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ABSTRACT

Traditionally ships are designed to be symmetric about their centerline which

makes head seas a very safe heading for roll motion stability. However, in the recent

years several incidents of large amplitude roll motion in head seas have been reported

which have later been attributed to parametric roll. Parametric roll motion is a

phenomenon in which a ship exhibits a large amplitude of roll motion even when it

is moving into head seas with no direct excitation. This phenomenon is particularly

an issue for modern high-speed fine form container ships and has gained attention

relatively recently.

This instability is dangerous because of its manifestation in counter-intuitive

headings. Also the roll amplitude during parametric roll rises exponentially with time

which gives ship captains and masters very less time to react. While this instability

has been studied extensively in regular waves, its manifestation in irregular seas has

not received sufficient attention. This dissertation aims at the development of design

criteria based on analytical techniques which can help a designer quickly quantify

the stability of a vessel to parametric excitation.

For accurate simulation of parametric response of a vessel/platform in irregular

seas, an in-house time domain simulation program has been developed and validated

against available experiments. The roll equation of motion is then simplified into a

single degree of freedom model for analytical assessment. The existing single degree

of freedom models in the literature are compared against the time domain simulation

tool to gain an understanding of the extent to which the simplified models capture

the dynamics of the phenomenon. In order to improve the roll modeling, a new

approach is suggested to overcome some of the limitations of the existing models.
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This new model is then investigated using two analytical approaches, one from

the theory of nonlinear dynamical systems and the other from stochastic dynamics

to come up with two independent measures of stability. Both of these measures are

used to demonstrate their potential as a design criteria which can be used by a ship

designer. A comparison of the two methods for a variety of cases is undertaken to

demonstrate the similar trends they exhibit.
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1. INTRODUCTION

Over the past two decades, a large number of container ships and Ro-Ro vessels

are being designed for higher service speeds to allow for faster transport and conse-

quently more trade. This has led to the design of finer form hulls to minimize the

calm water resistance. However, it has also made them susceptible to other forms

of instability which are coming to light from the several reported incidents of large

amplitude roll motion of these vessels at sea. Particularly, one such incident involv-

ing the container ship APL China in 1998 is regarded as the single worst incident

of its kind. APL China was en route to Seattle from Taiwan when it encountered

a typhoon in the Pacific Ocean. In order to mitigate the roll motion of the vessel,

the captain ordered the vessel to turn into the waves. However, the vessel roll was

amplified which led to severe hull damage and significant loss of cargo. Later it was

ascertained that 406 containers were lost at sea during this incident. Later inves-

tigations [2] revealed that the severe roll motion was caused due to an instability

known as the parametric roll. Over the years several instances have been reported

where a variety of ship types including cruise ships, Ro-Ro vessels and container

ships have experienced severe roll motion which have later been ascertained to be

due to parametric instability.

The fine form ships designed to reduce the calm water resistance have a complex

underwater geometry which makes them very susceptible to parametric excitation.

These hulls are characterized by a large flare at the bow and a broad transom stern.

When such a hull form is subjected to head on waves, the waterplane area and the

instantaneous underwater volume vary considerably depending on the longitudinal

location of the wave crest with respect to the hull. The time varying underwater
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volume leads to a time varying roll stiffness resulting in a large amplitude parametric

response.

To date, ship stability is still determined using the calm water restoring arm

curve. Although this is enough for designing traditional vessels, it certainly is not

for the newer generation of fine form ships. Dynamic stability plays a significant role

in the design of these vessels. Therefore there is a need to augment the current intact

stability rules to include dynamic stability. While many of the classification societies

such as American Bureau of Shipping (ABS) and Det Norke Veritas (DNV) have

come up with empirical assessment formulations for parametric resonance of ships

and offshore structures in regular waves, they still recommend simulating motions in

a large number of irregular wave realizations to determine the stability of a ship due

to parametric excitation in a realistic ocean environment.

While the method of simulations is suitable for checking how susceptible the final

design is to parametric excitation, it is not an effective way to analyze and assess

design alternatives. This means that with current standards it is not possible to

effectively design a vessel against parametric excitation during the iterative design

process. Often by the time the final design is obtained, it is too late to change the

hull form even if it is found to be susceptible to parametric roll [3, 4].

Regulatory authorities such as IMO (International Maritime Organization) and

several classification societies [5] have proposed to include parametric roll as a more

dangerous phenomenon than the traditional resonant roll motion in beam seas. The

IMO sub-committee on Stability and Load Lines and Fishing Vessel Safety (SLF)

as a part its recent meetings (SLF 55/3) has been discussing revamping the intact

stability code, which is mostly limited to prescriptive static stability (based on the

calm water righting arm GZ curve), to make way for the next generation of stability

rules which include the assessment of dynamic failure modes including parametric
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roll [6].

One of the easiest approaches to develop a stability criterion for a regulatory

framework is to use analytical techniques as they can quickly provide a global pic-

ture of the phenomenon. However, the industry currently still relies heavily on

prescriptive formulations or performing time domain simulations and physical model

tests.

Analytical techniques have the advantage of being less time consuming than sim-

ulations and can easily be developed into a criterion for incorporation into dynamic

stability rules. However, time domain simulations, besides being significantly time

consuming, do not always guarantee the capture of all the critical dynamics of the

system. Especially when a system is nonlinear and exhibits multiple steady state

solutions, without knowing the correct initial conditions, some characteristics of the

system might be completely missed if only time domain simulations are relied upon.

However, the time domain simulation models do have the advantage that they can

incorporate various nonlinearities and provide a more accurate prediction of the re-

sponse and are not limited by simplifying assumptions which maybe a drawback of

the analytical approaches.

This dissertation aims at developing simplified analytical methods for the analy-

sis of parametric roll in irregular seas while ensuring that the simplified models are

reasonably close to reality and capture the relevant dynamics. However, in order

to ascertain whether a simplified model performs well or not, it must be compared

against either physical model test data or numerical simulations. Available model

test data, in general is limited by either the cost or the number of runs available.

However, more cases can be studied using numerical simulations. Therefore, a nu-

merical simulation tool is first developed and validated against the limited model

test data. This tool is then used as a benchmark to assess the performance of the
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various simplified analytical models.

While the analytical models for roll motion of a ship being subjected to beam

seas have been studied extensively in the past, limited attention has been devoted

to the modeling of parametric roll in irregular seas. The nonlinear modeling of time

varying restoring moment in irregular waves has received very little attention and

continues to be a major challenge. Although some models have been proposed for

parametric roll, these are mostly limited to regular wave scenarios and are insufficient

to model the phenomenon accurately in irregular waves. Using these existing models

for continued analysis leads to significant differences from reality and makes the

approach unreliable. In order to address this issue, a new simplified analytical model

for parametric roll in irregular seas is proposed and validated. The improvements

of this model over the existing models include the capturing of the actual wave

elevation and dynamic heave and pitch motions in the calculation of the nonlinear

restoring arm which to the author’s knowledge has not been investigated before.

The new proposed model is compared against the existing models and the nonlinear

numerical simulation tool to show that it better represents reality than the existing

models.

Using this new analytical model for parametric roll, further techniques are applied

to quantitatively determine the stability of the system due to parametric excitation.

Two independent stability assessment techniques are investigated. The first method

is based on the nonlinear dynamical systems approach and employs the use of the

Melnikov function to assess the rate at which the originally stable set of initial condi-

tions become unstable (unbounded) when excited by parametric random excitation.

The second approach is based on the stochastic dynamics approach and uses diffu-

sion theory to analyze the probabilistic characteristics of the system when excited

by random parametric excitation. Both these methods, although having a detailed
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and documented theory, have mostly only been applied to the problem of direct ex-

citation (roll motion of ships subjected to incident beam seas). Their application

to the parametrically excited systems in random waves (roll motion in longitudinal

seas) is a relatively new area of research and is significantly more challenging than

the conventional direct excitation case.

While the above discussion has been limited to the unstable roll motion of fine

form ships, a similar type of parametric instability has also been observed for spar

platforms [7, 1, 8, 4]. For the spar hull forms, the instability results in large cou-

pled heave and pitch motions and is attributed to the natural period in pitch mode

coinciding with the period associated with envelope of the heave motion. This dis-

sertation also briefly investigates this phenomenon using the time domain simulation

described in chapter 2. This example also demonstrates the generic nature of the

developed time domain simulation tool in terms of its applicability to analyze the

dynamics of both ship shaped and non-ship shaped structures.

1.1 Overview of Dissertation

This dissertation is structured into seven chapters including the current one.

Chapter 2 describes in detail the development of a nonlinear time domain simulation

program [9] and describes its various aspects including:

• Large amplitudes of rotation using the Euler angles approach

• Calculating nonlinear Froude Krylov and hydrostatic forces to “exact” incident

wetted surface

• Prediction of viscous roll damping for ship shaped structures

• Formulating and solving the nonlinear equation of motion in the time domain

5



It is well known that the added mass and radiation damping due to their depen-

dence on frequency when transformed into the time domain result in a convolution

integral involving an impulse response function (IRF). The derivation and numer-

ical implementation of the IRF from the frequency domain hydrodynamic data is

described in detail. In addition, chapter 2 also details the current industry stan-

dard approach to predict the roll damping for ship shaped structures [10]. It also

details the application of the developed time domain simulation tool to simulate the

phenomenon of parametric roll. These simulations are then validated against avail-

able experimental data to gain confidence that the numerical simulations are able to

capture the relevant nonlinearities. After validation, the developed simulation tool

is then used to analyze the statistical characteristics of parametric roll in irregular

seas to demonstrate its non-Gaussian nature. It is also shown that parametric roll

motion does not affect the other seakeeping modes which allows for the possibility

of its analysis using a single degree of freedom model which forms the central idea

of chapter 3. Finally, chapter 2 also discusses the application of the developed tool

to analyze offshore structure dynamics. Particular attention is given to the problem

of parametric excitation for a classic spar platform. The simulated motions of the

classic spar are compared against the experimental data provided by Haslum [1] for

validation.

Chapter 3 focuses on the development of a single degree of freedom analytical

model for parametric roll. The existing approaches for modeling parametric roll

are surveyed and critically assessed [11]. Two of the more accepted approaches -

Volterra GM method and the Grim’s effective wave approach are discussed in detail.

Within these two methods, the Grim’s effective wave approach has been more popular

among researchers due to its approximation resulting in the simplification of the

problem in irregular sea to that in an equivalent regular wave obtained by a least
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squared fit. Although the Volterra GM method models the GM variation in “exact”

irregular waves, it has received much lesser attention due to its inability to capture

the time varying higher order stiffness terms (e.g. the cubic and quintic terms).

A new approach for modeling the restoring arm in waves is suggested based on

an extension of the Volterra GM method to overcome the limitations of the existing

models. This extended approach is called the Volterra GZ method. The existing and

the new methods are compared against the nonlinear time domain simulation tool

developed in chapter 2 to ascertain which model represents reality most accurately.

The improved Volterra GZ method is found to have the best agreement among the

three models and is chosen as the candidate for further stability analysis.

Chapter 4 discusses the application of global geometric methods developed in the

field of nonlinear dynamical systems [12, 13] to analyze the response of the Volterra

GZ model developed in chapter 3. Even within the field of nonlinear dynamical

systems, only a few methods are available where the response characteristics can be

quantified without resorting to simulation. With this in mind, the Melnikov method

is chosen as the approach to analyze the response characteristics. Although there are

many research papers [14, 15, 16, 17] describing the application of this approach to

the directly excited roll motion, little literature is available describing its application

to the problem of parametric roll in irregular seas. Chapter 4 details the extension of

the Melnikov approach to the problem of parametric excitation and the development

of a stability measure quantifying the susceptibility of a hull form to this instability.

Chapter 5 details a semi-analytical approach from the field of stochastic dynamics

to assess the stability of a system excited by parametric excitation. This technique

begins by averaging the roll equation of motion which leads to approximating the

energy of the system as a Markov process [18]. This opens the door to a variety of

analysis techniques applicable to Markov process to be extended to the roll motion
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system of equations. Similar to the Melnikov approach discussed in chapter 4, this

technique too has been applied extensively to study directly excited roll motion

[19, 20, 21, 17]. However, the parametrically excited roll motion analysis using

this technique is more complicated than the directly excited system analysis. The

intricacies of application to parametrically excited systems is discussed in detail in

chapter 5. Particularly attention is given to the estimation of mean first passage

time calculation which is used as a measure to quantify the stability of the system.

Chapter 6 compares the two independent methods developed in chapter 4 and

chapter 5 to demonstrate the similarity between them. This comparison also demon-

strates a cross check of the two methods and may give more confidence to a designer.

Chapter 6 also details the results of a sensitivity analysis performed to compare the

trends of the two methods as various parameters of the system are changed. This

study not only allows comparison of the two methods but also demonstrates that

the stability trends observed due to the variation of parameters of the system by the

two methods are in agreement.

Finally chapter 7 summarizes the contributions of the dissertation and briefly

discusses the future directions which can be pursued in this area. It also provides an

overview and a global picture of how the developments of this dissertation are in line

with the current efforts by the International Maritime Organization (IMO) towards

a new generation of stability assessment rules.
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2. NONLINEAR TIME DOMAIN SIMULATION∗ †

The motion of a ship or offshore structure in waves has always been a fascinating

problem for the naval architect. In the past, before the advent of computers, the

study of motions of a ship were primarily restricted to model scale experiments [22].

With the advent of computers and high computational power it became possible to

simulate the motions of a ship/offshore platform. The advantages of a simulation

over the experiments include not only the lesser physical effort but also the quicker

estimation of stability and the possibility of testing many more loading conditions.

However, the simulations do have a drawback of including simplifying assumptions to

make the problem tenable. These assumptions in some cases may render the model

incapable of simulating certain dynamic phenomena which are otherwise observed in

reality. A classic example of this is the inability of the linear hydrodynamic theory

to simulate the parametric rolling of ships.

One of the first approaches used in the study of seakeeping was to divide the

ship into a number of strips along the length and study the dynamics of each strip

independently and then combine the effect of all strips to predict the dynamics of the

3-dimensional (3D) ship/platform. This idea known as the strip theory reduces the

issue of motion prediction from a 3D problem to a 2D one. A number of approaches

were developed based on this idea by various researchers including Salvesen et al.

[23], Newman [24], Ogilvie and Tuck [25], Journee [26], Beck and Troesch [27] etc.

However, the approach adopted by Salvesen et al. [23] has by far been the most

∗Part of this chapter is reprinted with permission from “Large-amplitude time-domain simulation
tool for marine and offshore motion prediction”, 2015. Marine Systems and Ocean Technology,
10(1), pp 1-17, Copyright 2015 by Sociedade Brasileira de Engenharia Naval

†Part of this chapter is reprinted with permission from “An overview of the prediction methods
for roll damping of ships”, 2015. Ocean Systems Engineering, 5(2), pp 55-76, Copyright 2015 by
Techno-Press, Ltd.
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successful and is still widely used by the industry.

The primary drawback of the strip theory method is its inapplicability to full-

form ships (e.g. tankers) which violate the slender body assumption. Other issues

include poor predictions in high Froude numbers and in following sea cases. These

drawbacks paved way for the 3D ship motion prediction theory which did not suffer

from the slender body approximation.

With the advancement of computational power in the 1980s it became possible

to solve the 3D ship motion problem by the use of 3D panel methods. The 3D panel

methods do not suffer from the slender body approximation and are applicable to a

wider range of vessel types and loading conditions. The earlier methods attempted to

solve the problem in the frequency domain. The broad family of 3D panel methods

can further be classified into two categories. The first is the Rankine source approach

which requires discretization of both the body and the free surface (e.g. Nakos

and Sclavounos [28]) and the other is the Green function method which requires

discretization of only the underwater hull form (e.g. Lee and Newman [29]).

The Green function method has the advantage of requiring panels only on the

body surface and hence has become more popular. This method for the zero speed

case uses the zero speed 3D Green function and has become the industry standard in

the design of offshore structures (e.g. Faltinsen [30]). The forward speed case requires

the calculation of the forward speed Green function which is significantly difficult

to evaluate numerically. However, based on the theory developed by Salvesen et al.

[23] it is possible to use the zero speed Green function to predict the vessel motions

in slow and moderate forward speeds with reasonable accuracy [31]. Eventually the

complexity of the frequency domain problem in forward speed case led researchers

to explore the possibility of solving the ship motions problem using a transient time

domain Green function. The notable contributors to this approach include Liapis
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[32], King [33], Lin and Yue [34], Magee [35], Bingham [36], Beck [37] and Sen [38].

Although much research has been performed in the area of ship motion prediction,

there is still no standard time domain simulation tool, which is available to all the

researchers. This chapter aims to document the complete development of such a tool

which can then be used as a starting point to investigate other research problems in

the area of ship motions (e.g. parametric rolling of ships in irregular waves [39]).

In this work, instead of developing a time domain Green function based simula-

tion tool [40], the radiation and scattering force results are obtained from a frequency

domain computer program - “MDLHYDROD” - developed by Guha and Falzarano

[41] (later extended by Somayajula et al. [42] and Guha and Falzarano [31]). Using

these results as inputs, a nonlinear time domain simulation tool has been developed

[9]. This tool includes the capability of solving the nonlinear Euler equations of mo-

tion valid for large amplitudes of translation and rotation. While the linear radiation

and scattering forces are retained from the frequency domain program, the nonlin-

earities are included in the incident (Froude-Krylov forces), restoring (hydrostatic)

and inertial forces.

For the purpose of simulation, a standard hull form i.e. the APL China with

minor modifications (Pram hull form) is chosen. The APL China is known to exhibit

parametric rolling [2] and is chosen specifically to demonstrate the capability of the

developed tool to simulate the complex nonlinear phenomenon of parametric rolling.

The particulars of the ship used are shown in Table 2.1 and its body plan is shown

in Figure 2.1. The geometry file for Pram hull is provided as a supplementary file

and is detailed in appendix H.
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Table 2.1: Details of the Pram hull form

Particulars Value

Length between perpendiculars Lpp (m) 262.00
Breadth B (m) 40.00
Depth D (m) 24.45
Mean Draft T (m) 12.32
Displacement ∆ = ρ∇ (tonnes) 76056.00
Vertical Center of Gravity KG (m) 18.32
Metacentric Height GM (m) 1.973
Roll Natural Period Tn (sec) 22.78

Figure 2.1: Body plan of the Pram hull form
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Global Coordinate 

System (GCS)

Steady Moving Coordinate 

System (SMCS)

Body Fixed Coordinate 

System (BCS)

Figure 2.2: Description of coordinate systems

2.1 Coordinate System

Formulating the equations of motion of bodies undergoing large angles of rotation

requires defining the right set of coordinate systems and understanding how a vector

in one is expressed in the other. The nonlinear equations of motion for a general

body have been defined in a number of references like Vugts [43], Abkowitz [44] and

Lewandowski [45]. In this work we follow an approach based on the method adopted

by Ogilvie [46]. Three coordinate systems are defined and are shown in Figure 2.2.

Global Earth Fixed Coordinate System (GCS) O0x0y0z0 is the global co-

ordinate system and is fixed to the earth. The coordinates of any general point in

GCS are specified by the vector x0 = (x0, y0, z0).

Steady Moving Coordinate System (SMCS) Oxyz moves with a constant

velocity U = Uî+0ĵ+0k̂ with respect to GCS. The coordinates of a point in SMCS

are given by the vector x = (x, y, z).

Body Fixed Coordinate System (BCS) O′x′y′z′ is fixed with the body and

changes orientation as the body undergoes translation and rotation. When the ship is

moving steadily with velocity U , the BCS coincides with the SMCS. The coordinates

of a point in BCS are given by the vector x′ = (x′, y′, z′).
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While GCS and SMCS are inertial frames of reference, BCS is a non-inertial

frame of reference. At any time instant, the translation of the body is defined by

the vector from the origin of SMCS to the origin of BCS and the rotation of the

body is defined by the difference in orientation of the two coordinate systems. For

a body moving steadily with forward speed without any external excitation (waves

and current) the origin of BCS and SMCS are coincident.

Let x and x′ denote the position vectors of an arbitrary point in SMCS and

BCS respectively. When the body is at rest or moving steadily with forward speed,

x and x′ are the same vector (assuming that the sinkage and trim in case of the

steady forward speed are negligibly small). However, when subjected to dynamic

excitation (waves and current), the BCS due to its translation and rotation with the

body is no more coincident with SMCS. Let the position of BCS origin with respect

to SMCS origin be given by ξ = (ξ1, ξ2, ξ3) = ξ1î + ξ2ĵ + ξ3k̂. Then the position

vectors of an arbitrary point in the two coordinate systems can be related by a linear

transformation as shown in (2.1)

x′ = R(x− ξ) (2.1)

where R is the rotation matrix to rotate the vector in SMCS coordinate system

into BCS orientation. Although the infinitesimal rotations commute, finite rotations

do not and require a specification of the order of rotations. In this work we follow

the convention of roll, pitch and yaw as specified by Ogilvie [46].

For convenience of understanding let us consider a case where the origins of the

SMCS and BCS are coincident (no translation). Define a new coordinate system

Ox̄ȳz̄ that is identical to SMCS except for a rotation of ξ4 radians about x-axis of

SMCS (see Figure 2.3a). In this new coordinate system Ox̄ȳz̄, the vector x in SMCS
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(a) Roll (b) Pitch (c) Yaw

Figure 2.3: Transformation from SMCS to BCS using Euler angles

is given by

x̄ = R1x (2.2)

where

R1 =


1 0 0

0 cos(ξ4) sin(ξ4)

0 − sin(ξ4) cos(ξ4)

 (2.3)

Now we consider a second coordinate system Ox̂ŷẑ obtained by rotation of Ox̄ȳz̄

by ξ5 radians about the ȳ-axis (see Figure 2.3b). The vector x in this new system is

given by

x̂ = R2x̄ = R2R1x (2.4)
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where

R2 =


cos(ξ5) 0 − sin(ξ5)

0 1 0

sin(ξ5) 0 cos(ξ5)

 (2.5)

Finally rotating the coordinate system Ox̂ŷẑ by ξ6 radians about the ẑ-axis (see

Figure 2.3c), brings the resulting system into BCS orientation. Thus the position

vector in BCS is given by

x′ = R3x̂ = R3R2R1x = Rx (2.6)

where

R3 =


cos(ξ6) sin(ξ6) 0

− sin(ξ6) cos(ξ6) 0

0 0 1

 (2.7)

R = R3R2R1 =


c5c6 (c4s6 + s4s5c6) (s4s6 − c4s5c6)

−c5s6 (c4c6 − s4s5s6) (s4c6 + c4s5s6)

s5 −s4c5 c4c5

 (2.8)

where the short hand notation ci = cos(ξi) and si = sin(ξi) for i = 4, 5, 6 has

been used. Each of the rotation matrices R1, R2, R3 and R are orthogonal. This

means that the inverse of the rotation matrix R is given by its transpose RT . If the

origins of SMCS and BCS are not coincident (finite translation ξ) then the position

vector x in SMCS may be related to the corresponding position vector x′ in BCS as
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shown in (2.1). However, the rotation matrix is still given by (2.8).

The angular velocity ω′ of the body in the BCS can also be derived in terms of

the Euler angles (ξ4, ξ5, ξ6) and their derivatives (ξ̇4, ξ̇5, ξ̇6) as shown below.

ω′
roll = R3R2R1


ξ̇4

0

0

 =


c5c6ξ̇4

−c5s6ξ̇4

s5ξ̇4

 (2.9)

ω′
pitch = R3R2


0

ξ̇5

0

 =


s6ξ̇5

c6ξ̇5

0

 (2.10)

ω′
yaw = R3


0

0

ξ̇6

 =


0

0

ξ̇6

 (2.11)

ω′ = ω′
roll + ω′

pitch + ω′
yaw =


c5c6ξ̇4 + s6ξ̇5

−c5s6ξ̇4 + c6ξ̇5

s5ξ̇4 + ξ̇6

 (2.12)

Similar to the position vectors, the angular velocity ω in the SMCS is also related
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to the BCS angular velocity ω′ by the rotation matrix R.

ω = RTω′

=


c5c6 (c4s6 + s4s5c6) (s4s6 − c4s5c6)

−c5s6 (c4c6 − s4s5s6) (s4c6 + c4s5s6)

s5 −s4c5 c4c5


T 

c5c6ξ̇4 + s6ξ̇5

−c5s6ξ̇4 + c6ξ̇5

s5ξ̇4 + ξ̇6

 (2.13)

ω =


ξ̇4 + ξ̇6s5

ξ̇5c4 − ξ̇6s4c5

ξ̇5s4 + ξ̇6c4c5

 (2.14)

2.2 Equations of Motion

Motion of any general rigid body is governed by the Newton’s 2nd law of motion

(conservation of linear and angular momentum). The analysis of rigid motions is

performed by dividing it into two parts:

1. The entire mass of the body is assumed to be concentrated at the center of

gravity, G. The application of Newton’s 2nd law gives equations describing the

translational motion of G as if the body were just a point mass.

2. Application of Newton’s 2nd law to the angular momentum of the body gives

the equations describing the rotational motion of the body.

Let xG denote the instantaneous location of the center of gravity of the vessel in

SMCS. It may be related to the location of center of gravity in BCS by

xG = ξ +RTxG
′ (2.15)

18



Differentiating (2.15) and using the identity that ṘTR(xG − ξ) = ω × (xG − ξ),

the translation equation of motion may be expressed in vector form as (2.18) where

m represents the mass of the vessel and F represents the external force on the body

in SMCS.

ẋG = ξ̇ + ω × (xG − ξ)] (2.16)

ẍG = ξ̈ + ω̇ × (xG − ξ) + ω × [ω × (xG − ξ)] (2.17)

mẍG = m[ξ̈ + ω̇ × (xG − ξ) + ω × [ω × (xG − ξ)]] = F (2.18)

The conservation of angular momentum (L) about the SMCS may be expressed

as

dL

dt
= MG (2.19)

where MG is the external applied moment about the center of gravity G and can

be expressed in terms of the external applied force and moment about SMCS origin

as shown in (2.20).

MG = M − xG × F (2.20)

Let L′ denote the angular momentum of the body about the BCS. Note that L′

and L represent the same vector in different coordinate systems and are related by
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L′ = RL. Using the above, (2.19) can be recast as (2.21).

M − xG × F =
dL

dt
=

d

dt

(
RTL′)

= RT L̇′ + ṘTL′

= RT L̇′ + ṘTRL

= RT L̇′ + ω ×L

= RT L̇′ +RT (ω′ ×L′) (2.21)

It is well known from rigid body mechanics that the angular momentum of a

body in the BCS orientation may be expressed as L′ = Iω′ where I is the 3x3

inertia tensor given by (2.22)

I =


Ix −Iyx −Izx

−Ixy Iy −Izy

−Ixz −Iyz Iz

 (2.22)

where Ix, Iy, Iz are the second mass moments of inertia about the x,y and z axes

of the BCS respectively and Ixy, Iyx, Iyz, Izy, Izx, Ixz are the cross mass moments of

inertia about the x,y and z axes of the BCS. The mathematical formulation for

evaluating Ix and Ixy are shown in (2.23) and (2.24) respectively where µ represents

the mass density.

Ix = Iyy + Izz =

∫∫∫
µ
[
(y′ − y′G)

2 + (z′ − z′G)
2
]
dV ′ (2.23)

Ixy =

∫∫∫
µ(x′ − x′G)(y

′ − y′G)dV
′ (2.24)

The others terms of the inertia tensor may be derived in a similar fashion. Note
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that the inertia tensor is defined about the body fixed coordinate system and is

time-invariant. Using the above and L′ = Iω′, (2.21) can be recast as

Iω̇′ + ω′ × Iω′ = R [M − xG × F ] (2.25)

Thus the exact Euler equations of motion for a rigid body motion in 6 degrees of

freedom are given by (2.26) and (2.27).

m[ξ̈ + ω̇ × (xG − ξ) + ω × [ω × (xG − ξ)]] = F (2.26)

Iω̇′ + ω′ × Iω′ = R [M − xG × F ] (2.27)

These expressions are exact and are valid for arbitrary translations and large an-

gles of rotation. These nonlinear equations of motion can be solved if the expressions

for the nonlinear force F and nonlinear moment M are known. The calculation of

the external forces and moments are discussed in section 2.3.

2.3 Nonlinear Force Vector Evaluation

The nonlinear force and moment vector may be combined into a single 6 × 1

vector and can expressed as

{F} =

F

M

 = {FD}+ {FRad}+ {FV }+ {FRes} (2.28)

where F andM represent the force and the moment vector in SMCS respectively.

The force vector can in turn be decomposed into its components - diffraction forces

{FD}, radiation forces {FRad}, viscous forces {FV } and restoring forces {FRes} - as

shown in (2.28). The diffraction force is further composed of the incident Froude

21



Krylov force and the scattering force.

Traditionally, deep water waves for offshore application have always been repre-

sented using Airy’s wave theory which relies on perturbation theory and is based

on small wave slope approximation [47]. Thus theoretically up to the first order of

perturbation, one can calculate the pressure under a wave only up to the mean water

line. However, in many of the dynamic phenomenon observed in reality, the forces

on the structure due to the pressures in the crest play a significant role.

It was Paulling [48] who was among the first to come up with an approximation to

consider the Froude Krylov pressure up to the incident waterline instead of the mean

waterline. The Froude Krylov pressure is calculated in the displaced body position

and integrated over the instantaneous wetted surface under the incident wave while

scattering forces and radiation forces are computed in the undisplaced position using

linear hydrodynamic method. Note however that in this approach Paulling [48] still

calculates the scattering forces and radiation forces using a linear frequency domain

approach. Thus this method of force and moment calculation is not consistent with

the perturbation approach. Although inconsistent with perturbation approach, such

methods have been utilized extensively by the industry for including nonlinearity in

the design and analysis of marine and offshore structures [49, 38, 50, 51].

The nonlinear Froude Krylov forces in this present work are computed using

an approach similar to that adopted by Paulling [48]. The linear scattering forces

and radiation forces in the present work are obtained from a Green function based

frequency domain program developed by Guha [52] and later extended by Somayajula

et al. [42].
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2.3.1 Diffraction Forces and Moments

The diffraction force is composed of the incident Froude-Krylov component and

the scattering component. Each component of the 6×1 diffraction force vector {FD}

can be expressed as the corresponding sum of components of incident force vector

{FI} and scattering force vector {FS} as shown in (2.29).

FDj
= FIj + FSj

for j = 1, 2, ..., 6 (2.29)

Incident Forces and Moments: In linear theory, the Froude-Krylov forces are

obtained by integrating the linear dynamic pressure p over the linearized wetted

surface area up to the calm water level z = 0 denoted by SB0 . In this work our

aim is to develop a time domain simulation tool for the analysis of parametric roll

of container ships in long crested irregular seas. With that in focus, we consider

only long crested unidirectional waves. The irregular wave elevation η incident at a

counter clockwise angle β to the positive x-axis of the SMCS may be expressed as a

superposition of regular waves as shown in

η(t, x, y) =
N∑
i=1

ai cos(ki(x cos(β) + y sin(β))− ωit+ ϵi) (2.30)

where

ai is the amplitude of the i-th wave component

ωi is the encounter frequency of the i-th wave component

ki is the wave number of the i-th wave component

The linear incident Froude Krylov pressure for the wave elevation η(t, x, y) is
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given by (2.31) where the incident wave potential ϕI(t, x, y, z) is given by (2.32).

p(t, x, y, z) = −ρ∂ϕI

∂t
(t, x, y, z) for z ≤ 0 (2.31)

ϕI(t, x, y) =
N∑
i=1

aig

ωi

ekiz sin(ki(x cos(β) + y sin(β))− ωit+ ϵi) (2.32)

The corresponding linear Froude Krylov force and moment are given by (2.33)

and (2.34) respectively.

F I =

∫
SB0

p.ndS (2.33)

M I =

∫
SB0

p.(x× n)dS (2.34)

where n is the normal vector pointing out of the fluid domain and x is the

position vector of a point on SB0 in SMCS and at any instantaneous time is given

by rearranging (2.1).

In a time domain simulation, the instantaneous position and orientation of the

vessel is known and hence the integrals in (2.33) and (2.34) can be performed over

the instantaneous wetted surface area under the incident wave SB instead of the

mean wetted surface area SB0 . Since linear theory does not provide an expression

for pressure on the first order wetted surface area SB − SB0 , Wheeler stretching [53]

is used to scale the dynamic pressure at calm water level z = 0 to the instantaneous
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waterline z = η(t, x, y).

p(t, x, y, z) = −ρ∂ϕI

∂t
(t, x, y, z − η) for z ≤ η(t, x, y) (2.35)

= −
N∑
i=1

aige
ki(z−η) sin(ki(x cos(β) + y sin(β))− ωit+ ϵi) (2.36)

The nonlinear Froude Krylov force is evaluated by substituting (2.35) into (2.37)

and (2.38) where the integration is now performed over the instantaneous wetted

surface area under the incident waterline SB.

F I(t) =

∫
SB

p(t, x, y, z).ndS (2.37)

M I(t) =

∫
SB

p(t, x, y, z).(x× n)dS (2.38)

Scattering Forces and Moments: The scattering component is evaluated from

the linear frequency domain results as shown below.

FSj
(t) = F−1

[
FSj

(ω)× F [η(t)]
]

(2.39)

where F [ ] and F−1 [ ] represent the Fourier and inverse Fourier transforms of

arguments and FSj
(ω) represents the wave force RAO for jth mode of motion obtained

from a standard frequency domain program [31].

Numerically, the complex discrete wave amplitudes generated from spectrum

specified as input (or from a Fast Fourier Transform of wave profile in case of an

user specified wave profile) are multiplied with the corresponding scattering wave

force RAO from the frequency domain and an inverse Fourier transform of the re-

sulting vector gives the scattering force/moment in the time domain.
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2.3.2 Radiation Forces and Moments:

Similar to the scattering force, the radiation force vector is also computed from

the frequency domain results. For a single wave excitation frequency ω, the radiation

force can be expressed as shown in (2.40).

{FRad} = −[A(ω)]{ξ̈} − [B(ω)]{ξ̇} (2.40)

where [A(ω)] and [B(ω)] are the 6 × 6 frequency dependent added mass and

radiation damping matrices and {ξ} = [ξ1 ξ2 ξ3 ξ4 ξ5 ξ6]
T is a 6×1 vector containing

3 translational and 3 rotational components as defined in section 2.2. However,

when the excitation consists of multiple frequency components (irregular waves), the

radiation force is expressed in terms of a convolution integral [54, 55] as shown below.

{FRad} = −[A(∞)]{ξ̈} − [B(∞)]{ξ̇} −
∫ t

−∞
[K(t− τ)]{ξ̇(τ)}dτ (2.41)

= −[A(∞)]{ξ̈} − [B(∞)]{ξ̇} −
∫ ∞

0

[K(τ)]{ξ̇(t− τ)}dτ (2.42)

where

[A(∞)] and [B(∞)] are the 6× 6 infinite frequency added mass and radiation

damping matrices

[K(τ)] is the 6 × 6 matrix of retardation functions which are related to the

frequency dependent radiation damping as shown in (2.43).

[K(τ)] =
2

π

∫ ∞

0

[B(ω)−B(∞)] cos(ωτ)dω (2.43)
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The corresponding inverse relations are given by (2.44) and (2.45).

[B(ω)] = [B(∞)] +

∫ ∞

0

[K(τ)] cos(ωτ)dτ (2.44)

[A(ω)] = [A(∞)]− 1

ω

∫ ∞

0

[K(τ)] sin(ωτ)dτ (2.45)

These expressions are well established in theory and details of the derivation can

be found in appendix A. For more in-depth discussion the reader is referred to the

works of Cummins [54] and Ogilvie [55]. In zero speed case, the infinite frequency

damping B(∞) → 0 and the relations between the damping and retardation function

reduce to

[K(τ)] =
2

π

∫ ∞

0

[B(ω)] cos(ωτ)dω (2.46)

[B(ω)] =

∫ ∞

0

[K(τ)] cos(ωτ)dτ (2.47)

In case of non-zero forward speed, (2.43) is replaced by (2.48)

[K(τ)] =
2

π

∫ ∞

0

[B(ωe)−B(∞)] cos(ωeτ)dωe (2.48)

where ωe is the encounter frequency corresponding to the wave frequency ω and

is given by

ωe = ω − ω2U

g
cos(β) (2.49)

The added mass and radiation damping denote the forces and moments acting

on a body on account of forced harmonic motion in calm water. Therefore in zero

speed case, these quantities are independent of wave direction. However for non-zero
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forward speed, due to dependence of encounter frequency on wave direction, the

added mass and radiation damping are also functions of wave direction. The roll

radiation damping of Pram hull at different wave headings for 8 knots forward speed

is shown in Figure 2.4.

Tail Extension Although the theoretical upper limit for the integral in (2.48) is

∞, in practice the radiation damping is calculated only at a few discreetly spaced

frequencies. The integral can be numerically computed only up to the maximum

finite frequency for which the radiation damping is calculated using the frequency

domain panel method code. This introduces a significant error in the computed im-

pulse response function. In order to improve the accuracy, Greenhow [56] suggested

that a tail approximation with two decay rates (Aω−2
e + Bω−4

e ) be used while com-

puting the impulse response functions. However a later study by Perez and Fossen

[57] concluded that a tail proportional to ω−2
e was sufficiently accurate and has been
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followed in this work.

Assuming that the maximum encounter frequency at which the radiation damping

has been calculated by potential theory to be ωe,max, the impulse response function

can be expressed as a sum of two integrals as shown below.

[K(τ)] =
2

π

∫ ωe,max

0

[B(ωe)−B(∞)] cos(ωeτ)dωe

+
2

π

∫ ∞

ωe,max

[B(ωe)−B(∞)] cos(ωeτ)dωe (2.50)

Now for ωe in the range [ωe,max,∞) [B(ωe) − B(∞)] can be approximated by a

geometrically decaying tail given by

[B(ωe)−B(∞)] = Pω−2
e for ωe ∈ [ωe,max,∞) (2.51)

The coefficient P is obtained by ensuring the continuity at ωe = ωe,max and is

given by P = ω2
e,max[B(ωe,max) − B(∞)]. Thus the integrand in the second integral

in (2.50) can be replaced by (2.51). The integration over the tail is given by (2.52)

where Si( ) denotes the sine integral function.

2

π

∫ ∞

ωe,max

[B(ωe)−B(∞)] cos(ωeτ)dωe

=
2

π

∫ ∞

ωe,max

Pω−2
e cos(ωeτ)dωe

= −2P

π

[
τSi (ωeτ) +

cos(ωeτ)

ωe

]∞
ωe,max

=
2P

π

[
τ
(
Si (ωe,maxτ)−

π

2

)
+

cos(ωe,maxτ)

ωe,max

]
(2.52)

The expression for evaluating the impulse response function when the radiation

damping is calculated up to maximum discreet encounter frequency ωe,max is given
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by (2.53).

[K(τ)] =
2

π

∫ ωe,max

0

[B(ωe)−B(∞)] cos(ωeτ)dωe +
2

π
ω2
e,max[B(ωe,max)−B(∞)]

×
[
τ
(
Si (ωe,maxτ)−

π

2

)
+

cos(ωe,maxτ)

ωe,max

]
(2.53)

Figure 2.5 shows the retardation function K44(τ) for the Pram hull form for a

forward speed case of 8 knots and incident wave direction of 1800. As seen from

(2.44), it is possible to back calculate the frequency dependent radiation damping

from the retardation function to verify the validity of the transform. Figure 2.6

shows the comparison of the frequency domain roll radiation damping B44 with that

calculated from the retardation function using (2.44). Figure 2.5 and Figure 2.6

demonstrate the equality of the radiation damping in the frequency domain to the

retardation function in the time domain.
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2.3.3 Restoring Forces and Moments

Similar to the Froude Krylov forces, the hydrostatic restoring forces and moments

on the body are calculated over the exact instantaneous wetted surface area under

the incident waterline and follow the same procedure as discussed in subsection 2.3.1.

Note that the static forces which include the hydrostatic and gravitational forces on

the body are considered in calculation of the restoring forces and moments. The

expression for the hydrostatic pressure in calm water is given by

p = −ρgz for z ≤ 0 (2.54)

However, when computing dynamic pressure in waves up to the incident waterline,

it is also important to consider the static pressure up to the same waterline. This
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means that the hydrostatic pressure is given by

p = −ρgz for z ≤ η(t, x, y) (2.55)

This means that the hydrostatic pressure inside the crest of a wave is negative.

However, this condition is required to satisfy the dynamic free surface boundary

condition that the pressure on the wave crest z = η(t, x, y) is equal to the atmospheric

pressure. The corresponding nonlinear hydrostatic force and moment are given by

F =

∫
SB

−ρgz.ndS +W (2.56)

M =

∫
SB

−ρgz.(x× n)dS + xG ×W (2.57)

where W = −mgk̂ represents weight vector of the rigid body. Note that the

integral is specified over SB which represents the instantaneous surface area under

incident waterline.

2.3.4 Viscous Forces and Moments

The importance of viscous forces in any physical phenomenon is assessed by value

of the Reynolds number Rn = UL
ν

which is the ratio of inertial to viscous forces. In

the case of fluid structure interaction of ships and large offshore structures, the

Reynolds number is very large O(108 − 109) owing to the large characteristic length

L ≈ 100 − 200 m and low kinematic viscosity of water ν ≈ 10−6 m2/s. This

indicates that the contribution of the viscous forces and moments is insignificant to

the seakeeping behavior.

Historically it has been observed from both simulations and experiments that

for common ship shaped structures the roll mode of motion has very low radiation
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damping at the roll natural frequency. For example consider the Pram hull form

described in Table 2.1 and shown in Figure 2.1. This hull has a natural period of

T = 22.78 s which corresponds to a natural frequency of ωn = 2π
T

≈ 0.276 rad/s.

It can be seen from Figure 2.6 that the radiation damping is extremely low at the

natural frequency. This implies that the significant damping in the roll mode of

motion at the resonant frequency is due to viscous effects. Thus, in order to predict

the amplitude of motion at the resonance frequency it is important to include the

effect of viscous damping.

Although many researchers have investigated the topic of ship roll damping since

Froude’s investigations [22], it was the Japanese as far back as the 1950s and even

before that investigated the various aspects of ship roll damping in a systematic

and detailed manner [58, 59, 60, 61]. For a more complete literature review on the

subject of roll damping please refer to Falzarano et al. [10]. The empirical damping

model suggested by Japanese researchers [62, 63] has become the de facto industry

standard for estimating the roll damping of a ship shaped structure and is detailed

below.

It is accepted that the roll damping is in general nonlinear and involves both

linear and nonlinear quadratic and possibly cubic terms [64]. However for practi-

cal estimation either from experiments or empirical methods, the damping may be

characterized by an effective linear damping which involves equivalent linearization.

For a regular wave case, the equivalent linearized damping is calculated by equat-

ing the energy dissipated due to the nonlinear damping. For a ship subjected to

regular beam waves of frequency ω and experiencing a roll amplitude of R0 the

equivalent linearized damping Beq can be related to the actual linear (B1) and non-
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linear (quadratic coefficient B2 and cubic coefficient B3) coefficients as shown below

Beq = B1 +
8

3π
ωR0B2 +

3

4
ω2R2

0B3 (2.58)

In case of random excitation, a stochastic linearization procedure originally de-

scribed by Kaplan [65] is employed. The resulting equivalent linearized damping

is obtained by minimizing the error between the actual and the linearized system

where both the input and output processes are assumed to be Gaussian processes.

The stochastic linearization for a linear and quadratic model results in the following

relation

Beq = B1 +
8

π
σϕ̇B2 (2.59)

where σϕ̇ is the standard deviation of the angular roll velocity. The stochas-

tic linearization method has also been implemented in the University of Michigan

SHIPMO program [27]. However, in case of parametrically excited roll motion, it is

not possible to predict the standard deviation of the angular roll velocity a priori.

Also it is observed that the parametric roll motion always occurs at the roll natural

frequency which allows for the approximation to use the regular wave linearization

at the roll natural frequency.

In the method described by Ikeda et al. [63] the equivalent linear damping Beq is

assumed to be composed of 5 components: wave damping BW , skin friction damping

BF , eddy damping BE, lift damping BL and bilge keel damping BBK as shown

in (2.60). Although physically these components affect each other, their effect is
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assumed to be negligible in this method [66].

Beq = BW +BF +BE +BL +BBK (2.60)

In general it is difficult to estimate the individual components of the effective

damping. However, after performing numerous experiments Ikeda et al. [63] and

Himeno [62] came up with empirical relations for separately estimating each of the

components. The empirical formulations for each of the components are described

below. The same non-dimensionalization procedure as specified by Ikeda et al. [63]

has been followed where the non-dimensional damping B̂ and non-dimensional fre-

quency ω̂ are given by

B̂ =
B

ρ∇B2

√
2g
B

(2.61)

ω̂ = ω

√
B

2g
(2.62)

Note that in zero forward speed case, ω denotes the wave frequency and for

non-zero forward speed it denotes the encounter wave frequency.

2.3.4.1 Wave Damping

Ikeda et al. [63] specify a formulation for predicting the forward speed wave

damping from the zero speed radiation wave damping. However, the potential flow

theory as described by Salvesen et al. [23] provides a theoretically accurate prediction

of the forward speed added mass and radiation damping as compared to the empirical

formulae specified by Ikeda et al. [63]. The research work detailed here uses the wave
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damping calculated by a panel method code whose details are described by Guha

[31].

Figure 2.7 shows that the plot of radiation wave damping versus encounter wave

frequency does not change for different Froude numbers. The variation of wave

damping with speed is shown in Figure 2.8. Although for different values of ω̂ the

radiation damping is different, it’s variation is fairly independent of Froude number.

2.3.4.2 Skin Friction Damping

The skin friction drag is caused by the viscous skin friction stress acting on the

hull surface. The empirical expression for skin friction damping coefficient for laminar
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flow was provided by Kato [67] and is shown in (2.63).

Bf0 =
4

3π
ρSre

3R0ωCf (2.63)

Cf = 1.328

√
2πν

3.22re2R0
2ω

(2.64)

re =
1

π

[
(0.887 + 0.145CB)

S

L
− 2OG

]
(2.65)

S = L (1.7D + CBB) (2.66)

where

ρ is the density of the fluid (sea water for full scale ships and fresh water for models)

S is the wetted surface area which is empirically calculated as given by (2.66)

re is the effective bilge radius as given by (2.65)
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R0 is the roll amplitude

ω is the encounter frequency of excitation

Cf is the friction coefficient given by (2.64)

ν is the kinematic viscosity of fluid

CB is the block coefficient of the ship

L is the length of the ship

B is the breadth of the ship

D is the draft of the ship

OG is the distance between the roll center of the ship and the center of gravity

Although the model is subjected to laminar flow owing to its scale, the full scale

ship experiences a turbulent flow and hence (2.63) requires a correction for turbulent

flow which is given by (2.67). The second term is the correction factor to account

for the turbulent flow.

Bf0 = 0.787ρSre
2
√
ων

{
1 + 0.00814

(
re

2R0
2ω

ν

)0.386
}

(2.67)

For the case of roll motion of a ship moving with forward speed U , Schmitke [68]

provided a modification factor as shown in (2.68).

BF = Bf0

(
1 + 4.1

U

ωL

)
(2.68)

The variation of skin friction damping with encounter frequency and forward

speed are shown in Figure 2.9 and Figure 2.10 respectively. It is worth noting that
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Figure 2.9: Skin friction damping of Pram hull for different values of Fn = U√
gL
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the skin friction damping is orders of magnitude smaller than the radiation damping

as is expected due to the large Reynolds number.

2.3.4.3 Lift Damping

When the ship is moving with forward speed U > 0, the hull appendages such as

the rudder, skeg and the propeller shaft bracket act as lifting surfaces and generate

both damping and exciting forces [68]. The damping moment in the roll mode is

particularly significant. Ikeda et al. [63] provide a simple empirical formulation for

calculating the lift component of the roll damping as shown in (2.69).

BL = 0.075ρULD3kN

[
1− 2.8

OG

D
+ 4.667

(
OG

D

)2
]

(2.69)

kN = 2π
D

L
+ κ

(
4.1

B

L
− 0.045

)
(2.70)

κ = 0.0 for CM ≤ 0.92

κ = 0.1 for 0.92 ≤ CM ≤ 0.97 (2.71)

κ = 0.3 for 0.97 ≤ CM ≤ 0.99

It may be noted from the expression in (2.69) that the lift damping coefficient

varies linearly with the speed and is independent of the frequency of roll motion.

This is also demonstrated by the plot of the lift damping in Figure 2.11.

2.3.4.4 Eddy Damping

The eddy damping is caused by the separation of flow and the shedding of vor-

tices around the bottom of the ship. For slender ships, the vortices are shed from

the forward and the aft regions while for a vessel with fuller shape the mid ship re-
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Figure 2.11: Lift damping of Pram hull for different values of Fn = U√
gL

gion contributes significantly to the phenomenon. There are two primary schools of

thought for estimating the eddy damping. The first approach suggested by Ikeda et

al. [69] is based on empirical formulae. The second approach is the vortex tracking

method suggested by Standing [70], Patel and Brown [71] and Braathen and Faltin-

sen [72]. Although the vortex tracking method has a strong theoretical background,

its application is limited to vessels with sharp bilge corner. The relatively good re-

sults achievable for square bilges is not generally achievable for rounded bilges as the

separation point is no longer well defined.

In this work the first method of estimation of eddy damping is utilized. The

empirical formula for estimating the eddy damping is similar to the estimation of

drag force on a cylinder using a drag coefficient. The eddy damping per unit length

for a cross-section is given by (2.72).

BE0

L
=

4

3π
D4ωR0CR (2.72)
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The 3D eddy damping coefficient is obtained by integrating BE0

L
over cross-

sections along the length of the ship. CR is defined as shown in (2.73) where MRE

represents the eddy damping moment.

CR =
MRE

1
2
ρD4Lθ̇|θ̇|

(2.73)

Let H0 and σ represent the half the beam-draft ratio and area coefficient at the

underwater cross-section under consideration.

H0 =
B

2D
(2.74)

σ =
Asec

BD
(2.75)

The eddy damping moment MRE is empirically estimated by

MRE =
1

2
ρLrmax

2D2θ̇|θ̇|CP

×

{(
1− f1

Rb

D

)(
1− OG

D
− f1

Rb

D

)
+ f2

(
H0 − f1

Rb

D

)2
}

(2.76)

where Rb is the bilge radius given by (2.77).

Rb =


2D
√

H0(σ−1)
π−4

for Rb < D,R < B
2

D for H0 ≥ 1, Rb

D
> 1

B
2

for H0 ≤ 1, Rb

D
> H0

(2.77)
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f1 =
1

2
[1 + tanh {20 (σ − 0.7)}] (2.78)

f2 =
1

2
(1− cos (πσ))− 1.5

(
1− e−5(1−σ)

)
sin2 (πσ) (2.79)

The coefficient CP is further given by

CP =
1

2

(
0.87e−γ − 4e−0.187γ + 3

)
(2.80)

γ =

√
πf3

2D
(
1− OG

D

)√
H0

′
σ′

(
rmax +

2M1

H1

√
A1

2 +B1
2

)
(2.81)

where H0
′
= H0D

D−OG
and σ

′
= σD−OG

D−OG
.

f3 = 1 + 4e−1.65×105(1−σ)2 (2.82)

A1 =− 2a3 cos (5ψ) + a1 (1− a3) cos (3ψ)

+
{
(6− 3a1) a3

2 +
(
a1

2 − 3a1
)
a3 + a1

2
}
cos (ψ) (2.83)

B1 =− 2a3 sin (5ψ) + a1 (1− a3) sin (3ψ)

+
{
(6 + 3a1) a3

2 +
(
a1

2 + 3a1
)
a3 + a1

2
}
sin (ψ) (2.84)

H1 =1 + a1
2 + 9a3

2 + 2a1 (1− 3a3) cos (2ψ)− 6a3 cos (4ψ) (2.85)

43



M1 =
B

2 (1 + a1 + a3)
(2.86)

rmax =M1

√
{(1 + a1) sin (ψ)− a3 sin (3ψ)}2 + {(1− a1) cos (ψ) + a3 cos (3ψ)}2

(2.87)

where the coefficients a1 and a3 are the Lewis form parameters [73, 74] corre-

sponding to the shape of the modified cylinder below the roll axis and ψ is given

by

ψ =


ψ1 = 0 for rmax (ψ1) ≥ rmax (ψ2)

ψ2 =
1
2
cos−1

(
a1(1+a3)

4a3

)
for rmax (ψ1) < rmax (ψ2)

(2.88)

In the presence of forward speed, the eddy damping rapidly decreases according

to the empirical formula (2.89).

BE = BE0

[
(0.04ωL/U)2

1 + (0.04ωL/U)2

]
(2.89)

Figure 2.12 and Figure 2.13 show the variation of eddy damping with encounter

frequency and forward speed. It is clear from these plots that the eddy damping

plays an important role in the design and analysis of ship shaped offshore structures

like FPSOs.

2.3.4.5 Bilge Keel Damping

The most common method to introduce more damping in the roll mode is to

attach bilge keels to the hull. The damping due to bilge keels may be separated into
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Figure 2.12: Eddy damping of Pram hull for different values of Fn = U√
gL
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two components: normal pressure damping and hull damping.

BBK = BBKN +BBKH (2.90)

The normal component of the damping per unit length is given by

BBKN

L
=

8

3π
ρrcb

3bBKωR0f
2CD (2.91)

where bBK is the breadth of the bilge keel and rcb is the mean distance from the

roll axis to the bilge keel and is given by

rcb = D

√{
H0 − 0.293

Rb

D

}2

+

{
1− OG

D
− 0.293

Rb

D

}2

(2.92)

f = 1 + 0.3e−160(1−σ) (2.93)

CD = 22.5
bBK

πrcbR0f
+ 2.4 (2.94)

The pressure component of damping per unit length is given by

BBKH

L
=

4

3π
ρrcb

2D2ωR0f
2

{
−
(
−22.5

bBK

πrcbfR0

− 1.2

)
A2 + 1.2B2

}
(2.95)

where

A2 = (m3 +m4)m8 −m7
2 (2.96)

B2 =
m3

2

3 (H0 − 0.215m1)
+

(1−m1)
2 (2m3 −m2)

6 (1− 0.215m1)
+ (m3m5 +m4m6)m1 (2.97)
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m1 =
Rb

D
(2.98)

m2 =
OG

D
(2.99)

m3 = 1−m1 −m2 (2.100)

m4 = H0 −m1 (2.101)

m5 =
0.414H0 + 0.0651m1

2 − (0.382H0 + 0.0106)m1

(H0 − 0.215m1) (1− 0.215m1)
(2.102)

m6 =
0.414H0 + 0.0651m1

2 − (0.382 + 0.0106H0)m1

(H0 − 0.215m1) (1− 0.215m1)
(2.103)

m7 =


S0

D
− 0.25πm1 for S0 > 0.25πRb

0 for S0 ≤ 0.25πRb

(2.104)

m8 =


m7+0.414m1 for S0 > 0.25πRb

m7 +m1

√
2
(
1− cos

(
S0

Rb

))
for S0 ≤ 0.25πRb

(2.105)
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where S0 is the constant pressure distribution length given by

S0 = 0.3πfrcbR0 + 1.95bBK (2.106)

The three dimensional bilge keel damping is obtained by integrating the normal

and hull components of damping over the length of the bilge keel. The details of the

bilge keel of the Pram hull are listed in Table 2.2.

Table 2.2: Details of the Pram hull bilge keels

Particulars Value

Length (m) 76.53
Breadth (m) 0.40
Aft end from Midship (m) -37.265
Forward end from Midship (m) 39.265

It is observed from (2.91) and (2.95) that the bilge keel damping does not depend

on the speed U and hence is invariant to changes in speed as shown in Figure 2.14.

However, it does depend on the encounter frequency of oscillation ω. Higher fre-

quency oscillations results in a larger relative velocity of water across the bilge keels

which increases the damping. This effect is also illustrated in Figure 2.14.

2.3.4.6 Effective Linear Damping

Summing each of the components of roll damping results in the effective linear

damping as shown in (2.60). The components and effective linear damping for ω̂ =

0.5 are shown in Figure 2.15. It can be seen that in the case of a ship moving with

moderate forward speed, the contribution due to eddy and skin friction damping is

negligible. The main contribution to roll damping is due to lift forces followed by
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Figure 2.14: Bilge keel damping of Pram hull for different values of ω̂

wave and bilge keel damping.

The variation of effective damping with frequency for both zero and forward speed

are illustrated in Figure 2.16 and Figure 2.17 respectively. The non-dimensional roll

natural frequency ω̂n is given by (2.107).

ω̂n =
2π

Tn

√
B

2g
= 0.3939 ≈ 0.4 for Tn = 22.78 s (2.107)

From Figure 2.16 and Figure 2.17 it can be seen that the damping at natural

frequency (ω̂n ≈ 0.4) even after including the viscous effects is very small. Although

the empirical method described above provides a frequency dependent damping, it is

accepted practice to evaluate the viscous components at only the natural frequency.

This is a reasonable assumption since the roll motion is mostly concentrated around

the natural frequency.
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Figure 2.15: Effective linear damping and its components for Pram hull (ω̂ = 0.5)
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Figure 2.16: Effective linear damping for Pram hull moving with zero speed (Fn = 0)

50



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
Effective Linear Damping and Components

B

ρ
∇
B

2

√
2
g B

ω
√

B
2g

 

 

Skin Friction
Eddy
Lift
Bilge Keel
Wave
Effective

Figure 2.17: Effective linear damping for Pram hull moving with forward speed
(Fn = 0.1015)

2.4 Integration Scheme

The equations of motion derived in (2.26) and (2.27) can be recast into the form

[Ma]{v̇} = {f} (2.108)

where v =

 ξ̇

α̇

 = {ξ̇1 ξ̇2 ξ̇3 ξ̇4 ξ̇5 ξ̇6}T is the generalized velocity vector and

{f} is the vector formed by moving the terms of left hand side of (2.26) and (2.27)

independent of acceleration to the right hand side in (2.108). The complete expres-

sions for Ma and f have been derived in appendix B. Eqn. (2.108) is solved for the

generalized velocities and displacements as follows.

w12×1 =

∫
t

h12×1(t,w)dt (2.109)
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where w = {vT ξ1 ξ2 ξ3 ξ4 ξ5 ξ6}T and h12×1(t,w) is given by

h =

Ma6×6 06×6

06×6 I6×6


−1

×

f 6×1

v6×1

 (2.110)

It is important to note that the matrix [Ma] varies with time as is shown in

appendix B. Thus the matrix inversion in (2.110) needs to be computed every time

step. Eqn. (2.109) can be solved by any standard numerical integration technique.

Some of the popular integration schemes are Adam-Bashforth predictor corrector

scheme [38] and the Runge Kutta Methods [34]. In this work the 4th order Runge-

Kutta method has been employed to integrate (2.109) as shown in (2.111).

w(tn+1) = w(tn) +
h

6
(k1 + 2k2 + 2k3 + k4) (2.111)

tn+1 = tn + h (2.112)

where h denotes the time step and k1, k2, k3 and k4 are given by

k1 = h (tn,w(tn)) (2.113)

k2 = h

(
tn +

h

2
,w(tn) +

hk1

2

)
(2.114)

k3 = h

(
tn +

h

2
,w(tn) +

hk2

2

)
(2.115)

k4 = h (tn + h,w(tn) + hk3) (2.116)

2.5 Simulation of Parametric Roll

In this section, the numerical tool described in the above sections is utilized

to simulate the parametric roll of APL China (Figure 2.1) in irregular head seas.

For this purpose, a Bretschneider wave elevation spectrum has been chosen. The
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Figure 2.18: Bretschneider spectrum of wave elevation

mathematical form of the spectrum is shown in (2.117). Figure 2.18 shows the plot

of Bretschneider spectrum for parameters Hs = 10 m and Tp = 13 s.

S(ω) =
5TpH

2
s

32π

(
2π

ωTp

)5

e
− 5

4

(
2π
ωTp

)4

(2.117)

For a ship moving with forward speed U , the apparent frequency of encounter

of waves ωe as perceived by an observer aboard the ship is different from the actual

frequency of the waves ω. The two frequencies can be related to each other by

Doppler’s theory and is shown in (2.118) where β is the wave direction measured

anti-clockwise from the positive x-axis of GCS.

ωe = ω − kU cos β (2.118)

As the problem of parametric roll mostly occurs in deep water, the wave number k

can be expressed in terms of the wave frequency ω by using the deep water dispersion
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relation (ω2 = gk).

ωe = ω − ω2

g
U cos β (2.119)

The effect of encounter frequency also changes the observed spectrum of the sea.

However, the energy under both the original wave spectrum and the encounter wave

spectrum must be the same which leads to the following expression for encounter

spectrum.

Se(ωe)|dωe| = S(ω)|dω| (2.120)

Se(ωe) = S(ω)

∣∣∣∣ dωdωe

∣∣∣∣ = S(ω)∣∣∣1− 2U cosβ
g

ω
∣∣∣ (2.121)

For obtaining a wave realization the encounter spectrum Se(ωe) is discretized into

N = Tmax

2dt
points where Tmax is the simulation time and dt is the discrete time step.

The discrete frequency step is given by ∆ωn = 2π
Tmax

. The irregular sea is obtained

by linear superposition of N harmonic components as shown below.

η(t) =
N∑

n=1

an cos(kn(x cos β + y sin β) + ωe,nt+ ϵn) (2.122)

where

an =
√

2S(ωn)∆ωn is the amplitude of the nth harmonic component

ωe,n and kn are the encounter frequency and the wave number of the nth harmonic

component respectively

ϵn is the phase of the nth harmonic component and is realized from a uniform

random variable varying in the range [0 2π]
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This method of obtaining the wave elevation is known as the random phase

method. The wave elevation described by (2.122) is only approximately Gaussian

for a finite N and approaches a Gaussian process only in the limit N → ∞ [75].

Based on this asymptotic convergence, Tucker et. al. [76] have argued that simu-

lating wave elevation time series of finite length (finite N) either for the purpose of

model testing or numerical simulations using the random phase method is inaccu-

rate. In particular, Tucker et. al. [76] argued that the wave group statistics estimated

from time histories generated by random phase method are not representative of a

true zero mean Gaussian wave elevation process. In order to correct this inaccuracy

Tucker et. al. suggested an alternate method known as the random Fourier coeffi-

cient method where the amplitude of harmonic components an are obtained from a

Rayleigh distribution instead of the deterministic approach adopted by the random

phase method. While there were disagreements about the idea that the random

phase method results in large errors [77], a later numerical investigation by Elgar et.

al. [78] demonstrated that when sufficiently large number of Fourier components are

used to discretize the spectrum there is no statistically significant difference between

the two methods. While the random Fourier coefficient method is the theoretically

accurate approach to simulate a Gaussian process, the random phase method with

enough number of components is statistically indistinguishable with the random

Fourier coefficient method. Further, with the random phase method, certain char-

acteristics such as the peak period of the spectrum are fixed deterministically while

in the random Fourier coefficient technique these are liable to change with different

realizations. In this work the random phase method is chosen to simulate the wave

time histories in irregular seas. However adequate caution is taken to ensure that

the number of spectral components used to simulate the wave elevation is sufficiently

large (N ≈ 20000 components for a 3-hour realization).
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Figure 2.19: Wave realization from a Bretschneider spectrum with Hs = 10 m,
Tp = 13 s and β = 1800

A 3-hour sample realization from a Bretschneider spectrum shown in Figure 2.18

using the method described above is shown in Figure 2.19. The corresponding roll

motion time series calculated by nonlinear time domain simulation is shown in Fig-

ure 2.20.

2.5.1 Comparison with Linear Theory

The results from the time domain simulation are compared against the linear

theory results obtained by a frequency domain program. The wave elevation com-

parison is shown in Figure 2.21a to demonstrate that the two programs use the

same input wave elevation. The comparisons of heave, roll and pitch motions are

shown in Figure 2.21b, Figure 2.21c and Figure 2.21d respectively. In all of the

comparison plots, the legend “SIMDYN” corresponds to the nonlinear time domain

simulation while the legend “MDLHYDROD” corresponds to the linear frequency

domain results. Note that although the simulation has been performed for the entire

3-hour simulation time, only the first 500 seconds are shown in the comparisons to
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Figure 2.20: Parametric roll of Pram hull subjected to a Bretschneider spectrum
with Hs = 10 m, Tp = 13 s and β = 1800

help visualize the decay of transient motion and the approach to the steady state

solution.

2.5.2 Ramp Time

The time domain simulation, in general, requires a smooth ramp up of the excita-

tion forces to avoid large transient behavior. In the current simulation a ramp time

of 100 seconds has been utilized. Thus the heave and pitch motions in Figure 2.21b

and Figure 2.21d are not in agreement in the ramp zone (100 seconds) but approach

the steady state solution beyond the ramp time.

2.5.3 Roll Motion

It can be seen that the nonlinear heave and the pitch motions do not significantly

deviate from the linear theory even when the ship is undergoing severe parametric

roll. This demonstrates that the parametric roll motion has negligible effect on the

heave and pitch motions. This is consistent with the conclusions of Belenky et al.
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Figure 2.21: Comparison between time domain simulation tool SIMDYN and fre-
quency domain tool MDLHYDROD

[79] who performed multiple time domain simulations to assess the ergodicity of

seakeeping motions while undergoing severe parametric resonance.

Notice however that this does not imply that the roll motion is independent of

heave and pitch motions. The heave and pitch motions change the underwater hull

form considerably and have a strong influence on parametric roll amplitude. More

details on this are discussed in chapter 3.
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2.6 Comparison with Experiments

In addition to simulating parametric roll, it is important to know that the sim-

ulations are accurate. The best method to ascertain accuracy is to compare the

simulations against experimental data. In this section the numerical simulation tool

is compared against the experimental data published by Silva et al. [80]. Silva et al.

[80] performed experiments on Pram hull in both regular and irregular head seas.

2.6.1 Experimental and Numerical Simulation Setup

These experiments were performed in Canal de Experiências Hidrodinâmicas de

El Pardo (CEHIPAR), Spain as a part of HYDROLAB III project [80]. The towing

tank has a length of 150 meters, width of 30 meters, and a depth of 5 m. It is equipped

with a flap type wave maker and an overhead wing carriage. A 1:65 scaled Pram hull

model was used for performing parametric rolling tests. The model was held fixed

in its longitudinal and transverse position by means of two actuators (combination

of dynamometer and a heaving rod). The aft actuator was clamped to the carriage

so that it remained vertical at all times. The forward heaving rod was attached

to the carriage through a hinge connection. This allowed the model to heave, roll

and pitch freely about its natural position while restricting it in surge, sway and

yaw modes of motion. All the motions are output about the origin located at the

midship, waterline and centerline of the ship. For all tests the model was towed at a

full scale speed of 8 knots.

The displacement and the metacentric height in the full scale were specified as

∆ = ρ∇ = 76056 tonnes and GM = 1.973 meters respectively. The natural period

has been mentioned as Tn = 22.78 seconds. Based on these values the roll radius of
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Table 2.3: Comparison of regular wave parametric roll tests

Test λ/L Height Period Speed Roll Angle

H T U Expt. [80] SIMDYN
Expt. Regular
Waves Waves

(-) (-) (m) (sec) (knots) (deg) (deg) (deg)

5 0.8 6.0 11.59 8.0 31.0 31.2 30.2
6 1.0 6.0 12.95 8.0 23.2 24.8 23.9
7 1.2 6.0 14.19 8.0 2.0 0.1 0.2
8 1.4 6.0 15.33 8.0 0.5 0.1 0.3
9 0.8 8.0 11.59 8.0 32.8 37.1 39.5
10 1.0 8.0 12.95 8.0 25.0 33.9 24.5
11 1.2 8.0 14.19 8.0 1.7 10.6 5.8
12 1.4 8.0 15.33 8.0 0.8 0.2 0.1
13 0.8 10.0 11.59 8.0 35.7 - 41.3
14 1.0 10.0 12.95 8.0 27.3 - 24.0
15 1.2 10.0 14.19 8.0 1.3 - 0.1
16 1.4 10.0 15.33 8.0 0.6 - 0.4

gyration has been evaluated using (2.123).

kxx =

√√√√[∆gT 2
nGM

4π2

]
− A44 (ωn)

∆
= 13.61 m (2.123)

where A44(ωn) is the forward speed roll added moment of inertia about the longi-

tudinal axis through the origin (midship, waterline and centerline) and is calculated

at the encounter frequency of ωn = 2π
Tn

using the frequency domain program MDL-

HYDROD.

2.6.2 Comparison with Experiments

The data of 12 regular wave tests and one irregular wave test in head seas (β =

1800) were available from Silva et al. [80] and were analyzed. The regular wave test
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cases spanned three different wave heights, four different wave periods and one speed

as shown in Table 2.3. For each case two cases of the nonlinear time domain code

(SIMDYN) have been run:

1. SIMDYN simulation has the same input wave elevation as the experimental

test

2. SIMDYN simulation has a regular wave input corresponding to the case

Note that for the case of wave height H = 10 m the experimental wave time

histories were unavailable and only the mean roll amplitude was available. Hence for

the last four cases in Table 2.3, only the regular wave simulation results are available.

The resulting mean of the fully developed roll motion peaks from SIMDYN are

listed in the last two columns of Table 2.3. Figure 2.22 shows the comparison of

the mean amplitudes of parametric roll from regular wave simulations and experi-

ments. The comparison of the roll time series from experiments and SIMDYN runs

(with input of experimental wave elevation) for “Test 5” and “Test 6” are shown in

Figure 2.23 and Figure 2.24 respectively.

The comparison between SIMDYN simulations and experiments for 6 meter wave

height are very accurate both in terms of the roll amplitude prediction as well as the

detuning effect at higher periods. However, the error in roll amplitude predictions

from SIMDYN and the experiments for 8 meter and 10 meter wave heights are

slightly higher. Also in the 8 meter wave height case for 14.19 second period (Test

11), SIMDYN simulations show a small parametric resonance (tuned response), while

the experiments are fully detuned. This suggests that the damping model is fairly

accurate for the 6 meter wave height case but is slightly incorrect for the 8 meter wave

height scenario. The comparison between SIMDYN simulations and experiments for

the same incident irregular wave are shown in Figure 2.25.
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(a) 6 m wave height
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(b) 8 m wave height
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(c) 10 m wave height

Figure 2.22: Magnification curves for regular wave excitation
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Figure 2.23: Comparison of roll motion between experimental data and SIMDYN
simulation (with input of experimental wave elevation) for Test 5 listed in Table 2.3
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Figure 2.24: Comparison of roll motion between experimental data and SIMDYN
simulation (with input of experimental wave elevation) for Test 6 listed in Table 2.3

63



0 250 500 750 1000 1250 1500
−20
−10

0
10
20

 Wave Elevation

Time in sec

η 
(t

) 
in

 m
et

er
s

0 250 500 750 1000 1250 1500
−60
−30

0
30
60

 SIMDYN Simulation

Time in sec

ξ 4(t
) 

in
 d

eg
re

es

0 250 500 750 1000 1250 1500
−60
−30

0
30
60

 Experiments − Silva (2010)

Time in sec

ξ 4(t
) 

in
 d

eg
re

es

Figure 2.25: Comparison of roll motion between experimental data and SIMDYN
simulation for incident irregular waves

2.6.3 Discussion

The parametric roll is caused by an instability mechanism which for the linear

system results in an unbounded growth in the amplitude of roll motion. It is the

nonlinear damping which bounds the amplitude by dissipating the energy of the

system. This means that the final amplitude of motion is highly sensitive to both

the damping model and the damping coefficients used.

The comparisons for the 6 meter wave height indicate that the empirical damping

model proposed by Ikeda et al. [63] is a sufficiently accurate match to the experi-

ments performed by Silva et al [80]. As the wave height is increased, the damping

predicted by the empirical model remains the same. However, the experiments in-

dicate that the roll amplitude is somewhat less than predicted by simulations. This

indicates that in case of higher incident waves, the damping is slightly increased in

experiments and results in a small divergence from the predicted roll motions. This
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is also demonstrated by the random wave case represented in Figure 2.25 where the

simulations show a higher response than experiments.

The current state of the art methods to predict viscous roll damping include

analyzing free decay tests or the use of the Ikeda et al. [63] method when free

decay tests are unavailable. These observations suggest that the aforementioned

methods might not always be sufficient to represent the reality and there is a need

for a new approach for extracting the damping information from experimental forced

motion time series. A possible avenue would be to investigate the advanced system

identification tools for this problem [81, 82]. Due to the lack of free decay test for

the specified load case and the lack of a new method to estimate viscous damping in

random waves, the research discussed herein continues using the empirical damping

model proposed by Ikeda et al. [63].

2.7 The Stochastic Nature of Parametric Roll

The wave elevation shown in Figure 2.19 is only one of the many possible real-

izations obtained from the spectrum represented in Figure 2.18. Generating a new

set of ϵn for n = 1, 2, ..., N in (2.122) results in a different realization of wave eleva-

tion with the same energy distribution as depicted by the spectrum in Figure 2.18.

The wave elevation ηt = η(t) at any given time t can be considered to be a random

quantity which depends on the realization chosen. In statistical terms, the wave

elevation at time t is expressed by a random variable ηt. Expanding from this defini-

tion, the wave elevation process can be represented as a combination of such random

variables {ηt1 , ηt2 , ηt3 , ...} where ηtn is a random variable denoting the wave elevation

at time t = tn. This combination of discreet number of random variables is known

as a stochastic process and can be expressed in a compact notation as {ηt} where

t ∈ [0,∞).
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Any stationary stochastic process is said to be ergodic if its statistical properties

can be accurately obtained from a single time series [83, 84]. This means that the time

average of a process or a function of the process over long periods of time converges to

the corresponding ensemble averages. Thus the ensemble averages of a process (such

as mean or auto-covariance function) can be approximated by the corresponding

temporal averages. If {Xt} represents a stochastic process, then its mean and auto-

covariance functions may be expressed as shown in (2.124) and (2.125).

E[Xt] =

∫ ∞

−∞
xf1(x)dx (2.124)

R(t, s) = E[XtXs] =

∫ ∞

−∞

∫ ∞

−∞
x1x2f2(x1, x2)dx1dx2 (2.125)

where f1(x) and f2(x1, x2) represent the probability density function and the joint

probability density function of the stochastic process {Xt}. If {Xt} is ergodic then

the mean and auto-covariance functions can be expressed in terms of their temporal

averages as shown in (2.126) and (2.127).

lim
T→∞

1

2T

∫ T

−T

x(t)dt = E[Xt] (2.126)

lim
T→∞

1

2T

∫ T

−T

x(u)x(u+ τ)du = R(τ) (2.127)

where x(t) represents a single realization of {Xt} for t ∈ [0,∞). It is well known

from linear theory that the linear motions of ship are ergodic since the input wave

elevation is an ergodic process. However, this relation is not true in case of phe-
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nomenon such as parametric roll which strongly depend on nonlinear damping and

nonlinear stiffness.

Theoretically to prove or to disprove that a process is ergodic, one needs infinite

number of realizations each of which are infinitely long. Since getting one or multiple

infinitely long realizations is practically not possible, practical investigations are

usually limited to a finite number of finitely long realizations. Thus the study of

ergodic nature from finitely long time histories only provides us a measure of the

practical ergodicity [83, 79].

2.7.1 Ergodicity of Wave Elevation and Motions

In order to analyze the stochastic characteristics of the simulated data, 30 3-hour

simulations have been performed with each simulation using a different realization

of the wave elevation from a Bretschneider spectrum with Hs = 10 m and Tp = 13 s

as shown in Figure 2.18.

Figure 2.26a shows a plot of the auto-covariance of 30 different wave elevations

from the Bretschneider spectrum on the same plot. The auto-covariance is computed

using the temporal average as shown in (2.127). Note that all of the 30 plots coincide

which demonstrates the ergodicity (or stationarity) of the wave elevation. Similar

behavior is also shown by heave and pitch motions as shown in Figure 2.26b and

Figure 2.26c respectively.

Note that the distance between the successive peaks of the auto-covariance func-

tion in Figure 2.26a is around 11 seconds corresponding to the encounter period

associated with the modal period (Tp = 13 s) of the spectrum. The highest energy

in the spectrum is associated with the modal period and is reflected in the auto-

covariance function. However, the heave and pitch auto-covariances as shown in

Figure 2.26b and Figure 2.26c show a periodicity based on the response spectrum

67



of the respective modes which in turn depends both on input spectrum and the

corresponding RAO. On the contrary, due to no direct excitation, the observed roll

motion is entirely due to parametric roll and we would expect oscillation close to the

roll natural frequency of Tn ≈ 23 seconds (see Figure 2.26d).

The roll motion does not exhibit the ergodicity as shown by the heave and pitch

motions. Figure 2.26d shows the plot of auto-covariance of 30 roll time series on the

same plot. It can be seen that the variance in roll motion (indicated by Rξ4ξ4(0))

varies significantly for various input realizations from the same spectrum. However,

a plot of the auto-correlation (normalized auto-covariance) function in Figure 2.26e

shows that the 30 simulations display a correlation-ergodicity. Another important

feature to note is that the roll auto-covariance function decays much more slowly

than the corresponding heave and pitch auto-covariance functions due to the lower

damping (and hence longer memory) in the roll mode.

2.7.2 Probability Distribution

In order to display the degree of non-Gaussian nature of the response, the data

from all the 30 simulations are collected together to generate a normalized histogram

plot which is indicative of the empirical distribution function. Comparison of the

empirical probability density function (pdf) with the normal PDF shows the non-

Gaussian nature of the response. Figure 2.27 and Figure 2.28 show that the heave

and pitch motion continue to follow a Gaussian distribution even in the event of large

parametric roll of up to 35 degrees. However, the roll motion distribution is far from

the Gaussian distribution as shown in Figure 2.29.

Another way to describe a random process is to compute the moments of the

random process. It is well known in theory that the Gaussian distribution only re-

quires the first two moments (mean and variance) to provide a complete probabilistic
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Figure 2.26: Plot of 30 time series each obtained from a different wave realization of
Bretschneider Spectrum with Hs = 10 m and Tp = 13 s
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Figure 2.27: Comparison of heave motion against normal distribution
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Figure 2.28: Comparison of pitch motion against normal distribution
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Figure 2.29: Comparison of roll motion against normal distribution

description of the process. Thus if the data of a time series is ergodic and Gaussian

distributed, the sample mean and sample variance of the time series provide an ac-

curate probabilistic description of the empirical distribution. However, in case of a

non-Gaussian distribution it is much more difficult to get the probabilistic character-

istics of response. One approaches is to fit a known distribution to the data [85, 86]

and then use the fitted distribution to obtain the statistical properties. However,

the theoretically accurate method requires the higher moments up to infinite powers

to be computed. For practical applications, the higher moments are closed using

specific approximations to achieve the probabilistic description of the non-Gaussian

data and is discussed extensively by Su and Falzarano [87].

However, a preliminary check against the normal distribution can be performed

by comparing the 4th central moment - kurtosis. For a normally distributed data

kurtosis, given by (2.128), is always equal to 3. In (2.128) µ is the mean and σ is
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Table 2.4: Combined statistics of 30 3-hour time histories

Time Series Standard Deviation Variance Kurtosis

Value Unit Value Unit Value Unit
Wave Elevation 2.500 m 6.249 m2 2.995 -
Heave Motion 0.977 m 0.954 m2 2.941 -
Roll Motion 13.672 deg 186.915 deg2 2.975 -
Pitch Motion 1.388 deg 1.925 deg2 3.117 -

the standard deviation of the process X.

Kurt[X] = E

[(
X − µ

σ

)4
]

(2.128)

The statistics of the various time series are shown in Table 2.4. The kurtosis for

wave elevation, heave and pitch motion calculated from the 30 3-hour simulations was

found to be 2.9954, 2.9406 and 3.1169 respectively. The kurtosis for the roll motion

was found to be 2.9748 indicating that the tail of the distribution falls off similar to

normal distribution. The central peak of the distribution as seen in Figure 2.29 has

little effect on the kurtosis and hence provides a value similar to normally distributed

data.

2.8 Parametric Excitation of Classic Spar

The phenomenon of parametric excitation is not limited to ships and is also

observed for certain offshore platforms. One of the well known example is the para-

metric excitation of the classic spar in regular waves which was extensively studied

by Haslum [1]. He suggested that when the system is excited by a critical long period

swell the spar can exhibit large heave and pitch motions due to the Mathieu type

instability. Later on Koo et al. [8] undertook a numerical investigation of the effect
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of damping on the phenomenon by including mooring and riser effects and concluded

that although with enough damping the parametric tuning can be avoided, in a re-

alistic scenario there is still significant contribution to the heave and pitch motions

due to this instability, especially in the case of long period swell environments (like

West Africa). A second school of thought was provided by Liu et al. [88] suggesting

that the observed instability was due to second order difference frequency interac-

tion between the surface waves and body motions but was not due to a Mathieu type

instability.

In this section, the nonlinear simulation tool developed in this chapter is applied

to the classic spar problem and the results are compared against the experimental

results provided by Haslum [1]. The detailed investigation of this problem is beyond

the scope of this thesis and this comparison is only shown to demonstrate the ability

of the developed nonlinear simulation tool to be generic and applicable to both ship

shaped and non-ship shaped vessels alike.

2.8.1 Problem Description

Haslum [1] described the instability as a coupled Mathieu phenomenon where

the envelope of the heave motion results in an unstable pitch excitation and the

resulting pitch instability feeds back into coupled system causing amplified resonant

heave motion. The particulars of the classic spar used by Haslum [1] are listed

in Table 2.5. Note that the vertical center of gravity (VCG) listed by Haslum [1]

is −97.25 m which results in the GM not matching the value listed in Table 2.5.

Instead using a value of −105.25 m for VCG from waterline results in the same GM

listed by Haslum [1]. This correction is also confirmed by Dahl [89].
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Table 2.5: Particulars of the classic spar

Particulars Value

Diameter (m) 37.5
Draft (m) 202.5
Radius of Gyration (m) 80
VCG from waterline (m) -105.25
GM (m) 4.4

2.8.2 Comparison with Experiments

This classic spar listed in Table 2.5 is simulated using the nonlinear simulation

tool developed in this chapter. The spar system is subjected to regular waves of

height H = 16.0 m and period T = 22.5 s incident head on with β = 1800. No moon

pool is considered to match the Haslum’s experimental scenario.

The comparison of heave and pitch motions about the center of gravity are shown

in Figure 2.30 and Figure 2.31 respectively which demonstrates the ability of the

nonlinear time domain simulation tool developed to qualitatively simulate the spar

instability. Haslum [1] provides the experimental simulation of the only first 1500

seconds which still exhibits a transient behavior. An experimental simulation of

longer period might have provided a steady state comparison between the simulations

and the model tests.

The simulations seems to be in general agreement with the experiment performed

by Haslum [1] and support his theory of being parametrically excited responses.

Later, Haslum [3] also mentioned that the single column floater (SCF) proposed by

ABB [90, 91] was found to experience severe parametric response during the model

tests. Similar to the classic spar, the SCF has also been investigated using the above

developed time domain program. However, the results of simulation of SCF are not
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Figure 2.30: Heave motion (about the center of gravity) comparison between SIM-
DYN and Haslum [1] for incident head on (β = 1800) regular waves of height
H = 16.0 m and period T = 22.5 s
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Figure 2.31: Pitch motion (about the center of gravity) comparison between SIM-
DYN and Haslum [1] for incident head on (β = 1800) regular waves of height
H = 16.0 m and period T = 22.5 s
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presented here and can be found in [4].

2.9 Conclusion

In this chapter the development of a generic nonlinear time domain simulation

tool has been described. The described tool handles large amplitudes of rotation

using an Euler angle approach with the order of rotation - roll first, pitch second and

yaw third. A nonlinear force vector description has been provided to include various

nonlinearities:

1. Nonlinear Froude-Krylov forces and moments

2. Nonlinear hydrostatic forces and moments

3. Viscous roll damping moment using empirical methods

The developed tool has been applied to simulate the parametric roll of a con-

tainer ship in head waves. The numerical simulation responses in regular and irreg-

ular waves have compared with experiments and have been found to be in general

agreement. Further ergodicity tests have been performed where the data from 30

different simulations of parametric roll in irregular waves have been analyzed to

check the practical ergodicity of the phenomenon. It was found that the parametric

roll is a highly tuned response displaying a strong periodicity in its auto-covariance.

However, the standard deviation of the roll motion in different realizations of the

same sea state are not same demonstrating a non-ergodic behavior. It was further

observed that even in case of severe parametric roll, the heave and the pitch mo-

tions are ergodic and follow a normal distribution. This provides an insight that

parametric roll may be studied as a single degree of freedom as its effect on other

motions is significantly low. However, the vice-versa is not true and the heave and

pitch have significant effects on roll. This leads to the idea that although roll might
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be studied as a single degree of freedom, the coupling effects with other modes must

be incorporated into the model. This forms the central idea of chapter 3 where it is

explored in more detail.
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3. APPROXIMATE SINGLE DEGREE OF FREEDOM (SDOF) MODELS ∗

The time domain simulation approach as described in chapter 2 is the current

state of the art used by the marine and offshore industry to assess the large amplitude

nonlinear motions of ships and offshore platforms in random waves. These simula-

tions are capable of including the effect of various nonlinear forces in calculating the

motions of marine and offshore structures which otherwise cannot be included in a

standard frequency domain analysis (which is limited to linear systems). Although

such time domain methods are robust in analyzing linear and weakly nonlinear sys-

tems, there are limitations when dealing with a strongly nonlinear system (e.g. roll

motion of a ship).

Unlike their linear counterparts, nonlinear systems in general, may exhibit mul-

tiple steady state solutions depending on the initial condition chosen [92]. Each of

these coexisting steady state solutions (known as Poincaré map fixed points in non-

linear dynamics nomenclature) have an associated domain of attraction which is the

set of all initial conditions which when integrated in time converge to that steady

state solution. Thus for the same external forcing, depending on which domain of

attraction the chosen initial condition lies in, the system would exhibit different re-

sponses. Such a characteristic is not observed with linear systems where the system

has a unique steady state response for a given external forcing.

A numerical simulation always starts from an initial condition and integrates

the differential equations with respect to time to obtain a solution to one particu-

lar input (usually the external forcing). For a given input, even after testing out

∗Part of this chapter is reprinted with permission from “A comparative assessment of simplified
models for simulating parametric roll”, 2017. Journal of Offshore Mechanics and Arctic Engineering,
139(2), pp 021103, Copyright 2017 by ASME
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multiple initial conditions with a simulation tool, there is no guarantee that all the

possible steady state solutions have been found. Especially when unstable steady

state solutions exist, it is very tedious to identify them in a time domain simulation

as it requires an accurate guess of the initial condition. Yet another disadvantage

with numerical simulations is that while analyzing dynamics of a system subjected

to random excitation, one needs to simulate motions for multiple input realizations

to obtain accurate statistics of the response. This requires significant time and com-

putational resources. In such cases, it becomes impractical to analyze the nonlinear

system using time domain simulations.

The alternative is to use an analytical method which can quickly show the ex-

istence of multiple solutions of a system without the need to simulate long time

histories. The analytical approach allows for the application of stochastic methods

which are computationally less expensive than predicting the statistical characteris-

tics by performing multiple time domain simulations. It also has the advantage of not

missing certain dynamic characteristics due to the choice of initial condition. The

drawback of analytical methods is that the system must be defined using analytical

functions. This is in contrast to the numerical simulations where only the numerical

value of the function is required even if its analytical form is unknown.

For real world problems, it is hard or even impossible at times to express the

system analytically. In general, several assumptions are required before real problems

can be approximated as an analytical system with manageable number of parameters.

The simplifying assumptions often come at the cost of rendering the model incapable

of capturing the complete dynamics of the system. It is imperative that the right

choice of assumptions be made to simplify the system while ensuring that it is still

qualitatively similar to reality.

This chapter provides a discussion of the various approaches to simplify the prob-
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lem of parametric roll of a ship in irregular head seas and cast it into an approximate

analytical model. These different methods are compared against one another and

the nonlinear simulation tool developed in chapter 2 to demonstrate their relative

accuracy and ability to capture the dynamics of the system. The model, most quali-

tatively similar to the real phenomenon, is then chosen to be the candidate for further

analysis in chapters 4, 5 and 6.

3.1 Literature Review

The parametric roll of ships in head seas is a complex nonlinear phenomenon and

many researchers have approached this problem with simplified models and numeri-

cal simulations. A lot of studies have also adopted a combination of simplified models

and simulation techniques to understand the phenomenon. The earlier investigators

preferred to study this phenomenon only in regular waves. Paulling [93] was one of

the first investigators of this phenomenon who suggested a few simplified approaches.

However, these methods were insufficient to study large amplitudes of motion. Neves

and Rodriguez [94] proposed a coupled model with third order restoring coefficients

and showed that the second order model was insufficient in capturing the dynamics

in regular waves. Analytical expressions for the coefficients in regular waves were

obtained based on the offset data of the ship. Neves and Rodriguez [95] later ex-

tended this method to calculate the new stability boundaries for the Hill’s equation.

However, as the model is improved from the second to the third order, both the

complexity and the number of coefficients to evaluate increases tremendously. There

also is a speculation that such detailed geometrical data might not always be avail-

able [96]. Spyrou et al. [97] suggested analytical and probabilistic techniques to

predict the susceptibility of a hull form to parametric roll in regular waves. How-

ever, these methods were based on the assumption of a Mathieu type instability and
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were not applicable as the mathematical models became more realistic [98]. Moideen

et al. [99] suggested a Hill’s equation approach instead of a Mathieu equation for

modeling the parametric roll in regular waves and developed 3-D stability charts to

predict the roll amplitude in regular waves. The advantage of using Hill’s equation

was to capture the non-harmonic periodic variation of hydrostatic stiffness in regular

waves [100]. More theoretical discussion on the analytical techniques to analyze the

problem of parametric roll in regular waves is provided in appendix D.

While the investigations into regular wave parametric roll continued, many re-

searchers also started investigating the problem in irregular seas. One of the first

ideas was to extend the regular wave models to the irregular waves using the con-

cept of Grim effective wave (GEW) [101]. In this approach the spatial variation of

irregular wave is modeled by an equivalent regular wave obtained by least square

fit in space. Umeda et al. [102] developed a simplified model for irregular waves in

which the roll restoring stiffness was calculated using the GEW concept. The GEW

reduced the problem of calculating roll stiffness over an irregular wave profile to the

calculation of roll stiffness in an equivalent regular wave whose crest/trough was fixed

at midship. The model was quasi-statically balanced on the regular wave to match

the calm water displacement. However, Hashimoto and Umeda [103] found that this

approach did not agree well with experiments, suggesting that an improvement was

needed. Bulian [96] improved upon Umeda’s model by incorporating the Improved

Grim Effective Wave (IGEW) into the roll stiffness. The IGEW allowed the equiva-

lent regular wave to have crest/trough at any point along the length of the hull [104]

and resulted in a better fit of the irregular wave profile. This model also predicted

a better quasi-static equilibrium trim than the original Grim effective wave model.

However, even this improved model only showed a some what reasonable agreement

with the experiments [96]. The SCAPE committee (setup by Japan Society of Naval
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Architects and Ocean Engineers to investigate various methods to estimate the cap-

sizing risk of vessels for incorporation into the new generation stability criteria of

IMO) as a part of its investigation also documented the comparison of the GEW and

IGEW models against experimental results and suggested the use of a vulnerability

criterion and direct assessment for the design against parametric roll [105]. It also

concluded that although the simplified 1-degree of freedom (DOF) model could be

used as an assessment, a complete nonlinear time domain simulation tool would still

be required to quantify the susceptibility in terms of expected roll response.

While the GEW and IGEW were becoming popular, an alternate simplified model

was proposed by Hua et al. [106] which modeled the GM variation in waves using

a Volterra series method. Unlike the earlier approaches, this method included the

actual wave elevation instead of an approximate regular wave fit. This method

was further investigated by Moideen et al. [107] and Somayajula et al. [42, 11]

who progressively included more nonlinearities to the system. The Volterra series

method allows the GM variation to be obtained through frequency domain transfer

functions while including the effect of dynamic heave and pitch of the vessel in

waves. Its advantages include using the exact irregular wave profile instead of using

an equivalent regular wave, and incorporating the effect of dynamic heave and pitch

in the roll restoring moment. However, its drawback is the exclusion of the time

varying cubic restoring stiffness. Somayajula and Falzarano [108] further improved

upon this model to include a constant cubic restoring stiffness in addition to the

time varying linear stiffness to the roll equation. Another key improvement in the

later formulations by Somayajula and Falzarano [11] was the correction of adopting

a time-invariant KG in contrast to the time-varying KG adopted by Hua et. al.

[106].

In this chapter, the method developed by Somayajula and Falzarano [108, 11]
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is extended further. Instead of modeling the GM in waves, a GZ variation model

is developed where stiffness is modeled by a 11th order polynomial each with time

varying coefficients.

3.2 Roll Equation of Motion

For a ship subjected to head on waves, the roll mode of motion may be assumed

to be decoupled from the other modes [109]. The 1-DOF roll equation of motion can

then be expressed as shown in (3.1).

[I44 + A44(∞)]ϕ̈+

∫ t

−∞
K44(t− τ)ϕ̇(τ)dτ +B1ϕ̇+B2ϕ̇|ϕ̇|+ C44(t, ϕ) = 0 (3.1)

where

I44 is the roll mass moment of inertia

A44(∞) is the infinite frequency roll added moment of inertia

K44(τ) is the roll impulse response function (IRF) / roll retardation function

B1 is the linear roll damping coefficient due to viscous effects

B2 is the quadratic roll damping coefficient due to viscous effects

C44(t, ϕ) is the nonlinear instantaneous roll restoring moment including the dynamic

effects due to instantaneous wave elevation and the heave and pitch motions

3.2.1 Roll Restoring Moment

From traditional naval architecture, the roll restoring moment of a statically

balanced ship can be expressed as the product of weightW = ρg∇0 and the restoring

arm GZ where ∇0 is the calm water displacement of the vessel. In case of a static

equilibrium, the moment due to the weight and the restoring moment are equal
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Figure 3.1: Roll restoring moment

and opposite. However, in a dynamic equilibrium as described in (3.1), there are

other forces such as inertial, damping and external forces acting on the system. This

implies that the buoyancy force are no longer equal in magnitude to the weight.

Consider a transverse section of a ship at a distance x from the origin as shown

in Figure 3.1. Let W0L0 be the calm water line and W1L1 be the relative waterline

(including the effects of incident wave, heave and pitch motions) for an instantaneous

roll angle ϕ. It is assumed that the rotation is considered about the longitudinal axis

of the body fixed frame with its origin at O. Due to the change in underwater hull

form, the center of buoyancy shifts from B0 to B. The buoyancy force FB = ρg∇(t, ϕ)

now acts along the line BM . From Figure 3.1 the instantaneous moment about O is
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given by (3.2).

C44(t, ϕ) = FB ×OP −W ×ON

= ρg∇(t, ϕ)OP − ρg∇0ON

= ρg∇0

[
OP

∇(t, ϕ)

∇0

−ON

]
= ρg∇0GZeff(t, ϕ) (3.2)

GZeff =

[
OP

∇(t, ϕ)

∇0

−ON

]
(3.3)

The dynamic righting arm defined by GZeff depends on both instantaneous arm

lengths as well as instantaneous underwater displacement. For convenience we shall

drop the subscript and refer to the dynamic restoring arm as GZ instead of GZeff.

Substituting (3.2) into (3.1) and dividing by [I44 + A44(∞)] leads to (3.4).

ϕ̈+

∫ t

−∞
k44(t− τ)ϕ̇(τ)dτ + b1ϕ̇+ b2ϕ̇|ϕ̇|+ c44GZ(t, ϕ) = 0 (3.4)

where

k44(τ) =
K44(τ)

[I44 + A44(∞)]
b1 =

B1

[I44 + A44(∞)]

b2 =
B2

[I44 + A44(∞)]
c44 =

ρg∇0

[I44 + A44(∞)]

In (3.4), the parameters k44(τ), b1, b2 and c44 are known values. For a complete

analytical description GZ(t, ϕ) needs to be expressed in terms of parameters which

are dependent on the geometry of the hull form.
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Figure 3.2: Separation of Pram hull form into 200 2-D strips; The red shade shows
the instantaneous wetted part of each section at t = 4417s from a 3 hour wave
realized from Bretschneider spectrum with Hs = 5 m and Tp = 13 s

3.3 Exact GZ Variation

Before developing an approximate analytical forms for GZ in irregular wave pro-

file, an exact formulation of GZ in waves is required to verify that the analytical

approximation gives a reasonable estimate. If only regular wave profiles are of inter-

est, GZ in waves can be obtained by utilizing many of the commercially available

hydrostatic calculation software. However, most commercial softwares do not provide

the option to get GZ in an irregular wave profile. This section describes the details

of evaluating GZ in an irregular wave while including the effects of instantaneous

heave and pitch motions.

The input hull form is described by a set of offset data (a table listing the values

of half breadth for a range of longitudinal and vertical distances along the length

and height of the vessel respectively) which is output by most commercially available

hydrostatic calculation software. An example of a 200 section model of Pram hull

form described in Figure 2.1 is shown in Figure 3.2. The origin in this plot is located

at the intersection of midship plane, centerline plane and at the calm waterline. The

red shade indicates the part of each section under an irregular wave (generated by

Bretschneider spectrum with Hs = 5 m and Tp = 13 s) at time t = 4417 s.
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The wave elevation in irregular head seas (β = 1800) can be expressed as a

superposition of linear regular components as shown in (3.5) where am, km, ωm and

ϵm represent the amplitude, wave number, encounter frequency and phase of the mth

regular wave component.

η(t, x) =
1

2

N∑
m=1

am
[
ei(kmx+ωmt+ϵm) + e−i(kmx+ωmt+ϵm)

]
(3.5)

Assuming that ξ3(ωm) and ξ5(ωm) are the heave and pitch response amplitude

operators (RAO) at encounter frequency ωm, the corresponding relative wave eleva-

tion incorporating the dynamic heave and pitch of the vessel can be expressed as

shown in (3.6).

r(t, x) =
1

2

N∑
m=1

am
[
ν(ωm, x)e

i(ωmt+ϵm) + ν̄(ωm, x)e
−i(ωmt+ϵm)

]
(3.6)

where (̄ ) denotes the complex conjugate and ν(x, ωm) and ν̄(x, ωm) are given by

ν(x, ωm) =
[
eikmx − ξ3(ωm) + xξ5(ωm)

]
(3.7)

ν̄(x, ωm) =
[
e−ikmx − ξ̄3(ωm) + xξ̄5(ωm)

]
(3.8)

The local draft at each section can be obtained by adding the mean draft of the

ship to the relative waterline and is shown below

Tr(t, x) = T (x) + r(t, x) (3.9)

The mean draft T (x) is a constant for a vessel floating at an even keel and varies

linearly for a ship with a static trim angle. The local draft at each section under the

irregular relative waterline is shown in Figure 3.2. Now the problem of estimating
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Figure 3.3: Comparison of roll motion between “SIMDYN” and “exact GZ model”
of Pram hull form in a 3-hour realization of Bretschneider spectrum with Hs = 5 m
and Tp = 13 s

GZ of the hull is reduced to finding the GZ
2D
(x) of the each of the 2-D sections.

The GZ is estimated from GZ
2D
(x) by

GZ =
1

∇

∫
L

GZ
2D
(x)A(x)dx (3.10)

where A(x) and ∇ are the sectional area at section x and the displacement un-

der the relative waterline respectively in the upright condition (roll angle ϕ = 0).

GZ
2D
(x) is calculated in a similar fashion as described in (3.3) and is detailed fur-

ther in appendix C. Substituting the GZ in (3.4) at every time step, the resulting

differential equation can be solved for roll motion. A comparison of the simulated

roll motion using the exact GZ model and SIMDYN (developed in chapter 2) is

shown in Figure 3.3. While the time history demonstrates a difference between the

two models a more detailed comparison is given in section 3.7.
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3.4 Volterra Series Method for GM Variation

The effective restoring arm GZ(t, ϕ) in waves depends on the incident wave profile

and the instantaneous position of the body. Due to the symmetry of a ship about the

centerline, the restoring arm GZ(t, ϕ) in waves must be an odd function of the roll

angle ϕ. It is assumed that it can be expressed as an odd polynomial function of ϕ

with time varying coefficients as shown in (3.11). However, in the method described

in this section only K1 is assumed to be time varying and the rest (K3, K5, K7, ...)

are assumed to be time invariant resulting in (3.12).

GZ(t, ϕ) = K1(t)ϕ+K3(t)ϕ
3 +K5(t)ϕ

5 + ... (3.11)

GZ(t, ϕ) = K1(t)ϕ+K3ϕ
3 +K5ϕ

5 + ... (3.12)

The first term K1 denotes the slope of the GZ(t, ϕ) curve at ϕ = 0 and is also

known as the “metacentric height”GM . GM represents the vertical distance between

the center of gravity of the vessel G and its metacenter M (shown in Figure 3.1).

This section describes the method of estimating the GM variation from a Volterra

series approach which was originally introduced by Hua et al. [106] and later applied

by Moideen [110] and Moideen et al. [107]. However, the derivation presented here

differs from the above listed works with respect to the phase conventions and other

important assumptions used.

The ship is assumed to be composed of multiple slender strips along the length

as shown in Figure 3.2. When the ship is encountering irregular head waves, at every

time instant the local draft at each of these sections is different due the effects of the

wave and instantaneous heave and pitch motions of the ship. The red shaded area

in Figure 3.2 shows the variation of local draft of the ship in irregular waves. The
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local breadth B(x, T + z) and moment of sectional underwater area about the keel

M(x, T + z) at any section x and local draft T + z can be expanded into a Taylor

series about the calm water draft T as shown in (3.13) and (3.14) respectively.

B(x, T + z) =B(x, T ) + c1z + c2z
2 + ... (3.13)

M(x, T + z) =M(x, T ) + d1z + d2z
2 + ... (3.14)

where the coefficients of higher powers of z are given by

c1 =
∂B

∂z
(x, T ), c2 =

1

2!

∂2B

∂z2
(x, T ), ... (3.15)

d1 =
∂M

∂z
(x, T ), d2 =

1

2!

∂2M

∂z2
(x, T ), ... (3.16)

From traditional naval architecture the metacentric height GM for any free float-

ing structure is given by (3.17). The instantaneous BM and KB can be expressed by

their usual definitions as shown in (3.18) and (3.19). Unlike in statics, the integrands

of the integrals depend on the relative waterline r(t, x) and are hence time varying

quantities.

GM = BM +KB −KG (3.17)

BM =
Iwp

∇
=

1

12∇

∫
L

B3(x, T + r(t, x))dx (3.18)

KB =
1

∇

∫
L

M(x, T + r(t, x))dx (3.19)

Substituting (3.18) and (3.19) into (3.17) gives and expression for time varying
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GM in waves. Hua et al. [106] and Moideen [110] also suggest including a time vary-

ing KG across the length of the ship. However, there is no theoretical background

to support a time varying KG as the location of the center of gravity with respect

to the keel is independent of the waves the ship is subjected to. Hence the approach

presented here shall adopt a time invariant KG.

GM =
1

∇

∫
L

[
B3(x, T + r(t, x))

12
+M(x, T + r(t, x))

]
dx−KG (3.20)

Expanding the integrands using (3.13) and (3.14) and collecting coefficients to

various powers of r(t, x) gives (3.21).

GM = GM0 + δGM1 + δGM2 + ... (3.21)

where GM0 denotes the calm water metacentric height and δGM1 and δGM2

represent the 1st and 2nd order contributions respectively.

GM0 =
1

∇

∫
L

[
B3(x, T )

12
+M(x, T )

]
dx−KG (3.22)

δGM1 =
1

∇

∫
L

[
c1(x, T )B

2(x, T )

4
+ d1(x, T )

]
r(t, x)dx

=
1

∇

∫
L

G1(x)r(t, x)dx (3.23)

δGM2 =
1

∇

∫
L

[
c2(x, T )B

2(x, T ) + c21(x, T )B(x, T )

4
+ d2(x, T )

]
r2(t, x)dx

=
1

∇

∫
L

G2(x)r
2(t, x)dx (3.24)

...

The geometry dependent functions G1(x) and G2(x) defined in (3.23) and (3.24)

represent the first and second order effect of geometry on the variation in GM .
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Figure 3.4: Variation of G1(x) and G2(x) for Pram hull form

Figure 3.4 shows the plot of G1(x) and G2(x) for the Pram hull form. The sharp

jump at the aft in both G1(x) and G2(x) is due to the effect of transom stern. The

point of discontinuity marks the aft most intersection of the waterline and the hull

form. It can be seen that the effect of G1(x) and G2(x) are prominent only in the

aft and forward regions of the ship indicating the strong influence of transom stern

and forward flare on GM variation in waves. Over the parallel middle body, change

in local draft does not cause significant variation in the waterplane area and hence

does not contribute much to the GM variation.

Now in order to calculate the GM variation in waves, the relative wave elevation

given by (3.6) is substituted into (3.23) and (3.24). This results in expressions for
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Figure 3.5: First order GM variation transfer function

various orders of GM . The first order GM variation is given by (3.25).

δGM1 =
1

2

N∑
m=1

am

[{∫
L

G1(x)ν(ωm, x)dx

}
ei(ωmt+ϵm)

+

{∫
L

G1(x)ν̄(ωm, x)dx

}
e−i(ωmt+ϵm)

]
=

1

2

N∑
m=1

am
[
f(ωm)e

i(ωmt+ϵm) + f̄(ωm)e
−i(ωmt+ϵm)

]
(3.25)

where f(ωe) is the first order transfer function given by

f(ωe) =

∫
L

G1(x)ν(ωe, x)dx (3.26)

Figure 3.5 shows the plot of the first order GM variation transfer function |f(ωe)|.
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Similarly, the second order GM variation is given by (3.28).

δGM2 =
1

4

N∑
m=1

N∑
n=1

aman

[{∫
L

G2(x)ν(ωm, x)ν(ωn, x)dx

}
ei{(ωm+ωn)t+ϵm+ϵn}

+

{∫
L

G2(x)ν(ωm, x)ν̄(ωn, x)dx

}
ei{(ωm−ωn)t+ϵm−ϵn}

+

{∫
L

G2(x)ν̄(ωm, x)ν(ωn, x)dx

}
ei{(−ωm+ωn)t−ϵm+ϵn}

+

{∫
L

G2(x)ν̄(ωm, x)ν̄(ωn, x)dx

}
ei{(−ωm−ωn)t−ϵm−ϵn}

]
(3.27)

δGM2 =
1

4

N∑
m=1

N∑
n=1

aman
[
g1(ωm, ωn)e

i{(ωm+ωn)t+ϵm+ϵn} + ḡ2(ωm, ωn)e
i{(ωm−ωn)t+ϵm−ϵn}

+g2(ωm, ωn)e
i{(−ωm+ωn)t−ϵm+ϵn} + ḡ1(ωm, ωn)e

i{(−ωm−ωn)t−ϵm−ϵn}
]

(3.28)

where g1(ωm, ωn) and g2(ωm, ωn) are the second order transfer functions given by

g1(ωm, ωn) =

∫
L

G2(x)ν(ωm, x)ν(ωn, x)dx (3.29)

ḡ2(ωm, ωn) =

∫
L

G2(x)ν(ωm, x)ν̄(ωn, x)dx (3.30)

g2(ωm, ωn) =

∫
L

G2(x)ν̄(ωm, x)ν(ωn, x)dx (3.31)

ḡ1(ωm, ωn) =

∫
L

G2(x)ν̄(ωm, x)ν̄(ωn, x)dx (3.32)

Figure 3.6 shows the plot of the two transfer functions g1(ωe, ωe) and g2(ωe, ωe).

The sum frequency transfer function g1(ωe, ωe) is symmetric while the difference

frequency transfer function g2(ωe, ωe) is conjugate-symmetric. These properties can
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Figure 3.6: Second order GM variation transfer functions
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mathematically be expressed as

g1(ωm, ωn) = g1(ωn, ωm) (3.33)

g2(ωm, ωn) = ḡ2(ωn, ωm) (3.34)

This property can also be checked visually by observing the surface plots of

imaginary part of the transfer functions - Figure 3.6b is symmetric about the diagonal

while Figure 3.6d is anti-symmetric.

Thus by application of the Volterra series method the time varying effective restor-

ing arm GZ can be represented by (3.35) where the coefficients of the higher powers

of ϕ are obtained by polynomial fit to the GZ curve in calm water.

GZ(t, ϕ) =GM(t)ϕ+K3ϕ
3 +K5ϕ

5 + ... (3.35)

GM(t) =GM0 +
1

2

N∑
m=1

am
[
f(ωm)e

i(ωmt+ϵm) + f̄(ωm)e
−i(ωmt+ϵm)

]
+

1

4

N∑
m=1

N∑
n=1

aman
[
g1(ωm, ωn)e

i{(ωm+ωn)t+ϵm+ϵn}

+ḡ2(ωm, ωn)e
i{(ωm−ωn)t+ϵm−ϵn} + g2(ωm, ωn)e

i{(−ωm+ωn)t−ϵm+ϵn}

+ḡ1(ωm, ωn)e
i{(−ωm−ωn)t−ϵm−ϵn}

]
(3.36)

The expression for GZ(t, ϕ) is substituted into (3.4) to solve the differential equa-

tion for the roll motion time series. A comparison of the simulated roll motion using

the Volterra GM model and SIMDYN is shown in Figure 3.7. It is clearly seen

that the Volterra GM model is insufficient to model the reality as the simulated roll

motion from Volterra GM model is significantly higher than the simulation from

SIMDYN.
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Figure 3.7: Comparison of roll motion between “SIMDYN” and “Volterra GM
model” of Pram hull form in a 3-hour realization of Bretschneider spectrum with
Hs = 5 m and Tp = 13 s

3.5 Grim’s Effective Wave Approach

This section describes a second approach to obtain the hydrostatic variation in

waves. In this approach, instead of using the irregular wave profile across the ship,

the problem is reduced to a ship in a regular wave. The original idea of representing

the irregular wave profile by an equivalent regular wave was first proposed by Grim

[101] in 1960s.

As before, the irregular head sea can be described by a linear superposition of

linear regular components as shown in (3.5). It can also be expressed in an alternate

form as (3.37).

η(t, x) =
N∑

m=1

am cos(kmx+ ωmt+ ϵm) (3.37)

Grim proposed replacing the irregular wave in space by a least squared fit regular
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wave with a fixed wavelength equal to the length of the ship and whose amplitude

varies with time. At every time instant the wave profile in space is represented by a

regular wave whose length is equal to the length of the ship with either its crest or

trough fixed at midship. At every time step, the amplitude of the considered regular

wave is different and determined by least squares fit of the actual wave profile in

space. The proposed equivalent wave profile ηg has the mathematical form shown in

(3.38).

ηg(t, x) = a(t) + ηc(t) cos
2πx

L
(3.38)

Over the years, the Grim’s effective wave has been modified to allow for the

crest/trough of the equivalent wave to be at any point along the length of the hull

[103, 105, 111]. This modified formulation is also sometimes referred to as the Im-

proved Grim Effective Wave (IGEW) and is given by (3.39).

ηg(t, x) = a(t) + ηc(t) cos
2πx

L
+ ηs(t) sin

2πx

L
(3.39)

The additional sine term introduces a phase angle in space which now allows

the crest or trough to be located at any point along the length of the ship. The

coefficients a(t), ηc(t) and ηs(t) can be found by solving the least square fit problem

described in (3.41) and are shown in (3.42), (3.43) and (3.44) respectively.

L =

∫ L/2

−L/2

[η(t, x)− ηg(t, x)]
2 dx (3.40)

∂L

∂a
= 0,

∂L

∂ηc
= 0,

∂L

∂ηs
= 0 (3.41)
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a(t) =
N∑

m=1

amfa(km) cos(kmx+ ωmt+ ϵm) (3.42)

ηc(t) =
N∑

m=1

amfc(km) cos(kmx+ ωmt+ ϵm) (3.43)

ηs(t) =
N∑

m=1

amfs(km) sin(kmx+ ωmt+ ϵm) (3.44)

where

fa(km) =
sinQ

Q
Q =

−kmL
2

fc(km) =
2Q sinQ

π2 −Q2
, fs(km) =

2π sinQ

π2 −Q2

The square of the transfer functions fa(km), fc(km) and fs(km) are shown in

Figure 3.8. Figure 3.9 shows the quality of fit of IGEW and Grim effective wave to
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Figure 3.9: Comparison of IGEW and Grim effective wave with actual wave elevation
from Bretschneider spectrum with Hs = 5m and Tp = 13s

the actual wave elevation in space at a particular time instant. It can be seen that

the flexibility of IGEW to move the crest along the length clearly results in a better

fit than the original Grim effective wave.

With the improved Grim effective wave, the problem of calculating the hydrostatic

stiffness of a ship on an irregular wave profile is reduced to that on an equivalent

regular wave. Within this approach of using a regular wave approximation, there are

two different approaches to model the hydrostatic stiffness.

3.5.1 No Effect of Dynamic Heave and Pitch

In this approach the hydrostatic stiffness is modeled using a time varying GZ in

regular wave while disregarding the instantaneous heave and pitch of the vessel. The
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roll equation of motion corresponding to this model is given by (3.45)

ϕ̈+

∫ t

−∞
k44(t− τ)ϕ̇(τ)dτ + b1ϕ̇+ b2ϕ̇|ϕ̇|+ ω2

0

(
GZ(t, ϕ)

GM0

)
= 0 (3.45)

where ω0 denotes the natural frequency corresponding to the linear stiffness given

by (3.46) and GM0 denotes the calm water metacentric height.

ω0 =

√
c44GM0 =

√
ρg∇0GM0

[I44 + A44(ω0)]
(3.46)

At every time step the instantaneous wave profile across the ship is approximated

by η(t, x) ≈ ηg(t, x). The instantaneous GZ at each time step is interpolated from a

lookup table. The lookup table for GZ values are calculated prior to the simulation

for various regular wave amplitudes, crest location along the length of the ship and

different roll angles. This is similar to the approach used by Bulian [96], however,

with an improvement of inclusion of convolution integral in the roll equation of

motion. These GZ values for the interpolation table are usually obtained using a

standard hydrostatic calculation software where the ship is statically balanced on

the wave to match the calm water displacement. A sample GZ curve for a 4 m high

regular wave for various crest positions is shown in Figure 3.10a.

It is important to note that this model does not include the effect of dynamic

heave and pitch on the change in instantaneous waterline which implies that the

GZ calculated in this case is the quasi-statically balanced hydrostatic restoring arm

instead of the effective restoring arm as described in (3.3). While calculating the GZ

lookup table, in each of the cases the model is allowed to trim freely. Thus a lookup

table similar to a GZ can also be calculated for quasi-static trim angle as shown in

Figure 3.10b which can then be used to compute the equilibrium trim angle time
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Figure 3.10: GZ variation calculation using IGEW

series. It can be seen that the equilibrium trim time series differs considerably from

the actual pitch time series as shown in Figure 3.11.

3.5.2 Including the Effect of Dynamic Heave and Pitch

Unlike the previous section where the dynamic effect of heave and pitch is ne-

glected, the model described below includes the effect of dynamic heave and pitch

in the calculation of GZ while assuming the improved Grim effective wave (IGEW)

profile. In this model the exact effective GZ in waves is evaluated at every time step

using the IGEW wave profile superimposed with the instantaneous dynamic heave

and pitch motion. It can be seen that this model is not strictly analytical. However

this analysis is implemented to make a fair comparison with the Volterra models de-

scribed in section 3.4 and section 3.6 which include dynamic heave and pitch effect.

The simulated roll motion using the IGEW model including the dynamic heave and

pitch motions is compared against SIMDYN simulation in Figure 3.12.
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3.6 Volterra Series Method for GZ Variation

This section describes the method of obtaining the GZ variation in waves using a

Volterra series approach. This is an extension of the method proposed in section 3.4

where the linear stiffness term was assumed to change in waves while the cubic and

higher order terms were assumed to be invariant with time. Time varying GZ can

be expressed as shown in (3.47) where the explicit dependence with respect to time

t and instantaneous roll angle ϕ is shown.

GZ = GZ(t, ϕ) (3.47)

The ship is divided into a set of transverse sections as described in section 3.3

which allows expressing GZ(t, ϕ) in terms of GZ
2D
(t, x, ϕ) as shown in (3.48) where

∇ is the displacement under the calm waterline in upright condition and A(x) is the

sectional area under the calm waterline at the section located x meters from midship

in the upright condition.

GZ(t, ϕ) =
1

∇

∫
L

GZ
2D
(t, x, ϕ)A(x)dx (3.48)

It can be seen from (3.48) that GZ
2D

depends explicitly on time t. However, at

the local section located at a distance x from midship, the time dependence of GZ
2D

is due the change of instantaneous draft at the section with time. Thus without loss

of generality the time dependence can be expressed in terms of the local draft as

GZ(t, ϕ) =
1

∇

∫
L

GZ
2D
(T + r(t, x), x, ϕ)A(x)dx (3.49)

where T is the mean draft in calm water and r(t, x) is the relative waterline as
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defined in (3.6). Assuming a separation of variables, GZ
2D

can be expressed as an

odd polynomial of roll angle ϕ with coefficients which are functions x and r(t, x) as

shown in (3.50).

GZ
2D
(T + r(t, x), x, ϕ) = k1(T + r(t, x), x)ϕ+ k3(T + r(t, x), x)ϕ3

+ k5(T + r(t, x), x)ϕ5 + ... (3.50)

Substituting (3.50) into (3.49) results in polynomial approximation for GZ

GZ(t, ϕ) =K1(t)ϕ+K3(t)ϕ
3 +K5(t)ϕ

5 + ... (3.51)

where

K1(t) =

[
1

∇

∫
L

k1(T + r(t, x), x)A(x)dx

]
(3.52)

K3(t) =

[
1

∇

∫
L

k3(T + r(t, x), x)A(x)dx

]
(3.53)

K5(t) =

[
1

∇

∫
L

k5(T + r(t, x), x)A(x)dx

]
(3.54)

and so on

Expanding ki(T + r(t, x), x) for i = 1, 3, 5, ... as Taylor series about the mean

draft T , Ki(t), the time varying coefficient of ϕi in (3.51), can be expressed as

Ki(t) =
1

∇

∫
L

ki(T, x)A(x)dx+
1

∇

∫
L

∂ki
∂z

(T, x)r(t, x)A(x)dx

+
1

∇

∫
L

1

2!

∂2ki
∂z2

(T, x)r2(t, x)A(x)dx+ ... (3.55)

Ki(t) =K
(0)
i +K

(1)
i (t) +K

(2)
i (t) + ... (3.56)
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where

K
(0)
i =

1

∇

∫
L

ki(T, x)A(x)dx (3.57)

K
(1)
i (t) =

1

∇

∫
L

∂ki
∂z

(T, x)r(t, x)A(x)dx (3.58)

K
(2)
i (t) =

1

∇

∫
L

1

2!

∂2ki
∂z2

(T, x)r2(t, x)A(x)dx (3.59)

Substituting the relative wave elevation from (3.6) in (3.58) results in an expres-

sion for K
(1)
i (t)

K
(1)
i (t) =

1

∇

∫
L

∂ki
∂z

(T, x)r(t, x)A(x)dx

=
1

2

N∑
m=1

am

[{
1

∇

∫
L

∂ki
∂z

(T, x)ν(ωm, x)dx

}
ei(ωmt+ϵm)

+

{
1

∇

∫
L

∂ki
∂z

(T, x)ν̄(ωm, x)dx

}
e−i(ωmt+ϵm)

]

=
1

2

N∑
m=1

am
[
fi(ωm)e

i(ωmt+ϵm) + f̄i(ωm)e
−i(ωmt+ϵm)

]
(3.60)

where fi(ωe) is the first order transfer function given by

fi(ωe) =
1

∇

∫
L

∂ki
∂z

(T, x)ν(ωe, x)dx (3.61)

Figure 3.13 shows the first order transfer functions fi(ωi) for i = 1, 3 and 5.

Substituting the relative wave elevation from (3.6) in (3.59) results in an expression

for K
(2)
i (t)

K
(2)
i (t) =

1

∇

∫
L

1

2!

∂2ki
∂z2

(T, x)r2(t, x)A(x)dx (3.62)
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Figure 3.13: First Order Transfer Functions fi(ωe)

K
(2)
i (t) =

1

4

N∑
m=1

N∑
n=1

aman

[{∫
L

1

2!

∂2ki
∂z2

(T, x)ν(ωm, x)ν(ωn, x)dx

}
ei{(ωm+ωn)t+ϵm+ϵn}

+

{∫
L

1

2!

∂2ki
∂z2

(T, x)ν(ωm, x)ν̄(ωn, x)dx

}
ei{(ωm−ωn)t+ϵm−ϵn}

+

{∫
L

1

2!

∂2ki
∂z2

(T, x)ν̄(ωm, x)ν(ωn, x)dx

}
ei{(−ωm+ωn)t−ϵm+ϵn}

+

{∫
L

1

2!

∂2ki
∂z2

(T, x)ν̄(ωm, x)ν̄(ωn, x)dx

}
ei{(−ωm−ωn)t−ϵm−ϵn}

]
(3.63)

K
(2)
i (t) =

1

4

N∑
m=1

N∑
n=1

aman
[
ui(ωm, ωn)e

i{(ωm+ωn)t+ϵm+ϵn} + v̄i(ωm, ωn)e
i{(ωm−ωn)t+ϵm−ϵn}

+vi(ωm, ωn)e
i{(−ωm+ωn)t−ϵm+ϵn} + ūi(ωm, ωn)e

i{(−ωm−ωn)t−ϵm−ϵn}
]

(3.64)
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Figure 3.14: Second order transfer functions ui(ωe, ωe) and vi(ωe, ωe) for Linear (i =
1), Cubic (i = 3) and Quintic (i = 5) Stiffness Coefficients

where ui(ωe, ωe) and vi(ωe, ωe) are second order transfer functions given by

ui(ωm, ωn) =

∫
L

1

2!

∂2ki
∂z2

(T, x)ν(ωm, x)ν(ωn, x)dx (3.65)

v̄i(ωm, ωn) =

∫
L

1

2!

∂2ki
∂z2

(T, x)ν(ωm, x)ν̄(ωn, x)dx (3.66)

vi(ωm, ωn) =

∫
L

1

2!

∂2ki
∂z2

(T, x)ν̄(ωm, x)ν(ωn, x)dx (3.67)

ūi(ωm, ωn) =

∫
L

1

2!

∂2ki
∂z2

(T, x)ν̄(ωm, x)ν̄(ωn, x)dx (3.68)

The second order transfer functions ui(ωe, ωe) and vi(ωe, ωe) for i = 1, 3 and 5
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are shown in Figure 3.14. Thus the effective restoring arm in waves GZ(t, ϕ) is given

by (3.69)

GZ(t, ϕ) =K1(t)ϕ+K3(t)ϕ
3 +K5(t)ϕ

5 + ... (3.69)

Ki(t) =K
(0)
i +K

(1)
i (t) +K

(2)
i (t) (3.70)

where K
(0)
i represent the time invariant coefficients of ith power of ϕ for the

calm water GZ curve, K
(1)
i (t) and K

(2)
i (t) represent the time varying change of the

coefficients of ith power of ϕ for the effective restoring arm GZ in waves and are

given by (3.71) and (3.72) respectively.

K
(1)
i (t) =

1

2

N∑
m=1

am
[
fi(ωm)e

i(ωmt+ϵm) + f̄i(ωm)e
−i(ωmt+ϵm)

]
(3.71)

K
(2)
i (t) =

1

4

N∑
m=1

N∑
n=1

aman
[
ui(ωm, ωn)e

i{(ωm+ωn)t+ϵm+ϵn} + v̄i(ωm, ωn)e
i{(ωm−ωn)t+ϵm−ϵn}

+vi(ωm, ωn)e
i{(−ωm+ωn)t−ϵm+ϵn} + ūi(ωm, ωn)e

i{(−ωm−ωn)t−ϵm−ϵn}
]

(3.72)

Figure 3.15a shows a comparison of the GZ curves in irregular waves predicted

by Volterra GZ and exact GZ methods. The corresponding GM values are shown

in Figure 3.15b. Although the Volterra GZ and exact GZ curves look similar, the

corresponding GM values are significantly different. This means that the result-

ing dynamics from the Volterra GZ and exact GZ models will have considerable

differences. This is further discussed in section 3.7.

The effective restoring arm in waves GZ(t, ϕ) is substituted into (3.4) and result-

ing differential equation is solved for the roll motion. A comparison of the simulated

roll motion using the Volterra GZ model and SIMDYN is shown in Figure 3.16.
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Figure 3.15: Comparison of GZ curve prediction in irregular waves from Volterra
GZ and exact GZ methods at time t = 350 s for a wave elevation from Bretschneider
spectrum with Hs = 5.0 m and Tp = 13.0 s
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Figure 3.16: Comparison of roll motion between “SIMDYN” and “Volterra GZ
model” of Pram hull form in a 3-hour realization of Bretschneider spectrum with
Hs = 5.0 meters and Tp = 13.0 seconds
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3.7 Comparison of Single Degree of Freedom Models

Five different models have been discussed in this chapter for evaluating GZ(t, ϕ)

for the proposed single degree of freedom model:

1. Exact GZ model

2. Volterra GM model with time invariant higher order stiffness terms

3. Improved Grim effective wave (IGEW) model incorporating dynamic heave and

pitch effects

4. Grim effective wave (GEW) model incorporating dynamic heave and pitch

effects

5. Volterra GZ model

In order to compare the performance of these models, the simulated roll motion

from each of these models is compared against SIMDYN simulations. Figure 3.17
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shows the comparison of spectra of roll motion obtained by different models on a

single plot. It can be seen that the Volterra GM method significantly over-predicts

the roll response. The exact GZ method and the IGEW GZ method (including

dynamic heave and pitch effects) lead to a roll spectrum peak shifted away from the

roll spectrum peak obtained from SIMDYN simulation. Volterra GZ method has a

peak matching with SIMDYN simulations but also shows a larger bandwidth.

An interesting observation is that although the GZ curve in irregular waves pre-

dicted by Volterra GZ method is relatively close to exact GZ method (as seen in

Figure 3.15a), the resulting roll spectrum is significantly different. This illustrates

the high sensitivity of parametric roll phenomenon to the nonlinear stiffness in addi-

tion to the sensitivity to damping (as discussed in chapter 2). Specifically it can be

seen that the slope of the two righting arm curves at zero heel in Figure 3.15b are

different which leads significantly different response to the same excitation for the

two models.

Each of the single degree of freedom models differ from SIMDYN in terms of

the physics involved in them. SIMDYN, described in chapter 2, uses Wheeler [53]

stretching to capture the dynamic pressure above the mean water line. However,

the single degree of freedom models assume the purely hydrostatic pressure over the

instantaneous underwater hull form to calculate the effective restoring arm. As the

single degree of freedom models do not include the effect of dynamic pressure in

calculation of GZ(t, ϕ), the resulting roll amplitudes are expected to differ. How-

ever, it can also be seen that of the suggested four single degree of freedom models,

the Volterra GZ model is the closest to SIMDYN simulations and is chosen as the

candidate for further analytical analysis. The Volterra GZ method will be utilized

in chapter 4 and chapter 5 to evaluate the stochastic roll response of the ship in

irregular waves.
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4. MELNIKOV PROCESS AND PHASE SPACE FLUX EVALUATION

Continuing on the development of SDOF roll models for parametric roll in irregu-

lar head seas, this chapter discusses the application of analytical techniques to obtain

statistical characteristics of the response. In this chapter, the roll equation of motion

is analyzed using the nonlinear dynamical systems approach where more emphasis is

placed on the geometrical characteristics of the solution in order to understand the

global behavior of multiple solutions.

The nonlinear roll response of a ship in irregular waves has been studied ex-

tensively in the past century. Beginning with Froude [22] and Moseley [112] many

researchers have investigated this problem to varying degrees of complexity. For a

general floating vessel, all the degrees of freedom are coupled to each other. However,

using certain simplifying assumptions (Webster [109]) the roll motion can be shown

to be decoupled from the other modes of motion. This has led to the analytical

description of roll using a single degree of freedom equation of motion [14, 113].

Various different methods have been developed to solve the nonlinear roll equation

of motion. The most intuitive approach is to obtain a numerical solution to the

system assuming different initial conditions. Testing many initial conditions gives

an idea of the nature of nonlinearity and its effect on the response. Thompson

et al. [114] used this approach to study the nonlinear roll motion in detail. Other

investigators adopting this approach include Spyrou [115] and Virgin [116]. Although

this method helps understand the system behavior, it is not practical to determine

the effect of various parameters on the system response using this approach. Also

due to the need to perform time consuming simulations for several initial conditions,

this method is not practically applicable to analyze a set of designs in a short period
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of time.

Some analytical approaches applied by researchers to overcome this limitation

include the multiple scale method (e.g. Neyfeh and Khdeir [117]), collocation ap-

proach and the harmonic balance method (HBM) (e.g. Lou and Xie [118]). However,

multiple scale method suffers from the limitation of being applicable to weakly non-

linear systems and cannot be effectively applied to analyze large angle roll motion.

Similarly, HBM suffers from a drawback that as the nonlinearity of the problem in-

creases it requires solving the coefficients of a large number of secular terms which

make the problem untenable [16].

In contrast to the above approaches, Guckenheimer and Holmes [12] (also Greenspan

and Holmes [119] and Wiggins [120]) discussed the application of the Melnikov

method (originally due to Melnikov [121]) to analyze complex dynamics exhibited

by a nonlinear oscillator. Instead of obtaining the numerical response of the system,

this approach focuses on the geometric behavior of the solution in the phase space

(defined in section 4.2). Due to its simple approach, generic nature and its capability

to analyze strongly nonlinear systems it quickly became the popular approach to an-

alyze strongly nonlinear oscillators exhibiting complex chaotic dynamics. Falzarano

[14] was one of the first researchers to apply this technique to investigate capsizing

of a ship being excited by regular beam seas.

The Melnikov approach and many of the nonlinear dynamical system approaches

were limited to systems which could be expressed as autonomous systems (no external

time varying forcing). Since only non-autonomous systems with a periodic excitation

could be recast as an autonomous system with higher dimension [13], for a long time

this method was limited to regular wave excitation. However, Frey and Simiu [122]

in 1993 extended the Melnikov method for application to a nonlinear system being

excited by a random forcing by introducing the concept of the Melnikov process
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and the rate of phase space flux. They showed that the rate of phase space flux

defined as the rate at which the area of safe basin (initial conditions leading to

bounded solutions) was being transported out could be related to the area under the

Melnikov function when it is non-negative. Hsieh et al. [123] used this approach to

analyze the capsizing of a vessel in random beam seas. However, Hsieh et al. [123]

still approximated the frequency dependent radiation moment by considering the

added mass and radiation damping at the roll natural frequency. Jiang et al. [16]

improved upon this model to consider the effect of frequency dependent radiation

damping through a convolution integral. Around the same time Vishnubhotla et.

al. [124] applied an innovative technique to analyze the complicated dynamics of a

vessel in random seas. This method incorporated the use of closed form analytical

solutions to be accurate up to the first order of randomness allowing the method to

be more accurate than the general Melnikov analysis.

While the Melnikov approach was extensively used to analyze roll motion in

beam sea, there is only limited literature discussing its application to parametric

roll in head seas. Falzarano [14] briefly discussed the parametrically excited roll

motion in regular waves. A further detailed analysis of the behavior of manifolds for

a parametrically excited roll motion for both biased and unbiased ships in regular

waves was undertaken by Esparza and Falzarano [125]. Falzarano et al. [126] also

looked at the problem of saturation induced roll motion in regular waves, where the

heave/pitch motion causes a time varying restoring force resulting in a parametrically

excited roll motion. Unlike for the directly excited roll motion, there is very limited

literature which discusses the application of the Melnikov approach to the problem

of parametric roll in irregular waves. This chapter provides a detailed description of

the Melnikov method and discusses the extension of the approach for parametrically

excited systems and is one of the unique contributions of this dissertation.
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4.1 State Space Formulation

We begin with the roll equation of motion given by (4.1) which is the same as

described in chapter 3.

[I44 + A44(∞)]ϕ′ +

∫ u

−∞
K44(u− v)ϕ′(v)dv +B1ϕ̇

+B2ϕ
′|ϕ′|+ ρg∇0GZ(u, ϕ) = 0 (4.1)

GZ(u, ϕ) is approximated by a odd polynomial as described in section 3.6. In case

of parametrically excited roll motion it is well known that the response is narrow

banded around the linear roll natural frequency of the vessel ωn. Therefore, it is

reasonable to approximate the roll radiation moment using the added mass and

radiation damping at the roll natural frequency. This leads to the simplification

shown in (4.2).

ẍ+ ϵδ1ẋ+ ϵδ2ẋ|ẋ|+
[
α1x+ α3x

3 + α5x
5 + ...

]
+
[
ϵp1(t)x+ ϵp3(t)x

3 + ϵp5(t)x
5 + ...

]
= 0 (4.2)

where

x = ϕ t = ωnu ˙( ) =
d

dt
( ) =

1

ωn

d

du
( ) (4.3)

ϵδ1 =
B1 + A44(ωn)

[I44 + A44(ωn)]ωn

= b1 (4.4)

ϵδ2 =
B2

[I44 + A44(ωn)]
= b2 (4.5)
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ϵp1(t) = k1(t)− α1 ϵp3(t) = k3(t)− α3 ϵp5(t) = k5(t)− α5 ... (4.6)

k1(t) =
K1(

t
ωn
)

GM0

k3(t) =
K3(

t
ωn
)

GM0

k5(t) =
K5(

t
ωn
)

GM0

and so on (4.7)

Note that K1(u), K3(u), K5(u), ... are the time varying stiffness terms and are

defined in section 3.6. The odd polynomial in ϕ with coefficients α1, α3, α5, ... rep-

resent the calm water GZ0. From the definition it can be seen that α1 = 1. The

parameter ϵ is introduced to represent the relative order of the various terms in the

equation of motion. The relative order indicates that the terms proportional to ϵ0

govern the global geometrical characteristics of the system (in the phase space - de-

fined in section 4.2) and the effect of excitation and damping on the change in global

geometrical characteristics is of the order of ϵ. The excitation and damping being

proportional to ϵ does not imply that system and developed methods are applicable

to only small excitation or damping. However, it is assumed that the excitation and

damping do not drastically alter the global geometry of the solutions.

The system can be expressed in the state space form as shown in (4.8) and (4.9)

where x = ϕ and y = ϕ̇. It can be seen that the time varying perturbation is O(ϵ)

and the system can be thought of as a Hamiltonian system with small perturbations.

ẋ = y (4.8)

ẏ = −
[
α1x+ α3x

3 + α5x
5 + ...

]
+ ϵ

{
− δ1ẋ− δ2ẋ|ẋ| −

[
p1(t)x+ p3(t)x

3 + p5(t)x
5 + ...

]}
(4.9)
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Figure 4.1: Phase portrait for ẍ+ x− x3 = 0

4.2 Phase Plane and the Concept of Safe Basin

The unperturbed system (ϵ = 0) is given by (4.10) and (4.11).

ẋ = y (4.10)

ẏ = −
[
α1x+ α3x

3 + α5x
5 + ...

]
(4.11)

The solution of the differential equations represented in (4.10) and (4.11) is un-

derstood in terms of a map of some interval I ⊂ R1 to Rn where n = 2 in this specific
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example. The solution is represented as:

x(t)
y(t)

 : I → R2 (4.12)

where [x(t) y(t)]T satisfies (4.10) and (4.11). The map [x(t) y(t)]T has the geo-

metrical interpretation of a curve in the domain of the dynamical system R2. The

domain of the dynamical system is also known as the phase space and since for n = 2

the phase space is a plane R2 it is also referred to as the phase plane. Eqns. (4.10)

and (4.11) provide the tangent vector of the solution at any point in the phase plane.

For this reason, the dynamical system is also referred to as the vector field [13].

The phase portrait of a solution starting at point (x0, y0) is defined as the geometric

evolution of the solution (x(t), y(t)) starting from point (x(0), y(0)) = (x0, y0) in the

phase plane. Fixed or equilibrium points of the vector field are defined as the points

in phase plane where the solution does not change in time and can be calculated

using:

ẋ = y = 0 (4.13)

ẏ = −
[
α1x+ α3x

3 + α5x
5 + ...

]
= 0 (4.14)

Figure 4.1 shows the plot of the solutions on (x, y) plane (phase plane) for a

particular example with α1 = 1, α3 = −1 and α5 = α7 = ... = 0. It can be seen

from the phase portrait (Figure 4.1) that the system has 3 fixed points located at

(0, 0) and (±1, 0). The stability of these equilibrium points is found by evaluating

the eigenvalues of the Jacobian matrix evaluated at the equilibrium point. For a
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Table 4.1: Type of equilibrium point and its stability

Eigenvalues of Jacobian Matrix Type Stability

Both real positive Source Unstable
Both real negative Sink Stable
One real positive, one real negative Saddle -

Complex conjugates with positive real part Unstable Spiral Unstable
Complex conjugates with negative real part Stable Spiral Stable
Purely imaginary Center Neutrally stable

general system described by

ẋẏ
 =

f1(x, y)f2(x, y)

 (4.15)

the Jacobian matrix is given by

J =

∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

 (4.16)

The eigenvalues of the Jacobian matrix determine the type and stability of the

equilibrium point in the phase plane. Table 4.1 lists the various possible values for

the eigenvalues of the Jacobian matrix and their correspondence to the type and

stability of the equilibrium point.

The equilibrium point at (0, 0) corresponds to a center characterized by purely

imaginary eigenvalues (λ1,2 = ±i) of the Jacobian matrix J =

 0 1

3x2 − 1 0


(0,0)

=

 0 1

−1 0

. The equilibrium points at (±1, 0) correspond to saddle points character-
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ized by one eigenvalue λ1 =
√
2 > 0 and another λ2 = −

√
2 < 0 of the Jacobian

matrix J =

 0 1

3x2 − 1 0


(±1,0)

=

0 1

2 0

. The saddle point has both stable and

unstable characteristics at the same time.

The flow of the solutions in time is demonstrated by the red arrows in Figure 4.1.

In the region above the x-axis ẋ = y > 0 which implies that x must increase with

time and hence the flow is towards the right. Similarly in the region below the x-axis

ẋ = y < 0 which corresponds to decrease of x with time and hence the flow is towards

the left. It can be seen from Figure 4.1 that the phase space flow approaches towards

the saddle points along two directions and also moves away along two other directions.

The limiting solutions along the curve (black curve in Figure 4.1) approaching the

saddle point are called stable manifolds and the limiting solutions along the curve

(black curve in Figure 4.1) moving away from the saddle point are called the unstable

manifolds. It can be seen that the unstable manifold of saddle point (−1, 0) coincides

with the stable manifold of saddle point (1, 0) and vice-versa for the unperturbed

system.

The limiting solution joining the fixed points at (±1, 0) is also known as the

separatrix or the heteroclinic manifold. The heteroclinic manifolds separate the

solution space into two regions. The solutions in the region beyond the separatrix

do not possess any oscillatory behavior and lead to capsize by escaping to ±∞.

The solutions inside the eye-shaped region between (±1, 0) corresponds to bounded

oscillatory solutions about the fixed point (0, 0). For this reason, the area inside the

eye-shaped region is also termed as the safe basin. The separatrices are also otherwise

referred to as the invariant manifolds due to the property that if the system starts

with an initial condition on any of the invariant manifolds, it will continue to stay

on it for all future and past times [120].
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Figure 4.2: Phase portrait for ẍ+ 0.1ẋ+ 0.05ẋ|ẋ|+ x− x3 = 0

Introducing damping or excitation (not necessarily harmonic or periodic) results

in the separation of the heteroclinic manifolds as shown in Figure 4.2. A time varying

excitation leads to a time varying position of the fixed points in the phase space. If

the excitation is periodic, then the position of the fixed point and the vector field

given by (4.8) and (4.9) will be exactly the same at any two times separated by the

period of excitation. Thus, the fixed points are transformed into periodic orbits and

the invariant manifolds oscillate periodically with time. However, sampling the phase

space every period of excitation provides a unique insight into the dynamics of the

system and was originally introduced by Poincaré and is hence termed a Poincaré

map. A trajectory in the phase space when observed in Poincaré map is described by

a discrete set of points on the trajectory sampled every period of the excitation. Thus

a periodic orbit resulting due to a periodic excitation still appears as a fixed point
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Figure 4.3: Numerically computed Poincaré manifolds for ẍ+0.1ẋ+0.05ẋ|ẋ|+ (1+
0.1 sin(2t))x− x3 = 0

on a Poincaré map. Similarly, the oscillating invariant manifolds appear as a fixed

curves on a Poincaré map. Numerically computed Poincaré manifolds for system

with damping and excitation are shown in Figure 4.3. The numerical computation

of Poincaré manifolds is performed by implementing the algorithm described by

Parker and Chua [127] in MATLAB. The blue curves denote the stable manifolds

and the red curves denote the unstable manifolds. The bounded region between the

blue stable manifolds are the set of initial conditions which when iterated in time

will converge to the fixed point at (0, 0).

When the excitation is increased beyond a critical level, the separated heteroclinic

manifolds can intersect with each other. However the heteroclinic manifolds are

themselves invariant implying that if a system starts with an initial condition on a

manifold, all its forward and backward iterations under Poincaré map will also lie

on the same manifold. Now if the manifolds intersect each other once, this implies
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Figure 4.4: Numerically computed Poincaré manifolds for ẍ+0.1ẋ+0.05ẋ|ẋ|+ (1+
0.5 sin(2t))x− x3 = 0

that if the system had an initial condition corresponding to this intersection, then

the further iterations of the Poincaré map will also have to be points of intersection

of the manifolds. Thus there will be infinitely many intersection between the stable

and unstable manifolds. These infinite intersections lead to the formation of lobes

of phase space entrapped between the two manifolds. The lobes of initial conditions

exhibit complicated dynamics which creates a possibility for the solutions near the

separatrices to be transported out of the safe basin. Such transitions usually may lead

to the occurrence of chaotic responses and even capsizing situations [128, 114, 116].

Numerically computed Poincaré manifolds for the same system as shown in Figure 4.3

with higher forcing are shown in Figure 4.4. Figure 4.4 only shows a few intersection

points between the stable and unstable manifolds due to the finite length computation

of the numerical scheme. In theory if the manifolds are fully computed then they

will intersect over and over infinite number of times.
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Wiggins [120, 13] discusses chaotic responses to harmonically excited systems

using Poincaré maps in detail. However, if the excitation (direct or parametric) is

random then eventually at some time the excitation will be large enough to cause

the intersection of stable and unstable manifolds and transport from the safe to

unsafe region will occur eventually. It is also important to note that in case of

random excitation, the periodicity of vector field does not exist which means that

the invariant manifolds can no longer be visualized.

However, as discussed above it is the intersections between the stable and unstable

manifolds which allow for the possibility of transport from safe to unsafe region.

Melnikov [121] came up with a clever idea to analytically calculate the transverse

distance between the manifolds. This distance given by the Melnikov function can

be calculated even when the manifolds themselves cannot be visualized. This opened

the door for further study of dynamics of nonlinear dynamical systems excited by

random excitation. Hsieh et al. [15] applied this approach to study the roll motion

of a vessel in beam seas and suggested that the transport between the safe and

unsafe regions becomes significant at certain critical levels of excitation which can

be quantified by the Melnikov function.

4.3 Melnikov Function

As previously seen in Figure 4.2, perturbation of the unforced and undamped

system by excitation and damping leads to the separation of the stable and unstable

manifolds of the heteroclinic separatrix. The separation d(t0) between them to O(ϵ)

is defined as the Melnikov function and can be shown to be equal to the expression
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in (4.18)

d(t0) = ϵM(t0) +O(ϵ2) (4.17)

M(t0) =

∫ ∞

−∞
y0(t)

{
− δ1y0(t)− δ2y0(t)|y0(t)|

−
[
p1(t+ t0)x0(t) + p3(t+ t0)x

3
0(t) + p5(t+ t0)x

5
0(t) + ...

]}
dt (4.18)

where x0(t) and y0(t)) are solutions representing the separatrices of the unper-

turbed system (Eqns. (4.10) and (4.11)). The theoretical proof that the Melnikov

function represents the separation distance to O(ϵ) can be found in classical texts on

nonlinear dynamical systems [12, 120]. An alternate approach to derive the distance

between the manifolds was investigated by Vishnubhotla [124] with an accuracy up

to the first order of randomness. It was also shown from this method that considering

up to O(ϵ) the expressions for the distance between the manifolds was equivalent to

the Melnikov function.

The Melnikov function can be separated into two parts - the time invariant mean

component M which depends on the damping and the time varying oscillatory part

M̃(t0) which depends on the excitation.

M(t0) =M + M̃(t0) (4.19)

where

M =

∫ ∞

−∞
y0(t)

{
− δ1y0(t)− δ2y0(t)|y0(t)|

}
dt (4.20)
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M̃(t0) =

∫ ∞

−∞
y0(t)

{
−
[
p1(t+ t0)x0(t) + p3(t+ t0)x

3
0(t)

+p5(t+ t0)x
5
0(t) + ...

] }
dt (4.21)

It can further be expressed as

M̃(t0) = M̃p1(t0) + M̃p3(t0) + M̃p5(t0) + ... (4.22)

where

M̃p1(t0) = −
∫ ∞

−∞
y0(t)x0(t)p1(t+ t0)dt (4.23)

M̃p3(t0) = −
∫ ∞

−∞
y0(t)x

3
0(t)p3(t+ t0)dt (4.24)

M̃p5(t0) = −
∫ ∞

−∞
y0(t)x

5
0(t)p5(t+ t0)dt (4.25)

In the case of systems excited by only direct excitation the oscillatory compo-

nent of the Melnikov function is a linear function of only a single component - roll

excitation moment [14, 123, 16, 21]. However, for the case of parametric excitation,

M̃(t0) is a sum of stochastic processes as shown in (4.22). Note that the evaluation of

the Melnikov function requires only the knowledge of the closed form solution of the

unperturbed system (x0(t), y0(t)). As the degree of odd polynomial used to repre-

sent the stiffness is increased, it becomes harder to obtain the unperturbed solutions

(x0(t), y0(t)) in closed form [129]. A cubic restoring model is the most commonly

used model for representing the stiffness in directly excited systems and has been

applied and investigated well by Falzarano et al. [128] and Hsieh et al. [15] for the

problem of ship rolling. However, only a few researchers have investigated the fifth

and higher order restoring models [14, 130, 131]. Although up to 5th order stiffness
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it is still possible to get analytical expression for (x0(t), y0(t)), for higher orders of

stiffness (x0(t), y0(t)) can only be evaluated numerically [14].

Ideally one would like to use a 9th or 11th order polynomial to represent the

nonlinear roll stiffness. However, due to the lack of closed form expressions much of

the literature is limited to 3rd or at most 5th order representations. While the 3rd

order polynomial approximation enables capturing a softening stiffness, a 5th order

representation is required to capture the initial hardening and eventual softening of

a typical righting arm curve for wall sided ships. This effect of initial hardening

and eventual softening is more enhanced when the righting arm is calculated for

the condition of wave crest at midship and is shown in Figure 4.5 for the Pram

hull form. The variation in GZ due to the location of wave crest relative to the

ship hull is shown in Figure 4.6. As the wave crest moves away from the midship

leading to the situation of trough at midship, the initial hardening effect is less

pronounced. However to accurately capture both cases one must use at least a 5th

order representation. For this reason, in this investigation of Melnikov methods

for the problem of parametric rolling, a 11th order restoring term will be used to

represent the nonlinear roll stiffness. Since no closed form solutions are available,

the unperturbed solutions in this study are evaluated numerically.

Each of the components of the oscillatory part of Melnikov function M̃pi(t0) for i =

1, 3, 5, ... are linear functions of the parametric excitations pi(t) for i = 1, 3, 5, ... re-

spectively. From chapter 3, it is known that the parametric excitations pi(t) for i =

1, 3, 5, ... are related to the wave elevation through various orders of Volterra transfer

functions. A comparison of the first and second order of GM variation obtained using

the Volterra GZ formulation for irregular sea state characterized by Bretschneider

spectrum with Hs = 4 m and Tp = 13 s is shown in Figure 4.7. It can be seen that

the second order of variation of GM is significantly smaller in magnitude than the
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first order variation.

If the parametric excitations pi(t) for i = 1, 3, 5, ... are evaluated using only

the first order transfer functions, then by definition pi(t) for i = 1, 3, 5, ... are all

zero mean random processes. Under the assumption that wave elevation is an er-

godic Gaussian process, it follows that pi(t) for i = 1, 3, 5, ... evaluated using only

the first order Volterra transfer functions will also be ergodic Gaussian processes.

Since M̃pi(t0) for i = 1, 3, 5, ... are linear functions of the parametric excitations

pi(t) for i = 1, 3, 5, ..., it also follows that M̃pi(t0) for i = 1, 3, 5, ... are ergodic

Gaussian processes. From (4.22), M̃(t0) is a sum of Gaussian random variables

M̃pi(t0) for i = 1, 3, 5, ... and hence has a Gaussian distribution as well. The spec-
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trum of M̃(t0) expressed as SM̃M̃(ω) is given by

SM̃M̃(Ω) =

Nq∑
j=1,3,5,...

Nq∑
k=1,3,5,...

SM̃pj M̃pk
(Ω) (4.26)

where Nq is the order of stiffness considered in the Volterra Model (in this work

a 11th order stiffness is used) and the cross spectra SM̃pj M̃pk
(Ω) are given by

SM̃pj M̃pk
(Ω) = (2π)2T̄j(Ω)Tk(Ω)Spjpk(Ω) (4.27)

= ϵ2(2π)2T̄j(Ω)Tk(Ω)f̄j(Ω)fk(Ω)Sηη(Ω) (4.28)

Note that (̄ ) represents complex conjugate, Ω = ωe

ωn
is the scaled encounter

frequency and Sηη(Ω) is the wave encounter spectrum. fj represents the first order

Volterra transfer function and is given by (3.61). The transfer function Tj is the

Fourier transform of −y0(t)xj0(t) and is given by

Tj(Ω) =
1

2π

∫ ∞

−∞
−y0(t)xj0(t)e−iΩtdt (4.29)

Since each of the components of the oscillatory part of the Melnikov function

have zero mean, M̃ is also a zero mean ergodic Gaussian process. The mean square

value of M̃ is given by

σ2
M̃

= E[M̃2(t0)]

=

∫ ∞

0

SM̃M̃(Ω)dΩ

= ϵ2(2π)2
Nq∑

j=1,3,5,...

Nq∑
k=1,3,5,...

∫ ∞

0

T̄j(Ω)Tk(Ω)f̄j(Ω)fk(Ω)Sηη(Ω)dΩ (4.30)

Since a Gaussian distribution of a process is characterized by its mean and stan-
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dard deviation, the probability density function of M̃ is given by

pM̃(x) =
1√

2πσM̃
exp

(
− x2

2σ2
M̃

)
(4.31)

4.4 Phase Space Flux

By its definition, for a system with small excitation and damping, a negative value

of the Melnikov function M(t0) < 0 indicates that the stable manifold lies outside

of the unstable manifold as depicted in Figure 4.2. If for a system the unstable

manifold lies outside of the stable manifold for all times, then all the solutions with

initial conditions outside the boundary will be unstable and lead to capsize and the

Melnikov functionM(t0) > 0 for all times. A unforced system with negative damping

coefficient is an example where the Melnikov function will always be greater than

zero.

However, the more commonly encountered case is the multiple intersections of

the stable and unstable manifolds caused by higher levels of excitation leading to

continual switching of the relative orientations of the stable and unstable manifolds.

This leads to the possibility of stable initial conditions near the boundary to be

transported into the unsafe regions at some future time. The dynamics of these lobes

of phase space with switching boundaries is described in more detail by Wiggins [120]

and Falzarano [14]. In this case, the Melnikov function switches sign depending on

whether the stable or unstable manifold is on the outside at that particular time.

The amount of phase space transported out of the safe region is related to the area of

the lobes formed where the unstable manifold lies outside the stable manifold. Since

the Melnikov function is representative of the distance between the manifolds, the

area of the lobes where the unstable manifold lies outside of the stable manifold can
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be quantified in terms of the area under the Melnikov function where it is positive

[122, 15, 132]. The rate at which the solutions escape from the safe basin can then

be calculated by taking a long term average of the positive part of the Melnikov

function. This quantity is known as the rate of phase-space flux Φ and is defined

mathematically as shown in (4.32) [133]

Φ = lim
T→∞

1

2T

∫ T

−T

M+(t0)dt0 (4.32)

where M+(t0) represents the positive part of the Melnikov function and is given

by

M+(t0) =


M(t0) if M(t0) ≥ 0

0 otherwise

(4.33)

Since M̃(t0) is an ergodic Gaussian process, it follows that the Melnikov process

M(t0) is also an ergodic Gaussian process with a mean value of M . Thus, the long

term time average in (4.32) can be equated to the ensemble average as shown in

(4.34).

lim
T→∞

1

2T

∫ T

−T

M+(t0)dt0 = E
[
M+(t0)

]
= E

[
(M + M̃(t0))

+
]

(4.34)

Using the probability density function for M̃ shown in (4.31), the rate of phase-
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space flux is given by

Φ = E
[
(M + M̃(t0))

+
]

=

∫ ∞

−M

(x+M)pM̃(x)dx

=

∫ ∞

−M

(x+M)
1√

2πσM̃
exp

(
− x2

2σ2
M̃

)
dx

= σM̃

∫ ∞

− M
σ
M̃

(z +
M

σM̃
)

1√
2πσM̃

exp

(
−z

2

2

)
dz

=

[
σM̃p

(
−M
σM̃

)
+M

(
1− P

(
−M
σM̃

))]
(4.35)

The variation of rate of phase space flux Φ with significant wave height for various

peak periods is shown in Figure 4.8. The rate of phase space flux is non-zero for all

non-zero wave heights which means that the system has a finite probability of capsize

as soon as excitation is applied. However, the probability of capsize will be extremely

low for small wave heights and will assume significant values only for higher wave

heights. The corresponding variation of rate of phase space flux Φ with peak period of

spectrum for various significant wave heights is shown in Figure 4.9. The rate of phase

space flux increases with an increase in peak period until Tp ≈ 15 s and then decreases

with further increase in period. This is consistent with the highly tuned nature of

parametric roll where the system stops to demonstrate a parametric response as

the excitation period moves away from the 2 : 1 subharmonic resonant period (see

appendix D). For the Pram hull form the 2 : 1 excitation period corresponds to

T ≈ 13 s.

If σ
(1)

M̃
is denoted as the RMS value of the oscillatory part of the Melnikov function

when the system is excited by a unit significant wave height, the rate of phase space
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flux can be expressed as

Φ =

[
σ
(1)

M̃
Hsp

(
−M
σ
(1)

M̃
Hs

)
+M

(
1− P

(
−M
σ
(1)

M̃
Hs

))]
(4.36)

As the significant wave height is increased, the rate of phase space flux also

increases steadily until it reaches a linear asymptote. This limiting behavior can also

be derived mathematically from (4.36) by taking the limit Hs → ∞. The rate of

phase space flux approaches a linear asymptote given by (4.37).

Φ =

[
1√
2π
σ
(1)

M̃
Hs +

1

2
M

]
(4.37)

The linear asymptote has an intercept of H∗
s on the Hs axis corresponding to zero

phase space flux. This value is defined as the critical wave height and corresponds

to the significant wave height at which substantial phase space flux is initiated. The

mathematical expression for H∗
s is given by

H∗
s = −

√
π

2

M

σ
(1)

M̃

(4.38)

Since the rate of phase space flux increases almost linearly with significant wave

height beyond Hs = H∗
s , the critical significant wave height H∗

s can be thought of

as providing a limiting value of significant wave height Hs for a given peak period

beyond which the vessel has a higher probability of capsizing. Although an exact

mathematical dependence between critical significant wave height and the probabil-

ity of capsize is unknown at present, there are several researchers including Hsieh et.

al. [15] and Jiang et. al. [132, 16] who have demonstrated that the critical signifi-

cant wave height H∗
s predicted using the Melnikov analysis does agree well with the

estimated Hs boundary (calculated using Monte Carlo simulations) beyond which
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capsize probability increases rapidly.

The variation of critical significant wave height with peak period of the spectrum

is shown in Figure 4.10. Due to the highly tuned nature of parametric excitation

and observed variation of rate of phase space flux with peak period (see Figure 4.9),

the critical significant wave height is expected to be lowest when the peak period is

close to the 2 : 1 subharmonic resonance period (see appendix D). It is also expected

to increase quickly as the peak period shifts away from the subharmonic resonance

period. Figure 4.10 displays this expected behavior of the critical significant wave

height.

However, if a designer deems the capsize probability corresponding to the critical

significant wave height H∗
s to be either too high or too low, an alternate criterion can

be used to estimate the limiting significant wave height based on specified values of

rate of phase space flux. In this case, the limiting value of Hs is obtained by solving
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(4.36) after setting the rate of phase space flux to a prescribed value chosen by the

designer. A comparison of the limiting values of Hs using this approach for various

specified values of rate of phase space flux and the critical significant wave height H∗
s

is shown in Figure 4.11. Although H∗
s seems to have a trend similar to the limiting

Hs obtained by equating phase space flux to a constant value, it is important to

remember that the rate of phase space flux Φ is not constant as the peak period

varies along the H∗
s curve.

It can be seen from (4.36) and (4.38) that both the rate of phase space flux Φ and

the critical significant wave height H∗
s depend on the mean value of the Melnikov

function M and the root mean square (RMS) value of the oscillatory component of

the Melnikov function when the system is excited by a unit significant wave height

σ
(1)

M̃
. While M depends on the damping in the system, σ

(1)

M̃
is a function of the
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input wave elevation. While the calculation of M and σ
(1)

M̃
are not based off of

analytical expressions (due to the use of 11th order stiffness instead of a 3rd or 5th

order approximation with closed form expressions for [x0(t)y0(t)]
T ), the computation

involved is minuscule. Thus, the rate of phase space flux Φ and the critical significant

wave height H∗
s can be effectively used as design criteria for assessment of stability

of parametric response of a vessel in head seas.

Simiu [133] compared the rate of phase space flux of a Duffing-Holmes oscillator

with the mean escape rate 1
τe

(defined as the inverse of mean first passage time τe)

estimated from Monte Carlo simulations and demonstrated that the two quantities

are proportional to each other. Based on this observed proportionality Simiu further

suggested the possible use of rate of phase space flux as a measure of the escape rate.

A similar comparison of the mean escape rate and the rate of phase space flux for

directly excited roll motion was investigated by Su and Falzarano [17]. In this study

too a comparison between the rate of phase space flux and the mean escape rate for

the parametrically excited roll motion is discussed in chapter 6.
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5. STOCHASTIC AVERAGING OF ENERGY ENVELOPE

In contrast to the nonlinear dynamical systems approach utilized in chapter 4,

this chapter explores a different technique known as stochastic averaging which is

based on the principles of stochastic dynamics. As the stochastic averaging technique

builds upon the concepts of stochastic dynamics, it is important to first describe the

basic concepts and terminology of stochastic dynamics. However, in the interest of

brevity, this material is described in detail in appendix E and will be referred to as

and when needed.

It is well known that for a linear system excited by a Gaussian excitation, the re-

sponse also follows a Gaussian distribution. However, when the equations of motion

are nonlinear, such as for the problem of parametric roll (as described in chapter 3),

the probability distribution of the response can deviate significantly from a Gaussian

distribution (as was shown in chapter 2). Obtaining a probabilistic description of the

response for such systems is often a challenge. A few of the analytical methods avail-

able to solve the problem of nonlinear random vibration include Markov methods,

equivalent linearization [134], equivalent non-linearization[135, 136], moment and cu-

mulant closure techniques [137, 138, 87], perturbation methods, stochastic averaging

and numerical simulations.

Markov methods refer to the approximation of the excitation in the equations

of motion by a white noise process (see appendix E for definition). A system ex-

cited by colored noise (see appendix E for definition) can also be recast as a higher

dimensional system with white noise input by using a filter to transform the white

noise into the colored noise. Modeling the excitations using white noise processes

comes at the cost of introducing more state variables (corresponding to the filter) in
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the system. For a system whose excitations are modeled as white noise processes,

the equation of motion can be expressed in the vector form as an Itô stochastic

differential equation (SDE). See appendix E for mathematical description of SDEs.

The probability distribution of the response is obtained by solving the correspond-

ing Fokker-Planck-Kolmogorov (FPK) equation (see appendix E), alternatively also

known as Kolmogorov’s forward equation [84]. If the system is stable and achieves

stationarity eventually, the time derivative can be set to zero and the corresponding

equation can be solved to obtain a stationary probability distribution of the response.

However, exact analytical expressions exist only for very few special cases (see for

example Caughey [139]). For higher order systems (with many state variables) very

few exact solutions are available.

In cases where exact solutions are unavailable, many researchers have investi-

gated the numerical approach to solve the FPK equation. Some of the methods in

this approach include iterative methods [140], series expansion methods [137, 138],

random walk analogies and path integral methods [141, 142, 143]. However, obtain-

ing exact solutions to the FPK equation is generally a time consuming procedure

and is impractical for assessing various design iterations in the basic design phase.

However, in the recent years, the stochastic averaging technique has received a

lot of attention due its ability to reduce the dimension of the stochastic system and

thus reduce the complexity of the problem. One of the other advantages of stochastic

averaging is its applicability to systems excited by not only white but also colored

noise. The method of stochastic averaging is originally credited to Stratonovich

[137, 138]. It aims at approximating an actual process by a representative Markov

process when the excitation process has a larger bandwidth (broad-banded) as com-

pared to the response. Since its proposition by Stratonovich [137], this technique has

been examined in detail by many researchers to provide mathematical rigor to the ap-
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proach [144, 145] and is now formalized as the well known Stratonovich-Khas’minskii

theorem. According to Roberts [146] and Lin and Cai [18] the approach can be re-

garded as the generalization of the deterministic averaging due to Bogoliubov and

Mitropolsky [147].

5.1 Energy-Phase Transformation

We begin with the dimensional roll equation of motion as derived in chapter 3.

[I44 + A44(∞)]ϕ̈+

∫ u

−∞
K44(u− v)ϕ̇(v)dv

+B1ϕ̇+B2ϕ̇|ϕ̇|+ ρg∇0GZ(t, ϕ) = 0 (5.1)

Since the stochastic averaging relies on considering the response as a Markov

process (see appendix E for the definition of Markov process), the convolution term

poses a mathematical problem as it includes the dependence of the current state

of response over all of the previous history. However, in case of parametrically

excited roll motion, it is well known that the response is narrow banded around

the linear natural frequency of the vessel ωn. Thus for the case of a parametrically

excited system it is a reasonable approximation to use the roll added mass moment of

inertia and radiation damping at the natural frequency ωn instead of the convolution

integral. Under this assumption, the roll equation of motion is given by

[I44 + A44(ωn)]ϕ̈+B44(ωn)ϕ̇+B1ϕ̇+B2ϕ̇|ϕ̇|+ ρg∇0GM0
GZ(u, ϕ)

GM0

= 0 (5.2)

The roll equation shown in (5.2) can further be simplified and expressed in its
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non-dimensional form as shown in (5.3)

ẍ+ ε2δ1ẋ+ ε2δ2ẋ|ẋ|+
[
α1x+ α3x

3 + α5x
5 + ...

]
+
[
εp1(t)x+ εp3(t)x

3 + εp5(t)x
5 + ...

]
= 0 (5.3)

where

x = ϕ t = ωnu ˙( ) =
d

dt
( ) =

1

ωn

d

du
( ) (5.4)

ε2δ1 =
B44(ωn) +B1

[I44 + A44(ωn)]ωn

= b
(v)
1 (5.5)

ε2δ2 =
B2

[I44 + A44(ωn)]
= b

(v)
2 (5.6)

εp1(t) = k1(t)− α1 εp3(t) = k3(t)− α3 εp5(t) = k5(t)− α5 ... (5.7)

k1(t) =
K1(

t
ωn
)

GM0

k3(t) =
K3(

t
ωn
)

GM0

k5(t) =
K5(

t
ωn
)

GM0

... (5.8)

The odd polynomial in ϕ with coefficients α1, α3, α5, ... in (5.3) represents the

non-dimensional calm water GZ0. Again as seen in the previous chapters, α1 = 1.

K1(u), K3(u), K5(u), ... represent the time varying coefficients for the polynomial

expression of GZ developed in chapter 3. The parameter ε is introduced to represent

the relative order of various terms in the equation of motion. However, note that

ε is different from the scaling parameter ϵ used in chapter 4. The current scaling

ensures that the standard deviation of the response is O(ε) as ε → 0 and does not
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imply that the excitation is weak [148].

Assuming a more general form, the non-dimensional roll equation can be repre-

sented as

ẍ+ ε2F (ẋ) +G(x) + εG1(t, x) = 0 (5.9)

where F (ẋ) is a nonlinear damping function, G(x) is the time invariant nonlinear

stiffness and G1(t, x) is the time varying stiffness in waves. For our specific example

F (ẋ), G(x) and G1(t, x) are given by

ε2F (ẋ) = b
(v)
1 ẋ+ b

(v)
2 ẋ|ẋ| (5.10)

GZ(t, x) = GZ0(x) + εGZ1(t, x) (5.11)

G(x) =
GZ0(x)

GM0

=

2nq−1∑
j=1,3,5,...

αjx
j (5.12)

G1(t, x) =
GZ1(t, x)

GM0

=

2nq−1∑
j=1,3,5,...

pj(t)x
j (5.13)

where pk(t) represents the parametric time varying coefficients of GZ curve and

are calculated using Volterra GZ formulation detailed in chapter 3. The degree of

the restoring arm is given by 2nq − 1. In this work nq = 6 is used to result in a 11th

order restoring curve. The total energy E(t) is defined as the sum of kinetic and

potential energy as shown in

E =
ẋ2

2
+ U(x) (5.14)

where U(x) is the potential energy associated with the nonlinear stiffness G(x)
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and is given by

U(x) =

∫ x

0

G(ξ)dξ (5.15)

The equation of motion can be recast in terms of energy E(t) and a related phase

angle θ(t) defined such that the following transformations hold and also satisfy (5.14).

sgn(x)
√
U(x) =

√
E cos(θ) (5.16)

ẋ√
2
= −

√
E sin(θ) (5.17)

where

sgn(x) =


1 if x ≥ 0

0 if x < 0

(5.18)

The differential equation governing E(t) is obtained by differentiating (5.14) with

respect to time and is given by

Ė = ẍẋ+G(x)ẋ

= ẋ
[
−ε2F (ẋ)− εG1(t, x)

]
= ε2

(
f(E, θ)

√
2E sin(

)
+ ε

(
g1(t, E, θ)

√
2E sin(θ)

)
(5.19)

where

f(E, θ) = F (ẋ) (5.20)

g1(t, E, θ) = G1(t, x) (5.21)

145



Similarly the differential equation governing the phase angle θ(t) is obtained using

(5.16) and (5.17) and is given by

θ̇ =
d

dt

[
tan−1

(
− ẋ√

2U(x)

)]

=
1

1 +
(

ẋ2

2U(x)

)−1√
2

ẍ
√
U(x)− ẋ2G(x)

2
√

U(x)

U(x)

=
− cos2 θ√

2

[
−ε2f(E, θ)− εg1(t, E, θ)− g(E, θ)√

E cos(θ)
− tan2(θ)g(E, θ)√

E cos(θ)

]
= ε2

f(E, θ) cos θ√
2E

+ ε
g1(t, E, θ) cos θ√

2E
+

g(E, θ)√
2E cos θ

(5.22)

It can be seen from (5.19) that for the unperturbed system (ε = 0), energy E is

independent of time. With the introduction of damping and parametric excitation,

energy now varies slowly with time. This property of E(t) enables the application

of stochastic averaging which allows the energy to be approximated as a Markov

process.

Introducing the phase angle θ0(t) for the unperturbed case defined by

θ0 =

∫
g(E, θ)√
2E cos(θ)

dt (5.23)

and defining a new phase process λ(t) defined by

λ = θ − θ0 (5.24)

it can be seen that the governing equation for λ(t) is given by

λ̇ = ε2
f(E, θ0 + λ) cos(θ0 + λ)√

2E
+ ε

g1(t, E, θ0 + λ) cos(θ0 + λ)√
2E

(5.25)
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This transformation is required to obtain a new phase process λ(t) to achieve a

vector process Z(t) =

E(t)λ(t)

 which is slowly varying with time. The equation of

motion for Z(t) is given by

Ż(t) =

Ė
λ̇

 = ε2a(Z) + εb(t,Z) (5.26)

where

a(Z) =

a1(E, θ)
a2(E, θ)

 =

f(E, θ)√2E sin(θ)

f(E,θ) cos(θ)√
2E

 (5.27)

b(t,Z) =

b1(t, E, θ)
b2(t, E, θ)

 =

g1(t, E, θ)√2E sin(θ)

g1(t,E,θ) cos(θ)√
2E

 (5.28)

Since g1(t, E, θ) =
∑2nq−1

j=1,3,5,... pj(t) [x(E, θ)]
j, the expression for b(t,Z) can be

expanded as

b(t,Z) =

2nq−1∑
r=1,3,5,...

dr(Z)pr(t) (5.29)

where

dr(Z) =

dr1(E, θ)
dr2(E, θ)

 =

xr(E, θ)√2E sin(θ)

xr(E,θ) cos(θ)√
2E

 (5.30)
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Thus the equation of motion for Z(t) is given by

Ż(t) = ε2a(Z) + ε

2nq−1∑
r=1,3,5,...

dr(Z)pr(t) (5.31)

5.2 Approximation of a Real Process by Markov Process

In general both the excitation pr(t) for r = 1, 3, 5, ..., (2nq − 1) and response

Z(t) are not Markov processes. However, if the response Z(t) is approximated as

a Markov process, it allows for further analysis using stochastic methods which are

primarily applicable to Markov processes. With this motivation, we explore the

conditions under which a real process can be approximated by a Markov process.

Here we limit our discussions to heuristic arguments to better appreciate the physical

significance behind the stochastic averaging technique and do not dwell too much

into mathematical proofs. For a rigorous mathematical proof of stochastic averaging,

readers are referred to the works of Khas’minskii [145] and Papanicolau and Kohler

[144].

Since the Markov process is a mathematical idealization and it is hard to find a

physical process with similar properties. It is well known that for a Markov process,

its increments in non-overlapping time increments are independent. Approximation

of a real process by a Markov process is usually justified on the basis of how the close

increments of the process in non-overlapping time intervals are nearly independent.

Let’s assume that a continuous time process Z(t) is being observed at discrete

time instants starting from t with intervals of ∆t1,∆t2, ... and the respective in-

crements in the process over these time intervals be given by ∆Z1,∆Z2, ... If

∆Z1,∆Z2, ... be independent of each other regardless of how short ∆t1,∆t2, ... are

(even as they approach zero which implies continuous time observation), then Z(t)
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satisfies the sufficient condition to be a Markov process. However, real processes

rarely possess this property.

On the other hand, if the system response varies much more slowly than the exci-

tation, then it is easy to appropriately choose these time gaps ∆t1,∆t2, ... such that

they are much larger than the correlation time of excitation τcorr. The correlation

time τcorr is a measure of the “memory” of the excitation of its earlier state. Lin and

Cai [18] define the correlation time as

τrs =
1√

wrr(0)wss(0)

∫ 0

−∞
|wrs(τ)|dτ (5.32)

where covariance stationarity is assumed between zero mean processes pr(u) and

ps(v) and the stationary covariance function is given by

wrs(u− v) = E [pr(u)ps(v)] (5.33)

If the time gaps ∆t1,∆t2, ... are chosen to be much larger than correlation time

(∆ti >> τcorr), the increments of the process ∆Z1,∆Z2, ... will appear indepen-

dent. In such a scenario, if we choose to observe the process Z(t) at times which

are separated by at least one correlation time τcorr then the process will appear

to have independent increments over non-overlapping time increments and may be

approximated as a Markov process.

However, care must be taken that the time gaps are significantly smaller than

the relaxation time of the system τrel, which is a measure of the “memory” of the

system of its earlier state, without taking into account the effect of excitation [18].

If ∆ti > τrel then too much detail of the process is lost in the approximation. For

oscillatory systems, Lin and Cai [18] define this as the time required for the amplitude
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of the process to decrease by a factor of e−1.

In our example of interest, roll x and roll velocity ẋ fluctuate rapidly. However, the

transformed coordinates - energy E and phase difference from unperturbed solution

λ vary slowly on a much larger time scale as is evident from (5.31). Applying similar

arguments as discussed above, Z(t) can be approximated as a diffusion (a Markov

process whose sample functions are continuous with probability 1).

Mathematically, the Itô SDE governing the diffusion process can be expressed as

(5.34)

dZ = m(Z)dt+ σ(Z)dBt (5.34)

where m(Z) and σ(Z) are the drift and diffusion coefficients respectively and Bt

represents the vector Brownian motion. The transition probability density of Z(t),

given by p(z, t|z0, t0), is governed by the FPK equation given by

∂p

∂t
= −

2∑
i=1

∂

∂zi
[mi(Z)p(z, t|z0, t0)]

+
1

2

2∑
i=1

2∑
j=1

∂2

∂zi∂zj
[Dij(Z)p(z, t|z0, t0)] (5.35)

where D = σσT .

The drift m(Z) and diffusion D(Z) coefficients of the approximated Markov

process Z(t) are obtained from the equation governing the physical process (5.26)

by the application of Stratonovich-Khas’minskii limit theorem. The Stratonovich-

Khas’minskii theorem embodies the mathematical rigor involved with the heuristic

argument developed above. The proof of this theorem can be found in the works of

Khas’minskii [145] and Papanicolau and Kohler [144]. The resulting expressions for
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the drift and diffusion coefficients from the application of this theorem are given by

(5.36) and (5.37) respectively.

m = A(E) +

∫ 0

−∞

⟨
E

[(
∂b

∂Z

)
t

(b)t+τ

]⟩
dτ (5.36)

D = σσT =

∫ ∞

−∞

⟨
E
[
(b)t (b)

T
t+τ

]⟩
dτ (5.37)

where

∂b

∂Z
=

∂b1
∂E

∂b1
∂λ

∂b2
∂E

∂b2
∂λ

 (5.38)

A(E) =

A1(E)

A2(E)

 = ⟨a(E, θ0)⟩ =
1

T (E)

∫ T (E)

0

a(E, θ0)dt (5.39)

Note that ⟨[.]⟩ denotes the time average over the unperturbed system period T (E)

and is given by

⟨[ . ]⟩ = 1

T (E)

∫ T (E)

0

[ . ]dt (5.40)

where the unperturbed system period T (E) is given by

T (E) =

∮ ∣∣∣∣dxẋ
∣∣∣∣ = 4

∫ b

0

dx√
2E sin(θ)

= 2
√
2

∫ b

0

dx√
E − U(x)

(5.41)

Substitution of (5.27) and (5.28) into (5.36) and (5.37) results in the following

expressions for the drift and diffusion coefficients. The details of the derivation of
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expressions for the drift and diffusion coefficients is provided in appendix F.

m1 =A1(E) +
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[(∫ 0

−∞
wjk(τ) cos

(
2πn

T (E)
τ

)
dτ

)

×

{
b
(1j)
n b

(1k)
n

2
+
a
(1j)
n a

(1k)
n

2
+ (j)

b
(2j)
n b

(1k)
n

2
+ (j)

a
(2j)
n a

(1k)
n

2

}]
(5.42)

m2 =A2(E) +
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[(∫ 0

−∞
wjk(τ) sin

(
2πn

T (E)
τ

)
dτ

)

×

{
−a

(1j)
n b

(1k)
n

4E
+
b
(1j)
n a

(1k)
n

4E
+ (j)

d
(2j)
n b

(1k)
n

2
+ (j)

b
(2j)
n a

(1k)
n

4E

}]
(5.43)

D11 =
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[
(2πE)

{
b(1j)n b(1k)n

}
S
(c)
jk

(
2πn

T (E)

)]
(5.44)

D12 =
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[
−πb(1j)n a(1k)n S

(s)
jk

(
2πn

T (E)

)]
(5.45)

D21 =
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[
πa(1j)n b(1k)n S

(s)
jk

(
2πn

T (E)

)]
(5.46)

D22 =
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[
π

2E

{
a(1j)n a(1k)n

}
S
(c)
jk

(
2πn

T (E)

)]
(5.47)

where a
(1k)
n , b

(1k)
n , a

(2k)
n , b

(2k)
n and d

(2k)
n are functions of energy E and are defined
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as follows:

sin(θ0(t))x
k
0(t) =

∞∑
n=1

b(1k)n sin

(
2πn

T (E)
t

)
(5.48)

cos(θ0(t))x
k
0(t) =

∞∑
n=1

a(1k)n cos

(
2πn

T (E)
t

)
(5.49)

2E

g(E, θ0(t))
sin(θ0(t)) cos

2(θ0(t))x
k−1
0 (t) =

∞∑
n=1

b(2k)n sin

(
2πn

T (E)
t

)
(5.50)

2E

g(E, θ0(t))
sin2(θ0(t)) cos(θ0(t))x

k−1
0 (t) =

∞∑
n=1

a(2k)n cos

(
2πn

T (E)
t

)
(5.51)

cos3 θ0(t)

g(E, θ0(t))
xk−1
0 (t) =

∞∑
n=1

d(2k)n cos

(
2πn

T (E)
t

)
(5.52)

where θ0(t) and x0(t) are the unperturbed system solutions. The cosine and sine

cross spectra S
(c)
jk (ω) and S

(s)
jk (ω) are defined as

S
(c)
jk (ω) =

1

2π

∫ ∞

−∞
wjk(τ) cos (ωτ) dτ (5.53)

S
(s)
jk (ω) =

1

2π

∫ ∞

−∞
wjk(τ) sin (ωτ) dτ (5.54)

The drift and the diffusion coefficients of the energy equation computed using

(5.42), (5.44) and (5.45) are shown in Figure 5.1 and Figure 5.2 respectively.

So far we have proved that Z(t) can be approximated as a two dimensional

Markov process. However, it can be seen from Figure 5.2 that D12 is zero which

implies that the Itô equation governing energy E is decoupled from the phase λ.

Thus, the energy E can approximated as a Markov process and the dimension of the

system is reduced.

From (5.45) and (5.46) it is clear that the cross diffusion coefficients depend on the

product a
(1j)
n b

(1k)
n . Figure 5.3 and Figure 5.4 show the plot of a

(1j)
n (E) and b

(1j)
n (E) for
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Figure 5.1: Drift coefficient m1(E) for Hs = 6.0 m and Tp = 13.0 s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Diffusion Coefficient
H

s
 = 6.0 m, T

p
 = 13.0 s, β = 180.00 degrees

E

 

 

D
11

(E)

D
12

(E)

Figure 5.2: Diffusion coefficients D11(E) and D12(E) for Hs = 6.0 m and Tp = 13.0 s
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Figure 5.3: Plot of a
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n (E) and b

(1j)
n (E) for n = 1, 2 and 3 for Hs = 5.0 m and

Tp = 13.0 s
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n (E) and b
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Figure 5.5: Energy drift coefficient for various Hs and a fixed chosen Tp = 13.0 s

n = 1, 2, 3, 4 and 5. It can be seen that a
(1j)
n ≈ 0 for an even value of n and b

(1j)
n ≈ 0

for an odd value of n.

It can be argued that x0(t) has a periodicity similar to cos(θ0(t)) and hence when

substituted into (5.49) results in a non-zero value for a
(1j)
n (E) only when n is odd.

A similar argument can be made that substitution of x0(t) into (5.48) results in a

non-zero value for b
(1j)
n (E) only when n is even. This type of heuristic approach has

also been adopted by Cai [149] who investigated a Duffing oscillator excited by both

direct and parametric non-white excitations. This assumption is further validated

by Figure 5.2 which shows that the numerically computed cross diffusion coefficient

of the energy equation is close to zero. However, a mathematically rigorous proof of

this result is still currently unavailable.

Figure 5.5 and Figure 5.6 show the variation of drift and diffusion coefficients

of the energy equation for different Bretschneider spectra with varying significant

wave heights and constant peak period Tp = 13.0 s. It can be seen that the drift
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Figure 5.6: Energy diffusion coefficient for various Hs and a fixed chosen Tp = 13.0 s
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Figure 5.8: Energy diffusion coefficient for various Tp and a fixed chosen Hs = 8.0 m

and diffusion coefficients vary monotonically with significant wave height. Figure 5.7

and Figure 5.8 show the variation of drift and diffusion coefficients of the energy

equation for different Bretschneider spectra with varying peak periods and constant

significant wave height Hs = 8.0 m.

5.3 Stationary Probability Density Function

Once the drift and diffusion coefficients for the energy equation are known, the

transition probability density function can be obtained by solving the corresponding

FPK equation given by

∂p

∂t
= − ∂

∂E
[m1(E)p(E, t|E0, t0)] +

1

2

∂2

∂E2
[D11(E)p(E, t|E0, t0)] (5.55)

If further stationarity is assumed, the FPK equation reduces to an ordinary dif-
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ferential equation given by

dp

dE
+

1

D11

[
dD11

dE
− 2m1

]
p = 0 (5.56)

whose solution is given by (5.57)

p(E) = K1 exp

{
−
∫ E

0

1

D11(s)

[
dD11

ds
(s)− 2m1(s)

]
ds

}
(5.57)

where K1 is a normalization constant chosen such that

∫ ∞

0

p(E)dE = 1 (5.58)

Figure 5.9 and Figure 5.10 show the stationary probability density function and

cumulative distribution function of the energy for the case of incident wave environ-

ment with Hs = 5.0 m and Tp = 13.0 s incident at angle β = 1800.

5.4 First Passage Failure Analysis

While solving the FPK equation assuming stationarity helps obtain the probabil-

ity density function of energy, it is of more interest to estimate the probability that

the energy of the system will exceed a critical value within some specified period

of time. This problem is classically referred to as the first passage failure analysis.

The mean first passage time is indicative of the stability of the system and hence

can be used as a design assessment metric to compare different systems. However,

according to Lin and Cai [18], the first passage problem is among the most difficult

problems in the theory of probabilistic structural dynamics.
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Figure 5.9: Stationary probability density function of energy E for Hs = 6.0 m and
Tp = 13.0 s
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Figure 5.10: Stationary cumulative distribution function of energy E for Hs = 6.0 m
and Tp = 13.0 s
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Consider the decoupled Itô equation for the energy process given by

dE = m1(E)dt+ σ11(E)dBt (5.59)

where σ11(E) =
√
D11(E). Specifically, we are interested in the random time τFP

when the scalar energy process E(t) exceeds a critical value Ec given that the system

starts from an initial energy level of E0 at time t0. Assuming that the transition

probability density function for the energy process is given by p(E, t|E0, t0), it is

possible to define a reliability function R(Ec, t|E0, t0) which denotes the probability

of 0 ≤ E(t) < Ec. The reliability function R(Ec, t|E0, t0) is mathematically defined

as

R(Ec, t|E0, t0) =

∫ Ec

0

p(E, t|E0, t0)dE (5.60)

It is further assumed that the boundary at E = Ec is an absorbing boundary.

This implies that a sample path is removed from the population of sample paths once

it reaches the boundary E = Ec. Without this assumption of absorbing boundary

condition, the population of sample paths can include a sample path which exceeds

Ec and at a later time goes below Ec. In such a scenario, it is particularly hard

to calculate the mean first passage time as it needs to be ensured that the process

has never exceeded the boundary before the considered first passage time. However,

in the problem of parametric roll, the boundary E = Ec corresponds to the energy

level at the tipping point beyond which capsize results. Considering E = Ec as an

absorbing boundary is equivalent to saying that the energy process E(t) can never

achieve a value of Ec without resulting in capsize. Since the population of sample

paths at time t only include those paths which have not crossed Ec even once, the
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reliability function defined above is also equal to the probability that the first passage

time τFP > t− t0.

R(Ec, t|E0, t0) =

∫ Ec

0

p(E, t|E0, t0)dE = Prob [τFP > t− t0|E(t0) = E0] (5.61)

With an absorbing boundary condition, the process can never attain stationarity.

This also implies that the probability in the region 0 ≤ E ≤ Ec is not conserved

as otherwise the reliability function would be unity. Since p(E, t|E0, t0) satisfies the

Kolmogorov backward equation (see appendix E), the reliability function R will also

satisfy the same.

∂R

∂t0
+m1(E0)

∂R

∂E0

+
1

2
D11(E0)

∂2R

∂E2
0

= 0 (5.62)

Defining a change of variable τ = t− t0, (5.62) can be expressed as

−∂R
∂τ

+m1(E0)
∂R

∂E0

+
1

2
D11(E0)

∂2R

∂E2
0

= 0 (5.63)

The probability distribution function of the first passage time τFP is given by

FτFP
(τ, Ec, E0) = Prob [τFP ≤ τ |E(t0) = E0] (5.64)

= 1−R(τ, Ec, E0) (5.65)

The probability density function of τFP is given by

pτFP
(τ, Ec, E0) =

∂FτFP

∂τ
(τ, Ec, E0) = −∂R

∂τ
(τ, Ec, E0) (5.66)
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Thus, the nth moment of τFP is given by

µn(Ec, E0) = E [τnFP ] = −
∫ ∞

0

τn
∂R

∂τ
(τ, Ec, E0)dτ (5.67)

Assuming τnR(τ, Ec, E0) tends to zero as τ → 0, µn(Ec, E0) can be expressed as

µn(Ec, E0) = n

∫ ∞

0

τn−1R(τ, Ec, E0)dτ (5.68)

Multiplying (5.63) by τn and integrating with respect to τ from 0 to ∞ results

in a recursive set of ordinary differential equations for the moments of τFP .

nµn−1 +m1(E0)
d

dE0

µn +
1

2
D11(E0)

d2

dE2
0

µn = 0 (5.69)

These set of equations shown in (5.69) are known as generalized Pontryagin equa-

tions and can be solved recursively. Substituting n = 1 and µ0 = 1 leads to Pontrya-

gin equation governing the mean first passage time µ1 = E [τFP ] given by (5.70).

1 +m1(E0)
dµ1

dE0

+
1

2
D11(E0)

d2µ1

dE2
0

= 0 (5.70)

The boundary conditions for (5.70) are given by

µ1(Ec, E0)|E0=Ec = 0 (5.71)

µ1(Ec, E0)|E0=0 <∞ (5.72)

Much of the steps of the derivation of the Pontryagin equation provided above

follows the works of Lin and Cai [18] and have been summarized here for complete-

ness.
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5.5 Boundary Condition at E = 0

The second boundary condition shown in (5.72) physically signifies that given

enough time, the system will eventually reach the critical boundary. This condition

is “qualitative” rather than “quantitative”, and is only useful when closed form

solutions exist. In many of the practical cases where close form solutions do not

exist, (5.70) is solved numerically to obtain estimates of µ1(Ec, E0). In such cases, it

is necessary to convert the boundary condition shown in (5.72) into a quantitative

condition which can be applied numerically. Lin and Cai [18] provide a discussion of

the various types of boundary conditions applicable to different scenarios.

Specifically, when D11(0) = 0 as in our example of parametric roll (see Figure 5.6

and Figure 5.8), the boundary at E = 0 is known as a singular boundary of the first

kind. If further m1(0) = 0 (as seen in Figure 5.5 and Figure 5.7), then the boundary

is further classified as of type trap. Since the Pontryagin equation is based on the

assumption that given enough time, the system will eventually reach the critical

boundary, only those boundary conditions which allow for this possibility can yield

meaningful results. Specifically, a solution of the Pontryagin equation is possible

only for a regular, entry or repulsively natural types of trap (see appendix G for

description) and the corresponding boundary condition applicable for a numerical

implementation is given by (5.73) [150].

m1(E0)µ
′
1(E0) <∞ as E0 → 0 (5.73)

As E → 0 the nonlinear oscillator can be approximated using only the linear

damping and linear restoring terms. The drift and diffusion coefficients for this

linear oscillator can easily be obtained using stochastic averaging. The corresponding

Pontryagin equation for the linear oscillator can be solved to obtain an analytical
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expression for µ′
1(E0) near Ec = 0. Applying this technique to the Volterra GZ

model, leads to boundary condition given by (5.74). Detailed derivation of the drift

and diffusion coefficients for the linear system and the boundary condition for the

singular boundary at E = 0 are provided in appendix G.

E0µ
′
1(E0) =

−2

πSc
11(2)− 2δ1

<∞ (5.74)

Note that although (5.74) provides a quantitative condition, it cannot be applied

exactly at E = 0 when attempting a direct numerical solution of the Pontryagin

equation. Instead this boundary condition is applied at a point slightly away from

E = 0.

5.6 Comparison with Monte Carlo Simulations

In order to check the validity of the developed theory, the obtained mean first

passage times are compared against estimates from Monte Carlo simulations of the

averaged system. The averaged system refers to the Itô SDE obtained after the

application of stochastic averaging. Since the excitation process is white noise for the

Itô SDE every realization will eventually reach the boundary Ec. For each significant

wave height case, five energy levels are chosen and for each energy level 1000 Monte

Carlo simulations are performed. The times to reach the basin boundary Ec from

each of these simulations are averaged to get the mean first passage time for that

energy level. The governing Itô SDE shown in (5.59) is used to simulate the energy

process. The Milstein scheme described by Higham [151] is used to simulate the Itô

SDE.

Figure 5.11 shows the comparison of the mean first passage times obtained from

solving the Pontryagin equation against the estimates from Monte Carlo simulations

of Itô SDE. It can be seen that the mean first passage time estimates from solving
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Figure 5.11: Comparison of mean first passage times calculated from stochastic av-
eraging and Monte Carlo simulations for different significant wave heights and fixed
peak period Tp = 13.0 s
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the Pontryagin equations agree well with the estimates from simulations. The slight

deviation between the theory and the Monte Carlo simulations at higher energy levels

indicate that the stochastic averaging is more conservative in the estimation of mean

first passage time. This implies that if a designer utilizes this approach, the designed

system will be at least as stable or even more stable than if the designer had utilized

the simulation approach to estimate the mean first passage time.

After application of stochastic averaging, the resulting averaged Itô system is

excited by a white noise process. Thus, every realization of the averaged system will

eventually capsize due to the unbounded variation of the excitation. Hence for the

Monte Carlo simulations of the averaged system it is practically possible to choose

a large maximum simulation time Tmax such that all of the 1000 simulations will

reach the basin boundary before this Tmax. For the simulations in Figure 5.11, the

maximum simulation time is chosen as Tmax ≈ 10(µ1)E0=0.

However, the original system excited by a narrow banded spectrum does not

demonstrate a similar trend. Given a maximum simulation time, not every realization

will capsize within a practically specified maximum simulation time. Therefore for

estimating of the mean first passage times from the Monte Carlo simulations of the

original system, only those simulations are chosen which capsize within the specified

maximum simulation time. Figure 5.12 shows the comparison of mean first passage

time obtained from Pontryagin equation with the estimates from both Monte Carlo

simulations of the original and the averaged system. It can be seen that the trend

of the Monte Carlo simulations of the original as well as the averaged system are in

reasonable agreement with the solution of the Pontryagin equation.

Note that the when choosing the initial conditions for the Monte Carlo simulations

of the original system, the energy level is specified prior to the simulation. However

the phase angle θ is chosen from a uniformly distributed random variable varying
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Figure 5.12: Comparison of mean first passage time calculated from stochastic aver-
aging and Monte Carlo simulations of both original and the averaged system for the
case with Hs = 8.0 m and Tp = 13.0 s

between 0 and 2π. The corresponding pair of (E, θ) are transformed to obtain the

initial roll angle and angular velocity which are then used as the initial conditions

for simulation of the original system. It is also important to note that the estimates

for higher initial energy levels result in more realizations which capsize and hence

have more data points in the estimation of mean first passage times. This is also the

reason for the deviation of the mean first passage time estimates from Monte Carlo

simulations of the original system from the other two methods at lower initial energy

levels.

The relative ease of computation of the mean first passage times from solving

Pontryagin equations compared to the corresponding estimates from Monte Carlo

simulations, suggests the use of this technique as design assessment tool which can

be used to compare the stability of various designs quickly. The use of this technique
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to assess the stability is further discussed in chapter 6.
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6. COMPARISON OF THE MARKOV AND THE MELNIKOV APPROACHES

So far chapter 4 and chapter 5 have detailed the Melnikov and the stochastic

averaging approaches to assess the stability of a vessel susceptible to parametric

roll in irregular head seas. While the rate of phase space flux is the quantitative

measure of stability from the Melnikov approach, the corresponding stability measure

from stochastic averaging is the mean first passage time. The Melnikov approach

is based on the theory of nonlinear dynamical systems and the stochastic averaging

stems from the theory of stochastic dynamics. As these two methods are completely

independent of each other, they provide the designer with the option to cross check

the results from one method with the other to gain confidence. In this chapter, these

two methods are compared against each other to highlight the similarities between

them. Particular emphasis is laid on the sensitivity analysis where the influence of

various parameters on the stability of the system are investigated.

While the Melnikov function introduced in chapter 4 was used primarily to cal-

culate the rate of phase space flux, it is also well known from the theory of chaotic

dynamics that the Melnikov function being positive is a necessary condition for the

system to demonstrate chaos [92]. Since it is evident from the examples observed in

chapter 4 that the Melnikov function attains positive values, it leads to the question

of whether the response observed is chaotic or not. In order to determine definitively

if chaos is occurring or not, we investigate the Lyapunov exponents of the system

which is discussed in the following section.

6.1 Lyapunov Exponent

It is known from the theory of chaotic dynamics [152] that one of the necessary

conditions for a system to exhibit chaotic response is its sensitive dependence to
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initial conditions. Sensitive dependence on initial conditions means that two orbits

arbitrarily close to each other in the phase space at a particular time will eventu-

ally diverge from each other at an exponential rate. One of the ways to ascertain

whether a system possesses sensitive dependence to initial conditions is to evaluate

the Lyapunov exponents of the system. Lyapunov exponents are defined as the av-

erage exponential rates of convergence or divergence of nearby orbits in the phase

plane [153].

Thus from the definition it is clear that for a motion converging to a fixed point,

like a node, all the Lyapunov exponents must be negative. Similarly, for a periodic

motion at least one Lyapunov exponent must be zero and finally for chaotic motion,

at least one Lyapunov exponent must be positive. While the sign of the Lyapunov

exponent ascertains if a system is chaotic or not, its value quantifies the chaos in a

system. For certain simple systems it is possible to evaluate the largest Lyapunov

exponent analytically. However, for most of the real world cases this is not possi-

ble. When an analytical expression cannot be derived, the exponent is estimated

numerically from a time history of the process obtained either from experiments or

simulations. One such algorithm to calculate the largest Lyapunov exponent from a

simulated or experimentally measured time history has been developed by Wolf et.

al. [153]. This algorithm encoded as a MATLAB program is also freely available

on the web and has been utilized in evaluating the largest Lyapunov exponent from

simulated roll motion time series data in this dissertation.

While calculating the largest Lyapunov exponent from time series data is fairly

accurate, an approximate estimate of the Lyapunov exponent in the vicinity of the

equilibrium point can also be obtained in analytical form using the stochastically

averaged system described in chapter 5 [154, 155, 156]. Consider a n-dimensional

stochastic process X(t) whose stability is of interest. Let ||X(t)|| denote the Eu-
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clidean norm of the vector X(t) defined by Equation 6.1.

||X(t)|| =
√

XT (t)X(t) =

√√√√[ n∑
i=1

X2
i (t)

]
(6.1)

Then the Lyapunov exponent λ defined as the average exponential rate of con-

vergence or divergence can be mathematically defined as shown in Equation 6.2.

λ = lim
t→∞

1

t
ln(||X(t)||) (6.2)

For a one dimensional system V (t) this expression reduces to Equation 6.3.

λ = lim
t→∞

1

t
ln(V (t)) (6.3)

From chapter 5 we know that the energy E in the roll system can be approximated

as a one dimensional Markov process and is governed by the Itô SDE shown in

Equation 6.4

dE = m1(E)dt+ σ11(E)dBt (6.4)

where the drift m1(E) and diffusion σ11(E) =
√
D11(E) coefficient are given by

Equation 5.42 and Equation 5.44 respectively. Linearizing this system about the

equilibrium point E = 0, the SDE governing the dynamics in the vicinity of the

trivial solution E = 0 can be expressed as

dE = m′
1(0)Edt+ σ′

11(0)EdBt (6.5)

where m′
1(E) and σ

′
11(E) represent the derivative of the drift m1(E) and diffusion
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σ11(E) coefficients with respect to E. The Itô equation governing ln(E(t)) can be

obtained by applying the Itô formula (see appendix E) and is given by

d(ln(E)) =

{
m′

1(0)−
1

2
[σ′

11(0)]
2

}
dt+ σ′

11(0)dBt (6.6)

The solution of this SDE is given by

ln(E) = ln(E0) +

∫ t

0

{
m′

1(0)−
1

2
[σ′

11(0)]
2

}
dt+

∫ t

0

σ′
11(0)dBt (6.7)

Now, the Lyapunov exponent near the trivial solution E = 0 can be obtained by

applying the definition shown in Equation 6.3. Thus, the estimate of the Lyapunov

exponent in the vicinity of the equilibrium point E = 0 is given by

λ = lim
t→∞

1

t
ln(E)

= lim
t→∞

1

t

∫ t

0

{
m′

1(0)−
1

2
[σ′

11(0)]
2

}
dt

=

{
m′

1(0)−
1

2
[σ′

11(0)]
2

}
(6.8)

6.2 Sensitivity Analysis

In this section the sensitivity of the stability measures from the stochastic aver-

aging technique and the Melnikov approach are compared for various cases to gain

an understanding of the relationship between the two methods. The sensitivity pa-

rameters include the significant wave height, peak period, bilge keel width and the

calm water GM0.
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Figure 6.1: Sensitivity of mean first passage time to significant wave height (Tp =
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6.2.1 Sensitivity to Significant Wave Height

The two methods of analysis are applied to a range of cases where the peak period

is kept constant at Tp = 13.0 s and the significant wave height is varied from 4.0 m

to 8.0 m. The variation of drift and diffusion coefficients for various significant wave

heights are shown in Figure 5.5 and Figure 5.6 respectively. The corresponding mean

first passage times are compared in Figure 6.1. It can be seen from Figure 6.1 that

the mean first passage time decreases with increase in significant wave height. This

trend is expected since higher significant wave heights lead to more energy being

input to the system resulting in larger responses and hence lower mean first passage

times.

Figure 6.2 shows the comparison of rate of phase space flux with the mean first

escape rate (defined as the inverse of mean first passage time evaluated for the initial
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Figure 6.2: Sensitivity of mean first escape rate to significant wave height (Tp =
13.0 s)

condition E0 = 0). It can be seen that both mean first escape rate 1
µ1(0)

and rate

of phase space flux Φ vary monotonically with Hs. Plotting the rate of phase space

flux against the mean first escape rate (Figure 6.3) demonstrates an almost linear

relationship between the two measures.

The comparison of the approximate estimate of the Lyapunov exponent from

stochastic averaging against the Lyapunov exponent calculated from simulated roll

motion is shown in Figure 6.4. It can be seen that the estimate from stochastic

averaging is always greater than the value calculated from the time series. Since the

estimate from stochastic averaging is an approximation of the Lyapunov exponent

at E = 0, it is only representative of the local behavior and is not as accurate as the

value calculated from the time series. It can be seen that the Lyapunov exponent

assumes only a small positive value suggesting that the trivial solution E = 0 is

asymptotically unstable. However a value close to zero also signifies that the system
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does not display a sensitivity to initial conditions (necessary to demonstrate chaos)

and has a nearly periodic response. This is consistent with the parametric roll

response which is a subharmonic response of the system and exhibits a strong 2 : 1

periodicity (see appendix D).

6.2.2 Sensitivity to Peak Period

Figure 6.5 shows the variation of mean first passage time with initial energy level

for various peak periods of the excitation spectra. In all these cases, the significant

wave height is fixed at Hs = 6.0 m. As the peak period is increased, the mean first

passage time decreases due to the modal frequency of the encounter wave spectrum

being closer to twice the roll natural frequency. Figure 6.6 shows the variation of

the rate of phase space flux and the mean first escape with peak period of the spec-

trum. Both the rate of phase space flux and the mean first escape rate demonstrate

similar trends and an almost linear relationship is observed between them as seen in

Figure 6.7.

The variation of Lyapunov exponent with peak period is shown in Figure 6.8.

Similar to the previous case, the estimate of Lyapunov exponent from stochastic

averaging is higher than the estimate from time series. However, it can be seen that

at Tp = 9.0 s both methods estimate a negative Lyapunov exponent. This means

that for Tp = 9.0 s and Hs = 6.0 m no parametric roll is observed and the trivial

solution E = 0 is asymptotically stable. This is also seen from the time history shown

in Figure 6.9. Note that for this case the Pontryagin equation is not applicable and

hence excluded in Figure 6.5.

6.2.3 Sensitivity to Damping

Figure 6.10 shows the variation of mean first passage time with initial energy for

three different damping scenarios. As expected, the mean first passage time increases
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Figure 6.6: Sensitivity of mean first escape rate to peak period (Hs = 6.0 m)
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Figure 6.9: Wave elevation and roll motion time history (Hs = 6.0 m,Tp = 9.0 s)

as the bilge keel width is increased. The damping in three cases is estimated using the

Ikeda approach [10] summarized in chapter 2. The corresponding variation of drift

and diffusion coefficients is shown in Figure 6.11 and Figure 6.12 respectively. Since

the diffusion coefficient only depends on the external excitation (see Equation 5.44),

no variation is observed in the diffusion coefficient with increase of damping. How-

ever, the drift coefficient is significantly dependent on the damping in the system as

seen in Equation 5.42.

The variation of mean first escape rate and rate of phase space flux with bilge

keel width is shown in Figure 6.13. It can be seen that although the trend of rate of

phase space flux is similar to that of the mean first escape rate, the magnitudes are

different.

Figure 6.14 shows the variation of estimated largest Lyapunov exponent from

both stochastic averaging and the simulated time series with the bilge keel width.

From Figure 6.11 it can be seen that the slope of the drift coefficient at E = 0 is
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Figure 6.11: Sensitivity of drift coefficient to bilge keel width (Hs = 6.0 m, Tp =
13.0 s)
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Figure 6.13: Sensitivity of mean first escape rate to bilge keel width (Hs =
6.0 m, Tp = 13.0 s)
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Figure 6.14: Variation of the Lyapunov exponent with bilge keel width (Hs =
6.0 m, Tp = 13.0 s)

almost the same for all three damping cases. From Equation 6.8 we know that the

Lyapunov exponent estimate from stochastic averaging depends only on the slope of

the drift and diffusion coefficient at E = 0. Thus, no considerable variation in the

estimate of Lyapunov exponent is seen in Figure 6.14. Although the estimate from

simulated time series shows some variation, these values are close to zero indicating

that the motion is almost periodic. This can also be seen from the simulated time

series shown in Figure 6.15.

6.2.4 Sensitivity to Calm Water Metacentric Height

Figure 6.16 shows the comparison of the mean first passage time for three dif-

ferent values of GM0. However, unlike the previous sensitivity studies, a change in

metacentric height changes the natural frequency of the vessel. To enable a consis-

tent comparison, the peak period has also been changed for the three cases such that
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Figure 6.15: Wave elevation and roll motion time history (Hs = 6.0 m, Tp = 13.0 s)
for bilge keel width of 0.4 m

the modal frequency of the spectrum is aligned with twice the roll natural frequency.

It can be seen that the mean first passage time increases with an increase in the calm

water metacentric height GM0.

The comparison of the mean first escape rate and the rate of phase space flux is

shown in Figure 6.17. The rate of phase space flux varies linearly with calm water

metacentric height GM0. While, the mean first escape rate also decreases with

increase in GM0, it is clearly not a linear relation.

Figure 6.18 shows the variation of Lyapunov exponent with calm water GM0.

Both estimates from stochastic averaging and simulations show a similar decreasing

trend with increase in GM0.

From the sensitivity studies it can be seen that both the mean first escape rate

(calculated using stochastic averaging) and the rate of phase space flux (calculated

using the Melnikov analysis) agree well in trend. Although a rigorous mathematical
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Figure 6.16: Sensitivity of mean first passage time to calm water GM0 (Hs = 6.0 m)
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Figure 6.17: Sensitivity of mean first escape rate to calm water GM0 (Hs = 6.0 m)
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Figure 6.18: Variation of the Lyapunov exponent with calm water GM0 (Hs = 6.0m)

relationship between the two methods does not exist, they both show similar sensi-

tivity trends. Thus these results indicate that both methods are equally robust in

the assessment of stability of parametric roll motion in irregular seas. Since these

methods are independent of each other they also allow the designer to cross check

the two methods and gain confidence on the stability assessment.
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7. CONCLUSION AND FUTURE DIRECTIONS

In this dissertation the stability assessment of vessels susceptible to parametric

roll in irregular seas has been studied in detail and two independent analytical meth-

ods were developed to help a designer quickly quantify the dynamic roll response in

irregular head seas. This work provides possible solutions for the ongoing discus-

sions at the International Maritime Organization (IMO) about the development of a

second generation of intact stability code with a focus on dynamic stability.

Due to the lack of existing commercial software capable of simulating parametric

roll, an early part of the investigation is focused on the development of a generic non-

linear time domain simulation tool SIMDYN capable of simulating the complicated

nonlinear dynamics of a vessel at sea. The Euler angle formulation is implemented

in the tool to account for large amplitudes of rotation. The nonlinear force vector

is computed taking into account both nonlinear restoring and damping forces. The

nonlinear restoring forces and moments are computed by integrating the nonlinear

Froude-Krylov and hydrostatic pressures over the instantaneous wetted surface un-

der the incident waterline. The nonlinear roll damping is calculated by the program

using the empirical formulation as described by Ikeda [63] and Himeno [62].

The developed program is validated extensively with available parametric roll ex-

periments to gain confidence and to ascertain that the simulations accurately capture

the relevant dynamics. Further, a statistical study is performed to demonstrate the

practical non-ergodicity of parametric roll in irregular seas. The developed program

is also applied to simulate the parametric response of a classic spar platform and the

results are compared against an available experimental time history to verify that

the nonlinear simulation program can capture the dynamics of parametric response
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for both ship shaped and non-ship shaped structures.

Although time domain simulations are accurate, they are time consuming and

hence unsuitable for stability assessment in the basic design phase. Thus for a sta-

bility assessment technique to be applicable in the basic design phase, the criterion

must be either analytic or at least semi-analytic in nature for quick assessment. With

this in mind, further investigation is centered around developing an analytical model

for the roll motion which captures the relevant dynamics of the problem. On com-

parison with the time domain simulation tool, it is found that the existing models

in the literature like the Volterra GM model and the Grim’s effective wave model

are not sufficiently accurate in capturing the dynamics of the parametric roll. Par-

ticularly it is found that the Grim’s approximation of irregular wave profile in space

by a regular wave does not agree well with the nonlinear time domain simulations.

Thus, a new analytical model for roll motion is proposed and developed (known as

the Volterra GZ model) to accurately capture the restoring moment in head seas.

Through comparisons with SIMDYN it is shown that the Volterra GZ model cap-

tures the roll dynamics much better than the existing models. The development of

the Volterra GZ model is one of the unique contributions of this dissertation.

The Volterra GZ model is used as a basis for applying further analytical tech-

niques to quantify the stability of a vessel in irregular head seas. Two independent

methods have been developed in this dissertation to assess the stability of a vessel

subjected to indirect excitation in irregular seas.

The first technique known as the Melnikov approach is based on the theory of

nonlinear dynamical systems. In this approach the Melnikov function for the para-

metrically excited roll motion is derived based on the analytical Volterra GZ model.

Stability is assessed in terms of the rate of phase space flux which physically signifies

the rate at which the safe basin characterizing the originally safe (bounded) set of
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initial conditions is eroded under the effect of the excitation. Closed form expressions

for the rate of phase space flux are derived and an associated critical significant wave

height is derived. These expressions allow for a quick evaluation of rate of phase

space flux without the need to simulate a time history of the process.

The second technique is known as the stochastic averaging approach or alterna-

tively as the Markov approach and is based on the theory of stochastic dynamics.

In this approach, the Volterra GZ roll model is averaged to yield that the energy

of the system can be approximated as a Markov process. Further the coefficients of

the governing Itô SDE for the energy process can be related back to the Volterra

GZ transfer functions and the input wave elevation spectrum. This approximation

of energy as a Markov process allows the application of the Pontryagin equation to

solve for the mean first passage time. The mean first passage time represents the

expected time for the process to reach the capsize boundary given that the system

starts with zero energy. The mean first passage time acts as a measure of the stability

of the system when subjected to indirect excitation. The mean first passage times

obtained from the theory are compared with estimates from Monte Carlo simulations

of the roll equation and are found to agree well with each other. The application

of stochastic averaging yields analytical expressions for the drift and diffusion coef-

ficients in the Itô equation. The next step of getting the mean first passage time

involves solving a boundary value problem given by the Pontryagin equation which

makes this method semi-analytical. However, solving this boundary value problem is

not at all computationally intense and yields solutions almost instantaneously which

enables the use of this approach for quick design assessment.

These two methods are compared for a series of cases and it is found that the

stability assessments from both methods are in agreement with each other. Both

the Melnikov approach and the Markov approach developed here are original contri-
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butions of this dissertation as they have not been previously used to analyze para-

metrically excited systems which are significantly more challenging than the directly

excited systems. Due to the analytical and semi-analytical nature of these methods,

they provide for a quick and easy assessment of stability of vessels subjected to para-

metric excitation which can be easily implemented into either stability guidelines or

a regulatory framework.

7.1 Reliability Analysis

So far the discussion of quantifying the susceptibility of a ship to parametric roll

has been limited to one sea state defined by the significant wave height Hs and peak

period Tp. However, often when designing marine or offshore structures designers are

interested in quantifying the maximum response the structure is likely to experience

in its lifetime. A ship or offshore structure encounters several sea states over the

course of its life. Therefore the environment can no longer be considered to be

stationary with one chosen value of significant wave height Hs and peak period Tp.

For a long term analysis, the environment is usually specified in the form of a wave

scatter diagram indicating the frequency of occurrence of various combinations of

significant wave height and peak period.

For estimating the response likely to occur over large intervals of time, recourse is

usually taken to long term extreme value prediction theory and reliability analysis.

These research areas have been studied extensively in the past and their application

to marine and offshore structures are well documented too [157, 158, 159, 160, 161,

162, 163]. However, most of these studies involve expressing the long term proba-

bility distribution of the extreme value in terms of long term crossing rates or the

probability distribution of peaks or short term extremes [164]. However a common

theme in these approaches is that the probability density function of the response
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for a given value of significant wave height and peak period is usually known either

from simulations or by obtaining the solution of FPK equation.

The Melnikov and Markov approaches lead to the calculation of rate of phase

space flux and mean first passage time which are indicative of how much time the

system takes before reaching a critical boundary. This is significantly different from

the probability distribution of the response. Therefore the traditional reliability

analysis methods quantifying the probability of exceedance are not directly applicable

to this problem herein.

However, an attempt can still be made to estimate the system reliability by

combining some of the ideas of the long term extreme value analysis. One possible

approach includes calculating the mean first passage time estimate from either the

Melnikov or stochastic dynamics approach for several combinations of significant

wave height and peak period and then calculating the long term mean first passage

estimate by taking a weighted sum based on the frequency of occurrence listed in

the wave scatter diagram. Mathematically, the long term mean first passage time

µ
(l)
1 can be expressed as shown in (7.1).

µ
(l)
1 =

∫∫
µ1(hs, tp)fHsTp(hs, tp)dhsdtp (7.1)

fHsTp(hs, tp) represents the joint probability density function of significant wave

height and peak period which can be empirically determined from the wave scatter

diagram. However if the wave scatter diagram is too coarse, leading to poor resolution

in tail regions, Naess and Moan [164] suggest the use of smooth joint probability

density function of the parameters characterizing the short term sea states as shown

192



below.

fHsTp(hs, tp) = fHs(hs)fTp|Hs(tp|hs) (7.2)

where

fHs(hs) =


1√

2παhs
exp{− (ln(hs)−θ)2

2α2 } hs ≤ η

β
ρ

(
hs

ρ

)β−1

exp{−
(

hs

ρ

)β
} hs > η

(7.3)

fTp|Hs(tp|hs) =
1√

2πσtp
exp{−(ln(tp)− µ)2

2σ2
} (7.4)

The parameters µ and σ are given by

µ = a1 + a2h
a3
s (7.5)

σ = b1 + b2 exp(−b3hs) (7.6)

The parameters α, θ, β, η, ρ, a1, a2, a3, b1, b2, b3 depend on the geographical

location. For the North sea these values are given as α = 0.6565, θ = 0.77, β = 2.691,

η = 2.90, ρ = 1.503, a1 = 1.134, a2 = 0.892, a3 = 0.225, b1 = 0.005, b2 = 0.120,

b3 = 0.455 [164]. The parameter η is the transition parameter separating the log-

normal distribution for smaller significant wave heights and the Weibull distribution

for the large wave heights. The use of a different distribution focusing on the tail

region is a commonly employed approach to achieve a better prediction of the extreme

values of a process [86, 85].

Note that the short term mean first passage time µ1(hs, tp) can be estimated using

either the stochastic dynamics approach or the Melnikov approach (inverse of the
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rate of phase space flux). The calculated long term mean first passage time can then

used as a measure for reliability of the structure. In particular it can be compared

against the design life of the structure to effectively understand the risk associated

with each design. Due to the use of analytical techniques, this method of estimating

reliability of the structure will not be computationally intensive and can be managed

in a reasonable amount of time.

As is evident from above, demonstration of method will require knowing the envi-

ronmental conditions in significant detail which are not always readily available and

also significantly depend on the geographical location under consideration. Hence

this approach is deemed out of the scope of this dissertation and is included as future

work continuing on the developments described here.
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APPENDIX A

RELATION BETWEEN TIME AND FREQUENCY DOMAIN DESCRIPTION

The radiation force vector as described in subsection 2.3.2 is shown in (A.1). For

simplicity in notation the subscript in {FRad} has been dropped.

{F} = −[A(∞)]{ξ̈} − [B(∞)]{ξ̇} −
∫ t

−∞
[K(t− τ)]{ξ̇(τ)} dτ (A.1)

Expanding the matrix form and using a change of variables in the integral, (A.1)

can be expressed in the summation form as shown below.

Fj =−
6∑

k=1

Ajk(∞)ξ̈k −
6∑

k=1

Bjk(∞)ξ̇k

−
6∑

k=1

∫ ∞

0

Kjk(τ)ξ̇k(t− τ) dτ for j = 1, 2, ..., 6 (A.2)

Taking a Fourier transform of (A.2) yields

F [Fj] =
6∑

k=1

ω2Ajk(∞)F [ξk]−
6∑

k=1

iωBjk(∞)F [ξk]−
6∑

k=1

F

[∫ ∞

0

Kjk(τ)ξ̇k(t− τ) dτ

]
(A.3)

where

F [f(t)] =

∫ ∞

−∞
e−iωtf(t) dt (A.4)

F−1 [F (ω)] =
1

2π

∫ ∞

−∞
eiωtF (ω) dω (A.5)
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If f(t) = 0 for t < 0

F [f ] = Fc [f ]− iFs [f ] (A.6)

where

Fc [f(t)] =

∫ ∞

0

f(t) cos(ωt) dt (A.7)

Fs [f(t)] =

∫ ∞

0

f(t) sin(ωt) dt (A.8)

The Fourier transform of the convolution integral can be expanded as shown

below.

F

[∫ ∞

0

Kjk(τ)ξ̇k(t− τ)dτ

]
=

∫ ∞

−∞
e−iωt

∫ ∞

0

Kjk(τ)ξ̇k(t− τ) dτ dt (A.9)

=

∫ ∞

0

Kjk(τ)

∫ ∞

−∞
e−iωtξ̇k(t− τ) dt dτ (A.10)

=

∫ ∞

0

Kjk(τ)e
−iωτ

∫ ∞

−∞
e−iω(t−τ)ξ̇k(t− τ) dt dτ (A.11)

= iωF [ξk(t)]

∫ ∞

0

Kjk(τ)e
−iωτ dτ (A.12)

= iωF [ξk(t)] (Fc [Kjk(τ)]− iFs [Kjk(τ)]) (A.13)

Substituting (A.13) into (A.3)

F [Fj] =
6∑

k=1

[
ω2Ajk(∞)− ωFs [Kjk(τ)]− iω{Bjk(∞) + Fc [Kjk(τ)]}

]
F [ξk]

(A.14)
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However, it is known from frequency domain formulation that

F [Fj] =
6∑

k=1

[
ω2Ajk(ω)− iωBjk(ω)

]
F [ξk] (A.15)

Comparing the real and imaginary parts of (A.14) and (A.15) yields the follow-

ing equations relating the frequency domain quantities to the time domain impulse

response functions.

Ajk(ω) = Ajk(∞)− 1

ω

∫ ∞

0

Kjk(τ) sin(ωτ) dτ (A.16)

Bjk(ω) = Bjk(∞) +

∫ ∞

0

Kjk(τ) cos(ωτ) dτ (A.17)

Taking a inverse transform yields

Kjk(τ) =
2

π

∫ ∞

0

ω [Ajk(∞)− Ajk(ω)] sin(ωτ) dω (A.18)

Kjk(τ) =
2

π

∫ ∞

0

[Bjk(ω)−Bjk(∞)] cos(ωτ) dω (A.19)
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APPENDIX B

RECASTING EQUATIONS OF MOTION FOR NUMERICAL INTEGRATION ∗

The complete nonlinear equations of motion are given by (B.1) and (B.2).

m[ξ̈ + ω̇ × (xG − ξ) + ω × [ω × (xG − ξ)]] = F (B.1)

Iω̇′ + ω′ × Iω′ = R [M − xG × F ] (B.2)

Let α = {ξ4 ξ5 ξ6}T . Then ω′ and ω from (2.12) and (2.14) can expressed as

shown in (B.4) and (B.6) respectively.

ω′ =


c5c6ξ̇4 + s6ξ̇5

−c5s6ξ̇4 + c6ξ̇5

s5ξ̇4 + ξ̇6

 =


c5c6 s6 0

−c5s6 c6 0

s5 0 1



ξ̇4

ξ̇5

ξ̇6

 (B.3)

= P α̇ (B.4)

ω =


ξ̇4 + ξ̇6s5

ξ̇5c4 + ξ̇6s4c5

ξ̇5s4 + ξ̇6c4c5

 =


1 0 s5

0 c4 s4c5

0 s4 c4c5



ξ̇4

ξ̇5

ξ̇6

 (B.5)

= Qα̇ (B.6)

Let a = a1î+a2ĵ+a3k̂ and b = b1î+ b2ĵ+ b3k̂ be two vectors. The cross product

∗This appendix is reprinted with permission from “Large-amplitude time-domain simulation tool
for marine and offshore motion prediction”, 2015. Marine Systems and Ocean Technology, 10(1),
pp 1-17, Copyright 2015 by Sociedade Brasileira de Engenharia Naval
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of the two vectors can be expressed as a multiplication of a matrix and a vector as

shown in (B.7) and (B.8).

a× b = (a2b3 − b2a3)̂i+ (a3b1 − b3a1)ĵ + (a1b2 − b1a2)k̂

=


(a2b3 − b2a3)

(a3b1 − b3a1)

(a1b2 − b1a2)


=


0 −a3 a2

a3 0 −a1

−a2 a1 0



b1

b2

b3


= C1(a)b (B.7)

a× b = (a2b3 − b2a3)̂i+ (a3b1 − b3a1)ĵ + (a1b2 − b1a2)k̂

=


(a2b3 − b2a3)

(a3b1 − b3a1)

(a1b2 − b1a2)


=


0 b3 −b2

−b3 0 b1

b2 −b1 0



a1

a2

a3


= C2(b)a (B.8)
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C1 and C2 for any general vector a = a1î+ a2ĵ + a3k̂ are given by

C1(a) =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 (B.9)

C2(a) = −C1(a) =


0 a3 −a2

−a3 0 a1

a2 −a1 0

 (B.10)

Substituting expression for F from (B.1) into (B.2) gives

Iω̇′ + ω′ × Iω′ =R[M − xG ×m[ξ̈ + ω̇ × (xG − ξ)

+ ω × [ω × (xG − ξ)]]] (B.11)

Iω̇′ +R[xG ×m[ξ̈ + ω̇ × (xG − ξ)]]

= R[M − xG ×m[ω × [ω × (xG − ξ)]]]− ω′ × Iω′ (B.12)

IP α̈+mRC1(xG)ξ̈ +mRC1(xG)C2(xG − ξ)ω̇

= R[M − xG ×m[ω × [ω × (xG − ξ)]]]

− ω′ × Iω′ − IṖ α̇ (B.13)
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mRC1(xG)ξ̈ + IP α̈+mRC1(xG)C2(xG − ξ)Qα̈

= R[M −mC1(xG)[Qα̇× [Qα̇× (xG − ξ)]]]

− P α̇× IP α̇− [IṖ +mRC1(xG)C2(xG − ξ)Q̇]α̇ (B.14)

Similarly, the translational equation (B.1) can be rearranged to obtain

mξ̈ +mC2(xG − ξ)Qα̈

= F −m[ω × [ω × (xG − ξ)]]−mC2(xG − ξ)Q̇α̇ (B.15)

Combining (B.15) and (B.14)

 mI3×3
d mC2(xG − ξ)Q

RC1(xG) IP +mRC1(xG)C2(xG − ξ)Q


 ξ̈

α̈


=


F −m[ω × [ω × (xG − ξ)]]−mC2(xG − ξ)Q̇α̇ R[M −mC1(xG)[Qα̇× [Qα̇× (xG − ξ)]]]

−P α̇× IP α̇− [IṖ +mRC1(xG)C2(xG − ξ)Q̇]α̇


 (B.16)

where I3×3
d is 3×3 identity matrix. Now the force and moment vector still contain

the infinite added mass terms which are proportional to the acceleration.

F

M

 =

 F1

M1

−

A3×3
11 A3×3

12

A3×3
21 A3×3

22


6×6

 ξ̈

α̈

 (B.17)
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 mI3×3
d + A3×3

11 mC2(xG − ξ)Q+ A3×3
12

RC1(xG) + A3×3
21 IP +mRC1(xG)C2(xG − ξ)Q+ A3×3

22


 ξ̈

α̈


=


F1 −m[ω × [ω × (xG − ξ)]]−mC2(xG − ξ)Q̇α̇ R[M1 −mC1(xG)[Qα̇× [Qα̇× (xG − ξ)]]]

−P α̇× IP α̇− [IṖ +mRC1(xG)C2(xG − ξ)Q̇]α̇


 (B.18)

which in simplified notation might be written as

[Ma]{v̇} = {f} (B.19)

where v =

 ξ̇

α̇

 = {ξ̇1 ξ̇2 ξ̇3 ξ̇4 ξ̇5 ξ̇6}T
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APPENDIX C

CALCULATION OF GZ
2D

FOR EXACT GZ CALCULATION IN IRREGULAR

WAVE

The calculation of the 2-D GZ for each section in irregular waves is described in

this appendix. As seen from chapter 3, GZ
2D

varies over the length of the ship due

to the variation in geometry and the wave elevation with length.

The first step in evaluating the GZ
2D
(x) is to evaluate the instantaneous under-

water hull form at every section and estimate the location of center of gravity and

center of buoyancy in the heeled position.

For illustration purposes a specific example is considered here. The wave elevation

is obtained from a Bretschneider spectrum with significant wave height HS = 5m

and modal period Tz = 13s and is shown in Figure C.1a. The corresponding heave

and pitch motions from linear theory are shown in Figure C.1b and Figure C.1d

respectively. The roll motion is simulated using an exact GZ formulation and is

shown in Figure C.1c. The hull form is divided into 200 sections placed evenly along

the length of the model. The relative wave elevation across the ship at each section

at time t = 4417s is shown in Figure C.1e.

The sections are numbered from 1 to 200 with section 1 and 200 being the aft

most and forward most sections respectively. The instantaneous position of three

sections - 20, 100 and 180 corresponding to aft, midship and forward regions of the

ship are shown with respect to the position of the relative water line are shown in

Figure C.2.

The green line represents the relative water at that particular section. The initial

position of the section is shown as a blue curve. The rotated position of the section
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Figure C.1: Wave elevation and motions in a 3-hour irregular sea
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(a) Section 20: x = −108.79m from mid-
ship

(b) Section 100: x = 1.173m from mid-
ship

(c) Section 180: x = 111.135m from mid-
ship

Figure C.2: Instantaneous position of hull form with respect to relative water line at
t = 4417s
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is obtained by a rotational transformation and is represented by the red curve. The

intersection of the relative waterline (green line) with the rotated section (red curve)

defines the instantaneous waterline on the hull.

The sectional area A is obtained by numerical integration of the section under the

relative water line which is represented by the shaded area in Figure C.2. The new

position of center of buoyancy for the section under consideration is the centroid of

shaded area and is represented by the green dot in Figure C.2. Let the new position

of center of buoyancy of the section in the rolled orientation be given by (yrB, z
r
B).

Note that both sectional area and center of buoyancy are given by functions of the

longitudinal position of section x.

A = A(x) (C.1)

(yrB, z
r
B) = (yrB(x), z

r
B(x)) (C.2)

Similarly the new position of center of gravity due to roll motion is calculated at

each section and is represented by a red dot in Figure C.2. Let the old position of

center of gravity in upright condition be given by (yG, zG) and its new position in

the rolled orientation be given by (yrG, z
r
G). The two coordinates are related by the

relation

yrG = yG cosϕ− zG sinϕ (C.3)

zrG = yG sinϕ+ zG cosϕ (C.4)

where ϕ is the instantaneous roll angle. Note that while center of buoyancy

(yrB, z
r
B) varies with length, the center of gravity (yrG, z

r
G) is invariant along the length

of the ship. The sectional GZ
2D
(x) now follows from a similar approach as shown in
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(3.3), but applied to 2D case and is given by

GZ
2D
(x) =

yrB(x)A(x)− yrGA0(x)

A0(x)
= yrB(x)

A(x)

A0(x)
− yrG (C.5)

where A0(x) is the sectional area under the calm waterline in the upright (ϕ = 0)

condition.
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APPENDIX D

SUBHARMONIC PARAMETRIC RESPONSE

This appendix discusses the 2 : 1 subharmonic nature of the response of systems

excited parametrically. For the ease of explanation the simple example of Mathieu

equation is chosen. The Mathieu equation is given by (D.1).

ẍ+ µ1ẋ+ (α + γ cos(t))x = 0 (D.1)

It can be thought of as a simplified version of the model described in chap-

ter 3 where the roll restoring arm is approximated by a linear stiffness with a sinu-

soidally varying metacentric height, the frequency dependent added mass and radi-

ation damping are assumed to be equal to their value at the roll natural frequency

and the system is assumed to have only linear roll damping. This equation can be

expressed in the state space form as shown in (D.2).

ẋẏ
 =

 0 1

−(α + γ cos(t)) −µ1


xy
 (D.2)

In a general form this can be represented as (D.3)

ẋ = P (t)x (D.3)

where x represents a n×1 vector and P (t) represents a n×n time varying matrix

with a minimal period of T (P (t+T ) = P (t) for the smallest possible T ). Let Φ(t) be

a fundamental matrix for the system shown in (D.3) which satisfies Φ̇(t) = P (t)Φ(t).
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Due to the periodicity of P (t), Φ(t + T ) also satisfies the same equation and hence

must be a fundamental matrix too. This implies that the columns of Φ(t + T ) are

some linear combinations of the columns of Φ(t). Mathematically, Φ(t) and Φ(t+T )

are related by a constant matrix Q as shown in (D.4).

Φ(t+ T ) = Φ(t)Q (D.4)

Q = Φ(t)−1Φ(t+ T ) (D.5)

Let λ be an eigenvalue of the constant matrix Q and v be the corresponding

eigenvector. Consider a solution χ(t) = Φ(t)v, then χ(t+ T ) is given by

χ(t+ T ) = Φ(t+ T )v = Φ(t)Qv = Φ(t)λv = λχ(t) (D.6)

This result that the system described by (D.7) where P (t) is periodic with mini-

mal period T has at least one non-trivial solution χ(t) such that (D.6) holds is known

as Floquet’s theory [92].

χ(t+ T ) = λχ(t) (D.7)

Periodic solutions exist when the eigenvalue of the monodromy matrix Q is a mth

root of unity for any integer m as shown in (D.8).

χ(t+mT ) = λχ(t+ (m− 1)T ) = ... = λmχ(t) = χ(t) (D.8)

It is also clear from (D.7) that when |λ| > 1 the solutions are unstable and

vice versa. Thus in order to determine the stability of a system it is important

to determine when the absolute value of the eigenvalues of the monodromy matrix
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exceed unity.

The product of all the eigenvalues of a system is given by (D.9) where tr{P (s)}

represents the trace of P (s) [92].

λ1λ2...λn = exp

(∫ T

0

tr{P (s)}ds
)

(D.9)

For the Mathieu equation shown in (D.2), the product of the two eigenvalues λ1

and λ2 is given by

λ1λ2 = e−
∫ 2π
0 µ1ds = e−2πµ1 (D.10)

When the system is damped (µ1 > 0), the product of the eigenvalues will always

be less than unity (λ1λ2 < 1). If the two eigenvalues are complex conjugates (λ1,2 =

a±ib), then the absolute value of each eigenvalue is less than unity. Thus the solution

is asymptotically stable and converges to the trivial solution.

|λ1,2| =
√
a2 + b2 =

√
λ1λ2 =

√
e−2πµ1 < 1 (D.11)

However, if the eigenvalues are real it means that at least one eigenvalue must

have an absolute value greater than unity leading to unstable solutions. Particularly,

there are two possibilities - λ ≥ 1 and λ ≤ −1 which both result in unstable solutions.

λ = 1 corresponds to solution with minimal period 2π. However, λ = −1 corresponds

to a solution with minimal period of 4π as shown below.

x(t+ 4π) = −x(t+ 2π) = x(t) (D.12)

Let x2π(t) and x4π(t) represent the 2π and 4π periodic solutions of the Mathieu
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equation given in (D.2). These solutions can be expressed as Fourier series as shown

below.

x2π(t) = a0 +
∞∑
n=1

an cos(nt) + bn sin(nt) (D.13)

x4π(t) = c0 +
∞∑

n=1,3,5,...

cn cos

(
nt

2

)
+ dn sin

(
nt

2

)
(D.14)

Substituting the 2π periodic solution x2π(t) into the (D.1) and equating the co-

efficients of cos(nt) and sin(nt) to zero gives an infinite set of equations represented

by



α γ
2

0 0 0 0 · · ·

γ α− 1 µ1
γ
2

0 0 · · ·

0 µ1 α− 1 0 γ
2

0 · · ·

0 γ
2

0 α− 4 2µ1
γ
2

· · ·

0 0 γ
2

2µ1 α− 4 0 · · ·
...

...
...

...
...

...
. . .





a0

a1

b1

a2

b2
...



=



0

0

0

0

0

...



(D.15)

Similarly substituting the 4π periodic solution x4π(t) into (D.1) and equating

the coefficients of cos
(
nt
2

)
and sin

(
nt
2

)
to zero gives another infinite set of equations

represented by



α− 1
4
+ γ

2
µ1

2
γ
2

0 0 · · ·

−µ1

2
α− 1

4
− γ

2
µ1

γ
2

0 · · ·
γ
2

0 α− 9
4

3µ1

2
γ
2

· · ·

0 γ
2

−3µ1

2
α− 9

4
0 · · ·

...
...

...
...

...
. . .





c1

d1

c2

d2
...


=



0

0

0

0

...


(D.16)
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Figure D.1: Mathieu instability chart

Both (D.15) and (D.16) are infinite set of linear homogeneous equations and for

a unique solution to exist, the determinant of the matrices must be zero. Although

theoretically infinite determinants need to be computed, practically computing the

determinant of the truncated infinite matrix provides implicit relations between α

and γ. A plot of the boundaries on the α− γ plane is shown in Figure D.1.

Figure D.2 shows six points on the Mathieu instability chart which are chosen

to be numerically simulated. Points A, B and C are in the unstable region of the

instability chart while points D, E and F are in the stable region. The simulated time

histories are shown in Figure D.3 and Figure D.4. It can be seen from Figure D.3

that the solution increases exponentially to reach extremely large values. However,

the same cases when simulated with additional quadratic damping results in limiting

the amplitude of response as shown in Figure D.5.

Simulated time history with quadratic damping also clearly shows period of re-
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Figure D.2: Behavior of different positions on Mathieu instability chart
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Figure D.5: Unstable solutions at points A, B and C simulated with quadratic damp-
ing
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sponse. Points A and C which correspond to the 4π periodic solution tongues in

Figure D.2 clearly show a similar period in the simulated time history too. Point

B on the other hand lies in the tongue due to the 2π periodic solution and hence

displays a period of 2π.

It is important to note that the first tongue on the Mathieu instability chart

corresponds to the 4π solution. This means that the response in this region will have

twice the period of the excitation. The Mathieu equation described in (D.1) shows

that the excitation is 2π periodic and hence the response corresponding to point A

in Figure D.5 shows a 4π periodic subharmonic response.

The parametric roll of a ship falls under this fundamental resonance region and

hence displays a 2 : 1 subharmonic response. On the other hand, parametric exci-

tation of classic spar platforms usually falls in the higher harmonic tongues of the

Mathieu instability chart. It can be seen from Figure D.1 that with the addition

of linear damping, the higher tongues are pushed higher up, meaning that a sig-

nificant excitation is needed to excite the system into instability corresponding to

non-fundamental tongues. Therefore the problem for parametric excitation for spars

is not as much of concern when compared to the problem of parametric roll for ships.
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APPENDIX E

INTRODUCTION TO STOCHASTIC DYNAMICS

This appendix provides an introduction to the concepts of stochastic dynamics

which are used in chapter 5 in the application of stochastic averaging technique.

Since chapter 5 only uses the concepts of stochastic dynamics for one dimensional

processes, the description in this appendix is restricted to scalar stochastic processes.

For a more general description of vector stochastic processes please refer to standard

textbooks such as Lutes and Sarkani [84] or Lin and Cai [18]. A more mathematically

rigorous introduction to the subject can be found in the textbook by Duan [165].

In case of a linear system excited by Gaussian excitation, the response is also

a Gaussian process and its probabilistic characteristics can be quantified exactly.

However, such exact solutions do not exist for a general nonlinear system. In some

special cases where the response can be characterized as a Markov process, it is

possible to obtain exact solutions.

E.1 Markov Process and Chapman-Kolmogorov Equation

A stochastic process X(t) is said to be a scalar Markov process if it satisfies the

property shown in (E.1)

P [X(tn) ≤ xn|X(tn−1) = xn−1, X(tn−2) = xn−2, ..., X(t0) = x0]

= P [X(tn) ≤ xn|X(tn−1) = xn−1] for all tn > tn−1 > ... > t0 (E.1)

where P [B|A] represents the conditional probability of event B given that event

A has occurred. It can further be shown [18] that a sufficient condition for a process
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X(t) to be Markov is that the increments of the process in non-overlapping time

increments are independent i.e. [X(t4)−X(t3)] and [X(t2)−X(t1)] are independent

for all possible values of t4 > t3 ≥ t2 > t1.

The probability P [X(t) ≤ x|X(t0) = x0] is known as the transition probability

distribution function. If the transition probability distribution function is differen-

tiable, the corresponding transition probability density function is defined by (E.2).

p(x, t|x0, t0) ≡ pX(t)(x|X(t0) = x0) =
∂

∂x
P [X(t) ≤ x|X(t0) = x0] (E.2)

A Markov process is completely characterized by its transition probability density

function p(x, t|x0, t0) and the probability density of the initial condition pX(t0)(x). In

case of a deterministic initial condition X(t0) = x0, the probability density function

of the initial condition is given by a Dirac delta function as shown below.

pX(t0)(x) = δ(x− x0) (E.3)

Using the Markov property shown in (E.1), the joint probability density function

of [X(tn), X(tn−1), ..., X(t0)] expressed as p(xn, tn;xn−1, tn−1; ...;x0, t0) is given by

p(xn, tn;xn−1, tn−1; ...;x0, t0)

= p(xn, tn|xn−1, tn−1; ...;x0, t0)× p(xn−1, tn−1; ...;x0, t0)

= p(xn, tn|xn−1, tn−1)× p(xn−1, tn−1; ...;x0, t0)

= p(xn, tn|xn−1, tn−1)× p(xn−1, tn−1|xn−2, tn−2)×

...× p(x1, t1|x0, t0)× pX(t0)(x0) (E.4)
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This implies that for t0 < t < t1,

p(x1, t1; y, t|x0, t0) = p(x1, t1|y, t;x0, t0)× p(y, t|x0, t0)

= p(x1, t1|y, t)× p(y, t|x0, t0) (E.5)

Integrating (E.5) with respect to y leads to an expression for the transition prob-

ability density function p(x1, t1|x0, t0) given by (E.6) and is known as the Chapman-

Kolmogorov equation.

p(x1, t1|x0, t0) =
∫ ∞

−∞
p(x1, t1|y, t)× p(y, t|x0, t0)dy (E.6)

E.2 Fokker Planck Kolmogorov (FPK) Equation

In this section the governing differential equation for the transition probabil-

ity density function of a Markov process X(t) is derived using a general approach

adopted in Lutes and Sarkani [84]. The time derivative of the transition probability

density function is given by

∂

∂t
pX(t)(x|X(0) = x0)

= lim
∆t→0

1

∆t

[
pX(t+∆t)(x|X(0) = x0)− pX(t)(x|X(0) = x0)

]
(E.7)

The basic idea in deriving the governing differential equation involves rewriting

(E.7) in terms of the conditional moments of the increment ∆X = X(t+∆t)−X(t).

In many cases the conditional moments of the increments can be obtained using the

equations of motion of the system which lead to the governing differential equation

for the transition probability density function of the response of the system. As a
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first step we rewrite the probability density function of X(t + ∆t) in terms of the

joint probability density function of X(t) and ∆X as shown in (E.8).

pX(t+∆t)(y|X(0) = x0) =

∫ ∞

−∞
pX(t),X(t+∆t)(x, y|X(0) = x0)dx

=

∫ ∞

−∞
pX(t)(x|X(0) = x0)× p∆X(y − x|X(t) = x,X(0) = x0)dx

=

∫ ∞

−∞
pX(t)(x|X(0) = x0)× p∆X(y − x|X(t) = x)dx (E.8)

The conditional probability density function of the increment can be rewritten

as (E.9) in order to obtain a range of values of ∆X which is later used to obtain the

conditional moments.

p∆X(y − x|X(t) = x) =

∫ ∞

−∞
p∆X(z|X(t) = x)δ(z − y + x)dz (E.9)

The Dirac delta function in (E.9) can be expressed as an inverse Fourier transform

as shown below

δ(z − y + x) =
1

2π

∫ ∞

−∞
eiθ(z−y+x)dθ

=
1

2π

∫ ∞

−∞

[
∞∑
n=0

(iθz)n

n!

]
e−iθ(y−x)dθ (E.10)
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The conditional probability density function of ∆X is now given by

p∆X(y − x|X(t) = x)

=

∫ ∞

−∞
p∆X(z|X(t) = x)

{
1

2π

∫ ∞

−∞

[
∞∑
n=0

(iθz)n

n!

]
e−iθ(y−x)dθ

}
dz

=
1

2π

∫ ∞

−∞

[
∞∑
n=0

(iθ)n

n!

{∫ ∞

−∞
znp∆X(z|X(t) = x)dz

}]
e−iθ(y−x)dθ

=
1

2π

∫ ∞

−∞

[
∞∑
n=0

(iθ)n

n!
E [(∆X)n|X(t) = x]

]
e−iθ(y−x)dθ (E.11)

Substituting (E.11) into (E.8) gives

pX(t+∆t)(y|X(0) = x0)

=

∫ ∞

−∞
pX(t)(x|X(0) = x0)

×

{
1

2π

∫ ∞

−∞

[
∞∑
n=0

(iθ)n

n!
E [(∆X)n|X(t) = x]

]
e−iθ(y−x)dθ

}
dx

= pX(t)(y|X(0) = x0) +

∫ ∞

−∞
pX(t)(x|X(0) = x0)

×

{
1

2π

∫ ∞

−∞

[
∞∑
n=1

(iθ)n

n!
E [(∆X)n|X(t) = x]

]
e−iθ(y−x)dθ

}
dx (E.12)

Substituting (E.12) into (E.7) and taking the limit results in

∂pX(t)

∂t
(y|X(0) = x0) =

1

2π

∞∑
n=1

[∫ ∞

−∞

(iθ)n

n!

×

{∫ ∞

−∞

[
C(j)(x, t)pX(t)(x|X(0) = x0)

]
e−iθ(y−x)dx

}
dθ

]
(E.13)

where C(n)(x, t) known as the derivate moments [18] or intensity functions [137,
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138] and are given by

C(n)(x, t) = lim
∆t→0

1

∆t
E [(∆X)n|X(t) = x]

= lim
∆t→0

1

∆t

∫ ∞

−∞
(y − x)np(y, t+∆t|x, t)dy (E.14)

Applying repeated integration by parts to the inner integral in (E.13) leads to

the following simplification

∂pX(t)

∂t
(y|X(0) = x0)

=
1

2π

∞∑
n=1

[∫ ∞

−∞

(−1)n

n!
×

{∫ ∞

−∞

∂n

∂xn
[
C(j)(x, t)pX(t)(x|X(0) = x0)

]
e−iθ(y−x)dx

}
dθ

]

=
∞∑
n=1

[∫ ∞

−∞

(−1)n

n!

∂n

∂xn
[
C(j)(x, t)pX(t)(x|X(0) = x0)

]
×

{
1

2π

∫ ∞

−∞
e−iθ(y−x)dθ

}
dx

]

=
∞∑
n=1

[∫ ∞

−∞

(−1)n

n!

∂n

∂xn
[
C(j)(x, t)pX(t)(x|X(0) = x0)

]
× δ(x− y)dx

]
(E.15)

Finally the simplified expression is given by (E.16). This equation is known as

the Fokker Planck Kolmogorov (FPK) equation. It is also sometimes referred to as

the Kolmogorov forward equation.

∂pX(t)

∂t
(y|X(0) = x0) =

∞∑
n=1

[
(−1)n

n!

∂n

∂yn
[
C(n)(y, t)pX(t)(y|X(0) = x0)

]]
(E.16)

When this theory is applied to a dynamical system, the derivate moments are

evaluated using the equations of motion and the formulated FPK equation is solved

with appropriate boundary conditions and the initial condition shown in (E.17).

A detailed discussion of the different types of boundary conditions for the FPK
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equations are discussed in Lin and Cai [18].

pX(t)(y|X(0) = x0) ≡ p(y, t|x0, t0) = δ(y − x0) (E.17)

If in addition to being a Markov process, X(t) is also a Gaussian process, then

using the Gaussian property it can be shown that the derivate moments are zero

C(n)(y, t) = 0 for n > 2. Thus in this case the FPK equation reduces to (E.18).

∂p

∂t
+

∂

∂y

[
C(1)p

]
− 1

2

∂2

∂y2
[
C(2)p

]
= 0 (E.18)

A diffusion process is a Markov process for which sample paths are continuous

with probability 1 [18]. A sufficient condition for a Markov process to be a diffusion

is given by Dynkin’s condition [166] given by

lim
∆t→0

1

∆t
P [||X(t+∆t)−X(t)|| > ϵ|X(t) = x] = 0 ϵ > 0 (E.19)

However, a sufficient condition for the Dynkin’s condition [167] is given by

lim
∆t→0

1

∆t
E
[
||X(t+∆t)−X(t)||2+δ|X(t) = x

]
= 0 δ > 0 (E.20)

which again means that the derivate moments of order n > 2 are zero. Thus, the

simplified version of FPK equation shown in (E.18) holds for diffusion processes as

well. Note that a general diffusion process need not be a Gaussian process, but the

simpler form of FPK equation is still applicable.

E.3 Kolmogorov Backward Equation

In the derivation of the FPK equation the derivatives of the transition probability

density function p(x, t|x0, t0) have been considered with respect to t and x. However,
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considering that p(x, t|x0, t0) is a function of t0 and x0 and using a similar approach

as above leads to the well known Kolmogorov backward equation.

In order to derive the Kolmogorov backward equation, we again consider the time

derivative of the transition probability density function. However, unlike in (E.7) we

consider the derivative with respect to t0.

∂p

∂t0
= lim

∆t0→0

1

∆t0
[p(x, t|x0, t0)− p(x, t|x0, t0 −∆t0)] (E.21)

From Chapman Kolmogorov equation (E.6),

p(x, t|x0, t0 −∆t0) =

∫ ∞

−∞
p(x, t|y, t0)p(y, t0|x0, t0 −∆t0)dy (E.22)

Similarly,

p(x, t|x0, t0) =
∫ ∞

−∞
p(x, t|x0, t0)p(y, t0|x0, t0 −∆t0)dy (E.23)

where

∫ ∞

−∞
p(y, t0|x0, t0 −∆t0)dy = 1 (E.24)

Substituting (E.22) and (E.23) into (E.21) leads to

∂p

∂t0
= lim

∆t0→0

1

∆t0

∫ ∞

−∞
[p(x, t|x0, t0)− p(x, t|y, t0)] p(y, t0|x0, t0 −∆t0)dy (E.25)
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p(x, t|y, t0) can be expanded as a Taylor series as shown in (E.26).

p(x, t|y, t0) = p(x, t|x0, t0) + (y − x0)
∂

∂x0
p(x, t|x0, t0)

+ (y − x0)
21

2

∂2

∂x20
p(x, t|x0, t0) + ... (E.26)

Substituting (E.26) into (E.25) leads to

∂p

∂t0
= lim

∆t0→0

1

∆t0

∫ ∞

−∞

{
− (y − x0)

∂

∂x0
p(x, t|x0, t0)

− (y − x0)
21

2

∂2

∂x20
p(x, t|x0, t0) + ...

}
× p(y, t0|x0, t0 −∆t0)dy (E.27)

Rewriting the derivate moments shown in (E.14) as

C(n)(x0, t0) = lim
∆t0→0

1

∆t0

∫ ∞

−∞
(y − x0)

np(y, t0|x0, t0 −∆t0)dy (E.28)

the partial differential equation is given by (E.29).

∂p

∂t0
+

∞∑
n=1

[
C(n)

n!

∂np

∂xn0

]
= 0 (E.29)

For a Gaussian Markov process or a diffusion process, this further reduces to

(E.30).

∂p

∂t0
+ C(1) ∂p

∂x0
+

1

2
C(2) ∂

2p

∂x20
= 0 (E.30)

Similar to the Kolmogorov forward equation, the backward equation also requires

two spatial boundary conditions and one initial condition. The initial condition is

the same as that for the forward equation and is given by (E.17). The various types
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of boundaries and the associated boundary conditions for the backward equation are

discussed by Lin and Cai [18].

E.4 Brownian Motion

The simplest example of Markov process is the Brownian motion (also known as

Wiener process), named after the English botanist Robert Brown who first observed

such a random motion. Formally, Brownian motion B(t) is defined as a stochastic

process which satisfies the following properties:

1. B(0) = 0

2. B(t) has continuous sample paths

3. B(t) has independent increments i.e. for t1 < t2 < ... < tn, the increments of

the process given by (B(tn)−B(tn−1)), (B(tn−1)−B(tn−2)), ..., (B(t2)−B(t1))

are independent

4. B(t) has stationary increments which are Gaussian distributed i.e. (B(t) −

B(s)) ∼ N(0, t− s) for any 0 ≤ s < t

One of the prominent properties of Brownian motion is that almost every path

has infinite variation on finite time interval. Consider the Brownian motion B(t)

over the interval [a, b]. Let the interval be divided uniformly into sub-intervals of

length ∆t given by [ti, ti+1]. Let the number of intervals be given by N = b−a
∆t

. Now

consider the sum
∑N

i=1 |B(ti+1)−B(ti)|. The expected value of this sum in the limit
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∆t→ 0 is given by

lim
∆t→0

E

[
N∑
i=1

|B(ti+1)−B(ti)|

]
= lim

∆t→0

N∑
i=1

E [|B(ti+1)−B(ti)|]

= lim
∆t→0

N∑
i=1

E [|B(∆t)|]

= lim
∆t→0

N∑
i=1

√
2∆t

π

= lim
∆t→0

√
2

π

b− a√
∆t

→ ∞ (E.31)

Although the first variation is infinite on every finite interval of time, the quadratic

variation of Brownian motion is equal to the length of the interval itself.

lim
∆t→0

E

[
N∑
i=1

|B(ti+1)−B(ti)|2
]
= lim

∆t→0

N∑
i=1

E
[
|B(ti+1)−B(ti)|2

]
= lim

∆t→0

N∑
i=1

(ti+1 − ti)

= b− a (E.32)

For more details on the properties of the Brownian motion please refer to standard

texts such as Duan [165].

E.5 Stochastic Differential Equations

While Brownian motion is the simplest example of a diffusion process, it can also

be used as a building block to construct other Markov processes. Itô [168] suggested

that an arbitrary Markov process can be generated using the Brownian motion B(t)
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as shown in the stochastic differential equation (E.33).

dXt = m(t,Xt)dt+ σ(t,Xt)dBt (E.33)

The coefficients m(t,Xt) and σ(t,Xt) are called the drift and diffusion coefficients

respectively. The stochastic differential equation can also be expressed in the integral

form as shown below.

X(t)−X(0) =

∫ t

0

m(u,X(u))du+

∫ t

0

σ(u,X(u))dBu (E.34)

The first integral in (E.34) can be evaluated as a standard Riemann sum. How-

ever, the second integral requires a special treatment. Consider a general Riemann-

Stieltjes integral of the form
∫ t

0
f(u)dg(u). Let the interval [0, t] be partitioned into

smaller subintervals of maximal length δ defined by 0 = u0 < u1 < u2 < ... < un = t.

Then the integral is evaluated by

∫ t

0

f(u)dg(u) = lim
δ→0

n−1∑
i=0

f(vi)[g(ui+1)− g(ui)] (E.35)

where vi ∈ [ui, ui+1]. A sufficient condition for this integral to exist is that g(u)

be of finite variation [165], or in other words,

lim
δ→0

n−1∑
i=0

|g(ui+1)− g(ui)| <∞ (E.36)

Clearly, from (E.31) it is seen that B(t) is not of finite variation and hence

the second integral in (E.34) cannot be evaluated as a Riemann-Stieltjes integral.

For stochastic integrals like the second term in (E.34) two specific approaches are

available:
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1. Itô integral approach

2. Stratonovich integral approach

Based on the Itô approach, the stochastic integral
∫ t

0
σ(u,X(u))dBu can be eval-

uated as follows. The interval [0, t] is partitioned into subintervals of equal length

δn = t−0
n

and end points of the subintervals are sequenced as 0 = un0 < un1 < ... <

unn = t. As n→ 0, δn converges to 0.

∫ t

0

σ(u,X(u))dBu

= lim
n→∞

in m.s.

∫ t

0

σ(u,X(u))dBu

= lim
n→∞

in m.s.
n−1∑
i=0

σ(uni , X(uni ))
[
B(uni+1)−B(uni )

]
(E.37)

Note that a sequenceXn is said to converges toX in mean square if E
[
|Xn −X|2

]
→

0 as n → ∞. Similarly, based on the Stratonovich approach, the stochastic integral∫ t

0
σ(u,X(u)) o dBu can be evaluated as follows. Assume a similar partitioning into

subintervals as before. However, the evaluation of the Stratonovich integral is given

by

∫ t

0

σ(u,X(u)) o dBu

= lim
n→∞

in m.s.

∫ t

0

σ(u,X(u)) o dBu

= lim
n→∞

in m.s.
n−1∑
i=0

{
1

2
σ(uni , X(uni )) +

1

2
σ(uni+1, X(uni+1))

}[
B(uni+1)−B(uni )

]
(E.38)

Both Itô and Stratonovich type of integrals can be converted from one to the

other. Using Taylor series expansion and the mean value theorem it can be shown
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[165] that

∫ t

0

σ(u,X(u)) o dBu =

∫ t

0

σ(u,X(u))dBu +
1

2

∫ t

0

σ(u,X(u))
∂σ

∂x
(u,X(u))du

(E.39)

Equivalently in the differential form

σ(u,X(u)) o dBu = σ(u,X(u))dBu +
1

2
σ(u,X(u))

∂σ

∂x
(u,X(u))du (E.40)

This further implies that the Stratonovich SDE given by (E.41) when converted

into an Itô SDE is given by (E.42).

dXt = m(t,Xt)dt+ σ(t,Xt) o dBt (E.41)

dXt =

{
m(t,Xt) +

1

2
σ(t,Xt)

∂σ

∂x
(t,Xt)

}
dt+ σ(t,Xt)dBt (E.42)

Similarly, the Itô SDE given by (E.43) when converted into Stratonovich SDE is

given by (E.44).

dXt = m(t,Xt)dt+ σ(t,Xt)dBt (E.43)

dXt =

{
m(t,Xt)−

1

2
σ(t,Xt)

∂σ

∂x
(t,Xt)

}
dt+ σ(t,Xt) o dBt (E.44)

The correction term introduced in the transformation of Itô SDE into Stratonovich

SDE is called the Wong-Zakai correction term. In case of directly excited systems,

the diffusion coefficient σ is independent of the state of the response Xt in which

case the correction term becomes zero. However, for parametrically excited systems,

this term is non-zero and must be included in the analysis.
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E.6 Itô’s Formula

Consider an Itô SDE given by (E.45) where m(Xt) and σ(Xt) are the drift and

diffusion coefficients respectively and Bt is a scalar Brownian motion.

dXt = m(Xt)dt+ σ(Xt)dBt (E.45)

The Itô SDE governing a scalar deterministic function g(t,Xt) is given by (E.46)

and is known at the Itô’s formula and is equivalent to the chain rule of differentiation

for stochastic SDEs. The term 1
2
σ2(Xt)

∂2g
∂x2 (t,Xt) is called the Itô correction term and

originates due to the unbounded variation of the Brownian motion in a finite interval

of time.

dg(t,Xt) =

[
∂g

∂t
(t,Xt) +m(Xt)

∂g

∂x
(t,Xt) +

1

2
σ2(Xt)

∂2g

∂x2
(t,Xt)

]
dt

+
∂g

∂x
(t,Xt)σ(Xt)dBt (E.46)

E.7 White Noise

There are various physical processes where the excitation W (t) is caused due to

noise. Typically for such systems it is assumed that the zero mean noise is so erratic

thatW (t) andW (s) are almost independent unless t and s are very close. A limiting

process which is completely uncorrelated with itself at a different time will have a zero

covariance for every time lag τ except at τ = 0. Such limiting processes are called

delta-correlated processes as the covariance function is characterized by a Dirac delta

function. These class of processes are also known as white noise. However, when the

covariance function is not a Dirac delta function, it is known as colored noise.

White noise can be modeled in terms of a time derivative of the Brownian motion
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B(t). Brownian motion, although continuous, is nowhere differentiable. Thus a spe-

cific interpretation of derivative is required to express white noise as a time derivative

of Brownian motion. This is provided in terms of generalized derivatives which are

discussed in detail by Duan [165]. The covariance function of the derivative of the

Brownian motion can be obtained as follows.

E[Ḃ(t)Ḃ(s)] =
∂2

∂t∂s
E[B(t)B(s)] =

∂2

∂t∂s
min(t, s)

=
∂2

∂t∂s


t, t− s < 0

s, t− s ≥ 0

=
∂

∂t


0, t− s < 0

1, t− s ≥ 0

= δ(t− s) (E.47)

It can be seen from (E.47) that the process Ḃ(t) is uncorrelated at different times.

Therefore, the spectral density of white noise must have a constant absolute value.

This is seen from (E.48) where the spectral density is obtained by taking a Fourier

transform of the covariance function E[Ḃ(t)Ḃ(s)] derived in (E.47).

∣∣∣F [
E[Ḃ(t)Ḃ(s)]

]∣∣∣ = |F [δ(t− s)]| =
∣∣e−iθs

∣∣ = 1 (E.48)
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APPENDIX F

DRIFT AND DIFFUSION COEFFICIENT EXPRESSIONS

F.1 Drift Coefficient Calculation

The drift vector m for the Markov process Z(t) is given by (5.36). The compo-

nents of the drift vector m are given by

m1 = A1(E) +

∫ 0

−∞

⟨
E

[(
∂b1
∂E

)
t

(b1)t+τ +

(
∂b1
∂λ

)
t

(b2)t+τ

]⟩
dτ (F.1)

m2 = A2(E) +

∫ 0

−∞

⟨
E

[(
∂b2
∂E

)
t

(b1)t+τ +

(
∂b2
∂λ

)
t

(b2)t+τ

]⟩
dτ (F.2)

F.1.1 Energy Drift Coefficient

m1 = A1(E) +

∫ 0

−∞

⟨
E

[(
∂b1
∂E

)
t

(b1)t+τ +

(
∂b1
∂λ

)
t

(b2)t+τ

]⟩
dτ (F.3)

where

(b1)t = g1(t, E, θ)
√
2E sin(θ) =

√
2E sin(θ)

2nq−1∑
j=1,3,5,...

pj(t)x
j (F.4)

(b2)t =
g1(t, E, θ0) cos(θ)√

2E
=

cos(θ)√
2E

2nq−1∑
j=1,3,5,...

pj(t)x
j (F.5)
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F.1.1.1 Evaluation of 1st Term in (F.3)

(
∂b1
∂E

)
t

=
sin(θ)√

2E

2nq−1∑
j=1,3,5,...

pj(t)x
j +

√
2E sin(θ)

2nq−1∑
j=1,3,5,...

(j)pj(t)x
j−1

(
∂x

∂E

)
(F.6)

E =
ẋ2

2
+ U(x) =

ẋ2

2
+

∫ x

0

2nq−1∑
k=1,3,5,...

αkξ
kdξ

=
ẋ2

2
+

2nq−1∑
k=1,3,5,...

αkx
k+1

k + 1
(F.7)

Taking partial derivative with respect to E

1 = ẋ
∂ẋ

∂E
+

2nq−1∑
k=1,3,5,...

αkx
k ∂x

∂E
(F.8)

Substituting ẋ = −
√
2E sin(θ) from (5.17) into the above equation leads to

∂x

∂E
=

cos2(θ)

g(E, θ)
(F.9)

Substituting back into (F.6) gives

(
∂b1
∂E

)
t

=
sin(θ)√

2E

2nq−1∑
j=1,3,5,...

pj(t)x
j +

√
2E sin(θ) cos2(θ)

g(E, θ)

2nq−1∑
j=1,3,5,...

(j)pj(t)x
j−1 (F.10)
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E

[(
∂b1
∂E

)
t

(b1)t+τ

]
= sin(θ(t)) sin(θ(t+ τ))

×
2nq−1∑

j=1,3,5,...

2nq−1∑
k=1,3,5,...

E [pj(t)pk(t+ τ)]xj(t)xk(t+ τ)

+
2E

g(E, θ(t))
sin(θ(t)) cos2(θ(t)) sin(θ(t+ τ))

×
2nq−1∑

j=1,3,5,...

2nq−1∑
k=1,3,5,...

(j)E [pj(t)pk(t+ τ)]xj−1(t)xk(t+ τ)

(F.11)

Assuming a covariance stationarity between pj(t) and pk(t) leads to the following

simplification

E

[(
∂b1
∂E

)
t

(b1)t+τ

]
= sin(θ(t)) sin(θ(t+ τ))

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

wjk(τ)x
j(t)xk(t+ τ)

+
2E

g(E, θ(t))
sin(θ(t)) cos2(θ(t)) sin(θ(t+ τ))

×
2nq−1∑

j=1,3,5,...

2nq−1∑
k=1,3,5,...

(j)wjk(τ)x
j−1(t)xk(t+ τ) (F.12)

where wjk(τ) = E [pj(t)pk(t+ τ)].

F.1.1.2 Evaluation of 2nd Term in (F.3)

(
∂b1
∂λ

)
t

=
√
2E cos(θ)

2nq−1∑
j=1,3,5,...

pj(t)x
j

+
√
2E sin(θ)

2nq−1∑
j=1,3,5,...

(j)pj(t)x
j−1

(
∂x

∂λ

)
(F.13)
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λ = tan−1

[
− ẋ√

2U(x)

]
− θ0 (F.14)

Taking partial derivative with respect to λ

1 =
1

1 + ẋ2

2U(x)

[
ẋ

G(x)

[2U(x)]
3
2

∂x

∂λ
− 1√

2U(x)

∂ẋ

∂λ

]
(F.15)

Substituting ẋ = −
√
2E sin(θ) from (5.17) into the above equation leads to

∂x

∂λ
=

−2E sin(θ) cos(θ)

g(E, θ)
(F.16)

Substituting back into (F.13) gives

(
∂b1
∂λ

)
t

=
√
2E cos(θ)

2nq−1∑
j=1,3,5,...

pj(t)x
j − (2E)

3
2 sin2(θ) cos(θ)

g(E, θ)

2nq−1∑
j=1,3,5,...

(j)pj(t)x
j−1

(F.17)

E

[(
∂b1
∂λ

)
t

(b2)t+τ

]
= cos(θ(t)) cos(θ(t+ τ))

×
2nq−1∑

j=1,3,5,...

2nq−1∑
k=1,3,5,...

E [pj(t)pk(t+ τ)]xj(t)xk(t+ τ)

+
2E

g(E, θ(t))
sin2(θ(t)) cos(θ(t)) cos(θ(t+ τ))

×
2nq−1∑

j=1,3,5,...

2nq−1∑
k=1,3,5,...

(j)E [pj(t)pk(t+ τ)]xj−1(t)xk(t+ τ)

(F.18)

Assuming a covariance stationarity between pj(t) and pk(t) leads to the following
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simplification

E

[(
∂b1
∂λ

)
t

(b2)t+τ

]
= cos(θ(t)) cos(θ(t+ τ))

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

wjk(τ)x
j(t)xk(t+ τ)

+
2E

g(E, θ(t))
sin2(θ(t)) cos(θ(t)) cos(θ(t+ τ))

×
2nq−1∑

j=1,3,5,...

2nq−1∑
k=1,3,5,...

(j)wjk(τ)x
j−1(t)xk(t+ τ) (F.19)

where wjk(τ) = E [pj(t)pk(t+ τ)]. Substituting (F.12) and (F.19) into (F.3)

results in

m1 = A1(E) +

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...[∫ 0

−∞
wjk(τ)

⟨
sin(θ(t))xj(t) sin(θ(t+ τ))xk(t+ τ)

⟩
dτ

+(j)

∫ 0

−∞
wjk(τ)

⟨
2E

g(E, θ(t))
sin(θ(t)) cos2(θ(t))xj−1(t) sin θ(t+ τ)xk(t+ τ)

⟩
dτ

+

∫ 0

−∞
wjk(τ)

⟨
cos(θ(t))xj(t) cos(θ(t+ τ))xk(t+ τ)

⟩
dτ

−(j)

∫ 0

−∞
wjk(τ)

×
⟨

2E

g(E, θ(t))
sin2(θ(t)) cos(θ(t))xj−1(t) cos(θ(t+ τ))xk(t+ τ)

⟩
dτ

]
(F.20)
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F.1.1.3 Fourier Expansions for Energy Drift Calculation

To evaluate the time average of the quantities inside ⟨ . ⟩ in (F.20), it is convenient

to expand the various terms as Fourier series as shown below.

sin(θ(t))xk(t) =
∞∑
n=1

b(1k)n sin

(
2πn

T
t

)
(F.21)

cos(θ(t))xk(t) =
∞∑
n=1

a(1k)n cos

(
2πn

T
t

)
(F.22)

2E

g(E, θ(t))
sin(θ(t)) cos2(θ(t))xk−1(t) =

∞∑
n=1

b(2k)n sin

(
2πn

T
t

)
(F.23)

2E

g(E, θ(t))
sin2(θ(t)) cos(θ(t))xk−1(t) =

∞∑
n=1

a(2k)n cos

(
2πn

T
t

)
(F.24)

Note that these coefficients b
(1k)
n , a

(1k)
n , b

(2k)
n and a

(2k)
n are functions of energy level

E. Since λ is assumed to be fixed, the Fourier coefficients actually relate to the

unperturbed solutions θ0(t) and x0(t). Substituting these Fourier series expressions

simplifies the time averages as follows

⟨
sin(θ(t))xj(t) sin(θ(t+ τ))xk(t+ τ)

⟩
=

∞∑
n=1

b
(1j)
n b

(1k)
n

2
cos

(
2πn

T
τ

)
(F.25)

⟨
cos(θ(t))xj(t) cos(θ(t+ τ))xk(t+ τ)

⟩
=

∞∑
n=1

a
(1j)
n a

(1k)
n

2
cos

(
2πn

T
τ

)
(F.26)⟨

2E

g(E, θ(t))
sin(θ(t)) cos2(θ(t))xj−1(t) sin(θ(t+ τ))xk(t+ τ)

⟩
=

∞∑
n=1

b
(2j)
n b

(1k)
n

2
cos

(
2πn

T
τ

)
(F.27)⟨

2E

g(E, θ(t))
sin2(θ(t)) cos(θ(t))xj−1(t) cos(θ(t+ τ))xk(t+ τ)

⟩
=

∞∑
n=1

a
(2j)
n a

(1k)
n

2
cos

(
2πn

T
τ

)
(F.28)
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Substituting into (F.20) leads to

m1 =A1(E) +
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[(∫ 0

−∞
wjk(τ) cos

(
2πn

T
τ

)
dτ

)

×

{
b
(1j)
n b

(1k)
n

2
+
a
(1j)
n a

(1k)
n

2
+ (j)

b
(2j)
n b

(1k)
n

2
+ (j)

a
(2j)
n a

(1k)
n

2

}]
(F.29)

F.1.2 Phase Drift Coefficient

m2 = A2(E) +

∫ 0

−∞

⟨
E

[(
∂b2
∂E

)
t

(b1)t+τ +

(
∂b2
∂λ

)
t

(b2)t+τ

]⟩
dτ (F.30)

where

(b1)t = g1(t, E, θ)
√
2E sin(θ) =

√
2E sin(θ)

2nq−1∑
j=1,3,5,...

pj(t)x
j (F.31)

(b2)t =
g1(t, E, θ0) cos(θ)√

2E
=

cos(θ)√
2E

2nq−1∑
j=1,3,5,...

pj(t)x
j (F.32)

F.1.2.1 Evaluation of 1st Term in (F.30)

(
∂b2
∂E

)
t

=
− cos(θ)

(2E)
3
2

2nq−1∑
j=1,3,5,...

pj(t)x
j +

cos(θ)√
2E

2nq−1∑
j=1,3,5,...

(j)pj(t)x
j−1

(
∂x

∂E

)
(F.33)

Substituting (F.9) into (F.33)

(
∂b2
∂E

)
t

=
− cos(θ)

(2E)
3
2

2nq−1∑
j=1,3,5,...

pj(t)x
j +

cos3(θ)

g(E, θ)
√
2E

2nq−1∑
j=1,3,5,...

(j)pj(t)x
j−1 (F.34)
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E

[(
∂b2
∂E

)
t

(b1)t+τ

]
=

−1

2E
cos(θ(t)) sin(θ(t+ τ))

×
2nq−1∑

j=1,3,5,...

2nq−1∑
k=1,3,5,...

E [pj(t)pk(t+ τ)]xj(t)xk(t+ τ)

+
cos3(θ(t))

g(E, θ(t))
sin(θ(t+ τ))

×
2nq−1∑

j=1,3,5,...

2nq−1∑
k=1,3,5,...

(j)E [pj(t)pk(t+ τ)]xj−1(t)xk(t+ τ)

(F.35)

Assuming a covariance stationarity between pj(t) and pk(t) so that

E [pj(t)pk(t+ τ)] = wjk(τ) leads to the following simplification

E

[(
∂b2
∂E

)
t

(b1)t+τ

]
=

−1

2E
cos(θ(t)) sin(θ(t+ τ))

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

wjk(τ)x
j(t)xk(t+ τ)

+
cos3(θ(t))

g(E, θ(t))
sin(θ(t+ τ))

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

(j)wjk(τ)x
j−1(t)xk(t+ τ) (F.36)

F.1.2.2 Evaluation of 2nd Term in (F.30)

(
∂b2
∂λ

)
t

=
− sin(θ)√

2E

2nq−1∑
j=1,3,5,...

pj(t)x
j +

cos(θ)√
2E

2nq−1∑
j=1,3,5,...

(j)pj(t)x
j−1

(
∂x

∂λ

)
(F.37)

Substituting (F.16) into (F.37)

(
∂b2
∂λ

)
t

=
− sin(θ)√

2E

2nq−1∑
j=1,3,5,...

pj(t)x
j +

−
√
2E sin(θ) cos2(θ)

g(E, θ)

2nq−1∑
j=1,3,5,...

(j)pj(t)x
j−1

(F.38)
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E

[(
∂b2
∂λ

)
t

(b2)t+τ

]
=
−1

2E
sin(θ(t)) cos(θ(t+ τ))

×
2nq−1∑

j=1,3,5,...

2nq−1∑
k=1,3,5,...

E [pj(t)pk(t+ τ)]xj(t)xk(t+ τ)

+
−1

g(E, θ(t))
sin(θ(t)) cos2(θ(t)) cos(θ(t+ τ))

×
2nq−1∑

j=1,3,5,...

2nq−1∑
k=1,3,5,...

(j)E [pj(t)pk(t+ τ)]xj−1(t)xk(t+ τ)

(F.39)

Assuming a covariance stationarity between pj(t) and pk(t) leads to the following

simplification

E

[(
∂b2
∂λ

)
t

(b2)t+τ

]
=

−1

2E
sin θ(t) cos θ(t+ τ)

×
2nq−1∑

j=1,3,5,...

2nq−1∑
k=1,3,5,...

wjk(τ)x
j(t)xk(t+ τ)

− 1

g(E, θ(t))
sin θ(t) cos2 θ(t) cos θ(t+ τ)

×
2nq−1∑

j=1,3,5,...

2nq−1∑
k=1,3,5,...

(j)wjk(τ)x
j−1(t)xk(t+ τ) (F.40)

where wjk(τ) = E [pj(t)pk(t+ τ)]. Substituting (F.36) and (F.40) into (F.30)
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results in

m2 = A2(E) +

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...[

− 1

2E

∫ 0

−∞
wjk(τ)

⟨
cos(θ(t))xj(t) sin(θ(t+ τ))xk(t+ τ)

⟩
dτ

+(j)

∫ 0

−∞
wjk(τ)

⟨
cos3(θ(t))

g(E, θ(t))
xj−1(t) sin(θ(t+ τ))xk(t+ τ)

⟩
dτ

− 1

2E

∫ 0

−∞
wjk(τ)

⟨
sin(θ(t))xj(t) cos(θ(t+ τ))xk(t+ τ)

⟩
dτ

− 1

2E
(j)

∫ 0

−∞
wjk(τ)

×
⟨

2E

g(E, θ(t))
sin(θ(t)) cos2(θ(t))xj−1(t) cos(θ(t+ τ))xk(t+ τ)

⟩
dτ

]
(F.41)

F.1.2.3 Fourier Expansions for Phase Drift Calculation

To evaluate the time average of the quantities inside < > in (F.41), it is

convenient to expand the various terms as Fourier series as shown below.

cos(θ(t))xk(t) =
∞∑
n=1

a(1k)n cos

(
2πn

T
t

)
(F.42)

sin(θ(t))xk(t) =
∞∑
n=1

b(1k)n sin

(
2πn

T
t

)
(F.43)

2E

g(E, θ(t))
sin(θ(t)) cos2(θ(t))xk−1(t) =

∞∑
n=1

b(2k)n sin

(
2πn

T
t

)
(F.44)

cos3(θ(t))

g(E, θ(t))
xk−1(t) =

∞∑
n=1

d(2k)n cos

(
2πn

T
t

)
(F.45)

Note that these coefficients b
(1k)
n , a

(1k)
n , b

(2k)
n and d

(2k)
n are functions of energy level

E. Since λ is assumed to be fixed, the Fourier coefficients actually relate to the

unperturbed solutions θ0(t) and x0(t). Substituting these Fourier series expressions
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simplifies the time averages as follows

⟨
cos(θ(t))xj(t) sin(θ(t+ τ))xk(t+ τ)

⟩
=

∞∑
n=1

a
(1j)
n b

(1k)
n

2
sin

(
2πn

T
τ

)
(F.46)⟨

cos3(θ(t))

g(E, θ(t))
xj−1(t) sin(θ(t+ τ))xk(t+ τ)

⟩
=

∞∑
n=1

d
(2j)
n b

(1k)
n

2
sin

(
2πn

T
τ

)
(F.47)

⟨
sin(θ(t))xj(t) cos(θ(t+ τ))xk(t+ τ)

⟩
=

∞∑
n=1

−b
(1j)
n a

(1k)
n

2
sin

(
2πn

T
τ

)
(F.48)⟨

2E

g(E, θ(t))
sin2(θ(t)) cos(θ(t))xj−1(t) cos(θ(t+ τ))xk(t+ τ)

⟩
=

∞∑
n=1

−b
(2j)
n a

(1k)
n

2
sin

(
2πn

T
τ

)
(F.49)

Substituting into (F.41) leads to

m2 =A2(E) +
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[(∫ 0

−∞
wjk(τ) sin

(
2πn

T
τ

)
dτ

)

×

{
−a

(1j)
n b

(1k)
n

4E
+
b
(1j)
n a

(1k)
n

4E
+ (j)

d
(2j)
n b

(1k)
n

2
+ (j)

b
(2j)
n a

(1k)
n

4E

}]
(F.50)

F.2 Diffusion Coefficient Calculation

For a stationary covariance wjk(τ), the cross spectrum is defined by

S
(c)
jk (ω) =

1

2π

∫ ∞

−∞
wjk(τ) cos (ωτ) dτ (F.51)

S
(s)
jk (ω) =

1

2π

∫ ∞

−∞
wjk(τ) sin (ωτ) dτ (F.52)
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D11 =

∫ ∞

−∞

⟨
E
[
(b1)t (b1)

T
t+τ

]⟩
dτ

=

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[
2E

∫ ∞

−∞
wjk(τ)

⟨
sin(θ(t))xj(t) sin(θ(t+ τ))xk(t+ τ)

⟩
dτ

]

=
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[
2E

∫ ∞

−∞
wjk(τ)

b
(1j)
n b

(1k)
n

2
cos

(
2πn

T
τ

)
dτ

]

=
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[
(2πE)

{
b(1j)n b(1k)n

}
S
(c)
jk

(
2πn

T (E)

)]
(F.53)

D12 =

∫ ∞

−∞

⟨
E
[
(b1)t (b2)

T
t+τ

]⟩
dτ

=

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[∫ ∞

−∞
wjk(τ)

⟨
sin(θ(t))xj(t) cos(θ(t+ τ))xk(t+ τ)

⟩
dτ

]

=
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[∫ ∞

−∞
wjk(τ)

(
−b

(1j)
n a

(1k)
n

2

)
sin

(
2πn

T
τ

)
dτ

]

=
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[
−πb(1j)n a(1k)n S

(s)
jk

(
2πn

T (E)

)]
(F.54)

D21 =

∫ ∞

−∞

⟨
E
[
(b2)t (b1)

T
t+τ

]⟩
dτ

=

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[∫ ∞

−∞
wjk(τ)

⟨
cos(θ(t))xj(t) sin(θ(t+ τ))xk(t+ τ)

⟩
dτ

]

=
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[∫ ∞

−∞
wjk(τ)

(
a
(1j)
n b

(1k)
n

2

)
sin

(
2πn

T
τ

)
dτ

]

=
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[
πa(1j)n b(1k)n S

(s)
jk

(
2πn

T (E)

)]
(F.55)
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D22 =

∫ ∞

−∞

⟨
E
[
(b2)t (b2)

T
t+τ

]⟩
dτ

=

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[
1

2E

∫ ∞

−∞
wjk(τ)

⟨
cos(θ(t))xj(t) cos(θ(t+ τ))xk(t+ τ)

⟩
dτ

]

=
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[
1

2E

∫ ∞

−∞
wjk(τ)

a
(1j)
n a

(1k)
n

2
cos

(
2πn

T
τ

)
dτ

]

=
∞∑
n=1

2nq−1∑
j=1,3,5,...

2nq−1∑
k=1,3,5,...

[
π

2E

{
a(1j)n a(1k)n

}
S
(c)
jk

(
2πn

T (E)

)]
(F.56)
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APPENDIX G

DERIVATION OF THE SINGULAR BOUNDARY CONDITION OF

PONTRYAGIN EQUATION AT E = 0

According to Feller [169], the boundaries of a diffusion process can be classified

as follows:

1. Regular boundary: The process can reach the boundary starting from an interior

point and vice versa

2. Absorbing/Exit boundary: The process can reach the boundary starting from

an interior point but cannot reach an interior point starting from the boundary

3. Entrance boundary: The process can reach an interior point beginning from

the boundary but cannot reach the boundary starting from an interior point

4. Natural boundary: The process cannot reach the boundary starting from an in-

terior point and vice versa. Lin and Cai [18] further specify a sub-classification

of natural boundary into strictly natural, attractively natural and repulsively

natural boundary types.

Often various conclusions about the existence of a stationary transition probabil-

ity density function can be drawn based on the type of boundaries. In general, the

type of boundary can be mathematically ascertained and is described in detail by

Lin and Cai [18]. However, for certain special types of boundaries called the singular

boundaries the above approach is not applicable and requires special consideration.

A boundary at E = Eb of a diffusion process E(t) is defined to be singular if at the

boundary either of the following hold:
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1. The diffusion coefficient at the boundary is zero (D11(Eb) = σ2
11(Eb) = 0)

2. The drift coefficient at the boundary is unbounded (m1(Eb) → ±∞)

Further a singular boundary condition of the first kind is called a trap if the drift

coefficient at the boundary is zero. When the drift coefficient at the boundary is

non-zero, it is called a shunt.

To determine the Feller classification of a singular boundary of the first kind,

the following definitions are introduced as E → Eb where E = Eb is the singular

boundary under consideration:

1. Diffusion exponent αb where σ
2
11(E) = O(|E − Eb|αb) as E → Eb

2. Drift exponent βb where m1(E) = O(|E − Eb|βb) as E → Eb

3. Character value cb where cb =
2m1(E)(E−Eb)

αb−βb

σ2
11(E)

as E → Eb

A Feller classification of the singular boundaries is provided in the works of Lin

and Cai [18] based on the values of the drift exponent, diffusion exponent and the

character value.

From Figure 5.6 and Figure 5.8 it can be seen that the first condition holds for

the Markov energy process E(t) considered in (5.59). Thus the boundary E = 0 is a

singular boundary of the first kind. From Figure 5.5 and Figure 5.7 it can further be

seen that the boundary at E = 0 is a trap as the drift coefficient at E = 0 is zero.

Since we are interested in the boundary condition at E = 0, the nonlinear oscil-

lator can be linearized in the vicinity of the boundary. Thus considering only the

linear stiffness and linear damping to be dominant near E = 0, the original oscillator

given by (5.3) can be approximated as

ẍ+ ε2δ1ẋ+ x+ εp1(t)x = 0 (G.1)
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The energy and phase in this case are defined as

E =
ẋ2

2
+
x2

2
(G.2)

θ = tan−1

(
−ẋ
x

)
(G.3)

The displacement x and velocity ẋ in the linear case are given by

x =
√
2E cos(θ) (G.4)

ẋ = −
√
2E sin(θ) (G.5)

The differential equation governing E(t) and θ(t) are obtained by differentiating

(G.2) and (G.3) with respect to time t respectively.

Ė = ε2
(
−2Eδ1 sin

2(θ)
)
+ εp1(t)E sin(2θ) (G.6)

θ̇ = 1 + ε2
(
−δ1

2
sin(2θ)

)
+ εp1(t) cos

2(θ) (G.7)

Defining a new phase process λ(t) = θ(t)− t,

Ė = ε2
(
−2Eδ1 sin

2(θ)
)
+ εp1(t)E sin(2θ) (G.8)

λ̇ = ε2
(
−δ1

2
sin(2θ)

)
+ εp1(t) cos

2(θ) (G.9)

Thus the vector process Z(t) =

E(t)λ(t)

 is a slowly varying with time and is
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given by

Ż(t) =

Ė
λ̇

 = ε2a(Z) + εb(t,Z) (G.10)

where

a(Z) =

a1(E, θ)
a2(E, θ)

 =

−2Eδ1 sin
2(θ)

− δ1
2
sin(2θ)

 (G.11)

b(t,Z) =

b1(t, E, θ)
b2(t, E, θ)

 =

p1(t)E sin(2θ)

p1(t) cos
2(θ)

 (G.12)

Applying the technique of stochastic averaging as described in chapter 5, the drift

and diffusion coefficients of the linear system are given by

m = A(E) +

∫ 0

−∞

⟨
E

[(
∂b

∂Z

)
t

(b)t+τ

]⟩
dτ (G.13)

D = σσT =

∫ ∞

−∞

⟨
E
[
(b)t (b)

T
t+τ

]⟩
dτ (G.14)

where

∂b

∂Z
=

∂b1
∂E

∂b1
∂λ

∂b2
∂E

∂b2
∂λ

 (G.15)
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A(E) =

A1(E)

A2(E)

 = ⟨a(E, θ0)⟩ =
1

T (E)

∫ T (E)

0

a(E, θ0)dt (G.16)

Note that ⟨[.]⟩ denotes the time average over the unperturbed system period T (E)

and is given by

⟨[ . ]⟩ = 1

T (E)

∫ T (E)

0

[ . ]dt (G.17)

where the unperturbed system period T (E) is given by

T (E) =

∮ ∣∣∣∣dxẋ
∣∣∣∣ = 4

∫ b

0

dx√
2E sin(θ)

= 4

∫ 0

−π
2

√
2E sin(θ)dθ√
2E sin(θ)

= 2π (G.18)

A1(E) =
1

2π

∫ T (E)

0

−δ12E sin2(θ0)dt =
1

2π

∫ 2π

0

−δ12E sin2(t)dt = −δ1E (G.19)

A2(E) =
1

2π

∫ T (E)

0

−δ1
2
sin(2θ0)dt =

1

2π

∫ 2π

0

−δ1
2
sin(2t)dt = 0 (G.20)

The drift and diffusion coefficients corresponding to the energy process are given

by

m1 = A1(E) +

∫ 0

−∞

⟨
E

[(
∂b1
∂E

)
t

(b1)t+τ +

(
∂b1
∂λ

)
t

(b2)t+τ

]⟩
dτ

=
(
πS

(c)
11 (2)− δ1

)
E (G.21)

D11 =

∫ ∞

−∞

⟨
E
[
(b1)t (b1)

T
t+τ

]⟩
dτ = πS

(c)
11 (2)E

2 (G.22)

D12 =

∫ ∞

−∞

⟨
E
[
(b1)t (b2)

T
t+τ

]⟩
dτ = 0 (G.23)
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Note that since D12 = 0, the energy process is also a Markov process itself in

the vicinity of E = 0. It can be seen from (G.21) that the drift exponent is α0 = 2.

Similarly from (G.22) it can be seen that diffusion exponent β0 = 1. The character

value c0 is given by

c0 =
2m1(E)(E − 0)α0−β0

σ2
11(E)

= 2

(
1− δ1

πS
(c)
11 (2)

)
(G.24)

As described in section 5.4, the Pontryagin formulation assumes that every sample

path will eventually reach the critical boundary E = Ec (given by µ1(Ec, E0)|E0=0 <

∞). Thus only those boundary conditions which allow for this possibility are admis-

sible. Thus, if the singular boundary at E = 0 is a regular or entrance or a repulsively

natural trap then all sample paths will eventually reach the exit boundary at E = Ec.

However, if the singular boundary at E = 0 is an exit, a strictly natural or attrac-

tively natural boundary then not every sample path starting at or near E = 0 will

reach the critical boundary E = Ec. For more detailed discussion refer the works

of Lin and Cai [18]. Since Pontryagin equation formulation assumes that for sample

path will eventually reach the critical boundary (µ1(Ec, E0)|E0=0 < ∞), an exit, a

strictly natural or a attractively natural boundary condition is not admissible.

According to Lin and Cai [18], a drift exponent β0 = 1 and a diffusion exponent

α0 = 2 corresponds to a natural boundary at E = 0. The character value c0 decides if

the boundary is further strictly (c0 = 1), attractively (c0 < 1) or repulsively natural

(c0 > 1). Thus the Pontryagin equation is applicable only if c0 > 1. In this case, the

Pontryagin equation is given by

πS
(c)
11 (2)

2
E2d

2µ1

dE2
+ (πS

(c)
11 (2)− δ1)E

dµ1

dE
+ 1 = 0 (G.25)

270



Since the above equation is an Euler type differential equation, it can be inte-

grated to yield

dµ1

dE
(E) = C1E

[
2δ1

πS
(c)
11 (2)

−2

]
− 2(

πS
(c)
11 (2)− 2δ1

) (G.26)

Imposing the boundary condition of the form (5.73) gives C1 = 0 and results in

the boundary condition given in (5.74).
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APPENDIX H

SUPPLEMENTARY FILES

A supplementary file named “Pram hull.igs” is included which provides the

geometry of the Pram hull analyzed in this dissertation. The origin is located at the

intersection of midship, centerline and waterline. The roll and pitch radii of gyration

about the coordinate system with origin as specified above are 13.61 m and 62.55 m

respectively.
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