful in the cases concerning this thesis.

The following code proves the base case for the induction argument of Lemma 4.16.
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1 YD = {2,2}

2 varname0 = T1

3 load("SpechtModule.m2")

4 Sp22copy1 = Sp

5 varname0 = T2

6 load("SpechtModule.m2")

7 Sp22copy2 = Sp

8 Sp22ot2 = Sp22copy1**Sp22copy2;

9 f = T1_{{0,1},{2,3}}*T2_{{0,2},{1,3}} -

10 T1_{{0,2},{1,3}}*T2_{{0,1},{2,3}}

11 load("YoungSym.m2")

12 P = {{0},{1},{2},{3}};

13 YsProj(f,{T1,T2},P)

Lines from 1 to 7 de�ne a graded algebra Sp22ot2 such that its component of mul-

tidegree (1, 1) is isomorphic to the S4-module [2, 2]⊗2. The element f at lines 8 and

9 is an element (the unique up to scale) of
∧2[2, 2] ⊆ [2, 2]⊗2. Line 12 computes the

projection of f on [14]; since it is nonzero, we conclude that
∧2[2, 2] ' [14]. This

proves the base case of the inductive argument of Lemma 4.16.

The same code, with the following changes, proves the base case for the inductive

argument of Lemma 4.18

1 YD = {3,1,1,1}

9 f = T1_{{0,4,5},{1},{2},{3}}*T2_{{0,3,5},{1},{2},{4}} -

10 T1_{{0,3,5},{1},{2},{4}}*T2_{{0,4,5},{1},{2},{3}}
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12 P = {{0,1,2,5},{3},{4}};

Performing iterated determinants

The induction argument of 4.19 relies on the fact that the invariant contained in

[4, 1, 1] ⊗
∧2[3, 1, 1, 1] is not in the kernel of the projection ψ1 :

∧3 E
(8,4)
1 → E

(8,4)
0 .

This fact is proved by constructing the invariant directly from the minors spanning

E
(8,4)
2 . One can easily check that [4, 1, 1]⊗

∧2[3, 1, 1, 1] only contains one S6-invariant

up to scale. Because of the way Macaulay2 encodes permutations, we prefer the

action of a symmetric group S6 that permutes the �rst 6 rows and columns of an

8 × 8 matrix (whereas for the discussion of Chapter 4, it was clearer to present the

construction by permuting the last 2m rows and columns of a matrix).

We work in a polynomial ring whose variables are M I
J for a suitable set of I, J that

appears in the construction. Here YsProj is not the same function as in the previous

part; it is a re�ned version that allows us to apply symmetrizations to polynomials

in the variables M I
J . Moreover, applying ψ1 is computationally too heavy and we

de�ned an alternative function YsProjMat that performs the symmetrization that

would be needed to apply the Young Symmetrizer on the result of ψ1 directly on the

matrix, working with polynomials of lower degree.

We omit part of the code, that is used to de�ne the following functions:

· randomOpts() has no input and its output is a list of options of the form

M_(I,J) => q_(I,J), where qIJ is the value of the minorM I
J on a �xed random

matrix;

· YSproj(f,T) takes as input a polynomial f in the M I
J 's and a tableau T ; its
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output is the projection of f via the Young symmetrizer associated to T ;

· YSprojMat(A,T) takes as input a matrix A of polynomials in the M I
J 's and a

tableau T ; its output is a list of matrices, with the property that the sum of

their determinants is the projection of det(A) via the Young symmetrizer of T ;

· Diff(p,f) takes as input an index p = 6, 7 and a polynomial f in the minors

M I
J ; its output is the derivative of the polynomial f with respect of the entry

xpp, expressed in terms of minors.

The following code proves the base case of the inductive argument of Theorem 4.19:

1 T'222_1 = {{0,1},{2,3},{4,5}}

2 T'222_2 = {{0,2},{1,3},{4,5}}

3 T'222_3 = {{0,2},{1,4},{3,5}}

4 gen'222_1 = YSproj(MM_({0,2,4,6,7},{1,3,5,6,7}), T'222_1);

5 gen'222_2 = YSproj(MM_({0,3,4,6,7},{1,2,5,6,7}), T'222_2);

6 gen'222_3 = YSproj(MM_({0,3,4,6,7},{1,2,5,6,7}), T'222_3);

7 w2'222_1 = det(matrix{{gen'222_1,gen'222_2},

8 {Diff(6,Diff(7,gen'222_1)),Diff(6,Diff(7,gen'222_2))}});

9 w2'222_2 = det(matrix{{gen'222_1,gen'222_3},

10 {Diff(6,Diff(7,gen'222_1)),Diff(6,Diff(7,gen'222_3))}});

11 T'21111_1 = {{0,1},{2},{3},{4},{5}};

12 T'21111_2 = {{0,3},{1},{2},{4},{5}};

13 gen'21111_1 = YSproj(MM_({0,2,4,6,7},{1,3,5,6,7}), T'21111_1);

14 gen'21111_2 = YSproj(MM_({0,1,4,6,7},{2,3,5,6,7}), T'21111_2);

15 w2'21111 = det(matrix{{gen'21111_1,gen'21111_2},

16 {Diff(6,Diff(7,gen'21111_1)),Diff(6,Diff(7,gen'21111_2))}});

102



17 mat = matrix {{w2'21111 ,w2'222_1,w2'222_2},

18 {Diff(6,w2'21111), Diff(6,w2'222_1),Diff(6,w2'222_2)},

19 {Diff(7,w2'21111), Diff(7,w2'222_1),Diff(7,w2'222_2)}};

20 T'6 = {{0,1,2,3,4,5}};

21 mat'6 = YSprojMat(mat,T'6);

22 opts = randomOpts();

23 detval = apply(mat'6, mm -> (det(sub(mm,opts))));

24 result = sum(detval)

At lines 4,5,6, we construct elements of [2, 2, 2] by projecting elements of E
(8,4
2

via Young symmetrizers of three standard Young tableaux of shape [2, 2, 2]; call

these three elements f1, f2, f3. At lines 7 and 9, we compute g1 = ψ2(f1 ∧ f2)

and g2 = ψ2(f1 ∧ f3). Since
∧2[2, 2, 2] = [3, 1, 1, 1] is irreducible, g1, g2 are already

elements of [3, 1, 1, 1] (there is no need of projecting them via a Young symmetrizer).

Similarly, at lines 13 and 14, we construct elements of [2, 14] ⊆ E
(8,4
0 , and at line 15,

we compute their image via ψ2, say g3; since
∧2[2, 1, 1, 1, 1] = [4, 1, 1] is irreducible,

again there is no need to apply a projection to obtain an element of [4, 1, 1]. At

line 17, we de�ne the matrix whose determinant is ψ(g1, g2, g3). Computing this

determinant symbolically is computationally heavy; therefore we apply a modi�ed

version of the Young symmetrizer projection onto the invariant space, that acts on

the matrix. Lines 22-24 evaluate the image at a random matrix. The result value

is usually nonzero and this shows that the image of the projection to the invariant

space is nonzero. This proves that the image of ψ1 contains a S6-invariant.
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Calculation with Cauchy matrices

Finally, to complete the proof of Theorem 5.9, we need to prove that the determinant

(5.1) does not vanish on a generic matrix of Cau6(w, z) with w1 = z1 and w2 = z2.

This is performed by the following code, that does not need further explanation.

1 U = (K,L) -> ((product(K, k-> (w_k - w_1)*(w_k - w_2))*

2 product(L, l-> (z_l - z_1)*(z_l - z_2)))/

3 (product(K, k-> (w_k + z_1)*(w_k + z_2))*

4 product(L, l-> (w_1 + z_l)*(w_2 + z_l))));

5 V = (e,K,L) -> ((product(K, k-> (w_k - w_e))*

6 product(L, l-> (z_l - z_e)))/

7 (product(K, k-> (w_k + z_e))*

8 product(L, l-> (w_e + z_l))));

9 difU = (K,L) -> (U(K,L) - U(L,K));

10 difV = (e,K,L) -> (V(e,K,L) - V(e,L,K));

11 for i from 1 to 6 do (w_i = random(QQ));

12 z_1 = w_1;

13 z_2 = w_2;

14 for i from 3 to 6 do (z_i = random(QQ));

15 m =matrix{{difU({3,4},{5,6}), difU({3,5},{4,6}) , difU({3,6},{4,5})},

16 {difV(2,{3,4},{5,6}), difV(2,{3,5},{4,6}) , difV(2,{3,6},{4,5})},

17 {difV(1,{3,4},{5,6}), difV(1,{3,5},{4,6}) , difV(1,{3,6},{4,5})}}

18 det m

Usually the result of line 18 is nonzero, that proves the base case of the induction

argument of Theorem 5.9.
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