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ABSTRACT 

  

A healthy and balance diet includes consumption of fresh fruits and vegetables. 

Cucumber (Cucumis sativus) is one of the most cultivated vegetable in the world and is 

mostly consumed raw. Raw products are recognized as important vehicles for the 

transmission of human pathogens which causes foodborne illness. According to the 

Center of Disease Control and Prevention (CDC) Foodborne Outbreak Online Database, 

there were nine outbreaks due to Salmonella Poona associated with consumption of 

contaminated food between 1998 and 2008. From July 2015 until February 2016, 

multistate Salmonella Poona outbreak in the USA was reported due to the consumption 

of contaminated and imported Californian cucumbers. Hence, measures to 

decontaminate fresh produce are necessary. Electron-beam irradiation is an effective 

nonthermal method of decontamination against pathogens such as Salmonella Poona. 

However, irradiation of fresh produce such as cucumbers could produce negative quality 

effects such as loss of texture, flavor, and nutrients. 

Therefore, the process must be characterized. The main objective of this study 

was to (1) determine the radiation D10-value of Salmonella Poona on sliced cucumber; 

(2) quantify the effect of electron-beam irradiation on the product quality attributes 

(texture and color) throughout storage at refrigeration temperature (4-5oC); and (3) 

optimize irradiation treatment of sliced cucumbers to ensure proper decontamination 

(5D) while maintaining produce quality.  
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Five (± 2) grams of fresh cucumber was inoculated with 0.5 ml of a 108 CFU/mL 

of the bacterial culture of Salmonella Poona in sterile bags (18-oz). Samples were 

irradiated at room temperature with up to 1 kGy with an increment of 0.2 kGy using a 

low energy electron beam to find the D10-value of the pathogens. Samples were also be 

irradiated at a 5D dose for decontamination of the pathogen. Irradiated samples were 

stored at 4-5C and analyzed for product quality in terms of texture, color, water activity, 

moisture content, pH, and sensory characteristics for 3 days. All tests were performed in 

three replications. Non-irradiated samples served as controls. 

The D10-value of the Salmonella Poona strain used in this study was found  

0.38 ± 0.03 kGy. Firmness (texture) of irradiated samples was significantly (P < 0.05) 

lower than the group of control samples. There was no negative effect (P > 0.05) in the 

other quality parameters of sliced cucumbers. Therefore, application of an e-beam 

irradiation decontamination step can significantly improve the microbiological safety of 

fresh sliced cucumbers. 
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1. INTRODUCTION 

 

Food (including water), shelter and clothing are the traditional immediate basic 

human needs which human beings need for survival. Many modern lists draw attention 

to other basic needs such as sanitation, education, and healthcare. The basic needs 

approach aims to define the absolute minimum resources necessary for the long-term 

physical well-being of any human being. Man can live without basic needs other than 

traditional basic needs which are defined in modern lists. Similarly, he can live without 

clothing and shelter. However, he faces certain discomforts and inconveniences in life 

without them, and also he has to pass through multitudinous physical suffering and 

trauma without shelter. But “Food” is an essential commodity without which man cannot 

survive after a few days or weeks.  

In the past, human beings had to rely on the food which was available locally. 

But now due to advance technology, fast transportation and modernization over the 

decades, dietary habits and health trends have been changed and food availability has 

increased. As a result, fruits and vegetable consumption has increased markedly as they 

are considered important components of the human diet (Yuk and others 2006). Several 

foodborne outbreaks are associated with the consumption of fresh fruits and vegetables. 

Because of foodborne outbreaks, consumption of fresh fruits and vegetables has led to 

an increased incidents of illnesses and an increased interest for the safety of these 

products (Tzortzakis and Chrysargyris 2017).  
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Fresh fruits and vegetable consumption are associated with a healthy lifestyle. 

The importance of fresh fruits and vegetables as a source of multiple nutrients has 

stimulated increased demand and consumption in recent years (Fabbri and Crosby 2016). 

Furthermore, the World Health Organization (WHO) encourages daily intake of at least 

400 g of fruits and vegetables (excluding potatoes and other starchy tubers) for 

prevention of chronic diseases (Callejón and others 2015). According to evidence 

presented in World Health Report 2003, eating a mixture of various fruits and vegetables 

ensures an adequate intake of most micronutrients, dietary fibers and a host of essential 

non-nutrient substances. Therefore, food is not only consumed to satisfy the hunger and 

get necessary nutrients but also to improve physical and mental well-being by preventing 

nutrient-related diseases (Betoret and others 2011). 

Insufficient consumption of fruits and vegetables increases the risk of obesity, 

coronary heart disease and stroke, type 2 diabetes, diverticulosis, hypertension, and 

epithelial cancers (for example, cancer of the lung, esophagus, mouth, stomach, colon, 

and pancreas) (Aldoori and others 1998; McCrory and others 1999; Bes-Rastrollo and 

others 2006; Hall and others 2009). There is evidence that can explain the consumption 

of high levels of high-energy foods, such as processed foods that are high in fats and 

sugars, promotes obesity compared to low-energy food such as fresh fruits and 

vegetables (Popkin 2001). Approximately 1.7 million of deaths and 16.0 million 

disability-adjusted life years (DALYs, the measure of the potential life lost due to 

premature mortality and the years of productive life lost due to disability) worldwide are 

reasoned to low consumption of fruits and vegetables (Vasileska and Rechkoska 2012; 
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World Health Organization). In addition, insufficient intake of fruits and vegetables is 

estimated to cause around 14% of gastrointestinal cancer deaths, 11% of ischemic heart 

disease deaths and 9% of stroke deaths globally (World Health Organization). 

Cucumber (Cucumis sativus) is the fourth most cultivated vegetable in the world, 

and more than 60% of the production is done in China with the United States in fifth 

place. Consumption of fresh cucumber has increased worldwide. The US annual 

production in 2015 of fresh cucumbers was 1,066.9 million pounds and the consumption 

per capita was 7.5 pounds (USDA, 2016). The USA is a large importer of cucumbers. 

As in the case of cucumbers, a large portion of fresh produces is consumed raw 

and foodborne disease outbreaks linked to these products are increasing (Olsen and 

others 2000; Sivapalasingam and others 2004). Raw products are recognized as 

important vehicles for the transmission of human pathogens which causes foodborne 

illness (Berger and others 2010). Globalization can also increase the risk of foodborne 

outbreaks, especially when produce comes from countries without maintaining safety 

standards. In the food chain, food can be contaminated at any point of processing which 

includes harvesting, transportation, processing and handling (Lynch and others 2009; 

Kozak and others 2013). The occurrence of foodborne infections related to fresh produce 

can be improved by better control interventions and improved prevention strategies 

worldwide. The understanding of the key contributing factors causing foodborne 

infection and the maintenance of the best practices can reduce and eliminate the problem  

of contamination in fresh produces (Kozak and others 2013).  
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              The Center for Disease Control and Prevention (CDC) reported more than one 

million foodborne illnesses with 19,000 hospitalization and 380 deaths because of 

Salmonella strains in the United States every year (Crowe and others 2015). Salmonella 

Poona is a rare serotype isolated in patients. According to the CDC Foodborne Outbreak 

Online Database, there were nine outbreaks due to Salmonella Poona associated with 

consumption of contaminated food between 1998 and 2008. From July 3, 2015- until 

February 29, 2016, multistate outbreak of Salmonella Poona infection in the United 

States was reported due to the consumption of contaminated and imported Californian 

cucumbers (CDC, 2016). According to the FDA report, 907 people were infected with 

the outbreak strains of Salmonella Poona across 40 states in the United States (Crowe 

and others 2015).  204 ill people were hospitalized, and 6 deaths were reported due to 

this foodborne outbreak. 

           Cucumbers imported from Mexico and distributed by Andrew & Williamson 

Fresh Produce (San Diego, CA) were the source of the infections in this multistate 

outbreak of Salmonella Poona as identified by the epidemiologic, laboratory, traceback 

and regulatory investigations. The investigation revealed that Salmonella Poona isolated 

from ill people and from contaminated cucumbers distributed by Andrew & Williamson 

Fresh Produce are closely related genetically. Two recalls of garden variety cucumbers 

distributed by the same distributor were announced due to the cucumbers were likely 

contaminated during the outbreak. According to the investigation on Salmonella 

Poona outbreak, the source of contamination of Salmonella Poona for cucumbers 

distributed by Andrew & Williamson Fresh Produce has not been identified. A 
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foodborne outbreak can happen at any step of distribution chain from farm to market or 

cross-contamination within the distribution chain. 

             A common practice to reduce the risk of contamination from fresh produces is 

washing them with chemicals such as hypochlorite, lactic acid, or other permitted 

antimicrobials or fumigation with ethylene oxide or methyl bromide (Rahman and others 

2015); however, these treatments do not decontaminate internalized pathogens. A 

research study indicates ozone is a potent antimicrobial agent. Bactericidal action of 

ozone varies with the type of microorganism and medium. The issue to use ozone is, it is 

a less powerful against microorganisms in food than in pure cell suspensions (Kim 

1998). Researchers have proposed irradiation treatment as a possible solution for 

pathogen decontamination (Lynch and others 2009; Chimbombi and others 2010, 2013; 

Borsa 2016).  

Irradiation is a nonthermal technology (named cold sterilization) known to 

penetrate food tissues and eliminate pathogens from produce (Moreno and others 2007). 

Along with the reduction in microbial load, irradiation process allows for disinfestation 

and shelf life improvement in fresh produces. Many researchers have reported electron-

beam irradiation and gamma irradiation as a potential method for reducing microbial 

growth and extending the shelf life of fresh fruits and vegetables (Sommer and others 

2010). The joint committee on the wholesomeness of irradiated food reported that there 

is no toxicological hazard and no special nutritional or microbiological problems in any 

food commodity irradiated to an overall average dose of 10 kilogray (kGy) (World 
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Health Organization 1999). In the case of fresh fruits and vegetables, the maximum 

allowable dose is 1.0 kGy (FDA, 2016). 

Few studies have evaluated the effectiveness of irradiation on decontamination of 

cucumbers and its effect on produce quality. There are contradictory reports on the effect 

of irradiation on the quality of cucumbers. Khattak and others (2005) observed a 

detrimental effect of gamma irradiation treatment on the firmness of cucumbers. No 

other relevant studies on electron-beam irradiation of cucumbers are currently available. 

In this study, Potential effectiveness of electron beam irradiation in reduction of 

Salmonella Poona and extension of shelf-life of sliced cucumbers was evaluated. The 

reason behind selecting this research topic was the recent multistate foodborne outbreak 

of Salmonella Poona on cucumber in 2015. The effect of e-bean irradiation on quality 

attributes including texture, color, moisture content, water activity, pH, and consumer 

acceptance of fresh sliced cucumber was studied. This study will provide the basis for 

application of e-beam irradiation to other produce including whole cucumbers.  
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2. OBJECTIVES 

 

 The main goal of the study was to achieve optimize the irradiation treatment of 

fresh sliced cucumbers using electron beams. This goal was achieved after 

accomplishing the following objectives. 

1) Determine the radiation D10-value of Salmonella Poona on sliced cucumber. 

2) Quantify the effect of electron-beam irradiation on the product quality attributes 

(texture and color) throughout storage at refrigeration temperature (4-5oC).  

3) Optimize irradiation treatment of sliced cucumbers to ensure proper 

decontamination (5D) while maintaining produce quality.  
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3.  LITERATURE REVIEW 

 

3.1 Cucumber (Cucumis sativus) 

Cucumbers are one of the most consumed food in the world due to low calorie 

value and high water content. It has been cultivated for least 3,000 years in Western 

Asia, and was probably introduced to other parts of Europe by the Romans. They are 

normally consumed as a vegetable but they are scientifically considered as a fruits as 

they develop from a flower and contain seeds. The cucumber is a creeping vine that 

grows up trellises or other supporting frames and their roots are in the ground. The 

cucumber plants have large leaves that form a canopy over the fruits. They usually grow 

in all tropical and subtropical countries. China is the largest cucumber producing country 

in the world. According to FAOSTAT, China has produced 56,904,098 tons of 

cucumber and gherkins in 2014. Average of 83% production share of cucumber and 

gherkins by Asia has been recorded between 1994 and 2014 (Figure 1). According to 

USDA, vegetable 2015 summery, Principle fresh market cucumber production was 

305,040 metric tons in 2015 (USDA, 2016). Figure 2 and 3 illustrate the production 

trend of cucumbers and gherkins in the world and USA from 1994 to 2014 respectively.  

 Commercial production of cucumbers is usually classified into three types, 

Slicing cucumbers, Pickling cucumbers and Burpless cucumbers. Slicing cucumbers are 

the cucumbers which are grown to eat fresh. They are normally eaten in the unripe form 

as they become bitter and sour upon ripening.
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Figure 1. Production share of cucumbers and gherkins by region between 1994 and 2014 (Adapted from FAOSTAT, 2017). 
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Figure 2. Production of cucumber and gherkins in the world between 1994 and 2014 (Adapted from FAOSTAT, 2017). 
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Figure 3. Production of cucumbers and gherkins in USA between 1994 and 2014 (Adapted from FAOSTAT, 2017). 
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Pickling cucumbers are (pickled) processed cucumber to develop flavor and extent shelf-

life. Pickled cucumbers are soaked in brine or combination of vinegar and brine solution 

with various spices. Pickled cucumbers are smaller and thicker compared to slicing 

cucumbers. Burpless cucumbers are sweeter in taste. They are seedless, and have a 

thinner skin than other two types. They are normally grown in greenhouse.  

Cucumbers are scientifically known as Cucumis sativus. They are widely 

cultivated plant throughout the world in the Cucurbitaceae family. According to USDA 

database, cucumbers are naturally low in calories, carbohydrates, sodium, and fat. 

Cucumbers contain many nutritional benefits, including hydrating properties (due to 

95% water) and valuable nutrients. They are good source of phytonutrients such as 

flavonoids, lignans and triterpenes, which gives anti-cancer, antioxidant and anti-

inflammatory benefits but notable only for vitamin K (16%) of the daily value. Table 1 

summarize the nutrient values and weights for edible portion of raw cucumber (with 

peel). 

 

Table 1. Chemical composition of cucumber (USDA, Food Composition Database) 

Nutrient Unit Value / 100 g cucumber 

Water g 95.23 

Energy kcal 15 

Protein g 0.65 

Total lipid (fat) g 0.11 

Ash g 0.38 

Carbohydrate g 3.63 

Fiber, total dietary g 0.5 

Sugar, total g 1.67 
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3.2 Fresh-Cut Produces 

Healthy and balance diet includes consumption of fresh fruits and vegetables. 

Therefore, fresh produce, fresh-cut products, and minimally processed food products are 

one of the major growing sectors of the food industry. According to the International 

Fresh-Cut Produce Association (IFPA), “Fresh-cut produce is defined as any fresh fruit 

and vegetable or any combination of that has been physically altered from its original 

form, but remains in a fresh state. These fruits and vegetables have been trimmed, 

peeled, washed, and cut into a 100% usable product that is largely bagged or 

prepackaged to offer consumers high nutrition, convenience, and value while 

maintaining freshness” (Bui and others 2010). 

Fresh-cut products are rapidly expanding food category for the produce industry, 

food processors, retailers, and food service operators (Cantwell and Stockdale 2007). 

Initially, the food service industries were using fresh-cuts to reduce manpower and fresh 

produce waste. However, the importance of fresh-cut products in the retail groceries has 

increased due to fast pace life in developed countries. The U.S. fresh-cut fruits and 

vegetables is an estimated $27 Billion market in 2014, and volume sales are increasing 

(Cook 2014). Fresh-cut products take less time in preparation and consumption. They 

are convenient for grab & go for healthy living busy families. Consumers know fresh-cut 

products are ripe and ready-to eat vs. figuring it out with the whole produce. They are 

different than traditional, whole fruits and vegetables in terms of their physiology, 

handling and storage requirements (Lamikanra 2002). 
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Fresh-cut products are highly perishable as a large proportion of their surface 

area is without epidermis which is the outer protective layer of tissues. Processing of 

fresh-cut produce including cutting which damage the integrity of the cells and cause 

tissue to suffer from wounding stress (Li and others 2017). The wounding stress 

accelerate deterioration of produce because of increase in respiration rate, water loss, 

tissue softening, color loss, oxidative browning, development of off-flavors, production 

of ethylene, and degradation of membrane lipids which reduce the shelf-life of product 

(Rolle and CHISM 1987; Soliva-Fortuny and Martı́n-Belloso 2003; Gil and others 2006; 

Hodges and Toivonen 2008). Fresh-cut produces raise food safety concerns as pathogens 

can be easily colonized on fresh-cut produces than intact produce because of higher 

availability of nutrients on cut surface (Leverentz and others 2003). Temperature, 

relative humidity, sanitation, atmosphere, and proper handling must be regulated to 

maintain good quality of fresh products (Watada and others 1996).  

Cucumbers commonly harvested when they are green before full maturity. 

Harvesting delay can lead to lower quality of fruit and faster deterioration after harvest 

(Lamikanra 2002). Texture is an important quality attribute of cucumber. Consumer 

prefers a firm and crispy cucumber. Mold and other microorganisms grow rapidly on 

fresh cucumber at ambient temperature and high humidity due to higher water content 

and available nutrients for microorganisms. Cucumber contaminated with mold stored at 

ambient temperature can become soft in 12-18 hours (Costilow and others 1984). Food 

industry replaces fresh cucumbers with pickled cucumber because of less shelf life, 

quality and stability of fresh cucumbers (Dermesonlouoglou and others 2008). The 
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whole fresh cucumber can be stored for 7-10 days in refrigerator and shelf life for sliced 

cucumber is 1-2 days.  

 

3.3 Fresh-Cut Produce Quality Attributes 

 Quality of fresh-cut produces is a combination of attributes and characteristics 

that dictate their value to the consumer. Quality attributes include appearance, texture, 

color, smell, flavor, and nutritional value. The importance of each quality attribute 

depends on the products and their use. At the time of purchase, appearance and freshness 

are important for consumer but subsequent purchase are also rely on texture and flavor 

of product upon eating. They also have concern regarding safety and nutritional value of 

product.  

 Quality of the whole fruit or vegetable depends on the cultivar, pre-harvest 

cultural practice, climate condition, maturity at harvest, harvesting method, handling 

procedures (Lamikanra 2002). Whereas, quality of whole fruit or vegetable, method of 

preparation, handling condition, and storage (temperature, relative humidity, packaging) 

affects the quality of fresh-cut produces.   

 Appearance of product is the most important parameter at the time of purchase. 

This may include size, shape, color, gloss, and defects (wound related effect, microbial 

colonization, chemical injuries, and various blemishes which results in unattractive 

product).  Cucumbers are judged on the physical defects which include shriveling, 

wilting, internal drying of fruit, mechanical damage due to punctures, cuts, scratches, 

splits, skin abrasions, deformation, and bruising.  
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 Texture of product is important factor for eating and cooking. Textural behavior 

of food is basically related to structure of food (Szczesniak 1963). Texture is a sensory 

property and is a response of tactile senses to physical stimuli that result from contact 

between some part of the body and the food material. This includes firmness, crispiness, 

juiciness, and toughness depending on the product. Understanding of food texture is 

related to study of the relationship between textural characteristics and chemical 

composition (Curwen and others 1966). Texture is also important for their transportation 

as soft and delicate fruits and vegetable cannot be shipped long distances without 

physical damage (Lamikanra 2002). Unfortunately, most of the processing techniques 

(such as cutting, freezing, blanching, sterilization) damages the cellular tissues of food 

and affect the textural properties of foods.   

 Flavor of product includes perception of aromas and tastes of many compounds. 

This includes sweetness, sourness, bitterness, astringency, and off-flavors. Flavor of 

most fruits and vegetables is influenced by sugar content, organic acids, phenolic 

compounds, and other volatile compounds. Objective analytical determination of critical 

components must be combined with subjective evaluation by a taste panel to produce 

useful and meaningful information about flavor of food product (Lamikanra 2002). 

However, consumer acceptability can only tested by large-scale testing by a 

representative sample of the consumers. 

 Fresh fruits and vegetables are considered as a source of important nutrition in 

human diet. They serve as source of vitamins, minerals, and dietary fibers. Some of the 
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nutrition helps to prevent health issues related to heart disease, cancer, and other disease. 

Nutritional value varies depending of commodity and cultivars.    

 

3.4 Foodborne Disease Outbreaks 

According to CDC, Foodborne disease outbreak can be defined as an incident in 

which two or more persons experience a similar illness after ingestion of a common 

food, and epidemiologic analysis implicates the food as the source of the illness. The 

reporting of foodborne and waterborne diseases started more than 80 years ago in the 

United States when the health officials were concerned about the high morbidity and 

mortality caused by typhoid fever and infantile diarrhea attributed to milk. The purpose 

of investigation was to obtain information about the role of food and water in outbreak 

diseases (Lynch and others 2006). Foodborne diseases are estimated to cause 9.4 million 

illness caused by 31 major pathogens every year (Scallan and others 2011). There are 31 

known pathogens account for 20% of food poisoning every year and 80% of food 

poisoning are caused by unspecified agents (Sadilek and others 2016). According to the 

surveillance data from the US Center for Diseases Control and Prevention (CDC, 2016), 

864 foodborne disease outbreaks with 13,246 illness, 712 hospitalizations, 21 deaths, 

and 21 food recall were reported in 2014. Out of these bacteria caused 247 outbreaks 

(53%), followed by 161 by viruses (35%), 46 by chemicals (10%), and 7 by parasites 

(2%). Figure 4 illustrate the number of foodborne disease outbreaks in the United States 

between 2000 and 2015. 
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Figure 4. Foodborne disease outbreaks surveillance system data from 2000 to 2015 (Adapted from CDC 2016).
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Pathogens that are the main concern today are Norovirus, Salmonella 

(Enteritidis, Thyphimurium, Javiana, and Newport), Shiga toxin- producing Escherichia 

coli (O157, O111, O26, O121, O103, O145, and O186), Listeria monocytogenes, 

Campylobacter, and Clostridium Botulinum (CDC 2016). Among them, Norovirus was 

accounting for 43% of illness, Salmonella for 27% illness. Food associated with 

outbreak illness were seeded vegetables (357), chicken (227), turkey (184), dairy 

products (144), and sprouts (155). The most common symptoms for food poisoning are 

vomiting, diarrhea, abdominal pain, fever, and chills but some pathogens can also cause 

symptoms of the nervous system (Sadilek and others 2016).  

The United States Department of Agriculture (USDA), Food and Drug 

Administration (FDA), World Health Organization (WHO), industries, and retailers has 

a strong interest on the evaluation of alternatives to minimize fresh food contamination 

problem. The investigation of foodborne outbreaks leads to prevention and control 

measures in the food industries. Foodborne disease surveillance provides a basis for 

detecting disease and identify cause of outbreaks (Altekruse and others 1997). Hazard 

analysis and critical control point (HACCP) is a systematic approach to prevent 

foodborne outbreaks by identifying critical control points during processing.  

 

3.5 Foodborne Disease Outbreaks Associated with Fruits and Vegetables 

Foodborne outbreaks are related to raw produces and with the increase in raw 

product consumption for healthy lifestyle, risk of foodborne disease has been increasing 

(Goodwin and Brodwick 1995; Parish 1997; Gomes and others 2009; Callejón and 
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others 2015). Changes in dietary habits, methods of fruit and vegetable production and 

processing, packaging, distribution, global marketing technology, source of produce, and 

the emergence of pathogens previously not recognized for their association with raw 

produce have enhanced the possibility for foodborne outbreaks (Hedberg and others 

1994; Beuchat 2002). According to US Department of Agriculture (USDA) food 

pyramid, an adult should include 3-5 servings of vegetables and 2-4 servings of fruits in 

diet. Fruits and vegetables are good source of vitamins, minerals, and fiber and are also 

associated with protection against various diseases, including cancers, and 

cardiovascular diseases (Lintas 1992; du Toit and others 2001). 

Fresh fruits and vegetables are the known vehicles for the pathogens (Lynch and 

others 2009).  Magnificent difference in surface morphology, internal tissue 

composition, and metabolic activities of leaves, stems, florets, fruits, roots, and tubers 

provide an extensive rage of diverse ecological selection for specific groups of 

microorganisms (Beuchat 2002). Fruits and vegetables have opportunities and obstacles 

for pathogen contamination. They contain the nutrients which support the rapid and 

progressive growth of pathogens and they also have natural outer cover which protects 

interior of fruit or vegetable by preventing microbes to enter (Madden 1992). Fruits and 

vegetables can be contaminated with pathogens while growing in fields, during 

harvesting, post-harvest handling, distribution, or processing.  
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Table 2. Outbreaks associated with fresh raw fruits and vegetables between 2009 and 2014 

(Adapted from CDC surveillance data 2009-2014). 

 

Microorganism Year Produce 

 

Shiga toxin-producing E. coli O157:H7 

 

2014 

 

Spinach, Pre-packaged salad, 

Leaf lettuce 

 2013 Pre-packaged leafy greens, 

Romaine lettuce, Tomatoes, 

Cucumber  

 2010 Romaine lettuce 

 2012 Apple, Lettuce, Leafy green 

Shiga toxin-producing E. coli O111 2014 Cabbage 

Listeria monocytogenes 2014 Apple, Stone fruit, peaches 

 2011 Cantaloupe  

Clostridium botulinum 2012 Root and other underground 

vegetables, Beets 

Staphylococcus aureus  2014 Cabbage, Carrots 

Salmonella enterica   

       Baildon 2014 Cantaloupe 

       Minnesota 2014 mango 

       Thompson 2013 Papaya 

       Typhimurium 2009 Lettuce 

       Javiana 2010 Yellow onion 

       Muenchen 2009 Blueberries 

       Saintpaul 2011 Cucumber, Tomato 

       Newport 2013 Tomato 

       Miami 2014 Romaine lettuce 

Norovirus 2014 Lettuce 

Norovirus Genogroup II 2014 Blueberries, Cantaloupe, 

Honeydew melon, 

Strawberries, mushrooms 

Hepatitis A 2013 Strawberries 
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Microorganisms of concerns for fresh produces are Salmonella spp, Escherichia 

coli, Shigella spp, Yersinia spp, Listeria monocytogenes, Staphylococcus aureus, and 

Clostridium spp (Yeni and others 2016).  A multistate frozen strawberry outbreak of 

Hepatitis was reported in 1997 (Hutin and others 1999) and multistate outbreak of 

Escherichia coli O157:H7 in fresh spinach was reported in 2006 in United States 

(Sharapov and others 2016). The CDC surveillance data has reported 55 outbreaks 

related to plants in 2014 including Salmonella Minnesota outbreak in mangos (May), 

Shiga toxin-producing E. Coli O157:H7 outbreak in spinach (April) (CDC 2014). 

Outbreaks associated with fresh produces between 2009 and 2014 are listed in Table 2.  

 

3.6 Attachment of Microorganisms to the Surface of Fruits and Vegetables 

 Fresh fruits and vegetables can harbor wide range of microorganisms. It is 

important to study presence and cause of contamination related to fresh produce to 

reduce the contamination. Fresh produces are usually in contact with soil, insects, 

animals, human, and water during growing, harvesting and processing. Pathogens such 

as Listeria monocytogens, Clostridium botulinum, and Bacillus cereus are naturally 

present in some soil, and these are likely to contaminate fresh produce. Whereas, 

Salmonella, E. coli O157:H7, Campylobacter jejuni, Vibrio cholera, parasites, and 

viruses are more likely to contaminate fresh produce through vehicles such as 

contaminated water, improperly handled animal waste, and contact with insects, reptiles, 

mammals, and unpasteurized products from animal origin (Beuchat and Ryu 1997). 

Another post-harvest source of contamination includes feces, human handling, 
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harvesting equipment, transportation containers, transportation vehicle, wild and 

domestic animals, insects, rodents, dust, rinse water, ice, processing equipment, and 

packaging material (Janisiewicz and others 1999). Washing with water, chlorinated 

water, or some other disinfectant can reduce the population of microorganisms on fresh 

produce but they are not efficient to remove them completely as their inability to reach 

locations within structures and tissues that may harbor bacteria (Beuchat 2002).  

 The ability of pathogenic bacteria to adhere to fresh produce surface is a potential 

food safety concern to the fresh-cut produce industries. The attachment of bacteria on 

the surface of fresh fruits and vegetables is affected by a number of factors including the 

medium in which they are grown, motility, temperature and pH, length of contact time, 

water activity, and production of extracellular polysaccharides (Iturriaga and others 

2003). The bacterial surface charge and hydrophobicity influence the bacterial 

attachment to fresh produce surface. Bacterial surface charge is influenced by carboxyl, 

amino, sulfate, and phosphate group within the cell envelop (Hassan and Frank 2004). 

The flagella, fimbriae, and outer membrane proteins may affect bacterial attachment to 

the surface (Ukuku and Fett 2002). Hassan and Frank (2004) studied effect of E. coli 

attachment on the surface of apple and lettuce related to cell hydrophobicity, surface 

charge, and capsule production. They did not found any significant effect of those factor 

except for capsule production which enhanced attachment.   

A better understanding of microbial ecosystem on the surface of fresh produces 

would be useful to develop interventions to minimize contamination, prevent the growth 

and kill pathogens at various level of production from farm to fork (Beuchat 2002). 
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Bacteria also attach to cut surfaces, which directly expose produce cell walls to the 

environment and more susceptible to contamination by pathogens (Sze-Fan Tan and 

others 2016). Fresh fruits and vegetables often have punctures, cuts or splits due to 

improper handling during processing that influence the bacterial attachment. According 

to research study by Burnett and others (2000), punctured wounds harbored greater 

numbers of the pathogen at greater depths than the once without any injury.  

 

3.7 Survival of Pathogens on the Surface of Fruits and Vegetables 

The survival and growth of pathogens on fresh fruits and vegetables is depends 

on the microorganism, produce variety, and environmental condition of product storage 

(Stine and others 2005; Tian and others 2012).  Survival and growth of pathogens 

depend on many factors including storage temperature, initial pH, water activity, relative 

humidity, sodium chloride content, atmosphere, and sodium nitrate concentration 

(Buchanan and Phillips 1990; Stine and others 2005). According to study by Watkins 

and SLEATH (1981), Listeria monocytogenes can survive in soil more than 8 weeks 

without any population reduction whereas, Salmonella population decreased to below 

detectable level after 6 weeks. 

pH is an important factor as most of the microorganisms are inactive at lower pH 

values. Many fruits (pomegranate, oranges) are more acidic and do not support bacterial 

growth whereas fruits with higher pH values (> 5.0 pH value) (papayas, mangos, 

melons) are more susceptible to support bacterial growth (De Roever 1998). Tomatoes 

are of great interest as in spite of having low pH value (3.5-4.7), multiple outbreaks 
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associated with tomatoes have been reported. Multistate outbreak of Salmonella Nueport 

(2005), Salmonella enterica Baildon (1999), Hepatitis A (2009) were reported in fresh 

tomatoes (Cummings and others 2001; Greene and others 2008; Donnan and others 

2012). The growth of acid tolerant yeast and mold populations in low acid products 

decreases product pH which makes the environment more suitable for pathogens 

(Francis and others 1999). Listeria monocytogenes has the ability to survive at extreme 

condition of low pH and temperature (Conway and others 2000). The growth and 

metabolism of Listeria monocytogenes reduce at low pH and temperature but they can 

survive longer under low temperature (5C) than 30C temperature (Cole and others 

1990). Storage temperature becomes a critical factor for the low pH produce which 

allows the survival and growth of pathogens.  

Survival of pathogens on the surface of fruits and vegetables is influenced by 

storage temperature. Temperature can influence the growth of bacteria because storage 

temperature determines the respiration rate of the produce which changes the gaseous 

atmosphere in the package, and, therefore influence the behavior of microorganisms 

(Nguyen‐the and Carlin 1994). Tian and others (2012) studied survival and growth of 

four pathogens (Salmonella enterica Serovar typhimurium, Staphylococcus aureus, 

Listeria monocytogenes, and E. coli O157:H7) on fresh vegetables (romaine lettuce, 

iceberg lettuce, perilla leaves, and sprouts) at different temperatures and conclude that 

population of all pathogens increased on all vegetables stored at 15C and there was no 

significant (P > 0.05) difference was found at 4C. Refrigerated temperatures cannot be 

relied upon to prevent growth of pathogens on produce, some pathogens remained 



 

26 

 

constant or grew on a variety of whole and cut produce store under refrigeration 

condition (Parish and others 2003). Growth of some pathogens may be inhibited by 

chilled temperatures but survival can be enhanced under certain condition. According to 

Knudsen and others (2001), E. coli O157:H7 and Salmonella are capable of survival 

without growth on fresh strawberries and both pathogens can survive better on cut 

strawberries at refrigerated temperature (5C) than on whole fruits. 

 

3.8 Salmonella 

Salmonella is a rod-shaped (diameters between 0.7 and 1.5 m, and length 

between 2 and 5 m) gram-negative bacterium which belongs to enterobacteriaceae 

family. Salmonella species are non-spore-forming bacteria. They are facultative 

anaerobic intracellular pathogens (Li and others 2013). Salmonella infections are due to 

ingestion of contaminated food including animal-products, fruits, vegetables, and 

processed food. Salmonellae are chemoorganotrophic, with the ability to metabolize 

nutrients by both respiratory and fermentative pathways. They grow optimally at 37C 

and catabolize D-glucose and other carbohydrates with the production of acid and gas 

(D’Aoust and Maurer 2007). Salmonellae cause typhoid fever, paratyphoid fever and 

food poisoning. Salmonella infected person develop diarrhea, fever, and abdominal 

cramps 12 to 72 hours after infection, And illness usually lasts 4 to 7 days. Salmonella 

enterica is estimated to cause 1.2 million illness every year including hospitalizations 

and death in the United States (Jackson 2013).  
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According to FDA, the genus Salmonella has over 2700 serotypes. Salmonella 

enterica is the type of species and is further divided in several subspecies. Multistate 

foodborne outbreak of Salmonella Mbandaka infection associated with alfalfa seed was 

reported in 1999 (Gill and others 2003). Over a six-week period, 25 episodes of 

Salmonella Eimsbuettel infection reported due to contaminated rectal thermometers 

(McAllister and others 1986). The optimum pH for the growth of salmonellae is between 

6.5 and 7.5 but study have shown survival of Salmonella in acidic environment. 

Outbreak of Salmonella Braenderup infection associated with roma tomatoes was 

reported in 2004 in the United States (Gupta 2007). Although Salmonella normally grow 

at 37C, they can survive and even grow at lower temperature (Matches and Liston 

1968). 

D10-value for Salmonella are specific to each species and also specific to strains 

within the same species in some cases. Research initiatives in the past have been focused 

on determination of D10-value for pathogens in various foods using gamma radiation 

with little work done on electron-beam irradiation. A number of factors play role in the 

determination of D10-value. Several studies have been conducted in the past on Gamma 

radiation or e-beam radiation of meats, sprouts, however, not much has been reported on 

fresh produces.   

One of the factor which significantly affects the D10-value is a composition of the 

medium. According to the research study by Thayer and others (1990), D10-value for 

Salmonella spp. are lower when they are suspended in phosphate buffer and 

microorganisms are more resistant to the effect of irradiation in presence of air or 
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vacuum. Variations in sample preparation, sample composition, inoculation method, 

headspace composition (if samples are irradiated in sealed bags), microbiological 

method, and irradiation type and set-up can affect the D10-value for different pathogens 

on food (Moreira and others 2012). When irradiation is done on sample sealed in a bag, 

headspace composition can affect the pathogen’s response to irradiation as respiration 

rate of fresh produce will change the headspace composition. Other parameters that 

could possibly effect the D10-value are the temperature of the product and moisture 

content. 

Salmonella Poona is a rare serotype responsible for national and international 

foodborne outbreaks. CDC has reported multiple multistate outbreaks of Salmonella 

Poona in infections associated with cantaloupe in 1991 and in the spring of consecutive 

years during 2000-2002 (Centers for Disease Control (CDC) 1991; Centers for Disease 

Control and Prevention (CDC) 2002). Many researchers have studied action of 

Salmonella Poona in food and inactivation of pathogens with various treatments. 

Mahmoud and others (2008) achieved more than a 5 log CFU/cm2 reduction of 

Salmonella Poona after treatment with 3.0 and 5.0 mg/L chlorine dioxide gas for 10 

minutes. According to study of Annous and others (2004), surface pasteurization of 

whole cantaloupes at 76C can reduce 5 log CFU/cm2 of Salmonella Poona.  

 

3.9 Incidence of Salmonella in Cucumbers 

Cucumbers are normally grow on the ground, and can be contaminated with a 

human pathogen such as Salmonella anytime during production including harvesting, 
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processing, transportation, packaging, and storage. Cucumber is considered a potentially 

hazardous food because it is capable of supporting the growth of pathogens due to low 

acidity (pH 5.1 to 5.7), high water content (95%) and water activity (~96%). The US 

Food and Drug Administration (1997) has issued safety guidelines for fresh-cut products 

to prevent foodborne outbreaks. This guideline includes possible microbial hazards 

throughout the processing and appropriate control measures for such hazards to occur.   

As discussed earlier, multistate outbreak of Salmonella Poona infection in the 

United States was reported due to the consumption of contaminated and imported 

Californian cucumbers (CDC, 2016). This led to 907 confirmed cases of outbreak strains 

of Salmonella Poona across 40 states with 204 ill people hospitalized, and six deaths.  

 

3.10 Decontamination Methods for Fresh Produces 

As we have discussed earlier, fresh fruits and vegetables are associated with 

foodborne disease outbreaks due to presence or contamination of pathogenic 

microorganisms. Quality and safety of fresh produce depend on their microbiological 

flora. Hence, sanitation and attention to microbiology are very important in maintaining 

shelf stability and safety of fresh produce (Brackett 1992). There are three main reasons 

for industries to concern with sanitation and disinfection of fresh fruits and vegetables: 

Necessity, quality, and safety.  

There are variety of methods used to eliminate or reduce microbial population on 

whole and fresh-cut produces. Each method has specific advantages and disadvantages 

depending upon the type and use of product. The best method to eliminate pathogens 
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from the fresh produce is to prevent contamination in the first place. To minimize the 

risk of contamination with fresh produce, potential source of contamination throughout 

the production to consumption should be identified and eliminated. However, this is not 

always possible, the need to wash and sanitize the produce is considered as an important 

tool for decontamination to prevent foodborne outbreaks related to fresh produces. 

Microbiological safety of fresh fruits and vegetables are affected by initial quality and 

handling of produces. 

Decontamination methods for fresh fruits and vegetables can be broadly 

classified in chemical and physical treatment. The efficiency of any decontamination 

treatment used for pathogen reduction will depends on several factors including type of 

treatment selected for the produce of interest, characteristics of produce surface such as 

cracks, cuts, texture and hydrophobic tendency, the type and physiology of target 

pathogen, treatment exposer time, concentration of the sanitizer, pH and temperature of 

produce and sanitizing agent (Parish and others 2003).Storage of produces at refrigerated 

condition is not enough to prevent growth and survival of all microorganisms. Several 

studies has demonstrated the ability of Listeria monocytogenes and, Salmonella spp to 

grow and survive on whole and fresh-cut produces stored at refrigerated temperature 

(Gandhi and Chikindas 2007; Pasquali and others 2016). Proper handling and 

sanitization at all levels in the fresh produce chain is crucial to prevent foodborne 

outbreaks. 

According to FDA, sanitizer is defined as an agent that reduces contaminants in 

the inanimate environment to levels considered safe as determined by Public Health 
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Ordinance, or that reduces the bacterial population by significant numbers where public 

health requirements have not been established. FDA had approved seven general classes 

of food contact sanitizers which includes acid-anionic surfactants, carboxylic acids, 

chlorine and chlorine compounds, iodine complexes, peroxide and peroxyacid mixtures, 

phenolic, and quaternary ammonium compounds (Block 2001). Food contact sanitizers 

must receive additional approval from the Environmental Protection Agency (EPA). 

Chlorine and chlorinated agents are most widely used as a chemical disinfectant 

in the fresh fruits and vegetables (Selma and others 2008; López-Gálvez and others 

2010). The most common forms of free chlorine are liquid chlorine and hypochlorite. 

They are commonly used to sanitize produce at a concentration of 50-200 ppm with the 

contact time of 1- 2 min (Abadias and others 2011). The antimicrobial efficiency of 

chlorine is pH dependent and effectiveness of chlorine solution was observed at pH 

range of 6.5-7.5 (Ölmez and Kretzschmar 2009). The ability of chlorine to destroy 

microorganisms depends on the amount of free residual chlorine (chlorine remaining 

after the reaction with organic matter) in water (Vadlamudi 2005). Brackett (1987) 

reported 2 log unit reduction of Listeria monocytogenes on Brussels sprouts when 

treated with 200 ppm chlorine solution.   

Organic acids (citric acid, acetic acid, lactic acid) are GRAS (Generally 

Recognized as Safe) and known to have antimicrobial properties. The antimicrobial 

activity of organic acids is a function of reduction of pH in the microbial environment 

leading to disruption of membrane transport and permeability, accumulation of anions 

and lowering of intracellular pH within the cell by dissociation of hydrogen ions from 
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the acid. Organic acids act rapidly and kill a broad spectrum of bacteria. Advantage of 

using organic acids is they are effective within a wide range of temperature and cannot 

affected by hard water. However, they also have disadvantages such as high cost, odor, 

and corrosiveness (Ölmez and Kretzschmar 2009). According to research study by 

Sagong and others (2011), Treatment of organic fresh lettuce with three organic acids 

(2%) (malic acid, lactic acid, and citric acid) reduced 1-2 log units of Escherichia coli 

O157:H7, Salmonella Typhimurium, and Listeria monocytogenes. 

Ozone is a strong antimicrobial agent with potential applications in food 

industries. It has been used widely in water applications for many years. After it gained 

GRAS (Generally Recognized as Safe) status in 1997, use of ozone as disinfectant has 

been approved in Europe and in the United States. It is effective to reduce many bacteria, 

mold, and yeast at low concentrations (1-5 ppm) with the contact time of 1-5 min 

(Ölmez and Kretzschmar 2009).  Hirneisen and others (2011) concluded that 3 log unit 

reduction of Norovirus can be achieved with the application of ozone. However, ozone 

inactivation of norovirus is dependent upon the presence of a food matrix and the time of 

treatment. 

Physical removal of microorganism is removal of soil and microorganisms using 

brushes to scrub surfaces of whole fruits and vegetables. This is often done in 

conjunction with a detergent followed by a portable water rinse. Problem with treatment 

is brushing also removes a portion of the natural waxy layer from the surface that helps 

to prevent microorganisms. Hence, produce with delicate skin cannot be treated 

physically.  



 

33 

 

Many treatments are known to be partially effective in reducing microorganisms 

from the surface of whole and fresh-cut produces, none of them are effective enough to 

completely eliminate microorganisms. Treatment of fruits and vegetables with sanitizers 

often results in 2-3 log unites of reduction in pathogen population on fresh produces but 

cannot be relied upon to eliminate safety risk (Sy and others 2005). Another challenge 

for the food industries is the minimization of water consumption and wastewater 

discharge rates. Due to the above mentioned problems, new intervention strategies such 

as irradiation are worth their evaluation.  

 

3.11 Irradiation as an Intervention Strategy 

3.11.1 History 

 The early history of food irradiation (1890s-1940s) is related to radiation physics 

and to the development of the systems and sources to be used in food irradiation. 

Irradiation on meat, poultry, and minimally processed foods has attracted more attention 

in the 1990s than insect disinfestation of stored dried foods, which was studied mainly 

between the 1960s and 1970s (Molins 2001). During the 1950s-1960s, the US army 

conducted research into irradiation of military rations using various level of doses. These 

experiments prompted similar studies in Belgium, Canada, France, The federal Republic 

of Germany, Netherlands, Poland, the Soviet Union, and the United Kingdom during 

mid- or late 1950s (Diehl 2002). Health authorities in these countries were hesitated to 

grant permissions for marketing irradiated food because of unanswered questions about 

the safety of irradiated food for human consumption. After long-term animal feeding 
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studies, short-term screening tests, and the study of chemical changes in food products, 

the joint committee including Food and Agricultural Organization (FAO), International 

Atomic Energy Agency (IAEA), and World Health Organization (WHO), on the 

wholesomeness of irradiated food reported that there is no toxicological hazard and no 

special nutritional or microbiological problems in any food commodity irradiated to an 

overall average dose of 10 kilogray (kGy) (Diehl 1999; World Health Organization 

1999).  

Irradiation is an effective method of preservation by reducing food spoilage 

organisms and for increasing shelf-life of food product (IFT 1983; World Health 

Organization 1988). In 1986, 1992, and 1998, the Scientific Committee on Food (SCF) 

expressed favorable opinions on irradiation of fruit, vegetable, camembert from raw 

milk, frog legs, gum Arabic, casein/caseinates, egg white, cereal flakes, rice flour, and 

blood products (Arvanitoyannis 2010). The first half of the 1900s could be called as the 

age of inventors as radiation facilities were not of suitable capacities for practical 

applications during that period (Diehl 2002). Selected historical milestones of irradiation 

of food research and developments are summarized in Table 3. 
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Table 3. Historic milestones of food irradiation (Adapted from Farkas and Mohácsi-Farkas 

2011). 

         
Age of inventors 

 

1905: J. Appleby & A.J. Banks: British patent: “to bring about an improvement 

in the conditions of foodstuffs” and in “their general keeping quality by radiation 

of radioactive substances” 

1921: B. Schwartz (US): published use of X-rays for inactivating trichinae in 

raw pork 

1930: O. Wüst: French patent: kill bacteria in packaged food with X-rays 

Radiation facilities not yet suitable for practical application 

1957: First commercial application: electron beam irradiation of spices in 

Germany 

 

 

1966: First International Symposium on Food Irradiation, Karlsruhe, Germany 

1970–1982: International Project in the Field of Food Irradiation (IFIP) (19→24 

countries + FAO/IAEA, OECD→WHO) 

1980 (1964, 1969, 1976): Joint FAO/IAEA/WHO Expert Committee on the 

Wholesomeness of Irradiated Food (JECFI). Landmark decision, doses up to 10 

kGy 

1983–1984: Codex Alimentarius “General Standard for Irradiated Foods” and 

“Recommended International Code of Practice for the Operation of Radiation 

Facilities” 

1979–1990: Assisting developing countries by training and demonstration: 

FAO/IAEA International Facility for Food Irradiation Technology (IFFIT), 

Wageningen, The Netherlands 

1983–2004: International Consultative Group on Food Irradiation (ICGFI) 
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3.11.2 Ionizing Radiation and its Sources  

 Ionizing radiation produces electrically charged particles or ions by removal of 

electrons from an atom. It has a higher energy than non-ionizing radiation like radio 

waves, microwaves, infrared, and light that has different frequencies and energy 

associated with different radiations in the electromagnetic spectrum. When ionizing 

radiation strikes bacteria and other microbes, its high energy breaks chemical bonds in 

molecules that are vital for cell growth and integrity. As a result of this radiolysis, the 

microbes will die, or can no longer multiply causing spoilage or illness. Food is 

commonly irradiate through the application of gamma rays (with 60Co or 137Cs 

radioisotopes), X-rays (high energy of up to 7.5 Mev), or electron beam (high energy of 

up to 10 Mev). None of these source induce radioactivity in the food or its packaging, 

and the treatment has many feasible applications including significantly improving 

microbial safety and/or storage stability of foods (Farkas and Mohácsi-Farkas 2011). 

 Gamma rays are produced by neutron bombardment in a nuclear reactor of the 

metal Co-60 or Sc-137 and contains energy of about 1 to 2 Mev. Co-60 yields 

uniformity of dose in the food product and 95% of its emitted energy is available for use. 

It can penetrate up to 70 cm of depth of the product. Co-60 is the most widely used 

radioisotope source in radiation facilities for use in the irradiation of food, sterilization 

of medical product, and radiotherapy (Farkas 1989; Lee and Chu 1996; Xia and others 

2006; Haji-Saeid and others 2007). It also has disadvantage of low dose rate and long 

treatment time.  
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 X-rays were discovered by Roentgen in 1895 (Diehl 2002). They can be 

produced by bombarding a metal with high-energy electrons. Although some energy is 

absorbed, the rest is converted to X-rays. X-ray tube or vacuum tube can be used to 

produce X-rays which uses a high voltage to accelerate the electrons released by a hot 

cathode to a high velocity. Though X-rays have high penetrating power (up to 100cm 

depth) and dose rate, they are not used in food irradiation due to poor conversion of 

accelerated electrons to X-rays (Thakur and Singh 1994). 

 Electron beam facilities generate e-beams with a linear accelerator powered by 

electricity. The electrons are concentrated and accelerated to 99% of the speed of light 

and energies of up to 10 MeV. The best application of e-beam is surface and subsurface 

irradiation of foods because of their low penetration potential. E-beams must be 

converted to x-rays to penetrate large items.  The advantage of a linear accelerator over 

using gamma rays is the speed with which product can run over a conveyor through the 

beam.  

 

3.11.3 Role of Food in Deciding Irradiation Dose 

The irradiation dose is defined as the quantity of radiation energy absorbed by the food 

and it is the most critical factor in food irradiation (World Health Organization 1988). 

The absorbed dose is measured by the unit gray (Gy). The intended effect or irradiation 

may not be achieved without proper amount of absorbed radiation dose. The irradiation 

used for food is depends on several factors including physical and chemical composition 

of the food being irradiated and desired effect (World Health Organization 1988). 
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Composition of food plays major role in determining the radiation dose as radiation 

often indices undesirable changes in taste and/or appearance in foods. Food high in 

lipids (meat, nuts) tends to develop rancidity at high dose which develop bitter, metallic, 

or burnt flavors in food. Radiation of fat in presence of oxygen and water tends to 

accelerate lipid peroxidation and rapid onset of rancidity (Molins 2001). This can be 

minimized by irradiating high fat product in the frozen state and/or by vacuum 

packaging where oxygen is removed before treatment (Matsuyama and others 1964; 

Mbarki and others 2009). Irradiation of food high in carbohydrates results in 

depolymerization and oxidation of polysaccharides which leads to softening of the food. 

Irradiation also adversely affects the vitamins particularly vitamin C and E (Thakur and 

Singh 1994).  Fruits are very prone to spoilage by radiation because of tissue softening. 

The absorptive irradiation dose and exposure time must be adequate to achieve the 

required biological effects on food product without any alteration of the quality 

(Mustapha and others 2014). The FDA has found irradiation of food to be safe under 

several conditions (Table 4). 

Microbial decimal reduction due to irradiation (D10-value) is defined as the 

irradiation dose (kGy) required for one-log-reduction of the initial microorganism 

population and is calculated from the negative inverse slope of the logarithm of viable 

population (CFU/mL) versus dose (kGy). Rajkowski and others (2003) found the D10-

value of 0.74 and 1.10 kGy for the nonvegetable and vegetable isolated strains of 

Salmonella spp and 1.43 and 1.11 kGy for the nonvegetable and vegetable isolated 
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Table 4. Food permitted to be irradiated under FDA’s regulations (Adapted from 

Morehouse 2002). 

Food Purpose Dose [kGy] 

Fresh pork Control Trichinella spiralis  0.3 min. – 1 max. 

Fresh foods Growth and maturation 

inhibition 

1 max. 

Foods Arthropod disinfection 1 max. 

Dry enzyme preparation Microbial disinfection 10 max. 

Dry spices/seasonings Microbial disinfection 30 max. 

Poultry Pathogen control 3 max. 

Frozen meats (NASA) Sterilization 44 min. 

Refrigerated meat Pathogen control 4.5 max. 

Frozen meat Pathogen control 7 max. 

Shell eggs Pathogen control 3 max. 

Seeds for sprouting Pathogen control 8  

  

strains of E. coli O157:H7 on broccoli sprouts, respectively. On the other side, D10-value 

for Salmonella spp. were between 0.29-0.43 kGy on minimally processed watercress 

(Martins and others 2004) and D10-value for Salmonella Typhimurium were o.164 kGy 

in carrots and 0.178 kGy in cucumbers (Dhokane and others 2006). This id due to D10-

value of microorganisms varies with water content of food. Product with high moisture 
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content require less amount of irradiation for disinfestation. Food with low water content 

and water activity contribute to greater resistance of microorganisms against irradiation. 

 

3.11.4 Irradiation of Fresh Cut Produce 

Irradiation process on food prevents the growth of microorganisms and inhibits 

biochemical reaction in the process of maturation which slows down the process of 

maturation of many fruits and vegetables (Rahman and others 2015). It is important to 

control toxicological side effects of irradiation process such as degradation of nutrients, 

organoleptic properties or high level of the radioactivity. According to Thomas (2001), 

the objective of radiation of fruits and vegetables includes 

I. Extension of shelf life by delaying maturation and ripening; 

II. Control of fungal pathogens causing post-harvest rot; 

III. Inactivation of human pathogens to maintain the microbiological safety and 

quality; 

IV. As a quarantine treatment for commodities subject to infestation by insect pests 

of quarantine importance; and 

V. To increase juice recovery from berry fruits 

Different dose levels for fresh fruits and vegetables can be divided into three 

levels based on dosage: (1) Low-dose irradiation (<1.0 kGy) can be used for inhibition 

of infection and germination, delay of ripening; (2) Intermediate-dose irradiation (1.0 -

3.0 kGy) is recommended for delaying the maturity of fresh produces and for 

eliminating microbial contamination; and (3) High-dose irradiation (>3.0 kGy) can be 
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used for extraction of bioactive compounds, reduction in number of microorganisms to 

the point of sterility (Lung and others 2015).  

Studies completed on irradiated fruits and vegetables provide information on the 

tolerance of these products to ionizing radiation. Yu and others (1995) found that 

irradiation on strawberries with dose of up to 2 kGy and Moreno and others (2007) 

found that irradiation on blueberries up to 1.6 kGy is a feasible decontamination 

treatment that maintains the overall quality of fruit. Radiation beyond 0.34 kGy resulted 

in quality (firmness) degradation in fresh-cut apples, but treatment with calcium with 

irradiation prevented softening of apple slices (Gunes and others 2001). Lu and others 

(2005) found that irradiation dose of 1.0 kGy can reduce population of bacteria, fungi, 

and E. coli on fresh-cut celery with better retention of vitamin C, soluble solids, total 

sugars, and sensory attributes than those of non-irradiated celery. The fresh-cut packaged 

cantaloupe irradiated with dose between 1.0-1.5 kGy had better quality attributes with 

slightly increased in carotene content (Castell-Perez and others 2004), with modified-

atmosphere packaging offers extension in shelf-life (Boynton and others 2006). Pinela 

and others (2016) studied the suitability of irradiation dose of up to 5 kGy for preserving 

fresh-cut watercress and found that the overall quality was better preserved with the 2 

kGy dose, however antioxidant activity and total flavonoids preserved with irradiation 

dose of 5 kGy. Bari (2005) observed 4.88, 4.57, 5.25, and 4.14 log CFU/g reduction of 

Listeria monocytogenes on broccoli, mung bean sprouts, cabbage, and tomato 

respectively up on 1.0 kGy ionizing irradiation. 
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4. MATERIALS AND METHODS 

 

4.1 Reduction of Salmonella Poona on Irradiated Cucumber Slices 

4.1.1 Media Preparation 

 Enumeration of salmonellae was carried out on MacConkey agar (Becton, 

Dickinson and Company, Sparks, MD, USA) supplemented with 80 g/mL of rifampicin 

(MCAR; Sigma, St. Louis, MO, USA). Rifampicin was added as the selective agent for 

the rifampicin-resistant (Rif+) strain of Salmonella Poona, which was used for 

inoculation on the sliced cucumber in this study.  Rifampicin (80 g) was dissolved in 5 

ml methanol and then added to 1 L of sterile MacConkey agar at 45-50C; plates were 

then poured at 45-50C and stored at 5C in the refrigerator until use. 

 

4.1.2 Bacterial Cultures  

A rifampicin-resistant (Rif+) strain of Salmonella Enterica serotype Poona for 

this study was provided by Dr. Alex Castillo of the Texas A&M University at College 

Station (College Station, TX, USA). The Salmonella Poona organism was preserved in 

CryoCare Bacteria Preserves (Key Scientific Products, Inc, Stamford, TX, USA) at  

-80C in the laboratory freezer (Sanyo North America Corporation, San Diego, CA, 

USA). When needed, the frozen culture was revived by transferring one loop to 9 mL of 

tryptic soy broth (TSB; Becton, Dickinson, and Co., Sparks, MD, USA) and incubating 

for 24 h at 37 °C. One loop of the broth culture was streaked on the plate of tryptic soy 

agar (TSA, Becton, Dickinson and Co., Sparks, MD, USA) and incubated at 37 °C for  
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24 h. A single colony was picked up from the plate, transferred to a TSA slant, incubated 

at 37 °C for 24 h and was used as working culture.  

 

4.1.3 Inoculum Preparation 

The rifampicin-resistant (Rif+) Salmonella Poona maintained on TSA slant was 

transferred to a tube containing 9 ml of TSB with a loop and grown by incubating at  

37 °C for 24 h. After incubation, the culture was centrifuged (Centrifuge B4i, Jouan, 

Thermo-Fisher Scientific, Waltham, MA, USA), washed for three times with equal 

volumes of sterile buffer peptone water (3000  g for 15 min) in sterile tubes and again 

washed for three times. An estimated initial concentration of 108 CFU/ml was prepared 

using 0.5% of absorbance (Milton Roy Spectronic 20D turbidity meter, OD 600 nm, 

Milton Roy Co, CA, USA) as a reference. The initial concentration was confirmed by 

making serial dilutions of the inoculum suspension in 9 mL culture tubes of 0.1% the 

Peptone water and plated on MacConkey Agar supplemented with 80 g/mL of 

rifampicin. Salmonella Poona grows as colorless colonies on MacConkey plates. The 

plates were incubated at 37C until visible colonies can be count.  

 

4.1.4 Sample Preparation and Inoculation 

 Cucumbers (free from any visual defects such as bruises, cuts or abrasions) were 

purchased from a local supermarket (College Station, Texas, USA) and stored at 4-5C 

temperature and 95% relative humidity in a laboratory refrigerator. Cucumbers with an 

average diameter of 4-5 cm were selected and brought to ambient temperature prior to 
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inoculation. In the laboratory, the samples were washed thoroughly with sterile distilled 

water and sliced to a thickness of 4 ± 0.2 mm using a stainless steel adjustable slicer 

(Farberware Slicer, Walmart, College Station, TX). All handling materials were 

continuously sanitized by using 70% ethanol to prevent cross contamination. Each slice 

(Approximate 5g) was placed in 7.6 cm  18.4 cm Whirl-Pak bags (Nasco, Fort 

Atkinson, WI) (Figure 5) and 0.5 ml of the 108 CFU/mL of bacterial culture was 

inoculated right onto the center of the slice with the help of a sterile pipette. The 

inoculated sample bags were then sealed in a LABCONCO purifier Biological Safety 

Cabinet (Labconco Corporation, Kansas City, MO 64132-2696) to ensure hermetic 

conditions. The bags were left to dry at room temperature for 2 hours in a biosafety 

cabinet. 

 

 

Figure 5.  Packaging of cucumber slice in a Whirl-Pak bags. 
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4.1.5 Microbiological Analysis 

 Enumeration of Rif+ S. Poona was carried out on MacConkey agar plates 

supplemented with rifampicin (80 g/L; Sigma Aldrich Co., St. Louis, MO, USA). A 5 g 

cucumber sample was smashed by using a small meet hammer to break all the tissues of 

the cucumber and placed with 45 ml of buffered peptone water in 7.6 cm  18.4 cm 

Whirl-Pak bags. The mixture was mixed thoroughly for 5 minutes. Then appropriate 

serial dilution (using 9 mL of 0.1% peptone water) were made from this homogenate 

mixture and spread onto MacConkey-RC (limit of detection by plating: 10 log CFU/g. 

Plates were then incubated at 37C until visible colonies can be counted with the use of a 

magnifier counter. All salmonella counts (CFU/g) were transformed into log CFU/g. 

This measurement was conducted in four replications. 

 

4.2 Electron-beam Irradiation Procedure 

The inoculated sample bags (5 ± 3 grams) were taken inside a cooler to the 1.35 

MeV Van de Graaff accelerator facility located at the Texas Food Safety Engineering 

laboratory of Texas A&M University. Since the irradiation process took 5-6 hours, all 

sample bags were kept in a refrigerator at 5C to prevent microbial outgrowth during 

processing.  For D10-value determination, four independent samples (Whirl-Pak bags) 

were irradiated up to a dose of 1.0 kGy with an increment of 0.2 kGy at room 

temperature (Figure 6, 7). Non-irradiated samples were considered as control samples. 

After irradiation, samples were stored at 4-5C for microbial analysis.  
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Samples were also be irradiated at a 5D dose for decontamination of the 

pathogen. After this irradiation treatment, samples were stored at 4-CC for microbial 

quality analysis up to 3 days.  Quality attributes were measured every day.  

 

 

Figure 6. A sample-place board with sample for e-beam irradiation. 
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Figure 7.  The 1.35 MeV Van de Graaff accelerator, with ion chamber and a sample-place board.

Ion chamber 



 

48 

 

4.2.1 Dose Mapping Study 

 A dose mapping study was conducted to determine the uniformity of electron 

beam irradiation using an Ion farm chamber (Markus chamber, Type 23343). Irradiation 

dosage was measured by placing radiochronic film dosimeters (B3WIN Radiochronic 

films, Gex Corporation, centennial, CO) at the front and backside of the sample, for a 

total of 2 dosimeters. The radiochronic films were read after stabilization using a 

radiochronic reader model 92 (Far West Technology Inc., Goleta, CA, USA). 

The Dose Uniformity Ratio (DUR) is defined as the ratio of maximum to 

minimum absorbed dose, 

𝐷𝑈𝑅 =  
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
                                      (1) 

Where, Dmax = maximum absorbed dose 

   Dmin = minimum absorbed dose 

It should be close to the value of 1.0 (IAEE 2002). The cucumbers were sliced at a 

thickness of 4 mm and packed in individual Whirl-Pak sample bags. The distribution of 

irradiation dosage was measured for cucumber slice when irradiated at 1.0 kGy by 

placing two Radiochromic film dosimeters each at the front, center, and backside of the 

cucumber slice, for a total of six dosimeters (one at middle and one on the corner of the 

sample) (Figure 8). Radiochromic film was read after stabilization using a Radiochromic 

reader model 92. 
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Figure 8. Experimental set-up to irradiate cucumber slice for dose mapping study. A: Location of dosimeters (T=top; 

M=middle; and B=bottom). B: Product irradiation.

(A) 

 

(B) 
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4.2.2 D10-value Determination 

 The D10-value for Salmonella Poona in cucumber was estimated from the 

negative inverse slope of the logarithm of viable population (CFU/ml) versus dose (kGy) 

as discussed before and, 

𝐷10𝑉𝑎𝑙𝑢𝑒 =  
1

𝑆𝑙𝑜𝑝𝑒
                                                     (2) 

Tests were performed in four replications at each dose level. 

 

4.3 Quality Attributes of Irradiated Cucumber Slices 

4.3.1 Sample Preparation and Packaging 

 Cucumbers were purchased from a local supermarket (College Station, Texas) 

and stored at 4-5C temperature and 95% relative humidity in a laboratory refrigerator. 

Cucumbers with an average diameter of 4-5 cm was selected and washed thoroughly 

with sterile distilled water. The washed cucumbers were sliced to a thickness of 4 ± 0.3 

mm using a stainless steel adjustable slicer. Each slice was sealed packed in 7.6 cm  

18.4 cm Whirl-Pak bags (Figure 5). 

 

4.3.2 Measurement of Texture (Firmness) 

The texture of cucumber slices was measured using a TA-CT3 Texture analyzer 

(Brookfield AMETEK, MA, USA), which was equipped with a stainless still probe with 

the diameter of 4-mm (TA 39) for penetration and a 10 kg load cell. In cucumber, the 

firmness of the tissues varies from center to the periphery due to a structural difference. 

The peripheral part of the sample was considered to measure firmness as it is the section 
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that gives crunchiness to cucumber (Figure 9). The texture (firmness) was determined as 

the maximum force to penetrate the probe into the sample to a 3 mm depth from the 

surface of the sample. The non-irradiated and irradiated samples were tested every day 

of storage up to 3 days. The instrument was calibrated before each use. This 

measurement was conducted in triplicate. 

 

 

Figure 9. Brookfield CT3 with sample under compression test. 
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4.3.3 Measurement of Color 

 The color of the cucumber samples (control and irradiated samples) was 

determined at room temperature by using a LAB Scan XE colorimeter (Hunter Lab, Inc, 

VA, USA) with D65 illuminant and 10 degree standard observer. Readings were recorded 

as L* (lightness), a* (Red-green), b* (Yellow-blue) for each sample. The L*, a*, b* 

values were calculated from following equations, 

                                                    L∗ = 100 √
Y

Yn
                                                              (3) 

  a∗ = Ka (
X Xn⁄ −Y Yn⁄

√Y Yn⁄
)                                                      (4) 

  b∗ = Ka (
X Xn⁄ −Z Zn⁄

√Y Yn⁄
)                                                      (5) 

Where, 

  X, Y, and Z are the CIE tristimulus values; 

Xn, Yn, and Zn are the tristimulus values for the illuminant, 

Xn = 94.83, Yn = 100.00, and Zn = 107.38; 

Ka and Kb are chromaticity coefficients for the illuminant, 

Ka = 172.10 and Kb = 66.70. 

Hue and Chroma values were calculated using following equations, 

  Hue =  tan−1 b∗

a∗
                                                        (6) 

Chroma =  √(a∗)2 + (b∗)2                                            (7) 

LAB Scan XE colorimeter was calibrated with a standard plate (Y=94.00, x=0.3578, y= 

0.4567) each time before use. This measurement was conducted in triplicate. 
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4.3.4 Measurement of Water Activity 

 Samples from each group (irradiated and control sliced cucumbers) were selected 

and the Rotronic Hygroskop DT (Rotronic Instruments Corp, NY, USA) used to 

measure relative humidity and temperature. The equipment was calibrated with humidity 

standards before use. The Water Activity (aw) was determined using this equation, 

aw =
Relative humidity (%)

100
                                               (8) 

This measurement was conducted in triplicate at room temperature. 

 

4.3.5 Measurement of Moisture Content 

Moisture content was determined by the direct method using vacuum oven (Lab-

Line Instruments Inc., Melrose Park, IL, USA) which measures weight loss of sample 

after drying in a vacuum oven at 70°C for 9 hours. Each sample’s weight, approximately 

4g, were recorded before and after drying. The samples were first chopped into small 

pieces and placed in aluminum canisters prior starting the drying process. The weight of 

canisters was also being recorded for more accurate measurements. After removing the 

samples from the vacuum oven the samples were placed in a desiccator to cool down 

before recording the final weight. The wet-basis moisture content was determined using 

this equation, 

𝑚 =
𝑊𝑚

𝑊𝑚+ 𝑊𝑑
=

𝑊𝑚

𝑊𝑇𝑜𝑡𝑎𝑙
                                                     (9) 

Where, 

m = wet-basis moisture content expressed as a decimal fraction 

Wm = mass of water; 
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Wd = mass of dry matter; 

Wtotal = mass of the original (wet) sample 

This measurement was conducted in triplicate.  

 

4.3.6 Measurement of pH 

 Samples from each group (irradiated and control sliced cucumbers) were selected 

randomly and the pH of sliced cucumbers was measured using a portable digital pH 

meter (Cole Parmer, pH 500 series, Model # 59003-20, Singapore). The pH meter was 

properly calibrated with standard solutions, pH 4, 7, and 10 and sanitized before the each 

experiment. The experiments were carried out at room temperature. This measurement 

was conducted in triplicate. 

 

4.3.7 Sensory Evaluation 

Sensory evaluation of irradiated and control samples was carried out under 

specific conditions on days 0, 1, 2, and 3 of refrigerated storage. Two samples were 

presented to panelists inside plastic containers with labeled 2 random digits.  Panelists 

(50) were asked to evaluate the samples by visual inspection of color, texture, smell and 

overall quality. A consumer test was carried out among (50 panelists) students, staff, and 

faculty at Texas A&M University. Panelists scored the samples using a 9-point hedonic 

scale where a score of 9 represents “like extremely” and a score of 1 represents “dislike 

extremely”. Scores higher or equal to 5 were considered as acceptable (Amerin and 

others 2013).  
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4.3.8 Analysis of Data 

 All experimental data recorded for each parameter tested in replicated three 

times. Data recorded for each parameter were analyzed by one-way analysis of variance 

(ANOVA) with <0.05 significance level using Statistical Analysis Software JMP. (SAS 

Institute, Cary, NC, USA). Mean separation was carried out using Tukey’s test when 

ANOVA indicated a significant (P < 0.05) difference.  

All microbial count data were converted into log10 CFU/g before analysis. For 

the pathogen reduction study, Average microbial count (log CFU/g) was plotted against 

irradiation dose to reveal the pathogen reduction achieved due to irradiation and the 

effect of storage at 4C over 3 days.   
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5. RESULTS AND DISCUSSION  

 

5.1 Dose Mapping Study 

 For an electron beam irradiation treatment, a dose mapping study of sliced 

cucumber was conducted using the Ion farm Chamber to determine the Dose Uniformity 

Ratio (DUR). Figure 10 show a distribution of the dose over the cucumber slice. 

Dosimeters located at the middle of the slice (Penetration depth = 2mm) absorbed the 

highest amount of dose by 28% and 56% compared to dosimeters located at front and 

back respectively. The explanation for the highest absorbed dose on dosimeter at the 

center is the effect of scattered electrons that cause the additional absorption of dose in 

addition to the primary incident electrons from the e-beam. Table 5 illustrates absorbed 

doses at different depths of cucumber slice. The Dose Uniformity Ratio for the 

experiment was 1.56. 

The DUR value for the research should be as close to 1.0 as possible to get 

uniform dose distribution in small research samples. The experimental results of DUR 

can demonstrate the dose-effect relationship, while for irradiation of large industrial 

production, wider dose variation is unavoidable (IAEA 2002).  It is useful for irradiator 

designers and food technologist to design large production industrial applications. 

Various techniques are used in industries to minimize the DUR to optimize product 

quality and to maximize throughput of an irradiation facility.  
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Table 5. Dose distribution on sliced cucumber irradiated at 1.0 kGy.  

 

Dose Distribution (kGy) 

Penetration 

depth 

(mm) 

Absorbed dose at 

center of the slice  

(kGy) 

Absorbed dose at  

corner of the slice 

(kGy) 

 

0 

y1.28a 

 1(0.13)    

y1.28a 

(0.08) 

 

2 

z1.61a 

(0.22) 

z1.66a 

(0.21) 

 

4 

x1.14b 

(0.14) 

x0.96a 

(0.18) 

Values are means of four replications 

1 Standard deviation Values are means of three replications 

x, y, z Means within a column, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 

a,b Means within a raw, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 
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Figure 10. Dose penetration depth for 4mm think cucumber slice irradiated with a 1.35 MeV e-beam accelerator. Values are 

means of four replications. 
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5.2 D10-value for Salmonella Poona on Cucumber Slices 

 Figure 11 shows the death curve for Salmonella Poona on a cucumber slices 

when irradiated up to a dose of 1.0 kGy with an increment of 0.2 kGy. Each of the data 

points is an average count of Salmonella Poona from four cucumber samples (Table 6). 

There was a reduction of 2.6 log CFU/g due to irradiation at a dose of 1.0 kGy compared 

to non-irradiated samples. The slope of the line, obtained from the linear equation y = 

mx + c where m stands for the slope of the line, was -2.6233 (Figure 11). The negative 

value of the slope is due to the downward trend of the line. The D10-value of 0.38 ± 0.03 

kGy for Salmonella Poona in cucumber was established in this study.  

 Rajkowski and Thayer (2000) indicated the D10-value of 0.54 and 0.46 kGy for 

the Salmonella spp. cocktails made with meat and vegetable isolates respectively on 

sprouts. Thayer and others (1995) found the D10-value of 0.7 for Salmonella spp. on all 

the meat at 5C. In a study conducted by Thayer and others (1990), D10-value were 

different for different species ranging from 0.77 for Salmonella Enteritidis to 0.38 

Salmonella Typhimurium in mechanically deboned chicken. In another study on orange 

juice conducted by Niemira and others (2001), D10-value were different for different 

spices ranging from 0.71 kGy for Salmonella Anatum to 0.35 kGy for Salmonella 

Ifantis. These studies indicate that all Salmonella species have different D10-value and it 

also differs with type and composition of food. All possible physical and environmental 

parameters besides the characteristics of the target microorganism should be considered 

to determine D10-value of any food product.   
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Table 6. Effect of e-beam irradiation at various level of absorbed doses (0 to 1.0 kGy) on 

Salmonella Poona population (log CFU/g) stored at 4C. 

Dose  

[kGy] 

Population of Salmonella Poona 

(log CFU/g) 

 

0 

z6.75 

1(0.26)    

 

0.23 

y5.77 

(0.19) 

 

0.41 

x, y5.41 

(0.46) 

 

0.66 

w, x4.79 

(0.57) 

 

0.84 

w4.26 

 (0.24) 

 

1.0 

w4.10 

(0.26) 

Values are means of four replications 

1 Standard deviation Values are means of three replications 

w, x, y, z Means within a column, which are not followed by a common superscript letter 

are significantly different (P < 0.05) 
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Figure 11. Death curve of Salmonella Poona for sliced cucumber at room temperature (R2 = 0.98).  Values are means of four 

replications.

y = -2.6233x + 6.5539
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5.3 Effect of E-beam Irradiation at 1.9 kGy (5D log Salmonella Poona reduction) on 

the Microbial Population of Salmonella Poona on Cucumber Slices 

 Salmonella Poona counts in the non-irradiated and irradiated cucumber samples 

are presented in Table 7. Electron beam irradiation at the dose of 1.9 kGy reduced 

Salmonella Poona by 4.96 log (CFU/g) (~ 5.0 Log CFU/g) (Figure 12), compared with 

the non-irradiated control samples on the day 0. The difference in Salmonella counts on 

the day zero indicates the immediate effect of irradiation treatment on the 

microorganism. At the end of day 3, the non-irradiated samples had 8.61 log CFU/g 

while samples irradiated at 1.9 kGy had 3.10 log CFU/g (difference 5.5 log CFU/g) 

Salmonella counts due to subsequent refrigerated storage. Approximately 0.6 Log 

CFU/g (17%) reduction in Salmonella counts with time was observed during the storage 

of the irradiated sliced cucumbers at 4C. There was no significant (P > 0.05) reduction 

in Salmonella counts for the group of non-irradiated samples. The effect of electron 

beam irradiation on quality and safety of sliced cantaloupe was studied by (Palekar and 

others 2015). They found that irradiation reduces Salmonella concentration by 1.1 log 

CFU/g at 0.7 kGy and 3.6 log CFU/g at 1.5 kGy with the gradual reduction in 

Salmonella counts with time during storage of 21 days.  

 The results confirm that electron-beam irradiation treatment of sliced cucumbers 

is effective in reducing a concentration of Salmonella and subsequent storage of treated 

cucumber samples at the temperature of 4C prevents the reproduction of Salmonella 

cells. This finding emphasizes the importance of proper storage and handling followed 

by processing to minimize the risk of pathogen regrowth and recontamination. The 
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concentration of pathogens in fresh produce is usually low (~ 3 Log CFU/g) (Prakash 

and others 2000). Taken this into consideration, a 5 log reduction can completely 

eliminate the contamination of pathogens from the fresh produce.  

 (Huang and others 2015) studied the effect of chronic temperature abuse on the 

growth of Salmonella on fresh-cut cantaloupe. Chronic temperature abuse is a sustained 

storage of time and temperature controlled food products at a temperature exceeding that 

prescribed for safe storage. They found an increase in growth of Salmonella at a 

temperature of 8C and 12C through storage of 7 days. However, at 4C, the population 

of Salmonella did not increase. Our data shows a slow reduction in Salmonella 

population during storage of 3 days at 4C. On that account, it shows signs of being 

more factors other than the temperature of storage that contributed to the reduction in the 

population of Salmonella on irradiated cucumber samples. One of the factors might be 

the reproduction of yeasts and/or molds that would compete with the pathogen for 

survivor (Palekar and others 2015). Yeasts and molds have a competitive advantage over 

pathogens that they can grow at refrigeration temperature and low pH. They compete 

with the weaker survivors for space and nutrients. When surface tissue of fruits and 

vegetables are punctured or cut by insects or mechanical abuse, yeasts, and molds 

naturally present on the surface (Beuchat 2002). There has not been much work done to 

study the interaction of pathogens with yeasts and molds on irradiated fresh produces.  
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Table 7. Effect of e-beam irradiation at 1.9 kGy on the Salmonella Poona population 

(log CFU/g) on cucumber slices stored at 4C for 3 days. 

 

 Population of Salmonella Poona (log CFU/g) 

Time 

(days) 

 

Control 

Irradiated 

(1.9 kGy) 

 

0 

x8.73b 

 1(0.10)    

y3.77a 

(0.21) 

 

1 

x8.68b 

(1.13) 

x, y3.56a 

(0.55) 

 

2 

x8.66b 

(0.69) 

x, y3.20a 

(0.17) 

 

3 

x8.61b 

(1.67) 

x3.10a 

(0.17) 

Values are means of four replications 

Control means non-irradiated cucumber slices  

1 Standard deviation Values are means of three replications 

a, b Means within a raw, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 

x, y Means within a column, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 
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Figure 12.  Effect of e-beam irradiation at 1.9 kGy on population of Salmonella Poona stored at 4C for 3days.  

Control means non-irradiated samples. Values are means of four replications. 
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5.4 Effect of E-beam Irradiation at 1.9 kGy on the Quality Attributes of Cucumber 

Slices 

5.4.1 Texture 

 Figure 2 (Appendix B) represents the values of maximum force required to shear 

the sliced cucumber samples during storage time. During the analysis, the control group 

started to lose surface moisture and the dry surface was observed. Samples from control 

groups were observed brittle up on breaking them using hands. However, no significant 

difference (P > 0.05) in firmness was found up to second day of storage. Samples on the 

third day showed significantly (P < 0.05) higher firmness.  

 The firmness of irradiated samples was softer (P < 0.05) compared to control 

samples. The firmness of sliced cucumbers was reduced by 50% because of irradiation 

treatment. The main problem with irradiation treatment of fruits and vegetables is the 

change (reduction in firmness) in texture. Radiation of fruits and vegetables induces 

depolymerization of cellulose, hemicelluloses, starch, and pectin, which results in 

softening of tissue. During storage, the group of irradiated samples did not lose surface 

moisture like control samples. Visually, irradiated samples seemed fresher on the second 

and third day of storage than the control samples. No significant (P > 0.05) differences 

were found among the irradiated samples during storage time.  

 There was a significant (P < 0.05) difference between maximum force values for 

irradiated and control sliced cucumber samples (Table 8). Firmness of irradiated samples 

were markedly (~50%) lower than the control samples.  
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Table 8. Effect of e-beam irradiation at 1.9 kGy on the maximum force (N) required to 

shear the cucumber slices stored at 4C for 3 days. 

Texture, [N] 

Time 

(days) 

 

Control 

Irradiated 

(1.9 kGy) 

 

0 

x13.86b 

1(1.62)    

x6.02a 

(1.11) 

 

1 

x14.34b 

(0.56) 

x6.31a 

(0.47) 

 

2 

x13.67b 

(1.06) 

x6.90a 

(0.96) 

 

3 

y15.02b 

(0.96) 

x6.46a 

(1.42) 

Values are means of three replications 

Control means non-irradiated cucumber slices  

1 Standard deviation Values are means of three replications 

a, b Means within a raw, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 

x, y Means within a column, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 
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5.4.2 Color 

 The effect of irradiation treatment on the color of the sliced cucumber samples is 

presented in Figures 3 to 5 (Appendix B).  The lightness (L*) values were used to 

estimate changes in the white color of sliced cucumbers during storage. L* is perceived 

lightness approximately ranging from 0.0 for black to 100.0 for white color. Values for 

lightness varied significantly (P < 0.05) with a trend towards higher values through 

storage time for control samples.  No significant (P > 0.05) differences were found in all 

irradiated samples through storage (Table 9). The Lightness of the irradiated samples 

was higher than control samples for zero and first day but after that on second and third 

day, irradiated samples were darker than the non-irradiated samples (Figure 3, Appendix 

B). However, there were no significant differences (P > 0.05) between all irradiated and 

non-irradiated samples (Table 9).  

 The a* values estimate redness-greenness of the sliced cucumbers during storage. 

Here, All the values for a* were in negative values as cucumbers exhibits shades of 

green color (Figure 4, Appendix B). Values for control samples varied significantly (p < 

0.05) with a trend towards higher values through storage time. For irradiated samples, a* 

values on day 1, day 2, and day 3 were significantly (P < 0.05) lower than the a* value 

on the zero day. There were significant (P < 0.05) difference between samples on 

comparing irradiated samples with control samples (Table 9).  

The b* values estimate yellowness-blueness of the sliced cucumbers during 

storage. All the positive values for b* were displaying shades of yellowness of cucumber 

slice. The b* values of irradiated and control sliced cucumbers decreased significantly (P 
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< 0.05) with storage time. No significant (P > 0.05) difference was observed among the 

irradiated and control samples (Figure 5, Appendix B) (Table 6).   

Hue describes an angle to the color wheel which distinguish the color position 

around the color wheel. Table 10 indicates that there was no significant (P > 0.05) 

difference in hue value in all of the samples. All samples (control and irradiated) were 

on same angle throughout the storage.  

Chroma is the quality of a color’s purity, intensity or saturation. It is a magnitude 

of color. There was no significant (P > 0.05) difference among group of control and 

irradiated samples. However, Intensity of color varied significantly (P < 0.05) with a 

trend towards lower values through storage time (Table 10).  
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Table 9. Effect of e-beam irradiation at 1.9 kGy on color L*, color a*, and color b* 

values for cucumber slices stored at 4C for 3 days. 

 

  

Color L* 

 

Color a* 

 

Color b* 

Time 

(days) 

 

Control 

Irradiated 

(1.9 kGy) 

 

Control 

Irradiated 

(1.9 kGy) 

 

Control 

Irradiated 

(1.9 kGy) 

 

0 

x67.27a 

1(0.69)    

x68.95b 

(3.42) 

x-3.67b 

1(0.16)   
 

x-3.39a 

(0.15) 

z13.81a 

1(0.61)    

y13.78a 

(0.98) 

 

1 

x68.92a 

(0.54) 

x69.17a 

(1.73) 

x-3.55b 

(0.13) 

y-3.19a 

(0.21) 

z, y13.16a 

(0.46) 

x12.87a 

(0.68) 

 

2 

y69.47b 

(0.97) 

x68.17a 

(0.79) 

y-3.04a 

(0.09) 

y-3.15b 

(0.06) 

y12.59a 

(0.37) 

x12.68a 

(0.38) 

 

3 

y70.40a 

(1.06) 

x69.91a 

(2.99) 

z2.86a 

(0.07) 

y-3.13b 

(0.14) 

x12.47a 

(0.30) 

x12.55a 

(0.56) 

Values are means of three replications 

Control means non-irradiated cucumber slices  

1 Standard deviation Values are means of three replications 

a, b Means within a raw, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 

x, y, z Means within a column, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 
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Table 10. Effect of e-beam irradiation at 1.9 kGy on Hue and Chroma values for the 

cucumber slices stored at 4C for 3 days. 

 

  

Hue 

 

Chroma 

Time 

(days) 

 

Control 

Irradiated 

(1.9 kGy) 

 

Control 

Irradiated 

(1.9 kGy) 

 

0 

x-0.99a 

1(0.00)    

x-0.99a 

(0.00)    

z14.28a 

1(0.62)    

y14.19a 

(0.99) 

 

1 

x-0.99a 

(0.00)    

x-0.99a 

(0.00)    

z13.62b 

(0.48) 

y13.26a 

(0.71) 

 

2 

x-0.99a 

(0.00)    

x-0.99a 

(0.00)    

y12.95a 

(0.38) 

y13.06a 

(0.38) 

 

3 

x-0.99a 

(0.00)    

x-0.99a 

(0.00)    

x12.80a 

(0.30) 

x12.94a 

(0.53) 

Values are means of three replications 

Control means non-irradiated cucumber slices  

1 Standard deviation Values are means of three replications 

a, b Means within a raw, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 

x, y, z Means within a column, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 
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5.4.3 pH 

 pH is a rough measure of the microbiological activity in foods. According to 

FDA, pH of cucumber is between 5.1 and 5.7. Thus, it is capable of supporting the 

growth of pathogens due to low acidity. The pH values for the control and irradiated 

cucumber samples are presented in Figure 6 (Appendix B). All the samples showed a 

slight trend towards an increase of pH through storage. On the third day of storage, pH 

of both irradiated and control samples were significantly (P < 0.05) higher compared to 

day 0, 1 and 2 of storage. However, when comparing the irradiated samples with the 

control samples, the pH of the irradiated samples was greater than the control samples. 

The pH of irradiated samples on the second and third day of storage was significantly (P 

< 0.05) higher than the control samples on the same days of storage (Table 11).   

 

5.4.4 Water Activity (aw) 

 The effect of the irradiation treatment on the water activity (aw) in the sliced 

cucumber samples during three days of storage is presented in Figure 7 (Appendix B). 

All samples have water activity values between 96.4 and 97.0 %. There was a slight 

difference between the irradiated and control samples. Values of Irradiated samples were 

slightly higher than control samples through storage. However, no significant (P > 0.05) 

difference was found among all the samples (Table 12).   
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Table 11. Effect of e-beam irradiation at 1.9 kGy on pH values for cucumber slices 

stored at 4C for 3 days. 

pH 

Time 

(days) 

 

Control 

Irradiated 

(1.9 kGy) 

 

0 

x5.5a 

 1(0.10)    

x5.6a 

(0.06) 

 

1 

x5.5a 

(0.08) 

x5.6a 

(0.05) 

 

2 

x5.6a 

(0.16) 

x5.7a, b 

(0.09) 

 

3 

y5.9a, b 

(0.02) 

x6.0b 

(0.10) 

Values are means of three replications 

Control means non-irradiated cucumber slices  

1 Standard deviation Values are means of three replications 

a, b Means within a raw, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 

x, y Means within a column, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 
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Table 12. Effect of e-beam irradiation at 1.9 kGy on water activity values for cucumber 

slices stored at 4C for 3 days. 

Water Activity (aw) 

Time 

(days) 

 

Control 

Irradiated 

(1.9 kGy) 

 

0 

y0.968a 

1(0.67)    

x0.969a 

(0.42) 

 

1 

x0.965a 

(0.26) 

x0.967a 

(0.06) 

 

2 

x0.966a 

(0.06) 

x0.968a 

(0.30) 

 

3 

x0.967a 

(0.11) 

x0.968b 

(0.15) 

Values are means of three replications 

Control means non-irradiated cucumber slices  

1 Standard deviation Values are means of three replications 

a, b Means within a raw, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 

x, y Means within a column, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 
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5.4.5 Moisture Content 

 The effect of the irradiation treatment on the moisture content of sliced cucumber 

during storage is presented in figure 8 (Appendix B). The moisture content of cucumber 

is important to consider as it affects physical, chemical aspects of fresh cucumber which 

relates with the freshness and stability of cucumber during the storage period. Moisture 

content relates with the texture, taste, and appearance of the slice of fresh cucumber and 

also microbial activity has a direct relation with moisture availability in the cucumber. 

There was not specific trend observed in moisture content during the storage however, 

the surface of sliced cucumber became dry during storage due to evaporation of surface 

moisture. All samples have moisture content values between 96.6 and 97.0. No 

significant (P > 0.05) difference was found among all the samples (Table 13).  

 

5.4.6 Sensory Attributes  

 Results of sensory evaluation are presented in Figures 9 to 12 (Appendix B). A 

score of 1 represented dislike extremely, 5 represented neither like nor dislike, and 9 

represented like extremely. A value of 5 or above was considered acceptable in this 

study (Appendix A). 
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Table 13. Effect of e-beam irradiation at 1.9 kGy on moisture content (wet basis) values 

for cucumber slices stored at 4C for 3 days. 

Moisture Content (wet basis), [%] 

Time 

(days) 

 

Control 

Irradiated 

(1.9 kGy) 

 

0 

x96.8a 

1(0.06)    

x96.7a 

(0.11) 

 

1 

x96.7a 

(0.08) 

x96.8a 

(0.08) 

 

2 

x96.9a 

(0.15) 

x96.8a 

(0.02) 

 

3 

x96.8a 

(0.04) 

x96.9a 

(0.27) 

Values are means of three replications 

Control means non-irradiated cucumber slices  

1 Standard deviation Values are means of three replications 

a, b Means within a raw, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 

x, y Means within a column, which are not followed by a common superscript letter are 

significantly different (P < 0.05) 



 

77 

 

Color acceptability scores of  the control and irradiated samples were not 

significantly (p > 0.05) different during storage (Figure 9, Appendix B). On the zero and 

first day of evaluation, there was a significant (P < 0.05) difference among the color 

acceptability scores of the both groups. Controls were more acceptable (P < 0.05) to the 

consumer than irradiated samples. Acceptability was similar (P > 0.05) for both group of 

samples for day 2, and 3 of storage. The group of control samples showed a decreasing 

trend by storage time but they were acceptable by day 3 of storage. The group of 

irradiated samples was also acceptable by the panelists. These results are supported by 

the objective color measurements. 

 Odor score values for consumer acceptance are significantly (P < 0.05) different 

for control and irradiated samples (Table 14). Acceptance score for irradiated samples 

was higher than control samples after the first day of analysis. Cucumber slices lost their 

original smell with storage time, but irradiated samples did not exhibit unfavorable odor 

changes.  This is because irradiation controls the microbial growth which prevents the 

development of off odor in cucumber samples. Both groups of samples was acceptable 

by the panelists.  

 Texture values for control and irradiated samples were significantly (p < 0.05) 

different on the 0 and 3 days of storage (Table 14). On the zero day, texture acceptability 

value for control samples was higher than irradiated samples. Panelist found that 

irradiated samples were losing water on the surface and softer in texture. However, on 

the day 3, irradiated samples were more acceptable than control. According to 

comments, a surface of the control sample was dry because of loss of surface moisture 
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and irradiated samples looked fresher compared to the controls. Objective texture 

analysis did not observe any difference (P > 0.05) throughout the storage period of 3 

days for both groups but the texture (firmness) of irradiated samples were significantly 

(P < 0.05) lower than control samples (Figure 11, Appendix B). Relationship between 

objective texture analysis and sensory texture analysis was studied using Pearson 

correlation using equation, 

𝑟𝑥𝑦 =  
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1 ∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1  
                                        (10) 

The Pearson’s correlation coefficient for non-irradiated samples was -0.20 and for 

irradiated samples was -0.03, which means there was no correlation between objective 

and sensory texture analysis.  

 The overall quality scores are shown in Figure 12 (Appendix B). There were no 

significant (P > 0.05) differences observed in overall acceptability of irradiated and 

control samples during storage (Table 14). On day zero, overall acceptability of control 

samples was higher than irradiated samples but there was no difference in acceptability 

values during storage. The overall acceptability of cucumber samples was highly 

affected by the appearance and odor of the samples. Both sample groups were equally 

accepted by panelists. 
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Table 14. Effect of e-beam irradiation at 1.9 kGy on sensory attribute values for cucumber slices stored at 4C for 3 days. 

 Color Odor Texture Overall acceptability  

Time 

(days) 

 

Control 

Irradiated 

(1.9 kGy) 

 

Control 

Irradiated 

(1.9 kGy) 

 

Control 

Irradiated 

(1.9 kGy) 

 

Control 

Irradiated 

(1.9 kGy) 

 

0 

x7.90b 

 (1.29)    

x7.10a 

(1.71) 

y7.85b 

(1.35)    

x7.00a 

(1.68) 

y7.60b 

(1.53)    

x, y7.00a 

(2.00) 

x7.80b 

(1.24)    

x7.15a 

(1.63) 

 

1 

x7.38b 

(1.33) 

x7.12a 

(1.45) 

x6.66b 

(1.38) 

x7.41a 

(1.43) 

x6.51a 

(1.67) 

x6.56a 

(1.68) 

x7.51a 

(1.25) 

x7.31a 

(1.51) 

 

2 

x7.33a 

(1.17) 

x7.37a 

(1.30) 

x6.37a 

(1.76) 

x7.57b 

(1.23) 

x6.50a 

(1.81) 

x, y6.81b 

(1.79) 

x7.33a 

(1.33) 

x7.48a 

(1.22) 

 

3 

x7.37a 

(1.19) 

x7.40a 

(1.27) 

x, y6.82b 

(1.72) 

x7.62a 

(1.27) 

x, y6.74a 

(1.99) 

y7.62a 

(1.27) 

x7.05a 

(1.65) 

x7.17a 

(1.28) 

Values are means of three replications 

Control means non-irradiated cucumber slices  

1 Standard deviation  

a, b Means within a raw, which are not followed by a common superscript letter are significantly different (P < 0.05) 

x, y Means within a column, which are not followed by a common superscript letter are significantly different (P < 0.05) 
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6. RECOMMENDATIONS FOR FUTURE STUDY 

 

Recommendation for future research on electron beam irradiation on fresh produce 

include: 

o Effect of e-beam irradiation on growth and survival of other pathogens. 

o Application of other treatments in combination of irradiation to reduce 

required dose of irradiation for decontamination. 
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7. CONCLUSION 

 

The effect of electron beam irradiation treatment on the microbiological safety 

and quality attributes (texture, color, pH, water activity, moisture content, and sensory 

attributes) of fresh sliced cucumber was evaluated. In addition, D10-value of Salmonella 

Poona was determined using various dose of e-beam irradiation. Electron beam 

irradiation was found to be an efficient tool for decontamination of Salmonella Poona as 

well as extension of shelf-life of sliced cucumbers due to following reasons: 

o The D10-value for Salmonella Poona on electron beam irradiated sliced cucumber 

was found to be 0.38 ± 0.03 kGy.  

o This study showed that a 5 log CFU/g reduction of Salmonella Poona was 

achieved when irradiating the slices with 1.9 kGy. Irradiation followed by 

refrigerated storage was efficient at pathogen reduction and maintaining quality 

of sliced cucumber.  

o The e-beam irradiation of fresh sliced cucumber did not affect its quality 

parameters including color, pH, water activity, and moisture content. Only a 

slight increase in pH values were observed during storage in both groups of 

irradiated and non-irradiated cucumber slices.  

o The firmness of sliced cucumbers was adversely affected by e-beam irradiation. 

The firmness of irradiated sliced cucumbers was deceased by 50% during 

objective measurement compared to non-irradiated group.  No particular trend 

was observed in firmness values of all samples during storage of 3 days.  
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o Although firmness of sliced cucumber decreased significantly (p < 0.05) with the 

application of irradiation treatment, the irradiated samples were found acceptable 

during the consumer sensory test.    

In summary, the results from this study indicate that electron beam irradiation 

can be an effective intervention strategy in the processing of sliced cucumber and it 

provides basis for application of e-beam irradiation on whole cucumber.  
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APPENDIX A 

 

Sensory Evaluation Form 

 
Product Name: Slice of Cucumber  
Date: 
 
Instruction: You are presented with two food samples. Please evaluate both     
samples for each quality parameter and use the number scale below to mark 
which number that you liked or disliked about each sample.  
Note: You can touch samples to check texture (hardness). Please do not eat 
the sample.  
9 - Like extremely  
8 - Like very much 
7 - Like moderately 
6 - Like slightly 
5 - Neither like nor dislike 
4 - Dislike slightly  
3 - Dislike moderately  
2 - Dislike very much 
1 - Dislike extremely  

 
 

  Sample 1  Sample 2 

General appearance      

Color     

Smell     

Texture     

 
 

Comments:  
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APPENDIX B 

 
 

Figure 1. Inactivation kinetics of Salmonella Poona in cucumber slices irradiated at 1.9 kGy stored at 4C for 3 days. Control 

means non-irradiated samples. Data points are means of four replications.
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Figure 2. Effect of e-beam irradiation at 1.9 kGy on maximum force (N) required to shear cucumber slices stored at 4C for 3 

days. Control means non-irradiated samples. Values are means of three replications.  
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Figure 3. Effect of e-beam irradiation at 1.9 kGy on color L* values (Equation 3) for cucumber samples stored at 4C for 3 days. 

Control means non-irradiated samples. Values are means of three replications.
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Figure 4. Effect of e-beam irradiation at 1.9 kGy on color a* values (Equation 4) for cucumber slices stored at 4C for 3 days.  

Control means non-irradiated samples. Values are means of three replications.
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Figure 5. Effect of e-beam irradiation at 1.9 kGy on color b* values (Equation 5) for cucumber slices stored at 4C for 3 days. 

Control means non-irradiated samples. Values are means of three replications. 
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Figure 6. Effect of e-beam irradiation at 1.9 kGy on pH values for cucumber slices stored at 4C for 3 days. 

Control means non-irradiated samples. Values are means of three replications. 
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Figure 7. Effect of e-beam irradiation at 1.9 kGy on water activity values for cucumber slices stored at 4C for 3 days.             

Control means non-irradiated samples. Values are means of three replications. 
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Figure 8. Effect of e-beam irradiation at 1.9 kGy on moisture content (wet basis) values for cucumber slices stored at 4C for 

3 days.  Control means non-irradiated samples. Values are means of three replications.
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Figure 9. Effect of e-beam irradiation at 1.9 kGy on sensory color scores for cucumber slices stored at 4C for 3 days. A score 

of 1 = dislike extremely, 5 = neither like nor dislike, and 9 = like extremely.  

Control means non-irradiated samples. Values are means of fifty replications. 
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Figure 10. Effect of e-beam irradiation at 1.9 kGy on sensory odor scores for cucumber slices stored at 4C for 3 days. A score 

of 1 = dislike extremely, 5 = neither like nor dislike, and 9 = like extremely.  

Control means non-irradiated samples. Values are means of fifty replications. 
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Figure 11. Effect of e-beam irradiation on sensory texture scores for cucumber slices stored at 4C for 3 days. A score of 1 = 

dislike extremely, 5 = neither like nor dislike, and 9 = like extremely.  

Control means non-irradiated samples. Values are means of fifty replications. 
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Figure 12. Effect of e-beam irradiation on sensory general appearance scores for cucumber slices stored at 4C for 3 days. A 

score of 1 = dislike extremely, 5 = neither like nor dislike, and 9 = like extremely.  

Control means non-irradiated samples. Values are means of fifty replications.  

a

a a a
a a a

a

5.0

6.0

7.0

8.0

9.0

10.0

0 1 2 3

G
en

er
a
l 

a
p

p
ea

ra
n

ce
 [

H
ed

o
n

ic
 s

ca
le

]

Time [days]

Control

Irradiated


