
QUAD DOMINANT 2-MANIFOLD MESH MODELING

A Dissertation

by

MEHMET OZGUR GONEN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Wei Yan
Co-Chair of Committee, Ergun Akleman
Committee Members, Tracy Hammond

Jose G Esquivel
Head of Department, Robert Warden

May 2017

Major Subject: Architecture

Copyright 2017 Mehmet Ozgur Gonen

ABSTRACT

In this dissertation, I present a modeling framework that provides modeling of

2D smooth meshes in arbitrary topology without any need for subdivision. In the

framework, each edge of a quad face is represented by a smooth spline curve, which

can be manipulated using edge vertices and additional tangential points. The overall

smoothness is achieved by interpolating all four edges of any given quad across the

quad surface.

The framework consists of simple quad preserving operations that manipulate the

principal curves of the smooth model. These operations are all variants of a generic

“Curve Split” and its inverse, “Region Collapse”. By only using these sets of simple

operations, it is possibly to model any desired shape conveniently. I also provide

implementation guidelines for these operations.

In the results of this dissertation, I present three main applications for this mod-

eling framework. The major application is modeling Mock3D shapes; shapes with

well defined interior normals by interpolating the normals at the boundaries of the

shape across its surface which can serve as a mock 3D model to mimic a 3D CGI look.

As a second application, the framework can be used in origami modeling by allowing

assignment of crease patterns across the surface of 2D shapes modelled. Finally,

vectorization of reference photos via modeling figures by following their contours is

presented as a third application.

ii

DEDICATION

To my father Emrullah Gonen, who has wanted me to get this doctorate degree

more than I have.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor

Ergun Akleman of the Department of Visualization and Professor Wei Yan, Jose

Esquivel of Department of Architecture and Professor Tracy Hammond of the De-

partment of Computer Science.

Professor Ergun Akleman has been the main advisor on this research, while Pro-

fessor Wei Yan served as the committee chair. The origami examples shown in

Section 7.2 was created by the MS student Han Wei Kung of the Department of

Visualization and the example for self-folding reconfigurable structure in the same

section was created by PhD student Edwin Hernandez of Department of Mechanical

Engineering and published in 2016 in the Journal of Mechanisms and Robotics as

cited.

All the other work conducted for the dissertation was completed by the student

independently.

Funding Sources

Graduate study was supported by a fellowship from Texas A&M University and

partially by National Science Foundation from awards NSF-EFRI-ODISSEI: Award

1240483 and NSF-CCF: Award 0917288.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

CONTRIBUTORS AND FUNDING SOURCES iv

TABLE OF CONTENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . x

1. INTRODUCTION AND MOTIVATION 1

2. BACKGROUND . 5

2.1 Polygonal Meshes . 5
2.2 Topological Concepts . 5
2.3 Mesh Representation . 6
2.4 Spline Representation . 7

2.4.1 Bezier Curves and Surfaces . 7
2.4.2 Coons Patch . 8

2.5 3D Modeling . 9
2.5.1 Primitives . 10
2.5.2 Operations . 10

2.6 Related Work . 13
2.6.1 Quadrangulation . 13

2.6.1.1 Subdivision . 13
2.6.1.2 Triangle-Combining 14
2.6.1.3 Patch Based Approaches 15
2.6.1.4 Parameter Based Approaches 15
2.6.1.5 Guiding Field Based Approaches 16

2.6.2 Mock 3D Scenes . 16

3. QUAD DOMINANT SMOOTH MESH REPRESENTATION 19

3.1 Basic Definitions . 19

v

3.2 Curve Table . 20
3.3 Bezier Surface Representation . 22
3.4 Interpolation . 23

4. QUAD-PRESERVING OPERATIONS . 26

4.1 Generic Curve Split Operation . 26
4.2 Stitching Strategies to obtain Quad-Preserving Curve Split Operations 28

4.2.1 Quad Preserving Curve Split Operations 28
4.2.1.1 Open Cut Splitting: 30
4.2.1.2 Closed Cut Split: . 30
4.2.1.3 Directed Open Curve Split: 30
4.2.1.4 Undirected Open Curve Split: 30
4.2.1.5 Undirected Closed Curve Split: 34
4.2.1.6 Directed Closed Curve Split: 35

4.3 Inverse Curve Split: Region Collapse 36

5. HIGH LEVEL OPERATIONS . 38

5.1 Inserting Skeletal Curves . 38
5.2 Creating Primitives . 38

6. IMPLEMENTATION . 44

6.1 Doubly Linked Face List (DLFL) Representation 44
6.2 Quad Preserving Curve Splitting . 46
6.3 Quad Preserving Region Collapse . 53
6.4 Quad Preserving Boundary Operations 55

6.4.1 Inserting Skeletal Curves . 55
6.4.2 Deleting A Quad Face . 55

7. APPLICATIONS . 56

7.1 Modeling Mock-3D Shapes . 56
7.1.1 Mock-3D Model . 57
7.1.2 Mock-3D Scene . 61
7.1.3 Mock-3D Examples . 62

7.2 Origami Modeling . 64
7.3 Image Vectorization . 68

8. CONCLUSIONS . 71

REFERENCES . 74

vi

LIST OF FIGURES

FIGURE Page

2.1 Sample of spline representations relevant to this research. 8

2.2 Primitives in polygonal modeling: The primitive shapes available in-
clude spheres, cubes, cylinders, cones, planes, and many others. . . . 10

2.3 Some sample operations in traditional polygonal modeling applied to
a polygonal cube model. 11

2.4 Examples of Catmull-Clark and Doo-Sabin subdivisions. 14

2.5 Triangle combining methods . 15

2.6 The pipelines of previously suggested mock-3d systems 17

3.1 Curved edges of a quad face. 20

3.2 Interpolating normal vectors. 24

4.1 Splitting an open curve creates a split region that is not necessarily a
quadrilateral. Selected curves are painted in red. 27

4.2 Splitting a closed curve creates a split region 27

4.3 Two examples of quadrangulation of split-region 29

4.4 The possible cases in curve split: six types of splits are highlighted in
red. 29

4.5 Examples of open cut splitting . 31

4.6 Examples of directed curve splitting 32

4.7 Examples of undirected open curve splitting 33

4.8 Examples of undirected open curve splitting 34

4.9 Examples of undirected closed curve splitting 35

vii

4.10 Face collapse as a region collapse operation 36

4.11 An example of ring shaped region collapse. 37

4.12 Additional examples for region collapsing. 37

5.1 A grid of (2× 2) . 39

5.2 Creating a (2× 3) grid . 40

5.3 Creating a torus by splitting a skeletal curve 41

5.4 2n-gon . 42

5.5 Creating 2n-gon by splitting skeletal curve. 43

5.6 Skeleton . 43

6.1 Quad preserving vertex splitting. 46

7.1 Examples of normal maps generated using sketch based modeling pro-
grams. 56

7.2 An sample rendering of a mock-3d scene. 57

7.3 Examples of normal maps generated using sketch based modeling pro-
grams. 59

7.4 Rotation of the vertex normal based on the tangent rotation. 60

7.5 Stages of creating a mock-3d horse model. 63

7.6 A cartoon character modelled via grids. 65

7.7 A hexagonal parabola made from the hexagon shape. 66

7.8 A hexagonal parabola made from the hexagon shape. 67

7.9 A self-folding torus shape via thermal stimulus. 68

7.10 Gradient mesh tool in Adobe Photoshop being used for image vector-
ization. 68

7.11 An example of application in image vectorization. 69

8.1 A scene from “The Peanuts Movie” (c) 2015, 20th Century Fox. . . . 72

viii

8.2 Modeling of a salt body starts with extracting silhouette curves from
a seismic image. 73

ix

LIST OF TABLES

TABLE Page

3.1 The curve table for the quad face. 21

3.2 Mapping of bicubic Bezier surface control vertices. 23

x

1. INTRODUCTION AND MOTIVATION

In 3D computer graphics, 3D modeling is the process of developing a mathe-

matical representation of any three-dimensional surface of an object mostly via a

modelling software. This process has challenges due to the 2D nature of the input

and output devices used in the process, such as computer mouse and 2D computer

displays. Creating a 3D model on the computer requires one to interact with the

computer in 2-dimensions. Despite this challenge, most of the commercial model-

ing applications primarily support 3D platforms due to the general demand for 3D

modeling in the film and video gaming industries or computer aided manufacturing.

However, according to a recent market research 3D Graphics is still only 8% of the

whole graphics market, while 2D graphics market such as vector, image and video

constitutes the rest, i.e. more than 90%, of the graphics market [1]. Moreover, the

3D modeling market does not grow as rapidly as 2D painting/editing market.

There could be several foreseeable reasons to explain the reluctance of market

share of 3D modeling, such as it could be less intuitive, more expensive and require

more training than 2D. Additionally, in 3D modeling, it is harder to include all types

of expressive depictions that are caused by impossible, inconsistent and incoherent

shapes. Although, this can be seen as a problem for the shape modeling community,

it could be an opportunity for the community to explore new areas in shape modeling

research. Namely, this reluctance suggest that there exists a critical need to develop

hybrid systems that can provide 3D effects along with the convenience and expressive

power of 2D.

In this research, I propose a framework for modeling quad-dominant 2D meshes

with arbitrary topology that can be used as an alternative for modeling 3D meshes.

1

These 2D meshes are quad dominant in the sense that they are composed of mostly

faces with four edges. The quad face restriction is motivated by the idea of repre-

senting the faces of the model by spline patches. Since a spline patch can be curved

and smooth, It’s possible to obtain single view representation of complicated smooth

3D shapes by using a set of connected 2D patches.

In traditional polygonal modeling, a smooth model is obtained by applying a

smoothing operation on a base polygonal mesh with relatively low tessellation. This

smoothing operation is often times a subdivision method such as Catmull-Clark,

which doubles the overall tessellation of the mesh when applied. To achieve a com-

pelling result, this operation it applied twice or three times which may increase the

polygon count by a factor of eight. Often times, this modeling approach requires

the modelling artist to switch between the base mesh and its subdivided version as

he keeps refining the model. The fundamental reason for this approach is that it is

much more convenient for the artist to model in a lower polygonal model and let the

computer handle the smoothing.

Alternatively, in geometric modeling, spline surfaces are a great way of obtaining

a smooth surface. A spline surface is composed of atomic elements called patches. A

patch is obtained by interpolating either control points or bounding curves. Creating

a 3d model via spline patches is called patch modelling. In this modeling approach, it

is possible to obtain a smooth model bypassing the smoothing step. This is a crucial

motivation point for this research.

Most spline patches are defined over interpolation (n×m) control points in four-

sided rectangular form. In addition to spline patches, Coons Patch is also defined

over bi-linear interpolation of four boundary curves. There also exists three-sided

variants of the patches mentioned, however, they are obtained by using a dummy

boundary condition in zero length.

2

Obviously, four-sided patches are very suitable representations for quad faces,

since there exist a one-to-one match between the edges of the quad and sides of a

four-sided patch. Consecutively, if we have a mesh whose faces are all quads, it is

possible to represent it via four-sided patches throughout which results in an over all

interpolated smooth mesh. This smooth mesh can be used in various applications.

The major application for this 2D modeling framework is a mock-3D shape rep-

resentation that consists of texture mapped 2-complexes. The key part of this rep-

resentation is that the textures that define non-conservative 2D vector fields along

with thickness fields, which we call shape maps. Using shape maps, for any given

mock-3D scene and a given 3D position, we can uniquely compute every 3D shape

in the scene using rays emanated from the given position.

These mock-3D scenes are view dependent since the shapes of all objects in the

scene depend on the positions of ray centers. Using these dynamically computed

shapes, we can compute any illumination effect that requires geometry such as shad-

ows, reflection and refraction in real time.

This representation is powerful enough to handle all types of expressively de-

pictions from impossible renderings/shapes to incoherent or inconsistent render-

ings/shapes. The application I have developed for this representation turns shape

modeling in to an easy-to-use, easy-to-extend 2D graphics application.

The 2D nature of the framework proposed is also suitable for designing Freeform

Origami. The framework can serve as a fold pattern design tool that can provide

curved crease patterns. Freeform Origami allows users to manipulate the shape of

provided origami forms or user-defined forms to design crease patterns. Alternatively,

well-known straight crease patterns and their curved versions can be generated using

this framework. These patterns can be exported to be used by laser cutters and

FEA software for coordinated fabrication and thermomechanical folding analysis in

3

a origami making pipeline.

Another application for the proposed framework is image vectorization, which is

a commonly used technique in the graphic design community to create illustration-

like images. In the image vectorization process, the graphic artist takes a photo as

a base image and tries to recreate a vector representation for the underlying photo

by using vector graphic tools. Gradient Mesh Tool in Adobe Photoshop is one if the

common tools used in this process. However, this process is mostly manual and often

very time consuming. The Gradient Mesh tool works in individual rectangular pieces

and often times a single rectangular region is not adequate to represent a shape in

arbitrary topology. The meshes created by the framework I propose comes in quad

dominant in arbitrary topology, making it very suitable for this purpose.

4

2. BACKGROUND

In this chapter, I explain the theoretical grounds that this research stands on. I

also give a brief overview of the related work in the literature.

2.1 Polygonal Meshes

The shapes studied in geometric modeling are mostly two- or three-dimensional.

Today most geometric modeling is done with computers and for computer-based

applications. Two-dimensional models are important in computer typography and

technical drawing. Three-dimensional (3D) models are central to computer-aided

design and manufacturing (CAD/CAM), and widely used in many applied technical

fields such as mechanical engineering, architecture, geology, medical image processing

and entertainment industries.

Polygonal meshes are widely used representations for 3D models in such applica-

tions. A polygonal mesh is based on the idea of cell decomposition: a complex object

is represented with an assembly of simple polygonal cells. Triangles and quadrilater-

als are the most common cells used in polygonal meshes. While triangle meshes are

much more common in computer graphics, quite a number of tasks are better suited

to quadrilaterals (quad meshes), such as texturing, compression and finite element

simulation.

2.2 Topological Concepts

Topology primarily deals with the qualitative characteristics of a geometrical ob-

ject rather than its quantitative dimensions [1]. The modeling operations of the

framework presented in this research are topological in nature and involves the fol-

lowing topological concepts.

5

The topological concept of a 2-manifold is the fundamental topological concept

in this research. A 2-manifold or a 2-dimensional manifold is a topological space

where every point has a neighborhood topologically equivalent to an open disk. In

other words, the geometrical object locally resembles the plane [1].

A closed surface is a connected, closed, 2-manifold [1]. That is, it consists of a

single piece and has no boundaries. A 2-manifold in general consists of a number

of surfaces, each of which is homeomorphic (topologically equivalent) to a sphere

with zero or more handles. The number of handles on the sphere is called the genus

of the surface. Equivalently, a genus can be defined to be the number of holes in

the surface. The genus of a 2-manifold is the sum of the genera of its component

surfaces.

2.3 Mesh Representation

The 2-manifold mesh structure that is the backbone of this research has to be

represented via a competent data structure. Several data structures have been pro-

posed to represent 2-manifold mesh structures. Some of these are face-based in which

mesh faces are explicitly given in consistent and oriented directions [2], while others

are edge-based in which adjacency relationships around each edge are given [3] [4] [5]

[6] [7] [8]. Baumgarts winged-edge structure [5] is the most well known edge-based

representation, based on 10 which several variants have been proposed, including

Weilers edge based structure [3], Mantylas half-edge structure [4] and Guibas and

Stolfis quad-edge structure [6].

Several of the above data structures, including Weilers radial-edge structure [9],

Karasicks star-edge structure [8] and Vaneceks edge-based data structure [7] can

support a wide range of non-manifold surfaces. Mantylas half-edge representation

[4] is one data structure that is designed to support manifold meshes. It is possible to

6

make the internal representation of the objects valid orientable 2-manifold structures

even when the corresponding geometric shapes appear to be non-manifold [10].

Akleman and Chen introduced a topologically robust mesh modeling approach

[11] by adopting topological graph theory to computer graphics and shape modeling.

Their 2-manifold mesh modeling scheme is based on a minimal set of manifold pre-

serving operators [11] that are simpler, more intuitive and more user-friendly when

compared to previously proposed schemes. The minimal set of fundamental opera-

tors that have been identified are : CreateVertex, which inserts a new vertex into the

mesh, DeleteVertex, which removes an existing vertex from the mesh, InsertEdge,

which inserts an edge between two existing corners of the mesh and DeleteEdge,

which deletes an existing edge from the mesh [11].

2.4 Spline Representation

In mathematics, a spline is a numeric function that is piecewise-defined by polyno-

mial functions, and which possesses a high degree of smoothness at the places where

the polynomial pieces connect (which are known as nodes) [12]. The term spline is

adopted from the name of a flexible strip of metal commonly used by drafters to assist

in drawing curved lines. In computer graphics, parametric curves whose coordinates

are given by splines are popular because of the simplicity of their construction, their

ease and accuracy of evaluation, and their capacity to approximate complex shapes

through curve fitting and interactive curve design.

2.4.1 Bezier Curves and Surfaces

Bezier Curve is one of the most common type of spline curve in computer graph-

ics to model smooth curves [12]. As the curve is completely contained in the convex

hull of its control points, the points can be graphically displayed and used to ma-

nipulate the curve intuitively. Quadratic and cubic Bzier curves are most common.

7

(a) Bezier Curve (b) Bezier Surface (c) Coons Patch

Figure 2.1: Sample of spline representations relevant to this research.

Particularly, cubic Bezier curves are in great use since the provide two end and two

tangent points. They are patched together, producing a composite Bzier curve which

is commonly referred to as a ”path” in vector graphic applications such as Adobe

Illustrator, CorelDraw. Since it is possible to break the smoothness of the composite

curve at the control point at which two curves meet, paths provide great flexibility

in vector graphics. In this research, cubic Bezier curves are chosen for modelling

smooth shapes for this particular reason.

Four points P0, P1, P2 and P3 in the plane (or in higher-dimensional space) define

a cubic Bzier curve [12]. The curve starts at P0 going toward P1 and arrives at P3

coming from the direction of P2. Usually, it will not pass through P1 or P2; these

points are only there to provide tangent information. The explicit form of the cubic

Bezier curve is:

B(t) = (1− t)3P0 + 3(1− 2)2tP1 + 3(1− t)t2P2 + t3P, 0 ≤ t ≤ 1 (2.1)

2.4.2 Coons Patch

In computer graphics, Coons Patch is a type of manifold parametrization that

creates a smooth surface between four space curves that meet at corners [12]. Since

8

these four curves form a quad, it is the motivational interpolation method for this

framework.

Given four space curves c0(t), c1(t), d0(t), d1(t) and their condition to meet at

corners as c0(0) = d0(0), c0(1) = d1(0), c1(0) = d0(1), c1(1) = d1(1), Coons first does

a linear interpolation between the opposing pairs c0 and c1 as

Lc(s, t) = (1− t)c0(s) + tc1(s)

and between d0 and d1 as

Ld(s, t) = (1− s)d0(t) + sd1(t)

producing two ruled surfaces, and the bilinear interpolation on the four corner

points would be

B(s, t) = c0(0)(1− s)(1− t) + c0(1)s(1− t) + c1(0)(1− s)t + c1(1)st

Then a Coons interpolation for the quad face can be written as in 2.2

C(s, t) = Lc(s, t) + Ld(s, t)−B(s, t) (2.2)

2.5 3D Modeling

Although it is possible to construct a mesh by manually specifying vertices and

faces, the common approach is to build meshes using a variety of tools provided by

a modeling software package. Polygonal Modeling is the process of constructing a

polygonal mesh.

9

2.5.1 Primitives

Primitives are three-dimensional geometric shapes you can create in a 3D-Modeling

software. The primitive shapes available include spheres, cubes, cylinders, cones,

planes, and many others (see Figure 2.2). You can modify the attributes of basic

primitives to make them more or less complex. Many 3D modelers begin with poly-

gon primitives as a basic starting point for their models. This technique is referred

to as primitive-up modeling.

-

Figure 2.2: Primitives in polygonal modeling: The primitive shapes available include
spheres, cubes, cylinders, cones, planes, and many others.

2.5.2 Operations

In a conventional 3D modeling frameworks, there are a very large number of

operations which may be performed on polygonal meshes which modifies them topo-

10

logically and geometrically. Down bellow some of these operations are mentioned.

(a) Extruded cube (b) Truncated cube (c) Subdivided cube

Figure 2.3: Some sample operations in traditional polygonal modeling applied to a
polygonal cube model.

• Extrusion: The extrusion operation, applicable to a set of edges, face, or

vertices, creates a new element of same size connected to the original with a

set of faces. Performing the extrude operation on a square face would create

a cube connected to the surface at the location of the face. It is one of the

most commonly used operations in polygonal modeling. Most modelers sculpt

their initial models by performing a sequence of face extrusions on a segmented

primitive.

• Subdivision: Subdivision is a way for modelers to add polygonal resolution to

a model, either uniformly or selectively. Because a polygonal model typically

starts from a low-resolution primitive with very few faces, it is almost impos-

sible to produce a finished model without at least some level of subdivision.

A uniform subdivision divides the entire surface of a model evenly. Uniform

subdivisions are usually completed on a linear scale, meaning every polygonal

11

face is subdivided into four. Uniform subdivision helps to eliminate blockiness

and can be used to evenly smooth the surface of a model.

• Truncate/Bevel: By default, the edges on a 3D model are infinitely sharpa

condition that virtually never occurs in the real world. Inspected closely

enough, almost every edge you encounter will have some sort of taper or round-

ness to it. A bevel operation takes this phenomenon into account, and is used

to reduce the harshness of the edges on a 3D model: For example, each edge on

a cube occurs at a 90 degree convergence between two polygonal faces. Bevel-

ing those edges creates a narrow 45 degree face between the converging planes

to soften the edge’s appearance and helps the cube interact with light more

realistically. The length (or offset) of the bevel, as well its roundness can be

determined by the modeler.

• Refining/Shaping Most models require some level of manual refinement via

individually moving vertices around. When refining a model, the artist moves

individual vertices along the x,y, or z axis to fine tune the contours of the

surface. A sufficient analogy for refinement might be seen in the work of a

traditional sculptor: When a sculptor works, he first blocks out the large forms

of the sculpture, focusing on the overall shape of his piece. Then he revisits

each region of the sculpture to fine tune the surface and carve out the necessary

details. Refining a 3D model is very similar. Every extrusion, bevel, edge-

loop, or subdivision, is typically accompanied by at least a little bit of vertex-

by-vertex refinement. The refinement stage can be painstaking and probably

consumes 90 percent of the total time a modeler spends on a piece. It might

only take 30 seconds to place an edge loop, or pull out an extrusion, but

it wouldn’t be unheard of for a modeler to spend hours refining the nearby

12

surface topology (especially in organic modeling, where surface changes are

smooth and subtle). Refinement is ultimately the step that takes a model from

a work in progress to a finished asset.

2.6 Related Work

In this section I present some of the relevant work from the literature in regards

to the methodology and application of this research.

2.6.1 Quadrangulation

In many applications meshes are generated as in triangular form. There are many

methods to obtain a quad mesh from a triangular one. I classified existing quadran-

gulation approaches in five categories: (1) Subdivision, (2) Triangle-Combining, (3)

Patch-Based, (4) Parameter Based, (5) Guiding Field Based.

2.6.1.1 Subdivision

A naive method to create quadrilateral meshes is subdivision or remeshing. Remesh-

ing is not a practical option since it can increase the number of faces significantly.

There exists two main approaches to obtain quad-dominant meshes using remeshing:

(1) Vertex Insertion and (2) Corner Cutting.

Vertex Insertion: Vertex insertion is the remeshing algorithm behind popular

subdivision algorithms such as Catmull Clark. Vertex insertion turns any mesh into

a mesh that consists of only quadrilaterals. Therefore, Performing a Catmull-Clark

subdivision [13] on any mesh will result in a whole quad mesh.

Corner Cutting: Corner Cutting is a the remeshing algorithm behind popular

subdivision methods such as Chaitkin or Doo-Sabin [14]. Corner Cutting does not

turn create a mesh that consists of only quadrilaterals. It increases the number of

quads while keeping the existing non-quads as is.

13

Figure 2.4: Examples of Catmull-Clark and Doo-Sabin subdivisions.

2.6.1.2 Triangle-Combining

Tri-to-quad conversion methods combines two original triangles into a quad. Nat-

urally, these methods are expected to produce quad meshes heavily depended on the

topology of the input mesh and introduce some level of irregularity. SQuad [15] is

designed to improve the internal representation of meshes but can be used for tri-

to-quad conversion. BlossomQuad [16] uses a combinatorial optimization algorithm

to find the global optimum for conversion, however it is computationally expensive.

Conversely, [17] presents a greedy approach where most eligible pairs are first iden-

tified, and remaining triangles are fused after a sequence of edge-flip operations.

Figure 2.5 shows examples from these methods.

14

Figure 2.5: Triangle combining methods: BlossomQuad [16] (left) uses a combi-
natorial optimization algorithm, while Tarini et. al [17] (right) presents a greedy
approach.

2.6.1.3 Patch Based Approaches

Patch-based methods work by mapping the original surface to set of square

patches. The final mesh is generated by sampling the patch set as the base mesh.

[18] classfies the input into flat regions by normal based clustering and extracts a

coarse mesh, where high curvature regions are used in computing the base mesh. [19]

generates a quad model through CC subdivision and simplifies it to a base mesh.

Gonen et al introduced sketch based modeling approach using curvature classifi-

cation in [20], where 2d outline curves are represented by quadrilateral tubes.

2.6.1.4 Parameter Based Approaches

Similar to patch-based methods, there are also parametrization based methods

that work by constructing a mapping of 3D surface to a 2D domain, where it can be

easily tessellated into quads. [21] determines the parametrization domain topology

by finding its critical points of the scalar field on the triangle mesh. There are

other specialized patch quadrangulation algorithms, e.g., those that attempt to find

15

a topology with the fewest irregular vertices possible [22]; [23].

2.6.1.5 Guiding Field Based Approaches

Many popular algorithms generate a quad mesh from a guiding field. [24] [25],

[26]. While fields can be edited by specifying locations of singularities or by control-

ling parameters of an optimization function, e.g., [27], [28]; [29]; [30]; [31], there is no

direct relationship between a field and a resulting quad mesh, because the algorithms

used to derive a quad mesh from a field are quite involved.

The three most related concepts for the exploration of quad mesh topologies are

curve sampling [32], connectivity editing [33]; [34], and advancing fronts (paving)

[35]; [36]; [37]. [32] connect the boundary vertices of a patch by curves and propose

an algorithm to generate a layout and another algorithm to mutate an existing layout.

2.6.2 Mock 3D Scenes

The major application of the framework I propose is creating mock-3D scenes.

There currently exists two representations that is related to this application: bas-

reliefs and normal maps. However, both of them really corresponds real shapes that

can exist in 3D. I present a fuzzy and view dependent representation that is suitable

for global illumination while providing all the representational powers of both bas-

reliefs and normal maps.

Bas-reliefs are sculptures that can be viewed from many angles with no perspec-

tive distortion as if they are just images. In other words, perspective transformation

is embedded in bas-relief sculptures [38]. One problem with bas-reliefs for 2D artists

is that their construction is still a sculpting process. This may not be suitable for

illustrators and painters who are not interested in sculpting shapes.

Normal maps became popular when they were introduced in 1998 [40]. Al-

though,they are mainly used as texture maps to include details to polygonal meshes,

16

LUMO: Illumination for cel animation

An image-based shading pipeline for 2D animation

Figure 2.6: The pipelines of previously suggested mock-3d systems: LUMO, model
normal maps by diffusing 2D mormals in line drawings. Bezerra et al [39] suggested
an image-based shading pipeline by inspecting the hand drawn image directly.

17

they can directly be used as shape representations by embedding perspective in-

formation as shown by Johnston [41]. He developed a sketch based system, called

LUMO (see Figure 2.6), to model normal maps by diffusing 2D normals in a line

drawing. Since then, only a few groups investigated the potential use of normal maps

as a shape representation such as [42, 39, 43, 44]. Sun et al. [45] introduced Gradient

Mesh to semi-automatically and quickly interpolate normals from edges, and Orzan

et al. [46] calculate a diffusion from edges by solving the Poisson equation. Sýkora et

al. [47] proposed Lazy-Brush, which can propagate scribbles to accelerate the defini-

tion of constant color regions. Finch et al. [48] build thin-plate splines which provide

smoothness everywhere except at user-specified tears and creases. The underlying

splines are used to interpolate normals.

Wu et al. [49] proposed shape palette, where user can draw a simple 2D primitive

in the 2D view and then specify its 3D orientation by drawing a corresponding

primitive. This method also performs diffusion using a thin-plate spline. Recently,

Shado et al. [44] developed CrossShade, another sketch based interface to design

complicated shapes as normal maps. They use an explicit mathematical formulation

of the relationships between cross-section curves and the geometry. The specified

cross-section is used as an extra control point to control the normals. Vergne et

al. [50] introduces surface flow from smooth differential analysis, which can be used

to measure smooth variations of luminance. Therefore, the author also propose to

drawing the shadows and other shading effects.

18

3. QUAD DOMINANT SMOOTH MESH REPRESENTATION

In this chapter, I explain how a smooth mesh is represented in this framework

and define the basic terminology used in this representation.

3.1 Basic Definitions

In the context of this framework, a Quad Dominant Smooth Mesh is the smooth

geometrical surface that represents a quad dominant mesh. A quad dominant mesh

is a mesh composed of mostly quad faces, where a quad face is a face with exactly

four vertices and four edges connecting its these vertices. Any non-quad face in the

mesh a quad dominant mesh is an irregular face and not legit in the framework.

Exceptions to this constrain are triangular (cap) faces and invisible (outer) faces.

A triangular face in quad dominant mesh is an irregular face with three vertices

and edges. These type of faces may be needed to create caps or saddles in the shape.

An invisible face is a face that is marked as invisible to be literally invisible to the

user. An invisible face, also called outer face, is not rendered on the screen, but is

internally used to preserve the 2-manifold property when representing a hole in the

shape or the shape outline. Each quad dominant mesh has at least one outer face to

represent the outline of the shape. Each additional outer face means an additional

genus in the shape.

Any edge of an outer face is an outer edge in the mesh. Conversely, an inner edge

is an edge that does not belong to any outer face, meaning shared only by visible

faces.

The smooth representation of quad dominant mesh is obtain via a spline rep-

resentation of a polygonal base mesh. In this representation, edges and faces are

represented by spline curves and surfaces, respectively.

19

The spline representation of an edge is referred as a curved edge. A curve in

the framework may consists of one or more curved edges. If a curve is composed of

outer edges only, it is called a boundary curve. Conversely, a non-boundary curve is

composed of all inner edges. A curve is closed if it loops back to itself and open if

it does not. A curve whose end points touches to an outer edge may be interpreted

open or closed.

3.2 Curve Table

Figure 3.1: Curved edges of a quad face.

The quad dominant mesh is topologically a mesh composed of vertices, edges and

faces. In the conventional geometric representation of a polygonal mesh, these terms

20

Edge Curve Start CV1 CV2 End Degree
e1 C1 v1 v5 v6 v2 3
e2 C2 v2 v7 v8 v3 3
e3 C3 v3 v9 v10 v4 3
e4 C4 v4 v10 v11 v12 3

Table 3.1: The curve table for the quad face.

refers to points, lines and polygons, respectively. However, a smooth representation

of the base mesh requires extending its ordinary polygonal representation. For this,

instead of lines, we can represent the edges by a spline curve that interpolates the two

end-points, which correspond to vertex positions. To represent an edge as a spline

curve, we use a Bezier curve of order k > 2. The reason is that Bezier provides

continuity between adjacent curved edges by interpolating the end points. Bezier

representation requires additional k − 2 number of intermediate control vertices to

be stored per edge in addition to the positions of two vertices, which are actually

the two end-points of the curved edge. The intermediate control vertices do not

actually belong to the topology of the base mesh and are only needed for drawing

the curve. On the other hand, they are needed during modeling process when an

operation performed on the edges. Therefore, we use a curve table per edge that

store the positions of all control vertices.

Figure 3.1 illustrates a quad face whose edges are represented by cubic Bezier

curves that are chosen for this research. As seen in the figure, each curve interpolates

the two end-points of the edge that it represents along with two additional control

points that serves as tangents for the cubic Bezier curve. The table 3.1 is the curve

table for the quad face in Figure 3.1. Note that each edge has a direction denoted

by its start and end vertices in the table. The order of the intermediate control

21

vertices of the Bezier should also follow this direction for a consistent geometric

representation.

3.3 Bezier Surface Representation

It is also possible to use Bezier surfaces for smooth geometric representation of a

quad face for a smooth representation. A Bezier surface of degree (n,m) is defined

by a set of (n + 1,m + 1) control points denoted by ki,j. In our case, we can use

cubic Bezier surfaces which requires (4, 4) control points. These control points can be

retrieved from the four curved edges enclosing a quad face. This requires a mapping

between the control points k4,4 of the bezier representation and the set of control

vertices (v0, v1, ..., vn) enclosing the quad.

For this mapping, we need to make use of the rotation system in the mesh. Given

a quad face with its curved edges in rotation order as C0, C1, C2, C3, all the vertices

from each curved edge should map to a control vertex in the k4,4. While this mapping

seems straightforward, note that if the direction of the curve does not match the given

rotation order, the curve should be flipped for the mapping. This is a crucial point

in the implementation.

After the control vertices of the curved edges are mapped, there will obviously

be inner control vertices of the Bezier Surface remaining unmapped. Although it

is possible to introduce additional control vertices for each quad face, for the sake

of simplicity, we can derive the inner points from the parallelogram defined by the

control points at respective corners. Table 3.2 shows a mapping of the control vertices

of the quad face shown in figure 3.1. Note that the intermediate control points are

computed as an average of intermediate curve points at respective corners.

After the proper mapping, a two dimensional bicubic Bzier surface that geomet-

rically represents the quad face f can be defined as follows:

22

ki,j ki=0 ki=1 ki=2 ki=3

kj=0 v1 v5 v6 v2
kj=1 v12 (v5 + v12)/2 (v6 + v7)/2 v7
kj=2 v11 (v11 + v10)/2 (v9 + v8)/2 v8
kj=3 v4 v10 v9 v3

Table 3.2: Mapping of bicubic Bezier surface control vertices.

P (u, v) =
4∑

i=0

4∑
j=0

B4
i (u)B4

j (v)ki,j

using Bernstein polynomials denoted by Bi(t).

3.4 Interpolation

As previously stated, the main motivation behind the quad restriction is that it

provides convenient interpolation of the data at boundaries to the interior region.

The data referred here can typically represented as a n-dimensional vector, denoted

as ~d =< d0, d1, d2, ..., dn >, where each component refers to a dimension to be

named by the application. These dimensions may refer to the data including color as

~crgb = (d2, d3, d4) and normal vector as ~nxyz = (d5, d6, d7) depending on the context.

In this framework, each vertex vi stores a data vector ~di to be interpolated. These

data vectors should first be propagated to the boundaries of the quad region, namely

to the curved edges enclosing each quad face. Given a curved edge C(t) in parametric

form, we can use linear interpolation to figure out the data vector ~d at point C(t) on

the curve as

D(t) = ~d0(1.0− t) + ~d3t

where, ~d0 and ~d3 refers to the data vectors at the end points of the curve. We

23

can call the parametrized representation of data vectors along the boundary curve

D(t) as a data curve.

However, the normal vector component of the data vector is a special case since

the normal is a property that depends on the surface geometry. To properly inter-

polate the normal vector for an interior point on the curve, we need to take the

Frenet-frame of the point into account. For this, we rotate the normal vectors n0

and nk prior to linear blend, defined by the rotation of their initial frames. In figure

7.4 we see a demonstration of this process. The normal vectors n0 and n3 at both

end points of the curve are first rotated as n′0 and n′3 prior to linear interpolation

based on the Frenet frame at the intermediate point.

Figure 3.2: Interpolating normal vectors.

24

Once we have four data curves enclosing a quad face, we can use Coons Interpo-

lation to define a data vector for any interior point in the quad region as previously

mentioned. For the given the data curves D0(t), D1(t), D2(t), D3(t) of a quad in

the rotation order, following the equation 2.2 the Coons interpolation can then be

written as

D′(s, t) = (1− t)D0(s) + tD2(s) + (1− s)D1(t) + sD3(t)

and

D(s, t) = D′(s, t)− (D0(0)(1− s)(1− t) + D0(1)s(1− t) + D2(0)(1− s)t + D2(1)st)

Since the whole surface of model composed of quad faces, we can easily compute

a data vector for each surface point by this definition. Note that the direction of the

data curves should again follow the rotation order.

25

4. QUAD-PRESERVING OPERATIONS

The core of this framework is the quad-preserving modeling operations. Quad-

preserving operations modify meshes while preserving quad-mesh property. In other

words, a quad-mesh preserving operation transform any given quad mesh into another

quad mesh.

In this work, I have identified all quad-mesh preserving operations. I have ob-

served that all of these operations can be considered as operators that split curves.

Therefore, I will first introduce curve split as a general conceptual operation.

4.1 Generic Curve Split Operation

Curve split figuratively split a given closed or open curve that consists of edges.

The operation creates two split-pairs, and an in-between region, which I refer as

split-region.

The curve to be split can be either open and close. In this section, I will analyze

compare and contrast properties of split-regions, for open and closed curves.

Figure 4.1 shows a split-region when an open curve is split. If the original mesh is

a genus-0 2-manifold, this split creates two disconnected genus-0 2-manifold meshes

with boundaries. Since this operation does not change original quadrilaterals, it is

naturally quad-preserving. At this point, if we mark the split-region as an outer face,

we simply create a cut in the mesh.

However, if we would like to keep the surface in the split region as a part of the

shape, we need strategies to remesh such split-regions to obtain quadrilaterals.

There are actually two more cases: (1) An open curve with both curve ends are

in boundary; (2) An open curve with one of the curve ends are in boundary. To

simplify the presentation, we assume the first case is simply an open curve since the

26

(c) Selected open curve (d) Split region

Figure 4.1: Splitting an open curve creates a split region that is not necessarily a
quadrilateral. Selected curves are painted in red.

(a) Selected closed curve (b) Split region

Figure 4.2: Splitting a closed curve creates a split region. This region disconnects the
original genus-0 2-manifold mesh into two genus-0 2-manifold meshes with boundary
based on Jordan’s curve theorem. Note that the resulting split region is not a face.
It is a region bounded by the boundaries of two genus-0 2-manifold meshes. Selected
curves are painted in red.

27

operation disconnects the mesh into two. We also assume the second case is just a

special case of open curve split.

4.2 Stitching Strategies to obtain Quad-Preserving Curve Split Opera-

tions

As discussed in the previous section, we need to quadrangulate the split-regions

to preserve the quad-mesh property or not to disconnect original mesh into two.

Analogically, the quadrangulation operation could be thought of dissecting the

mesh along the given curve and stitching it back by inserting new curved edges

between the split vertices. As shown in Figure 4.3(a) and (b), there are two possible

way two stitch split-regions: (1) stitch the corresponding vertex-pairs, (2) stitch

diagonally by connecting a vertex in one side to the next vertex in the other side.

The concept of the direction comes from the fact that we need to assign a direction to

the original curve in order to differentiate next and previous vertices. In conclusion,

curve split operations can be classified into two categories: undirected and directed.

4.2.1 Quad Preserving Curve Split Operations

The discussion above demonstrate that there are three possible cases: (1) Selected

curves can be either open or close; (2) The split region can either be left as a cut

or quadrangulated; (3) Selection can be directed or undirected to differentiate two

types of quadrangulations.

Therefore, this gives us six possible cases:

• Open Cut

• Closed Cut

• Open Directed

28

(c) Undirected quadrangulation (d) Directed quadrangulation

Figure 4.3: Two examples of quadrangulation of split-region: In an undirected quad-
rangulation, the edges run straight between each split vertex pairs. In the directed
case, they run diagonally by one neighbor offset.

Figure 4.4: The possible cases in curve split: six types of splits are highlighted in
red.

29

• Open Undirected

• Closed Directed

• Close Undirected

As conclusion, we have identified six legitimate operations that can provide topo-

logically distinct split curve operations. The following four subsections provides a

detailed description of these four operations.

4.2.1.1 Open Cut Splitting:

Performing on an open curve, this operation creates an open cut in the mesh by

marking the split region as outer face. Figure 4.5 shows different case of of open cut

split.

4.2.1.2 Closed Cut Split:

Performing on an closed curve, this operation separates the mesh into two pieces.

Figure 4.5 shows different case of of open cut split.

4.2.1.3 Directed Open Curve Split:

This operation can split any selected curve on the mesh by a given direction. It

uses directed quadrangulation that follows the given direction, as in figure 6.1.

4.2.1.4 Undirected Open Curve Split:

This operation is defined on open curves only. It performs a curve split on

both sides of the open curve using undirected quadrangulation, which introduce two

neighbouring split regions. Performing an undirected quadrangulation on these two

split regions removes the edges of the original curve pointing to the end points. This

results in a two-row grid with single quad faces at its end points as in 4.7.

30

Open curve selection Cut splitting

Open curve selection Cut splitting

Open curve selection Cut splitting

Figure 4.5: Examples of open cut splitting: In the top image since the resulting
split-region is already a quad, there is no need for additional stitching.

31

Directed open curve selection Directed open curve split

Directed open curve selection Directed curve splitting

Directed open boundary curve selection Splitting operation

Figure 4.6: Examples of directed curve splitting: In the top image since the resulting
split-region is already a quad, there is no need for additional stitching.

32

Undirected open curve selection Undirected open curve split

Undirected open curve Selection Undirected open curve splitting

=
Undirected open boundary curve selection Undirected open curve splitting

Figure 4.7: Examples of undirected open curve splitting: Note that if the curve
consists of only two edges undirected and directed gives the same result and it always
produces a new quadrilateral.

33

4.2.1.5 Undirected Closed Curve Split:

This operation performs like an face extrusion operation for a face enclosed by

the closed curve: If the curve encloses more than one face, the result is a group

extrusion of the faces. Again, undirected quadrangulation is used in the split region

to match the look of a conventional face extrusion. In our case, curves can also be

at the boundary of 2-manifold. We give an example for undirected closed curve split

operation for boundary curves as shown in Figure 4.8.

Undirected closed curve selection Undirected closed curve splitting

Undirected closed boundary curve Selection Undirected closed curve splitting

Figure 4.8: Examples of undirected open curve splitting: Note that boundary curve
is not really closed, however, since its two end-points are in the boundary, we can
interpret it either open or closed.

34

4.2.1.6 Directed Closed Curve Split:

This operation also performs like an face extrusion operation for a face enclosed

by the closed curve as if there is a rotation. We also give an example for undirected

closed curve split operation for boundary curves as shown in Figure 4.9.

Directed closed curve selection Directed closed curve splitting

Directed closed boundary curve selection Directed closed curve splitting

Figure 4.9: Examples of undirected closed curve splitting operation: In boundary,
this operation creates a dangling edge. Note that boundary curve is again not closed,
but, since its two end-points are in the boundary, we can interpret it either open or
closed.

35

Figure 4.10: Face collapse as a region collapse operation: We select a face and
collapse it. The result is not unique.

4.3 Inverse Curve Split: Region Collapse

Inverse of the curve split operations is a single operation that can collapse an

entire region into a closed or open curve. Selected regions can form a ring by creating

a closed curve. We simply triangulate all the faces in the region by connecting closest

edges and collapse all the edges that do not cause the edges in the boundary of the

region collapse. Examples are shown in Figures 4.10, 4.11 and 4.12. Note that

this operation may not necessarily be unique. For instance, in Figure 4.10 if two

diagonals have the same distance, the region can collapse in two different ways with

equal probability.

36

Figure 4.11: An example of ring shaped region collapse.

Figure 4.12: Additional examples for region collapsing.

37

5. HIGH LEVEL OPERATIONS

Here I provide upper level primitives and operations based on the previous chap-

ter.

5.1 Inserting Skeletal Curves

In this framework, a boundary curve is a principal curve consisting one ore more

connected outer curved edges in a smooth mesh. It constitutes the contour of the

shape by separating the inner and outer faces. When a boundary curve has the same

outer face in both of its sides, it is called a skeletal curve. A skeletal curve might be

in the form of a tree or a graph, and can serve as the skeletal structure for a quad

mesh generation. By interactively splitting a boundary curve, it is possible to obtain

the initial mesh for the desired model easily.

5.2 Creating Primitives

Modeling a quad dominant mesh begins with a primitive mesh, as in most 3D

modelling applications. I provide several primitives to user, which are composed of

quad faces.

Down below, I list the type of primitives I provide in the framework. Each type

presents a different method of creating a primitive. By tweaking its given parameters,

users can modify the the appearance and/or the topology of the primitive created.

The procedure for creating any primitive in the framework is observed in two

steps:

• First a skeletal curve for the primitive is inserted with the desired parametrize

is inserted

• The skeletal curve is split desired number of times to create the primitives.

38

Figure 5.1: A grid of (2× 2)

• Create Grid: The Grid is the most basic yet probably the most useful type

of primitive in the framework. It is the most naive way of creating a quad

mesh: a set of quad faces organized in rows and columns. The number of rows

and columns along with width and height of a grid face are basic primitives to

create a grid.

Creating a grid via a curve split is fairly simple. For a grid of size (n×m), we

can insert a skeletal curve consisting n number of curved edges and perform an

edge extrusion split on the curve m times. The procedure for creating a (2x3)

grid is shown in Figure 5.2.

• Create Torus:

This type primitive is a donut-like shape in 2D, composed of adjacent quad

faces that revolves around a given origin. Topologically, it is a grid whose

rows loops back to itself. Note that this mesh has a hole in the middle, which

means an additional outer face in the primitive. In addition to the basic grid

parameters, the user can modify the radius and percent arc of the torus. For

the arcs that are below full circle, the resulting mesh becomes a grid that is

bend around an origin, without a hole.

39

(a) (b)

(c)

Figure 5.2: Creating a (2× 3) grid: A skeletal curve with 3 Curved edges is inserted
(a). Two consecutive Undirectionlan Closed Curve Split is performed in (b) and (c)

40

To create a torus of n segments, we need to insert a insert a skeletal curve with

n curved edges and given inner radius. The curve must be closed for a full

torus and open for an arc. Undirectional Closed Curve Split is performed on

the skeletal curve to obtain a torus. Figure 5.3 shows the creation of a (4× 4)

torus.

(a) (b)

(c) (d)

Figure 5.3: Creating a torus by splitting a skeletal curve: (a) Skeletal curve . Apply-
ing Curve Split to the skeletal curve for a torus with 4 segments shown in (a) results
in a one row torus as in (b). Splitting the boundary curve in (b) and subsequently
in (c) will result in a four row tours as in (d).

41

Figure 5.4: 2n-gon

• Create 2N-gon: This shape is a polygon with even number of sides, which is

created revolving a quad face around a given origin. These faces share a vertex

in the middle.

To create a 2n-gon, we insert a skeletal curve consisting n number of curved

edges revolving around the given origin. We then perform Directed Open Curve

Split on it to obtain the 2n-gon as in figure 5.5.

• Convert Skeleton:

This primitive is the generalized form of all primitives. The skeletal curve

required is expected to be given by the user and can be in graph form meaning it

can have loops and/or dangling curved edges. Any type of split curve operation

can be performed on the curve to obtained the desired quad mesh.

42

The skeletal curve for a 6-gon Open Curve Split applied

The skeletal curve for a 12-gon Open Curve Split applied

Figure 5.5: Creating 2n-gon by splitting skeletal curve.

Figure 5.6: Skeleton

43

6. IMPLEMENTATION

In this section, I discuss how the operations explained in the previous chapters

can be implemented.

6.1 Doubly Linked Face List (DLFL) Representation

DLFL is used as the underlying data structure for representing the base mesh in

this research. Therefore, it is better to briefly explain the DLFL structure before-

hand DLFL stands for Doubly Linked Face List and works based on graph rotation

system. The DLFL structure consists of a list of vertices, edges and faces. Vertex,

edge and face refer to the internal representations of a point in three-dimensional

space, a line segment connecting two points and a sequence- of points respectively.

For simplicity we can discard making explicit distinction between the internal rep-

resentation and the actual geometric entity unless required. So, vertex may refer to

both the geometric entity as well as the topological entity depending on the context.

For further simplicity, we include an additional entity called corner. A corner is

a vertex-face pair, c = v, f , where v is one of the vertices in f . Since we want a

corner to be used in a face boundary walk as f = v0, v1, ..., vn−1, for the corner ci

referring to vertex vi, we provide double way links to next and previous corners as

ci.Next = ci+1 and ci.P rev = ci−1. A corner is associated with only one face, but

several corners can refer to the same vertex.

Internally, each face f is represented as an ordered sequence of corners as f =

{c0, c1, ..., cn}, each of which contains a pointer back to the face as c.Face = f . Every

corner also has a pointer to the vertex v it refers to as c.V ertex = v, and ever vertex

points to a corner for a vertex traversal. An edge contains pointers to the two corners

as e = (c0, c1), each end of the edge and each belonging one of the two faces on each

44

side of e. Critical to this research, is the direction of the edge defined by the first

and second corners as (c0, c1), meaning the edge runs form c0 to c1.

By using on the minimal set of operators DLFL provides, we can easily implement

the modeling operations explained in the previous chapters. Before that, we shall

take a more detailed look at the minimal set of fundamental operators in the DLFL.

• (v, f) = CreateVertex(p) creates a 2-manifold surface with one vertex v and

one face f which will be referred to as a point sphere. The geometric coor-

dinates of the vertex v are given by p which is a point in three-dimensional

space. The operation effectively adds a new surface component to the current

2-manifold. The CreateVertex(o)perator is essential in the initial stage

of the creation of a new mesh and creates a new surface component in the

given 2-manifold. In particular, this operator is necessary when a new surface

component is to be created in an empty manifold.

• (v, f) = DeleteVertex(v) is the complement of the CreateVertex(o)perator.

It removes a point sphere from the mesh structure. If v is not part of a point-

sphere,the operator returns without making any changes to the mesh. The

operation is the same as the Euler operation KV FS and effectively removes

an existing surface component from the current 2-manifold. The DeleteV-

ertex(o)perator is essential for cleaning up the mesh structure to prevent

unwanted visual artifacts from appearing.

• e = InsertEdge(c1, c2) inserts a new edge e into the mesh structure between

two corners c1 and c2. If InsertEdge(i)nserts an edge between two corners

of the same face, the new edge divides the face into two faces without changing

topology. On the other hand, if InsertEdge(i)nserts an edge between corners

of two different faces (this includes the situation in which an endpoint or both

45

endpoints of the new edge correspond to point spheres), the new edge merges

the two faces into one and changes the topology of the 2-manifold.

• RemoveEdge(e) deletes the edge e from the mesh structure. This is the

inverse of the InsertEdge() operator. In general, if f1 and f2 are the faces

on either side of the edge e, then deleting e combines f1 and f2 into a single

face. But if f1 and f2 refer to the same face f (as will be the case if e is the

result of an InsertEdge() operation between corners of two different faces),

then deleting e separates f into two faces, thereby changing the topology of

the mesh.

6.2 Quad Preserving Curve Splitting

Selected curved edges Vertex split

Figure 6.1: Quad preserving vertex splitting.

To implement Curve Split operations, we first explain another topological opera-

tion called Vertex Split. Introduced in [51], Vertex Split is an elementary transforma-

tion that adds an additional vertex along with two adjacent triangular faces to the

46

mesh, while updating the attributes of the mesh in the neighborhood of the transfor-

mation. In the context of mesh simplification, it is the inverse of edge collapse and

is used for progressively refining a simplified mesh back to its original.

In this framework, a quad preserving vertex split is used to implement the Curve

Split operations. The operation figuratively splits a vertex v into two vertices as vleft

and vright, and the quad dominant structure is preserved by inserting a new quad

face in between the two edges e0 and e1 of v that are given as reference to determine

the sides left and right. The main difference from [51] is that it introduces a quad

face to the mesh instead of two adjacent triangles.

Based on the rotation order, the edges of v that lies from se0 to e1 and those

from e1 to e0 are split as left and right edges, respectively, while the edges e0 and

e1 are duplicated as e0′ and e1′ to remain on both sides. After the operation, a new

quad face is created that is enclosed by edges e0, e0′ , e1′ , e1 in the rotation order. The

resulting vleft and vright lies on the diagonal of the quad.

The vertex split operation, as described above, can be executed as a high-level

operation. Given the two corners c0 = v0, f0 and c1 = v1, f1, the execution for the

SplitVertex(c0, c1) via core DLFL operations proceeds as follows:

• Let v be the vertex pointed by the next of c0, meaning the vertex to be split.

• c′ = CreateVertex(p). This creates the additional vertex.

• Let El be the list of edges pointing to v from the left side, when traversed

around vs from c1 to c0.

• Let Cl be the corners of edges in El that does not point to v

• For every corner ci in El, InsertEdge(ci, c
′)

• For every edge ei in El, RemoveEdge(ei)

47

• Let c′0 be v-next of c0, InsertEdge(c′0, c
′). This inserts the first additional

edge.

• Let c′1 be edge-pair of c1, InsertEdge(c′1, c
′). This inserts the second addi-

tional edge.

Now, we can discuss the implementation details for the curve split operations

using the Vertex Split operation.

• Open Cut Split

• Closed Cut Split

• Open Directed Split

• Open Undirected Split

• Closed Directed Split

• Close Undirected Split

• Directed Split

During interactive modeling, it is essential that the enclosed by the two split-

curve-pairs conforms to the existing geometrical structure of the mesh. There-

fore, the two split curves must geometrically follows the original curve. The

two curves stay apart from each other at a distance to enclose the newly cre-

ated split-region and meet at the end points, if there are any. For this purpose,

right after the topological split, one (or both) of the split-curve-pairs is offset

along the curve normal by a given distance. In this context, offsetting a curve

C along its normal means that offsetting every control point pi of C by the

normal ni of (C) at its point pi, excluding the end points. In general form, the

48

offset position p′ for can be calculated as p′i = pi + nit, where t is a parameter

for the distance between split-pairs.

The vertex split operation can be efficiently used for executing a Directed Curve

split. Given a curve C on a mesh, the directed curve split of C could be obtained

performing a vertex split on each vertex in C.

However, the core operation SplitVertex(c0, c1) for vertex splitting is defined

over the two corners pointing to the reference edges and modifies the neighbor-

ing topology by inserting new edges to the end points of these reference edges.

This means that the execution order of the operation SplitVertex(c0, c1) on

the all neighboring (c0, c1) pairs in C will effect the final topology; it is possible

to obtain different results by executing the SplitVertex(c0, c1) in random

order of (c0, c1) pairs. However, for the curve split operation to be consistent

on output, the execution of order should strictly follow C in a given direction.

This can be satisfied via a traversal on C.

Using the capabilities of the DLFL structure, we can conveniently perform a

traversal on C for executing the split operation. Starting from a given initial

corner cs, the following algorithm for SplitCurve(cs), performs the operation

SplitVertex(c0, c1) on the consecutive corner pairs of C, using a Depth First

Search traversal. Subsequently, this allows the C to be given in a graph form.

SplitCurveDirected(c0, c1 = null)

Cout ← {}

if c1 is not null and is marked as visited then

return

end if

49

if c1 is not null then

Cout ← Cout ∪ SplitVertex(c0, c1)

end if

c← c1.Next

repeat

SplitCurveDirected(c1, c)

c = V ertexNext(c)

until c 6= c1;

return Cout =0

• Undirected Split

We can again make use vertex split to implement an undirected split. The

two-side split required for the undirected split operation can be executed by

performing a vertex split at each vertex of C on both of its sides. For a

consistent execution order for the split vertex operations, we can perform a

closed walk along the face boundaries of C.

After the walk, the two split regions will be under directed quadrangulation.

To obtain the undirected quadrangulation required, we should flip the edges so

that they run between the split-vertex-pairs. In terms of DLFL structure, the

flipping process requires a sequence of InsertEdge() and RemoveEdge()

calls throughout the both split regions. For this purpose, as we do the closed

walk, we shall keep a list of DLFL corners of the faces created after each vertex

split, namely return by the SplitVertex(). Then, we can iterate over the list

to perform the edge flipping. Note that we do all the edge flips at once after

all the vertex splits, since flipping edges on the go would modify the topology.

Algorithm 18 outlines the implementation described.

50

SplitCurveUndirected(cs)

Cout ← {}

c0 ← cs

repeat

c1 ← FindNextSelectedCorner(c0.Next)

if Other(c0) = c1 then

break

else

if c1 loops back to c0 then

Cout ← Cout ∪ SplitVertex(c0, V ertexNext(c1))

else

Cout ← Cout ∪ SplitVertex(c0, c1)

end if

end if

c0 ← c1

until c0.Edge 6= cs.Edge;

Edel ← {}

for c ∈ Cout do

cnn ← c.Next.Next

Edel ← Edel ∪ Edge(cnn)

InsertEdge(c, cnn)

end

for e ∈ Edel do

RemoveEdge(e)

end

=0

• Cut Split In a cut split, the split region is not quadrangulated but marked as

51

an outer face. For implementing a cut split, we can simply perform a directed

cut on C and then delete all the edges in the split region. We finally mark it

as an outer face.

CutSplit(C)

Csplit ← SplitCurveDirected(C.c0)

f.split← Csplit.c0.Face for c ∈ Csplit do

RemoveEdge(c.Edge)

end

fsplit.isOuter = true =0

• Boundary Split

The main difference of this operation from the undirected split is that the split is

performed only on the boundary side of the curve. Depending on the boundary

state of the given curve, this operation proceeds in two ways.

To execute a boundary split operation on a boundary curve, we can first per-

form a directed split on the curve, then convert the undirected quadrangulation

in the split region as described in the undirected split implementation. After the

directed split, the split region will obviously be under directed quadrangulation.

We can again apply edge flips for converting it to undirected quadrangulation,

yet there will be two triangular faces on each end of the split region after the

process. However, since these faces are at the boundaries, their boundary edges

can simply be subdivided to convert them into quads. Following the edge sub-

divisions, the mid-vertices should be repositioned based on the general offset

calculation.

If the given curve is a non-boundary curve, then following a directed split on

the curve, we can convert the split region into an outer face by deleting all

52

edges in the split region and marking the remaining face in the region as outer

an outer face.

The algorithm for the operation proceeds as follows:

SplitCurveBoundary(C)

Csplit ← SplitCurveDirected(C.c0)

if c is boundary then

FlipEdges(Csplit)

v0 ← SubdivideEdge(Csplit[0])

v0.Position = Pos(C0) + Normal(C0) ∗ t

v1 ← SubdivideEdge(Csplit[n− 1])

v1.Position = Pos(Cn−1) + Normal(Cn−1) ∗ t ∗ t

else

for c ∈ Cout do-
RemoveEdge(c.Edge)

end

end if=0

• Loop Split

To obtain a loop split, we can fist perform a directed split then on the given

curve and then convert the split region to undirected quadrangulation by a

sequence of edge flips, as in undirected split. Algorithm 18 is designed to

handle looping cases.

6.3 Quad Preserving Region Collapse

Since region collapse is the inverse operation of the generic curve split, it can be

implemented by reversing the implementation of the curve split operations. Since we

used the atomic Vertex Split operation to implement curve split operations, we need

to come up with an inverse atomic operation for region collapse. For this purpose,

53

we define an operation Face Collapse, which does the exact opposite of vertex split

collapsing the given face to a single vertex. Since the vertex split operates on two

neighboring edges to determine direction, we also need to indicate a direction for the

face to be collapsed and it can easily done by picking a corner of the face.

For the given corner c, the face collapse operation takes the left and right edges of

the corner and reassigns their other corners to be the pre-split corners respectively.

The pre-split corners for these edges can be easily retrieved by using the rotation

system. After the corner assignments, the given face is totally disposed. The vertex

split operation, as described above should better be implemented as new core op-

eration to the DLFL for efficieny. Given the corners c = v, f the execution for the

CollapseFace(c) can be implemented as follows:

• Let f be the face pointed by c, meaning the face to be collapsed.

• Let e0 ← c.PREV.E and e1 ← c.E

• Set e0.c1 ← c.PREV.PREV.PAIR

• Set c.PREV.PREV.PAIR.E ← e0

• Set c.PREV.PREV.PAIR.V ← c.V

• Set e1.c1 ← c.NEXT.PAIR

• Set c.NEXT.PAIR.E ← e1

• Set c.NEXT.PAIR.V ← c.V

• DeleteVertex(c.NEXT.NEXT.V)()

• Remove f and all of its corners

54

Once we have the CollapseFace(c) operation in hand, the region collapse op-

eration for a directed split region becomes fairly straight forward. Given the region

as a set of corners (faces), we iterate through the set of the region and collapse them

one by one.

For collapsing undirected regions, we first convert those regions by removing the

undirected edges of quadrangulation between the faces of the region and inserting

diagonal edges between them directionally. Once the region is converted to be direc-

tional, we can apply the region collapse operation as above.

6.4 Quad Preserving Boundary Operations

6.4.1 Inserting Skeletal Curves

The operation InsertSkeletalCurve(c0, c1) inserts a single curved edge with

the same outer face on both of its sides, which serves as the atomic element for a

skeletal curve.

6.4.2 Deleting A Quad Face

For deleting a quad face, we first iterate through all the edges of the given edge

and ad the outer edges to a list. If the list turns out to be empty, we simply mark the

face as an outer face and the face is dismissed being rendered on screen. Otherwise

we call RemoveEdge per each edge in the list.

55

7. APPLICATIONS

In this part, I present three main applications of the theoretical framework I

propose.

7.1 Modeling Mock-3D Shapes

A major application for this framework is modeling Mock-3D scenes. In 3D

computer graphics, a 3D scene is a mathematical description in <3 required for

the final render. It essentially describes the 3D position and normal data for a given

surface point and often times this data is extracted from 3D geometry representations

called 3D models. However, to render an image from a fixed point of view, a mock-

3D representation can serve as a 3D model by encoding the normal and position

data in a 2D vector field. With the mock-3D presentation on hand, we can achieve

compelling renders as 7.2.

Lumo CrossShade

Figure 7.1: Examples of normal maps generated using sketch based modeling pro-
grams.

The most viable option to create a mock-3D representation is to model 2D vector

56

fields directly with a sketch based interface. As discussed earlier, there already exist

many sketch based interface approaches, such as by Lumo [41] or CrossShade [44],

that can directly be used to create such representations shown in 7.1. However, to

hit the consumer market, there is a need to provide more control to users.

Mock-3D Scene Render

Figure 7.2: An sample rendering of a mock-3d scene.

The framework I present is far better suitable to model such mock-3d represen-

tations interactively. There are several reasons behind this. First of all, it allows

modeling of any 2D shape. The underlying mesh may come in arbitrary topology

with genus. The curve split operations previously explained provide a convenient

way of modeling complicated quad mesh structures. On the other hand, the curve

network that represent the mesh may allow both sharp and continues boundaries.

With the help of both of these features, any 2D shape can be modeled to be used as

a mock-3D Model.

7.1.1 Mock-3D Model

A Mock-3D model is essentially a 2D vector field that encodes the normal data

per each 2D position. This vector field can be obtained by interpolating the data

57

at boundaries of the shapes modeled via the framework presented in this research.

However, the data at boundaries do not inherently encode a 3D normal vector re-

quired by the mock-3d representation. For this purpose, we use an additional normal

vector assigned to each vertex of the mesh referred as vertex normal.

A vertex normal can either be initially derived from the shape or given by the

user. In our application, we initially derive and assign a normal for each vertex and

then let the user adjust it via an interface control.

To derive a vertex normal for each vertex, we can use the neighboring curves to

the vertex. For a Mock-3D representation, border curves constitutes the silhouette

of the shape and be perpendicular to the incoming eye vector by definition. In

practice, under the assumption of eye vector being parallel to the viewing plane, we

can consider the normals of the boundary curves to be on the viewing plane. This

can be easily achieved by converting the 2D normal of the boundary curve into a

3D vector by initializing the z component to 0. For the inner vertices, we assume

that they are perpendicular to the viewing plane and simply initialize them to the

normal of the viewing plane as < 0, 0, 1 >. Figure 7.3 (a) shows the initial normals

computed for a 2× 2 grid in circular form.

Once the vertex normals are initialized, they can be adjusted by user. In our

application, we project vertex normals to the viewing plane as a control widget at

the user interface level and let the user drag them around in 2D. Then we update the

3D vertex normal based on the new location of the projected normal. This operation

involves calculation a z value based on the length of the normal widget. A full length

and a zero length widget indicates z = 0 and z = 1 respectively. On a boundary

curve, if the two boundary tangents of the normal are smooth, they move together

to create a smooth curve and the normal to the tangent should follow the same

movement for a consistent result. Therefore, when smooth tangents on a boundary

58

(a) Normal controls (b) Propagated normals

(c) Interpolated normals (d) Mapped normals

Figure 7.3: Examples of normal maps generated using sketch based modeling pro-
grams.

59

(a) Vertex normal (b) Rotated vertex normal

Figure 7.4: Rotation of the vertex normal based on the tangent rotation.

curve are dragged by user we figure out the rotation that the tangent went through

and apply it to the normal as in Figure 7.4

To create the 2D vector field, we first propagate vertex normals over the boundary

curves. Figure 7.3 (b) shows the propagated normals over the boundary curves of

the sphere shape. The method for interpolating normal vectors presented in section

3.4 should be followed for this propagation. In a discreet implementation, each curve

refers to an array of interpolated normals by equal parametric distances over the

curves. Then, using Coonz interpolation, we can fill each face with surface normals by

interpolating the normals at the boundary curves. Again, a discrete implementation

of Coonz interpolation requires computing a grid of vertex normals.

In addition to the normal vectors, a mock-3D representation may also encode

some color information for the shape. In 3D computer graphics, the final color of

a surface point is computed by mixing several colors such as ambient, diffuse and

specular based on an illumination model. This process is known as shading. A mock-

3D representation can benefit from this process to create better results. To create a

60

finer approximation of the shading process, we need to encode the color information

such as ambient, diffuse and specular colors in our data vector. This information is

again due interpolation in the final mock-3d representation. In our application, we

allow user to adjust the color of vertices individually via a channel system, which

eventually updates the respective values in their data vectors.

7.1.2 Mock-3D Scene

In our implementation a Mock-3D scene is composed of one or more Mock-3D

shapes stacked on top of each other as layers on a canvas. The ordering of the Mock-

3D shapes on this stack is important since they can occlude each other based on

this order. The shapes to the front of the stack may occlude the shapes at the back.

With the help of this feature, user can create mock-3D scenes that are impossible

to be represented by only one mock-3d shape. In our implementation, to provide

an interactive modeling environment, we allow users to reposition a mock-3D shape

on the canvas by dragging it and also reordering it on the stack by moving it up or

down.

When a mock-3D scene is composed of more than one mock-3D shape, oftentimes

a shape on top maybe an extension to the shape that it overlaps, such as a nose on a

face. This is particularly important since modeling this kind of an extension embed-

ded to the model would require to model it as a dangling face which is not supported

in a manifold mesh. Although it is possible to define an operation to extrude an

edge as a manifold surface, this method would cause unnecessary complexity in the

mesh by adding extra edges and faces. In the case of a mock-3D application, it is

more practical to represent an extended surface as an overlapping shape without in-

creasing complexity of the original shape. However, the extension surface may need

to share the data vectors with the original shape to create a smooth transition in

61

the resulting image. For this reason, we added a special operation called sewing that

copies the data vectors from the vertices of a selected curve to the vertices of target

curve. When a curve on a shape is sewed to a curve another shape, the transition

two surfaces in the resulting images is ensure to be fairly smooth since both surfaces

share same shading data at the point of transition.

Besides the 2D shapes, a mock-3D scene may also contain lighting information

as in a 3D scene. A point light or a directional light can be represented as a 2D

point on the canvas with a z-depth value and a 3D light vector respectively. In our

implementation point lights are represented by dragable 2D widgets on the canvas.

The purpose of modeling a mock-3D scene in this application is eventually achiev-

ing a rendered image that is similar to rendering of a 3D model. There are several

ways to obtain this rendered image from a Mock-3D representation. Ideally, it is

possible to develop a custom render engine that takes the Mock-3D scene as an

input and computes a high quality final image based on this scene. In our applica-

tion, we use the OpenGL render engine for creating a preliminary result. OpenGL

rendering can easily be integrated to the implementation of this framework since it

allows binding of the shading data (color data and vertex normal) per vertex. With

the help of graphics hardware, OpenGL can also render high quality Mock3D scene

at interactive rates which allows user to model a Mock3D scene by seeing the final

result interactively.

7.1.3 Mock-3D Examples

In this section I present some examples of modeled mock-3d scenes by our imple-

mentation. Figure 7.5 presents stages of creating a mock-3d model of a horse in our

application. First we create two skeletal curves as in 7.5 (a) one for the body and

one for the two right legs occluded by the rest of the body. Then we split the first

62

(a) Two skeletons for a horse shape (b) Split curve applied to skeletons

(c) Curves refined to outline a horse figure (d) Normal vectors propagated

(e) Normal vectors interpolated as normal map (f) A mock-3d render of the model

Figure 7.5: Stages of creating a mock-3d horse model.

63

curve on both sides, and second curve on one side to create a quad mesh structure

to serve as the rough model. Right after the splits, we obtain two disjoint quad

meshes as in 7.5 (b). We then create the outlines of a horse by moving the control

points of the curves to desired positions as in 7.5 (c). When we are satisfied with

the outline, we adjust the vertex normals so that we can obtain a surface that will

give us the look of an horse’s body. This is an iterative process that usually requires

checking the preview render frequently. Note that although we use a single mesh

to represent the head, body and the two left legs, we can still control the shading

that distinguishes the legs and the head from the body by adjusting their normals.

Figure 7.5 (d) shows the propagated normals for all the curves. In (e) and (f), we

see the normal map resulting via interpolation of normals and an OpenGL render of

the Mock-3d models respectively.

Figure 7.6 demonstrates how a simple cartoon character can be created by just

using overlapping grid shapes. The figure contains ten disjoint grid shapes which

eventually overlap in a way to create the Mock-3D representation of the cartoon

character shown. Note that the nose of the character is also a disjoint shape from

the forehead but is seamlessly blended to the character’s forehead face using the sew

tool.

7.2 Origami Modeling

The framework can serve as a fold pattern design tool for origami modeling. An

origami model is obtained by folding a flat surface down (valley) or upwards (hill)

through the fold lines. These lines form a crease pattern on the surface that defines

the origami model. It is possible to generate well-known crease patterns and their

curved versions using this framework.

The main reason behind it is that the surface of the shape modeled is ensured to

64

(a) Overlapping disjoint grids (b) Normal maps using grids

(c) Diffuse colors (d) OpenGL render based on normal maps

Figure 7.6: A cartoon character modelled via grids.

65

be globally parametric. It is because every quad face in the mesh is locally repre-

sented by a parametric surface as a function of f(u, v) and that we could establish a

directional connectivity between adjacent quads for both parameters. The directional

connectivity is achieved via the data structure that represents the underlying mesh.

Once we represent each face by parametrically spaced curves in both u,v directions,

for a given direction, we can create a given crease pattern by assigning each curve

along the direction as hill, valley or flat one by one. In our system, we encode the

flat, hill and valley regions via digits 0, 1, 2 respectively which provides to represent

a crease pattern as a numerical array. In the application side, we developed a tool

named Assign Pattern that assigns the input creases pattern as a numerical string

to the shape along the direction indicated by a user specified curve.

(a) A hexagonal shape via 2ngon primitive (b) Fold as hexagonal parabola

Figure 7.7: A hexagonal parabola made from the hexagon shape.

Figures 7.7 and 7.7 shows some examples of origami created by MS student H

W Kung [52] as a part of his MS thesis via our application. In Figure 7.7 (a), we

see a hexagonal shape modelled using the 2NGon primitive type in the framework.

66

The hexagon represents 1,2 (hill-valley) fold pattern assigned in v direction from

boundary edges to the center. The crease lines are color coded as red and green

representing hill and valley respectively. In figure 7.7 (b) a the shape with the fold

pattern from (a) is turned into a paper origami in hexagonal parabola form by folding

it through the crease lines. In the process, a laser cutter was used to engrave the fold

lines on paper. Figure 7.8 is a similar example of the same process demonstrating an

8 figure modelled via skeletal curve. The example again uses simple 1,2 fold pattern.

(a)A freeform shape via skeletal curve

(b)Shape in origami form

Figure 7.8: A hexagonal parabola made from the hexagon shape.

Our implementing of this framework was also used in a recent study involving

patterned self-folding reconfigurable structures [53]. The fold patterns designed are

converted into finite element meshes that can be analyzed in finite element analysis

(FEA) software considering the thermomechanically-coupled constitutive response of

the SMA material. Finite element simulations are performed to determine whether

by appropriately heating the planar unfolded surface it is possible to fold it into the

67

desired structure. Figure 7.9 shows a self-folding torus shape via thermal stimulus.

The torus shape with (1,0) fold pattern towards to its center was modelled and

exported from our system.

Figure 7.9: A self-folding torus shape via thermal stimulus.

7.3 Image Vectorization

Image vectorization is a commonly used technique in the graphic design com-

munity to create illustration-like images. In this process, the graphic artist takes a

photo as a base image and tries to recreate a vector representation for the underlying

photo by using vector graphic tools.

Figure 7.10: Gradient mesh tool in Adobe Photoshop being used for image vector-
ization.

68

Gradient mesh tool in Adobe Photoshop is one if the common tools used in image

vectorization. It is basically a rectangular Bezier patch which creates a color field

by interpolating the color values at its vertices as in seen Figure 7.10. The user

can subdivide the patch in either u or v direction to additional detail. However,

other operations such as edge/face extrusion or face deletion, therefore cannot have

any arbitrary topology to represent any real life object. This leads users to work in

disjoint pieces and manually stitch them meanwhile which ends up being a very time

consuming and labor intense process.

(a) Reference image (b) Vectorized image

Figure 7.11: An example of application in image vectorization.

The meshes created by the framework I propose comes in quad dominant in

arbitrary topology, making it very suitable for this purpose. The reference shape to

be vectorized can easily be model as a single mesh without any need for stitching.

With the operation as extrude/delete face, user can easily create openings such as

nose/mount or eye openings in shapes like human face. Segment and Seam insertion

operations helps to add detail to the model.

69

Once the modeling phase is done, vectorization step is fairly simple and auto-

mated. Each vertex of the mesh is assigned the dominant color value retrieved from

the area in the reference image where the vertex maps. The Coons interpolation of

the color values of the vertices give us a color filed, which is a vectorized version of

the reference image. Figure 7.11 demonstrates an example for the image vectoriza-

tion created in our application using a relatively low resolution mesh. The result can

possibly be improved by using a finer mesh that samples the reference with better

resolution.

70

8. CONCLUSIONS

In this dissertation, I presented a theoretical framework to model 2D meshes

which are quad dominant in structure, meaning composed of mostly quadrilateral

faces. The motivation behind the quad face restriction is to be able to use existing

manifold parametrization methods such as Coons or B-spline patch to obtain smooth

surfaces. A smooth surface is essentially composed of principle curves, and I observed

that all quad-mesh preserving operations can be considered as operators that manip-

ulates on these curves. Based on this observation, I introduced a generic Curve Split

operation that splits a principle curve while maintaining quad dominant structure

of the mesh. I derived child operations from the generic curve split operation based

on the method of quadrangulation it used. I also introduced Region Collapse as the

inverse operation of Curve Split. I provided implementation guidelines for all the

operations.

The overall smooth 2D shape we obtain in this framework can be used in many

applications. In this proposal, I presented three major applications for this frame-

work: (1) Mock-3D scene representation (2) Image vectorization (3) Origami mod-

eling. I have implemented a prototype modeling software in C++ to demonstrate

these applications which serves as a proof of concept for the theoretical framework. I

presented some preliminary examples for these applications created by this software.

On the applications side, the framework is suitable to be implemented in web

or mobile based systems. Particularly, the Mock-3D scene application side, one can

envision a future where static pictorial documents are converted into dynamic forms

that can be accessible and continuously enriched by everybody. To reach this goal,

there is a need for the development of (1) a powerful representation that supports

general dynamic documents with re-renderable elements and (2) semi-automatic and

71

simple to use methods for turning static documents into dynamic documents. In this

dissertation, I provided a theoretical infrastructure for the development of web-based

systems such that, without any additional tool, people can turn their illustrations,

artworks, photographs or cartoons to “html-like” documents that can dynamically be

rendered, viewed or manipulated in any device. Furthermore custom offline render

engines can be developed for the Mock3D application to achieve more compelling

results.

Figure 8.1: A scene from “The Peanuts Movie” (c) 2015, 20th Century Fox.

In the commercial animation world, we occasionally observe stylistic hybrid at-

tempts between classical 2D and 3D animation. “The Peanuts Movie” can be con-

sidered as an example of this style (8.1). The Mock3D modeling application we

present can be improved to be turned into a Mock3D animation package to create

animations in this style. This tool can help classical 2D animation artists to create

3D looking animations without worrying about shading.

One major path for future work would be extending the framework to the 3D

platform for modeling smooth objects in 3D without use of subdivision or remeshing

schemes. Direct use of Bezier curves in a 3D modeling framework would be a very

powerful feature, since it enables convenient modeling of sharp and smooth features

in a mesh simultaneously. A practical application for extension to the 3D platform is

modeling the salt bodies to be used in reservoir modeling applications. To the best

72

Figure 8.2: Modeling of a salt body starts with extracting silhouette curves from a
seismic image.

of our knowledge, currently, there is no standard package or framework designed for

salt body modelling in the industry. Engineers working in the area use combination

of several methods and packages to overcome this challenging problem. Most of

the time, Silhouette curves form the seismic imaging data is extracted manually and

imported to a 3D modelling application to create 3D model (see figure 8.2). However,

the model looses accuracy in this process since the resulting model may not follow

the actual shape in between curves. Since the framework we present here builds the

model directly with outline curves, it can capture all outline features of a reference

image and therefore is perfectly suitable for modelling salt bodies based on seismic

imagining data. Through my internship with Hue Technology NA LLC, a software

company that provides seismic imagining solutions for oil and gas industry, I have

observed that a 3D extension of this framework can significantly reduce workload

and improve accuracy in the salt body modelling process.

73

REFERENCES

[1] V. L. Hansen, Geometry in Nature. Wellesley, MA: A K Peters, Ltd, 1993.

[2] G. Barequet and S. Kumar, “Repairing cad models,” in Visualization ’97., Pro-

ceedings, pp. 363–370, Oct 1997.

[3] K. Weiler, “Edge-based data structures for solid modeling in curved-surface

environments,” IEEE Computer Graphics and Applications, vol. 5.

[4] M. Mantyla, An Introduction to Solid Modeling. Rockville, MA: Computer

Science Press, 1988.

[5] B. Baumgart, “Winged-edge polyhedron representation,” Tech. Rep., Stanford

University, 1972.

[6] L. Guibas and J. Stolfi, “Primitives for the manipulation of general subdivisions

and the computation of voronoi,” ACM Trans. Graph., vol. 4, pp. 74–123, Apr.

1985.

[7] G. Vanecek, Set Operations on Polyhedra Using Decomposition Methods. Ph.D.

dissertation, McGill University, Montreal, Canada, 1989.

[8] M. Karasick, On The Representation and Manipulation of Rigid Solids. Ph.D.

dissertation, University of Maryland, College Park, MD, 1988.

[9] K. Weiler, Topological structures for Geometric Modeling. Ph.D. dissertation,

Rensselaer Polytechnic Institute, Troy, NY, 1986.

[10] C. Hoffmann, Geometric and Solid Modeling, An Introduction. San Mateo, CA:

Morgan Kaufman Publishers, 1989.

74

[11] E. Akleman and J. Chen, “Guaranteeing the 2-manifold property for meshes

with doubly linked face list,” International Journal of Shape Modeling, vol. 5,

no. 2, pp. 149–177, 1999.

[12] J. C. Beatty and B. A. Barsky, An Introduction to Splines for Use in Com-

puter Graphics and Geometric Modeling. San Mateo, CA: Morgan Kaufman

Publishers, 1987.

[13] E. Catmull and J. Clark, “Recursively generated b-spline surfaces on arbitrary

topological meshes,” Computer-Aided Design, vol. 10, no. 6, pp. 350 – 355, 1978.

[14] D. Doo and M. Sabin, “Seminal graphics,” ch. Behaviour of Recursive Division

Surfaces Near Extraordinary Points, pp. 177–181, New York, NY, USA: ACM,

1998.

[15] T. Gurung, D. Laney, P. Lindstrom, and J. Rossignac, “Squad: Compact rep-

resentation for triangle meshes,” Computer Graphics Forum, vol. 30, no. 2,

pp. 355–364, 2011.

[16] J. F. Remacle, J. Lambrechts, B. Seny, E. Marchandise, A. Johnen, and

C. Geuzainet, “Blossom-quad: A non-uniform quadrilateral mesh generator us-

ing a minimum-cost perfect-matching algorithm,” International Journal for Nu-

merical Methods in Engineering, vol. 89, no. 9, pp. 1102–1119, 2012.

[17] M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo, and E. Puppo, “Practical quad

mesh simplification,” Computer Graphics Forum (Special Issue of Eurographics

2010 Conference), vol. 29, no. 2, pp. 407–418, 2010.

[18] I. Boier-Martin, H. Rushmeier, and J. Jin, “Parameterization of triangle meshes

over quadrilateral domains,” in Proceedings of the 2004 Eurographics/ACM SIG-

75

GRAPH Symposium on Geometry Processing, SGP ’04, (New York, NY, USA),

pp. 193–203, ACM, 2004.

[19] J. Daniels, C. T. Silva, and E. Cohen, “Semi-regular quadrilateral-only remesh-

ing from simplified base domains,” Computer Graphics Forum, vol. 28, no. 5,

pp. 1427–1435, 2009.

[20] O. Gonen and E. Akleman, “Sketch based 3d modeling with curvature classifi-

cation,” Computers & Graphics 2012, vol. 36, no. 5, pp. 521–525, 2012.

[21] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C. Hart, “Spectral

surface quadrangulation,” ACM Trans. Graph., vol. 25, pp. 1057–1066, July

2006.

[22] A. Nasri, M. Sabin, and Z. Yasseen, “Fillingn-sided regions by quad meshes for

subdivision surfaces,” Computer Graphics Forum, vol. 28, no. 6, pp. 1644–1658,

2009.

[23] S. Schaefer, J. Warren, and D. Zorin, “Lofting curve networks using subdivision

surfaces,” in Proceedings of the 2004 Eurographics/ACM SIGGRAPH Sympo-

sium on Geometry Processing, SGP ’04, (New York, NY, USA), pp. 103–114,

ACM, 2004.

[24] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun, “Anisotropic

polygonal remeshing,” ACM Trans. Graph., vol. 22, pp. 485–493, July 2003.

[25] M. Marinov and L. Kobbelt, “Direct anisotropic quad-dominant remeshing,” in

Proceedings of the Computer Graphics and Applications, 12th Pacific Confer-

ence, PG ’04, (Washington, DC, USA), pp. 207–216, IEEE Computer Society,

2004.

76

[26] S. Dong, S. Kircher, and M. Garland, “Harmonic functions for quadrilateral

remeshing of arbitrary manifolds,” Computer Aided Geometric Design, vol. 22,

no. 5, pp. 392 – 423, 2005. Geometry Processing.

[27] E. Zhang, K. Mischaikow, and G. Turk, “Vector field design on surfaces,” ACM

Trans. Graph., vol. 25, pp. 1294–1326, Oct. 2006.

[28] Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun, “Designing quadrangu-

lations with discrete harmonic forms,” in Proceedings of the Fourth Eurograph-

ics Symposium on Geometry Processing, SGP ’06, (Aire-la-Ville, Switzerland,

Switzerland), pp. 201–210, Eurographics Association, 2006.

[29] J. Palacios and E. Zhang, “Rotational symmetry field design on surfaces,” ACM

Trans. Graph., vol. 26, July 2007.

[30] N. Ray, B. Vallet, W. C. Li, and B. Lévy, “N-symmetry direction field design,”

ACM Trans. Graph., vol. 27, pp. 10:1–10:13, May 2008.

[31] N. Ray, B. Vallet, L. Alonso, and B. Levy, “Geometry-aware direction field

processing,” ACM Trans. Graph., vol. 29, pp. 1:1–1:11, Dec. 2009.

[32] M. Marinov and L. Kobbelt, “A robust two-step procedure for quad-dominant

remeshing,” Computer Graphics Forum, vol. 25, no. 3, pp. 537–546, 2006.

[33] S. Maza, F. Noel, and J. Leon, “Generation of quadrilateral meshes on free-form

surfaces,” Computers Structures, vol. 71, no. 5, pp. 505 – 524, 1999.

[34] C.-H. Peng, E. Zhang, Y. Kobayashi, and P. Wonka, “Connectivity editing for

quadrilateral meshes,” ACM Trans. Graph., vol. 30, pp. 141:1–141:12, Dec. 2011.

[35] T. D. Blacker and M. B. Stephenson, “Paving: A new approach to automated

quadrilateral mesh generation,” International Journal for Numerical Methods

in Engineering, vol. 32, no. 4, pp. 811–847, 1991.

77

[36] D. R. White and P. Kinney, “Redesign of the Paving Algorithm: Robustness

Enhancements through Element by Element Meshing,” in International Meshing

Roundtable, 1997.

[37] C. Park, J.-S. Noh, I.-S. Jang, and J. M. Kang, “A new automated scheme of

quadrilateral mesh generation for randomly distributed line constraints,” Com-

put. Aided Des., vol. 39, pp. 258–267, Apr. 2007.

[38] T. Weyrich, J. Deng, C. Barnes, S. Rusinkiewicz, and A. Finkelstein, “Digital

bas-relief from 3d scenes,” in ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07,

2007.

[39] H. Bezerra, B. Feijo, and L. Velho, “An image-based shading pipeline for 2d

animation,” in Computer Graphics and Image Processing, 2005. SIBGRAPI

2005. 18th Brazilian Symposium on, pp. 307–314, 2005.

[40] J. Cohen, M. Olano, and D. Manocha, “Appearance-preserving simplification,”

in Proceedings of the 25th Annual Conference on Computer Graphics and Inter-

active Techniques, SIGGRAPH ’98, pp. 115–122, 1998.

[41] S. F. Johnston, “Lumo: Illumination for cel animation,” in Proceedings of the

2nd International Symposium on Non-photorealistic Animation and Rendering,

NPAR ’02, pp. 45–52, 2002.

[42] M. Okabe, G. Zeng, Y. Matsushita, T. Igarashi, L. Quan, and H.-Y. Shum,

“Single-view relighting with normal map painting,” Proceedings of Pacific

Graphics, pp. 27–34, 2006.

[43] H. Winnemoeller, A. Orzan, L. Boissieux, and J. Thollot, “Texture design and

draping in 2d images,” Computer Graphics Forum, vol. 28, no. 4, pp. 1091–1099,

2009.

78

[44] C. Shao, A. Bousseau, A. Sheffer, and K. Singh, “Crossshade: Shading con-

cept sketches using cross-section curves,” ACM Trans. Graph., vol. 31, no. 4,

pp. 45:1–45:11, 2012.

[45] J. Sun, L. Liang, F. Wen, and H. Shum, “Image vectorization using opti-

mized gradient meshes,” ACM Transactions on Graphics (TOG), vol. 26, no. 11,

pp. 11:1–11:7, 2007.

[46] A. Orzan, A. Bousseau, H. Winnemoller, P. Barla, J. Thollot, and D. Salesin,

“Diffusion curves: A vector representation for smooth-shaded images,” ACM

Transactions on Graphics (TOG), vol. 27, no. 3, pp. 92:1–92:8, 2008.

[47] D. Sýkora, J. Dingliana, and S. Collins, “Lazy- brush: Flexible painting tool for

hand-drawn cartoons,” Computer Graphics Forum, vol. 28, no. 2, pp. 599–608,

2009.

[48] M. Finch, J. Snyder, and H. Hoppe, “Freeform vector graphics with controlled

thin-plate splines.,” ACM Transactions on Graphics (TOG), vol. 30, pp. 166:1–

166:10, 2011.

[49] T. Wu, C. Tang, M. Brown, and H. Shum, “Shapepalettes: Interactive normal

transfer via sketching.,” ACM Transactions on Graphics (TOG), vol. 26, no. 3,

pp. 44:1–44:5, 2007.

[50] R. Vergne, P. Barla, R. W. Fleming, and X. Granier, “Surface flows for image-

based shading design,” ACM Transactions on Graphics (TOG), vol. 31, no. 94,

pp. 94:1–94:9, 2012.

[51] H. Hoppe, “Progressive meshes,” in Proceedings of the 23rd Annual Conference

on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, (New York,

NY, USA), pp. 99–108, ACM, 1996.

79

[52] H.-W. Kung, “Curved pattern origami,” masters thesis, Texas AM University,

College Station, TX, 2014.

[53] E. A. P. Hernandez, D. J. Hartl, R. J. Malak, E. Akleman, O. Gonen, and H.-W.

Kung, “Design tools for patterned self-folding reconfigurable structures based on

programmable active laminates,” Journal of Mechanisms and Robotics, vol. 8,

no. 3, p. 031015, 2016.

80

