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ABSTRACT 

 

Brown shrimp (Farfantepenaeus aztecus) support a commercially important 

fishery in the northern Gulf of Mexico, and juveniles use coastal estuaries as nurseries.  

Production of young shrimp from any given bay system, and hence commercial harvest 

of sub-adults and adults from the Gulf, is highly variable from year to year.  We describe 

development of a spatially-explicit, individual-based model representing the cumulative 

effects of temperature, salinity, and access to emergent marsh vegetation on the growth 

and survival of young brown shrimp, and we use the model to simulate shrimp 

production from Galveston Bay, Texas, U.S.A. under environmental conditions 

representative of those observed from 1983 to 2012.  We also describe a field growth 

study conducted from April 12 to June 9, 2011, designed to validate and improve the 

model.   

The model reproduced biomass and size distribution patterns observed in field 

data.  Although annual variability of modeled shrimp production did not correlate well 

(R2 = 0.005) with fisheries independent trawl data from Galveston Bay, there was a 

significant correlation with similar trawl data collected in the northern Gulf of Mexico 

(R2 = 0.40 p = 0.0005).  Identifying and representing spatially variable factors such as 

annual recruitment timing and magnitude among bays, therefore, may be the key to 

understanding bay-specific contributions to the adult stock. In our field growth study, we 

used a mark-recapture approach to measure brown shrimp growth in three polyhaline 

marsh ponds over periods of two to four weeks.  We recorded hourly temperature and 
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flooding data, and also measured biomass of infaunal food organisms.  We 

parameterized our production model with input from 2011 to compare modeled output to 

observed data.  Mean growth rate estimates from the model were similar to the estimated 

mean growth rate observed in the field (1.13 mm d-1, 1.06 mm d-1, respectively), 

however, growth rates differed significantly between marsh ponds.  Data on infaunal 

biomass suggest that spatial and temporal variability in available food organisms is 

related to differences in growth, and the inclusion of such information may enhance the 

model.   
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1. INTRODUCTION  

 

Penaeid shrimps found in the northern Gulf of Mexico (GoM) include white 

shrimp, Litopenaeus setiferus, pink shrimp, Farfantepenaeus duorarum, and brown 

shrimp, Farfantepenaeus aztecus (Perez-Farfante and Kensley 1997).  All of these are 

targeted by the commercial shrimping industry.  United States landings in 2015 were 

estimated at 102 million kg (225 million pounds) valued at over 390 million dollars 

(National Marine Fishery Service, Fishery Statistics Division 2017).  Over half of this 

catch was brown shrimp.   

The brown shrimp life history has been studied extensively because of this 

important commercial fishery.  The time from spawning until harvest for this species is 

usually less than 1 year (Cook and Lindner 1970).  Adult brown shrimp spawn offshore 

with peak activity at depths of 27 to 46 m from October to December and March to May 

(Christmas and Etzold 1977; Renfro and Brusher 1982).  Eggs hatch within 14-18 hours 

(Cook and Lindner 1970), and after passing through several larval stages (Lassuy 1983), 

postlarvae move into estuaries settling as juveniles in inshore bays (Dall et al. 1990; Fry 

2008).  Juveniles grow rapidly to sub-adult size then migrate offshore to complete their 

growth and spawn (Temple and Fischer 1967).  

Recruitment of juveniles to the sub-adult (inshore) and adult (offshore) fishery 

appears dependent upon processes that take place during the estuarine phase of the 

shrimp’s life history (Minello et al. 1989; Minello and Zimmerman 1991; Haas et al. 

2001).  There is little or no correlation demonstrated between number of spawners and 
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number of recruits to the fishery (Neal 1975; Nance and Nichols 1988) or between 

abundance of postlarvae entering bays and subsequent offshore landings (Berry and 

Baxter 1969; Ford and St. Amant 1971; Baxter and Sullivan 1986).  However, positive 

correlations were found between abundance of juveniles and adults (Berry and Baxter 

1969), and a strong correlation was identified between numbers of sub-adult/bait-sized 

brown shrimp caught and annual offshore landings of adults (Baxter and Sullivan, 1986).  

These relationships suggest that mortality is high and variable during the estuarine phase 

of brown shrimp life history and that year-class strength is fixed before migration into 

open bays (Minello et al. 1989).   

Estuarine habitats in the northern GoM vary considerably and include intertidal 

marsh, submerged aquatic vegetation, oyster reef, mangroves, tidal mudflats, and sub-

tidal bay bottom (Clark et al. 2004).  Understanding the relative value of juvenile 

habitats and potential nurseries is critical to the management of adult populations (Beck 

et al. 2001; Adams et al. 2006).  Beck et al. (2001) defined nurseries as juvenile habitats 

whose “contribution per unit area to the production of individuals that recruit to adult 

populations is greater, on average, than production from other habitats in which 

juveniles occur.”  The contribution of a habitat is measured through a combination of 

four factors: density, growth, survival of juveniles, and movement to adult habitats 

(Beck et al. 2001). 

Brown shrimp are present in several habitat and bottom types such as oyster reefs 

(Stunz et al. 2010) and shallow open water (Minello 1999; Fry 2008;), but are found in 

highest densities associated with seagrass and the emergent vegetation along the edge of 



 

3 

 

salt marsh habitats (Zimmerman and Minello 1984; Minello and Rozas 2002; Minello et 

al. 2003).  Since there is relatively little seagrass in Galveston Bay (Clark et al. 2004; 

King and Sheridan 2006), estuarine marshes have been considered important nursery 

areas, providing shrimp with favorable environmental conditions. Salt marshes provide 

refuge from predators (Minello and Zimmerman 1983; Minello et al. 1989, Minello 

1993) and abundant food to support rapid growth (McTigue and Zimmerman 1991, 

1998; Whaley and Minello 2002).  Salt marshes contribute substantially to the 

productivity of brown shrimp (Minello et al. 2008) and are identified as Essential Fish 

Habitat (Minello 1999; NMFS 2010) as defined by the Magnuson-Stevens Fishery 

Conservation and Management Reauthorization Act (MSRA) of 2006. 

The MSRA directs fishery management councils and the National Marine 

Fisheries Service (NMFS) to identify Essential Fish Habitat for all managed fishery 

species (Minello 1999).  The NMFS Habitat Assessment Improvement Plan (HAIP) 

introduced in May of 2010 draws upon the mandates of the MSRA, calls for the 

improvement of fisheries management through the integration of habitat science, and 

emphasizes improving stock assessment models and their data input Yoklavich et al. 

(2010).  The modeling approach proposed here is an attempt to quantify habitat effects 

on juvenile brown shrimp populations.  Although several brown shrimp models are in 

the literature including a spatial density model (Minello et al. 2008), Individual Based 

Models (Haas et al. 2004; Roth et al. 2008), a bioenergetics model (Adamack et al. 

2012), and various correlative models (Barrett and Gillespie 1973; Turner 1992; Haas et 

al. 2001) their output is not directly compatible with current stock assessment models.   
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Until recently, stock assessments for shrimp in the GoM have used Virtual 

Population Analysis (VPA) developed by Nichols (1984).  In 2009, an internal NMFS 

panel reviewed the pink shrimp VPA and deemed its use inappropriate given that current 

fishing effort is much lower than when the model was originally calibrated in 1994 (Hart 

and Nance 2010; Hart, 2012).  Hart and Nance (2010) suggested the adoption of Stock 

Synthesis 3 (SS-3), a widely used and peer reviewed assessment model (Methot 2009; 

Schirripa et al. 2009).  Stock Synthesis 3 is accepted as a robust, reliable assessment 

modeling software by the Alaska, Northwest, Northeast, Southeast, and Southwest 

Fisheries Science Centers (and their respective Fisheries Management Councils) for 

assessing other valuable fisheries (Hart and Nance 2010).  In addition, SS-3 has the 

capability to incorporate habitat and environmental information, but as of this writing 

does not include inputs regarding juvenile habitat and environmental effects explicitly.  

The economic value of the GoM shrimp fishery has fueled over 50 years of 

research into population dynamics of brown shrimp (Haas et al. 2001) and mechanisms 

through which habitats influence growth and survival (Minello and Zimmerman 1991).  

Studies in Texas and Louisiana on juvenile brown shrimp have shown that growth and 

survival in estuarine nurseries depend upon temperature, salinity, and access to emergent 

marsh vegetation (Minello et al. 1989, 2008; Adamack et al. 2012).  Modeling these 

highly dynamic variables and their interactions is a cognitively and mathematically 

complex task (Costanza et al. 1998; Grant and Swannack 2008).  However, using a 

holistic instead of reductionist approach is essential when modeling complex systems 

(Costanza et al. 1993, 1998; Miller et al. 2000).  Fortunately, model software 



 

5 

 

improvements include graphical programming languages and user-friendly interfaces 

specifically designed to facilitate modeling of nonlinear, dynamic systems (Costanza et 

al. 1998; Costanza and Gottleib 1998; Costanza et al. 2001; Ford 2010).   

 The development and analysis of a simulation model is beneficial at both 

predictive as well as conceptual levels (Carothers and Grant 1987).  Building models 

that represent the assumed structure of a system requires the synthesis of existing data 

and theory and can help identify and fill knowledge gaps or identify areas in which 

conflicting hypotheses or parameter estimates are apparent (Carothers and Grant 1987; 

Costanza and Gottleib 1998). 

 My dissertation research has been divided into two separate but related 

manuscripts.  Manuscript #1 describes the development of an individual-based model 

(IBM) that is an effort to estimate the annual influence of environmental conditions on 

juvenile brown shrimp production in GoM estuaries.  Manuscript #2 discusses a field 

growth study we conducted in three Galveston Bay, Texas marsh ponds.  We compared 

the data from the field study to simulations using the model described in Manuscript #1 

in an effort to further evaluate the IBM, and identify factors that may improve model 

estimates. 
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2. SIMULATING ENVIRONMENTAL EFFECTS ON BROWN SHRIMP 

PRODUCTION IN THE NORTHERN GULF OF MEXICO* 

 

2.1. Introduction 

Brown shrimp (Farfantepenaeus aztecus) is a commercially important fishery 

species of the northern Gulf of Mexico, and landings generated over $245 million (US 

dollars) in 2013 (National Marine Fishery Service, Fishery Statistics Division 2015).  

The life history and population dynamics of brown shrimp have been studied 

extensively, and processes occurring during the juvenile phase in coastal estuaries 

appear to be important in determining population size (Zimmerman et al., 2000).  Brown 

shrimp usually spawn and are harvested within one year (Cook and Lindner, 1970).  

Adults spawn offshore with peak activity from October to December and March to May 

(Christmas and Etzold, 1977; Renfro and Brusher, 1982).  Eggs hatch within 14-18 

hours and pass through several larval stages (Cook and Lindner, 1970, Cook and 

Murphy, 1971) before moving into estuaries as postlarvae and settling as juveniles in 

inshore bays (Fry, 2008).  Juveniles grow rapidly to sub-adult size and then migrate 

offshore to complete their growth to maturity (Trent, 1967).  Young brown shrimp in the 

northern Gulf of Mexico utilize shallow estuarine habitats and grow from postlarvae (10-

15 mm TL) to subadults (55-80 mm TL) within a few months (Cook and Lindner, 1970).  

                                                 

* Reprinted with permission from “Simulating environmental effects on brown shrimp production in the 
northern Gulf of Mexico” by Jennifer P. Leo, Thomas J. Minello, William E. Grant, and Hsiao-Hsuan 
Wang, 2016, Ecological Modelling, 330, 24-40, Copyright 2016 by Elsevier B.V.  
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While brown shrimp juveniles occur in several habitat types including oyster reef (Stunz 

et al., 2010) and shallow open water (Fry, 2008; Minello, 1999), highest densities are 

found in seagrass and salt marsh (Minello et al., 2003; Stokes, 1974).  Relatively little 

seagrass habitat exists in Galveston Bay or in many estuaries of the northwestern Gulf of 

Mexico (Handley et al., 2007), and the majority of brown shrimp are found associated 

with emergent marsh vegetation (Minello and Rozas, 2002; Zimmerman et al., 1984).  

Indeed, brown shrimp commercial yield has been correlated on a large scale with the 

presence of intertidal vegetation (Boesch and Turner, 1984; Turner, 1977). 

The Galveston Bay system is the largest estuary in the state of Texas, U.S.A. 

(Figure 2.1) and the salt marshes and shallow water surrounding the bay are particularly 

important habitats for young shrimp (Minello et al. 2008). Spartina alterniflora is the 

dominant shoreline vegetation (Minello and Webb, 1997), and this intertidal habitat 

supports high densities of young brown shrimp when flooded (Zimmerman and Minello, 

1984).  Some mechanisms linking salt marsh habitats with brown shrimp production 

have been identified (Zimmerman et al., 2000).  Growth of juvenile shrimp is mainly a 

function of temperature and food availability (Zein-Eldin and Aldrich, 1965), with 

growth rates commonly reaching 1 mm day-1 (Knudsen et al., 1977).  Young brown 

shrimp feed on benthic invertebrates such as amphipods and polychaete worms 

(McTigue and Zimmerman, 1991, 1998), which often are most abundant within marsh 

vegetation (Whaley and Minello, 2002).  These studies support the conclusion that 

growth rates should be highest when the vegetated marsh surface is available for 

foraging (Minello and Zimmerman, 1991).  Shrimp access to the vegetated marsh  
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Figure 2.1  Map indicating the location of the Gulf of Mexico and Galveston 
Bay, Texas, U.S.A. Within Galveston Bay, approximate locations of areas of 
marsh (thin green line), non-vegetated marsh edge (NVME, thin yellow line), 
shallow open water (SOW, light blue area), and deeper (≥ 1 m deep) water 
(dark blue area) also are indicated. 
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surface is dependent upon tide height and marsh surface elevation (Childers et al., 1990, 

Minello et al. 2012).  In the northern Gulf of Mexico, tides are microtidal (<1 m), 

predominantly semi-diurnal, and strongly wind driven, resulting in water levels that 

regularly deviate from predicted tides (Minello et al. 2012; Rozas 1995).  The increased 

growth rates associated with access to the vegetated marsh surface also may reduce the 

total time shrimp are available to predators (Rozas and Zimmerman, 2000), since 

mortality rates due to predation appear to decrease as shrimp grow (Minello et al., 1989).  

Fish predation appears to be the primary source of mortality of young brown shrimp 

(Minello et al. 1989; Minello and Zimmerman, 1983), and vegetative structure also 

provides protection from such predation, likely resulting in greater survival when on the 

marsh surface (Kneib, 1995; Orth et al., 1984; Minello et al., 2003).  Salinity effects on 

shrimp survival and growth are less clear.  Laboratory experiments have shown little 

correlation between shrimp growth and salinity (Zein-Eldin, 1963, Zein-Eldin and 

Aldrich, 1965), but caging experiments along a salinity gradient in Barataria Bay, 

Louisiana suggest that low salinities result in slower growth rates in estuarine habitats 

(Rozas and Minello, 2011). 

Brown shrimp production from the Galveston Bay system, or any given bay 

system in the northern Gulf of Mexico, is highly variable from year to year.  Hence, it is 

difficult to predict annual commercial harvests from the Gulf or to assess the current 

status of brown shrimp stocks. The recent Habitat Assessment Improvement Plan 

(HAIP) of the NMFS calls for adjustments to the current stock assessment methodology, 

and the improvement of fisheries management through the integration of habitat science 



 

10 

 

(Yoklavich et al., 2010). Since recruitment of juveniles to the fishery appears dependent 

upon processes that take place during the estuarine phase of the shrimp life cycle, the 

incorporation of juvenile habitat effects on production should support a more complete 

stock assessment methodology.   

Several recent models using a variety of approaches have focused on the 

production of juvenile brown shrimp.  These have ranged in complexity from a relatively 

simple spatial density model estimating brown shrimp production from Galveston Bay 

marshes using an equilibrium yield approach (Minello et al., 2008), to a bioenergetics 

model examining the potential impacts of freshwater diversions of the Mississippi River 

on the production of juvenile brown shrimp (Adamack et al., 2012), to spatially-explicit 

individual-based models (IBMs) investigating the effects of habitat fragmentation and 

inundation on brown shrimp production (Haas et al., 2004; Roth et al., 2008).  These 

IBMs simulate individual shrimp movements at a high spatial resolution (1 m2 cell size) 

over relatively small areas (1 - 25 ha), and require long simulation times on relatively 

sophisticated computers. 

In this paper, we present a spatially-explicit, individual-based model which 

simulates the cumulative effects of temperature, salinity, and access to emergent marsh 

vegetation on the growth and survival of young brown shrimp.  We developed our model 

to estimate annual shrimp production from bay systems in the northern Gulf of Mexico 

and parameterized the model using 30 years of environmental data for Galveston Bay. 

We first describe model structure and function (Section 2), model calibration (Section 

3), baseline simulations (Section 4), and sensitivity analyses (Section 5).  We then use 
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the model to explore the uncertainty in estimations of shrimp production resulting from 

uncertainty in the timing of shrimp recruitment to the bay system (Section 6).  Model 

production also was compared with abundance (CPUE) estimates from Galveston Bay 

and coastal Gulf waters as one means of assessing model performance (Section 7). 

2.2. Model description 

The model, which is spatially-explicit and individually-based, simulates the 

biomass production of brown shrimp in salt marsh habitats of the northern Gulf of 

Mexico and currently is parameterized to represent the environmental conditions and 

habitat characteristics of Galveston Bay. Three habitat types utilized by shrimp are 

included in the model: 1) marsh – regularly flooded intertidal salt marsh vegetation; 2) 

non-vegetated marsh edge (NVME)- water near (< 150 m from) the marsh vegetation; 

and 3) shallow open water (SOW) - relatively shallow (< 1m deep) non-vegetated water 

farther (> 150 m) from the marsh edge (Figure 2.1).  These three habitat types comprise 

17%, 28%, and 55%, respectively of the 63,500 ha of Galveston Bay shrimp habitat 

represented in the model. The 100 habitat cells (635 ha each) in the model also are 

identified by low (0-10 PSU), intermediate (10-20 PSU), and high (> 20 PSU) salinities, 

that change on a monthly basis (Figure 2.2).  Salinity patterns in the bay were 

determined by the TxBLEND model (Guthrie et al. 2014). Postlarval shrimp (10 mm 

TL) are recruited into non-vegetated marsh edge and shallow open water on a daily 

basis; their distribution is based on relative densities observed in salinity-habitat 

combinations (Minello 1999).  No shrimp are recruited directly into marsh habitat.  A  
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Figure 2.2 Schematic representation of the spatial relationships and dynamic 
processes included in the model. The top panel shows the relative abundance 
(fixed) of three habitats modeled in the bay. The second panel shows the 
distribution of salinities within these habitats; this distribution changes 
monthly. Location of daily recruitment and possible directions of shrimp 
movement is indicated below this. The graphs in the bottom panel depict the 
range of potential rates of growth and mortality encountered by the shrimp. 
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percentage of shrimp move into marsh habitat from the non-vegetated marsh edge when 

the marsh vegetation is flooded, and all shrimp move out of the marsh into the non- 

vegetated marsh edge when the marsh is no longer flooded.  Shrimp in the shallow open 

water (> 150 m from marsh vegetation) do not leave that area.  Shrimp growth, 

emigration, and mortality occur in all cells, with growth rates and mortality probabilities 

differing among  cells (and also depending on temperature and salinity, see Figure 2.3). 

Shrimp in the model recruit into the bay as postlarvae (10 mm TL), and they 

emigrate from nursery habitats to the open bay when they attain a length of 70 mm. The 

quantitative representations of movement, growth, mortality, and emigration of 

individual shrimp included in the model are summarized schematically in Figure 2.3.  

Rules representing the movement of individuals, described in the preceding paragraph, 

are probabilistic.  Each hour when the marsh is flooded, each individual located in either 

the marsh or the non-vegetated marsh edge has a 69% probability of moving to a cell 

with the same salinity in the marsh vegetation and a 31% probability of moving to a cell 

with the same salinity in the non-vegetated marsh edge.  If there is no cell with the same 

salinity, the individual moves into a cell with the salinity closest to the salinity of the cell 

from which it moved.  Thus, any given individual may move back and forth between 

these two areas during periods of marsh flooding, but is likely to spend slightly more 

than twice as much of this time in the marsh vegetation.  These values were based on 

relative densities in these habitats at flood tide reported by Minello et al. (2008). 

Growth is a function of the water temperature, salinity, and habitat type (i.e., 

marsh, non-vegetated marsh edge, shallow open water) to which an individual is 
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Figure 2.3 Schematic summary of the quantitative representations of the movement, growth, 
mortality, and emigration of individual shrimp included in the model. See text for details. 
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exposed (Figure 2.3).  A probabilistic base growth rate (0.0416 ± 0.0104 mm hr-1) is 

multiplied by two indexes representing 1) a water temperature-salinity effect and 2) a 

habitat effect.  The water temperature-salinity effect is represented as a polynomial 

function of water temperature, which is different for each of the three salinity zones 

(Figure 2.4).  Hourly water temperatures are calculated based on relationships between 

the median air temperature and measured water temperatures in marsh and non-

vegetated marsh edge (see Appendix 1).  The habitat effect is represented as a constant, 

which is different for each of the three habitats (1.28, 1.14, and 1.0 for marsh, non-

vegetated marsh edge, and shallow open water, respectively).  These values are based on 

based on experimental growth rates from field studies and infaunal prey distributions 

(Minello and Zimmerman, 1991; Rozas and Minello, 2011; Whaley and Minello, 2002) 

Mortality (probability of dying) is a function of a base instantaneous rate 

(0.00083 hr-1) multiplied by two indexes representing 1) a shrimp size effect and 2) a 

habitat effect (Figure 2.3).  Mortality is reduced as shrimp grow, and the size effect is 

calculated as 53.092 * (total length in mm)-1.1163.  The habitat effect is represented as a 

constant, which is different for marsh vegetation (0.69) versus the two areas of non-

vegetated water (1.38).  

Input data required by the model for each calendar year being simulated include 

1) current elevation of the marsh edge 2) hourly tide heights, 3) daily median air 

temperatures, and 4) monthly distribution of salinity zones among habitat types for the 

calendar year being simulated. The number of individual postlarval shrimp recruiting i  
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Figure 2.4 Plot of the effect of the interaction between temperature and salinity on 
growth. 
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Figure 2.5 Examples input data required by the model, including (a) current 
(for the year being simulated) elevation of the marsh edge, (b) hourly tide 
heights, (c) daily median air temperatures, (d) proportion of habitats in each 
salinity zone, and (e) daily shrimp recruitment.  Data presented are for 
January through August, in Galveston Bay, Texas, U.S.A. 
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nto the bay system each day during the simulation period is fixed. Graphs of input data 

for January through August, 2012 are presented in Figure 2.5.  Elevation of the marsh 

edge is a function of the elevation measured in the baseline year of 2013 (1.477 m, 

NOAA tide gauge 8771450, Galveston Pier 21, http://co-ops.nos.noaa.gov/) and relative 

sea level rise over the years simulated (Figure 2.5a, see Appendix 1 for details).  The 

time series of environmental data representing hourly tide heights (Figure 2.5b), daily 

median air temperatures (Figure 2.5c), and monthly salinities (Figure 2.5d) are based on 

data from NOAA Tides and Currents 

(https://tidesandcurrents.noaa.gov/waterlevels.html?id=8771450), NOAA National 

Center for Environmental Information, (https://www.ncdc.noaa.gov/cdo-web/datatools), 

and the Texas Water Development Board’s TxBLEND model (Guthrie et al., 2014), 

respectively (see Appendix 1).  The relative numbers of individual shrimp entering 

Galveston Bay (Figure 2.5e) are based on data from collections of postlarvae in a 

Galveston Bay tidal pass (Matthews, 2008) and abundance patterns observed in marsh 

habitat (Rozas et al. 2007). 

A detailed model description following the ODD (Overview, Design concepts, 

Details) protocol for describing individual-based models as outlined by Grimm et al. 

(2006) and Railsback and Grimm (2012) is presented in Appendix 1.  In addition to the 

equations and logical rules that constitute the model, which are summarized above, 

Appendix 1 describes the rationale behind the model, model design concepts, key 

assumptions, intermediate calculations linking information sources to the representation 

http://co-ops.nos.noaa.gov/)
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of that information in the model, and the sequence of events and processes involved in 

the execution of the model. 

2.3. Model calibration 

We calibrated the model such that 1) simulated annual brown shrimp production 

was scaled to reasonable values, and 2) simulations could be run in a reasonable amount 

of time on available computing facilities.  We accomplished 1) by assuming each 

simulated shrimp was a “super-individual” (Scheffer et al. 1995) representing 1 million 

“real” shrimp.  This calibration resulted in simulated monthly and annual mean 

abundances and biomasses similar to those estimated based on field data from a 

polyhaline marsh complex in Galveston Bay spanning 11 years (Rozas et al., 2007).  We 

then accomplished 2) by multiplying the input data representing daily shrimp 

recruitment (Figure 2.5e) by 0.5.  This kept the number of individuals being simulated 

during any given (simulated) hour under 2,000 and resulted in simulation times under 10 

minutes on standard desktop computers.  Since simulated shrimp behave independently 

of each other (i.e., there are no density-dependent relationships in the model), neither of 

these calibrations affect the interpretation of simulation results with regard to the relative 

influence of environmental factors on shrimp production (Figure 2.6). 

2.4. Baseline simulations 

We used a baseline version of the model, parameterized and calibrated as 

described above, to simulate annual brown shrimp production from Galveston Bay under 

environmental conditions representative of those observed from 1983 to 2012.  We ran  
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Figure 2.6 Sensitivity of model estimates of brown shrimp production 
(kg/ha) to changes relative to baseline in the number of “real” shrimp 
represented by each simulated shrimp. Mean (± SE, n = 10) production 
from January through August in Galveston Bay, Texas, U.S.A., is presented 
for simulations run with baseline parameter values and under 
environmental conditions representing the calendar year 2012 with the 
indicated changes in the number of “real” shrimp represented by each 
simulated shrimp 
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Figure 2.7 Mean (± SE, n = 10) production (kg/ha) of brown shrimp 
(Farfantepenaeus aztecus) from January through August in Galveston Bay, Texas, 
U.S.A., simulated under environmental conditions representing the indicated 
calendar years. 
 



 

22 

 

10 replicate stochastic (Monte Carlo) simulations representing each of these 30 years 

(i.e., using the tide, temperature, and salinity input data corresponding to each year).  

Mean annual (January through August) production ranged from 27.5 kg ha-1 in 1997 to 

43.5 kg ha-1 in 2012, with an overall mean of 34.8 (± 0.70 SE) kg ha-1 (Figure 2.7, see 

Figure A2.1, Appendix 2, for results of individual simulations). 

2.5. Sensitivity analyses 

We examined the sensitivity of model estimates of annual brown shrimp 

production to changes of ±10% relative to baseline in values of key model parameters 

(growth rate, probability of mortality, and probability of moving into marsh vegetation 

of individual shrimp) and values of environmental input data (tide heights, median air 

temperatures).  We also performed simulations in which the salinity of the entire bay 

was designated low (0-10 PSU), intermediate (10-20 PSU), or high (>20 PSU).  For all 

analyses we ran 10 replicate stochastic simulations of each scenario for each year from 

1983 through 2012 and compared the mean production of the treatment to the 

corresponding year’s mean baseline value (Table 2.1).  Increasing growth rates by 10% 

caused an overall 16% increase (annual range 13-20%) in production, whereas a 10% 

decrease resulted in an 18% decrease (annual range 16-21%) in production.  A 10% 

increase in mortality probabilities resulted in a production decrease of 15% (annual 

range 11-16%) while a 10% decrease resulted in an 18% increase (annual range 14-21%) 

in production. When we increased the shrimp’s probability of moving into the marsh by 

10%, production increased 5% (annual range 3-8%) and conversely, decreased 5% 

(annual range 1-8%) with decreased probability of movement.   
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Table 2.1 Results of sensitivity analysis showing the mean increase or decrease in 
shrimp production (kg ha-1) associated with a 10% increase or decrease in each 
parameter.  The salinity zone patterns differed among the 30 simulated years and so the 
delta value was variable by year as well. 

Parameter Δ 
30 yr. mean % change 

from baseline 30 year range 

Growth +10% +16% +13 to +20% 
-10% -18% -16 to -21% 

Mortality +10% -15% -11 to -16% 
-10% +18% +14 to +21% 

Movement +10% +5% +3 to +8% 
-10% -5% -1 to -8% 

Tide height +10% +11% +5 to +21% 
-10% -19% -14 to -24% 

Temperature +10% -2% -12 to +8% 
-10% -14% -7 to -19% 

Salinity 
Varied by 

year 

  
0-10 PSU -55% -49 to -59% 
10-20 PSU -7% -12 to +9% 
>20 PSU ±0% -4 to +16% 
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 We also conducted simulations by changing values of environmental input data 

by ±10%.  Mean production estimates increased 11% (annual range 5-21%) in response 

to increasing tide heights (and thus, marsh habitat access) and decreased 19% (annual 

range 14-24%) with a decrease in tide height (and marsh access).  The thirty year mean 

production was affected negatively by both decreasing and increasing air temperature.  A 

10% decrease in air temperature resulted in a 14% decrease (annual range 7-19%) in 

annual production.  Increasing temperature 10% decreased production by a mean of 2%, 

with annual values ranging from a decrease of 12% to an increase of 8%.  Although the 

overall mean change was negative, nine years of the 30 simulated saw an increase in 

production with an increase in temperature  (Table 2.1, See Figure A2.2 and 2.3, 

Appendix 2, for results of example year, 2012).  Simulations in which bay water 

salinities were entirely low (0-10 PSU), intermediate (10-20 PSU), or high (>20 PSU) 

resulted in mean production rates decreasing 55 (annual range 49-59%), 7 (annual range 

-12 to +9%), and 0% (annual range -4 to +16%), respectively, from the baseline mean.   

2.6. Simulation of effects of timing of recruitment on brown shrimp production 

To explore the uncertainty in estimations of shrimp production resulting from 

uncertainty in the timing of postlarval shrimp recruitment to the bay system, we ran 

simulations in which we shifted the time series of input data representing recruitment 

such that recruitment occurred 14, 21, and 28 days earlier than baseline, and 14, 21, 28, 

35, and 42 days later than baseline.  We did not change the relative shape of the 

recruitment curve (Figure 2.5e), but rather we shifted the entire curve earlier or later in 

the year.  For each of these 9 scenarios (these 8 shifts plus a baseline scenario), we ran  
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Figure 2.8 Comparison of shrimp mean size (mm TL) from model output and data from 
Galveston Island State Park (GISP) 
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10 replicate stochastic (Monte Carlo) simulations under environmental conditions 

representing each of the 30 years from 1983 to 2012 (i.e., using the tide, temperature, 

and salinity input data corresponding to each year) (a total of 9 x 10 x 30 = 2700 

simulations).  Mean production estimates decreased monotonically as recruitment 

occurred earlier than baseline under all environmental conditions simulated (Figure 2.8, 

see Figure A2.4, Appendix 2, for results of individual simulations).  When recruitment 

occurred up to 21 days later than baseline, mean production estimates tended to increase 

or remain essentially unchanged under all environmental conditions.  However, 

recruitment delays of 28 or more days affected mean production estimates differently 

under different environmental conditions, with estimates sometimes continuing to 

increase noticeably, sometimes decreasing noticeably, and often remaining relatively 

unchanged relative to shorter delays (e.g., under environmental conditions representative 

of 1987, 2012, and 1984, respectively).  

2.7. Model evaluation  

Patterns that emerged from our model included: seasonal trends in relative 

population size and structure, annual production variability, and inter-annual production 

variability.  Seasonal trends in relative population size and structure were verified 

against field data collected in Galveston Bay at Galveston Island State Park (GISP) from 

1982-1992 (Rozas et al., 2007).  We compared field data to our model output of the 

monthly mean size of shrimp, the size frequency distribution, the population size, and 

the standing biomass.  Since the GISP data were used to derive some of our growth and 

mortality parameters (Minello et al., 1989; Minello et al., 2008; Roth et al. 2008; Rozas  
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Galveston Island State Park (GISP) 

Figure 2.10 Comparison of shrimp standing biomass from model output and field data 
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et al., 2007), we used the comparisons as a method of verifying that the model processes 

were reproducing patterns that characterize the systems internal organization.  The 

modeled monthly means for shrimp size, and standing biomass followed patterns similar 

to the GISP data set (Figures 2.9 and 2.10).  Size distributions also were similar over 

time. 

Minello et al. (2008) estimated a mean standing crop of 19,382 shrimp ha -1 in 

the polyhaline marsh complex over the period of April through November.  Our model 

estimates a mean of 22,848 shrimp ha-1 in the polyhaline marsh (Zone 3) over the period 

of April through August for the years 1893 through 2012.  We estimated that secondary 

production lost to predation (shrimp that die in the model) was a mean of 28% of the 

total production (kg ha-1).  This is less than the estimate from Roth et al. (2008) of 37%.   

Several data sets estimating brown shrimp abundance were used to evaluate our 

model output.  The Texas Parks and Wildlife Department collects shrimp using trawls at 

random locations in Galveston Bay every month (Brown et al., 2013; Martinez-Andrade 

et al., 2005), and monthly catch per unit effort (CPUE) data from 1982 through 2011 

were available for model comparisons.  Southeast Area Monitoring and Assessment 

Program (SEAMAP) summer trawl surveys provided another fishery independent source 

of abundance data (CPUE) available for most years of our simulations (1987-2012).  We 

looked for general trends in inter-annual variability to facilitate comparison of our 

modeled production estimates (kg ha-1) against catch data.   

From 1982 through 2011, the mean size of shrimp caught by the TPWD trawls 

was 87.4 mm TL (Brown et al., 2013), and we assumed that their samples represented  
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Figure 2.11 Seasonal pattern of production (March through August) from the model (kg/ha) and CPUE (number/per 
ha) from Texas Parks and Wildlife Department trawl sampling.  Vertical bars represent +/- 1 standard deviation.  
Cutout shows detail. 
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shrimp that had recently left the marsh complex and moved into open bay habitats.  We 

compared TPWD CPUE from March through September with the modeled monthly 

production in kg ha-1 (Figure 2.11), and there are similarities in the seasonal pattern. 

Months of peak production in the model generally coincided with months of peak 

CPUE.  Our estimates of annual production only include production through August, 

since TPWD data show that there are very few brown shrimp caught in the bay after this 

time.  Annual variability in modeled production was lower than expected when 

compared to TPWD data, and there was a poor relationship between our annual model 

output and TPWD mean CPUE for each year.  A linear regression was not significant 

with an R2 value of only 0.005.    

SEAMAP trawl surveys follow a stratified random sampling method and sample 

across the northwestern GoM from near shore out to the border of the United States 

Exclusive Economic Zone (EEZ).  Linear regression analysis of SEAMAP summer 

survey CPUE with our model’s annual output was significant (p = 0.0005) and had an R2 

of 0.40 (Figure 2.12).  Since the SEAMAP summer survey is conducted in June and 

July, we also examined the relationship with our model output up until May of each year 

from 1987 through 2012.  We expect shrimp that emigrated from the marsh complex in 

May would be available to the SEAMAP survey in June and July.  The May model 

output has a mean production of 9.2 kg ha-1, is more variable than the August production 

estimates, and ranges from 3.5 to 18.8 kg ha-1.  Regression analysis of the model’s May 

production with the SEAMAP summer CPUE was significant (p = 0.002) and had an R2 

value of 0.45 (Figure 2.12). 
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 2.8. Discussion 

Model estimates of annual brown shrimp production from Galveston Bay 

differed noticeably under different environmental conditions affecting the growth, 

mortality, and access to marsh vegetation of juvenile brown shrimp.  The lowest 

production estimate generated under temperatures, salinities, and tides (marsh flooding 

events) representative of the years from 1983 to 2012 was approximately 63% of the 

highest estimate.  By comparison, model sensitivity to the uncertainty associated with a 

10% change in values of key parameters caused less than a 25% change in baseline 

production estimates under any given set of environmental conditions.  Galveston Bay is 

typical of most bay estuarine systems of the northern Gulf of Mexico, and this variation 

in simulated production estimates is consistent with the year-to-year variability in 

estimates of brown shrimp catch per unit of effort (CPUE) in the northern Gulf of 

Mexico (Pollack and Ingram, 2012). 

The importance of interaction between environmental conditions within and 

outside the bay system in generating this year-to-year variability in brown shrimp 

production was emphasized by simulations in which we shifted the seasonality of 

recruitment.  Over the range of seasonal shifts simulated (from 28 days earlier to 42 days 

later in the year), the lowest production estimate was approximately 70 percent of the 

highest estimate.  These simulations suggest that shifts in seasonality of recruitment 

caused by environmental conditions outside the bay may cause differences in production 

in any given year equal to those resulting from differences in environmental conditions 

within the bay.  Furthermore, although earlier recruitment generally results in relatively 
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lower production and later recruitment in relatively higher production (undoubtedly 

temperature-related), recruitment delayed beyond some threshold, which depends on 

conditions within the bay, may result in relatively lower production.  In our simulations, 

this threshold ranged from a delay of 28 to 42 days (e.g., under bay conditions 

representative of the calendar years 2012 and 2007, respectively).  

Various mechanisms that may cause variability in the timing of postlarval 

recruitment have been proposed.  During winter and early spring, Arctic frontal passages 

are common and drive currents offshore, delaying postlarval emigration from Gulf 

waters (Benfield and Downer, 2001; Wenner et al., 1998).  Additionally, brown shrimp 

may actively delay their emigration from the Gulf to shallow water habitats in response 

to cold frontal passages via vertical migration (Rogers et al., 1993).  Hughes (1969) 

suggested that pink shrimp Farfantepenaeus duorarum sense changes in salinity and tide 

state as cues to enter estuaries, and Blanton et al. (1999) found evidence that white 

shrimp Litopenaeus setiferous likely utilize a set of cues that include tidal phase, water 

temperature, and wind.  It also has been suggested that timing of recruitment may be 

affected by endogenous rhythms that control the swimming activity of postlarval 

penaeids (Ogburn et al., 2013). 

Superimposed on effects of timing of recruitment on shrimp production are 

effects of differences in magnitude of recruitment, which we held constant in all our 

simulations.  This simplifying assumption facilitated identification of the relative effects 

on production of environmental conditions within the bay, in which we were most 

interested.  This assumption could be relaxed in future work with the model.  Data from 
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22 years of sampling postlarvae entering Galveston Bay (Matthews, 2008) suggest that 

annual peak abundances may be as much as 80 times the mean annual abundance, and 

peak annual population estimates of small shrimp (12-20 mm total length) based on data 

collected at the Galveston Island State Park over an 11-year sampling period differed by 

as much as five times (Rozas et al., 2007).  Our model calibration exercises suggested a 

linear relationship between model estimates of shrimp production and total number of 

shrimp recruited during a simulation.  However, this linear relationship results from our 

representation of the growth, mortality, and movements of individual shrimp as being 

independent of shrimp population density.  These also are simplifying assumptions that 

could be relaxed in future work with the model, perhaps drawing on some of the below-

mentioned studies.   

Brown shrimp appear to feed mainly on benthic infauna (McTigue and 

Zimmerman 1991)   Laboratory and field caging studies have demonstrated that foraging 

by both brown shrimp and white shrimp Litopenaeus setiferous  can reduce populations 

of benthic infauna (Beseres and Feller, 2007; Zimmerman et al., 2000).  Field caging 

experiments have shown some evidence of food limitation of growth (Rozas and 

Minello, 2009; Rozas et al., 2014), and as shrimp population density increases, per 

capita availability of food will become limiting at some point.  Documenting a density-

dependent effect on shrimp growth, however, is difficult because brown shrimp may 

move to avoid areas of low prey density and may consume alternate food items such as 

benthic algae and phytoplankton during periods of low infaunal abundance (Gleason, 

1986; Gleason and Wellington, 1988; Gleason and Zimmerman, 1984). 
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Brown shrimp mortality appears to result mainly from predation, and laboratory 

experiments do not suggest a strong relationship between brown shrimp density and 

mortality (Minello et al., 1989).  While the functional response of fish predators may be 

affected by shrimp density (Holling, 1959), it is likely that such a relationship is size-

related, since smaller shrimp are found in higher densities than larger shrimp; our model 

includes a size-related mortality function.  However, seasonal and annual changes in fish 

predator abundance (Minello and Zimmerman, 1983; Overstreet and Heard, 1978; 

Rooker et al., 1998) likely change predation rates.  The abundance and composition of 

brown shrimp predators also differs spatially within Galveston Bay, as well as among 

other bays of the northern Gulf of Mexico (Nelson et al., 1992).   

Primary assumptions in our model are that brown shrimp abundance and growth 

are higher in salt marsh vegetation than in shallow open water. High densities of brown 

shrimp on the marsh surface and particularly at the marsh edge have been consistently 

found in Galveston Bay and other Texas estuaries (Minello et al., 2008, Zimmerman et 

al., 1984), but this pattern may not occur in all estuarine systems and may be related to 

tidal flooding characteristics (Minello et al., 2012; Rozas and Minello 2015). 

Information on habitat-related shrimp growth is limited, but there is some evidence from 

caging experiments that brown shrimp growth is increased in marsh vegetation (Minello 

and Zimmerman 1991, Rozas and Minello, 2009). Populations of benthic infaunal prey 

also are higher in marsh vegetation than adjacent open water and generally highest at the 

marsh edge (Whaley and Minello, 2002).  This edge effect has not been incorporated 

into our model, and the model could perhaps be improved by separating marsh edge 
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habitat from the rest of the marsh.  Delineation of the area of marsh edge habitat, as 

opposed to the area of marsh vegetation inundated at high tides, as currently represented 

in our model, would require finer-scale spatial resolution of habitat distribution in the 

bay. Such an approach would allow us to simulate the effect of changes in marsh edge 

on shrimp production, but the explicit inclusion of such fine spatial resolution also 

would result in longer simulation run times. 

 Future work with the model will be directed at potential incorporation of 

modeled environmental effects into the Gulf of Mexico brown shrimp stock assessment 

model (SS-3, Hart, 2012). We expect to explore the relative benefits of relaxing some 

current model assumptions and also re-parameterize the model to represent conditions in 

Barataria Bay, Louisiana.  Linking living marine resources and their habitat is essential 

to fisheries stock management (Yoklavich et al., 2010).  Ultimately, we hope our model 

will provide a useful tool, both conceptually and quantitatively, for exploring the 

linkages between environmental conditions in estuarine nursery habitats in the northern 

Gulf of Mexico and the production of shrimp species utilizing these habitats (Beck et al. 

2001; Boesch and Turner, 1984).  
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3. ASSESSING VARIABILITY IN JUVENILE BROWN SHRIMP GROWTH RATES 

IN SMALL MARSH PONDS: AN EXERCISE IN MODEL EVALUATION AND 

IMPROVEMENT 

 

3.1 Introduction 

 The United States Gulf of Mexico (GoM) landings of penaeid shrimp in 2015 

were valued at 340 million dollars, and brown shrimp (Farfantepenaeus aztecus) 

comprised almost half of the catch (National Marine Fisheries Service, Fishery Statistics 

Division, 2015).  Brown shrimp have a largely annual life history (Fry, 2008; Minello et 

al., 1989); adults spawn offshore and postlarvae are transported by currents to estuarine 

habitats (Cook and Lindner, 1970; Temple and Fischer, 1967).  Juveniles grow rapidly 

for several months in estuaries before they emigrate offshore as subadults (Christmas 

and Etzold, 1977; Renfro and Brusher, 1982).  The inshore, estuarine-dependent phase is 

a period of high and variable growth rates and likely determines overall shrimp 

production and fishery yield (Haas et al., 2001; Minello et al., 1989; Minello and 

Zimmerman, 1991). 

 In Leo et al. (2016) we described an individual-based model (IBM) that uses 

temperature, salinity, and access to estuarine salt marsh habitat to estimate brown shrimp 

production from the shallow waters of Galveston Bay, TX.  The growth rate of shrimp at 

an hourly time step is an important aspect of the model and has a large influence on 

production estimates.  Additionally, since mortality rates are size-dependent, shrimp that 

grow faster are more likely to survive.  All of the environmental drivers in the model 
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affect growth, including temperature, salinity, and tidal access to salt marsh habitat.  The 

model has reproduced biomass and size distribution patterns observed in data from 

Galveston Bay from 1983 to 2012, and the annual production estimates correlate with 

fishery independent estimates of abundance from offshore northern GoM trawls.  There 

was no correlation, however, between model production estimates and trawl data 

collected in Galveston Bay.  These comparisons between the model output and field 

studies suggest that although temperature, salinity, and flooding patterns may influence 

production generally from estuaries along the northern GoM, there are other factors 

affecting production that are spatially and temporally variable within individual bays.   

 Juvenile shrimp are known to feed on benthic infauna from marsh sediments 

(McTigue and Zimmerman, 1991, 1998), and the abundance and biomass of infauna are 

highest within the marsh vegetation (Whaley and Minello, 2002).  Although growth 

increases in our IBM when shrimp are within vegetated habitat, there is no explicit 

relationship between infaunal biomass and shrimp growth (Leo et al. 2016).  Since 

infaunal abundance, composition, and biomass can be both spatially and temporally 

variable (Manino and Montagna, 1997; Whaley and Minello 2002), we identified 

infaunal distribution as a potential source of variability between modeled growth and 

observed growth in the field.   

 We conducted a mark-and-recapture study in three marsh ponds to estimate 

juvenile shrimp growth and further evaluate model performance.  During the study 

period over several months in the spring/summer of 2011we recorded water 

temperatures and water levels at hourly intervals.  Salinity was measured during each 
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tagging interval, and we sampled benthic infauna at the beginning and end of the study.  

We assessed how well the model estimates of water temperature and tidal flooding of the 

marsh represented the observed data from the ponds.  We compared shrimp growth 

estimates from the study to estimates from the model and examined benthic infaunal 

biomass distribution as a potential cause of variability.  

3.2 Materials and methods 

Site selection and characterization 

 We selected three marsh ponds for our growth study.  These ponds were fringed 

with Spartina alterniflora and were connected to the bay by relatively narrow channels, 

which could be blocked by nets.  Two sites were located within Texas Parks and 

Wildlife Department’s Galveston Island State Park (GISP), within the marsh complex 

and along the bay side of Galveston Island (Figure 3.1).  The park is located along the 

shore of West Bay, a polyhaline water body of the Galveston Bay estuary (Rozas and 

Minello, 2009), and we designated the study ponds as GISP-Small and GISP-Large 

based on their relative sizes.  The third pond was located 20 km away in Galveston Bay 

on the edge of the Nature Conservancy Prairie Preserve on Moses Lake (Moses Lake 

pond).  We selected the Moses Lake pond in an effort to include a mesohaline pond.  

This pond is north of the Texas City Dike and closer to freshwater input from the Trinity 

and San Jacinto rivers.  Salinities during the duration of the study, however, were 

consistently polyhaline in all three ponds.   

 Each pond has a nonvegetated mud bottom surrounded by intertidal vegetated 

marsh dominated by Spartina alterniflora. We used GIS and Digital Orthophoto Quarter 
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Galveston Bay, 
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Figure 3.1 The three experimental ponds located within Galveston Bay, Texas.  GISP-
Small and GISP-Large are in West Bay inside the Galveston Island State Park.  The 
Moses Lake pond is located 20 km to the north of the park and north of the Texas City 
Dyke.  Green indicates the marsh vegetation and light blue indicates the non-vegetated 
shallow ponds.  Dark blue indicates areas of water deeper than 1 m and were not 
included in the model estimates.  Bar in lower, right corner of pond detail images 
represents 20 m. 
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 Quadrangle (DOQQ) images made from color infrared aerial photographs to estimate 

the linear distance of marsh edge and the nonvegetated area in each pond.  We also 

measured the marsh elevation profile in each pond based on five transects established 

perpendicular to the vegetated marsh edge.  We estimated relative elevation by 

measuring water depth at the marsh edge and at 1, 2, and 3 m into the nonvegetated 

water and 1 and 2 m into the vegetation.  We used these relative elevation data in 

conjunction with hourly monitoring of tide height to estimate marsh flooding frequency 

and duration in each pond.  Data loggers (HOBO, Onset Corporation, Massachusetts) 

were used to record hourly water depth and temperature hourly.  We assumed that the 

marsh was flooded when the water depth at the marsh edge reached 10 cm, the point in 

the model at which shrimp can access the marsh vegetation. 

Infauna  

 We examined the availability of infaunal food organisms by sampling benthic 

infauna at the beginning and end of the growth study to estimate abundance before and 

after peak brown shrimp marsh residence.  We collected benthic cores in each pond and 

measured infaunal abundance and biomass in relation to the distance from the marsh 

edge.  We collected sediment cores at 10 sites at each of three distances from the marsh 

edge: 1 m into the vegetation, 1 m into the nonvegetated pond, and 5 m into the 

nonvegetated pond.  We selected these collection sites randomly along the length of the 

marsh edge interface.  At each site we randomly collected three 5-cm diameter sediment 

cores from within a 1-m2 quadrat and then pooled the three cores for further analysis. 

This approach resulted in 180 pooled core samples (10 replicates x 3 distances from 
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edge x 3 ponds x 2 collection periods).  Core collection and analysis followed methods 

from Whaley and Minello (2002).  In the lab, we sorted, counted, dried (at 100 °C for 24 

hours), and weighed crustaceans and annelids sorted from the top 2.5 cm of each core.  

We estimated prey biomass as a measure of the dry weight of annelids and crustaceans 

in g m-2.     

Shrimp growth estimates 

 In each pond, we collected shrimp using a bag seine and sorted them into 2-mm 

total length (TL) size classes between 30 and 50 mm.  We selected two to four size 

classes for tagging based on their abundance to maximize the number of tagged 

individuals in as few size classes as possible.  We attempted to tag at least 300 shrimp 

during each sampling effort; however, during the earlier and later efforts, we were 

limited by lower abundance of shrimp in the 30 to 50 mm size range (see Table 3.1).  

We tagged shrimp using Visible Implant Elastomer (VIE, Northwest Marine 

Technology, Inc., Shaw Island, WA, USA), a non-toxic compound that is injected as a 

liquid and cures to a soft rubbery texture within a short period of time (< 24 hrs).  We 

tagged shrimp ventrally, in the muscle of the sixth abdominal segment.  Each size class 

had a unique tag color. At the initiation of the study, we placed a block net 

(approximately 8 mm mesh) across the mouth of each pond to prevent shrimp from 

moving out of the pond.     

 Tagging and recovery efforts occurred in 2011 between April 12 and June 7 at 

GISP-Small, April 21 and June 1 at GISP-Large, and April 20 and June 2 at Moses Lake 

(see Table 3.1).  There were five visits to GISP-Small, and three each at GISP-Large and  
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Site Tagging 
date Size class  

(mm TL) Tagged 
shrimp Recaptured 

shrimp Dates of recapture 
GISP-Small 4/12/2011 34 32 1 4/26/2011 (1) 
    38 16 1 4/26/2011 (1) 
    46 13 1 4/26/2011 (1) 
  4/26/2011 32 78 6 5/10/2011 (4) 

5/24/2011 (2) 
    36 213 9 5/10/2011 (8) 

5/24/2011 (1) 
  5/10/2011 34 187 25 5/24/2011 (24) 

6/7/2011 (1) 
    36 175 19 5/24/2011 (19) 
  5/24/2011 36 167 5 6/7/2011 (5) 
    38 157 1 6/7/2011 (1) 
  6/7/2011 40 47 - - 
    42 37 - - 
    Total 1122 68 (6.1%)  
GISP-Large 4/21/2011 36 195 9 5/12/2011 
 

 
40 156 8 5/12/2011 (7) 

 6/1/2011 (1) 
 5/12/2011 32 89 9 6/1/2011 
 

 
36 117 5 6/1/2011 

 
 

40 120 8 6/1/2011 
    Total 677 39 (5.8%)  
Moses Lake 4/20/2011 34 43 3 5/5/2011 
    36 40 2 5/5/2011 
    42 31 3 5/5/2011 
    44 38 3 5/5/2011 
  5/5/2011 36 162 4 6/2/2011 
    40 138 2 6/2/2011 
    Total 452 17 (3.8%)  
  Grand total 2251 124 (5.5%)  

Table 3.1 Sampling schedule for three growth study ponds, size of tagged shrimp, 
and the number of recaptured tagged shrimp.  The total shrimp recaptured during 
each sampling date is given in parentheses.  We recaptured 5.5% of tagged 
individuals, overall.   
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Moses Lake.  During this time, we tagged and released more than 2200 shrimp.  Total 

length (mm TL) of recovered tagged shrimp was measured and their tag color was 

recorded.  We calculated growth rate by subtracting the starting TL from the final TL 

and dividing by the number of days at large. 

Brown shrimp production model overview 

 The Leo et al. (2016) model is a spatially-explicit IBM that simulates the 

cumulative effects of temperature, salinity, and access to emergent marsh vegetation on 

the growth and survival of young brown shrimp.  The model is parameterized to 

represent the environmental conditions and habitat characteristics of Galveston Bay, 

Texas.  Individual shrimp recruit to the system and may grow or die on an hourly time-

step.  Growth is driven by temperature, salinity, and habitat, while mortality is driven by 

size (mm TL) and habitat.  Depending on the tide height, shrimp may move between 

vegetated and nonvegetated habitats at each time step.  Shrimp that move into vegetated 

habitat benefit from a slight growth rate increase, and mortality risk decrease.   

 All of the environmental drivers in the model affect growth including salinity, 

temperature, and tidal access to salt marsh habitat.  Salinity input data in the model were 

developed from a salinity transport model (TxBLEND, Guthrie et al., 2014) that 

provided monthly estimates of area in each of three salinity zones: zone 1 (0-10), zone 2 

(10-20), and zone 3 (>20).  While juvenile brown shrimp can tolerate a wide salinity 

range (Saoud and Davis, 2003; Simmons, 1957; Zein-Eldin and Aldrich, 1965; Zein-

Eldin and Renaud, 1986), they are found at highest densities in mesohaline (zone 2) and 

polyhaline (zone 3) regions of estuaries (Haas et al., 2001; Rozas and Minello, 2010; 
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Zimmerman et al., 1990).  For the purpose of comparing model output with our growth 

study, in which all three ponds remained polyhaline, all cells in the model were 

parameterized with zone 3 salinity.   

 In all salinity zones, growth rates increase with temperature, peak around 30°C, 

and then slow substantially.  Expected hourly water temperature values are determined 

by the model using the median daily air temperature (https://www.ncdc.noaa.gov/cdo-

web/datatools) and relationships developed with daily median water temperature and a 

diel pattern of deviation from that median.   

 Flooding of the marsh surface gives shrimp access to additional infaunal prey for 

increased growth (Roth et al., 2008; Whaley and Minello, 2002) and is a function of 

both tidal dynamics and marsh topography (Minello et al., 2012; Rozas, 1995).  The 

model determines expected marsh flooding by comparing the elevation of marsh edge in 

Galveston Bay with hourly water level data from the NOAA tide gauge located at Pier 

21 in the Galveston ship channel (station ID 8771450, 

https://tidesandcurrents.noaa.gov/waterlevels.html?id=8771450).  When the tide gauge 

reads 10 cm higher than the marsh edge elevation, the vegetated marsh habitat cells 

become accessible to the modeled shrimp.  The tide/elevation relationship is adjusted 

annually in the model for the effects of relative sea level rise.  Appendix 1 in Leo et al. 

(2016) provides a complete model description in ODD protocol. 

Model evaluation 

 We ran 10 simulations of the Leo et al. (2016) model using temperature (median 

air) and tide (Pier 21) data available for 2011.  These inputs generated expected hourly 
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temperature and flooding in the model.  We plotted the expected temperature values and 

expected flooding for comparison with observed temperature and flooding values 

recorded in each pond.  We parsed the modeled hourly growth rate output into habitat 

type, and examined only the output from the marsh complex habitat (marsh vegetation 

and nonvegetated marsh edge).  Then we calculated the mean modeled or expected daily 

growth rate during the period specific to each pond (Table 3.2).  We compared the 

expected growth rate with the observed growth rate estimate from each pond. We then 

re-parameterized the model three ways:  1) with observed temperature and flooding 

inputs specific to each pond; 2) with expected temperatures and pond-specific observed 

flooding; and 3) with pond-specific observed temperatures and expected flooding.  We 

ran 10 simulations under each of these sets of tide and temperature conditions, and 

determined the pond-specific expected growth rates.   

Data analysis 

 We calculated mean growth rates for recovered shrimp in each of the three 

ponds.  After testing for homogeneity of variance (F-max test), we used an Analysis of 

Variance (AOV) and Tukey’s HSD to compare growth rates among ponds. We also used 

a 2-way AOV to compare infaunal biomass among ponds and distances (1 m, -1 m, -5 

m) from the pond edge.  We conducted this analysis separately for the infaunal data 

collected before and after the growth study.  We used regression analysis to examine 

effects of size, temperature, and flooding duration on shrimp growth and to examine the 

relationships between measured growth and modeled growth. We also calculated  
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Location            
Dates 

Conditions modeled Modeled 
growth (SE) 

Observed 
Growth 

(SE) Temperature Flooding 

GISP-Small  ESTT ESTF 1.13 (0.011) 

1.02 
(0.030) 

April 12 - June 
7 ACTT ACTF 1.22 (0.010) 

  ESTT ACTF 1.15 (0.011) 

  ACTT ESTF 1.21 (0.010) 
GISP-Large ESTT ESTF 1.15 (0.012) 

1.03 
(0.027) 

April 21 - June 
1 ACTT ACTF 1.23 (0.010) 

 
ESTT ACTF 1.17 (0.011) 

  ACTT ESTF 1.20 (0.011) 
Moses Lake ESTT ESTF 1.15 (0.011) 

1.26 
(0.058) 

April 20 - June 
2 ACTT ACTF 1.14 (0.010) 

  ESTT ACTF 1.13 (0.010) 

  ACTT ESTF 1.16 (0.011) 
 

  

Table 3.2 Pond-specific modeled growth rates (mm d-1 TL) under estimated (EST) and 
actual (ACT) values of temperature and flooding compared with pond-specific observed 
growth rates. 
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regressions between field-recorded temperatures and those predicted by the temperature 

submodel and between actual marsh flooding and modeled flooding durations. 

3.3 Results 

Pond characteristics 

 The GISP-Small pond’s nonvegetated area was 668 m2 with 244 m of marsh 

edge-open water interface.  The edge was highly reticulated and enclosed small islands 

of S. alterniflora within the pond.  GISP-Large had 3299 m2 of nonvegetated area and 

268 m of marsh edge interface.  The Moses Lake pond area was 471 m2 with 132 m of 

marsh edge (Figure 3.1).  A comparison of elevation profiles between ponds showed that 

the Moses Lake profile was slightly steeper than those in GISP, and that both ponds 

within GISP had similar profiles (Figure 3.2).  The three elevation profiles were similar 

to that reported in Minello et al. (2012) for Galveston Bay.    

 During the GISP-Small study period, marsh edge was observed flooded 75.4% of 

the time and observed water temperatures ranged from 14.6 to 33.3°C with a mean of 

26.3°C.  At GISP-Large, marsh edge was observed flooded 78.2% of the time, and 

observed water temperatures ranged from 14.6 to 34.8°C with a mean of 26.4°C.  Moses 

Lake marsh edge was observed flooded 63.8% of the time, and observed water 

temperatures ranged from 13.6 to 37.7°C with a mean of 26.1°C.  Salinity measured 

during each shrimp tagging/recapturing effort ranged from 24 to 29. 

Infauna 

 Annelids made up the bulk of benthic infauna (Figure 3.3), with an average of 

85% of the total biomass.  At the initial sampling period in all ponds, biomass was 
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Figure 3.2 Elevation profiles of GISP-Small, GISP-Large, and Moses Lake ponds.  
Elevations are relative to the marsh vegetation-open water interface (at zero on the 
horizontal axis) with +/- 1 SE bars. 
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Figure 3.3 Grams m-2 dry weight of annelids and crustaceans at three 
distances from the marsh edge (1 m into the vegetation, -1 m and -5 m 
into the nonvegetated habitat).  In each pond, samples were taken at 
the start (Initial, A) and end (Final, B) of the field project.  Error bars 
represent +/- 1 SE. 
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 significantly higher (AOV and Tukey’s HSD, p = 0.0065) in the vegetated samples than 

in the nonvegetated samples.  Mean biomass tended to be lowest in the samples collected 

in the nonvegetated locations 5 m away from the edge, but overall, the nonvegetated 

biomass was not significantly different between the two distances.  Moses Lake had 

significantly greater annelid and crustacean biomass (AOV and Tukey’s HSD, p < 

0.0021), with more than four times the biomass in the vegetated habitat samples than 

those in either GISP pond.  There was a significant interaction between pond and sample 

location (p = 0.0365).  At the conclusion of the study, there was no difference in biomass 

between the ponds.  However, biomass in the vegetation was significantly higher (p < 

0.0001) than that in the nonvegetated samples in all ponds.       

Shrimp growth  

 Between April 12 and June 7, 2011, we tagged 2251 shrimp in the three marsh 

ponds and recovered 5.5% of tagged shrimp (see Table 3.1).  The mean growth rate of 

recaptured shrimp in GISP-Small, GISP-Large, and Moses Lake was 1.02 (SE = 0.030, n 

= 68), 1.03 (SE = 0.027, n = 39), and 1.26 (SE = 0.058, n = 17) mm day-1 TL, 

respectively (Table 3.2).  The mean growth rate of all recaptured shrimp from all ponds 

was 1.06 mm day-1 TL (SE = 0.021, n = 124).  Growth rate was significantly higher in 

Moses Lake than in either GISP pond (AOV and Tukey’s HSD, p = 0.0004).  During the 

periods between tagging efforts, the pond-specific mean growth rate estimates ranged 

from 0.92 to 1.50 mm day-1 TL (Figure 3.4).  There was no significant relationship 

between mean daily temperature and these growth rates (p = 0.223, R2 = 0.012).  In 

addition, there was no significant relationship between flooding duration and growth rate 
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Figure 3.4 Markers represent mean daily growth rates from each pond site based on 
the mean estimate of growth rate during each elapsed time period between tagging 
efforts.  The solid line represents the modeled mean daily growth rate for shrimp in the 
polyhaline marsh complex micro-habitats (marsh vegetation and nonvegetated marsh 
pond).   
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 (p = 0.072, R2 = 0.027).  This lack of a relationship was likely due to the small range in 

mean values over those periods (mean daily temperature range: 24.2 – 29.1°C, flooding 

duration range: 71-82%).  There was a weak but significant positive relationship 

between initial shrimp size and growth rate (p = 0.006, R2 = 0.060).  

Model evaluation 

 The duration of the growth study at GISP-Small was from April 12 to June 7, 

2011.  Modeled shrimp growth averaged 1.13 mm d-1 TL (SE = 0.011) during that time.  

Estimated hourly water temperature ranged from 16.8 to 38.7°C with a mean of 27.6°C, 

which compared well with actual temperatures in GISP-Small (R2 = 0.827, p < 0.0001, 

Figure 3.5, Table 3.2).  The estimated marsh flooding occurred 77.1% of the time, 

compared to actual flooding 75.4% of the time at GISP-Small (Figure 3.6, Table 3.2).   

 Our growth study ran from April 21 to June 1 at GISP-Large.  The mean 

modeled growth rate was 1.15 mm d-1 TL during that time (Table 3.2).  Estimated 

temperatures ranged from 14.6 to 34.8°C with a mean of 27.1°C, again demonstrating a 

good relationship with actual temperatures from GISP-Large (Figure 3.5, R2 = 0.826, p < 

0.0001).  Estimated marsh flooding occurred 77.4% of the time compared to actual 

flooding 78.2% (Figure 3.6).  At both GISP sites, the model estimates of flooding 

matched actual flooding 90% of the time.   

 At Moses Lake, our growth study ran from April 20 to June 2.  The mean 

modeled growth rate was 1.15 mm d-1 TL during that time (Table 3.2).  Estimated 

temperatures ranged from 13.6 to 36.7°C with a mean of 27.0°C (Figure 3.5, R2 = 0.772, 

p < 0.0001).  Estimated flooding occurred 77.6% of the time compared to 63.8% actual
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Figure 3.5 Model estimated temperatures plotted with actual temperatures in the GISP-Small, GISP-Large, and Moses 
Lake ponds.  Regression analysis between estimated and actual pond temperature and were significant for all three ponds. 
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Figure 3.6 Model estimated flooding plotted with actual flooding in the GISP-Small, GISP-Large, and Moses Lake ponds.  
When the water depth reaches 10 cm over the marsh edge, shrimp in the model simulation can move into marsh vegetation.  
The model predicted marsh flooding correctly 90% of each study period at GISP-Small and GISP-Large, and 82% of the study 
period at Moses Lake. 
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flooding (Figure 3.6).  In the Moses Lake pond, the model correctly predicted flooding 

82% of the time.   

 When the model was re-parameterized to use pond-specific actual temperature 

and flooding values, modeled mean growth rates were 1.22, 1.23, and 1.14 mm d-1 TL 

for GISP-Small, GISP-Large, and Moses Lake, respectively (Table 3.2).  In GISP ponds, 

simulated growth increased when actual data was used as model input.  However, the 

mean modeled growth rate at Moses Lake was reduced.  When we used a combination of 

estimated temperature and pond-specific actual flooding values, the modeled mean 

growth rates were 1.15, 1.17, and 1.13 mm d-1 TL for GISP-Small, GISP-Large, and 

Moses Lake, respectively.  In both GISP pond simulations, this resulted in higher 

modeled growth rates than when we used exclusively estimated values, but slower 

growth rates than using exclusively actual values.  The combination of estimated 

temperature and actual flooding values further depressed Moses Lake’s modeled growth 

rates.  When we used actual temperature values and estimated flooding, the mean 

modeled growth rates were 1.21, 1.20, and 1.16 mm d-1 TL for GISP-Small, GISP-

Large, and Moses Lake, respectively (Table 3.2).  Again, GISP pond modeled growth 

rates were higher than those in simulations using exclusively estimated values but not as 

high as when using exclusively actual data.  Moses Lake modeled growth rates were 

highest using this combination of input data.   

3.4 Discussion 

 We used field estimates of brown shrimp growth from three marsh ponds in 

Galveston Bay, Texas, to evaluate the performance of an individual-based model.  The 
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model was constructed to estimate annual production of brown shrimp from intertidal 

and shallow water estuarine marsh habitat.  The model’s estimate of mean growth rates 

during the field study was similar to growth rates observed in the field, demonstrating 

that the model is useful in predicting growth of brown shrimp at least within the tide and 

temperature parameters observed within the field study period.  The mark-and-recapture 

approach to measuring shrimp growth in the field has the potential to overestimate 

growth through the selection of faster growing animals for recapture since survival rates 

are size dependent, and slower growing shrimp may experience higher mortality than 

relatively faster growing shrimp.  Individual growth rate values observed from our 

recaptured shrimp however, were normally distributed and in a wide range (0.29 to 1.86 

mm d-1).  Additionally, our mean estimates of growth rate are comparable to the results 

of brown shrimp growth experiments using a variety of methodologies: field caging, 

laboratory growth experiments, von Bertalanffy growth curve construction, and other 

methods of mark-recapture (Chavez, 1973; Knudson et al., 1977; Rozas and Minello, 

2011; Zein-Eldin, 1963). 

 In the model, growth is driven by temperature and marsh flooding.  The 

temperature submodel based on median air temperature performed well when we 

compared estimated temperature values with actual data from the individual ponds (R2 = 

0.827, 0.826, and 0.772 for GISP-Small, GISP-Large, and Moses Lake, respectively).  In 

general, actual pond temperature maxima were cooler than estimated temperature 

maxima (Figure 3.5).  The tide submodel determines when the marsh vegetation is 

flooded based on elevation data.  Edge elevation profiles from all three ponds are well 
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within the estimated mean edge elevations of Spartina marshes in Galveston Bay 

(Minello et al., 2012, 2015). We compared the estimated tidal pattern of marsh to actual 

flooding in the individual ponds.  The model predicted that marsh habitat would be 

flooded 77.1% of the time.  This is similar to the GISP-Small actual flooding 75.4% of 

the time and GISP-Large flooding 78.2% of the time.  Actual flooding at Moses Lake 

however, was 63.8% of the time.   

 GISP-Small and GISP-Large modeled growth rates were over-estimated and 

modeled growth rates at Moses Lake were underestimated when compared to observed 

growth.  The difference in actual versus estimated temperatures may explain the 

relatively slower growth rate observed in shrimp recaptured from GISP ponds, but the 

mean growth rate observed in Moses Lake was significantly higher than estimed by the 

model while temperatures were similar among the three ponds.  We did not find a 

relationship between observed growth rates and actual water temperatures in the ponds.  

This result is likely due to the small range of mean daily temperatures that occurred over 

the period of the field study.  When we used actual data in the model, the modeled 

growth rates increased at both GISP ponds.  Since actual temperatures were cooler than 

estimated temperatures, modeled growth rates were probably higher due to the shrimp 

spending more time at optimal temperatures and less time at temperatures above 30°C at 

which point, growth slows considerably (see Leo et al., 2016).  Simulations of Moses 

Lake using actual data resulted in slightly slower modeled growth than when using 

estimated values.  This change was likely due to the decreased access to vegetated 

habitat.  We would expect to see a slower growth rate because of the slightly limited 
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marsh access, and when we parameterized the model with actual values, modeled Moses 

Lake growth rates were lower than those of either GISP pond.  The observed mean 

growth rate at Moses Lake though, was significantly higher those observed at either the 

GISP pond, as well as the modeled mean growth rate.     

  Although the modeled growth rates were similar to the observed mean growth of 

all tagged and recaptured shrimp (1.06 mm d-1 TL), we did see variability between 

observed growth rates in the ponds we studied.  This difference suggests that growth rate 

is not strictly predicted by temperature and flooding patterns.  Although shrimp in Moses 

Lake were exposed to lower temperatures than predicted by the model, as well as fewer 

opportunities to enter the marsh, they grew at a significantly higher rate than those in the 

model simulations.  Additionally, there was very little hourly difference between 

temperatures observed in GISP ponds and those in Moses Lake.  Not only did the GISP 

ponds have a similar temperature pattern (on average 0.33°C warmer), but the lower 

mean edge elevation resulted in longer and more frequent marsh vegetation flooding.  

Given those parameters only, one would expect estimates of growth rate at Moses Lake 

to be lower than that of either GISP pond.  Still, the mean growth rate estimate at Moses 

Lake was significantly higher.   

 We recognize that brown shrimp growth rates are dependent upon more complex 

interactions than those of tide and temperature, but the discrepancy between our modeled 

growth and observed growth becomes more apparent when scaling down from the whole 

of Galveston Bay to a single marsh pond.  The model does not include parameters 

describing infaunal biomass, the main food source of brown shrimp (McTigue and 
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Zimmerman, 1991).  Whaley and Minello (2002) described a spatial pattern of benthic 

abundance at different distances from the marsh edge wherein abundance is highest in 

the first meter of vegetation.  They also described a temporal pattern in which abundance 

is higher in spring and declines toward the end of summer (presumably the result of 

predation during the high tides of spring and summer).  If infaunal prey availability is a 

primary driver of growth, then the significantly higher growth rate seen in Moses Lake 

shrimp could be explained by the significantly higher infaunal biomass sampled there.  

Although shrimp in Moses Lake experienced shorter periods of marsh vegetation 

flooding, the vegetated marsh sampled at Moses Lake had greater than three times the 

amount of annelid and crustacean biomass (Figure 3.3) than the vegetated marsh 

sampled at GISP ponds.  This elevated infaunal biomass in the vegetated habitat may 

have been higher than the biomass on nonvegetated bottom as a result of a shorter period 

of flooding limiting shrimp access.  However, the samples taken at 1 m and 5 m from the 

edge in the nonvegetated habitat also contained significantly more infaunal biomass than 

their counterparts in both GISP ponds.  Therefore, it seems more likely that patterns of 

infaunal abundance vary among marsh locations within Galveston Bay and may 

significantly drive brown shrimp growth rates.  Understanding what causes this 

variability, and to what extent it affects growth, has the potential to improve the quality 

of the brown shrimp production model.     
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4. CONCLUSIONS 

 

The utility of ecological models is found in both the process of model 

development, as well as in the model itself (Grant and Swannack, 2008).  While some 

ecological models have proven to be useful in predicting ecosystem changes, much of 

the discovery about system dynamics can be gleaned through the design and 

development of a model.  The iterative progression in model development requires the 

designer to identify, examine, and quantify complex ecological linkages, and these are 

sometimes ephemeral and oftentimes unknown.  Bounding the system of interest forces 

the designer to assess which cause-and-effect relationships are most influential to the 

question they are trying to answer, and what could be considered excessive detail.  The 

resulting model is hopefully useful in its predictive capacity, but such models can be 

even more useful in their ability to identify knowledge gaps and potential leverage points 

as well as to compare conflicting hypotheses.             

The Leo et al. (2016) brown shrimp model output resulted in highly variable 

estimates of annual sub-adult production from Galveston Bay.  Production increases 

were associated with parameters that increased individual shrimp growth and reduced 

mortality rates.  Estimated production from Galveston Bay was significantly related to 

estimates of offshore, adult shrimp population size and may represent generic production 

trends in bays of the northern Gulf of Mexico.  Model output, however, did not compare 

well with trawl data estimating shrimp abundance from Galveston Bay.  This 

discrepancy requires us to look for a potential explanation within the design of the 
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model.  The current relationships between drivers and vital rates reflect values found in 

the published literature.  There are, however, parameters that were excluded from the 

model (e.g., density dependent growth and mortality, spatial and temporal distribution of 

infauna) because there is a lack of data describing such linkages to brown shrimp vital 

rates.  This becomes an issue when the model is scaled down to a single marsh pond.  At 

that small relative scale, model estimates of growth rate were not similar to observed 

growth rates in our study ponds.  Furthermore, observed growth rates were not similar 

among ponds (GISP v. Moses Lake).  These differences indicate that some parameter, 

functioning at the pond-specific scale, has not been accounted for in the model.  My 

results suggest that adding information on spatial and temporal variability in infaunal 

populations would likely improve the model.   

At the larger, bay scale, there is question as to the timing and magnitude of 

recruitment.  Drivers of these parameters are outside of the bounds of the currently 

modeled system, however sensitivity analyses revealed that changes in either timing or 

magnitude of recruitment have a substantial effect on annual production estimates. 

Future research priorities designed to improve the model output might include 

addressing the spatial and temporal distribution of benthic infauna, the abundance and 

temporal variability of brown shrimp predators, and factors that affect the timing and 

magnitude of larval shrimp recruitment to the bay.      

Since stock assessment results provide the technical basis for setting acceptable 

fishing pressure, it is necessary to use the highest quality and most complete input data 

available (NMFS 2001), and it is imperative to incorporate the effects of habitat 



 

61 

 

characteristics on the overall productivity of managed fishery stocks.  Simulation 

modeling of system dynamics allows for these types of adjustments (Ford, 2010; 

Meadows, 2008; Grant and Swannack, 2008).  Ultimately, we hope that our simulation 

results can be incorporated into the brown shrimp stock assessment. 
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APPENDIX 1* 

  

 This appendix contains a description of the model following the ODD 

(Overview, Design concepts, Details) protocol for describing individual-based models as 

outlined by Grimm et al. (2006) and Railsback and Grimm (2012).  The model is 

programmed in NetLogo® (Wilensky, 1999), which is freely downloadable and runs on 

most operating platforms.  Note that some material included in this appendix, 

particularly related to the description of submodels, is also described in the text.  This 

material is repeated here for sake of completeness with regard to the ODD protocol.   

1. Overview 

1.1 Purpose 

The purpose of this model is to simulate the recruitment, growth, mortality, and 

biomass production of brown shrimp in salt marsh habitats of the northern Gulf of 

Mexico as a function of temperature, salinity, and access to the tidally inundated, 

vegetated marsh surface. The model currently is parameterized based on available 

literature describing relationships between brown shrimp and the environmental 

characteristics of Galveston Bay, Texas.  However, the model could be re-parameterized 

to represent the environmental conditions in other northern Gulf of Mexico salt marshes, 

such as those found in Barataria Bay, Louisiana, and model production estiimates could 

                                                 

* Reprinted with permission from “Simulating environmental effects on brown shrimp production in the 
northern Gulf of Mexico” by Jennifer P. Leo, Thomas J. Minello, William E. Grant, and Hsiao-Hsuan 
Wang, 2016, Ecological Modelling, 330, 24-40, Copyright 2016 by Elsevier B.V. 
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be used as input to the brown shrimp stock assessment model of the U.S. National 

Marine Fisheries Service (SS-3). 

 

1.2 Entities, state variables, and scales 

State variables include (1) 100 habitat cells and (2) a variable number of 

individual shrimp.  Attributes of habitat cells include (1) location (x and y coordinates), 

(2) habitat type, (3) salinity zone (low, 0-10 PSU; medium, 11-20 PSU; high, >20 PSU), 

(3) current salinity (PSU), and (4) water temperature (°C).  Attributes of individual 

shrimp include (1) state (alive, dead, emigrated), (2) age (hours), (3) recruitment-day 

(day-of-year), (4) death-day (day-of-year), (5) emigration-day (day-of-year), (6) size 

(total length in mm), (7) in-marsh? (yes or no), (8) in-habitat (current habitat type), (9) 

in-zone (current salinity zone), (10) prob-mort (current daily probability of dying), (11) 

growth/hr (current hourly growth rate), and (12) growth/day (current daily growth rate).  

Each simulated individual shrimp is a “super-individual” (Scheffer et al. 1995) 

representing 1 million “real” shrimp.   

The global environment is defined by (1) the 100 habitat cells, each representing 

a 635-ha area of the 63,500 ha Galveston Bay system, including habitats of 

intermittently flooded marsh vegetation (Marsh, 17 cells), non-vegetated marsh edge 

(NVME, 28 cells), and shallow non-vegetated water (SOW, 55 cells), (2) height of the 

marsh edge, and (3) time series of input data representing (a) tide heights, (b) median air 

temperatures, (c) the distribution of salinity zones among habitat types, and (d) number 

of newly-recruited shrimp.  Each simulated time step represents one “real” hour, and 
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simulations are run for 5,832 hours, which represents the period from January 1 through 

August 31st.  This time span should be sufficient to represent environmental influences 

affecting the annual production of brown shrimp, since few shrimp appear in the open 

bay after the end of August (Brown et al., 2013; Martinez-Andrade, 2005), and most 

shrimp are spawned and harvested within a year. 

1.3 Process overview and scheduling 

An overview of the sequence of events and processes involved in the execution 

of the model is provided in Figure A1.1.  After values of model parameters are set, 

spatial structure of the model is defined, and output files are initialized, time series of 

values of input data for the year being simulated are read into the model.  Then sub-

models are executed iteratively until the end of the 243-day (January through August) 

simulation.  Sub-models calculating (1) water temperatures in vegetated and non-

vegetated habitats, (2) tide height and marsh flooding, (3) shrimp movements, (4) shrimp 

mortality, (5) shrimp emigration, and (6) shrimp growth, as well as sub-models (7) 

summarizing attributes of the shrimp population and (8) writing simulation results to 

output files, are executed each hour.  Sub-models updating (1) shrimp recruitment, and 

(2) median air temperature are executed at the beginning of each day.  Sub-models 

updating the distribution of salinity zones are executed at the beginning of each month. 

2. Design concepts 

2.1 Basic principles 

Juvenile brown shrimp are present in several habitat and bottom types as well as 

shallow open water (Fry, 2008; Minello, 1999; Stunz et al., 2010), but they are found in  
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Figure A1.1.  Overview of the sequence of events and processes 
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highest densities associated with emergent vegetation along the edge of salt marsh 

habitats (Minello et al., 2003; Minello and Rozas, 2002; Zimmerman and Minello, 

1984). Understanding the relative value of juvenile habitats, potential nurseries, and  

essential fish habitat (EFH) is critical to the management of adult populations (Adams et 

al., 2006; Beck et al., 2001).  In our model, we are examining the basic principles 

associated with the nursery role concept, specifically, how differences in habitat and 

environmental qualities affect the successful recruitment of sub-adult shrimp to the 

fishery.  Linkages between environmental variables (e.g., salinity, temperature, access to 

emergent marsh vegetation) and brown shrimp vital rates have been identified (Barrett 

and Gillespie, 1973; Boesch and Turner, 1984; Turner, 1992; Zein-Eldin and Aldrich, 

1965; Zimmerman et al., 2000; many others).  Salt marshes provide refuge from 

predators (Minello, 1993; Minello et al., 1989; Minello and Zimmerman, 1983) and 

abundant food to support rapid growth (McTigue and Zimmerman, 1991, 1998; Whaley 

and Minello, 2002). Here, we model the cumulative effects of these linkages. 

2.2 Emergence 

Population size, standing biomass, and size structure emerge from the model 

processes controlling growth, mortality, and movement of individuals.  Production from 

the marsh is driven by the effects of temperature, salinity, and tide height on the 

processes of growth, mortality, and movement. 

2.3 Adaptation 

Shrimp that recruit to the marsh complex have the ability to move between 

vegetated and non-vegetated habitats.  During each time step in which the marsh surface 
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is flooded, each shrimp has a 0.69 probability of staying in or moving into marsh 

vegetation.  This recreates in the model, abundance patterns that have been observed in 

the field (Minello et al., 2008; Minello and Rozas, 2002), and is indirectly objective-

seeking. 

2.4 Sensing 

Shrimp in the marsh complex (marsh vegetation plus marsh water) can sense 

when the vegetated marsh is flooded and is accessible.  When a shrimp moves from one 

patch to another, it also can sense the salinity of other patches, which allows movement 

to a patch with the same salinity of the one it is leaving. 

2.5 Stochasticity 

During initialization, and subsequently when the number of cells representing 

each type of salinity zone changes, salinity zones are assigned to cells stochastically.  

During simulations, each hour, the order in which individual shrimp are chosen to 

execute their activities is randomized.  Mortality of individuals is represented as a daily 

probability of dying, and movement of individuals between the vegetated marsh surface 

and the non-vegetated marsh is represented probabilistically. 

2.6 Observation 

The most important model output is an estimation of annual brown shrimp 

production from the shallow estuarine habitats of the bay.  The total population of 

shrimp in the bay, the shrimp density within each habitat type and salinity zone, and the 

standing biomass can be observed from the model.  The production of shrimp per hectare 
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of marsh complex and per hectare of shallow water also can be observed, as can the 

number of shrimp recruited to the open bay population. 

 

3. Details 

3.1 Initialization (Figure A1.1) 

First, values are assigned the parameters representing (1) elevation (m) of the 

marsh edge for the year being simulated (= 1.477 + ((calendar-year – 2013) * 0.0053)), 

(2) probability of an individual moving into (staying in) marsh vegetation (= 0.69), (3) 

size (total length in mm) of shrimp at recruitment (=10), and (4) size of shrimp at 

emigration (=70).  The estimate of the average elevation of the marsh edge in 2013 was 

based on tide gauge station data from measurements at 12 marshes in 2013 (http://co-

ops.nos.noaa.gov/).  This elevation is adjusted for the year being simulated based on 

estimated changes due to relative sea level rise (Figure 5a).   

Next, habitat types (which do not change during the simulation) and salinity zone 

types (which do change during the simulation) are assigned to cells.  Moving from left to 

right along a 25 x 4 cell lattice, 17 cells are defined as marsh, 28 cells are defined as 

non-vegetated marsh edge (NVME), and 55 cells are defined as shallow open water 

(SOW).  The relationship of this spatial arrangement of habitat types to the geography of 

Galveston Bay is shown in Figures 2.1 and 2.2.  The 100 habitat cells, each representing 

1% of the total modeled area in Galveston Bay, were identified based on a GIS analysis 

of 2006 USFWS National Wetland Inventory (NWI) data and a bathymetry analysis for 

the bay.  Habitat types from this analysis were classified as either marsh vegetation, or 

http://co-ops.nos.noaa.gov/)
http://co-ops.nos.noaa.gov/)
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shallow water.  Previous analyses in Galveston Bay estimated that the water (ponds and 

creeks) included within the marsh complex was 1.63 times the amount of vegetated area 

(Minello et al., 2008).  We used this multiplier to estimate the total amount of water 

associated with the marsh vegetation identified in the NWI for the bay. The marsh 

complex, therefore, consisted of 45 patches (17 patches of marsh and 28 patches of 

NVME), with the remaining 55 patches of SOW. 

The appropriate number of cells in each habitat type is assigned to a particular 

salinity zone based on a GIS analysis of the TxBLEND model output for the month (see 

section on input data below). 

3.2 Input data (Figure A1.1) 

Hourly tide heights, daily median air temperatures, monthly distribution of 

salinity zones among habitat types, and daily recruitment numbers are read from external 

files.  We developed these input data for Galveston Bay based on analyses of data 

collected over the 30-year period from 1983 to 2012.  Hourly tide heights (Figure 2.5b) 

were based on tide data from the Pier 21 NOAA tide gauge (NOAA Tides and Currents 

https://tidesandcurrents.noaa.gov/waterlevels.html?id=8771450). Daily median air 

temperatures (Figure 2.5c) were obtained from the NOAA National Center for 

Environmental Information, (http://www.ncdc.noaa.gov/cdo-web/search).  Monthly 

salinity values for each of the three salinity zones (Figure 2.5d), as well as the numbers 

of cells representing each salinity zone, were based on TxBLEND modeling of the 

Galveston Bay system (Guthrie et al., 2014).  Salinity zones were categorized as low (0-

10 PSU), medium (10-20 PSU), or high (>20 PSU) and salinities within these zones, as 
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well as distribution cells representing these zones, were estimated monthly based on 

TxBLEND output.  We assumed that daily salinities did not vary within months.    

Daily recruitment numbers (Figure 2.5e) were based on several studies of the 

magnitude and timing of postlarval recruitment, as well as our unpublished data, which 

indicated that shrimp begin to move through the passes into the bays in mid-March with 

peak recruitment numbers occurring in April (Baxter and Renfro, 1967; Berry and 

Baxter, 1969; Matthews, 2008).  Abundance patterns from drop sampler data recorded 

monthly and bi-monthly over 11 years in the marsh complex within Galveston Island 

State Park indicated that abundance of settlers appears to peak two weeks after the 

average peak of postlarvae entering the bay (Rozas et al., 2007).  We used the temporal 

pattern of recruitment from the passes with a delay of two weeks as a recruitment pattern 

for shrimp to the marsh.  Since shrimp density in Galveston Bay differs depending on 

habitat type and salinity (Minello, 1999; Minello et al., 2008), we distributed the 

recruited shrimp among habitat cells based on the current spatial distribution of habitat 

types and salinity zones using a standardized relative density matrix (described in Table 

A1.1). 

3.3 Submodels (Figure A1.1) 

3.3.1 Update salinity zones (low, medium, high) 

The number of cells in each salinity zone in each habitat type is updated monthly 

based on input data, with each cell assigned a salinity zone probabilistically based on its 

habitat type and a salinity corresponding to its salinity zone (see data input section). 
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Relative densities observed in the field. 

 

 

 

 
The model calculates how many cells are in each habitat type/salinity zone combination 
and multiplies that number by its relative density value.   
Example: number of cells in each habitat type and salinity for March of 2007. 

 

 

 

 

Product of the number of cells and the relative density value. 

Salinity Marsh 
Complex 

Shallow 
water 

0-10 PSU 28 50 
10-20 PSU 180 144 
> 20 PSU 1376 308 

  total 2086 
 

Distribution of the sum of the recruits that enter the system on this day. 

Salinity Marsh 
Complex 

Shallow 
water 

0-10 PSU 1.4% 2.4% 
10-20 PSU 8.6% 6.9% 
> 20 PSU 66.0% 14.8% 

 

 

Salinity Marsh 
Complex 

Shallow 
water 

0-10 PSU 14 5 
10-20 PSU 18 6 
> 20 PSU 43 14 

Salinity Marsh 
Complex 

Shallow 
water 

0-10 PSU 2 10 
10-20 PSU 10 24 
> 20 PSU 32 22 

Table A1.1.  Description of process flow for recruit distribution using the relative 
density matrix. 
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3.3.2 Update shrimp recruitment 
Shrimp recruitment (number of shrimp entering the system) is updated daily 

(shrimp are recruited into the system in a single cohort at midnight) based on input data 

(Figure 2.5e, see data input section).  

3.3.3 Update median air temperature 

Median air temperature is updated daily based on input data (Figure 2.5c, see 

data input section). 

3.3.4 Calculate temperatures in vegetated and non-vegetated habitats 

Hourly temperatures in marsh cells and the non-vegetated habitats (NVME and 

SOW) are based on daily median air temperature (Figure 2.5c) and hourly bottom water 

temperatures measured from March 16, 2006 through May 31, 2007 in a Galveston Bay 

marsh complex, both within the vegetation (5 m from the edge) and in shallow water 

(ranged between 0.5 and 1.5 m deep depending on tide) outside of the vegetation 

(unpublished data).  We first calculated mean hourly deviations of field data from mean 

daily water temperatures by month.  Next we developed monthly regressions between 

the non-vegetated water temperature and the median daily air temperature.  We then 

estimated hourly non-vegetated water temperatures functions by month and hour.  

Finally, we estimated hourly vegetated water temperatures based on an empirical 

relationship between the vegetated water temperature data and non-vegetated water 

temperature data. 

3.3.5 Update tide height and calculate marsh flooding 

Hourly tide height (Figure 2.5b) is based on hourly tide station data (NOAA 

gauge 8771450, Galveston Pier 21) and is used to determine if the marsh surface is 
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flooded.  In 2013, we measured flooding rates in twelve salt marshes of Galveston Bay, 

and related average water level at the marsh edge to an elevation of 1.477 m on the Pier 

21 gauge (station datum).  If the station datum was 10 cm higher than this marsh edge 

height in 2013, we considered the marsh to be flooded and accessible to brown shrimp.  

For other years, we adjusted this level on the Pier 21 gauge to account for relative sea 

level rise over the period of our model runs (Figure 2.5a).  The bay experienced 

relatively high levels of subsidence over this period due to oil and groundwater 

extraction (Feagin et al., 2005).  We plotted mean sea level on the Pier 21 gauge from 

1970-2014 and determined that relative sea level on the station datum increased 5.4 

mm/year over that period.  We therefore adjusted the elevation of the marsh edge in 

relation to the gauge by this amount each year.  This adjustment assumes that the gauge 

and the marshes are sinking relative to sea level at the same rate, and that the vertical 

location of the marsh edge is mainly determined by an inability of S. alterniflora to 

withstand further tidal inundation (McKee and Patrick, 1988; Minello et al., 2012; Tiner, 

1993). 

3.3.6 Calculate shrimp movements 

Shrimp move between the NVME and marsh when the latter is flooded.  Shrimp 

in the marsh move to the NVME when the former no longer is flooded.  Shrimp in the 

SOW do not leave that area.  Shrimp growth, emigration, and mortality occur in all 

areas, with growth rates and mortality probabilities differing among areas (and also 

depending on temperature and salinity, see Figure 2.3). 
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The quantitative representations of movement, growth, mortality, and emigration 

of individual shrimp included in the model are summarized schematically in Figure 2.3.  

Rules representing the movement of individuals, described in the preceding paragraph, 

are probabilistic.  If the marsh is flooded, each hour each individual located in either the 

marsh or the NVME has a 69% probability of moving to a cell with the same salinity in 

the marsh and a 31% probability of moving to a cell with the same salinity in the 

NVME.  If there is no cell with the same salinity, the individual moves into a cell with 

the salinity closest to the salinity of the cell from which it moved.  Thus any given 

individual may move back and forth between these two areas during periods of marsh 

flooding, but is likely to spend slightly more than twice as much of this time in the 

marsh.  

3.3.7 Calculate shrimp mortality 

Mortality (probability of dying) is a function of a base rate (0.00083 / hr) 

multiplied by two indexes representing (1) a size (of the individual) effect and (2) a 

habitat effect (Figure 2.3).  The size effect is based on total length (53.092 * (total length 

in mm)-1.1163).  Thus mortality decreases exponentially as total length increases, 

following the pattern described by Roth et al. (2008) and supported by field data from 

Minello et al. (1989).  The habitat effect is represented as a constant, which is different 

for marsh vegetation (0.69) versus the two areas of non-vegetated water (1.38).  The 

presence of marsh vegetation reduces brown shrimp mortality (Minello 1993; Minello et 

al., 1989).  There also is some experimental evidence of temperature related mortality.  

Zein-Eldin and Alderich (1965) reported increased mortality at temperature extremes, 
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especially for brown shrimp in low-salinity water (as high as 80% mortality in 11°C 

water that had less than 15 PSU).  However, there is limited data on the behavior of 

shrimp under these conditions in the field, and potentially, they can avoid extreme 

temperatures through movement to deeper water or by burrowing in the substrate 

(Aldrich et al., 1968).  Thus, we chose not to include temperature-related mortality in the 

model. 

3.3.8 Calculate shrimp emigration 

Individuals emigrate when they attain a length of 70 mm (they are recruited at a 

length of 10 mm) (Cook and Lindner, 1970).   

3.3.9 Calculate shrimp growth 

Growth is a function of the water temperature, salinity, and habitat conditions 

(marsh, NVME, SOW) to which an individual is exposed (Figure 2.3).  A probabilistic 

base growth rate (0.0416 ± 0.0104 mm hr-1) is multiplied by two indexes representing 

(1) a water temperature-salinity effect and (2) a habitat effect.  The water temperature-

salinity effect is represented as a polynomial function of water temperature, which is 

different for each of the three salinity zones (Figure 2.4).  Hourly water temperatures for 

NVME and SOW are calculated based on the median air temperature, and hourly water 

temperatures for the marsh is calculated based on a relationship between the water 

temperature in open water and that in the marsh.  The habitat effect is represented as a 

constant, which is different for each of the three habitats (1.28, 1.14, and 1.0 for marsh, 

NVME, and SOW, respectively).   
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Brown shrimp grow ≈1 mm per day in total length (Knudsen et al., 1977), and 

experience fastest growth at ≈30 °C, assuming access to plentiful food (Zein-Eldin and 

Aldrich, 1965).  Salinity appears to affect growth both directly through osmoregulatory 

costs and indirectly by controlling the abundance of benthic infaunal prey (Adamack et 

al., 2012; Rozas and Minello, 2011, 2015), with growth being lowest at salinities 

between 0-10 PSU. While it has been difficult to directly measure the effect of intertidal 

vegetation on shrimp growth due to potential experimental artifacts (Kellison et al., 

2003; Peterson and Black, 1994), there is some experimental evidence suggesting that 

growth rates of brown shrimp are increased in marsh habitat (Minello and Zimmerman, 

1991, Rozas and Minello, 2009).  Benthic infaunal food for shrimp also is found in 

higher abundance on the vegetated marsh surface, especially within the first meter from 

the edge (Whaley and Minello, 2002). Based on these data, we represented growth rate 

as being fastest when shrimp are in the marsh, and slowest when they are located in the 

SOW. 

3.3.10 Summarize attributes of shrimp population 

After each hour of simulated time, (1) standing biomass (kg / ha) of the shrimp 

population (calculated as (0.000006 * (mean-size-mm 3.071) * number of simulated 

shrimp * number of real shrimp per simulated shrimp) / 63,500) and (2) shrimp biomass 

production (kg ha-1) (calculated as 0.000006 * (70 3.071) * number of emigrated shrimp) 

are calculated. 
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3.3.11 Write to output files 

After each hour of simulated time, in addition to the current values of the 

attributes of the shrimp population described in the previous section, the current values 

of environmental conditions (tide height, median air temperature, water temperatures in 

vegetated and non-vegetated habitats, salinities in low, medium, and high salinity zones) 

and descriptors of current habitat conditions (number of cells in salinity zone in each 

habitat type and whether or not the marsh is flooded) are written to Excel text files. 
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APPENDIX 2* 

 

 This appendix contains results of each of the replicate stochastic (Monte Carlo) 

simulations run under baseline conditions and as part of the various sensitivity analyses 

presented in the text.  These include sensitivity of model estimates of brown shrimp 

(Farfantepenaeus aztecus) production (kg/ha) (1) to the 30 different sets of baseline 

environmental conditions (Figure A2.1), (2) to changes of ± 10% relative to baseline in 

parameter values representing individual growth rate, probability of mortality, and 

probability of moving into (staying in) the area of intermittently flooded marsh 

vegetation (Figure A2.2), (2) to changes of ± 10% relative to baseline values of the time 

series of input data representing tide heights and median air temperatures, (Figure A2.3), 

(4) to changes in the number of “real” shrimp represented by each simulated shrimp 

(Figure A2.4), and (5) to changes relative to baseline in the timing of shrimp recruitment 

(Figure A2.5). 

 

 

  

                                                 

* Reprinted with permission from “Simulating environmental effects on brown shrimp production in the 
northern Gulf of Mexico” by Jennifer P. Leo, Thomas J. Minello, William E. Grant, and Hsiao-Hsuan 
Wang, 2016, Ecological Modelling, 330, 24-40, Copyright 2016 by Elsevier B.V. 
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Figure A2.1.  Production (kg/ha) of brown shrimp (Farfantepenaeus 
aztecus) from January through August in Galveston Bay, Texas, U.S.A., 
simulated under environmental conditions representing the indicated 
calendar years.  Each bar represents one of 10 replicate stochastic (Monte 
Carlo) simulations. 
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Figure A2.2.  Sensitivity of model estimates of brown shrimp (Farfantepenaeus 
aztecus) production (kg/ha) to changes of ± 10% relative to baseline in parameter 
values representing individual growth rate, probability of mortality, and probability of 
moving into (staying in) the area of intermittently flooded marsh vegetation.  
Production from January through August in Galveston Bay, Texas, U.S.A., is 
presented for each of 10 replicate stochastic (Monte Carlo) simulations run under 
environmental conditions representing the calendar year 2012 and the indicated 
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Figure A2.3.  Sensitivity of model estimates of brown shrimp (Farfantepenaeus 
aztecus) production (kg/ha) to changes of ± 10% relative to baseline values of the 
time series of input data representing tide heights and median air temperatures.  
Production from January through August in Galveston Bay, Texas, U.S.A., is 
presented for each of 10 replicate stochastic (Monte Carlo) simulations run with 
baseline parameter values and under environmental conditions representing the 
calendar year 2012, except for the changes in the indicated time series of 
environmental driving variables. 
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Figure A2.4.  Sensitivity of model estimates of brown shrimp 
(Farfantepenaeus aztecus) production (kg/ha) to changes relative to baseline 
in the number of “real” shrimp represented by each simulated shrimp.  
Production from January through August in Galveston Bay, Texas, U.S.A., is 
presented for each of 10 replicate stochastic (Monte Carlo) simulations run 
with baseline parameter values and under environmental conditions 
representing the calendar year 2012 with the indicated changes in the number 
of “real” shrimp represented by each simulated shrimp. 
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Figure A2.5.  Sensitivity of model estimates of brown shrimp (Farfantepenaeus 
aztecus) production (kg/ha) to changes relative to baseline in the timing of shrimp 
recruitment.  Production from January through August in Galveston Bay, Texas, U.S.A., 
is presented for each of 10 replicate stochastic (Monte Carlo) simulations run under 
environmental conditions representing the indicated calendar year with the indicated 
change in the timing of recruitment.  Minus 14, -21, and -28 represent recruitment 
occurring 14, 21, and 28 days earlier than baseline, whereas 14, 21, 28, 35, and 42 
represent recruitment occurring 14, 21, 28, 35, and 42 days later than baseline.  The 
relative shape of the recruitment curve (Figure 5e) was not changed, the entire curve 
was shifted earlier or later in the year. 
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Figure A2.5.  (Continued) 
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