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ABSTRACT 

 

 An efficient and optimized field development plan is a crucial and primary aspect 

of maximizing well productivities and improving the recovery factors of oil and gas 

fields, and thereby most effectively increasing profitability. In this research, we apply a 

meta-heuristics algorithm known as the imperialist competitive algorithm (ICA) to 

determine optimal well locations for maximum well productivity.  

   The ICA, an evolutionary algorithm that mimics socio-political imperialist 

competition, uses an initial population that consists of colonies and imperialists that are 

assigned to several empires. The empires then compete with each other, which cause the 

weak empires to collapse and the powerful empires to dominate and overtake their 

colonies.  

We compared the ICA performance with that of particle swarm optimization 

(PSO) and the genetic algorithm (GA) in the following four optimization scenarios: 1) a 

vertical well in a channeled reservoir, 2) a horizontal well in a channeled reservoir, 3) 

placement of multiple vertical wells, and 4) placement of multiple horizontal wells. In all 

four scenarios, the ICA achieved a better solution than did the PSO or GA in a fixed 

number of simulation runs. We also applied the ICA optimization algorithm to optimize 

well placement, well type (producer/injector), well configuration (vertical/directional), 

wellbore length, and drilling schedules for a sector of a Middle East reservoir. 

In addition, we conducted sensitivity analyzes on three important parameters 

(revolution ratio, assimilation coefficient, and assimilation angle), and the analyses show 
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that the recommended ICA default parameters generally led to acceptable performances 

in our examples. However, to obtain optimum performance, we recommend tuning the 

three main ICA parameters with respect to specific optimization problems. 
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1. INTRODUCTION 

 

In recent years, the optimization of well placement has been the focus of much 

research as field developments have become more challenging and oil and gas producers 

have tried to respond appropriately to increasing global energy demands. As such, 

optimization techniques must be utilized to determine the field development plan that 

will yield maximum well productivity as well as increased effectiveness of the recovery 

factors. 

Well placement optimization is a complex and challenging problem due to its 

non-linear nature involving various decision variables, constraints, and multiple 

scenarios that have both direct and indirect effects on the final optimal solution. For 

instance, well placement optimization problems are typically solved by optimizing the 

well location, configuration (vertical, horizontal, multilateral), type (producer, injector), 

and operation status (open, closed) (Nasrabadi et al., 2012). Decision variables with 

uncertainties and solution constraints lead to a very complex and large solution space, 

with many possible solution combinations. In addition, most optimization problems have 

various types of physical and economic constraints that must be heeded during the 

optimization process. Depending on the nature of the desired outcome of the 

optimization problem, the best combination of two or more conflicting objective 

functions (maximizing net present value (NPV) while minimizing cumulative injected 

water) must be found, which increases the complexity of the problem. Also, the many 

possible variable combinations mean that it is not sufficient to use only intuitive 
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engineering judgment to determine the optimum sets of problem variables. Optimization 

methods have also been applied to other petroleum-related problems such as history 

matching and inversion in reservoir simulations (Zhang, F. and Reynolds, A., 2002; 

Chunduru, R.K., et al., 1997; Sen, M. and Stoffa, P., 1995)  

Many researchers have designed and implemented automated simulation 

algorithms that optimize the drilling of infill wells. Franstorm, K.L. and Litvak, M.L. 

(2000) developed an algorithm that optimizes the placement of new infill wells while 

also optimizing the recompletion design for existing wells using a full-field simulation 

model. Litvak, M., et al. (2007) designed and applied an automated optimization 

algorithm to optimize the placement of new and existing wells, waterflooding, well rates, 

and surface facilities. The work of these authors yielded substantial improvements with 

respect to oil recovery and NPV. 

Typically, automatic well placement optimization for determining a global 

optimum solution involves several steps. The process begins with a user selecting an 

initial well position based on engineering judgment. Then, with the aid of an 

optimization algorithm, a new and improved well position is suggested. Next, a reservoir 

response model is applied to the newly suggested position, and the result is reported to 

the programed algorithm. This step is repeated until a pre-determined stopping point 

criterion is met.  
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 1.1 Literature Review 

Researchers have attempted to solve the well placement problem using various 

optimization algorithms. The first optimization algorithm used for well placement was 

the mixed integer programing method in which sets of pre-determined requirements are 

represented by mathematical linear relationships to maximize an objective function. 

Rosenwald and Green (1974) utilized this method to identify optimized well locations 

that would minimize the difference between production and scheduled demand. This 

method has also been used in offshore field development optimization with respect to 

platform placements, the number of wells in each platform, pipeline-network designs, 

and production constraints (Devine and Lesso, 1972; Dogru, 1987; Eeg and Herring, 

1997; Garcia-Diaz et al., 1996; Hansen et al., 1992; lyer et al., 1998; Sullivan, 1982; van 

den Heever and Grossmann, 2000; Watson et al., 1989). The mixed integer programing 

method is not applicable to non-linear flow conditions and has yielded poor results in 

cases with a large possible solution space (Nasrabadi et al., 2012).  

Gradient-based methods have also been applied to well placement optimization. 

In these methods, a maximum or minimum solution to an n-dimensional objective 

function is determined through the application of Taylor-series expansion and the 

calculation of an objective function gradient. There are two main approaches to the 

gradient calculations: the finite difference and adjoint-based methods. Gradient-based 

optimization has been used by several authors to determine optimum well placement and 

well trajectory for horizontal wells (Bangerth et al., 2006; Castineira and Alpak, 2009; 

Forouzanfar et al., 2010; Sarma and Chen, 2008; Viemmix et al., 2009; Wang et al., 
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2007; Zandvliet, M.J., et al., 2008). Handels et al. (2007) and Wang et al. (2007) also 

utilized gradient-based optimization techniques. In their work, the authors proposed a 

workflow by which they calculate the gradient of the objective function and utilize a 

steepest ascent direction to direct the optimization search. They were successful in 

achieving a near optimal solution with fewer simulation runs. However, they only 

considered the optimization of vertical well placement, and they concluded that their 

proposed optimization workflow will not perform comparably if it is applied to more 

complex well configurations. In any case, a major flaw associated with the gradient-

based optimization method is its high dependency on the initial guess, which may trap it 

in a local optimum. (Nasrabadi et al., 2012). 

Another optimization technique that has been used for well placement is 

simultaneous perturbation stochastic approximation (SPSA), which is considered to be 

an approximate gradient-based algorithm. The simultaneous perturbation stochastic 

approximation (SPSA) algorithm is based on computing the gradient of the objective 

function in a random direction, which generates two new points that are then used to 

calculate the objective function of those two new points. If the new calculated objective 

function shows better value, it is used to generate two more new points and the process 

continues in the direction that yields a better objective function value (Spall, J.C., 1998; 

Spall, J.C., 2003). Bangerth et al. (2006) applied simultaneous perturbation stochastic 

approximation (SPSA) in the placement of multiple vertical wells and concluded that 

simultaneous perturbation stochastic approximation (SPSA) performed better than both 

the genetic algorithm (GA) and simulated annealing (SA) in their study example. One 



 

 5 

pitfall associated with simultaneous perturbation stochastic approximation (SPSA) is the 

sensitivity of the chosen step size for calculating new solutions. Researchers have found 

that if a wrong step size is assigned, a non-feasible solution can be generated that may 

hinder the solution convergence. Also, simultaneous perturbation stochastic 

approximation (SPSA) has shown poor handling for discontinuous objective functions, 

as the calculated gradient might not be defined. 

Many probabilistic and stochastic optimization methods have also been applied 

to well placement optimization. Simulated annealing, first introduced by Kirkpatrick et 

al. (1983), is a probabilistic method for finding a global optimum by mimicking the 

recrystallization process of a heated solid object until it becomes a frozen structure that 

corresponds to a minimum energy configuration. Beckner and Song (1995) and Norrena 

and Deutch (2002) applied this method for well placement optimization.  

Another stochastic optimization method is particle swarm optimization (PSO), a 

population-based method first introduced by Kennedy and Eberhart (1995) that mimics 

the searching efforts of animal groups such as birds and fish. In particle swarm 

optimization (PSO), the algorithm starts by populating possible solutions, which are 

referred to as particles. Each particle is assigned a position that is updated at each 

iteration based on its fitness and its relative position to the other particles. The main 

particle swarm optimization (PSO) algorithmic operator is particle velocity, which is 

responsible for moving particles through the search space in an attempt to establish a 

better position (solution) (Helwig, S. and Wanka, R., 2008; Shi, Y. and Eberhardt, R.C., 

1998; Engelbrecht, A.P., 2005). Mattot et al. (2006) used particle swarm optimization 
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(PSO) to minimize the cost of water remediation of produced and injected water by 

optimizing the number, location, and rate of injection wells. Also, Onwunalu and 

Durlofsky (2010) applied particle swarm optimization (PSO) to well placement 

optimization for single and multiple wells as well as for nonconventional well 

configurations. The authors concluded that in most cases particle swarm optimization 

(PSO) performed better than the genetic algorithm (GA).  

Genetic algorithm (GA) was first introduced by Holland in 1975 when he was 

inspired by the idea of mimicking the process of natural evolution in a self-adaptive 

automated algorithm. Genetic algorithm (GA) became popular as a robust and effective 

algorithm for finding optimum solutions in a highly dimensional and complex solution 

space. The typical genetic algorithm (GA) process consists of three main operators: 

selection, crossover, and mutation. The genetic algorithm (GA) process starts with the 

generation of an initial population that consists of many individuals that correspond to 

possible solutions. Each individual is created by a set of parameters or variables that 

constitute chromosomes pertaining to the individual. Then, the generated individuals 

undergo a fitness evaluation whereby the chromosomes are evaluated, ranked, and 

selected with respect to their fitness for mating and reproduction (selection). This 

process is known as survival of the fittest, and the chromosomes that yield better 

solutions are carried into the next generation. This process continues until a pre-

determined criterion is met (Goldberg, D.E., 2004; Haupt, R.L. and Haupt, S.E., 2004; 

Mitchell, M., 1996). 
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The application of genetic algorithm (GA) to oil and gas well placement 

optimization has yielded favorable results that have made genetic algorithm (GA) a 

widely used and accepted optimization algorithm for solving oil and gas industry 

optimization problems. For example, Bittencourt and Horne (1997) developed a hybrid 

binary genetic algorithm (GA) that combines the genetic algorithm (GA) with the 

polytope method to determine optimal well placement and well configuration 

(vertical/horizontal) in faulted reservoirs. The polytope method uses linear programing 

to generate a simplex that includes several vertices. Each vertex is evaluated and the 

process loops to produce solutions with improved feasibilities based on chosen pivot 

elements. Montes et al. (2001) applied the genetic algorithm (GA) to vertical well 

placement optimization and used cumulative oil production as the objective function to 

be maximized. The authors used two synthetic reservoir models and found that the use of 

elitism improved the convergence rate to the optimum solution. Emeric et al. (2009) 

used the genetic algorithm (GA) to determine the best optimum number, location, and 

trajectory for deviated producer and injector wells in field development. They introduced 

a handling sub-routine that discards infeasible solutions by applying a crossover between 

the infeasible solutions and previously determined feasible solutions.  

Yeten et al. (2003) constructed a framework that utilized the genetic algorithm 

(GA) as a searching algorithm to identify the optimum well placement and 

configuration. The authors used a 3D reservoir model and included the option of having 

a multilateral well as one possible configuration. Several helper functions, such as 

artificial neural networks and the hill climber technique, were used to further enhance 
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the genetic algorithm (GA) optimization performance. Furthermore, the authors applied 

near-wellbore upscaling to account for near-well heterogeneity. Rigot (2003) further 

enhanced Yeten et al.’s optimization method to improve the efficiency of multilateral 

well placement optimization. He introduced a proxy to avoid the need to evaluate the 

objective function in cases where the expected well productivity is within the validity 

range of a proxy.  

Several researchers have applied well placement optimization to waterflooding 

projects. Bangerth et al. (2006) applied well placement optimization to both producers 

and injectors. In their work, the authors compared the performances of the simultaneous 

perturbation stochastic approximation (SPSA), genetic algorithm (GA), finite difference 

gradient (FDG), and very fast simulated annealing (VFSA), and concluded that 

simultaneous perturbation stochastic approximation (SPSA) and very fast simulated 

annealing (VFSA) produced better results than genetic algorithm (GA) and finite 

difference gradient (FDG).  

Since reservoir modeling is associated with many geological and fluid 

uncertainties, many researchers have accounted for these uncertainties when developing 

their optimization techniques by designing a robust optimization workflow. However, 

since considering multiple realizations in optimization problems increases the 

computational expense, it is prudent to develop techniques that address this challenge. 

One approach is to choose a set of realizations that is representative of the whole 

uncertainty spectrum. For example, Artus et al. (2006) used statistical proxies instead of 

simulation runs to find the optimal well locations for dual-lateral wells. Their method 
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makes it possible to find the objective functions without having to run many model 

simulations. Williams, G.J.J., et al. (2004) developed an automated optimization process 

that takes into account the effect of reservoir uncertainties on model performance 

prediction. The authors applied their process on both new and mature fields and reported 

up to a 20% increase in the overall net present value (NPV). Guyaguler et al. (2000) 

applied a hybrid optimization algorithm that uses both a binary genetic algorithm and a 

polytope technique. The authors also incorporated artificial neural networks (ANN) and 

Kriging techniques to generate function proxies for use in cost function evaluation. 

Utilizing artificial neural networks (ANN) and Kriging as a substitute for running model 

simulations reduces the optimization running time. Furthermore, Tupac, Y. J., et al. 

(2007) used function approximation models as simulator proxies and utilized quality 

maps to improve the optimization process while also reducing the optimization cost. 

Wang et al. (2012) considered reducing the required number of realizations by 

utilizing a retrospective optimization framework. In their work, the authors considered a 

sequence of different numbers of realization sets and were able to substantially reduce 

the computational expense. Also, Yeten et al. (2003) included the risk of inflow control 

valve failure on well controls optimization. The authors also applied the optimization 

process to a set of five geological realizations to find the optimized expected net present 

value (NPV). Cameron et al. (2012) considered a set of geological realizations to find 

the optimal injected CO2 rates and used particle swarm optimization (PSO) as their main 

algorithm engine. Yasari et al. (2013) also applied optimization to a waterflooding 

project and included robust optimization (RO) to account for geological uncertainty. Van 
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Essen et al. (2009) also applied robust optimization (RO) in their work by introducing a 

set of realizations to represent the field uncertainty range. 

 

1.2 Scope of Work 

In this research, we apply an imperialist competitive algorithm (ICA) to 

determine the optimum well location for maximum well productivity. The imperialist 

competitive algorithm (ICA) is an evolutionary meta-heuristic algorithm that mimics 

socio-political imperialist competition to search for a global optimal solution. In the 

imperialist competitive algorithm (ICA), an initial population consists of colonies and 

imperialists that are assigned to several empires. The empires then compete and as the 

weak empires collapse the powerful empires take over their colonies. This iterative 

process continues until the best solution is reached based on a pre-determined criterion. 

Although the imperialist competitive algorithm (ICA) has not been previously applied to 

the well placement optimization problem, it has been applied in the context of petroleum 

engineering for well flow rate predictions (Ahmadi, et al., 2013). Also, imperialist 

competitive algorithm (ICA) has been applied in other engineering disciplines and has 

shown potential superiority over other well-known optimization techniques, such as the 

genetic algorithm (GA) and particle swarm optimization (PSO), in terms of its 

convergence rate and global optima achievement (Atashpaz-Gargai, et al., 2007; 

Rajabioun, et al., 2008; Sepehri Rad, et al., 2008). In the first part of this research, we 

compare the performance of the imperialist competitive algorithm (ICA) with that of the 

particle swarm optimization (PSO) and the genetic algorithm (GA), with respect to well 
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placement optimization. In the second part, we apply the imperialist competitive 

algorithm (ICA) optimization algorithm on a sector of a Middle East reservoir, with the 

objective of identifying the optimal well placement, configuration, type, and drilling 

schedule for a waterflooding project while addressing the geological uncertainty 

associated with the reservoir. 

 

1.3 Dissertation Outline 

The objective of this work is to examine the applicability and robustness of the 

imperialist competitive algorithm (ICA) and benchmark its overall performance against 

the genetic algorithm (GA) and particle swarm optimization (PSO). In section 2, we 

present a detailed imperialist competitive algorithm (ICA) optimization algorithm and 

describe the imperialist competitive algorithm (ICA) algorithm workflow along with an 

overview of the genetic algorithm (GA) and particle swarm optimization (PSO) 

algorithms used in this work. Since the imperialist competitive algorithm (ICA) is our 

main optimization algorithm, we describe the algorithm workflow in detail and more 

briefly describe the genetic algorithm (GA) and the particle swarm optimization (PSO). 

In section 3, we consider the application of the imperialist competitive algorithm 

(ICA), genetic algorithm (GA), and particle swarm optimization (PSO) in four cases. In 

the first case, we optimize the well placement of a single vertical well in a 2-D 

channeled reservoir. In the second case, we place a single horizontal well in a 3-D 

channeled reservoir. In the third case, we simultaneously optimize the placement of 

multiple vertical wells in a 2-D channeled reservoir. In the fourth case, we consider the 
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optimized placement of multiple horizontal wells in a 3-D channeled reservoir. The 

results from these cases reveal a better overall performance by the imperialist 

competitive algorithm (ICA) compared to the genetic algorithm (GA) and the particle 

swarm optimization (PSO).  

In section 4, we perform a sensitivity analysis for the three main imperialist 

competitive algorithm (ICA) operators: a) assimilation coefficient, b) assimilation angle 

coefficient, and c) revolution ratio. We conduct the sensitivity analysis by varying the 

value of one operator while fixing the values of the other two. We vary each operator 

with five different values. Our results suggest that the best imperialist competitive 

algorithm (ICA) operator combination depends on the problem at hand and were found 

the operator values suggested by the researcher who developed the imperialist 

competitive algorithm (ICA) algorithm to work well as a first guess. 

In section 5, we apply the imperialist competitive algorithm (ICA) optimization 

algorithm to a sector of a Middle East reservoir. In this example, we want to optimize 

the number of wells, type of wells (injector/producer), configuration of wells 

(vertical/horizontal), length of the wellbores, and the drilling schedule for a maximum of 

ten wells to be drilled within a five-year window. We performed three optimization runs 

with a maximum of fifty iterations and one optimization run with a maximum of one 

hundred iterations. We achieved an approximately 5% increase in the net present value 

(NPV). In sections 6 and 7, we draw our conclusions and describe our plans for future 

work.  
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2. OPTIMIZATION TOOLS 

 

Optimization techniques can be defined as a set of systematic processes that 

search for the set of optimization variables within the lower and upper limits of an 

optimization problem that yields the most efficient variable values for a pre-determined 

objective function. Depending on the nature of the optimization problem, the goal is to 

maximize or minimize the objective function. Optimization techniques can be classified 

into various groups (Nocedal and Wright, 1999). In this section, we present three of the 

main optimization categories: a) global or local, b) stochastic or deterministic, and c) 

constrained or unconstrained. 

Local optimization techniques tend to show early convergence to local optima 

and are considered to be faster than global optimization techniques. Two main 

disadvantages of local optimization techniques are that convergence to local minima or 

maxima depends on the initial guess and these techniques perform poorly when dealing 

with non-smooth and multimodal objective functions (Abo-Hammour, 2002). Global 

optimization techniques, on the other hand, better handle multimodal objective functions 

and tend to explore the solution space in an attempt to find global optima. Imperialist 

competitive algorithm (ICA), genetic algorithm (GA), and particle swarm optimization 

(PSO) are considered to be metahueristic algorithms that search for global optima and, 

hence, are more suitable for solving the well placement optimization problems presented 

in our study.  

Stochastic optimization techniques are techniques that depend on utilizing 
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randomness operators to direct their searches to find optimum solutions. One major 

advantage of stochastic optimization algorithms is their ability to explore and search 

over a wider spectrum of the solution space through the introduction of sudden changes 

in the search space that may help to identify better solutions. We note that with 

stochastic optimization techniques, global optima are found in more than one direction 

path even if the same initial guess is for several runs. On the other hand, deterministic 

optimization techniques tend to follow the same direction path from the initial solution 

guess to converge on an optimum solution, regardless of how many times it is repeated 

(Spall, 2004). Imperialist competitive algorithm (ICA), genetic algorithm (GA), and 

particle swarm optimization (PSO) are considered to be stochastic optimization 

techniques. 

Optimization problems are classified as constrained or unconstrained based on 

the set of feasible solutions for a problem. Typically, most real physical problems 

require that pre-determined constraints be set that include only feasible solutions. This 

step is essential to avoid unnecessary optimization iterations and to produce a better 

converged optimum solution. To do so, penalty functions are applied to disregard the 

choice of infeasible solutions for further iteration. In our work, we use the penalty 

approach for the imperialist competitive algorithm (ICA), genetic algorithm (GA), and 

particle swarm optimization (PSO). Other approaches for dealing with infeasible 

solutions can be found in the literature (Clerc, M., 2006; Zhang, W.J., et al., 2004).  

The objective of this section is to present an overview of the three main 

algorithms used throughout this study. These three algorithm techniques are: a) the 
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imperialist competitive algorithm (ICA), genetic algorithm (GA), and particle swarm 

optimization (PSO), all of which belong to the meta-heuristic algorithm group inspired 

by natural phenomena and all utilize stochastic search techniques. Imperialist 

competitive algorithm (ICA), genetic algorithm (GA), and particle swarm optimization 

(PSO) are population-based algorithms wherein optimization starts with a population of 

several possible solutions, and the goal of the optimization algorithm framework is to 

continue to improve the population individuals to eventually evolve toward a better 

solution.  

There are a couple of advantages associated with using population-based 

stochastic algorithms for well placement optimization problems. One advantage is that 

the algorithms can be parallelized to accelerate the process of finding optimal solutions. 

Another advantage is that the operating parameters include greedy and exploration 

parameters that search both for near-best solutions and in random directions to avoid 

getting trapped in local optima. They require no gradient calculations and hence they 

perform better with complex and discontinuous objective functions. We present detailed 

explanations of the imperialist competitive algorithm (ICA), genetic algorithm (GA), 

and particle swarm optimization (PSO) in the sections below. 

 

2.1 Imperialist Competitive Algorithm 

The imperialist competitive algorithm (ICA), first introduced by Esmaeil 

Atashpaz-Gargari (2007), is an evolutionary algorithm that mimics the competition 
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between imperialist countries to control more colonies in order to strengthen their 

empires through a process of imperialistic competition. 

The imperialist competitive algorithm (ICA) process is similar to other 

evolutionary algorithms in that it begins with an initial population, which in the 

imperialist competitive algorithm (ICA) consists of countries. These countries are then 

divided into two categories: imperialists and colonies. To generate empires, colonies are 

distributed among the imperialists based on their relative strengths, as determined by a 

pre-defined criterion. The empires then compete with each other to control more 

colonies and expand their power. As this competition loops, stronger empires expand 

their power by taking possession of weak colonies from weaker empires. This process is 

repeated until a pre-defined stopping criterion is satisfied. A detailed description of the 

steps involved in this algorithm is presented in the subsection below. 

 

2.1.1 The Initiation of Empires 

The initiation of empires starts with the creation of several arrays that contain 

different problem variables (Pi). In imperialist competitive algorithm (ICA) terminology, 

these arrays are called “countries”. Imperialist competitive algorithm (ICA) countries are 

analogous to individuals in the genetic algorithm (GA). Any country can be defined as a 

1 × number of variables (Nvar) array, for the purpose of cost function evaluation. A 

country can be either an imperialist or a colony. 

 

       (1) 
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                           (2) 

 

Next, an initial population that consists of both imperialists Nimpr and colonies 

Ncoln is generated to form the total population Npop. The formation of initial empires 

starts by the assignment of colonies to the imperialists, based on the relative power of 

the imperialists. The number of colonies an imperialist acquires is directionally 

proportional to its power. This is achieved by normalizing the cost of each imperialist 

(Cn) and then dividing this value by the total normalized cost of all the imperialists (Pn).  

 

          (3) 

                       (4) 

 

After the determination of the imperialists’ power, colonies are randomly 

distributed among the imperialists to create empires. The number of colonies held by 

each imperialist (N.Cn) is determined as follows: 

 

               (5) 

 

By the end of this process, several empires have been created, each with their 

relative imperialists and colonies, as depicted in Fig. 1. For instance, as shown in Fig. 1, 

five empires are represented by five different colors. The stars represent the imperialists 
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and the circles represent the colonies. Imperialists and colonies of the same color 

comprise one distinct empire. The larger the star (imperialist), the more powerful is the 

empire.  

Figure 1: Generation of initial empires. Stars (imperialists) and circles (colonies) of 
the same color belong to one empire. The red empire is the most powerful as it has 

more colonies. The stars and colonies represent potential solutions for well 
placement in the 2-dimensional search space (X and Y are well coordinates) 

2.1.2 Assimilation of Colonies 

After the initiation of the empires, the next step is to move colonies toward their 

respective imperialists. In this step, we move all colonies toward their imperialists by 

moving x distance closer to the imperialist position. The distance x is chosen from a 
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random distribution within the interval [0, d*(assimilation.coefficient)], as shown in Fig. 

2. Also, to make the assimilation process more robust and effective, a deviation 

parameter is assigned to the assimilation process to ensure a greater solution search 

space.  

 

 

Figure 2: Assimilation process 

 

2.1.3 Revolution 

After the colonies move toward their imperialists, some colonies are chosen to 

participate in a revolution, which, in this case, involves a sudden change in the X and Y 

coordinates of the well positions. This revolution process facilitates more search and 

exploration activity in the solution space and thus prevents premature convergence. The 

revolution process is analogous to mutation in the genetic algorithm (GA). 
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2.1.4 Imperialist and Colonies Position Exchange 

Next, the total power of each empire, which is the summation of its imperialist 

and colonial powers, is evaluated in order to rank empires based on their lowest cost 

functions. We note that an empire’s power is mainly affected by the power of its 

imperialist and that the powers of colonies range from very low to almost negligible. 

 

          (6) 

 

where T.Cn is the total cost of an empire and ξ is a value less than 1. The use of ξ 

assigns less importance to the colonies’ cost and makes the empire’s cost mainly 

dependent on the cost of its imperialist.  
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Figure 3: Imperialistic competition to take possession of the weakest colony (from 

Atashpaz-Gargari, 2007) 

 

Next, the empires are ready to participate in the main imperialist competitive 

algorithm (ICA) process—imperialist competition. In this process, the empires compete 

to take possession of the weakest colonies that belong to the weakest empires, as shown 

in Fig. 3. The competition is initiated by assigning a possession probability to each 

empire. The possession probability increases as an empire’s power increases (lowest 

cost). To perform this process, first, a normalized total cost (N.T.Cn) is evaluated for 

each empire. Then, each empire’s total normalized cost (N.T.Cn) is divided by the sum 

of the total normalized cost of all the empires to obtain the possession probability for 

each empire (Ppn): 
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               (7) 

 

        (8) 

 

After evaluating the possession probability of each empire, three vectors are formed as 

follows: 

 

                                             P = [ Pp1, Pp2, …., Ppn] 

R = [r1, r2, …, rn]  ; where r ~ U(0,1) 

                                            D = P – R = [D1,…., Dn] 

 

The weakest colony is then given to the empire with the maximum D index. Further 

details are provided in the Appendix. 

 

Figure 4 below summarizes the empire initiation, assimilation, revolution, and 

exchange processes. 
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Figure 4: a) Initiation of empires, b) assimilation process, c) revolution process, and 

d) position swapping process 

 

.  
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The competitive process repeats and iterates until meeting a pre-determined 

stopping criterion or until only one empire exists. Fig. 5 shows an imperialist 

competitive algorithm (ICA) algorithm flowchart that summarizes the well placement 

process. For a more detailed description of the imperialist competitive algorithm (ICA) 

algorithm process, the reader is advised to refer to the original paper by Esmaeil 

Atashpaz-Gargari (2007).  
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Figure 5: ICA algorithm flowchart 
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2.2 Genetic Algorithm 

The genetic algorithm (GA) is a stochastic meta-heuristic algorithm technique that 

mimics the natural phenomena of population selection and evolution. The main concept 

of the genetic algorithm (GA) is the survival of the fittest individual. This occurs by 

selecting the fittest parents and then mating those parents to generate new offspring. The 

two operators responsible for producing the new generation are selection and 

reproduction. Then, some of these offspring undergo some genetic alteration, which 

occurs by mutation, which is the third operator. There are two main genetic algorithm 

(GA) types: a) binary genetic algorithm (bGA) and b) continuous genetic algorithm 

(cGA). The main difference between binary genetic algorithm (bGA) and continuous 

genetic algorithm (cGA) is that in binary genetic algorithm (bGA) the variables are 

coded as binary whereas in continuous genetic algorithm (cGA) the variables used are 

real-valued numbers. In our study, we utilized continuous genetic algorithm (cGA) as 

our genetic algorithm. A summary of the algorithm steps is as follows: 

 

• Step 1: Set genetic algorithm (GA) parameters (number of individuals, crossover 

factor, mutation factor, etc.) 

• Step 2: Initialize the first generation consisting of N individuals with Nvar 

chromosomes 

• Step 3: Evaluate objective function for each individual 

• Step 4: Select best chromosomes that will survive to next iteration (Elitism) 

• Step 5: Select individuals that will be used as parents  
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• Step 6: Apply crossover and mutation to produce new individuals

• Step 7: Reflect changes to the new generation 

• Step 8: Repeat steps 3 to 7 until a stopping criterion is met 

• Step 9: Return best solution (individual) and best objective value 

 

Figure 6: GA algorithm flowchart 
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2.3 Particle Swarm Optimization 

Particle swarm optimization (PSO) is a stochastic meta-heuristic algorithm 

technique that mimics how biological species, such as birds and fish, interact with each 

other socially and cognitively. The algorithm was first developed by Eberhart and 

Kennedy (1995). Like the imperialist competitive algorithm (ICA) and genetic algorithm 

(GA), particle swarm optimization (PSO) demonstrates good capability to search for a 

global solution while reducing the chances of being trapped in local optima. The particle 

swarm optimization (PSO) optimization process starts by populating a set of possible 

solutions that are referred as a “swarm” and which contain individual possible solution 

“particles.” These particles move through the search space at each iteration. The 

movement of the particles is based on the velocity given to each particle. The velocity of 

each particle is determined by three components: a) inertial (the particle’s velocity in the 

previous iteration), b) cognitive (the component responsible for moving the particle to 

the best solution found by the particle itself), and c) social (the component responsible 

for moving the particle to the best solution of all the particles). A summary of the 

equations used to determine the velocity of each particle and the new position is as 

follows: 

 

  (9) 

 

     (10) 
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where v is the velocity; i denotes the particle; k denotes the iteration; ω, c1, and c2 are the 

parameter weights; r1 and r2 are random numbers between 0 and 1;  is the best position 

found by the particle; y* is the best position found by all particles; and x is the particle 

position. Below is a summary of the particle swarm optimization (PSO) optimization 

workflow: 

 

• Step 1: Set particle swarm optimization (PSO) parameters (number of population, 

coefficients, inertia) 

• Step 2: Initialize the particle velocities and positions. 

• Step 3: Evaluate objective function for each particle 

• Step 4: Update best position of particle if new position yields better solution 

• Step 5: Update the global best fitness value (best solution of all particles) 

• Step 6: Calculate the next velocity and position of each particle 

• Step 7: Repeat steps 3 to 6 until a stopping criterion is met 

• Step 8: Return best position and best objective value 
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Figure 7: PSO algorithm flowchart 
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3. OPTIMIZATION RUNS AND RESULTS* 

 

To apply the imperialist competitive algorithm (ICA) to our well placement 

optimization problem, we used a MATLAB code that executes the imperialist 

competitive algorithm (ICA) processes and interacts with a commercial simulator in 

order to evaluate all cost functions.  For instance, the MATLAB code performs the 

imperialist competitive algorithm (ICA) steps until reaching the cost evaluation in which 

optimized input parameters are fed to the reservoir simulator to evaluate the cumulative 

oil production for a specific well placement position. In this part, we defined the 

objective function as the cumulative oil production achieved after 21 years of 

production.  

Since the imperialist competitive algorithm (ICA), particle swarm optimization 

(PSO), and genetic algorithm (GA) are stochastic in nature; the methodology used in this 

part is a comparison of the performances of the imperialist competitive algorithm (ICA), 

particle swarm optimization (PSO), and genetic algorithm (GA) with somewhat similar 

algorithm parameters. For example, in all comparison cases, both algorithms were 

assigned the same initial populations (well locations), similar stopping criteria (number 

of simulation runs), and a similar number of optimization runs. Then, for the purpose of 

                                                

* Reprinted with permission from “Well Placement Optimization Using Imperialist 
Competitive Algorithm” by Mohammad Al Dossary & Hadi Nasrabadi, 2016. Journal of 
Petroleum Science and Engineering, Vol. 147, P. 237 – 248. Copyright 2016 by Journal 
of Petroleum Science and Engineering. 
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comparison, we graphed the resulting optimization runs for each algorithm to illustrate 

the average, best, and worst performances.  

Moreover, the imperialist competitive algorithm (ICA), particle swarm 

optimization (PSO), and genetic algorithm (GA) parameters used in our example cases 

were similar to those used by Atashpaz-Gargari et. al., (2007), Hosseni et. al., (2014), 

Onwunalu and Durlofsky (2010), Onwunalu, j. (2006), Yeten (2003) and Farshi (2008), 

in order to eliminate the necessity of performing a parameters sensitivity analysis, since 

these other authors have already done so. The imperialist competitive algorithm (ICA), 

particle swarm optimization (PSO), and genetic algorithm (GA) parameters used for all 

cases are summarized in Table 1, Table 2 and Table 3. A detailed explanation of the 

performance of each algorithm is presented in the results section. 

 

ICA Parameter Value 

Number of Countries 30 

Assimiliation Coefficient 2 

Assimiliation Angle 0.5 

Revolution Ratio 0.3 

Number of Generations 50 

 

Table 1: ICA parameters used for the optimization runs 
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PSO Parameter Value 

Number of Particles 30 

Inertia Coefficient (ω) 0.721 

Cognitive Parameter (C1) 1.193 

Social Parameter (C2) 1.193 

Number of Generations 50 

  

Table 2: PSO parameters used for the optimization runs 

 

GA Parameter Value 

Population Size 30 

Crossover Probability 0.8 

Mutation Probability 0.05 

Ranking Scale 2 

Number of Generations 50 

 

Table 3: GA parameters used for the optimization runs 
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In this research, we used 2D and 3D synthetic channeled reservoir models. The 

2D model was used for the placement of vertical wells, while the 3D model used for the 

placement of horizontal wells. Table 4 and Table 5 summarize the input parameters for 

each model and the pressure-volume-temperature (PVT) data used. 

 

Vertical Well 

(Channeled) 

Horizontal Well 

(Channeled) 

Number of Grids 40 × 40 × 1 40 × 40 × 3 

Each Grid Block Dimension (ft) 300 × 300 × 50 300 × 300 × 50 

Permeability Range (md) 1 - 100 1 - 100 

Porosity 0.25 0.25 

Rock Compressibility (psi-1)  0.000003 0.000003 

Initial Pressure (psi) 4800 4800 

BHP Constraint (psi) 1000 1000 

Total Production Time (yrs) 21 21 

Initial Water Saturation 0.2 0.2 

Initial Oil Saturation 0.8 0.8 

Oil Density (Ib/ft3) 51.5 51.5 

  
 

Table 4: Reservoir input parameters used in the reservoir models 
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P Rs Bo Eg viso visg co 

14.7 5.11 1.04 4.89 1.74 0.0119 3.E-05 

146.1 29.37 1.05 49.51 1.52 0.0120 3.E-05 

277.4 58.27 1.06 95.79 1.34 0.0122 3.E-05 

671.6 159.03 1.10 244.99 0.97 0.0129 3.E-05 

802.9 195.80 1.11 298.22 0.89 0.0132 3.E-05 

1760 493.89 1.25 724.30 0.57 0.0164 2.E-05 

3280 1037.2 1.53 1321.07 0.38 0.0237 1.E-05 

4040 1331.0 1.69 1525.45 0.33 0.0272 8.E-06 

4800 1636.2 1.87 1682.55 0.30 0.0304 7.E-06 

 
 

Table 5: PVT data used in the reservoir models 
 

 

3.1 Case 1 – Single Vertical Well Placement Optimization 

The first imperialist competitive algorithm (ICA), particle swarm optimization 

(PSO), and genetic algorithm (GA) optimization application was carried out with respect 

to the placement of a single vertical well in a channeled reservoir where the permeability 

distribution varies from 1– 100 md, as shown in Fig. 8. First, we performed an 

exhaustive run in order to determine the cumulative oil production for each possible well 
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location. With 40 × 40 grids, there were 1,600 possible well locations and hence 1,600 

simulation runs. The resulting cumulative oil productions for this exhaustive run is 

shown in Fig. 9. As can be seen from the graph, the objective function surface shows 

many local maxima scattered throughout the model grid, which is due to the 

heterogeneity of the subject reservoir model. Furthermore, we found the best cumulative 

oil production to be 20,206 MSTB, which belongs to the grid that has x = 24 and y = 13 

coordinates, Fig. 11. As such, we used this grid as a benchmark to test the overall ICA, 

PSO and GA performances.  

Figure 8: Permeability (md) distribution of the channeled reservoir (case 1) 
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Figure 9: Objective function (cumulative oil production) surface for case 1 

Fig. 10 shows a comparison of the cumulative oil production per number of 

simulations for the imperialist competitive algorithm (ICA), particle swarm optimization 

(PSO), and genetic algorithm (GA). For example, the black line represents the average 

imperialist competitive algorithm (ICA) performance of 20 optimization runs, the blue 

line represents the averaged particle swarm optimization (PSO) performance over 20 

optimization runs, the red line represents the averaged genetic algorithm (GA) 

performance of 20 optimization runs, and the green line represents the global optimum.  

The graph clearly shows that the overall imperialist competitive algorithm (ICA) and 

particle swarm optimization (PSO) performances are better than the overall genetic 
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algorithm (GA) performance in converging to the global optimum. Also, both the 

imperialist competitive algorithm (ICA) and particle swarm optimization (PSO) average 

performances were able to find the best optimal solution (20,206 MSTB) that was 

determined by the exhaustive run before reaching the stopping criterion (1000 

simulation).  

However, the genetic algorithm (GA) overall performance didn’t reach the 

optimal solution by the end of 1000 simulations. The genetic algorithm (GA) resulting 

maximum cumulative production was 19,650 MSTB. Interestingly, particle swarm 

optimization (PSO) showed faster convergence rate especially in the first 100 

simulations and towards the end of the simulation interval while the imperialist 

competitive algorithm (ICA) performance exhibits more gradual increase towards the 

end of the 1000 simulations. This was vividly evident when considering the individual 

optimization runs where imperialist competitive algorithm (ICA) showed more 

consistent individual runs compared to those of the particle swarm optimization (PSO) 

where different runs exhibits high difference as some runs showed high performance 

while other showed very poor performances. This differences in runs performances 

made the averaged run to show high jumps with longer periods of flat areas. 
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Figure 10: ICA, PSO and GA performances as a function of the number of 

simulations for the single vertical well case 
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Figure 11: Optimal well location for the single vertical well (yellow star represents 

the well location) 

 

3.2 Case 2 – Single Horizontal Well Placement Optimization 

The second imperialist competitive algorithm (ICA), particle swarm optimization 

(PSO), and genetic algorithm (GA) optimization application was applied to determine 

the optimal well placement for a horizontal well. We used the same reservoir model as in 

case 1 but with three horizontal layers, as depicted in Fig. 12. The optimized variables 

for this problem were the x and y well coordinates and an extra variable that dictated the 

well orientation. For example, in this case the length of the horizontal section was set to 
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be 8 grids, which could be oriented in four different perpendicular directions, as shown 

in Fig. 13. A physical constraint was induced in the algorithm so that no horizontal 

section will violate the grids boundaries. If any unfeasible horizontal section is 

encountered during the algorithm iterations, a penalty function is applied to this violating 

solution. An exhaustive run was performed and it was found that the best solution 

corresponds to x = 24, y = 21 and d (orientation) = 3 with a cumulative oil production of 

78,842 MSTB, Fig. 15.  

Figure 12: Permeability (md) distribution of the 3-layer channeled reservoir (case 

2) 
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Figure 13: Well directions and corresponding values used as an optimization 

variable 

 

Fig. 14 shows a comparison of the cumulative oil production per number of 

simulations for the imperialist competitive algorithm (ICA), particle swarm optimization 

(PSO), and genetic algorithm (GA). All three algorithms were run 20 times each and 

then the averaged performances were plotted.  The graph clearly shows that among the 

three algorithms average performances, the overall imperialist competitive algorithm 

(ICA) performed better and it resulted in the highest cumulative oil production (78,083 

MSTB) at the end of the 1000 simulations. Also, it is worth pointing that even though 

the averaged imperialist competitive algorithm (ICA) performance plotted did not reach 

the optimal solution that was found by the exhaustive search, three of the twenty 

imperialist competitive algorithm (ICA) optimization runs were able to converge to the 

optimal solution before reaching to the 1000 simulations. Another interesting 

observation that can be deduced from the graph is that the imperialist competitive 

algorithm (ICA) curve tends to increase in a more gradual pace, which is an indication 
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that the imperialist competitive algorithm (ICA) can handle the problem of premature 

convergence by exploring other search space, and hence continue searching with being 

trapped to local optimal solutions. The resulting maximum cumulative oil production for 

the particle swarm optimization (PSO) and genetic algorithm (GA) was 75,416 MSTB 

and 74,083 MSTB, respectively. Moreover, the particle swarm optimization (PSO) 

performed better than the genetic algorithm (GA) in terms of both convergence rate as 

well as final optimal solution. 

 

Figure 14: ICA, PSO and GA performances as a function of the number of 

simulations for case 2 

 



 

 44 

 

 

Figure 15: Optimal well location for the single horizontal well (yellow line 

encompassed by the red circle) 

 

 

3.3 Case 3 – Multiple Vertical Wells Placement Optimization 

In this case, we considered the optimization of multiple vertical wells placement. 

The optimization variables are x, y and n (number of wells). In this example, we set the 

number of wells to be from one to no more than ten wells. Since we are including the 

number of wells as a decision variable, we used the net present value (NPV) as the 
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objective function that needed to be maximized. The economical parameters used to 

calculate the NPV’s are similar to those used by Onwunalu and Durlofsky (2010). For 

this case, we did not perform an exhaustive search, as we believed it would require too 

many simulation runs and the previous two examples were sufficient to build the 

confidence of the imperialist competitive algorithm (ICA) performance. Also, since we 

are dealing with multiple wells, a minimum well distance constraint was induced to the 

algorithm and a penalty function was assigned to any solution that does not honor this 

constraint. Fig. 16 shows the overall performances of the three algorithms and again the 

imperialist competitive algorithm (ICA) showed superiority among the others. For 

instance, we found that for this case the imperialist competitive algorithm (ICA) 

provided better solutions all the way from the beginning till the end of the 1000 

simulation. Also, the imperialist competitive algorithm (ICA) solution evolvement is 

gradual with continuous improving and no long flat periods, which may falsely suggest a 

convergence. The best solution that resulted in the highest NPV was found by imperialist 

competitive algorithm (ICA) to be three wells as can be seen in Fig. 17, which yielded a 

NPV of $3.73×108 compared to NPV of $3.05×108 for particle swarm optimization 

(PSO) and $2.85×108 for genetic algorithm (GA). 
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Figure 16: ICA, PSO and GA performances as a function of the number of 

simulations for case 3 
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Figure 17: Optimal well locations for the multiple vertical wells case (yellow stars 

represent the well locations) 
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3.4 Case 4 – Multiple Horizontal Wells Placement Optimization 

For the last case, we considered the optimization of multiple horizontal wells 

placement. The optimization variables are x, y, d (orientation) and n (number of wells). 

In this example, we set the number of wells to be from one to a maximum of six wells. 

The objective function used for this example is the net present value (NPV). The 

economical parameters used to calculate the NPV’s are similar to those used by 

Onwunalu and Durlofsky (2010). Similar to the multiple vertical case above, we did not 

perform an exhaustive search for the same reasons stated in case 3. For this case, we 

induced three physical constraints to the algorithm. These constraints are: 1) a minimum 

well distance of 1640 ft, 2) no crossing between wells’ mainbores, and 3) honoring the 

model boundaries. Fig. 18 shows the overall performances of the three algorithms. The 

results show that the imperialist competitive algorithm (ICA) achieved the highest NPV 

of $1.67×109 while the particle swarm optimization (PSO) resulted in NPV of $1.59×109 

and genetic algorithm (GA) resulted in NPV of $1.51×109. The best solution, which was 

found by the imperialist competitive algorithm (ICA), is two horizontal wells as can be 

seen in Fig. 19.  
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Figure 18: ICA, PSO and GA performances as a function of the number of 

simulations for case 4 
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Figure 19: Optimal well locations for the multiple horizontal wells case (yellow lines 

encompassed by the red circles) 
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4. SENSITIVITY ANALYSIS OF ICA PARAMETERS* 

 

After applying the imperialist competitive algorithm (ICA) to the above synthetic 

reservoir model, we performed a sensitivity analysis on the imperialist competitive 

algorithm (ICA) parameters to further test the effect of the imperialist competitive 

algorithm (ICA) parameters on the quality of the solution evolvement. We chose three of 

the main imperialist competitive algorithm (ICA) parameters for this sensitivity analysis, 

including 1) the revolution ratio, 2) the assimilation coefficient, and 3) the assimilation 

angle. The reason we chose these specific parameters is that they have similar 

functionalities compared to genetic algorithm (GA) crossover and mutation operators. In 

this sensitivity analysis, we performed optimization runs for each parameter while fixing 

the value of the others. Each parameter was divided into five sets of values and each 

value was used to perform five optimization runs. We averaged the results of these five 

optimization runs for the purpose of comparison. For example, the revolution ratio 

values were 0.3, 0.4, 0.5, 0.6, and 0.7. The analysis began by fixing the value of the 

revolution ratio to be 0.3 while holding constant the other imperialist competitive 

algorithm (ICA) parameters. Then, we plotted the average of the five optimization runs 

using 0.3 as the revolution ratio value. The same process was carried out for the other 

                                                

* Reprinted with permission from “Well Placement Optimization Using Imperialist 
Competitive Algorithm” by Mohammad Al Dossary & Hadi Nasrabadi, 2016. Journal of 
Petroleum Science and Engineering, Vol. 147, P. 237 – 248. Copyright 2016 by Journal 
of Petroleum Science and Engineering. 
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imperialist competitive algorithm (ICA) parameters (assimilation coefficient and 

assimilation angle).   

 

4.1 Revolution Ratio Parameter 

The first imperialist competitive algorithm (ICA) parameter to be tuned, the 

revolution ratio, is responsible for creating a sudden change in the positions of an 

empire’s colonies. This parameter can be considered to be analogous to the GA’s 

mutation parameter and is an important imperialist competitive algorithm (ICA) 

parameter as it is responsible for broadening the exploration for new solutions and thus 

avoiding pre-mature solution convergence. From a survey of the literature, we found the 

recommended value for the revolution ratio to be between 0.2 to 0.3 (Atashpaz-Gargari 

et. al., 2007; Hosseni et. al., 2014). We considered five different revolution ratio values 

(0.3, 0.4, 0.5, 0.6, and 0.7). For each value, we performed five optimization runs in order 

to decrease the effect of the stochastic nature of optimization.  

We then compared and ranked the parameter sensitivity test results based on the 

total average objective value, as shown in Fig. 20 and in Table 6. 

Ranking Value 

1 0.5 

2 0.3 

3 0.4 

4 0.7 

5 0.6 

Table 6: Rankings of revolution ratio parameters 
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Figure 20: ICA performance with five different revolution ratios for case 1 

 

Based on the above figure and table, we found the best revolution ratio value for 

0.5. This suggests that a mid-range revolution ratio would result in a balance between 

exploration and exploitation of the solution space and hence better optimization 

performance.  
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4.2 Assimilation Coefficient Parameter 

The second imperialist competitive algorithm (ICA) parameter to be tuned was 

the assimilation coefficient, which plays a significant role during the assimilation 

process when colonies move toward their imperialists. Based on a survey of the 

literature, the recommended value for the assimilation coefficient is 2 (Atashpaz-Gargari 

et. al., 2007; Hosseni et. al., 2014). Following the same methodology used for the 

revolution ratio parameter, we examined five different assimilation coefficient values 

(0.5, 2, 3, 4, and 5) and performed optimization runs for each value five times for the 

single vertical well case. We then compared and ranked the parameter sensitivity test 

results based on the total average objective values, as shown in Figs. 21 and in Table 7. 

Based on the below figure and table, we found the best assimilation coefficient value to 

be equal to 0.5.  

 

Ranking Value 

1 0.5 

2 2 

3 4 

4 5 

5 3 

 

Table 7: Rankings of assimilation parameters 
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Figure 21: ICA performance with five different assimilation coefficients for case 1 

 

4.3 Assimilation Angle Parameter 

The last imperialist competitive algorithm (ICA) parameter we considered in this 

sensitivity analysis was the assimilation angle, which works as a deviation in the 

assimilation process to ensure a broad search space and hence greater search 

diversification. Based on a survey of the literature, the recommended value for the 

assimilation angle is π/4 (Atashpaz-Gargari et. al., 2007; Hosseni et. al., 2014). We 

examined five different assimilation angles (in radians) (0.3, 0.4, 0.5, 0.6, and 0.7) and 
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performed optimization runs for each value five times for the single vertical case. We 

then compared and ranked the parameter sensitivity test results based on the total 

average objective values, as shown in Figs. 22 and in Table 8. 

 

Ranking Value 

1 0.4 

2 0.5 

3 0.7 

4 0.6 

5 0.3 

 

Table 8: Rankings of assimilation angle parameters 
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Figure 22: ICA performance with five different assimilation angles for case 1 

 

The best assimilation angle value was found to be 0.4. Also, by examining the 

above figures, we note that most of the differences between the sensitivity runs occurred 

in the first 400 simulation runs after which the solutions tended to converge, and the 

differences between the last objective functions are considered very small. 
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5. APPLYING ICA TO A REAL FIELD EXAMPLE 

 

After applying imperialist competitive algorithm (ICA) to multiple synthetic model 

cases and given the fact that imperialist competitive algorithm (ICA) generally 

performed better than particle swarm optimization (PSO) and genetic algorithm (GA) in 

these examples, the next step is to investigate and analyze imperialist competitive 

algorithm (ICA) performance with respect to a more complicated optimization problem 

that deals with real field data and more optimization variables, such as well 

configuration (vertical/directional), well type (producer/injector), number of wells, and 

drilling schedule. 

 

5.1 Problem Description and Approach 

In this part of the study, our objective was to optimize the placement of a 

maximum of ten wells to maximize the field production net present value (NPV). We 

further complicated the problem by having the imperialist competitive algorithm (ICA) 

optimization algorithm find the best optimization variable combination of well type 

(producer/injector), well configuration (directional/vertical), well position, and well 

drilling schedule (drill/no-drill). In this section, we first describe the reservoir model we 

used. Then, we detail the objective function with respect to the chosen economic 

parameters. Lastly, we present a detailed description of how the imperialist competitive 

algorithm (ICA) algorithm interacts with the commercial simulator (CMG) to generate 

an optimized solution. 
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5.2 Reservoir Model Description 

The model we used for this task is specific to a sector of a Middle Eastern 

onshore carbonate reservoir that we hereafter refer to as ME1. ME1 extends over a 4.5 

km by 1.6 km area and represents half of an anticlined structure, as shown in Fig. 23. 

The field has three existing flank water injectors and eight producers that have been in 

production for a total of five years. All wells are perforated in all five layers. We will 

continue to use these control constraints for new infill wells subject to the well 

placement optimization results of this study. The reservoir consists of five layers that 

yield a total thickness of 160 ft. The average permeability of layers 1, 4, and 5 ranges 

from 5 to 20 md, whereas the average permeability of layers 2 and 3 range from 150 to 

600 md, as shown in Table 9. The porosity is correlated to the horizontal permeability, 

which we calculated using Equation 11. We discretized the model by 49 × 40 × 5 for a 

total of 9,800 grid blocks. This is a three-phase model with an initial pressure of 3,410 

psi and undersaturated fluid with a bubble point pressure of 2,533 psi. The relative 

permeability curve corresponds to that of a single rock type, as shown in Fig. 24, with no 

capillary forces assumption. Table 10 provides a summary of other reservoir model 

parameters. 

 

      (11) 

 

All existing and future wells considered in this model are subject to production 

and injection control constraints. Producers are subject to a minimum bottomhole 
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pressure of 1,000 psi and a maximum liquid production rate of 15,000 STB/d, as well as 

control constraints. Injectors are subject to a maximum injection pressure of 3,500 psi 

and a maximum injection rate of 15,000 STB/d as well control constraints. Table 11 

shows the injector and producer well control constraints. 

 

Figure 23: 3D view of ME1 reservoir model 
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Figure 24: Relative permeability curve 

 

 

Layer Minimum (md) Maximum (md) 

1 5 20 

2 250 600 

3 150 450 

4 2 10 

5 2 10 

 

Table 9: Permeability ranges of the ME1 layers 
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Parameter Value 

Grid size 49 × 40 × 5 

Grid cell dimension 300 × 120 × 32 (ft) 

Initial pressure 3,410 psi 

Rock compressibility 0.5 × 10-5 psi-1 

Oil density 52.36 Ibm/ft3 

Gas density 0.061 Ibm/ft3 

Water density 71.85 Ibm/ft3 

 

Table 10: Reservoir model parameters 

 

 

Control Type Value 

Minimum bottom hole pressure (producer) 1000 psi 

Maximum liquid production rate (producer) 15,000 STB/d 

Maximum injection pressure (injector) 3,500 psi 

Maximum injection rate (injector) 15,000 STB/d 

 

Table 11: Injectors and producers well control constraints 
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5.3 Real Field Infill Drilling Optimization 

In this example, our objective is to optimize the placement of multiple producers 

and injectors following a six-month drilling schedule for an existing field that has been 

producing for five years. To implement this task, the proposed optimization variables 

include: a) the well’s midpoint 3D coordinates, b) total well length, c) vertical well 

distance between heel and toe, and d) the decision to drill or not (producer/injector) 

every six months. The criteria for choosing these variables are that they: a) represent the 

most critical and important well parameters that have the greatest impact on the desired 

objective function (NPV), and b) are independent to reduce the number of required 

variables. In this study, we established variable settings similar to those introduced by 

Farshi (2008). The wells to be optimized are infill monobore producer/injector wells that 

are drilled every six months. Fig. 25 illustrates the reservoir production time, including 

the optimization infill drilling period. 

 

Figure 25: Timeline for major field events 

 

 

 

Existing 11 wells 
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5.4 Methodology For Code Implementation 

To fully represent the wellbore trajectories, six variables are necessary, including 

the well’s midpoint 3D coordinates (xmid, ymid, zmid), the total length of the wellbore 

(Ltotal), the x-y rotation angle (θ), and the vertical distance between the well’s heel and 

toe (Lz), which we use instead of the vertical azimuth angle as it is more easily 

controlled with respect to the vertical reservoir model constraints. Fig. 26 depicts how a 

well is modeled. In addition to these six variables, we added an extra variable regarding 

the decision/type of the well (D). The D variable can be assigned one of three values 

(0,1,2), which represent (no-drill, producer, injector). Following this methodology, we 

can represent any well using just seven variables. With these seven variables, we can 

also generate other dependent parameters, such as the heel and toe coordinates, and we 

can then feed them, and the D variable to the simulator input file to initiate the 

simulation. A summary of variable transformation equations are provided below: 

 

 

          (12) 

 

       (13) 

 

       (14) 
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        (15) 

 

 

 

Figure 26: Well modeling representation in a 3D view 

 

By utilizing the abovementioned seven variables, we can generate a full country 

representation, as used in the imperialist competitive algorithm (ICA), as follows: 

Country=[(xmiddle,ymiddle,zmiddle,Ltotal,Lz,θ, D)well1,..,(xmiddle,ymiddle,zmiddle,Ltotal,Lz,θ, D)welln ] 

Also, since the imperialist competitive algorithm (ICA) algorithm code interacts 

with the CMG, we must fix from the beginning the maximum possible number of wells 

to be considered in the optimization. This step is necessary to avoid complexity when 

overwriting the simulator input file in each simulation run. In this study, we considered a 
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maximum number of 10 wells. Hence, the total number of optimization variable for each 

country is as follows: 

Number of variables (country) = Number of wells × 7 = Total of 70 variables 

The code we used in this work is a modified version of that developed by 

Esmaeil Atashpaz Gargari 

(https://www.mathworks.com/matlabcentral/fileexchange/22046-imperialist-

competitive-algorithm--ica-). Although the imperialist competitive algorithm (ICA) code 

developed by Esmaeil is typically used for solving mathematical functions, in order to 

use the imperialist competitive algorithm (ICA) code for our well placement 

optimization problem, a substantial modification was necessary. We applied most of 

these modifications to the Main_ImperialistCompetitveAlgorithm.m, 

GenerateNewCountry.m, and CostFunction.m files. 

The Main_ImperialistCompetitveAlgorithm.m file is the MATLAB file 

responsible for the implementation of the algorithm. In this file, the user enters the 

number of optimization variables, the maximum and minimum limits of the optimization 

variable values, the number of countries, the number of initial imperialists, the 

assimilation coefficient, the assimilation angle coefficient, the revolution parameter, and 

the maximum number of iterations. These pre-defined parameters are then fed to the 

GenerateNewCountry.m.  

In the GenerateNewCountry.m file, the countries are created, and the code uses 

Equations 11, 12, 13, and 14 to generate the initial populations of the countries. This file 
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also implements a filter to check that the variables of all countries adhere to the lower 

and upper limits of the optimization variables. For example, if a variable exceeds the 

upper limit, its value will be set back to the maximum value of that specific variable. 

The outcome of the GenerateNewCountry.m file is a matrix with the size Numbercountries 

× Numbervariables. The MATLAB code for this file is presented below. 

function NewCountry = GenerateNewCountry(NumOfCountries,ProblemParams) 

    VarMinMatrix = repmat(ProblemParams.VarMin,NumOfCountries,1); 

    VarMaxMatrix = repmat(ProblemParams.VarMax,NumOfCountries,1); 

    Country = round((VarMaxMatrix - VarMinMatrix) .* rand(size(VarMinMatrix)) + 

VarMinMatrix); 

    angle = Country(:,[6:7:end]).*(pi/180); 

   Country(:,6:7:end)=angle; 

    Ang=angle; 

    %calculating Lxy 

    Ltot=Country(:,4:7:end); 

    Lz=Country(:,5:7:end); 

    Lxy=round((Ltot.^2-Lz.^2).^0.5); 

    %calculating x heels 

    Ncol=size(Country,2); 

    Nwell=Ncol/7; 
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    xmid=Country(:,1:7:end); 

    xh=xmid-round((Lxy.*sin(Ang)).*0.5); 

    xt=xmid+round((Lxy.*cos(Ang)).*0.5); 

    xh(xh<5)=5; 

    xh(xh>35)=35; 

    xt(xt<5)=5; 

    xt(xt>35)=35; 

    % calculating y heels 

    ymid=Country(:,2:7:end); 

    yh=ymid-round((Lxy.*sin(Ang)).*0.5); 

    yt=ymid+round((Lxy.*cos(Ang)).*0.5); 

    yh(yh<5)=5; 

    yh(yh>35)=35; 

    yt(yt<5)=5; 

    yt(yt>35)=35; 

    % calculating zheels 

    zmid=Country(:,3:7:end); 

    zh=round(zmid-(Lz.*0.5)); 

    zt=round(zmid+(Lz.*0.5)); 

    zh(zh<1)=1; 

    zh(zh>7)=7; 

    zt(zt<1)=1; 



 

 69 

    zt(zt>7)=7; 

    D=Country(:,7:7:end); 

    %xh=Country(:,1:6:end)-times(Country(:,4:6:end),sin((Country(:,6:6:end)))); 

    Ncol=size(Country,2); 

    Nwell=Ncol/7; 

    for i=1:Nwell 

    Well{i}=[xh(:,i) yh(:,i) zh(:,i) xt(:,i) yt(:,i) zt(:,i) D(:,i)]; 

    end 

    NewCountry=cell2mat(Well); 

end 

 

 

The cost function file is considered to be the soul of our modified imperialist 

competitive algorithm (ICA). In this file, the imperialist competitive algorithm (ICA) 

input parameters are conditioned to be made compatible for being run by CMG. After 

the CMG input file is created, it is fed to the CMG execution file by calling a batch file, 

which runs the model simulation to produce the CMG output file. Then, the code reads 

the cumulative oil, gas, produced water, and injected water for each year and uses these 

values to calculate the expected net present value (NPV). This process is repeated for all 

countries for the five realizations and then the countries are ranked based on their 

objective function values. The most difficult part of the code implementation is 

conditioning the CMG input file to make it readable by the CMG. Since our optimization 
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problem formulation consists of varying the number and length of the wells, we had to 

ensure that the code would seamlessly loop through the full iterations. We did so by 

fixing the maximum number of wells to be considered, in our work this was ten wells, 

and fixing the maximum length a well could have. Below, we describe the main practical 

implementations we used to overcome the abovementioned difficulties. We have 

included only a part of the code of one well input file conditioning for illustration 

purposes. For more code details, please refer to Appendix B. 

 

%1st well input file modifications      

S=floor(x(ii,[7:7:end])); 

Nactive=nnz(S);                 

point11=x(ii,1:3); 

point21=x(ii,4:6); 

t=0:.1:1; 

C=repmat(point11,length(t),1)'; 

Cbeforefinal=(point21-point11)'*t; 

Cfinal=floor(C+Cbeforefinal)';  

perf=unique(Cfinal,'rows','stable'); 

aa=size(perf,1); 

bb=12-aa; % need change if you have different max number of perforations 

filename = sprintf('%s%02d%s','realization',jj,'.dat'); %naming the file 

fid = fopen(filename, 'r+'); 
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Type1=x(ii,7); 

if Type1==1 || Type1==0 

    D='PRODUCER          '; 

    E='**COMP  WATER'; 

    F='OPERATE  MIN  BHP  1000.0  CONT'; 

    O='OPERATE  MAX  STL  15000.0  CONT'; 

    G='FLOW-TO  '; 

elseif Type1==2 

    D='INJECTOR MOBWEIGHT'; 

    E='INCOMP  WATER'; 

    F='OPERATE  MAX  BHP  3500.0  CONT'; 

    O='OPERATE  MAX  STW  15000.0  CONT'; 

    G='FLOW-FROM'; 

end 

%need for fseek and idx; 

ww=fscanf(fid,'%c',Inf); 

idx1 = strfind(ww, '**wl1'); 

fseek(fid, idx1+4, 'bof'); 

fprintf(fid, '\r\nDATE 2017 1  1\r\nWELL  "Well01"\r\n%s 

"Well01"\r\n%s\r\n%s\r\n%s\r\nGEOMETRY  K  0.25  0.37  0.25  0.0\r\nPERF  

GEOA  "Well01"',D,E,F,O); 

fprintf(fid, '\r\n %02d %02d %02d  1.0  OPEN    %s "SURFACE"', perf(1,:),G); 
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for i=2:aa 

    fprintf(fid, '\r\n %02d %02d %02d  1.0  OPEN    %s  %02d', perf(i,:),G,i-1); 

end 

  

for i=1:bb 

    fprintf(fid,'\r\n ************************************'); 

end 

if Type1==0 

    H='SHUTIN "Well01"'; 

else 

    H='OPEN "Well01"  '; 

end 

fprintf(fid,'\r\n%s',H); 

fclose(fid); 

 % end of 1st well modifications  

 

 

 

 

 

 

 



 

 73 

5.5 Net Present Value Formulation 

As stated above, we determined the objective function (J) based on the 

application of a robust optimization (RO) of the net present value (NPV) in each 

realization. Hence, defining the economic parameters is crucial for the NPV calculations. 

In order to find the net present value (NPV) for each potential solution, we ran a 

simulation using CMG and converted the resulting oil, water, and gas production 

profiles to dollar values along with the associated wells drilling costs. We calculated the 

net present value (NPV) for each potential solution as follows: 

 

   (16) 

 

     (17) 

 

where T is the total production time in years; Qt,o is the cumulative oil production (STB) 

at time t; Qt,g is the cumulative gas production (SCF) at time t; Qt,wp is the cumulative 

produced water (STB) at time t; Qt,wi is the cumulative injected water (STB) at time t; Po, 

Pg, Pwp, and Pwi are the oil, gas, produced water, and injected water prices ($/STB), 

respectively; r is the annual discount rate; and CDr is the cost to drill the wells, which 

consists of the cost to drill the well to the top of the reservoir (Cn) and the cost to drill 

the mainbore within the reservoir (Ln). We note that CDr is always taken as the 

expenditure at t = 0. Table 12 summarizes the economic parameters we used to 

determine the net present value (NPV). 
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Parameter Value 

Well drilling cost $ 12,500,000 

Oil price $ 50/STB 

Gas price $ 3.5/MSCF 

Produced water cost $ 5/STB 

Injected water cost $ 5/STB 

Cost of drilling within the reservoir $ 1000/ft 

 

Table 12: Economics parameters used in NPV calculations 

 

5.6 Geological Uncertainty 

One important aspect to consider when utilizing optimization techniques is the 

extent of geological uncertainty and how it affects the optimization solution. Typically, 

geological uncertainties are reduced either by taking additional measurements of the 

uncertain parameters or by considering different scenarios that capture the parameter 

uncertainty ranges. One technique used to model uncertainty is the robust optimization 

(RO) technique. Van Essen et al. (2009) reduced the impact of uncertainty associated 

with field development by utilizing the concept of robust optimization. In their work, the 

authors chose a set of geological scenarios that reflect the geological uncertainties of the 

reservoir and utilized this set when calculating the net present value (NPV). 
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The robust optimization (RO) objective can be represented in different ways. For 

example, the most straightforward way is to identify the expected outcomes for a set of 

geological realizations. Different robust optimization (RO) objectives can take into 

consideration the variance in the outcomes or the worst case scenario. In our study, we 

were interested in establishing the expected net present value (J) over a set of five 

equiprobable geological realizations (θd), which we generated using a Gaussian 

geostatistical simulation method. This robust optimization (RO) technique takes into 

account the mean and standard deviation of the outcomes. Our goal is to determine the 

expected net present value (J) for the optimized variables (x) over the set of geological 

realizations (θd). Equations 18 and 19 summarize how we calculated the expected net 

present value (J): 

(18) 

 (19) 

5.7 Real Field Example Results 

As stated above, our goal in this example is to optimize the field infill drilling by 

finding an improved combination of producers and injectors that will yield a higher 

NPV. The field under optimization is an existing field that has eight producers and three 

injectors and has been operating for a total of five years. We made some assumptions in 

this case. First, we assumed that only one rig is available for drilling, that the drilling 
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time for drilling one well is six months, and that the rig is available only for 5 years. In 

other words, this rig is available to drill a well only every six months. Second, any new 

well will follow the same production and injection constraints of existing wells. Third, 

the minimum distance between any new and existing well is 500 feet. We set the starting 

time for drilling infill wells to January 1st, 2017 and the ending time to December 31st, 

2022. The end of simulation time is January 1st, 2040.  

 Since we have seven variables representing each well and we assume that we 

can establish up to a maximum of ten wells, the total number of optimization variables is 

seventy. In this example, we use a total forty initial countries and five geological 

realizations. This equates to two hundred simulations for one algorithm iteration 

(decade). Table 13 lists the imperialist competitive algorithm (ICA) parameters used in 

this example. 

 

 

ICA Parameter Value 

Number of Countries 40 

Assimiliation Coefficient 2 

Assimiliation Angle 0.5 

Revolution Ratio 0.3 

Number of Generations 40 

 

Table 13: ICA parameters used for this example 
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Fig. 27 shows the results of three optimization runs along with the average of the 

three. The highest yielding expected net present value (J) corresponds to the Opt 3 run, 

which yielded a total of $7.42 × 109, corresponding to a 4.4% increase from the first 

iteration. The Opt 3 configuration has one injector and six producers. By examining the 

Opt 3 well distribution, we found the injector to be more of a vertical well placed in the 

upper left corner of the reservoir, as shown in Fig. 28. This might be considered to be 

non-intuitive as we had expected the injector to be located in the lower flank of the 

reservoir. However, since our optimization problem is concerned with maximizing the 

NPV based on the abovementioned assumptions, this result is reasonable in light of our 

goal to maximize oil production for the five years of drilling time (from 2017 to 2022).  

To further validate this result, Figs. 29, 30, 31, 32, and 33 show the saturation 

profiles of each of the five layers. We can clearly see that layers 2 and 3 are almost 50% 

swept and the placement of the injector in the upper right corner yielded better sweep.    
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Figure 27: ICA performance of three runs and their average 



 

 79 

 

Figure 28: Final well locations and configurations for Opt 3 run. The blue font 

corresponds to the injector and the red to the producers. The numbers associated 

with I and P indicate the drilling schedule sequence 
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Figure 29: Oil saturation for Opt 3 at the end of the simulation for layer 1 
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Figure 30: Oil saturation for Opt 3 at the end of the simulation for layer 2 
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Figure 31: Oil saturation for Opt 3 at the end of the simulation for layer 3 
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Figure 32: Oil saturation for Opt 3 at the end of the simulation for layer 4 
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Figure 33: Oil saturation for Opt 3 at the end of the simulation for layer 5 
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Also, in this part, we examined the imperialist competitive algorithm (ICA) 

performance in a longer optimization run. In the previous example, we made a total of 

8,000 simulation runs. Here, we increase the total number of simulation runs to 20,000 

to yield an increase in the total expected net present value (J) of $7.53 × 109, which 

corresponds to a 5.9% increase from the first iteration, as shown in Fig. 34. Also, in this 

run, two injectors were placed in the upper part of the reservoir, following a pattern 

similar to that in the previous example. However, the number of producers was reduced 

to four mainly horizontal wells that are spread around the middle of the reservoir, as 

shown in Fig. 35. All the producers are perforated from layers 1 to 4. Fig. 36, 37, 38, 39, 

and 40 show better sweep compared to the previous example 

 

Figure 34: ICA performance for 100 iterations 
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Figure 35: Final well locations and configurations for 100-iteration run. The blue 

font corresponds to the injector and the red to the producers. The numbers 

associated with I and P indicate the drilling schedule sequence 
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Figure 36: Oil saturation for the 100-iteration run at the end of the simulation for 

layer 1 

 



 

 88 

 

 

Figure 37: Oil saturation for the 100-iteration run at the end of the simulation for 

layer 2 
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Figure 38: Oil saturation for the 100-iteration run at the end of the simulation for 

layer 3 
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Figure 39: Oil saturation for the 100-iteration run at the end of the simulation for 

layer 4 
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Figure 40: Oil saturation for the 100-iteration run at the end of the simulation for 

layer 5 
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Figure 41: Optimum well configurations at various optimization iterations: a) 

iteration 20, b) iteration 40, c) iteration 60, and d) iteration 80 
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As can be seen from Fig. 41, at iteration 20 the optimization algorithm suggested 

the drilling of one injector and seven producers. By closely examining the well 

configurations and distribution through the field, we can deduce that the wells show an 

almost equal spacing between new wells and existing ones.  Also, the injector is placed 

at the top of the reservoir away from the center of the reservoir where most of the 

producer wells are placed. At iteration 40, the optimization algorithm improved the 

expected net present value (NPV) by placing two injectors and five producers. The wells 

distribution resulted of this iteration showed increased spacing between new and existing 

wells. Also, the two injectors were placed far from each other in different reservoir areas 

which improves oil sweep efficiency in these areas. At iteration 60, the algorithm 

suggested drilling three injectors and three producers. Here, we can see that total number 

of wells has been reduced to six wells compared to seven wells. Injectors I1 and I4 were 

placed at the top of the reservoir that helps push more oil from that area towards the new 

and existing production wells. Although, injector I8 was placed near the middle of the 

reservoir next to existing and new wells (P5 and P9), the overall expected net present 

value (NPV) was improved. This may be attributed to the fact that the other injectors (I1 

and I4) were placed far from the existing and new producers that resulted in delayed 

water breakthroughs in the other producers. At iteration 80, the optimization algorithm 

suggested an improved expected net present value (NPV) with a total of five wells (two 

injectors and three producers). At this iteration, we can see that the injectors were placed 

in the upper part of the reservoir. By examining this iteration’s well distribution, it is 

evident that the injectors are placed away from the producers that delayed water 
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breakthrough. Also, the new producers (P2, P3 and P6) are placed far from each other. 

This reduces the interference effect between the producers. At the end of the 

optimization algorithm, the final wells distribution was similar to the wells distribution 

at iteration 80 in terms of total number of new wells (five: two injectors and three 

producers). However, the well distribution at the 100th iteration clearly shows better well 

spacing between the injectors and the producers. Fig. 42 shows during the iterations the 

optimization algorithm kept improving the placement of the wells in the most permeable 

zones, while placing the injectors in the upper part of the reservoir far away from the 

existing and the four new producer wells. This resulted in the most optimal solution at 

iteration 100.  

Throughout the optimization process, the algorithm is trying to find a case that 

maintains reservoir pressure, maximize oil sweep and reduce water cycling while 

minimizing the number of wells required. The location of injectors seems to be critical to 

this process. As the number of iterations increases, the idea of placing injectors in mid-

field are abandoned and the optimization process seem to favor the top portion of the 

reservoir for the location of injectors. This makes sense because by injecting water away 

from the producers we are restricting the decline of reservoir pressure while delaying 

water cut. As for producers, the optimization process seems to favor long horizontal 

wells placed in the most permeable top layers of the reservoir to increase oil production 

while reducing water encroachment (see kh variation in Fig. 42). The optimized 

locations are found to be either in the middle of reservoir flanked by injectors from both 
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the top and the bottom of the reservoir or in the unswept and undeveloped areas of the 

reservoir. 

 

 

 

Figure 42: Change in the optimum number/type of wells and total kh along the well 

path at various optimization iterations 
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6. SUMMARY AND CONCLUSION 

 

As the demand for oil has continued to grow, over the past decade many 

researchers have worked to identify new ways to effectively develop oil and gas fields. 

One important aspect of this effort has been to identify effective and robust optimization 

techniques to solve well placement optimization problems. Stochastic optimization 

techniques have been applied to oil field development and show promising results. In 

this study, we examined the effectiveness of applying imperialist competitive algorithm 

(ICA) as an optimization tool by comparing its results with those of the well-known 

genetic algorithm (GA) and particle swarm optimization (PSO) techniques. Our results 

show that, overall, imperialist competitive algorithm (ICA) performed better than both 

the genetic algorithm (GA) and particle swarm optimization (PSO) in four synthetic 

reservoir models in which we had optimized the well placement and number of 

producers to be drilled to maximize the NPV. In addition, to further test the ICA 

optimization technique, we applied the ICA to a sector of a Middle East reservoir (ME1) 

to optimize the well types (producer/injector) and well configuration 

(vertical/horizontal). We present our major findings and conclusions below: 

• The results show that the imperialist competitive algorithm (ICA) achieved better 

convergence to the global optimum, thereby supporting the utilization of the 

imperialist competitive algorithm (ICA) as a viable option for well placement 

optimization.  
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• The results of our sensitivity analyzes with respect to three important parameters 

(revolution ratio, assimilation coefficient, and assimilation angle) show that the 

recommended imperialist competitive algorithm (ICA) default parameters in our 

examples generally led to acceptable performances. However, to obtain optimum 

performance, we recommend tuning the three main imperialist competitive 

algorithm (ICA) parameters to address specific optimization problems. 

• We accounted for geological uncertainty by utilizing a set of five geological 

realizations and took the expected net present value (J) as the objective function. 

By applying a robust optimization (RO) formula, we calculated the expected net 

present value (J), which can represent the optimization performance when 

applied to any of the five realizations. 

• We performed three optimization runs for the real field example and presented 

the best optimized solution, which suggested drilling with one injector and six 

producers. We further examined the effectiveness of the final optimized solution 

by referring to the saturation profile of the ME1 reservoir, which indicates that 

this well distribution would yield good sweep, especially in the more permeable 

layers (layers 2 and 3). 

• In a final optimization run for the ME1 field, we ran the optimization algorithm 

for a longer simulation time (20,000 runs), which yielded a better final optimized 

solution by the use of two injectors and four producers for a better expected net 

present value (J). 
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• By analyzing the evolvement of optimization iterations, it is clear that the 

optimization algorithm is searching for an optimized well configuration that 

maintains reservoir pressure, maximize oil sweep and reduce water injection 

while minimizing the number of wells required. This was achieved by placing 

two injectors at the top of the reservoir (away from the producers) and placing 

four long horizontal producers in the middle of the reservoir in areas that exhibit 

high permeability.  
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7. FUTURE WORK 

 

•    To further enhance the imperialist competitive algorithm (ICA) optimization 

performance in field development, we recommend that an optimization workflow be 

generated that takes into account real-time data acquisition coupled with the 

optimization method to achieve a more realistic optimum solution. One approach 

could be to apply a closed-loop field development strategy whereby the models are 

updated each time a well is drilled. 

• To reduce the simulation computation time, we suggest the utilization of surrogate 

models to replace the required simulation model runs. 

•  To further enhance the overall performance of the imperialist competitive algorithm 

(ICA) optimization framework with respect to well placement, it would be beneficial 

for the framework to couple well placement with the optimization of well control 

parameters (flow rates/bottomhole pressures). 

•  To generate a multiobjective Pareto surface, this work can be extended to 

multiobjective problems that include additional objectives such as watercut and the 

recovery factor.  

•  In this work, we considered the well placement of producers and injectors in a 

waterflood project. In future work, other recovery methods such as steam-assisted 

gravity drainage and gas injection could be considered.  
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APPENDIX A 

DETAILS OF ICA APPLICATION FOR WELL PLACEMENT 

In this section, we show step-by-step how the ICA was utilized for well 

placement optimization and further clarify how a solution evolves through the algorithm 

process. Regarding methodology, here we apply the ICA in a simplified reservoir model 

to provide the reader with a clear explanation and to minimize any confusion. We detail 

the ICA implementation for well placement optimization below: 

A.1 The Initiation of Empires 

The first step is to define the countries, which in this example refer to the well 

positions. For example, we start by having ten countries (two of which are imperialists 

and the remaining eight colonies), which consist of two variables to be optimized (the x 

and y coordinates). The initial positions of the countries are as follows:  
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The next step is to calculate the cost of each country by calling the commercial 

simulator from the MATLAB code to calculate the cumulative oil production for each 

well’s position (country). Then, the countries are sorted in descending order, and the two 

countries with the highest cumulative oil productions are chosen as the imperialists.  

 

 

Cost = F(Country) =  = 

 

 

In this case, the imperialists are the countries that have the (X ,Y) coordinates of 

(8, 15) and (22,3). The remaining countries (colonies) are distributed between the two 

empires based on the relative power of each. The number of colonies an empire can 

possess is directly proportional to its power. In this example, there are only two 

imperialists. The distribution of colonies among the imperialists begins by calculating 

the costs of the imperialists and then determining the normalized costs using Equation 

(3), as provided in the main text of this dissertation: 
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C1 = -23,715 – (-22,480) = -1,235 ; C2 = -22,480 – (-22,480) = 0 

 

Next, the power of each imperialist is calculated based on Equation (4): 

 

p1 =  = 0.51  ; p2 =  = 0.49 

 

After determining of the power of the two imperialists, the remaining eight 

colonies are randomly distributed between them to create two empires. The number of 

colonies each of the imperialists possess is determined by Equation (5): 

 

N.C1 = round(0.51*8) = 4  ; N.C2 = round(0.49*8) = 4 

 

The results indicate that each empire possesses four colonies. The initiation of 

the empires is now complete and the algorithm is ready for the next step, which is the 

assimilation process. 

 

A.2 Assimilation of Colonies 

After the initiation of the empires, the next step is to move colonies toward their 

respective imperialists. In this step, we move all colonies toward their imperialists by 

moving an x distance closer to the imperialist position. The distance x is chosen from a 

random distribution within an interval of [0, d*(assimilation.coefficient)]. Also, to make 
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the assimilation process more robust and effective, a deviation parameter is assigned to 

the assimilation process, to ensure a greater solution search space.  

A.3 Revolution 

After the colonies move toward their imperialists, some colonies are chosen for 

revolution, which, in this case, involves a sudden change in the X and Y coordinates of 

the well positions. This revolution process provides for more search and exploration of 

the solution space and thus prevents pre-mature convergence. The revolution process is 

analogous to mutation in the GA. 

A.4 Imperialist and Colonies Position Exchange: 

After the colonies complete the assimilation and revolution processes, the new 

colonies’ positions (wells’ X and Y coordinates) are used to calculate their new cost 

functions (cumulative oil production). Then, the cost functions (cumulative oil 

production) of the colonies are compared with those of their relative imperialist. If any 

colony is found to have a better cost function than its imperialist, then the imperialist 

exchanges its position with that of the colony. Fig.15 below summarizes the empire 

initiation, assimilation, revolution, and exchange processes. 
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Figure A-1: a) Initiation of empires, b) assimilation process, c) revolution process, 

and d) position swapping process 
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A.5 Competition between Empires: 

In this step, competition is initiated between the empires, whereby the 

imperialists compete in order to take possession of the weakest colonies of the weakest 

empires. This process begins by calculating the power of each empire, which is 

predominantly a function of its imperialist power but is also a small function of the 

colonies’ mean power, as shown by Equation (6). Next, the competition begins between 

the empires to overtake the weakest colony of the weakest empire. To do so, the 

normalized total cost (NTCn) of each empire is calculated using Equation (7). Then, the 

probability of each empire taking possession of this weakest colony is calculated using 

Equation (8). Finally, the empire with the greatest power and possession probability 

conquers this colony. Below, we provide a simplified example showing the steps just 

described. 

1) The total cost of each empire is calculated using Equation (6) and the resulting total

costs are shown as follows: 

Total cost of empire 1 (TC1) = -24511 

Total cost of empire 2 (TC2) = -22568 

Total cost of empire 3 (TC3) = -21033 

2) The normalized cost of each empire is calculated using Equation (7) as follows:

Normalized cost of empire 1 (NTC1) = -24511-(-21033) = -3478 

Normalized cost of empire 2 (NTC2) = -22568-(-21033) = -1535 

Normalized cost of empire 3 (NTC3) = -21033-(-21033) = 0  
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3) The possession probability of each empire is calculated using equation (8):

Possession probability of empire 1 (Pp1) =  = 0.69 

Possession probability of empire 2 (Pp2) =  = 0.31 

Possession probability of empire 2 (Pp3) =  = 0.00 

Next, the P, R, and D vectors (as defined in the main text of this dissertation) are 

determined to assign the weakest colony to the empire with the highest D index. Here, 

vector P = [0.69, 0.31, 0], vector R = [0.53, 0.11, 0.79], and vector D = [0.16, 0.2, -

0.79]. So, in this example, the colony will be possessed by empire number 2. Fig. 16

shows the collapse of the weakest colony and its possession by the second strongest 

empire (green empire) as follows: 

Figure A-2: Collapse of weakest empire and possession of colonies by stronger 

empire: a) before the possession process, b) after the possession process. 
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APPENDIX B 

The full ICA code that was used in this work was implemented through 

MATLAB 2014 version. The full ICA code is included in a folder and it is intended to 

be allowed for public usage. Should you need to get a copy of the entire files that were 

associated with the ICA code, please do not hesitate to contact the authors.  

Mohammad Al Dossary 

mohada@tamu.edu 

Dr. Hadi Nasrabadi 

Hadi.nasrabadi@tamu.edu 
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APPENDIX C 

INPUT FILE USED FOR MULTIPLE HORIZONTAL WELL PLACEMENT 

INUNIT FIELD 

WSRF WELL 1 

WSRF GRID TIME 

WSRF SECTOR TIME 

OUTSRF WELL LAYER NONE 

OUTSRF RES ALL 

OUTSRF GRID SO SG SW PRES OILPOT BPP SSPRES WINFLUX 

WPRN GRID 0 

OUTPRN GRID NONE 

OUTPRN RES NONE 

**$  Distance units: ft 

RESULTS XOFFSET           0.0000 

RESULTS YOFFSET           0.0000 

**$  (DEGREES) 

RESULTS ROTATION           0.0000  **  (DEGREES) 

RESULTS AXES-DIRECTIONS 1.0 -1.0 1.0 
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**$ 

***********************************************************************

**** 

**$ Definition of fundamental cartesian grid 

**$ 

***********************************************************************

**** 

GRID VARI 40 40 3 

KDIR DOWN 

DI IVAR  

 40*300 

DJ JVAR 

 40*300 

DK ALL 

 4800*50 

DTOP 

 1600*2000 

PERMJ EQUALSI 

PERMK EQUALSI 

**$ Property: NULL Blocks  Max: 1  Min: 1 

**$  0 = null block, 1 = active block 

NULL CON            1 
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POR ALL  

 0.1134959 2*0.08857616 0.1134959 3*0.08857616 0.2028321 0.1997039 

 0.1585346 0.1464379 0.23393 0.2292194 0.2246236 0.1529927 0.2070665 

 0.1997039 0.1585346 0.2313142 0.2332937 0.2306294 0.208374 0.23393 

 0.1464379 0.1675697 0.2108544 0.2096356 0.1529927 0.1713576 2*0.1675697 

 0.1529927 0.1675697 0.1529927 0.1585346 0.2246236 0.221197 0.1585346 

 0.201302 0.1997039 2*0.08857616 2*0.1134959 0.08857616 0.1134959 0.08857616 

 0.2057097 0.208374 0.1464379 0.1675697 0.2326459 0.2363684 0.228493 

 0.1633353 0.1962773 0.1997039 0.1675697 0.2380944 0.2319862 0.2397413 

 0.2108544 0.236953 0.1713576 0.1529927 0.1904345 0.2096356 0.2541391 

 0.2511414 0.2507485 0.2478708 0.1675697 0.1464379 0.1585346 0.1529927 

 0.2313142 0.2262217 0.1464379 2*0.208374 2*0.1134959 3*0.08857616 

 2*0.1134959 0.2096356 0.1904345 0.1464379 0.1529927 0.2254315 0.221197 

 0.2269949 0.1529927 0.2096356 0.1997039 0.1713576 0.228493 0.2313142 

 0.2386518 0.2070665 0.2332937 0.1713576 0.1464379 0.1904345 0.2096356 

 0.2470045 0.2507485 0.2474402 0.2491324 2*0.1529927 0.1675697 0.1585346 

 0.2299313 0.2229511 0.1675697 0.1859347 0.1633353 0.08857616 2*0.2515301 

 0.2465633 0.2474402 0.2487168 0.2519146 0.1904345 0.1944332 0.1633353 

 0.1464379 0.2380944 0.2306294 0.2351699 0.1633353 0.2070665 0.1464379 

 0.1585346 0.1633353 0.2220848 0.2254315 0.2096356 0.2319862 0.2277518 

 0.1997039 0.1924894 0.1713576 0.2470045 0.2515301 0.2495433 0.2470045 

 0.1713576 0.1633353 3*0.1464379 0.2397413 0.2392007 0.2096356 0.1675697 
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 0.1134959 0.2491324 0.2507485 0.2541391 0.2534128 0.2495433 0.2465633 

 0.2070665 0.2096356 0.1675697 0.1529927 0.1633353 0.2351699 0.2397413 

 0.188255 0.1962773 0.1713576 0.2277518 0.1529927 0.2375282 0.236953 

 0.1997039 0.2392007 0.1944332 0.2237971 0.201302 0.1713576 2*0.2526715 

 0.2470045 0.2474402 0.2487168 0.2519146 0.1464379 0.1585346 0.1713576 

 0.23393 0.2306294 0.1859347 0.1713576 0.1134959 0.2465633 0.2503512 

 0.2507485 0.2499495 0.2487168 0.2526715 0.1962773 0.2035733 0.1675697 

 0.1713576 0.1529927 0.2345553 0.2397413 0.1859347 0.1585346 0.1633353 

 0.2292194 0.1675697 0.2254315 0.2386518 0.2108544 0.2035733 0.2096356 

 0.2363684 0.1464379 0.2096356 0.2515301 0.2534128 0.253044 2*0.2515301 

 0.2507485 0.1585346 0.1633353 0.2319862 0.2254315 0.2220848 0.1962773 

 0.1464379 0.2470045 0.2511414 0.2470045 0.2534128 0.2515301 0.08857616 

 0.1134959 0.1980314 0.2042997 0.1713576 0.1633353 0.1464379 0.23393 

 0.2262217 0.1962773 0.2108544 0.1464379 0.2357741 0.2351699 0.2326459 

 0.2292194 0.2397413 0.2380944 0.1904345 0.1944332 0.236953 0.2096356 

 0.2541391 0.2537777 0.2519146 0.2495433 0.2534128 0.2537777 0.1585346 

 0.2397413 0.2357741 0.2386518 0.1633353 0.208374 0.1529927 0.2511414 

 0.2537777 0.2515301 0.2537777 0.252295 0.08857616 0.1980314 0.2070665 

 0.2050116 3*0.1134959 0.236953 0.2357741 2*0.2096356 0.2332937 0.221197 

 0.2229511 0.2220848 2*0.2363684 0.2345553 0.201302 0.2096356 0.2299313 

 0.1997039 0.1134959 0.2487168 0.2519146 0.2491324 0.2519146 0.2495433 

 0.08857616 0.2351699 0.2306294 0.2375282 0.08857616 2*0.1997039 0.2515301 
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 2*0.2511414 0.2519146 0.2534128 0.08857616 0.2096356 0.2108544 0.2057097 

 3*0.1134959 0.2313142 0.2380944 0.1997039 0.2042997 0.2292194 0.08857616 

 0.1134959 0.228493 0.2375282 0.2491324 0.2042997 0.1859347 0.2035733 

 0.2237971 0.2345553 0.08857616 0.2461167 0.2511414 0.2482963 0.2507485 

 0.1134959 0.2375282 2*0.2220848 0.08857616 0.1134959 2*0.208374 0.2519146 

 0.2526715 2*0.2537777 0.2470045 0.1924894 0.1904345 0.2057097 0.2063945 

 4*0.1134959 0.2262217 0.2332937 0.2070665 0.1962773 0.08857616 0.1134959 

 0.2351699 0.221197 0.2491324 0.2070665 0.2503512 0.2035733 0.1944332 

 0.2380944 0.1134959 0.2507485 0.2526715 0.2487168 0.2541391 0.1134959 

 0.2269949 0.2313142 2*0.08857616 0.188255 0.1859347 0.1134959 0.2495433 

 0.252295 0.2519146 0.2495433 0.2470045 0.2028321 0.2070665 0.1962773 

 0.2070665 4*0.1134959 0.2345553 0.2246236 0.188255 0.2028321 0.1904345 

 0.1134959 0.08857616 0.2269949 0.2491324 0.2108544 0.2495433 0.2035733 

 0.1859347 0.2237971 0.1134959 0.2503512 0.2470045 0.253044 0.2487168 

 0.08857616 0.2313142 0.2306294 0.1134959 0.08857616 0.1944332 0.1962773 

 0.08857616 0.2537777 0.2487168 0.2495433 0.08857616 0.1134959 0.201302 

 0.2057097 6*0.1134959 0.2229511 2*0.2220848 0.2070665 0.2057097 2*0.08857616 

 0.2269949 2*0.2491324 0.2495433 0.08857616 0.1997039 0.2096356 0.2292194 

 0.1134959 2*0.08857616 3*0.1134959 0.23393 0.2306294 0.08857616 0.1944332 

 0.1134959 0.08857616 0.2499495 0.2511414 0.2507485 2*0.08857616 0.201302 

 0.2108544 5*0.1134959 0.2254315 0.2332937 0.2229511 0.2319862 0.2108544 

 0.1924894 2*0.1134959 0.2357741 0.2397413 0.2491324 0.253044 2*0.2057097 
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 0.2035733 0.2306294 0.1134959 0.08857616 0.1134959 0.08857616 0.1134959 

 0.08857616 0.2237971 0.2397413 0.08857616 0.1924894 0.208374 0.08857616 

 0.2526715 0.2511414 0.2507485 0.1924894 0.2096356 0.1904345 0.2042997 

 2*0.1134959 0.2499495 0.2511414 0.1134959 0.2326459 0.2277518 0.2220848 

 0.2380944 0.08857616 0.1962773 0.08857616 0.2262217 0.2363684 0.2319862 

 0.2491324 0.2461167 0.201302 0.08857616 0.1962773 0.2028321 0.2326459 

 0.08857616 4*0.1134959 2*0.2345553 0.2229511 0.2277518 0.208374 0.1134959 

 0.2499495 0.2511414 0.2507485 0.1980314 0.1944332 0.2070665 0.201302 

 0.1134959 0.2511414 2*0.2470045 0.1134959 0.2299313 2*0.1134959 0.23393 

 0.1134959 0.1997039 0.2057097 0.2277518 0.2246236 0.08857616 0.2491324 

 0.1904345 0.1944332 0.08857616 0.1962773 0.1924894 0.2380944 0.1134959 

 0.08857616 0.1134959 3*0.08857616 0.1134959 0.2220848 0.2332937 0.1962773 

 0.1944332 0.2534128 0.2511414 0.2507485 0.1997039 0.1859347 0.2042997 

 0.1859347 0.1134959 0.2515301 0.2526715 0.253044 0.1134959 0.2306294 

 2*0.08857616 0.2375282 0.08857616 0.1997039 0.1924894 0.2319862 0.08857616 

 2*0.1904345 0.1944332 0.1924894 0.1134959 0.2057097 0.201302 0.2397413 

 0.2269949 0.2380944 3*0.08857616 0.2345553 0.2386518 0.2319862 0.2332937 

 0.2028321 0.2070665 0.2503512 0.2511414 0.08857616 0.2028321 0.201302 

 0.2108544 0.1859347 0.253044 0.2495433 0.2515301 2*0.1134959 0.2254315 

 0.23393 0.1134959 0.2392007 0.2363684 0.2057097 0.208374 0.2326459 

 0.1904345 0.1997039 0.2042997 0.2503512 0.2515301 0.08857616 0.1944332 

 0.188255 0.1904345 0.2269949 0.2363684 0.2237971 2*0.08857616 0.228493 
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 0.2262217 0.08857616 2*0.1134959 0.1997039 0.2503512 2*0.08857616 

 0.2070665 0.2028321 0.1962773 0.1924894 0.2519146 0.2526715 0.2465633 

 2*0.1134959 0.2351699 0.2277518 0.1134959 0.2357741 0.2220848 0.2096356 

 0.1859347 0.221197 0.2096356 0.1962773 0.1944332 0.2461167 0.2487168 

 2*0.1134959 0.08857616 0.188255 0.08857616 0.2269949 2*0.1134959 0.2386518 

 0.221197 0.2277518 0.1134959 2*0.08857616 0.2096356 0.1134959 2*0.08857616 

 0.1962773 0.1924894 0.1134959 0.2070665 0.2482963 0.2519146 2*0.1134959 

 0.2345553 0.2351699 0.2380944 0.1134959 0.236953 0.2386518 0.2237971 

 2*0.2292194 0.2096356 0.2108544 2*0.201302 0.2108544 0.1944332 0.08857616 

 0.188255 0.08857616 0.1134959 0.228493 0.08857616 0.1134959 0.2237971 

 0.2254315 3*0.08857616 0.2042997 2*0.1134959 2*0.08857616 0.2028321 

 0.2042997 0.1134959 0.1962773 4*0.1134959 0.2357741 0.2332937 4*0.08857616 

 0.2332937 0.2246236 0.2332937 0.1134959 0.1980314 0.2028321 0.2070665 

 0.1980314 0.1924894 0.08857616 0.188255 0.2108544 0.08857616 0.1134959 

 0.2269949 0.23393 0.2299313 0.23393 0.08857616 0.2070665 0.1962773 

 0.188255 2*0.1134959 2*0.08857616 0.2108544 0.1962773 0.1134959 0.2070665 

 3*0.1134959 0.221197 0.236953 0.2363684 0.2503512 0.2491324 0.2495433 

 0.08857616 0.2397413 0.2357741 0.1134959 0.08857616 0.1944332 0.1924894 

 0.2534128 0.2474402 0.2461167 0.1980314 0.2096356 0.1904345 0.08857616 

 0.1134959 0.228493 0.236953 2*0.1134959 0.1904345 0.1962773 0.1980314 

 2*0.08857616 0.1134959 0.08857616 0.1859347 0.2070665 2*0.1134959 

 0.2042997 0.1980314 2*0.1134959 0.2269949 0.2306294 0.2363684 0.2503512 
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 0.2487168 0.2470045 0.1134959 0.2299313 0.2345553 0.08857616 0.1980314 

 0.2070665 0.08857616 0.2515301 0.2487168 0.2465633 0.208374 0.08857616 

 0.1134959 0.08857616 0.1134959 2*0.2319862 0.08857616 0.1134959 0.188255 

 0.2478708 0.2503512 0.2515301 0.2461167 0.1134959 0.08857616 0.1944332 

 0.1859347 2*0.1134959 0.1980314 0.1859347 2*0.1134959 0.2357741 0.2363684 

 0.2237971 0.08857616 0.253044 0.1134959 0.2375282 0.2277518 0.08857616 

 0.2246236 0.1962773 0.1924894 0.1134959 0.2465633 0.2491324 0.2474402 

 0.2042997 0.1980314 0.2096356 0.08857616 0.2363684 0.08857616 0.1134959 

 0.2306294 0.2392007 0.2057097 0.2511414 2*0.2534128 0.2537777 0.1134959 

 0.08857616 0.2096356 0.201302 2*0.1134959 0.2042997 0.1904345 0.1944332 

 2*0.1134959 0.2306294 0.236953 0.1134959 0.08857616 0.2375282 0.23393 

 0.2397413 0.08857616 0.2269949 0.221197 0.1944332 0.08857616 0.2526715 

 0.252295 0.2461167 0.1944332 0.2096356 0.2042997 0.2220848 0.2313142 

 2*0.08857616 0.23393 0.2326459 0.1980314 0.2487168 0.253044 0.2515301 

 0.2526715 0.1134959 0.1944332 0.1924894 0.2070665 0.2028321 0.1134959 

 0.1924894 0.2028321 0.188255 3*0.1134959 0.2292194 0.1134959 0.08857616 

 0.2313142 0.2246236 0.2363684 0.2357741 0.08857616 0.2397413 0.2057097 

 0.1904345 0.08857616 2*0.1134959 0.2057097 2*0.08857616 0.2357741 

 3*0.08857616 0.2220848 0.2375282 0.08857616 0.2526715 0.2461167 0.2537777 

 0.2487168 0.1134959 0.201302 2*0.2096356 0.2108544 0.1134959 0.2057097 

 0.1904345 4*0.1134959 0.2237971 0.08857616 0.23393 0.2229511 0.08857616 

 0.236953 2*0.1134959 0.2357741 0.1962773 0.1980314 0.2108544 0.08857616 
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 0.2108544 0.1859347 0.1134959 0.236953 0.2345553 0.1134959 0.221197 

 0.2363684 0.1134959 0.236953 0.08857616 0.1997039 0.08857616 0.1134959 

 0.08857616 0.2070665 0.1944332 0.208374 0.1134959 0.2028321 2*0.1134959 

 0.1944332 4*0.1134959 0.2254315 0.2363684 0.2229511 0.2254315 0.08857616 

 0.2254315 0.2351699 0.2319862 0.2375282 2*0.1134959 0.2028321 0.2042997 

 0.2108544 0.2096356 0.08857616 0.2380944 0.2386518 0.08857616 0.2380944 

 0.2386518 0.08857616 0.2292194 0.08857616 0.208374 2*0.08857616 3*0.1134959 

 0.188255 0.1134959 0.201302 0.1944332 0.1134959 2*0.1904345 2*0.1134959 

 0.228493 0.2357741 0.2375282 0.08857616 0.2262217 0.1134959 0.2461167 

 0.2511414 0.2386518 0.23393 0.08857616 0.1134959 0.252295 0.1944332 

 2*0.08857616 0.2057097 2*0.2254315 0.2299313 0.2357741 0.2220848 0.1134959 

 0.2332937 0.2345553 0.08857616 0.1904345 2*0.08857616 2*0.1134959 

 0.1904345 0.1134959 0.1924894 0.2070665 0.1134959 0.2042997 0.208374 

 2*0.1134959 0.2375282 0.2397413 0.2269949 0.1134959 0.2262217 0.1134959 

 0.2537777 0.2526715 0.2495433 0.2277518 0.1134959 0.08857616 0.2487168 

 0.1924894 2*0.08857616 2*0.201302 0.221197 0.2313142 0.2332937 2*0.1134959 

 2*0.08857616 0.2332937 0.2070665 0.1134959 0.08857616 2*0.1134959 

 0.2042997 0.1134959 0.253044 0.1924894 0.1134959 0.2057097 0.1997039 

 2*0.1134959 0.2363684 0.228493 0.2397413 0.1134959 0.2306294 0.08857616 

 0.2515301 0.2541391 0.2478708 0.2375282 0.2254315 0.1134959 0.2042997 

 0.1980314 0.08857616 2*0.1134959 0.1904345 0.2269949 0.2306294 0.221197 

 0.1134959 2*0.08857616 0.1134959 0.2269949 0.2229511 0.2096356 0.1134959 
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 0.201302 0.1980314 0.1904345 0.2499495 0.2507485 0.2108544 0.201302 

 0.2042997 0.1904345 3*0.1134959 0.2319862 0.2326459 0.2526715 0.1134959 

 0.2491324 2*0.2495433 0.2482963 0.228493 0.2345553 0.08857616 0.2042997 

 0.1944332 0.2057097 2*0.1134959 0.08857616 0.2237971 0.08857616 0.2357741 

 0.2246236 3*0.1134959 0.2319862 0.2254315 0.1859347 0.08857616 0.1980314 

 0.1134959 0.2108544 0.2515301 0.2482963 2*0.2057097 0.1962773 0.1904345 

 3*0.1134959 0.2386518 0.236953 0.1134959 0.2491324 0.2534128 0.252295 

 0.2541391 0.2220848 0.08857616 0.2229511 2*0.08857616 0.1134959 0.2108544 

 0.1904345 2*0.1134959 0.23393 0.08857616 0.2277518 0.2299313 0.2237971 

 2*0.08857616 0.2351699 0.08857616 0.2070665 0.1134959 0.2028321 0.1134959 

 0.2042997 0.2526715 0.253044 0.2057097 0.1904345 0.2096356 0.201302 

 3*0.1134959 0.2262217 0.2220848 0.236953 0.1134959 0.253044 2*0.2470045 

 0.2220848 0.1134959 0.2326459 0.2254315 2*0.1134959 0.1962773 0.2070665 

 2*0.08857616 0.2319862 0.08857616 0.1134959 0.2269949 0.23393 0.2380944 

 0.2345553 0.23393 0.1134959 0.2096356 4*0.1134959 0.2461167 0.2478708 

 0.2057097 0.1944332 0.201302 0.2028321 2*0.1134959 0.2254315 0.2357741 

 0.1134959 0.2363684 2*0.1134959 0.2519146 0.2495433 0.2229511 0.1134959 

 0.228493 0.2299313 2*0.1134959 0.1859347 0.201302 2*0.08857616 0.23393 

 3*0.08857616 0.2313142 2*0.2397413 0.08857616 0.1859347 0.188255 0.08857616 

 0.253044 0.2495433 0.253044 0.2526715 0.2499495 0.1859347 0.1997039 

 0.1134959 0.1924894 2*0.1134959 0.2345553 0.23393 0.1134959 0.2319862 

 0.2277518 0.1134959 0.2499495 0.2306294 2*0.1134959 0.08857616 0.2363684 
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 0.2254315 0.1134959 0.1980314 0.2042997 0.1134959 0.2277518 0.2375282 

 0.08857616 0.1134959 0.2386518 0.2375282 0.2515301 0.2526715 0.2470045 

 0.1859347 0.1134959 0.08857616 0.2474402 0.2495433 0.2482963 0.2507485 

 0.2070665 0.188255 0.201302 0.1134959 0.2028321 2*0.1134959 0.2306294 

 0.2375282 0.1134959 0.2397413 0.2357741 0.2332937 0.252295 0.228493 

 0.1134959 0.08857616 2*0.1134959 0.2299313 0.08857616 0.2070665 0.2375282 

 0.2319862 0.221197 0.2357741 0.08857616 0.1134959 0.2269949 0.2363684 

 0.2515301 0.2526715 0.2507485 0.1962773 0.1134959 0.08857616 2*0.2482963 

 0.2541391 0.2515301 0.2042997 0.1944332 2*0.1134959 0.208374 0.1134959 

 0.2254315 0.2292194 0.2380944 3*0.1134959 0.2351699 0.2478708 0.2220848 

 0.08857616 0.2526715 2*0.1134959 0.2363684 0.2254315 0.1962773 0.2313142 

 0.2332937 0.2237971 0.08857616 0.1134959 0.2351699 0.1134959 0.2397413 

 0.2515301 0.2526715 0.2465633 0.2096356 0.1904345 0.08857616 0.2461167 

 0.2519146 0.1134959 0.1944332 0.1904345 3*0.1134959 0.1980314 0.1134959 

 0.2357741 0.2269949 4*0.1134959 0.2220848 0.23393 0.2262217 0.1134959 

 0.2537777 0.2515301 0.2537777 0.2254315 0.2299313 0.201302 0.1134959 

 0.2262217 0.2319862 0.2246236 0.236953 0.2246236 0.1134959 0.2534128 

 0.2461167 0.2470045 0.2511414 0.252295 0.1944332 0.08857616 0.2465633 

 0.2470045 0.1134959 0.2070665 0.208374 0.2096356 2*0.1134959 0.1859347 

 0.1134959 0.2277518 0.2237971 0.1134959 0.2495433 0.2503512 0.1134959 

 0.2351699 0.236953 0.2246236 0.08857616 0.2465633 0.2491324 0.2465633 

 0.2299313 0.2363684 0.2057097 0.1980314 0.08857616 0.2380944 0.2392007 
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 0.2313142 2*0.2478708 0.2503512 0.2507485 0.2482963 0.2507485 0.2503512 

 0.2108544 0.1859347 3*0.1134959 0.1924894 0.1134959 0.2108544 2*0.1134959 

 0.2042997 2*0.1134959 0.2332937 0.1134959 0.2534128 0.2515301 2*0.1134959 

 0.2292194 0.23393 0.08857616 0.2491324 0.2519146 0.253044 2*0.2363684 

 0.201302 0.2042997 0.08857616 0.2269949 2*0.2277518 0.2478708 0.1134959 

 0.2537777 0.253044 0.08857616 0.2541391 0.2491324 0.2028321 0.1944332 

 0.1134959 2*0.08857616 0.1134959 3*0.08857616 0.2028321 0.1997039 

 0.1585346 0.1464379 0.23393 0.2292194 0.2246236 0.1529927 0.2070665 

 0.1997039 0.1585346 0.2313142 0.2332937 0.2306294 0.208374 0.23393 

 0.1464379 0.1675697 0.2108544 0.2096356 0.1529927 0.1713576 2*0.1675697 

 0.1529927 0.1675697 0.1529927 0.1585346 0.2246236 0.221197 0.1585346 

 0.201302 0.1997039 2*0.08857616 2*0.1134959 0.08857616 0.1134959 0.08857616 

 0.2057097 0.208374 0.1464379 0.1675697 0.2326459 0.2363684 0.228493 

 0.1633353 0.1962773 0.1997039 0.1675697 0.2380944 0.2319862 0.2397413 

 0.2108544 0.236953 0.1713576 0.1529927 0.1904345 0.2096356 0.2541391 

 0.2511414 0.2507485 0.2478708 0.1675697 0.1464379 0.1585346 0.1529927 

 0.2313142 0.2262217 0.1464379 2*0.208374 2*0.1134959 3*0.08857616 

 2*0.1134959 0.2096356 0.1904345 0.1464379 0.1529927 0.2254315 0.221197 

 0.2269949 0.1529927 0.2096356 0.1997039 0.1713576 0.228493 0.2313142 

 0.2386518 0.2070665 0.2332937 0.1713576 0.1464379 0.1904345 0.2096356 

 0.2470045 0.2507485 0.2474402 0.2491324 2*0.1529927 0.1675697 0.1585346 

 0.2299313 0.2229511 0.1675697 0.1859347 0.1633353 0.08857616 2*0.2515301 



 

 130 

 0.2465633 0.2474402 0.2487168 0.2519146 0.1904345 0.1944332 0.1633353 

 0.1464379 0.2380944 0.2306294 0.2351699 0.1633353 0.2070665 0.1464379 

 0.1585346 0.1633353 0.2220848 0.2254315 0.2096356 0.2319862 0.2277518 

 0.1997039 0.1924894 0.1713576 0.2470045 0.2515301 0.2495433 0.2470045 

 0.1713576 0.1633353 3*0.1464379 0.2397413 0.2392007 0.2096356 0.1675697 

 0.1134959 0.2491324 0.2507485 0.2541391 0.2534128 0.2495433 0.2465633 

 0.2070665 0.2096356 0.1675697 0.1529927 0.1633353 0.2351699 0.2397413 

 0.188255 0.1962773 0.1713576 0.2277518 0.1529927 0.2375282 0.236953 

 0.1997039 0.2392007 0.1944332 0.2237971 0.201302 0.1713576 2*0.2526715 

 0.2470045 0.2474402 0.2487168 0.2519146 0.1464379 0.1585346 0.1713576 

 0.23393 0.2306294 0.1859347 0.1713576 0.1134959 0.2465633 0.2503512 

 0.2507485 0.2499495 0.2487168 0.2526715 0.1962773 0.2035733 0.1675697 

 0.1713576 0.1529927 0.2345553 0.2397413 0.1859347 0.1585346 0.1633353 

 0.2292194 0.1675697 0.2254315 0.2386518 0.2108544 0.2035733 0.2096356 

 0.2363684 0.1464379 0.2096356 0.2515301 0.2534128 0.253044 2*0.2515301 

 0.2507485 0.1585346 0.1633353 0.2319862 0.2254315 0.2220848 0.1962773 

 0.1464379 0.2470045 0.2511414 0.2470045 0.2534128 0.2515301 0.08857616 

 0.1134959 0.1980314 0.2042997 0.1713576 0.1633353 0.1464379 0.23393 

 0.2262217 0.1962773 0.2108544 0.1464379 0.2357741 0.2351699 0.2326459 

 0.2292194 0.2397413 0.2380944 0.1904345 0.1944332 0.236953 0.2096356 

 0.2541391 0.2537777 0.2519146 0.2495433 0.2534128 0.2537777 0.1585346 

 0.2397413 0.2357741 0.2386518 0.1633353 0.208374 0.1529927 0.2511414 



 

 131 

 0.2537777 0.2515301 0.2537777 0.252295 0.08857616 0.1980314 0.2070665 

 0.2050116 3*0.1134959 0.236953 0.2357741 2*0.2096356 0.2332937 0.221197 

 0.2229511 0.2220848 2*0.2363684 0.2345553 0.201302 0.2096356 0.2299313 

 0.1997039 0.1134959 0.2487168 0.2519146 0.2491324 0.2519146 0.2495433 

 0.08857616 0.2351699 0.2306294 0.2375282 0.08857616 2*0.1997039 0.2515301 

 2*0.2511414 0.2519146 0.2534128 0.08857616 0.2096356 0.2108544 0.2057097 

 3*0.1134959 0.2313142 0.2380944 0.1997039 0.2042997 0.2292194 0.08857616 

 0.1134959 0.228493 0.2375282 0.2491324 0.2042997 0.1859347 0.2035733 

 0.2237971 0.2345553 0.08857616 0.2461167 0.2511414 0.2482963 0.2507485 

 0.1134959 0.2375282 2*0.2220848 0.08857616 0.1134959 2*0.208374 0.2519146 

 0.2526715 2*0.2537777 0.2470045 0.1924894 0.1904345 0.2057097 0.2063945 

 4*0.1134959 0.2262217 0.2332937 0.2070665 0.1962773 0.08857616 0.1134959 

 0.2351699 0.221197 0.2491324 0.2070665 0.2503512 0.2035733 0.1944332 

 0.2380944 0.1134959 0.2507485 0.2526715 0.2487168 0.2541391 0.1134959 

 0.2269949 0.2313142 2*0.08857616 0.188255 0.1859347 0.1134959 0.2495433 

 0.252295 0.2519146 0.2495433 0.2470045 0.2028321 0.2070665 0.1962773 

 0.2070665 4*0.1134959 0.2345553 0.2246236 0.188255 0.2028321 0.1904345 

 0.1134959 0.08857616 0.2269949 0.2491324 0.2108544 0.2495433 0.2035733 

 0.1859347 0.2237971 0.1134959 0.2503512 0.2470045 0.253044 0.2487168 

 0.08857616 0.2313142 0.2306294 0.1134959 0.08857616 0.1944332 0.1962773 

 0.08857616 0.2537777 0.2487168 0.2495433 0.08857616 0.1134959 0.201302 

 0.2057097 6*0.1134959 0.2229511 2*0.2220848 0.2070665 0.2057097 2*0.08857616 



 

 132 

 0.2269949 2*0.2491324 0.2495433 0.08857616 0.1997039 0.2096356 0.2292194 

 0.1134959 2*0.08857616 3*0.1134959 0.23393 0.2306294 0.08857616 0.1944332 

 0.1134959 0.08857616 0.2499495 0.2511414 0.2507485 2*0.08857616 0.201302 

 0.2108544 5*0.1134959 0.2254315 0.2332937 0.2229511 0.2319862 0.2108544 

 0.1924894 2*0.1134959 0.2357741 0.2397413 0.2491324 0.253044 2*0.2057097 

 0.2035733 0.2306294 0.1134959 0.08857616 0.1134959 0.08857616 0.1134959 

 0.08857616 0.2237971 0.2397413 0.08857616 0.1924894 0.208374 0.08857616 

 0.2526715 0.2511414 0.2507485 0.1924894 0.2096356 0.1904345 0.2042997 

 2*0.1134959 0.2499495 0.2511414 0.1134959 0.2326459 0.2277518 0.2220848 

 0.2380944 0.08857616 0.1962773 0.08857616 0.2262217 0.2363684 0.2319862 

 0.2491324 0.2461167 0.201302 0.08857616 0.1962773 0.2028321 0.2326459 

 0.08857616 4*0.1134959 2*0.2345553 0.2229511 0.2277518 0.208374 0.1134959 

 0.2499495 0.2511414 0.2507485 0.1980314 0.1944332 0.2070665 0.201302 

 0.1134959 0.2511414 2*0.2470045 0.1134959 0.2299313 2*0.1134959 0.23393 

 0.1134959 0.1997039 0.2057097 0.2277518 0.2246236 0.08857616 0.2491324 

 0.1904345 0.1944332 0.08857616 0.1962773 0.1924894 0.2380944 0.1134959 

 0.08857616 0.1134959 3*0.08857616 0.1134959 0.2220848 0.2332937 0.1962773 

 0.1944332 0.2534128 0.2511414 0.2507485 0.1997039 0.1859347 0.2042997 

 0.1859347 0.1134959 0.2515301 0.2526715 0.253044 0.1134959 0.2306294 

 2*0.08857616 0.2375282 0.08857616 0.1997039 0.1924894 0.2319862 0.08857616 

 2*0.1904345 0.1944332 0.1924894 0.1134959 0.2057097 0.201302 0.2397413 

 0.2269949 0.2380944 3*0.08857616 0.2345553 0.2386518 0.2319862 0.2332937 



 

 133 

 0.2028321 0.2070665 0.2503512 0.2511414 0.08857616 0.2028321 0.201302 

 0.2108544 0.1859347 0.253044 0.2495433 0.2515301 2*0.1134959 0.2254315 

 0.23393 0.1134959 0.2392007 0.2363684 0.2057097 0.208374 0.2326459 

 0.1904345 0.1997039 0.2042997 0.2503512 0.2515301 0.08857616 0.1944332 

 0.188255 0.1904345 0.2269949 0.2363684 0.2237971 2*0.08857616 0.228493 

 0.2262217 0.08857616 2*0.1134959 0.1997039 0.2503512 2*0.08857616 

 0.2070665 0.2028321 0.1962773 0.1924894 0.2519146 0.2526715 0.2465633 

 2*0.1134959 0.2351699 0.2277518 0.1134959 0.2357741 0.2220848 0.2096356 

 0.1859347 0.221197 0.2096356 0.1962773 0.1944332 0.2461167 0.2487168 

 2*0.1134959 0.08857616 0.188255 0.08857616 0.2269949 2*0.1134959 0.2386518 

 0.221197 0.2277518 0.1134959 2*0.08857616 0.2096356 0.1134959 2*0.08857616 

 0.1962773 0.1924894 0.1134959 0.2070665 0.2482963 0.2519146 2*0.1134959 

 0.2345553 0.2351699 0.2380944 0.1134959 0.236953 0.2386518 0.2237971 

 2*0.2292194 0.2096356 0.2108544 2*0.201302 0.2108544 0.1944332 0.08857616 

 0.188255 0.08857616 0.1134959 0.228493 0.08857616 0.1134959 0.2237971 

 0.2254315 3*0.08857616 0.2042997 2*0.1134959 2*0.08857616 0.2028321 

 0.2042997 0.1134959 0.1962773 4*0.1134959 0.2357741 0.2332937 4*0.08857616 

 0.2332937 0.2246236 0.2332937 0.1134959 0.1980314 0.2028321 0.2070665 

 0.1980314 0.1924894 0.08857616 0.188255 0.2108544 0.08857616 0.1134959 

 0.2269949 0.23393 0.2299313 0.23393 0.08857616 0.2070665 0.1962773 

 0.188255 2*0.1134959 2*0.08857616 0.2108544 0.1962773 0.1134959 0.2070665 

 3*0.1134959 0.221197 0.236953 0.2363684 0.2503512 0.2491324 0.2495433 



 

 134 

 0.08857616 0.2397413 0.2357741 0.1134959 0.08857616 0.1944332 0.1924894 

 0.2534128 0.2474402 0.2461167 0.1980314 0.2096356 0.1904345 0.08857616 

 0.1134959 0.228493 0.236953 2*0.1134959 0.1904345 0.1962773 0.1980314 

 2*0.08857616 0.1134959 0.08857616 0.1859347 0.2070665 2*0.1134959 

 0.2042997 0.1980314 2*0.1134959 0.2269949 0.2306294 0.2363684 0.2503512 

 0.2487168 0.2470045 0.1134959 0.2299313 0.2345553 0.08857616 0.1980314 

 0.2070665 0.08857616 0.2515301 0.2487168 0.2465633 0.208374 0.08857616 

 0.1134959 0.08857616 0.1134959 2*0.2319862 0.08857616 0.1134959 0.188255 

 0.2478708 0.2503512 0.2515301 0.2461167 0.1134959 0.08857616 0.1944332 

 0.1859347 2*0.1134959 0.1980314 0.1859347 2*0.1134959 0.2357741 0.2363684 

 0.2237971 0.08857616 0.253044 0.1134959 0.2375282 0.2277518 0.08857616 

 0.2246236 0.1962773 0.1924894 0.1134959 0.2465633 0.2491324 0.2474402 

 0.2042997 0.1980314 0.2096356 0.08857616 0.2363684 0.08857616 0.1134959 

 0.2306294 0.2392007 0.2057097 0.2511414 2*0.2534128 0.2537777 0.1134959 

 0.08857616 0.2096356 0.201302 2*0.1134959 0.2042997 0.1904345 0.1944332 

 2*0.1134959 0.2306294 0.236953 0.1134959 0.08857616 0.2375282 0.23393 

 0.2397413 0.08857616 0.2269949 0.221197 0.1944332 0.08857616 0.2526715 

 0.252295 0.2461167 0.1944332 0.2096356 0.2042997 0.2220848 0.2313142 

 2*0.08857616 0.23393 0.2326459 0.1980314 0.2487168 0.253044 0.2515301 

 0.2526715 0.1134959 0.1944332 0.1924894 0.2070665 0.2028321 0.1134959 

 0.1924894 0.2028321 0.188255 3*0.1134959 0.2292194 0.1134959 0.08857616 

 0.2313142 0.2246236 0.2363684 0.2357741 0.08857616 0.2397413 0.2057097 



 

 135 

 0.1904345 0.08857616 2*0.1134959 0.2057097 2*0.08857616 0.2357741 

 3*0.08857616 0.2220848 0.2375282 0.08857616 0.2526715 0.2461167 0.2537777 

 0.2487168 0.1134959 0.201302 2*0.2096356 0.2108544 0.1134959 0.2057097 

 0.1904345 4*0.1134959 0.2237971 0.08857616 0.23393 0.2229511 0.08857616 

 0.236953 2*0.1134959 0.2357741 0.1962773 0.1980314 0.2108544 0.08857616 

 0.2108544 0.1859347 0.1134959 0.236953 0.2345553 0.1134959 0.221197 

 0.2363684 0.1134959 0.236953 0.08857616 0.1997039 0.08857616 0.1134959 

 0.08857616 0.2070665 0.1944332 0.208374 0.1134959 0.2028321 2*0.1134959 

 0.1944332 4*0.1134959 0.2254315 0.2363684 0.2229511 0.2254315 0.08857616 

 0.2254315 0.2351699 0.2319862 0.2375282 2*0.1134959 0.2028321 0.2042997 

 0.2108544 0.2096356 0.08857616 0.2380944 0.2386518 0.08857616 0.2380944 

 0.2386518 0.08857616 0.2292194 0.08857616 0.208374 2*0.08857616 3*0.1134959 

 0.188255 0.1134959 0.201302 0.1944332 0.1134959 2*0.1904345 2*0.1134959 

 0.228493 0.2357741 0.2375282 0.08857616 0.2262217 0.1134959 0.2461167 

 0.2511414 0.2386518 0.23393 0.08857616 0.1134959 0.252295 0.1944332 

 2*0.08857616 0.2057097 2*0.2254315 0.2299313 0.2357741 0.2220848 0.1134959 

 0.2332937 0.2345553 0.08857616 0.1904345 2*0.08857616 2*0.1134959 

 0.1904345 0.1134959 0.1924894 0.2070665 0.1134959 0.2042997 0.208374 

 2*0.1134959 0.2375282 0.2397413 0.2269949 0.1134959 0.2262217 0.1134959 

 0.2537777 0.2526715 0.2495433 0.2277518 0.1134959 0.08857616 0.2487168 

 0.1924894 2*0.08857616 2*0.201302 0.221197 0.2313142 0.2332937 2*0.1134959 

 2*0.08857616 0.2332937 0.2070665 0.1134959 0.08857616 2*0.1134959 



 

 136 

 0.2042997 0.1134959 0.253044 0.1924894 0.1134959 0.2057097 0.1997039 

 2*0.1134959 0.2363684 0.228493 0.2397413 0.1134959 0.2306294 0.08857616 

 0.2515301 0.2541391 0.2478708 0.2375282 0.2254315 0.1134959 0.2042997 

 0.1980314 0.08857616 2*0.1134959 0.1904345 0.2269949 0.2306294 0.221197 

 0.1134959 2*0.08857616 0.1134959 0.2269949 0.2229511 0.2096356 0.1134959 

 0.201302 0.1980314 0.1904345 0.2499495 0.2507485 0.2108544 0.201302 

 0.2042997 0.1904345 3*0.1134959 0.2319862 0.2326459 0.2526715 0.1134959 

 0.2491324 2*0.2495433 0.2482963 0.228493 0.2345553 0.08857616 0.2042997 

 0.1944332 0.2057097 2*0.1134959 0.08857616 0.2237971 0.08857616 0.2357741 

 0.2246236 3*0.1134959 0.2319862 0.2254315 0.1859347 0.08857616 0.1980314 

 0.1134959 0.2108544 0.2515301 0.2482963 2*0.2057097 0.1962773 0.1904345 

 3*0.1134959 0.2386518 0.236953 0.1134959 0.2491324 0.2534128 0.252295 

 0.2541391 0.2220848 0.08857616 0.2229511 2*0.08857616 0.1134959 0.2108544 

 0.1904345 2*0.1134959 0.23393 0.08857616 0.2277518 0.2299313 0.2237971 

 2*0.08857616 0.2351699 0.08857616 0.2070665 0.1134959 0.2028321 0.1134959 

 0.2042997 0.2526715 0.253044 0.2057097 0.1904345 0.2096356 0.201302 

 3*0.1134959 0.2262217 0.2220848 0.236953 0.1134959 0.253044 2*0.2470045 

 0.2220848 0.1134959 0.2326459 0.2254315 2*0.1134959 0.1962773 0.2070665 

 2*0.08857616 0.2319862 0.08857616 0.1134959 0.2269949 0.23393 0.2380944 

 0.2345553 0.23393 0.1134959 0.2096356 4*0.1134959 0.2461167 0.2478708 

 0.2057097 0.1944332 0.201302 0.2028321 2*0.1134959 0.2254315 0.2357741 

 0.1134959 0.2363684 2*0.1134959 0.2519146 0.2495433 0.2229511 0.1134959 



 

 137 

 0.228493 0.2299313 2*0.1134959 0.1859347 0.201302 2*0.08857616 0.23393 

 3*0.08857616 0.2313142 2*0.2397413 0.08857616 0.1859347 0.188255 0.08857616 

 0.253044 0.2495433 0.253044 0.2526715 0.2499495 0.1859347 0.1997039 

 0.1134959 0.1924894 2*0.1134959 0.2345553 0.23393 0.1134959 0.2319862 

 0.2277518 0.1134959 0.2499495 0.2306294 2*0.1134959 0.08857616 0.2363684 

 0.2254315 0.1134959 0.1980314 0.2042997 0.1134959 0.2277518 0.2375282 

 0.08857616 0.1134959 0.2386518 0.2375282 0.2515301 0.2526715 0.2470045 

 0.1859347 0.1134959 0.08857616 0.2474402 0.2495433 0.2482963 0.2507485 

 0.2070665 0.188255 0.201302 0.1134959 0.2028321 2*0.1134959 0.2306294 

 0.2375282 0.1134959 0.2397413 0.2357741 0.2332937 0.252295 0.228493 

 0.1134959 0.08857616 2*0.1134959 0.2299313 0.08857616 0.2070665 0.2375282 

 0.2319862 0.221197 0.2357741 0.08857616 0.1134959 0.2269949 0.2363684 

 0.2515301 0.2526715 0.2507485 0.1962773 0.1134959 0.08857616 2*0.2482963 

 0.2541391 0.2515301 0.2042997 0.1944332 2*0.1134959 0.208374 0.1134959 

 0.2254315 0.2292194 0.2380944 3*0.1134959 0.2351699 0.2478708 0.2220848 

 0.08857616 0.2526715 2*0.1134959 0.2363684 0.2254315 0.1962773 0.2313142 

 0.2332937 0.2237971 0.08857616 0.1134959 0.2351699 0.1134959 0.2397413 

 0.2515301 0.2526715 0.2465633 0.2096356 0.1904345 0.08857616 0.2461167 

 0.2519146 0.1134959 0.1944332 0.1904345 3*0.1134959 0.1980314 0.1134959 

 0.2357741 0.2269949 4*0.1134959 0.2220848 0.23393 0.2262217 0.1134959 

 0.2537777 0.2515301 0.2537777 0.2254315 0.2299313 0.201302 0.1134959 

 0.2262217 0.2319862 0.2246236 0.236953 0.2246236 0.1134959 0.2534128 



 

 138 

 0.2461167 0.2470045 0.2511414 0.252295 0.1944332 0.08857616 0.2465633 

 0.2470045 0.1134959 0.2070665 0.208374 0.2096356 2*0.1134959 0.1859347 

 0.1134959 0.2277518 0.2237971 0.1134959 0.2495433 0.2503512 0.1134959 

 0.2351699 0.236953 0.2246236 0.08857616 0.2465633 0.2491324 0.2465633 

 0.2299313 0.2363684 0.2057097 0.1980314 0.08857616 0.2380944 0.2392007 

 0.2313142 2*0.2478708 0.2503512 0.2507485 0.2482963 0.2507485 0.2503512 

 0.2108544 0.1859347 3*0.1134959 0.1924894 0.1134959 0.2108544 2*0.1134959 

 0.2042997 2*0.1134959 0.2332937 0.1134959 0.2534128 0.2515301 2*0.1134959 

 0.2292194 0.23393 0.08857616 0.2491324 0.2519146 0.253044 2*0.2363684 

 0.201302 0.2042997 0.08857616 0.2269949 2*0.2277518 0.2478708 0.1134959 

 0.2537777 0.253044 0.08857616 0.2541391 0.2491324 0.2028321 0.1944332 

 0.1134959 2*0.08857616 0.1134959 3*0.08857616 0.2028321 0.1997039 

 0.1585346 0.1464379 0.23393 0.2292194 0.2246236 0.1529927 0.2070665 

 0.1997039 0.1585346 0.2313142 0.2332937 0.2306294 0.208374 0.23393 

 0.1464379 0.1675697 0.2108544 0.2096356 0.1529927 0.1713576 2*0.1675697 

 0.1529927 0.1675697 0.1529927 0.1585346 0.2246236 0.221197 0.1585346 

 0.201302 0.1997039 2*0.08857616 2*0.1134959 0.08857616 0.1134959 0.08857616 

 0.2057097 0.208374 0.1464379 0.1675697 0.2326459 0.2363684 0.228493 

 0.1633353 0.1962773 0.1997039 0.1675697 0.2380944 0.2319862 0.2397413 

 0.2108544 0.236953 0.1713576 0.1529927 0.1904345 0.2096356 0.2541391 

 0.2511414 0.2507485 0.2478708 0.1675697 0.1464379 0.1585346 0.1529927 

 0.2313142 0.2262217 0.1464379 2*0.208374 2*0.1134959 3*0.08857616 
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 2*0.1134959 0.2096356 0.1904345 0.1464379 0.1529927 0.2254315 0.221197 

 0.2269949 0.1529927 0.2096356 0.1997039 0.1713576 0.228493 0.2313142 

 0.2386518 0.2070665 0.2332937 0.1713576 0.1464379 0.1904345 0.2096356 

 0.2470045 0.2507485 0.2474402 0.2491324 2*0.1529927 0.1675697 0.1585346 

 0.2299313 0.2229511 0.1675697 0.1859347 0.1633353 0.08857616 2*0.2515301 

 0.2465633 0.2474402 0.2487168 0.2519146 0.1904345 0.1944332 0.1633353 

 0.1464379 0.2380944 0.2306294 0.2351699 0.1633353 0.2070665 0.1464379 

 0.1585346 0.1633353 0.2220848 0.2254315 0.2096356 0.2319862 0.2277518 

 0.1997039 0.1924894 0.1713576 0.2470045 0.2515301 0.2495433 0.2470045 

 0.1713576 0.1633353 3*0.1464379 0.2397413 0.2392007 0.2096356 0.1675697 

 0.1134959 0.2491324 0.2507485 0.2541391 0.2534128 0.2495433 0.2465633 

 0.2070665 0.2096356 0.1675697 0.1529927 0.1633353 0.2351699 0.2397413 

 0.188255 0.1962773 0.1713576 0.2277518 0.1529927 0.2375282 0.236953 

 0.1997039 0.2392007 0.1944332 0.2237971 0.201302 0.1713576 2*0.2526715 

 0.2470045 0.2474402 0.2487168 0.2519146 0.1464379 0.1585346 0.1713576 

 0.23393 0.2306294 0.1859347 0.1713576 0.1134959 0.2465633 0.2503512 

 0.2507485 0.2499495 0.2487168 0.2526715 0.1962773 0.2035733 0.1675697 

 0.1713576 0.1529927 0.2345553 0.2397413 0.1859347 0.1585346 0.1633353 

 0.2292194 0.1675697 0.2254315 0.2386518 0.2108544 0.2035733 0.2096356 

 0.2363684 0.1464379 0.2096356 0.2515301 0.2534128 0.253044 2*0.2515301 

 0.2507485 0.1585346 0.1633353 0.2319862 0.2254315 0.2220848 0.1962773 

 0.1464379 0.2470045 0.2511414 0.2470045 0.2534128 0.2515301 0.08857616 
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 0.1134959 0.1980314 0.2042997 0.1713576 0.1633353 0.1464379 0.23393 

 0.2262217 0.1962773 0.2108544 0.1464379 0.2357741 0.2351699 0.2326459 

 0.2292194 0.2397413 0.2380944 0.1904345 0.1944332 0.236953 0.2096356 

 0.2541391 0.2537777 0.2519146 0.2495433 0.2534128 0.2537777 0.1585346 

 0.2397413 0.2357741 0.2386518 0.1633353 0.208374 0.1529927 0.2511414 

 0.2537777 0.2515301 0.2537777 0.252295 0.08857616 0.1980314 0.2070665 

 0.2050116 3*0.1134959 0.236953 0.2357741 2*0.2096356 0.2332937 0.221197 

 0.2229511 0.2220848 2*0.2363684 0.2345553 0.201302 0.2096356 0.2299313 

 0.1997039 0.1134959 0.2487168 0.2519146 0.2491324 0.2519146 0.2495433 

 0.08857616 0.2351699 0.2306294 0.2375282 0.08857616 2*0.1997039 0.2515301 

 2*0.2511414 0.2519146 0.2534128 0.08857616 0.2096356 0.2108544 0.2057097 

 3*0.1134959 0.2313142 0.2380944 0.1997039 0.2042997 0.2292194 0.08857616 

 0.1134959 0.228493 0.2375282 0.2491324 0.2042997 0.1859347 0.2035733 

 0.2237971 0.2345553 0.08857616 0.2461167 0.2511414 0.2482963 0.2507485 

 0.1134959 0.2375282 2*0.2220848 0.08857616 0.1134959 2*0.208374 0.2519146 

 0.2526715 2*0.2537777 0.2470045 0.1924894 0.1904345 0.2057097 0.2063945 

 4*0.1134959 0.2262217 0.2332937 0.2070665 0.1962773 0.08857616 0.1134959 

 0.2351699 0.221197 0.2491324 0.2070665 0.2503512 0.2035733 0.1944332 

 0.2380944 0.1134959 0.2507485 0.2526715 0.2487168 0.2541391 0.1134959 

 0.2269949 0.2313142 2*0.08857616 0.188255 0.1859347 0.1134959 0.2495433 

 0.252295 0.2519146 0.2495433 0.2470045 0.2028321 0.2070665 0.1962773 

 0.2070665 4*0.1134959 0.2345553 0.2246236 0.188255 0.2028321 0.1904345 



 

 141 

 0.1134959 0.08857616 0.2269949 0.2491324 0.2108544 0.2495433 0.2035733 

 0.1859347 0.2237971 0.1134959 0.2503512 0.2470045 0.253044 0.2487168 

 0.08857616 0.2313142 0.2306294 0.1134959 0.08857616 0.1944332 0.1962773 

 0.08857616 0.2537777 0.2487168 0.2495433 0.08857616 0.1134959 0.201302 

 0.2057097 6*0.1134959 0.2229511 2*0.2220848 0.2070665 0.2057097 2*0.08857616 

 0.2269949 2*0.2491324 0.2495433 0.08857616 0.1997039 0.2096356 0.2292194 

 0.1134959 2*0.08857616 3*0.1134959 0.23393 0.2306294 0.08857616 0.1944332 

 0.1134959 0.08857616 0.2499495 0.2511414 0.2507485 2*0.08857616 0.201302 

 0.2108544 5*0.1134959 0.2254315 0.2332937 0.2229511 0.2319862 0.2108544 

 0.1924894 2*0.1134959 0.2357741 0.2397413 0.2491324 0.253044 2*0.2057097 

 0.2035733 0.2306294 0.1134959 0.08857616 0.1134959 0.08857616 0.1134959 

 0.08857616 0.2237971 0.2397413 0.08857616 0.1924894 0.208374 0.08857616 

 0.2526715 0.2511414 0.2507485 0.1924894 0.2096356 0.1904345 0.2042997 

 2*0.1134959 0.2499495 0.2511414 0.1134959 0.2326459 0.2277518 0.2220848 

 0.2380944 0.08857616 0.1962773 0.08857616 0.2262217 0.2363684 0.2319862 

 0.2491324 0.2461167 0.201302 0.08857616 0.1962773 0.2028321 0.2326459 

 0.08857616 4*0.1134959 2*0.2345553 0.2229511 0.2277518 0.208374 0.1134959 

 0.2499495 0.2511414 0.2507485 0.1980314 0.1944332 0.2070665 0.201302 

 0.1134959 0.2511414 2*0.2470045 0.1134959 0.2299313 2*0.1134959 0.23393 

 0.1134959 0.1997039 0.2057097 0.2277518 0.2246236 0.08857616 0.2491324 

 0.1904345 0.1944332 0.08857616 0.1962773 0.1924894 0.2380944 0.1134959 

 0.08857616 0.1134959 3*0.08857616 0.1134959 0.2220848 0.2332937 0.1962773 
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 0.1944332 0.2534128 0.2511414 0.2507485 0.1997039 0.1859347 0.2042997 

 0.1859347 0.1134959 0.2515301 0.2526715 0.253044 0.1134959 0.2306294 

 2*0.08857616 0.2375282 0.08857616 0.1997039 0.1924894 0.2319862 0.08857616 

 2*0.1904345 0.1944332 0.1924894 0.1134959 0.2057097 0.201302 0.2397413 

 0.2269949 0.2380944 3*0.08857616 0.2345553 0.2386518 0.2319862 0.2332937 

 0.2028321 0.2070665 0.2503512 0.2511414 0.08857616 0.2028321 0.201302 

 0.2108544 0.1859347 0.253044 0.2495433 0.2515301 2*0.1134959 0.2254315 

 0.23393 0.1134959 0.2392007 0.2363684 0.2057097 0.208374 0.2326459 

 0.1904345 0.1997039 0.2042997 0.2503512 0.2515301 0.08857616 0.1944332 

 0.188255 0.1904345 0.2269949 0.2363684 0.2237971 2*0.08857616 0.228493 

 0.2262217 0.08857616 2*0.1134959 0.1997039 0.2503512 2*0.08857616 

 0.2070665 0.2028321 0.1962773 0.1924894 0.2519146 0.2526715 0.2465633 

 2*0.1134959 0.2351699 0.2277518 0.1134959 0.2357741 0.2220848 0.2096356 

 0.1859347 0.221197 0.2096356 0.1962773 0.1944332 0.2461167 0.2487168 

 2*0.1134959 0.08857616 0.188255 0.08857616 0.2269949 2*0.1134959 0.2386518 

 0.221197 0.2277518 0.1134959 2*0.08857616 0.2096356 0.1134959 2*0.08857616 

 0.1962773 0.1924894 0.1134959 0.2070665 0.2482963 0.2519146 2*0.1134959 

 0.2345553 0.2351699 0.2380944 0.1134959 0.236953 0.2386518 0.2237971 

 2*0.2292194 0.2096356 0.2108544 2*0.201302 0.2108544 0.1944332 0.08857616 

 0.188255 0.08857616 0.1134959 0.228493 0.08857616 0.1134959 0.2237971 

 0.2254315 3*0.08857616 0.2042997 2*0.1134959 2*0.08857616 0.2028321 

 0.2042997 0.1134959 0.1962773 4*0.1134959 0.2357741 0.2332937 4*0.08857616 
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 0.2332937 0.2246236 0.2332937 0.1134959 0.1980314 0.2028321 0.2070665 

 0.1980314 0.1924894 0.08857616 0.188255 0.2108544 0.08857616 0.1134959 

 0.2269949 0.23393 0.2299313 0.23393 0.08857616 0.2070665 0.1962773 

 0.188255 2*0.1134959 2*0.08857616 0.2108544 0.1962773 0.1134959 0.2070665 

 3*0.1134959 0.221197 0.236953 0.2363684 0.2503512 0.2491324 0.2495433 

 0.08857616 0.2397413 0.2357741 0.1134959 0.08857616 0.1944332 0.1924894 

 0.2534128 0.2474402 0.2461167 0.1980314 0.2096356 0.1904345 0.08857616 

 0.1134959 0.228493 0.236953 2*0.1134959 0.1904345 0.1962773 0.1980314 

 2*0.08857616 0.1134959 0.08857616 0.1859347 0.2070665 2*0.1134959 

 0.2042997 0.1980314 2*0.1134959 0.2269949 0.2306294 0.2363684 0.2503512 

 0.2487168 0.2470045 0.1134959 0.2299313 0.2345553 0.08857616 0.1980314 

 0.2070665 0.08857616 0.2515301 0.2487168 0.2465633 0.208374 0.08857616 

 0.1134959 0.08857616 0.1134959 2*0.2319862 0.08857616 0.1134959 0.188255 

 0.2478708 0.2503512 0.2515301 0.2461167 0.1134959 0.08857616 0.1944332 

 0.1859347 2*0.1134959 0.1980314 0.1859347 2*0.1134959 0.2357741 0.2363684 

 0.2237971 0.08857616 0.253044 0.1134959 0.2375282 0.2277518 0.08857616 

 0.2246236 0.1962773 0.1924894 0.1134959 0.2465633 0.2491324 0.2474402 

 0.2042997 0.1980314 0.2096356 0.08857616 0.2363684 0.08857616 0.1134959 

 0.2306294 0.2392007 0.2057097 0.2511414 2*0.2534128 0.2537777 0.1134959 

 0.08857616 0.2096356 0.201302 2*0.1134959 0.2042997 0.1904345 0.1944332 

 2*0.1134959 0.2306294 0.236953 0.1134959 0.08857616 0.2375282 0.23393 

 0.2397413 0.08857616 0.2269949 0.221197 0.1944332 0.08857616 0.2526715 
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 0.252295 0.2461167 0.1944332 0.2096356 0.2042997 0.2220848 0.2313142 

 2*0.08857616 0.23393 0.2326459 0.1980314 0.2487168 0.253044 0.2515301 

 0.2526715 0.1134959 0.1944332 0.1924894 0.2070665 0.2028321 0.1134959 

 0.1924894 0.2028321 0.188255 3*0.1134959 0.2292194 0.1134959 0.08857616 

 0.2313142 0.2246236 0.2363684 0.2357741 0.08857616 0.2397413 0.2057097 

 0.1904345 0.08857616 2*0.1134959 0.2057097 2*0.08857616 0.2357741 

 3*0.08857616 0.2220848 0.2375282 0.08857616 0.2526715 0.2461167 0.2537777 

 0.2487168 0.1134959 0.201302 2*0.2096356 0.2108544 0.1134959 0.2057097 

 0.1904345 4*0.1134959 0.2237971 0.08857616 0.23393 0.2229511 0.08857616 

 0.236953 2*0.1134959 0.2357741 0.1962773 0.1980314 0.2108544 0.08857616 

 0.2108544 0.1859347 0.1134959 0.236953 0.2345553 0.1134959 0.221197 

 0.2363684 0.1134959 0.236953 0.08857616 0.1997039 0.08857616 0.1134959 

 0.08857616 0.2070665 0.1944332 0.208374 0.1134959 0.2028321 2*0.1134959 

 0.1944332 4*0.1134959 0.2254315 0.2363684 0.2229511 0.2254315 0.08857616 

 0.2254315 0.2351699 0.2319862 0.2375282 2*0.1134959 0.2028321 0.2042997 

 0.2108544 0.2096356 0.08857616 0.2380944 0.2386518 0.08857616 0.2380944 

 0.2386518 0.08857616 0.2292194 0.08857616 0.208374 2*0.08857616 3*0.1134959 

 0.188255 0.1134959 0.201302 0.1944332 0.1134959 2*0.1904345 2*0.1134959 

 0.228493 0.2357741 0.2375282 0.08857616 0.2262217 0.1134959 0.2461167 

 0.2511414 0.2386518 0.23393 0.08857616 0.1134959 0.252295 0.1944332 

 2*0.08857616 0.2057097 2*0.2254315 0.2299313 0.2357741 0.2220848 0.1134959 

 0.2332937 0.2345553 0.08857616 0.1904345 2*0.08857616 2*0.1134959 



 

 145 

 0.1904345 0.1134959 0.1924894 0.2070665 0.1134959 0.2042997 0.208374 

 2*0.1134959 0.2375282 0.2397413 0.2269949 0.1134959 0.2262217 0.1134959 

 0.2537777 0.2526715 0.2495433 0.2277518 0.1134959 0.08857616 0.2487168 

 0.1924894 2*0.08857616 2*0.201302 0.221197 0.2313142 0.2332937 2*0.1134959 

 2*0.08857616 0.2332937 0.2070665 0.1134959 0.08857616 2*0.1134959 

 0.2042997 0.1134959 0.253044 0.1924894 0.1134959 0.2057097 0.1997039 

 2*0.1134959 0.2363684 0.228493 0.2397413 0.1134959 0.2306294 0.08857616 

 0.2515301 0.2541391 0.2478708 0.2375282 0.2254315 0.1134959 0.2042997 

 0.1980314 0.08857616 2*0.1134959 0.1904345 0.2269949 0.2306294 0.221197 

 0.1134959 2*0.08857616 0.1134959 0.2269949 0.2229511 0.2096356 0.1134959 

 0.201302 0.1980314 0.1904345 0.2499495 0.2507485 0.2108544 0.201302 

 0.2042997 0.1904345 3*0.1134959 0.2319862 0.2326459 0.2526715 0.1134959 

 0.2491324 2*0.2495433 0.2482963 0.228493 0.2345553 0.08857616 0.2042997 

 0.1944332 0.2057097 2*0.1134959 0.08857616 0.2237971 0.08857616 0.2357741 

 0.2246236 3*0.1134959 0.2319862 0.2254315 0.1859347 0.08857616 0.1980314 

 0.1134959 0.2108544 0.2515301 0.2482963 2*0.2057097 0.1962773 0.1904345 

 3*0.1134959 0.2386518 0.236953 0.1134959 0.2491324 0.2534128 0.252295 

 0.2541391 0.2220848 0.08857616 0.2229511 2*0.08857616 0.1134959 0.2108544 

 0.1904345 2*0.1134959 0.23393 0.08857616 0.2277518 0.2299313 0.2237971 

 2*0.08857616 0.2351699 0.08857616 0.2070665 0.1134959 0.2028321 0.1134959 

 0.2042997 0.2526715 0.253044 0.2057097 0.1904345 0.2096356 0.201302 

 3*0.1134959 0.2262217 0.2220848 0.236953 0.1134959 0.253044 2*0.2470045 
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 0.2220848 0.1134959 0.2326459 0.2254315 2*0.1134959 0.1962773 0.2070665 

 2*0.08857616 0.2319862 0.08857616 0.1134959 0.2269949 0.23393 0.2380944 

 0.2345553 0.23393 0.1134959 0.2096356 4*0.1134959 0.2461167 0.2478708 

 0.2057097 0.1944332 0.201302 0.2028321 2*0.1134959 0.2254315 0.2357741 

 0.1134959 0.2363684 2*0.1134959 0.2519146 0.2495433 0.2229511 0.1134959 

 0.228493 0.2299313 2*0.1134959 0.1859347 0.201302 2*0.08857616 0.23393 

 3*0.08857616 0.2313142 2*0.2397413 0.08857616 0.1859347 0.188255 0.08857616 

 0.253044 0.2495433 0.253044 0.2526715 0.2499495 0.1859347 0.1997039 

 0.1134959 0.1924894 2*0.1134959 0.2345553 0.23393 0.1134959 0.2319862 

 0.2277518 0.1134959 0.2499495 0.2306294 2*0.1134959 0.08857616 0.2363684 

 0.2254315 0.1134959 0.1980314 0.2042997 0.1134959 0.2277518 0.2375282 

 0.08857616 0.1134959 0.2386518 0.2375282 0.2515301 0.2526715 0.2470045 

 0.1859347 0.1134959 0.08857616 0.2474402 0.2495433 0.2482963 0.2507485 

 0.2070665 0.188255 0.201302 0.1134959 0.2028321 2*0.1134959 0.2306294 

 0.2375282 0.1134959 0.2397413 0.2357741 0.2332937 0.252295 0.228493 

 0.1134959 0.08857616 2*0.1134959 0.2299313 0.08857616 0.2070665 0.2375282 

 0.2319862 0.221197 0.2357741 0.08857616 0.1134959 0.2269949 0.2363684 

 0.2515301 0.2526715 0.2507485 0.1962773 0.1134959 0.08857616 2*0.2482963 

 0.2541391 0.2515301 0.2042997 0.1944332 2*0.1134959 0.208374 0.1134959 

 0.2254315 0.2292194 0.2380944 3*0.1134959 0.2351699 0.2478708 0.2220848 

 0.08857616 0.2526715 2*0.1134959 0.2363684 0.2254315 0.1962773 0.2313142 

 0.2332937 0.2237971 0.08857616 0.1134959 0.2351699 0.1134959 0.2397413 
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 0.2515301 0.2526715 0.2465633 0.2096356 0.1904345 0.08857616 0.2461167 

 0.2519146 0.1134959 0.1944332 0.1904345 3*0.1134959 0.1980314 0.1134959 

 0.2357741 0.2269949 4*0.1134959 0.2220848 0.23393 0.2262217 0.1134959 

 0.2537777 0.2515301 0.2537777 0.2254315 0.2299313 0.201302 0.1134959 

 0.2262217 0.2319862 0.2246236 0.236953 0.2246236 0.1134959 0.2534128 

 0.2461167 0.2470045 0.2511414 0.252295 0.1944332 0.08857616 0.2465633 

 0.2470045 0.1134959 0.2070665 0.208374 0.2096356 2*0.1134959 0.1859347 

 0.1134959 0.2277518 0.2237971 0.1134959 0.2495433 0.2503512 0.1134959 

 0.2351699 0.236953 0.2246236 0.08857616 0.2465633 0.2491324 0.2465633 

 0.2299313 0.2363684 0.2057097 0.1980314 0.08857616 0.2380944 0.2392007 

 0.2313142 2*0.2478708 0.2503512 0.2507485 0.2482963 0.2507485 0.2503512 

 0.2108544 0.1859347 3*0.1134959 0.1924894 0.1134959 0.2108544 2*0.1134959 

 0.2042997 2*0.1134959 0.2332937 0.1134959 0.2534128 0.2515301 2*0.1134959 

 0.2292194 0.23393 0.08857616 0.2491324 0.2519146 0.253044 2*0.2363684 

 0.201302 0.2042997 0.08857616 0.2269949 2*0.2277518 0.2478708 0.1134959 

 0.2537777 0.253044 0.08857616 0.2541391 0.2491324 0.2028321 0.1944332 

**$ Property: Permeability I (md)   Max: 100  Min: 1 

PERMI ALL  

2 1 1 2 1 1 1 24 22 7 5 57

 50 44 6 27 22 7 53 56 52 28 57

 5 9 30 29 6 10 9 9 6 9 6

 7 44 40 7 23 22 
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1 1 2 2 1 2 1 26 28 5 9 55

 61 49 8 20 22 9 64 54 67 30 62

 10 6 17 29 100 92 91 84 9 5 7

 6 53 46 5 28 28 

2 2 1 1 1 2 2 29 17 5 6 45

 40 47 6 29 22 10 49 53 65 27 56

 10 5 17 29 82 91 83 87 6 6 9

 7 51 42 9 15 8 

1 93 93 81 83 86 94 17 19 8 5 64

 52 59 8 27 5 7 8 41 45 29 54

 48 22 18 10 82 93 88 82 10 8 5

 5 5 67 66 29 9 

2 87 91 100 98 88 81 27 29 9 6 8

 59 67 16 20 10 48 6 63 62 22 66

 19 43 23 10 96 96 82 83 86 94 5

 7 10 57 52 15 10 

2 81 90 91 89 86 96 20 24.5 9 10 6

 58 67 15 7 8 50 9 45 65 30 24.5

 29 61 5 29 93 98 97 93 93 91 7

 8 54 45 41 20 5 

82 92 82 98 93 1 2 21 25 10 8 5

 57 46 20 30 5 60 59 55 50 67 64
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 17 19 62 29 100 99 94 88 98 99 7

 67 60 65 8 28 6 

92 99 93 99 95 1 21 27 25.5 2 2 2

 62 60 29 29 56 40 42 41 61 61 58

 23 29 51 22 2 86 94 87 94 88 1

 59 52 63 1 22 22 

93 92 92 94 98 1 29 30 26 2 2 2

 53 64 22 25 50 1 2 49 63 87 25

 15 24.5 43 58 1 80 92 85 91 2 63

 41 41 1 2 28 28 

94 96 99 99 82 18 17 26 26.5 2 2 2

 2 46 56 27 20 1 2 59 40 87 27

 90 24.5 19 64 2 91 96 86 100 2 47

 53 1 1 16 15 2 

88 95 94 88 82 24 27 20 27 2 2 2

 2 58 44 16 24 17 2 1 47 87 30

 88 24.5 15 43 2 90 82 97 86 1 53

 52 2 1 19 20 1 

99 86 88 1 2 23 26 2 2 2 2 2

 2 42 41 41 27 26 1 1 47 87 87

 88 1 22 29 50 2 1 1 2 2 2

 57 52 1 19 2 1 
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89 92 91 1 1 23 30 2 2 2 2 2

 45 56 42 54 30 18 2 2 60 67 87

 97 26 26 24.5 52 2 1 2 1 2 1

 43 67 1 18 28 1 

96 92 91 18 29 17 25 2 2 89 92 2

 55 48 41 64 1 20 1 46 61 54 87

 80 23 1 20 24 55 1 2 2 2 2

 58 58 42 48 28 2 

89 92 91 21 19 27 23 2 92 82 82 2

 51 2 2 57 2 22 26 48 44 1 87

 17 19 1 20 18 64 2 1 2 1 1

 1 2 41 56 20 19 

98 92 91 22 15 25 15 2 93 96 97 2

 52 1 1 63 1 22 18 54 1 17 17

 19 18 2 26 23 67 47 64 1 1 1

 58 65 54 56 24 27 

90 92 1 24 23 30 15 97 88 93 2 2

 45 57 2 66 61 26 28 55 17 22 25

 90 93 1 19 16 17 47 61 43 1 1

 49 46 1 2 2 22 

90 1 1 27 24 20 18 94 96 81 2 2

 59 48 2 60 41 29 15 40 29 20 19
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 80 86 2 2 1 16 1 47 2 2 65

 40 48 2 1 1 29 

2 1 1 20 18 2 27 85 94 2 2 58

 59 64 2 62 65 43 50 50 29 30 23

 23 30 19 1 16 1 2 49 1 2 43

 45 1 1 1 25 2 

2 1 1 24 25 2 20 2 2 2 2 60

 56 1 1 1 1 56 44 56 2 21 24

 27 21 18 1 16 30 1 2 47 57 51

 57 1 27 20 16 2 

2 1 1 30 20 2 27 2 2 2 40 62

 61 90 87 88 1 67 60 2 1 19 18

 98 83 80 21 29 17 1 2 49 62 2

 2 17 20 21 1 1 

2 1 15 27 2 2 25 21 2 2 47 52

 61 90 86 82 2 51 58 1 21 27 1

 93 86 81 28 1 2 1 2 54 54 1

 2 16 84 90 93 80 

2 1 19 15 2 2 21 15 2 2 60 61

 43 1 97 2 63 48 1 44 20 18 2

 81 87 83 25 21 29 1 61 1 2 52

 66 26 92 98 98 99 
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2 1 29 23 2 2 25 17 19 2 2 52

 62 2 1 63 57 67 1 47 40 19 1

 96 95 80 19 29 25 41 53 1 1 57

 55 21 86 97 93 96 

2 19 18 27 24 2 18 24 16 2 2 2

 50 2 1 53 44 61 60 1 67 26 17

 1 2 2 26 1 1 60 1 1 1 41

 63 1 96 80 99 86 

2 23 29 29 30 2 26 17 2 2 2 2

 43 1 57 42 1 62 2 2 60 20 21

 30 1 30 15 2 62 58 2 40 61 2

 62 1 22 1 2 1 

27 19 28 2 24 2 2 19 2 2 2 2

 45 61 42 45 1 45 59 54 63 2 2

 24 25 30 29 1 64 65 1 64 65 1

 50 1 28 1 1 2 

2 2 16 2 23 19 2 17 17 2 2 49

 60 63 1 46 2 80 92 65 57 1 2

 95 19 1 1 26 45 45 51 60 41 2

 56 58 1 17 1 1 

2 2 17 2 18 27 2 25 28 2 2 63

 67 47 2 46 2 99 96 88 48 2 1
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 86 18 1 1 23 23 40 53 56 2 2

 1 1 56 27 2 1 

2 2 25 2 97 18 2 26 22 2 2 61

 49 67 2 52 1 93 100 84 63 45 2

 25 21 1 2 2 17 47 52 40 2 1

 1 2 47 42 29 2 

23 21 17 89 91 30 23 25 17 2 2 2

 54 55 96 2 87 88 88 85 49 58 1

 25 19 26 2 2 1 43 1 60 44 2

 2 2 54 45 15 1 

21 2 30 93 85 26 26 20 17 2 2 2

 65 62 2 87 98 95 100 41 1 42 1

 1 2 30 17 2 2 57 1 48 51 43

 1 1 59 1 27 2 

24 2 25 96 97 26 17 29 23 2 2 2

 46 41 62 2 97 82 82 41 2 55 45

 2 2 20 27 1 1 54 1 2 47 57

 64 58 57 2 29 2 

2 2 2 80 84 26 19 23 24 2 2 45

 60 2 61 2 2 94 88 42 2 49 51

 2 2 15 23 1 1 57 1 1 1 53

 67 67 1 15 16 1 
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97 88 97 96 89 15 22 2 18 2 2 58

 57 2 54 48 2 89 52 2 2 1 61

 45 2 21 25 2 48 63 1 2 65 63

 93 96 82 15 2 1 

83 88 85 91 27 16 23 2 24 2 2 52

 63 2 67 60 56 95 49 2 1 2 2

 51 1 27 63 54 40 60 1 2 47 61

 93 96 91 20 2 1 

85 85 100 93 25 19 2 2 28 2 45 50

 64 2 2 2 59 84 41 1 96 2 2

 61 45 20 53 56 43 1 2 59 2 67

 93 96 81 29 17 1 

80 94 2 19 17 2 2 2 21 2 60 47

 2 2 2 2 41 57 46 2 99 93 99

 45 51 23 2 46 54 44 62 44 2 98

 80 82 92 95 19 1 

81 82 2 27 28 29 2 2 15 2 48 43

 2 88 90 2 59 62 44 1 81 87 81

 51 61 26 21 1 64 66 53 84 84 90

 91 85 91 90 30 15 

2 2 2 18 2 30 2 2 25 2 2 56

 2 98 93 2 2 50 57 1 87 94 97
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 61 61 23 25 1 47 48 48 84 2 99

 97 1 100 87 24 19 

2 1 1 2 1 1 1 24 22 7 5 57

 50 44 6 27 22 7 53 56 52 28 57

 5 9 30 29 6 10 9 9 6 9 6

 7 44 40 7 23 22 

1 1 2 2 1 2 1 26 28 5 9 55

 61 49 8 20 22 9 64 54 67 30 62

 10 6 17 29 100 92 91 84 9 5 7

 6 53 46 5 28 28 

2 2 1 1 1 2 2 29 17 5 6 45

 40 47 6 29 22 10 49 53 65 27 56

 10 5 17 29 82 91 83 87 6 6 9

 7 51 42 9 15 8 

1 93 93 81 83 86 94 17 19 8 5 64

 52 59 8 27 5 7 8 41 45 29 54

 48 22 18 10 82 93 88 82 10 8 5

 5 5 67 66 29 9 

2 87 91 100 98 88 81 27 29 9 6 8

 59 67 16 20 10 48 6 63 62 22 66

 19 43 23 10 96 96 82 83 86 94 5

 7 10 57 52 15 10 
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2 81 90 91 89 86 96 20 24.5 9 10 6

 58 67 15 7 8 50 9 45 65 30 24.5

 29 61 5 29 93 98 97 93 93 91 7

 8 54 45 41 20 5 

82 92 82 98 93 1 2 21 25 10 8 5

 57 46 20 30 5 60 59 55 50 67 64

 17 19 62 29 100 99 94 88 98 99 7

 67 60 65 8 28 6 

92 99 93 99 95 1 21 27 25.5 2 2 2

 62 60 29 29 56 40 42 41 61 61 58

 23 29 51 22 2 86 94 87 94 88 1

 59 52 63 1 22 22 

93 92 92 94 98 1 29 30 26 2 2 2

 53 64 22 25 50 1 2 49 63 87 25

 15 24.5 43 58 1 80 92 85 91 2 63

 41 41 1 2 28 28 

94 96 99 99 82 18 17 26 26.5 2 2 2

 2 46 56 27 20 1 2 59 40 87 27

 90 24.5 19 64 2 91 96 86 100 2 47

 53 1 1 16 15 2 

88 95 94 88 82 24 27 20 27 2 2 2

 2 58 44 16 24 17 2 1 47 87 30
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 88 24.5 15 43 2 90 82 97 86 1 53

 52 2 1 19 20 1 

99 86 88 1 2 23 26 2 2 2 2 2

 2 42 41 41 27 26 1 1 47 87 87

 88 1 22 29 50 2 1 1 2 2 2

 57 52 1 19 2 1 

89 92 91 1 1 23 30 2 2 2 2 2

 45 56 42 54 30 18 2 2 60 67 87

 97 26 26 24.5 52 2 1 2 1 2 1

 43 67 1 18 28 1 

96 92 91 18 29 17 25 2 2 89 92 2

 55 48 41 64 1 20 1 46 61 54 87

 80 23 1 20 24 55 1 2 2 2 2

 58 58 42 48 28 2 

89 92 91 21 19 27 23 2 92 82 82 2

 51 2 2 57 2 22 26 48 44 1 87

 17 19 1 20 18 64 2 1 2 1 1

 1 2 41 56 20 19 

98 92 91 22 15 25 15 2 93 96 97 2

 52 1 1 63 1 22 18 54 1 17 17

 19 18 2 26 23 67 47 64 1 1 1

 58 65 54 56 24 27 
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90 92 1 24 23 30 15 97 88 93 2 2

 45 57 2 66 61 26 28 55 17 22 25

 90 93 1 19 16 17 47 61 43 1 1

 49 46 1 2 2 22 

90 1 1 27 24 20 18 94 96 81 2 2

 59 48 2 60 41 29 15 40 29 20 19

 80 86 2 2 1 16 1 47 2 2 65

 40 48 2 1 1 29 

2 1 1 20 18 2 27 85 94 2 2 58

 59 64 2 62 65 43 50 50 29 30 23

 23 30 19 1 16 1 2 49 1 2 43

 45 1 1 1 25 2 

2 1 1 24 25 2 20 2 2 2 2 60

 56 1 1 1 1 56 44 56 2 21 24

 27 21 18 1 16 30 1 2 47 57 51

 57 1 27 20 16 2 

2 1 1 30 20 2 27 2 2 2 40 62

 61 90 87 88 1 67 60 2 1 19 18

 98 83 80 21 29 17 1 2 49 62 2

 2 17 20 21 1 1 

2 1 15 27 2 2 25 21 2 2 47 52

 61 90 86 82 2 51 58 1 21 27 1
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 93 86 81 28 1 2 1 2 54 54 1

 2 16 84 90 93 80 

2 1 19 15 2 2 21 15 2 2 60 61

 43 1 97 2 63 48 1 44 20 18 2

 81 87 83 25 21 29 1 61 1 2 52

 66 26 92 98 98 99 

2 1 29 23 2 2 25 17 19 2 2 52

 62 2 1 63 57 67 1 47 40 19 1

 96 95 80 19 29 25 41 53 1 1 57

 55 21 86 97 93 96 

2 19 18 27 24 2 18 24 16 2 2 2

 50 2 1 53 44 61 60 1 67 26 17

 1 2 2 26 1 1 60 1 1 1 41

 63 1 96 80 99 86 

2 23 29 29 30 2 26 17 2 2 2 2

 43 1 57 42 1 62 2 2 60 20 21

 30 1 30 15 2 62 58 2 40 61 2

 62 1 22 1 2 1 

27 19 28 2 24 2 2 19 2 2 2 2

 45 61 42 45 1 45 59 54 63 2 2

 24 25 30 29 1 64 65 1 64 65 1

 50 1 28 1 1 2 
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2 2 16 2 23 19 2 17 17 2 2 49

 60 63 1 46 2 80 92 65 57 1 2

 95 19 1 1 26 45 45 51 60 41 2

 56 58 1 17 1 1 

2 2 17 2 18 27 2 25 28 2 2 63

 67 47 2 46 2 99 96 88 48 2 1

 86 18 1 1 23 23 40 53 56 2 2

 1 1 56 27 2 1 

2 2 25 2 97 18 2 26 22 2 2 61

 49 67 2 52 1 93 100 84 63 45 2

 25 21 1 2 2 17 47 52 40 2 1

 1 2 47 42 29 2 

23 21 17 89 91 30 23 25 17 2 2 2

 54 55 96 2 87 88 88 85 49 58 1

 25 19 26 2 2 1 43 1 60 44 2

 2 2 54 45 15 1 

21 2 30 93 85 26 26 20 17 2 2 2

 65 62 2 87 98 95 100 41 1 42 1

 1 2 30 17 2 2 57 1 48 51 43

 1 1 59 1 27 2 

24 2 25 96 97 26 17 29 23 2 2 2

 46 41 62 2 97 82 82 41 2 55 45
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 2 2 20 27 1 1 54 1 2 47 57

 64 58 57 2 29 2 

2 2 2 80 84 26 19 23 24 2 2 45

 60 2 61 2 2 94 88 42 2 49 51

 2 2 15 23 1 1 57 1 1 1 53

 67 67 1 15 16 1 

97 88 97 96 89 15 22 2 18 2 2 58

 57 2 54 48 2 89 52 2 2 1 61

 45 2 21 25 2 48 63 1 2 65 63

 93 96 82 15 2 1 

83 88 85 91 27 16 23 2 24 2 2 52

 63 2 67 60 56 95 49 2 1 2 2

 51 1 27 63 54 40 60 1 2 47 61

 93 96 91 20 2 1 

85 85 100 93 25 19 2 2 28 2 45 50

 64 2 2 2 59 84 41 1 96 2 2

 61 45 20 53 56 43 1 2 59 2 67

 93 96 81 29 17 1 

80 94 2 19 17 2 2 2 21 2 60 47

 2 2 2 2 41 57 46 2 99 93 99

 45 51 23 2 46 54 44 62 44 2 98

 80 82 92 95 19 1 
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81 82 2 27 28 29 2 2 15 2 48 43

 2 88 90 2 59 62 44 1 81 87 81

 51 61 26 21 1 64 66 53 84 84 90

 91 85 91 90 30 15 

2 2 2 18 2 30 2 2 25 2 2 56

 2 98 93 2 2 50 57 1 87 94 97

 61 61 23 25 1 47 48 48 84 2 99

 97 1 100 87 24 19 

2 1 1 2 1 1 1 24 22 7 5 57

 50 44 6 27 22 7 53 56 52 28 57

 5 9 30 29 6 10 9 9 6 9 6

 7 44 40 7 23 22 

1 1 2 2 1 2 1 26 28 5 9 55

 61 49 8 20 22 9 64 54 67 30 62

 10 6 17 29 100 92 91 84 9 5 7

 6 53 46 5 28 28 

2 2 1 1 1 2 2 29 17 5 6 45

 40 47 6 29 22 10 49 53 65 27 56

 10 5 17 29 82 91 83 87 6 6 9

 7 51 42 9 15 8 

1 93 93 81 83 86 94 17 19 8 5 64

 52 59 8 27 5 7 8 41 45 29 54
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 48 22 18 10 82 93 88 82 10 8 5

 5 5 67 66 29 9 

2 87 91 100 98 88 81 27 29 9 6 8

 59 67 16 20 10 48 6 63 62 22 66

 19 43 23 10 96 96 82 83 86 94 5

 7 10 57 52 15 10 

2 81 90 91 89 86 96 20 24.5 9 10 6

 58 67 15 7 8 50 9 45 65 30 24.5

 29 61 5 29 93 98 97 93 93 91 7

 8 54 45 41 20 5 

82 92 82 98 93 1 2 21 25 10 8 5

 57 46 20 30 5 60 59 55 50 67 64

 17 19 62 29 100 99 94 88 98 99 7

 67 60 65 8 28 6 

92 99 93 99 95 1 21 27 25.5 2 2 2

 62 60 29 29 56 40 42 41 61 61 58

 23 29 51 22 2 86 94 87 94 88 1

 59 52 63 1 22 22 

93 92 92 94 98 1 29 30 26 2 2 2

 53 64 22 25 50 1 2 49 63 87 25

 15 24.5 43 58 1 80 92 85 91 2 63

 41 41 1 2 28 28 
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94 96 99 99 82 18 17 26 26.5 2 2 2

 2 46 56 27 20 1 2 59 40 87 27

 90 24.5 19 64 2 91 96 86 100 2 47

 53 1 1 16 15 2 

88 95 94 88 82 24 27 20 27 2 2 2

 2 58 44 16 24 17 2 1 47 87 30

 88 24.5 15 43 2 90 82 97 86 1 53

 52 2 1 19 20 1 

99 86 88 1 2 23 26 2 2 2 2 2

 2 42 41 41 27 26 1 1 47 87 87

 88 1 22 29 50 2 1 1 2 2 2

 57 52 1 19 2 1 

89 92 91 1 1 23 30 2 2 2 2 2

 45 56 42 54 30 18 2 2 60 67 87

 97 26 26 24.5 52 2 1 2 1 2 1

 43 67 1 18 28 1 

96 92 91 18 29 17 25 2 2 89 92 2

 55 48 41 64 1 20 1 46 61 54 87

 80 23 1 20 24 55 1 2 2 2 2

 58 58 42 48 28 2 

89 92 91 21 19 27 23 2 92 82 82 2

 51 2 2 57 2 22 26 48 44 1 87
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 17 19 1 20 18 64 2 1 2 1 1

 1 2 41 56 20 19 

98 92 91 22 15 25 15 2 93 96 97 2

 52 1 1 63 1 22 18 54 1 17 17

 19 18 2 26 23 67 47 64 1 1 1

 58 65 54 56 24 27 

90 92 1 24 23 30 15 97 88 93 2 2

 45 57 2 66 61 26 28 55 17 22 25

 90 93 1 19 16 17 47 61 43 1 1

 49 46 1 2 2 22 

90 1 1 27 24 20 18 94 96 81 2 2

 59 48 2 60 41 29 15 40 29 20 19

 80 86 2 2 1 16 1 47 2 2 65

 40 48 2 1 1 29 

2 1 1 20 18 2 27 85 94 2 2 58

 59 64 2 62 65 43 50 50 29 30 23

 23 30 19 1 16 1 2 49 1 2 43

 45 1 1 1 25 2 

2 1 1 24 25 2 20 2 2 2 2 60

 56 1 1 1 1 56 44 56 2 21 24

 27 21 18 1 16 30 1 2 47 57 51

 57 1 27 20 16 2 
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2 1 1 30 20 2 27 2 2 2 40 62

 61 90 87 88 1 67 60 2 1 19 18

 98 83 80 21 29 17 1 2 49 62 2

 2 17 20 21 1 1 

2 1 15 27 2 2 25 21 2 2 47 52

 61 90 86 82 2 51 58 1 21 27 1

 93 86 81 28 1 2 1 2 54 54 1

 2 16 84 90 93 80 

2 1 19 15 2 2 21 15 2 2 60 61

 43 1 97 2 63 48 1 44 20 18 2

 81 87 83 25 21 29 1 61 1 2 52

 66 26 92 98 98 99 

2 1 29 23 2 2 25 17 19 2 2 52

 62 2 1 63 57 67 1 47 40 19 1

 96 95 80 19 29 25 41 53 1 1 57

 55 21 86 97 93 96 

2 19 18 27 24 2 18 24 16 2 2 2

 50 2 1 53 44 61 60 1 67 26 17

 1 2 2 26 1 1 60 1 1 1 41

 63 1 96 80 99 86 

2 23 29 29 30 2 26 17 2 2 2 2

 43 1 57 42 1 62 2 2 60 20 21



 

 167 

 30 1 30 15 2 62 58 2 40 61 2

 62 1 22 1 2 1 

27 19 28 2 24 2 2 19 2 2 2 2

 45 61 42 45 1 45 59 54 63 2 2

 24 25 30 29 1 64 65 1 64 65 1

 50 1 28 1 1 2 

2 2 16 2 23 19 2 17 17 2 2 49

 60 63 1 46 2 80 92 65 57 1 2

 95 19 1 1 26 45 45 51 60 41 2

 56 58 1 17 1 1 

2 2 17 2 18 27 2 25 28 2 2 63

 67 47 2 46 2 99 96 88 48 2 1

 86 18 1 1 23 23 40 53 56 2 2

 1 1 56 27 2 1 

2 2 25 2 97 18 2 26 22 2 2 61

 49 67 2 52 1 93 100 84 63 45 2

 25 21 1 2 2 17 47 52 40 2 1

 1 2 47 42 29 2 

23 21 17 89 91 30 23 25 17 2 2 2

 54 55 96 2 87 88 88 85 49 58 1

 25 19 26 2 2 1 43 1 60 44 2

 2 2 54 45 15 1 
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21 2 30 93 85 26 26 20 17 2 2 2

 65 62 2 87 98 95 100 41 1 42 1

 1 2 30 17 2 2 57 1 48 51 43

 1 1 59 1 27 2 

24 2 25 96 97 26 17 29 23 2 2 2

 46 41 62 2 97 82 82 41 2 55 45

 2 2 20 27 1 1 54 1 2 47 57

 64 58 57 2 29 2 

2 2 2 80 84 26 19 23 24 2 2 45

 60 2 61 2 2 94 88 42 2 49 51

 2 2 15 23 1 1 57 1 1 1 53

 67 67 1 15 16 1 

97 88 97 96 89 15 22 2 18 2 2 58

 57 2 54 48 2 89 52 2 2 1 61

 45 2 21 25 2 48 63 1 2 65 63

 93 96 82 15 2 1 

83 88 85 91 27 16 23 2 24 2 2 52

 63 2 67 60 56 95 49 2 1 2 2

 51 1 27 63 54 40 60 1 2 47 61

 93 96 91 20 2 1 

85 85 100 93 25 19 2 2 28 2 45 50

 64 2 2 2 59 84 41 1 96 2 2
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 61 45 20 53 56 43 1 2 59 2 67

 93 96 81 29 17 1 

80 94 2 19 17 2 2 2 21 2 60 47

 2 2 2 2 41 57 46 2 99 93 99

 45 51 23 2 46 54 44 62 44 2 98

 80 82 92 95 19 1 

81 82 2 27 28 29 2 2 15 2 48 43

 2 88 90 2 59 62 44 1 81 87 81

 51 61 26 21 1 64 66 53 84 84 90

 91 85 91 90 30 15 

2 2 2 18 2 30 2 2 25 2 2 56

 2 98 93 2 2 50 57 1 87 94 97

 61 61 23 25 1 47 48 48 84 2 99

 97 1 100 87 24 19 

 

**$ Property: Pinchout Array  Max: 1  Min: 1 

**$  0 = pinched block, 1 = active block 

PINCHOUTARRAY CON            1 

PRPOR 4800 

CPOR 3e-6 

MODEL BLACKOIL  

TRES 140 
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PVT EG 1 

 

**$         p        Rs        Bo        Eg      viso       visg            co 

       14.696   5.10911   1.03681   4.89173   1.74377  0.0118885        3e-005 

      80.3829   16.4175   1.04107   27.0004   1.63191  0.0119408        3e-005 

       146.07   29.3692     1.046   49.5142   1.52382  0.0120096        3e-005 

      211.757   43.4031   1.05142   72.4411   1.42512  0.0120897        3e-005 

      277.444   58.2658   1.05723   95.7885   1.33659  0.0121792        3e-005 

      343.131   73.8084   1.06337   119.563   1.25762  0.0122775        3e-005 

      408.818   89.9316   1.06983    143.77    1.1872   0.012384        3e-005 

      474.505   106.564   1.07656   168.414   1.12425  0.0124985        3e-005 

      540.191   123.651   1.08356   193.498   1.06781  0.0126209        3e-005 

      605.878    141.15   1.09081   219.022     1.017  0.0127513        3e-005 

      671.565   159.027   1.09829   244.986  0.971078  0.0128896        3e-005 

      737.252   177.253     1.106   271.387  0.929409  0.0130359        3e-005 

      802.939   195.803   1.11393   298.217  0.891451  0.0131904        3e-005 

      868.626   214.657   1.12206   325.469  0.856743  0.0133531        3e-005 

      934.313   233.798    1.1304    353.13  0.824896  0.0135242        3e-005 

         1000   253.209   1.13893   381.184  0.795574  0.0137038        3e-005 

         1760   493.893   1.25026     724.3  0.572387  0.0163979  2.45755e-005 

         2520   757.168   1.38146   1053.67   0.45555  0.0199521  1.54197e-005 

         3280   1037.28   1.52935   1321.07  0.383003  0.0237034  1.09554e-005 
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         4040   1331.01   1.69188   1525.45  0.333177  0.0272185  8.36273e-006 

         4800   1636.27   1.86761   1682.55  0.296617  0.0303767  6.68949e-006 

GRAVITY GAS 0.7 

REFPW 4800 

DENSITY WATER 62.6005 

BWI 1.00377 

CW 2.74599e-006 

VWI 0.516363 

CVW 0 

**$ Property: PVT Type  Max: 1  Min: 1 

PTYPE CON            1 

DENSITY OIL 51.4561 

ROCKFLUID 

RPT 1 

**$        Sw       krw      krow 

SWT 

            0         0         1 

          0.2         0         1 

            1         1         0 

**$        Sl       krg      krog 

SLT 

            0         1         0 
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          0.2         1         0 

            1         0         1 

INITIAL 

USER_INPUT 

**$ Property: Pressure (psi)   Max: 4800  Min: 4800 

PRES CON         4800 

**$ Property: Bubble Point Pressure (psi)   Max: 0  Min: 0 

PB CON            0 

**$ Property: Oil Saturation  Max: 0.8  Min: 0.8 

SO CON          0.8 

**$ Property: Water Saturation  Max: 0.2  Min: 0.2 

SW CON          0.2 

NUMERICAL 

RUN 

DATE 2012 1 1 

 

**$ 

WELL  'Well-1' 

PRODUCER 'Well-1' 

OPERATE  MIN  BHP  1000.  CONT 

** UBA      ff   Status  Connection   

**          rad  geofac  wfrac  skin 
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GEOMETRY  K  0.25  0.37  1.0  0.0 

PERF  GEOA  'Well-1' 

** UBA       ff   Status  mohada1 

36 28 1  1.0  OPEN    FLOW-TO  'SURFACE' REFLAYER 

36 29 2  1.0  OPEN    FLOW-TO  1 

36 30 2  1.0  OPEN    FLOW-TO  2 

36 31 2  1.0  OPEN    FLOW-TO  3 

36 32 2  1.0  OPEN    FLOW-TO  4 

36 33 2  1.0  OPEN    FLOW-TO  5 

36 34 2  1.0  OPEN    FLOW-TO  6 

36 35 2  1.0  OPEN    FLOW-TO  7 

36 36 2  1.0  OPEN    FLOW-TO  8 

**$ 

** 

WELL  'Well-2' 

PRODUCER 'Well-2' 

OPERATE  MIN  BHP  1000.0  CONT 

**          rad  geofac  wfrac  skin 

GEOMETRY  K  0.25  0.37  1.0  0.0 

PERF  GEOA  'Well-2' 

** UBA       ff   Status  mohada2 

06 10 1  1.0  OPEN    FLOW-TO  'SURFACE' REFLAYER 



 

 174 

06 11 2  1.0  OPEN    FLOW-TO  1 

06 12 2  1.0  OPEN    FLOW-TO  2 

06 13 2  1.0  OPEN    FLOW-TO  3 

06 14 2  1.0  OPEN    FLOW-TO  4 

06 15 2  1.0  OPEN    FLOW-TO  5 

06 16 2  1.0  OPEN    FLOW-TO  6 

06 17 2  1.0  OPEN    FLOW-TO  7 

06 18 2  1.0  OPEN    FLOW-TO  8 

**$ 

** 

WELL  'Well-3' 

PRODUCER 'Well-3' 

OPERATE  MIN  BHP  1000.0  CONT 

**          rad  geofac  wfrac  skin 

GEOMETRY  K  0.25  0.37  1.0  0.0 

PERF  GEOA  'Well-3' 

** UBA       ff   Status  mohada3 

06 36 1  1.0  OPEN    FLOW-TO  'SURFACE' REFLAYER 

07 36 2  1.0  OPEN    FLOW-TO  1 

08 36 2  1.0  OPEN    FLOW-TO  2 

09 36 2  1.0  OPEN    FLOW-TO  3 

10 36 2  1.0  OPEN    FLOW-TO  4 
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11 36 2  1.0  OPEN    FLOW-TO  5 

12 36 2  1.0  OPEN    FLOW-TO  6 

13 36 2  1.0  OPEN    FLOW-TO  7 

14 36 2  1.0  OPEN    FLOW-TO  8 

**$ 

** 

WELL  'Well-4' 

PRODUCER 'Well-4' 

OPERATE  MIN  BHP  1000.0  CONT 

**          rad  geofac  wfrac  skin 

GEOMETRY  K  0.25  0.37  1.0  0.0 

PERF  GEOA  'Well-4' 

** UBA       ff   Status  mohada4 

28 06 1  1.0  OPEN    FLOW-TO  'SURFACE' REFLAYER 

29 06 2  1.0  OPEN    FLOW-TO  1 

30 06 2  1.0  OPEN    FLOW-TO  2 

31 06 2  1.0  OPEN    FLOW-TO  3 

32 06 2  1.0  OPEN    FLOW-TO  4 

33 06 2  1.0  OPEN    FLOW-TO  5 

34 06 2  1.0  OPEN    FLOW-TO  6 

35 06 2  1.0  OPEN    FLOW-TO  7 

36 06 2  1.0  OPEN    FLOW-TO  8 
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DATE 2032 1  1.00000 

STOP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


