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ABSTRACT 

 

 Rigorous hydromechanical frameworks needed for modeling wellbore bridging 

and broaching during uncontrolled production of oil and gas are developed in this work. 

First, two sources of sand production are identified: borehole breakout and erosion of the 

producing formation. Theoretical framework for predicting the morphology of type B 

breakout mode is developed for the first time in this study; both fracture mechanics and 

shear failure theories are used in predicting the breakout geometry. Furthermore, a 

framework for estimating the size of caving produced during breakout (type A or B) is 

presented. Using asymptotic analysis of crack-boundary interactions, the state of damage 

around the borehole during the breakout process is determined, and the limiting buckling 

lengths of the resulting wing-cracks are predicted based on plate buckling theory. Third, 

a three-phase erosion kinetic equations, coupled with an erosion constitutive law, which 

is based on virtual power principle, are used in modeling radial and axial erosion in the 

reservoir and along the wellbore respectively. The proposed erosion constitutive law 

identifies the limitation of the pressure-gradient phenomenological model, which is 

currently being used. For a rigorous investigation into the self-killing of the well, a 

thermodynamically multiphase field model is developed for the gas-liquid-solid flow. The 

model, which is the combination of Navier-Stokes and Cahn-Hilliard type equations, 

incorporates the hydrodynamic interactions among the different species of the mixture. 

Lastly, this work considers a faster means for estimating fracture propagation in 

heterogeneous media (layered or naturally fractured) in the event the well is shut-in.  



 

iii 

 

DEDICATION 

 

Thanks to the Son of the living God, Jesus Christ, for the inspiration and strength 

He gave me throughout my graduate program. I also appreciate the understanding and 

support from my wife Oluwaseun Bangudu-Oyedokun. 



 

iv 

 

ACKNOWLEDGEMENTS 

 

I acknowledge the supports and advice of my research advisor, Dr. Jerome 

Schubert, and the rest of my dissertation committee. Similarly, I thank the Blowout Risk 

Assessment Joint Industry Project Companies for the permission to use this work for my 

PhD thesis. 

  



 

v 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

 

Contributors 

  

 This work was supervised by a dissertation committee consisting of Dr. Jerome 

Schubert (Chair), Dr. Peter Valko and Dr. Thomas Blasingame of the Department of 

Petroleum Engineering, and Dr. Junuthula Reddy of the Department of Mechanical 

Engineering. 

 The data used in Section 1 was retrieved from the works of Skalle et al. (1999). 

All other work for the dissertation was completed independently by the student. 

Funding Sources 

 This work was sponsored by the Blowout Risk Assessments Joint Industry 

Projects. 



 

vi 

 

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  ii 

DEDICATION ..........................................................................................................  iii 

ACKNOWLEDGEMENTS ......................................................................................  iv 

CONTRIBUTORS AND FUNDING SOURCES .....................................................  v 

TABLE OF CONTENTS ..........................................................................................  vi 

LIST OF FIGURES ...................................................................................................  x 

LIST OF TABLES ....................................................................................................  xvi 

1.  INTRODUCTION AND LITERATURE REVIEW ...........................................  1 

1.1 What Is a Blowout? .......................................................................................  1 

 1.2 Casuses of Blowout .......................................................................................  2 

 1.3 Past Studies on Blowout Control ..................................................................  3 

 1.4 Past Studies on Wellbore Breakout Analysis ................................................  5 

 1.5 Previous Studies on Hydraulic Fracture Containment ..................................  6 

 1.6 Research Problem Statements and Objectives ..............................................  7 

 1.7 Dissertation Layout .......................................................................................  8 

2. THEORETICAL DEVELOPMENT ON MORPHOLOGY OF WELLBORE 

 TOROIDAL BREAKOUT ..................................................................................  10 

 2.1 Scope….. .......................................................................................................  10 

 2.2 Backgroud on Borehole Breakouts  ..............................................................  11 

 2.3 Theory on Shear Fracture Induced Toroidal Spalling…… ...........................  15 

 2.4 Stress Distributions Around Wellbore…………. .........................................  16 

 2.5 Breakout Pattern Under Shear Fracture  .......................................................  19 

 2.6 Breakout Depth and Width  ...........................................................................  22 

 2.7 Numerical Example of Type-B Breakout Pattern in a Homogeneous  

  Fromation……. .............................................................................................  26 

 2.8 Numerical Example of Type-B Breakout Pattern in a Heterogeneous  

  Formation ......................................................................................................  31 

 2.9 Theory on Extensile Fracture Induced Toroidal Spalling…. ........................  33 



 

vii 

 

 2.10 Breakout Pattern Under Extensile Splitting  ...............................................  34 

 2.11 Algorithm for Determing the Path of the Propagating Cracks  ...................  41 

 2.12 Numerical Example of Type-B Breakout Pattern Formed Through 

  Extensile Splitting in a Homogeneous Formation  ........................................  42 

 2.13 Breakout Volume… ....................................................................................  47 

 2.14 Summary….. ...............................................................................................  47 

 

3. ESTIMATING CAVING SIZE DURING WELLBORE BREAKOUT ............  49 

 3.1 Scope….  ........................................................................................................      49 

 3.2 Damage Initiation Around Wellbore .............................................................  49 

 3.3 Failure Mechanism and Wing Crack Model  ................................................  52 

 3.4 Initial Size of the Representative Pre-Existing Crack  ..................................  59 

 3.5 Buckling Lengts of the Growing Slender Rock Layer  .................................  60 

 3.6 Breakout Width Estimation…. ......................................................................  63 

 3.7 Numerical Analysis…. ..................................................................................  64 

  3.7.1 Parametric Studies on 1-D Plate Strip Approximation….. ..................  64 

   3.7.1.1 Effect of Plain Strain Young’s Modulus on Caving Size  ..  64 

   3.7.1.2 Effect of In-situ Loading and Well Angles on Caving 

             Size…… ...............................................................................  65 

   3.7.1.3 Effect of Wellbore Shape on Caving Size…… ..................  67 

  3.7.2 Parametric Studies on Rectangular Plate Approximation…… ............  67 

  3.7.3 Effect of Back Stress on Unstable Crack Growth……. .......................  69 

 3.8 Summary…. ..................................................................................................  73 

  

4. DEVELOPMENT OF AN ENERGY-CONSISTENT EROSION  

     CONSTITUTIVE RELATION FOR DEFORMABLE POROUS MEDIA ........  75 

 4.1 Scope….. .......................................................................................................  75 

 4.2 Background on Wellbore Erosion .................................................................  76 

 4.3 Erosion Constitutive Law for Deformable Porous Media .............................  80 

  4.3.1 Definition of Terms ..............................................................................  80 

  4.3.2 Derivaton of the Energy-Consistent Erosion Constitutive Law ...........  81 

 4.4 Derivation of Critical Erosion Hydraulic Gradient  ......................................  90 

 4.5 Three-Phase Erosion Governing Equations  .................................................  92 

 4.6 Critical Observations from the Proposed Erosion Constitutive Relation ......   96 

 4.7 Numerical Application ..................................................................................   97 

 4.8 Summary .......................................................................................................   103 

5. A THERMODYNAMICALLY CONSISTENT MULTIPHASE-FIELD  

     MODEL FOR NON-ISOTHERMAL TRANSPORT OF GAS-LIQUID 

     -SOLID PARTICLE FLOW: THEORETICAL DEVELOPMENT ....................    105 

 5.1 Scope…… .....................................................................................................  105 



 

viii 

 

 5.2 Background on Multiphase Fluid Flow Modeling ........................................  105 

  5.2.1 Advanced Modeling Methods for Multicomponent Fluid Flows .........  109 

  5.2.2 Phase-Field Model ................................................................................  110 

  5.2.3 The Notion of Configurational Forces .................................................  111 

 5.3 Model Development ......................................................................................  113 

  5.3.1 Mass Balance of Species ......................................................................  116 

  5.3.2 Balance of Linear Momentum  .............................................................  117 

  5.3.3 Energy Balance of the Mixture  ...........................................................  118 

  5.3.4 The Second Postulate of Thermodynamics; Clausius-Duhem  

         Inequality ................................................................................................  119 

  5.3.5 Constitutive Relations ..........................................................................  121 

  5.3.6 Constructing the Free Energy Functional and Diffuse Interface 

         Thickness ................................................................................................  126 

 5.4 Governing Field Equations ............................................................................  131 

 5.5 Summary .......................................................................................................  132 

6. A QUICK AND ENERGY CONSISTENT ANALYTICAL METHOD FOR    

 PREDICTING HYDRAULIC FRACTURE PROPAGATION THROUGH 

 HETEROGENEOUS LAYERED MEDIA AND FORMATIONS WITH  

 NATURAL FRACTURES: THE USE OF AN EFFECTIVE FRACTURE 

 TOUGHNESS .....................................................................................................  134 

 6.1 Scope….  ........................................................................................................  134 

 6.2 Background on Hydraulic Fracture Modeling and Effective Fracture 

     Toughness ........................................................................................................  135 

 6.3 Mathematical Formulations ...........................................................................  137 

  6.3.1 Effective Fracture Toughness for Layered Media ................................  137 

  6.3.2 Effective Fracture Toughness Derivation Without Tensile Stresses  ...  142 

  6.3.3 Minimum Fracture Extension Pressures  .............................................  143 

  6.3.4 Effective Fracture Toughness for Formations with Disordered 

          Natural Fractures ...................................................................................  145 

  6.3.5 Effective Fracture Toughness for Formations with Ordered 

          Natural Fractures ...................................................................................  150 

 6.4 Numerical Examples .....................................................................................  150 

 6.5 Summary  ......................................................................................................  159 

  

7. CONCLUSIONS AND FURTHER WORKS .....................................................  162 

 

 7.1 Wellbore Breakout Mechanisms ...................................................................  162 

 7.2 Erosion… ......................................................................................................  165 

 7.3 Thermodyamically Consistent Multiphase-Field Modeling of  

  Gas-Liquid-Solid Flow ..................................................................................  166 

 7.4 A Quick Method for Predicting Fracture Broaching .....................................  166 

 7.5 Future Works .................................................................................................  167 



 

ix 

 

 

 NOMENCLATURE ............................................................................................  169 

 

 REFERENCES ....................................................................................................  173 

 

 APPENDIX A: DERIVATION OF MINIMUM FRACTURE 

 PROPAGATION PRESSURE FOR THREE-LAYER PROBLEM ...................  206 

 

 APPENDIX B: LIST OF PUBLICATIONS FROM DISSERTATION .............  210 

  B.1 Peer-Reviewed Articles ..........................................................................  210 

  B.2 Manuscripts Under Peer-Review  ...........................................................  210 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 

 

LIST OF FIGURES 

 

 

FIGURE                                                                                                                        Page 

 1.1 Blowout control methods used in 187 wells in OCS from 1960 to 1996     

  (Data from Skalle et al. 1999). ...................................................................  3 

 

 1.2 Blowout control methods used in 826 wells in Texas from 1960 to 1996   

  (Data from Skalle et al. 1999). ...................................................................  4 

 

 1.3 Borehole breakout classification according to Maury and Sauzay (1987) .  6 

 2.1 (a) Plane view of the type-A breakout. (b) A 3D view of symmetric 

   type-A breakout along an inclined wellbore. ............................................  12 

 2.2 Guenot and Maury’s prediction of type-B breakout shape (Maur 1992). ..  13 

 2.3 (a) A view of the breakout experiment performed by Perie  

  and Goodman. The failed zones appear as concentric arcs to the                

  borehole. (b) A schematic illustration of the propagating cracks in  

  the breakout experiment. (c) A view of the propagating radial cracks  

  and toroidal failure Reprinted with the permission from ASME. 

  (Perie and Goodman 1989). .......................................................................  14 

  

 2.4 (a) Detail of the incipient breakout of inclined-segmented margins  

  observed in particular well located in southern North Sea. 

  (b) Occurrence of different breakout modes in a particular well located 

   in the southern North Sea. (Plump 1989). .................................................  15 

 2.5     Longitudinal and radial shear fractures propagation. ................................  20 

 2.6 Shear fractures in the r-z plane for a homogeneous formation.  

  The deepest depth occurs at the center of the formation. ...........................  21 

 2.7 (a) Shear fractures in the r-z plane for a heterogeneous formation.  

  The deepest depth occurs at a deeper location when the stronger zone is  

  at the top of a weaker zone. (b) Shear fractures in the r-z plane for a          

  heterogeneous formation. The deepest depth occurs at a shallower  

  location when the weak zone is at top of a stronger zone. .........................  22 

  

 

 



 

xi 

 

FIGURE                                                                                                                        Page 

 

 2.8 Using the rational polynomial in fitting the data above. The solid  

  orange line is the polynomial fit, while the dashed line is the data. The      

  projected line is the solid blue line.... .........................................................  28 

 2.9 Effective stress distribution at the wellbore wall. It is evident from the  

  plot that breakout direction is at the azimuth of minimum horizontal 

  in-situ stress..... ...........................................................................................  29 

 2.10 A schematic illustration of the projected straight lines. After  

  determining the maximum break depth location with the fracture  

  angle, the dashed lines illustrate the adjusted projection lines. ..................  30 

 2.11 Effective stress distributions at the wellbore wall. .....................................  31 

 2.12 The area under the projected-lines over estimates the  

  volume of sand produced.  .........................................................................  32 

 2.13 (a) A schematic representation of the radial crack path. It is assumed  

  that symmetric deformation occurs at the other end of the borehole.  

  (b) A schematic representation of the longitudinal crack’s path. The  

  cracks are located at the azimuth of maximum compression (c) The           

  intersections of the last line segments with the borehole geometry  

  (points P and Q) yield the breakout width. This is done by solving a  

  system of algebraic equations. ...................................................................  36 

 2.14. Schematic illustration of the path of the propagating radial crack. ............  38 

 2.15. Schematic illustration of the paths of the propagating longitudinal  

  cracks. .........................................................................................................  40 

 2.16. Standing crack under compression loading, in the vicinity of a circular      

  borehole, (in an infinite medium) under polyaxial loading, propagating  

  through a wedging force. ............................................................................  42 

 

 2.17. (a) The stress intensity factors distribution from the tip of the initial  

  crack to the borehole boundary (𝑟 − 𝜃). (b) The stress intensity factors     

  distribution from the tip of the crack to the borehole boundary after  

  the crack has increased in length (the first step size) 𝑟 − 𝜃 plane 

  (c) Estimation of the breakout width; only the quadrant is shown since      

  symmetry is applicable. The breakout width in this case is almost 1800. .  44 

   



xii 

FIGURE  Page 

2.18. (a) Mode I stress intensity factor distribution from the tip of the 

initial crack to the borehole boundary (𝑟 − 𝑧 plane). (b) Mode II  

stress intensity factor distribution from the tip of the initial crack to  

the borehole boundary(𝑟 − 𝑧 plane). (c) Mode I stress intensity factor     

distribution from the tip of the crack to the borehole boundary after the 

length has increased (𝑟 − 𝑧 plane). (d) Mode II stress intensity factor      

distribution from the tip of the crack to the borehole boundary after the 

length has increased (𝑟 − 𝑧 plane)..............................................................  45 

2.19. Breakout pattern in the 𝑟 − 𝑧 plane ............................................................  47 

3.1. Damaged state around the wellbore prior to the stable propagation of the  .  

       standing initial cracks. ..................................................................................  50 

3.2. Existing cracks propagating towards the direction of the maximum 

       compressive force in the horizontal plane. ...................................................  52 

3.3. Propagation of cracks in the vertical and horizontal planes. ........................  53 

3.4. (a) Schematic of the forces acting on the slender rock layer 

       (b) a representation of the foregoing problem by beam asymptotic.............  55 

3.5. Comparing mode-1 stress intensity factor with numerical data; 

        back stress is zero in this case. ....................................................................  57 

3.6. Size of the representative pre-existing crack (enlarged size) in the 

        horizontal plane. ..........................................................................................  59 

3.7. Free body diagram showing the force system acting on the plate as 

       viewed in the horizontal plane. ....................................................................  61 

3.8. Free body diagram showing the force system acting on the plate as 

       viewed in the vertical plane.. ........................................................................  62 

3.9. Buckled rock plate as viewed in the horizontal plane. .................................  63 

3.10. (a) Variation of caving size on plane strain Young’s modulus. 

(b) Variation of caving size on plane strain Young’s modulus an 

example case... ...........................................................................................  65 



 

xiii 

 

FIGURE                                                                                                                        Page 

 

 3.11. (a) Variation of caving size with buckling stress. (b) Variation of  

  buckling stress with well angles. ................................................................  66 

 

 3.12. Variation of caving size with borehole shape. ...........................................  67 

 

 3.13. Influence of the initial damage state on the size of caving produced.  

  In this example case, the Elastic modulus of the formation is taken to  

  be 145 Kpsi, Poisson ratio and Vertical stress are assumed to be 0.3 and  

  4000 psi respectively. .................................................................................  68 

 

 3.14. Influence of in-situ stress loading on the size of caving produced.  

  In this example case, h, Poisson ratio and elastic modulus are assumed  

  to be 0.5in., 0.3, and 145Kpsi respectively. ...............................................  69 

 

 3.15. Variation of (a) hoops stress, (b) radial stress, and (c) vertical stress  

  around a circular wellbore with well angles. In this case A, the well 

  azimuth is zero. ..........................................................................................  70 

 

 3.16. Variation of (a) hoops stress, (b) radial stress, and (c) vertical stress  

  around a circular wellbore with well angles. In this case B, the well 

  azimuth is zero. ..........................................................................................  71 

 

 3.17. Crack propagation in case A. .....................................................................  72 

 

 3.18. Crack propagation and arrest in case B. .....................................................  73 

 

 4.1. Geometry of two spherical particles elastically deforming in contact.  

  The dashed line represents the undeformed surface of each particle. ........  91 

 

 4.2. Pressure wave and eroson fronts during radial erosion. ...............................  96 

 

 4.3. Model domain and boundary conditions notation. .......................................  99 

 

 4.4. Pressure (in KPa) distribution in the open-channel and porous medium  

        at the onset of erosion. ..................................................................................  99 

 

 4.5. Velocity (in m/s) distribution in the open-channel and porous medium  

        at the onset of erosion. ..................................................................................  100 

 

 4.6. Shear rate (in 1/s) distribution in the open-channel and porous medium  

        at the onset of erosion. ..................................................................................  100 

 



 

xiv 

 

FIGURE                                                                                                                        Page 

 

 4.7. Distribution of fluidized particles concentration (in mol. /m3)  

        in the porous medium during the erosion process at times  

        (a) 3s, (b) 10s, and (c) 20s. ...........................................................................  101 

 

 4.8. Porosity evolution in the porous medium during the erosion process  

        at times (a) 3s, (b) 10s, and (c) 20s ..............................................................  102 

 

 5.1. Representative volume element of the mixture of three species having  

        different interface widths .............................................................................  114 

 

 6.1. Asymmetric multilayer hydraulic fracture propagation. ..............................  139 

 

 6.2. Asymmetric three-layer equilibrium height problem. ..................................  139 

 

 6.3. Possible fracture tips positions in three-layer media. ...................................  143 

 

 6.4. Region map of the tips positions when the pressure inside the fracture 

        is 53.09MPa (7700 psi) for 11-EHP.. ...........................................................  152 

 

 6.5. Region map of the tips positions when the pressure inside the fracture is           

        53.78MPa (7800 psi) for 11-EHP. ...............................................................  152 

 

 6.6. Region map of the tips positions when the pressure inside the fracture is          

        54.47MPa (7900 psi) for 11-EHP. ...............................................................  152 

 

 6.7. Region map of the tips positions when the pressure inside the fracture is     

        53.09MPa (7700 psi) for 3ER-EHP. ............................................................  152 

 

 6.8. Region map of the tips positions when the pressure inside the fracture is     

        53.78MPa (7800 psi) for 3ER-EHP .............................................................  153 

 

 6.9. Region map of the tips positions when the pressure inside the fracture is     

        53.78MPa (7800 psi) for 3ER-EHP .............................................................  153 

 

 6.10. Region map of the tips positions when the pressure inside the fracture is   

          54.47MPa (7900 psi) for 3BR-EHP. ..........................................................  154 

 

 6.11. Region map of the tips positions when the pressure inside the fracture is   

  54.47MPa (7900 psi) for 3WL-EHP. .........................................................  154 

 6.12. Region map of the tips positions when the pressure inside the fracture is   

  54.47MPa (7900 psi) for 11-EHP, Case 2. .................................................  156 



 

xv 

 

 FIGURE                                                                                                                  Page 

 6.13. Region map of the tips positions when the pressure inside the fracture is   

  54.47MPa (7900 psi) for 3ER-EHP, Case 2. ..............................................  156 

 6.14. Region map of the tips positions when the pressure inside the fracture is   

  54.47MPa (7900 psi) for 3BR-EHP, Case 2. .............................................  156 

 6.15. Region map of the tips positions when the pressure inside the fracture is   

  54.47MPa (7900 psi) for 3WL-EHP, Case 2. ............................................  156 

 6.16. Region map of the tips positions when the pressure inside the fracture is   

  54.47MPa (7900 psi) for 3EER-EHP, Case 2. ...........................................  157 

 6.17. Variations of the normalized shear modulus, D , and normalized  

  fracture toughness with damage in any material displaying a linear  

  elastic response.  𝜆 = 0 in this case. ..........................................................  157 

 6.18. (a) Variation of the normalized shear modulus, D , considering  

  different infill materials (b) Variation of normalized fracture toughness, 

   
DICK ,

,  with damage considering different infill materials .......................  159 

 6.19. Comparing the performance of the proposed model for effective  

  shear modulus of a material body having   (a) empty or open natural  

  fractures, Case 1, (b) micro-fractures filled with lower modulus material,  

  Case 2, and (c) micro-fractures filled with higher modulus material,  

  Case 3. ........................................................................................................  160 

 

 



 

xvi 

 

LIST OF TABLES 

 

TABLE                                                                                                                          Page 

 

 2.1 Breakout Depth and Width Variation with Depth ......................................  27 

 

 2.2 Comparison between Fracture Angle Calculated from Mohr Circle and     

  Inclination Angle of the Failure Lines at Wellbore Interface. ...................  27 

 

 2.3 Breakout Depth and Width Variation with Depth ......................................  32 

 3.1 Stress state and mechanical properties of the formation for case A ...........  71 

 

 3.2 Stress state and mechanical properties of the formation for case B ...........  72 

 

 4.1 Model parameters for axial erosion simulation ..........................................  98 

 6.1 Description of the formation properties and in-situ stress profiles  

  for the 11- layer problem ............................................................................  151 

 

 6.2 Description of the formation properties and in-situ stress profiles  

  for the equivalent three-layer problem .......................................................  151 

 6.3 Description of the formation properties and in-situ stress profiles  

  for the 11-EHP, Case 2 ...............................................................................  155 

 

 6.4 Elastic Properties of the Matrix and Inclusions .........................................  158 

 

  

 

                                                                                



 

1 

 

1. INTRODUCTION AND LITERATURE REVIEW 

 

     After the Macondo oil spill in 2010, the petroleum exploration and development 

companies have been under severe scrutiny of their respective host governments to 

provide faster means of killing a blowing well. Drilling a relief well can take several days 

to complete and the use of cofferdams has its own limitations. Borehole bridging 

technology is currently being pursued by the industry as a faster alternative to kill a 

blowing well, but no detailed scientific investigations have been conducted on its viability. 

Therefore in this work I present rigorous hydromechanical frameworks for predicting the 

potential for self-killing or induced-bridging of blowing oil and gas wells. For borehole 

bridging to occur solid-particles (especially sand) must be produced or there is a 

significant reduction in the permeability of the producing formation(s), or reservoir 

pressure depletes significantly such that there is no sufficient energy to carry the reservoir 

fluids to the surface.  

1.1  What Is a Blowout? 

 Uncontrolled influx of formation fluid(s) into the wellbore is termed “taking a 

kick” in the petroleum industry. When the kick is not detected or controlled early and the 

reservoir energy is sufficient to transport the formation fluid against the imposed back-

pressure of the mud column, the whole wellbore will be filled with the reservoir fluid(s); 

then, it can be said that blowout has occurred.  

 Depending on the sink (outlet domain) of the formation fluids, blowout can be 

categorized into three: (1) surface blowout occurs when the formation fluids are 
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transported to the surface (above the sea level), (2) subsurface blowout occurs when the 

formation fluids are deposited into the sea, and (3) underground blowout is the deposition 

of the reservoir fluids into another rock formation. Underground blowout can occur with 

irrespective of the condition of the blowout preventer (BOP). When the BOP is closed, 

pressure builds-up in the wellbore, and when the fracture pressure gradient of any of the 

weak or soft formations is exceeded, the fluids create a path through these weak openhole- 

intervals. On the other hand, cross-flow into a depleted formation can lead to underground 

blowout, once the wellbore pressure exceeds the formation pressure, the fluid will diffuse 

into the formation. 

1.2 Causes of Blowout 

 Blowout can occur during drilling and completion operations; but no interest is 

placed on blowouts occurrence during workover operations in this study. Therefore, the 

different causes of blowout during drilling operations are: (1) drilling into an abnormally 

high pressured formation, (2) tripping out of the borehole at a relatively high-speed such 

that the differential pressure caused by swabbing creates an underbalanced condition in 

the wellbore, (3) loss of the marine riser connecting the seabed to the rig in deepwater 

drilling operations, (4) flow through the casing-cement or cement-formation annuli as a 

result of the created flow-gap from the disproportionate expansions of the formation, 

casing, and cement, and (5) failure of the BOP to seal the well.  

1.3 Past Studies on Blowout Control 

 Few studies have been conducted on blowout control analyses. One of the notable 

field studies include the statistical analysis of killing methods used between the year 1960 
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to 1996 in Texas and US Outer Continental Shelf (USOCS) by Skalle et al. (1998 and 

1999). In this study the authors found out that 39.6% of blowouts in the USOCS were 

controlled by wellbore bridging (Fig. 1.1). While 16% of blowouts in Texas were 

controlled by bridging (Fig. 1.2); the difference in the percentage of wellbore bridging 

occurrences in these two locations could be as a result of change in lithology of the 

formations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Danenberger (1993) compiled blowout occurrences in the USOCS for over a 21-

year period, from 1971 to 1991. Out of the total 21, 436 wells drilled, 87 blowouts were 

recorded and most of the blowouts were traced to shallow gas. Eighteen of the wells 

Fig. 1.1. Blowout control methods used in 187 wells in OCS 

from 1960 to 1996 (Data from Skalle et al. 1999). 
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stopped flowing within a one-hour period, 50 of the wells were controlled within a day, 

and 73 within a week. Sixty-two of the 87 blowouts were controlled by bridging, while 

the rest of the wells were killed by pumping mud or cement and activating the BOP. 

Recently attempts were made to understand the physics behind the self-killing of 

blowing oil and gas wells, by studying the transient borehole failure and cavings transport 

during blowout. Nesheli and Schubert (2006) attempted to use the breakout analysis to 

qualitatively predict the potential for self-killing of blowing wells; they only estimated the 

breakout angle without determining the volume of solids produced. Wilson (2012) and 

Fig. 1.2. Blowout control methods used in 826 wells in Texas 

from 1960 to 1996 (Data from Skalle et al. 1999). 

11%

5%

6%

41%

3%

5%

4%

16%

9%

Cement

Depletion

Install Equipment

Weighted Mud

Relief Well

Missing

Capping

Bridging

BOP



 

5 

 

Wilson et al. (2013) were the first to thoroughly study the geomechanics and cuttings 

transport analyses during kick development and blowout. In their studies, borehole 

breakouts, erosion, collapse of overburden rocks, gas depressurization, and influx of 

aquifer into a gas reservoir were identified as the main mechanisms that can lead to self-

killing of blowing wells. But they also concluded that blowouts from prolific deepwater 

reservoirs cannot be stanched by borehole breakouts or erosion only; in fact once the kick 

develops into a blowout, self-killing cannot be a reliable remedy in controlling the wells. 

They further emphasized the impact of rate of borehole failure in stanching the flow during 

kick development. If the borehole failure is enormous and rapid, the tendency for self-

killing is higher compared with gradual borehole failure with the same amount of solids 

production. 

1.4 Past Studies on Wellbore Breakout Analysis 

 Borehole breakout is one of the main borehole failure mechanisms that can lead to 

self-killing of wells. And as mentioned earlier, the rate of borehole failure is very critical 

when predicting the potential for borehole bridging. Wellbore breakouts are generally 

classified into four major categories, type A, B, C, and D (Maury and Sauzay 1987 and 

Guenot and Santarelli 1988).  

 As observed in Fig. 1.3, types A and B produce relatively large amount solids 

compared with type C.  
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1.5 Previous Studies on Hydraulic Fracture Containment 

 In the event the BOP is closed, pressure builds up in the wellbore, and a formation 

with low fracture gradient can host the fracture path. Depending on the stress regime where 

Fig. 1.3. Borehole breakout classification according to Maury 

and Sauzay (1987). 
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the well is situated, the facture length can grow in the vertical direction, towards the 

surface (in a strike-slip faulting regime) or in the horizontal plane (in a normal faulting 

regime).  Without shear loading of the borehole, a hydraulic fracture’s length propagates 

in the direction of the intermediate in-situ stress, its height propagates in the direction of 

the maximum in-situ stress, and its width in the direction of least in-situ stress. 

1.6 Research Problem Statements and Objectives 

This study aims to answer two major questions on blowout control: 

1. Can a blowing well kill itself? In answering this question two hydromechanical 

frameworks for sand production will be developed. These frameworks are: erosion of 

damaged/unconsolidated formation and wellbore breakout. For a well to kill itself, it 

is necessary, but not sufficient, that solid particles be produced. The sizes of cuttings, 

rate of cuttings production, borehole geometry, and the total energy from the 

reservoir(s) significantly determine the bridging tendency. Thus, each of these factors 

will be thoroughly treated in this work. 

2. What are the chances of having fracture broaching to the surface/sea bed when the 

BOP is closed? To answer this question P3D hydraulic fracture model will be used to 

determine the positions of the fracture tips. To reduce the rigor of modeling fracture 

propagation in layered media, an effective fracture toughness that homogenizes the 

different formation layers is developed; similarly, an effective fracture toughness that 

homogenizes a naturally fractured formation is also proposed; the effective fracture 

toughness is dependent on area of the discontinuities of a representative volume 

element and the mechanical properties of the formation matrix. 
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1.7 Dissertation Layout 

 This dissertation presents hydromechanical frameworks for predicting self-killing 

potential of blowing oil and gas wells. For a well to kill itself, sand production is a 

necessary condition. Two major sources of sand production that are of interest in this study 

are erosion and wellbore breakout.  

 Extensive studies have been conducted on type A breakout, but no theoretical 

development on type B is available in the literature. Thus, Section 2 presents the 

theoretical development for predicting the morphology of type B breakout. The impact of 

vertical heterogeneity layout on the morphology of type B breakout mode is also 

presented. Using shear failure theory and fracture mechanics approach, the failure pattern 

is shown to be toroidal. While in Section 3 a framework for estimating the size of caving 

produced during the breakout process is presented. Dipole and beam asymptotic methods 

are used in deriving the stress intensity factors at the tips of the propagating micro-crack 

and plate buckling theory is applied to determine the limiting buckling dimensions of the 

generated slender rock layer produced during the breakout process. 

 Mathematical frameworks for modeling reservoir and wellbore erosion is 

presented in Section 4. A comprehensive erosion constitutive relation based on principle 

of virtual power is presented; this relation reduces to the form of the phenomenological 

model proposed by Papamichos (2010). I showed that the proposed erosion power balance 

satisfies the principle of frame indifference if and only if linear and angular momentum 

balances are satisfied. Furthermore, the three-phase erosion-kinetic equations are 

presented. 
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 The constitutive behavior of the mixture of gas, liquid, and solid particles produced 

during the erosion or breakout process needs to be known to adequately predict bridging 

potential. Considering a deepwter environment, where the temperature contrast at the 

bottom of the well to the mud-line is high the behavior of the mixture can change as it is 

transported from the bottom of the well to the surface. Hence, Section 5 presents a 

thermodynamically consistent multiphase-field model for the flow of the mixture of solid, 

gas, and liquid during blowout. In this formulation, I added the internal workings in the 

bulk of the different phases and interfaces due to the internal configurational forces to the 

first thermodynamics postulate to account for possible evolution of each phase in the 

continuum. The proposed model 

 In the event the well is shut in, fracture can initiate and propagate from any of the 

open-hole interval and broach to the surface. Therefore, Section 6, provide a faster means 

for estimating the growth of fractures in heterogeneous media during the broaching 

process. Using equivalent energy-release rate hypothesis, an effective fracture toughness, 

which homogenizes heterogeneous media, is developed. Finally, conclusions and future 

works are provided in Section 7. 
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2. THEORETICAL DEVELOPMENT ON MORPHOLOGY OF WELLBORE 

TOROIDAL BREAKOUT* 

 

2.1 Scope 

           Few researchers have conducted experimental investigations on the occurrence of 

wellbore toroidal breakout; also this breakout mode has been observed in the field. 

Unfortunately, there is no published theoretical study that adequately describes the 

occurrence of this unique feature. Thus, we have developed a theory that answers some of 

the questions related to the occurrence of wellbore toroidal breakout: (a). is the failure 

mode toroidal? (b). is the deepest depth for a homogeneous and isotropic formation at the 

center? (c). location of the deepest depth for a heterogeneous formation? To consider the 

impacts of support pressure on the breakout pattern, the two failure modes were 

considered, namely: shear fracture and extensile-splitting induced breakouts. Minimum 

strain energy criterion was used in determining the direction of the propagating extensile 

cracks; and the trajectories of the cracks were tracked with Fourier series of piece-wise 

linear functions. In the numerical experiments conducted, it was observed that the 

extensile cracks propagated in the r-z plane through mode II (shear) predominantly, and 

by mode I in the r  plane. By rotating the cracks profile in the r-z plane through the 

vertical axis by the breakout width, the breakout volume can be approximately 

determined; the volume generated by this rotation is usually greater than the actual 

volume. 

 
*Reprinted with permission from Oyedokun, O. and Schubert, J., 2016, June. Theoretical Development 

on Morphology of Wellbore Toroidal Breakout. In 50th US Rock Mechanics/Geomechanics 

Symposium. American Rock Mechanics Association. Copyright [2016] by American Rock Mechanics 

Association. 
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2.2 Background on Borehole Breakouts 

 Extensive studies have been conducted on type- A breakout (Figs.2.1a and 2.1b); 

the breakout mode is primarily controlled by the tangential stress around the wellbore. 

Bell and Gough (1982) predicted that breakouts are spalled regions around the wellbore 

and the deepest depth align with the direction of the minimum horizontal in-situ stress; 

they envisioned a dog-eared breakout shape. Ewy and Cook (1990), Martin et al. (1994), 

Ewy et al. (1988) conducted laboratory experiments to confirm Bell and Gough’s 

hypothesis. The triangular breakout section is often observed in some brittle 

geomaterials, like granite.  

 But generally, the breakout shapes are flat-bottomed and broad (Zoback et al. 

1985); these authors assumed that the breakout shape follows the potential shear failure 

lines and confirmed their theory with some field observations. Similarly, Kulandar and 

Dean (1985) and Pollard and Aydin (1988) also supported the curvy nature of the failure 

surface around the borehole through some observed experiments. Other notable 

laboratory experiments and field observations that support the curved failure surfaces 

include the works of Cuss et al. 2003, Stacey and Jongh (1978), and Ortlepp (1978); there 

are other references that support this hypothesis, which we have not mentioned. 

 Propagation of shear fractures and/or extensile splitting cracks around the wellbore 

surface have been attributed to the cause of breakout. Fairhust and Cook (1966) and Horri 

and Nemat-Nasser (1985) suggested that splitting parallel to the direction of the 

maximum principal stress is the primary mode of macroscopic fracture of brittle rocks. 

Similarly, Mastin (1984) proposed that rock failure occurs by the propagation of the 
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extensional fractures, which initiate from intragranular fractures that extend between 

contact points of the grains. Many other studies that support the extensile splitting 

mechanism are Germanovich (1997), Germanovich and Dyskin (1999), Nemat-Nasser, 

and Horri (1982), Tang and Kou (1998). But Kenemy and Cook (1987), Ewy and Cook 

(1990), showed that macroscopic shear localization is the dominant failure mechanism 

around a pressure-supported borehole, while extensile splitting is the dominant failure 

mechanism around unsupported boreholes.  
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Fig. 2.1 (a). Plane view of the type-A breakout. (b) A 3D view of symmetric 

type-A breakout along an inclined wellbore. 

(b)  (a)  
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Different breakout modes have been observed in experiments and the field. But many of 

the past studies have been centered on symmetric breakout occurrence in the horizontal 

plane, r  plane. However, Maury and Sauzay (1987), and Guenot and Santarelli (1988) 

projected that the failure around a borehole when the vertical stress is the maximum 

principal stress, and the tangential stress is the intermediate will appear as an O-ring (or 

a torus); this breakout mode is typically named type B according to Guenot. 

 With pure shear loading of the formation, the first breakout episode will not align 

with the direction of minimum horizontal insitu stress. For subsequent episodes, the 

breakout tends to turn forwards (to the right) in the direction of the shear stress; the degree 

of turning reduces as it approaches the direction of the minimum horizontal in-situ stress. 

 Maury (1992) later supported this assumption with some field observations. Perie 

and Goodman (1989) performed laboratory experiments that confirmed Guenot and 

Maury’s projections, while Plump (1989) showed some field observations of the type B 

breakout. Maloney and Kaiser (1989) observed what seems to be the simultaneous 

occurrence of type-A and type-B breakouts in laboratory experiments. 

   

 

 

 
 

 

 

 

 

 

 

 
Fig. 2.2. Guenot and Maury’s prediction 

of type-B breakout shape. (Maury 1992). 
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Based on the projections of Guenot and Maury (Fig. 2.2), and the experiments conducted 

by Perie and Goodman (Figs. 2.3a, and 2.3b), one may imagine that the deepest depth of 

type-B breakout will occur at the center of the specimen or the formation layer; it is 

worth noting that homogeneous samples were used in these experiments. From the field 

observations presented by Plump (Figs. 2.4a and 2.4b), it is evident that the location of 

the deepest depth depends on the vertical heterogeneity layout of the formation; and we 

strongly assume that horizontal planar heterogeneity can cause asymmetric type-A 

breakout, as observed by Zoback et al. (1985). Therefore, the impact of vertical 

heterogeneity layout on the morphology of breakouts, especially type-B, is one of the 

foci of this study. 

  

 
  

(a)  
(b)  

Fig. 2.3 (a) A view of the breakout experiment performed by Perie and Goodman. The failed zones 

appear as concentric arcs to the borehole. (b). A schematic illustration of the propagating cracks in 

the breakout experiment (c) A view of the propagating radial cracks and toroidal failure. Reprinted 

with the permission from ASME. (Perie and Goodman 1989). 

(c)  
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Furthermore, we have developed a simple approach of predicting the shape of type-B 

breakout in heterogeneous formations. Finally, we developed a simple but generic model 

for estimating the volume of type-B breakouts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

2.3 Theory on Shear Fracture Induced Toroidal Spalling 

 

 The dominant failure mechanism around pressure-supported wellbore is 

compressive shear. In determining the geometry of the breakout region, most authors use 

the shear failure theory. In this theory, failure occurs when the maximum principal stress 

at the point of interest exceeds the critical failure stress. From Mohr-Coulomb failure 

criterion, the failure stress is 

Fig. 2.4 (a) Detail of the incipient breakout of inclined-segmented margins observed in a 

particular well located in southern North Sea. (b) Occurrence of different breakout 

modes in a particular well located in the southern North Sea.. (Plump 1989). 

(b) 
(a) 
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For the occurrence of toroidal spalling, the maximum principal stress is the axial stress. 

To determine the geometry of the failed region, the stress distributions around the wellbore 

need to be known.  

2.4 Stress Distributions Around Wellbore 

            Using plane strain approximation, the stresses around a circular wellbore are given 

by these Kirsch’s equations: 
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Dr  ; where 𝑎 is the radius of the wellbore and 𝑟 is any radial distance 

from the center of the hole. For an elliptic wellbore, the stress distributions around the 

borehole are derived assuming small deformation; the stresses due to mechanical-

polyaxial and thermal loadings of an elliptic hole in an infinite medium are 
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When  𝑗 = 3 , the hoops and the hyperbolic stresses are equal to the effective wellbore 

pressure. 

2.5 Breakout Pattern Under Shear Fracture 

           During the rupture process, the breakout is formed by the simultaneous propagation 

of shear fractures both in the r-z and r-θ planes (Fig.2.5). The shear fractures in the r-z 

plane are parallel to each other (for each conjugate), but acute to the wellbore; the 

acuteness of the angle depends on the rock material. The stronger the rock, the more acute 

the angle. The acute angle is the called the fracture angle, .  

           As the shear fractures propagate away from the wellbore wall into the formation, 

the conjugate shear fractures intersect at a location. The intersecting location is where the 

breakout has the deepest depth. For a homogeneous and isotropic formation, the conjugate 

shear fractures intersect at the center because the fracture angles are equal (Fig.2.6). But 
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when the formation is highly heterogeneous the intersecting point depends on the 

heterogeneity layout of the formation (Figs. 2.7a and 2.7b). Since breakout depth tends to 

increase with the magnitudes of the stress components acting near the wellbore, the 

vertical heterogeneity layout can also affect the magnitude of the deepest depth. 

          The failure in the r-θ plane determines the magnitude of the breakout width, 

although it is greatly controlled by the magnitude of the axial stress (for a vertical 

wellbore). The span of the failed zone depends greatly on the fracture angle(s). And the 

region bounded by the failure planes defines the shape of the breakout; the region is always 

toroidal. 

 

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.5. Longitudinal and radial shear 

fractures propagation. 
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Knowing the vertical heterogeneity layout of the formation or laboratory specimen, the 

location of the deepest breakout depth can be estimated by projecting straight lines, 

inclined to the borehole axis; the inclination angle is equal to the fracture angle. 

From Mohr circle, the fracture angle is equal to 
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
   ................................................................................................................... (2.19) 

The intersection of these projected lines will give an approximate location of the deepest 

depth; then knowing the state of stress at that location, the breakout depth and width can 

be estimated. This approach reduces the number of computations needed to determine the 

breakout geometry.            
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Fig.2.6. Shear fractures in the r-z plane for a homogeneous formation. The deepest 

depth occurs at the center of the formation. 
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In the following examples the fracture angle, Eq. (2.19), gives a good approximation of 

the inclination of the curvy shear failure lines at the wellbore interface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6 Breakout Depth and Width 
 

Knowing the location of the deepest depth, through the procedure given above, the 

breakout depth is calculated by first knowing the azimuth of the maximum compression. 

The azimuth of maximum compression aligns with the direction of the minimum 

horizontal in-situ stress, if the wellbore is vertical and its axes align with axes of the 

principal in-situ stresses. 
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Fig.2.7. (a) Shear fractures in the r-z plane for a heterogeneous formation. The deepest 

depth occurs at a deeper location when the stronger zone is at the top of a weaker zone. (b) 

Shear fractures in the r-z plane for a heterogeneous formation. The deepest depth occurs at 

a shallower location when the weak zone is at top of a stronger zone. 

(b) 
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When the wellbore axes are not aligned with the axes of the principal in-situ 

stresses, the direction of maximum compression can be determined by finding the angle 

that maximizes the hoops stress. In such a case, especially along inclined wells, the 

breakout episodes typically appear as shown in Fig.2.1a. 

With the direction of the maximum compression known, the angle is substituted 

into the stress equations, Eq. (2.2) to Eq. (2.6) for circular wellbore geometry or Eq. (2.7) 

to Eq. (2.10) for elliptical wellbore geometry and the corresponding radial distance that 

makes the maximum principal stress equal to the critical failure stress at the point is 

calculated. This radial distance is the deepest breakout depth 

For an elliptical wellbore geometry, the radial distance is calculated using the 

conversion equation 
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k = 1, 2 … is the breakout episode. 
B

 is the breakout depth in elliptical coordinate system, 

calculated through the procedure described earlier. When k is 1, the wellbore geometry 

prior to rupture is used. kbt ,  is the direction of the maximum compression at breakout 

episode k . kmr ,  is the breakout depth in the direction of minimum compression. In some 

cases, the toroidal spalls appear in the direction of minimum compression; thus, the 

direction of minimum compression should be used in lieu of the maximum compression 

in the calculations. 
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 At the wall of a circular wellbore, the stresses are 
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And the effective principal stresses are: 
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           By equating the Eq. (2.26) and Eq. (2.1) the breakout width can be estimated. For 

vertical wellbores, the breakout width, b , is  
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Where,  
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And for an elliptical wellbore, the effective stresses at the wall are: 
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Similarly, the breakout width around an elliptic wellbore is estimated through Eq. (2.38). 
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Where,  
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It should be noted that  is the breakout direction at episode k-1. 
c

 is the critical 

failure stress. 

2.7 Numerical Example of Type-B Breakout Pattern in a Homogeneous 

Formation 

 Considering a vertical well drilled in a normal faulting regime and its axes aligning 

with the orientations of the in-situ principal stresses; the cohesive strength of the rock is  
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Differential  

Depth (m) 
v  

(MPa) 
H  

(MPa) 

h
 

(MPa) 

br
 

(m) 

b
 

(rad) 

      

0.000 87.73 29.24 26.14 0.1989 1.385 

3.048 87.79 29.26 26.26 0.2062 1.354 

6.096 87.86 29.29 26.56 0.23758 1.387 

9.144 87.93 29.31 26.68 0.2540 1.347 

12.192 88.00 29.33 26.81 0.2800 1.317 

15.240 88.07 29.36 27.02 0.37099 1.312 

18.288 88.14 29.38 27.10 0.4312 1.263 

21.336 88.21 29.40 27.31 0.0922 1.256 

24.384 88.28 29.43 27.38 0.09248 1.272 

27.432 88.34 29.45 27.45 0.09275 1.153 

Differential  

Depth (m) 2
b  

(rad) 

  

(rad) 

   

0.000 0.6925 0.5236 

3.048 0.677 0.5236 

6.096 0.6935 0.5236 

9.144 0.6735 0.5236 

12.192 0.6585 0.5236 

15.240 0.656 0.5236 

18.288 0.6315 0.5236 

21.336 0.628 0.5236 

24.384 0.636 0.5236 

27.432 0.5765 0.5236 

Table 2.1. Breakout Depth and Width Variation with Depth. 

Table 2.2. Comparison between Fracture Angle Calculated from Mohr 

Circle and Inclination Angle of the Failure Lines at Wellbore Interface. 
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13.788 MPa (2000 psi), the Poisson ratio is 0.25, and the angle of internal friction is 𝜋 6⁄  

rad. The wellbore radius is 0.09144 m. (0.3ft.) 

 Despite the use of the rational polynomial, the fit is not good; but it is still a 

reasonable representation of the breakout pattern. Mohr-Coulomb failure criterion was 

used in estimating the breakout geometry and it is expected that the dimensions of the 

breakout may be larger than that predicted with Mogi-Coulomb failure criterion (Al-Ajmi 

and Zimmerman 2006). Despite this shortcoming, the breakout patterns estimated with the 

two criteria will look alike; the primary aim of this study is to confirm the assumed 

breakout pattern. Rational polynomials are known to fit any arbitrary data very well; thus 

using the polynomial function: 
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Fig. 2.8. Using the rational polynomial in fitting the data above. The solid orange line is the 

polynomial fit, while the dashed line is the data. The projected line is the solid blue line. 



 

29 

 

To construct the triangular breakout pattern that locates the depth of maximum breakout, 

Fourier series is used: 
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Where, 𝐿 is the thickness of the formation or length of the laboratory specimen: 

 

                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.9. Effective stress distribution at the wellbore wall. It is evident from the plot 

that breakout direction is at the azimuth of minimum horizontal in-situ stress. 
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The Fourier coefficients are: 
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Fig. 2.10. A schematic illustration of the projected straight lines. After determining 

the maximum break depth location with the fracture angle, the dashed lines illustrate 

the adjusted projection lines. 
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The Fourier series representing the projected breakout pattern is 
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2.8 Numerical Example of Type-B Breakout Pattern in a Heterogeneous 

Formation 

In this case, the formation strength is decreasing with depth, the variations of the 

rock properties with depth are shown in Table 3; 

1006


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the internal friction angle decreases with depth according to Eq. (2.51). The well 

inclination angle is 22.50; the overburden remains the same as in Table. 1.  
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Fig. 2.11. Effective stress distributions at the wellbore wall.
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Differential  

Depth (m) 
H  

(MPa) 

h
 

(MPa) 

  

 

0C  

(MPa) 

br
 

(m) 

b
 

(rad) 

       

0.000 29.53 26.29 0.25 18.62 0.091 0.329 

3.048 31.15 26.40 0.24 17.93 0.091 0.348 

6.096 32.82 26.49 0.23 17.24 0.091 0.395 

9.144 34.54 26.64 0.22 16.55 0.091 0.422 

12.192 36.30 26.84 0.21 15.86 0.094 0.446 

15.240 39.96 26.90 0.20 15.17 0.100 0.873 

18.288 40.93 27.04 0.19 14.48 0.403 0.727 

21.336 41.35 27.31 0.18 13.79 0.237 0.595 

24.384 41.95 27.38 0.17 13.10 0.145 0.57 

27.432 43.94 27.45 0.16 12.41 0.127 0.53 

Table 2.3. Breakout Depth and Width Variation with Depth. 

 

Fig. 2.12. The area under the projected-lines over estimates the volume of sand 

produced.  



 

33 

 

2.9 Theory on Extensile Fracture Induced Toroidal Spalling 

 Kenemy and Cook (1990) and Ewy and Cook (1990) showed that macroscopic 

splitting is the dominant mode of failure around unsupported or poorly supported 

borehole. And Jaeger and Hoskins (1966) had shown earlier that this mode of failure is 

independent of the loading direction (tensile or compressive loading). Failure by extensile 

splitting starts by the growth of micro cracks (transgranular fracture propagation or 

disintegration of the grain boundaries), breaking of the cementation between the sand 

grains or the growth of an existing crack in the rock. 

 The criterion on which the cracks propagate around the wellbore has received a lot 

of contributions. Erdogan and Sih (1963), Besterfield et al. (1990), Chang and Mear 

(1995), Porterla and Aliabadi (1991) assumed that the cracks will tend to extend in the 

direction perpendicular to the maximum principal stress. Sih (1973) assumed that the 

crack will propagate along the path that minimizes the potential energy density. The paths 

taking by these two criteria are almost similar as shown by the experiments performed by 

Erdogan and Sih. Other criteria include local symmetry (Stone and Babuska 1997) and 

maximum energy release rate. 

 But the impact of material properties on the fracture path has been suppressed in 

the maximum principal stress criterion. Therefore, the minimum potential energy criterion 

will be used in this analysis. 

 For breakout to occur, many extensile cracks will need to propagate 

simultaneously. To reduce the complexity, the dynamic forces associated with the 

interaction and motions of these cracks have been suppressed. Also, we assumed that each 
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of the cracks propagate through one end only.  And the longitudinal and radial cracks 

propagate in their respectively planes without any intra-planar interactions. 

2.10  Breakout Pattern Under Extensile Splitting 

 Far away from the wellbore wall, the stress intensity factors (modes I and II) are 

small, such that the cracks located in that region will not propagate, for a given loading 

condition. As the wellbore geometry changes, the stress state around the hole changes 

also. Consequently, the stress intensity factors distributions around the borehole are 

altered as well.  

 The initial cracks generated concentrate at the azimuth of maximum compression 

and propagate towards the wellbore wall. This propagation path is as a result of the stress 

distributions around the wellbore; the cracks want to propagate with minimum strain 

energy.  

 Considering cracks 𝐴 and 𝐵 in Fig. 2.13a, located at distance 𝑥ℎ from the wellbore 

wall; and they are the set of cracks satisfying the lower bound of


h
x

lc
rr 2

01.0
 ; where 

𝑙0 is the original length of the crack. This simply means that the unstable crack growth is 

suppressed at this location (Germanovich and Dyskin 2000). Therefore, the sets of these 

cracks give the location of the deepest breakout depth in the r  plane. And the 

intersections of the cracks’ paths with the borehole boundary yield the breakout width 

(Fig. 2.13c).  
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 Similarly, in the r-z plane, the intersection of the paths of the propagating cracks 

𝐶 and 𝐷  (Fig 13b) with the wellbore wall define the height of the failed region. And cracks 

𝐶 and 𝐷 also satisfy the lower bound z
h

z

lc
rr 

2
01.0

 .  

 The tangential stress at location (1) in Fig. 2.13a, is greater than that at location 

(2), therefore, the tendency for cracks to extend towards the wellbore is evident. 

Conversely, the radial stress at (1) is less than that at (2), thus, the tendency for the unstable 

extension of cracks close to (1) to be suppressed is limited; although, cracks tend to 

propagate with more stability close to the wellbore wall (Germanovich and Dyskin 2000). 

 In the same vein, the axial stress driving the growth of the longitudinal cracks is 

greater at location (1) than at (2) (Fig. 2.13b). While the axial stress at (3) is greater than 

that at (1). With this in mind, the reader can have a preliminary view of the paths the 

longitudinal cracks can take. 

 The interactions among the multitude of cracks generated in each plane is not as 

severe as the interaction between the cracks and the borehole interface, especially in the 

r  plane. But these interplays are averaged and the dipole asymptotic method is mostly 

used to capture the interaction between the borehole and the representative crack (Freij-

Ayoub 1996 and Germanovich and Dyskin 2000).   

 Using the dipole asymptotic method, Germanovich and Dyskin derived the stress 

intensity factor for the mode I propagation of cracks 𝐴 and 𝐵 in the r  plane as 
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Fig. 2.13. (a) A schematic representation of the radial crack path. It is assumed that symmetric 

deformation occurs at the other end of the borehole. (b) A schematic representation of the 

longitudinal cracks’ paths. The cracks are located at the azimuth of maximum compression. (c) 

The intersections of the last line segments with the borehole geometry (points P and Q) yield the 

breakout width. This is done by solving a system of algebraic equations. 
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Where,  
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and for 𝐶 and 𝐷 in the zr   plane, the mode I stress intensity factor is 
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Where,  
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In the r-z plane, the crack generated stresses are neglected in the study. FF  is the sum 

of the wedging forces due to the undisturbed stress field  and that caused by the crack 

generated stress.  The superposition of these stresses are based on the assumption that 

the deformation is small.  
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Fig. 2.14.  Schematic illustration of the path of the 

propagating radial crack. 
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It should be noted that the radial stress can be replaced with the hyperbolic stress and the 

tangential stress with the elliptic stress when the wellbore is elliptic in shape. 

 The radius of curvature, 𝑅𝐶, is the sum of the curvature of the wellbore and the 

distance of the propagating crack tip to the borehole boundary (Fig. 2.14). 
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 Knowing the mode I stress intensity factor, the mode II stress intensity factor can 

be approximately determined from the simple elliptic relation 
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IIcK and IcK  are determined from experiments; they are the fracture toughness for mode I 

and II respectively. In many cases, they are assumed to be equal (Sun and Jin 2012).  

             With the stress intensity factor known, the strain energy density factor 𝑆, 

introduced by Sih (1973) can be determined. The strain energy density factor is a vector 

field; it provides a knowledge of the mixed mode crack extension in that it specifies the 

crack extension direction and the mixed-mode material fracture toughness at each point in 

the field.             
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For plane strain condition,  43 . 

            By finding the value of 0  that minimizes the strain energy density factor; i.e.  
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The fracture initiation condition is then characterized by 

  crSS 0  ................................................................................................................. (2.63) 
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Fig. 2.15.  Schematic illustration of the paths of 

the propagating longitudinal cracks. 
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2.11 Algorithm for Determining the Path of the Propagating Cracks 

 

i. Determine the location of the cracks that satisfy the lower bound of this criterion:  

plane for   01.0
  r

h
x

lc
rr  and   01.0

z
h

z

lc
rr   plane for zr   

ii. Choose the step size zor  x depending on the plane of interest. 

iii. Compute the crack initiation angle, 
 1

0  

iv. Compute the minimum strain energy density factor at the current location, 

   crSS 
1

0  

v. Compute the strain energy density factor, 𝑆, at the current location; if 𝑆 < 𝑆𝑐𝑟, no 

extension, then stop. But if  𝑆 > 𝑆𝑐𝑟, extend the path in the direction of 
 1

0 by 

zor  x , depending on the plane of interest. 

vi. At the new position, compute the crack initiation angle 
 2

0  

vii. Compute the new minimum strain energy density factor, 
   crSS 
2

0  

viii. Compute the strain energy density factor, 𝑆, at this point, based on the new length 

of the crack and radius of curvature; if 𝑆 < 𝑆𝑐𝑟, no extension, then stop. But if  𝑆 >

𝑆𝑐𝑟, extend the path in the direction of 
 1

0  by zor  x , depending on the plane 

of interest. 

ix. Repeat the steps until the path intersects the borehole boundary 
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x. Find the intersecting points between the equations of the last piece-wise linear 

paths and the equations defining the geometry of the borehole (circle or ellipse or 

straight line or hyperbola); see Figs. 2.13c. and 2.15. 

       The values of 𝑧ℎ and 𝑥ℎ are obtained by simultaneously solving Eqs. (2.64) and (2.65) 
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2.12  Numerical Example of Type-B Breakout Pattern Formed Through         

 Extensile Splitting in a Homogeneous Formation 

 

Using the same values of the rock properties provided in Section 2.8; and 

assuming the in-situ stresses vary linearly with depth (upwards) according to these 

relations 

𝜎𝜃𝜃 

𝜎𝑟𝑟 

𝛼 

𝑙0 

Fig. 2.16. Standing crack under compression loading, in the vicinity of a circular borehole, (in an 

infinite medium) under polyaxial loading, propagating through a wedging force. 
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The fracture toughness (modes I and II) of the shale formation are assumed to be 41.37 

MPa, the elastic shear modulus is 5.6GPa. 

Determining the values of 𝑧ℎ and 𝑥ℎ, the location of the cracks that define the 

maximum failure extent: 

From Eqs. (2.2) to (2.5), substituting 𝑟 = 𝑎 + 𝑥; the values of 𝑥ℎ and 𝑧ℎ are 

0.1634m and 269.36m respectively; the size of the initial crack was assumed to be 

0.0253m. The calculated distances simply show that the cracks below 269.36m from the 

top of the formation and 0.163m away from the borehole boundary will not propagate. But 

the formation section is just 27.43m thick; therefore all the cracks within a distance of 

0.1634m from the borehole boundary will propagate and have unstable growth when the 

critical length of the cracks are reached. 
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Fig.2.17. (a) The stress intensity factors distribution from the tip of the initial crack to the 

borehole boundary (𝑟 − 𝜃) (b) The stress intensity factors distribution from the tip of the 

crack to the borehole boundary after the crack has increased in length (the first step size) 

(𝑟 − 𝜃 plane). (c) Estimation of the breakout width; only the quadrant is shown since 

symmetry is applicable. The breakout width in this case is almost 1800. 

(c)  
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Fig.2.18 (a) Mode I stress intensity factor distribution from the tip of the initial crack to the 
borehole boundary (r − z plane). (b) Mode II stress intensity factor distribution from the tip 
of the initial crack to the borehole boundary (r −z plane). (c) Mode I stress intensity factor 
distribution from the tip of the crack to the borehole boundary after the length has 
increased (r −z plane) (d) Mode II stress intensity factor distribution from the tip of the 
crack to the borehole boundary after the length has increased (r − z plane). 
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As observed in Figs. 2.18a to 2.18d, the crack tends to propagate through mode II—shear. 

This observation is not often seen, as cracks would want to propagate through mode I. 

The failed region in the 𝑟 − 𝑧 plane is very small, centered at the middle of the 

formation. 
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Fig.2.18 Continued
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2.13  Breakout Volume  

 The volume of sand produced can be determined by rotating the breakout pattern 

in the 𝑟 − 𝑧 plane through the z-axis by the angle substended in the 𝑟 − 𝜃 plane. The 

volume generated is 
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dzzfbV
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21)(
2





 ............................................................................................. (2.67) 

Fourier series can be used to track the trajectory of the propagating cracks, as illustrated 

in Section 2.4. The inverse of the Fourier function is used in determining the volume of 

sand produced. Alternatively, a simpler function, which can be easily inverted, may be 

used to define the trajectories of the propagating extensile cracks or shear fractures. 

2.14  Summary 

 Knowing the breakout azimuth and location of the intersection of the projected 

shear fractures, the breakout volume can be approximately determined; this approach 

saves a lot of computation efforts. Even when the breakout depths and widths are 

calculated for each depth location, using regression analysis in fitting the curve can be an 
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Fig.2.19. Breakout pattern in the 𝑟 − 𝑧 plane. 
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arduous task. From the numerical experiments conducted, it was observed that this theory 

works, although it can over predict the failed region. 

In the same vein, trajectories of the propagating extensile cracks define the breakout 

pattern; although this statement is self-evident, the toroidal nature of type-B breakout is 

born from it. Using minimum strain energy criterion, the trajectories of the extensile 

cracks will form a torus-like shape. For a thick formation, the torus may not form at the 

center even if the formation is homogeneous; the location of the outer-bounds of the 

propagating cracks strongly depends on the rock properties and the distribution of the 

radial or hyperbolic and axial stresses; this is contrary to the shear-fracture induced failure 

theory, which predicts that the deepest breakout depth will always occur at the center of a 

homogeneous formation.  

In a homogeneous formation, the fracture angles are the same for both propagating 

shear fractures, and the two failure lines will definitely meet at the center. When the 

formation is heterogeneous, the intersecting location depends greatly on the degree of 

vertical heterogeneity layout of the formation. If the upper layer is softer than the lower 

layer, the shear fracture lines will intersect at the upper layer. And if the layout is reversed, 

the two lines will intersect at the lower layer; in a nutshell, irrespective of the layout, the 

two lines will intersect in the softer layer.  
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3. ESTIMATING CAVING SIZE DURING WELLBORE BREAKOUT 

 

3.1 Scope  

 Estimation of caving size during breakout process is very essential when predicting 

the potential for borehole bridging during blowout, or investigating any associated risks 

during underbalanced drilling or production operations. In this work, we present a rigorous 

approach for estimating the geometrical dimensions of caving produced during wellbore 

breakout; we assumed a rectangular plate in this framework. Using dipole and beam 

asymptotic analyses, stress intensity factors at the tips of a single representative crack, 

close to the wellbore boundary are derived; the new stress intensity factors are based on 

the frameworks developed by Dsykin and Germanovich. Furthermore, we applied plate 

buckling theory to determine the limiting buckling length and width of the plate, while the 

thickness of the plate is determined using shear-dilatancy theory. 

3.2 Damage Initiation Around Wellbore 

Fracture mechanics-based approaches give more insights into the accumulation of 

micro-cracks and extensive crack growth around the borehole, which lead to the formation 

of breakout. This study focuses on wing-crack growth and its interaction with the free 

surface. The buckling of wing-cracks that propagate sub-parallel to the direction of the 

major principal stress direction causes the formation of wellbore breakout. Landau and 

Lifshitz (1959) developed a critical buckling length for a slender plate compressed from 

both ends, but not subjected to any lateral loading. This solution has often been used to 

predict the buckling length of unstable wing cracks. However, we present in this paper a 
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more comprehensive derivation of the buckling length, considering the impact of the 

wellbore pressure support. 

Regions surrounding wellbores are not devoid of damage. The excavation of a hole 

in the rock initiates damaged zones around the near-wellbore region, especially in the 

direction of maximum compression (Fig.3.1). Knowing the extent of damage around the 

wellbore prior to the onset of the breakout process is important in order to adequately 

predict the size of cavings. 

 

Cracks initiated due to 

stress concentration 

induced by excavation 

Fig. 3.1. Damaged state around the wellbore prior to the stable propagation of the standing 

initial cracks. 
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In past studies, some authors characterize the size of the damaged region by the use of a 

critical stress or strain state (Morita 2016, Papanastasiou and Vardoulakis 1992, 1994, and 

Vardoulakis and Sulem 1995); post peak softening law is often required to introduce the 

damage effect. Zou et al. (1996) degraded the Young’s modulus of the failed zone.  

Muhlhaus and Vardoulakis (1987) and Cheatham (1993) used continuum damage 

mechanics to characterize the damaged zones. Shao et al. (1994) analyzed the borehole 

failure using stress-induced micro-cracking, treating the rock as a nonlinear elastic 

anisotropic material. Detournay (1986) used Galin’s approximation to define the plastic 

zone. Nawrocki and Dusseault (1995) used radius dependent Young’s modulus to define 

the non-linear behavior of the near-well region. 

In this study, we first present a background on failure mechanism around the 

wellbore, considering the interactions between the micro-cracks and the boundary surface. 

Second, we present a method, based on shear-dilatancy effect, to determine the initial size 

of the representative micro-crack prior to the onset of breakout. Although Germanovich 

and Dyskin (1999) have derived the stress intensity factors at the tip of the growing 

representative micro-crack, which interacts with the boundary surface using the dipole and 

beam asymptotic approximations, we extended the model by incorporating the influence 

of lateral stress on the stress intensity factors for the beam asymptotic approximation. 

Finally, we derived the buckling lengths of the separated slender rock-layer, formed as the 

representative micro-crack propagates around the wellbore by using plate bending theory. 

In this study, the influence of the wellbore pressure is considered, unlike the previous 

model by Landau and Lifwitz that disregarded lateral loading of the slender plate.   
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One of the benefits of this study is appreciated when predicting the potential for 

self-killing of a blowing well. 

3.3 Failure Mechanism and Wing-Crack Model 

 Failure is initiated by the increase in the compressive stress concentration acting 

parallel to the boundary. As the stress reaches a critical value, the tensile fractures will be 

generated, growing towards the direction of the applied load (Figs. 3.2). Experiments 

conducted by Brace and Bombolakis (1963), Hoek and Bieniawski (1964), Nemat-Nasser 

and Horii (1982), and Ewy and Cook (1990) confirmed the growth of the cracks toward 

the compression in a stable manner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Existing cracks propagating in a 

stable manner in the direction of 

maximum compression 

Fig. 3.2.  Existing cracks propagating towards the direction 

of the maximum compressive force in the horizontal plane. 
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 As the stable crack growth continues, the influence of the boundary amplifies its 

growth, such that as it reaches a critical length the growth becomes unstable. Thus, the 

crack rapidly increases its length and separates a thin layer from the rock mass. When the 

length of the slender layer reaches a limiting value it buckles; and the process repeats 

itself, and eventually the failure ends. Results from many experiments confirm this 

progression. In addition, the stress concentration zone around the borehole reduces as the 

failure progresses; this factor also helps to stabilize the borehole.  

 During the rupture process, cracks propagate both in the vertical and horizontal 

planes; a schematic is shown in Fig. 3.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.3. Propagation of cracks in the vertical and horizontal planes. 
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For simplification, we disregarded the interactions between the propagating cracks in the 

horizontal and vertical planes in this analysis. But the interactions among inter-planar 

propagating cracks can be represented by considering the average crack within the group, 

i.e. the crack with the average initial size and average distance from the boundary. 

Germanovich and Dyskin (1999) performed a finite element modeling that indicates that 

the average value for the factor accounting for the friction and influence of the curvature 

of the secondary cracks is  32 . 

Following the work of Fairhurst and Cook (1966), the propagation of the pre-

existing crack is driven by pair of concentrated forces. Assuming the crack to be rectilinear 

and makes an angle 𝛼 with the direction of the compressive force, the value of these forces 

(per unit length of the inclined contact area) is equal to the horizontal projection of the 

shear force that tends to displace the opposite faces of the crack. 

Germanovich and Dyskin (2000), Germanovich et al. (1994), and Dyskin and 

Germanovich (1991) derived the wedging force that drives the opening of the crack faces; 

considering the influence of the lateral stress (radial stress for a circular borehole), the 

wedge force is 

  )(   0 2  rraF   ............................................................................................. (3.1) 

 2 0a is the initial size of the crack,   is the hoops stress, rr  is the back pressure (radial 

stress for a circular wellbore), and  μα ααβ(α) tantan1cos2sin  . By using a single crack 

that represents the whole pre-existing cracks, which also considers the interactions among 

the micro-cracks, the factor  32 .  
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From extensive analysis by Germanovich and Dyskin (2000), the influences of crack and 

boundary curvatures are not significant as the crack propagates near the boundary 

surface. The stress intensity factor of a propagating crack near a flat boundary surface 

based on dipole asymptotic method is: 
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Fig. 3.4. (a) Schematic of the forces acting on the slender rock layer (b) a 

representation of the foregoing problem by beam asymptotic. 
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But in the case where the length of the crack is much greater than the distance between 

the crack and the boundary surface, the dipole asymptotic method fails. In this case, beam 

asymptotic is used (Fig. 4). Interpolating between the two asymptotic methods, the mode-

1 stress intensity factor is 
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Equation (3.3b) accounts for the influence of lateral stress on the stress intensity factor for 

the beam asymptotic approximation of the foregoing problem. The average bending 

moment acting on the whole length of the slender plate is used in equation (3.3b).  

The model-2 stress intensity factor is only significant when the beam asymptotic 

approximation is valid (i.e. when the length of the crack is sufficiently greater than the 

distance to the boundary surface, h). 
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Matching the analytical model with the numerical experiment conducted by Dyskin et al. 

(1998), and Germanovich and Grekov (1998), the model parameters are ,78.1 1 a  

,81.1
2

 a .51 and .n  The unstable crack growth starts at the point where I
K is 

minimum (Fig. 3.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mathematically, the critical length at which the unstable crack propagation starts is 

determined from the stationary condition; the half length of the crack that satisfies the 

stationary condition: 

0
 






l

K
I

 .......................................................................................................................... (3.5) 

Fig. 3.5. Comparing mode-1 stress intensity factor with numerical data; back stress is zero in this 

case.  

Onset of unstable 

crack growth 
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Without including the contribution of the lateral stress concentration due to excavation, 

Dyskin and Germanovich (1991) showed that the critical length at which unstable growth 

starts is  

hcrl
3

2
  ................................................................................................................... (3.6) 

The critical stress corresponding to the onset of unstable crack growth is 

determined by substituting the critical length expression derived from equation (4) into 

the Irwin (1957) crack propagation equation  

ICKIK   ..................................................................................................................... (3.7) 

When the influence of the lateral stress is disregarded, (Dyskin and Germanovich 1991) 

derived the critical stress as 






0

4

8

 32
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hK
IC

c   ....................................................................................................... (3.8) 

             It should be noted that if the length of the stress concentration zone around the 

borehole is less than the critical length for unstable growth, unstable crack propagation 

will never occur, only stable crack growth. Furthermore, sufficient back stress can 

suppress the unstable crack growth even if other favorable conditions for rapid crack 

growth exists: the crack length is greater than the critical length (equation 5), and the 

length of the stress concentration zone is large.  
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3.4 Initial Size of the Representative Pre-Existing Crack 

 A single crack is used to represent the pre-existing micro-cracks. The interaction 

existing among the micro-cracks is factored in using averaged  32 . From Fig. 3.6, the 

initial length of the existing representative crack is determined as 

0 
2

 202 










H
wra  .................................................................................................... (3.9) 

And the position of representative crack is simply, 
2

H
h  . 

0
 may be determined by 

using the critical stress condition; i.e. the angle   that satisfies this condition: 

)()(:0 hch    ............................................................................................. (3.10) 

Alternatively, zero volumetric strain due to second order effects can be used to determine 

 

 

 

 

 

 

 

 

 

 

 Fig. 3.6.  Size of the representative pre-existing 

crack (enlarged size) in the horizontal plane. 
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As derived by Oyedokun and Schubert (2017), the volumetric strain due to second order 

effect (dilatancy effect) in an isotropic material body under polyaxial loading is 
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m  is the mean normal stress, 4  and n are empirical constants that are determined from 

experiment, K, is the bulk modulus of the material body, and G is the shear modulus of the 

material body.  

3.5 Buckling Lengths of the Growing Slender Rock Layer 

The slender rock layer separated from the rest of the rock mass can be 

characterized as a plate. A plate has its planform dimensions larger than its thickness, and 

it is also subjected to loads that can cause deformation and strectching. To further simplify 

the foregoing problem, the wellbore fluid is assumed to diffuse into the growing micro-

crack, without having any significant impact on the growth of the micro-crack. The 

influence of the vertical stress in disregarded when considering the buckling tendency 

through the hoops stress. Thus, the slender rock layer is treated as a simply-supported plate 
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under uniaxial compression (Fig. 3.7). As derived by Reddy (2007), the critical buckling 

load for an isotropic rectangular plate under in-plane uniaxial compression is  
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where, 
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D  is the bending stiffness of the slender plate,  

 

 

 

 

 

 

 

 

 

In the vertical plane, the slender rock layer is also treated as a simply supported 

plate under uniaxial compression through the critical vertical stress. In this plane, the 

critical stress is in the vertical direction. Based on the assumption that the wellbore fluid 

diffuses into the growing crack, the influence of the pressure forces on the buckling of the 

vertical plate is assumed to be negligible. These forces act in the transverse orientation to 

the loading direction and will counteract each other (Fig. 3.8). Hence, the thickness of the 

plate at the buckling condition is determined by solving for 𝑡𝐵 in Eq. 3.13. It is obvious 

𝑝𝑤 

𝜎𝜃𝑐 

𝜎𝜃𝑐 

Fig. 3.7. Free body diagram showing the force system acting on the 

plate as viewed in the horizontal plane.  
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that both equations (3.12) and (3.13) would need to be solved simultaneously to determine 

the geometry of the plate. From the foregoing analysis, the plate is presumed to have a 

rectangular shape, as an approximation; from field and laboratory studies, the plates are 

often irregular in shape. 

2

2

2

2

2

1





















B

B

B

vc
L

t

t

D
  ................................................................................................ (3.13) 

 

 

 

 

 

 

 

 

 

 

 

This analysis presents a more rigorous approach for estimating the limiting 

buckling length of the growing slender layer, than that proposed by Landau and Lifshitz 

(1959), who approximated the slender layer as a square-plate strip.  
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Fig. 3.8. Free body diagram showing the force system acting on the 

plate as viewed in the vertical plane.  
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Dyskin et al. proposed that the critical buckling stress can be approximated as  
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3.6 Breakout Width Estimation  

 As derived in above the buckling length of the slender rock layer generated as a 

result of the propagation of the representative crack in the first borehole failure episode 

will determine the breakout width. And from Fig. 3.9, the breakout width can be estimated 

through the relation 
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Fig. 3.9.  Buckled rock plate as viewed in the horizontal plane. 
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3.7 Numerical Analyses 

 Parametric studies on the plate-strip model, proposed by Landau and Lidwitz 

(1959), are conducted, considering the effects of the mechanical properties of the rock, in-

situ stress loadings, and wellbore geometry on the limiting buckling length of the slender 

plate. Furthermore, the influence of the back stress on the borehole failure is emphasized; 

two synthetic cases are used. Finally, the relationship between the limiting buckling length 

and thickness of the plate is investigated for varying values of wellbore pressure, in-situ 

stress, and position of the representative standing crack to the boundary surface.  

 3.7.1    Parametric Studies on 1-D Plate Strip Approximation 

            3.7.1.1 Effect of Plain Strain Young’s Modulus on Caving Size 

 For a given state of stress around a borehole, as the plain strain Young’s modulus 

of the rock increases, the caving size increases (Fig. 3.10a). This suggest that the breakout 

width in sandstone is expected to be wider than shale, assuming all other parameters are 

the same. For example, considering a case where ∆𝜎𝑐𝑟 is 7500 psi and h is 0.1inch, the 

variation of the caving size is shown in Fig 3.10b. 
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   3.7.1.2 Effect of In-situ Stress Loading and Well Angles on Caving Size 

 Increase in the in-situ stress reduces the size of the caving, as shown in Fig. 3.11a. 

In the example shown below, it is evident that large caving size will be produced in a 

vertical well than in a horizontal well under the same in-situ stress loading (Fig. 3.11b). 

On the other hand, the azimuth of the well contributes to the increase in caving size, as it 

(a).  

Fig.3.10 (a) Variation of caving size on plane strain Young’s modulus (b). Variation 

of caving size on plane strain Young’s modulus, an example case. 

(b) 
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increases from 
2

  to0


. An increase in pore pressure reduces the effective stress, hence 

increases the caving size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

Fig. 3.11 (a) Variation of caving size with buckling stress. (b).Variation 

of buckling stress with well angles. 
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3.7.1.3 Effect of Wellbore Shape on Caving Size 

 The ellipticity index of the wellbore can severely affect the caving size, since the 

buckling stress increases with increase in the ellipticity index. Considering the case of a 

vertical well aligned with the directions of the in-situ stresses, and  ∆𝜎𝑐𝑟 is 7500 psi and h 

is 0.1inch. a is half the major axis and b is half the minor axis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            3.7.2 Parametric Studies on Rectangular Plate Approximation 

 As the size of the initial damage region around the wellbore (at the onset of 

borehole failure) increases, the size of caving produced during the breakout process  

 

 

 

Fig. 3.12.Variation of caving size with borehole shape. 
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reduces (Fig. 13).  This observation is in agreement with the findings of Germanovich and 

Dyskin (1999). 

Based on the selected synthetic data, the minimum buckling length when h = 0.3in. 

is 1.8in. and the corresponding thickness of the plate is 0.1in. Thus, as observed in the 

figure, each limiting buckling thickness has its corresponding limiting buckling length, 

assuming all other parameters remain constant. 

 

 

 

 

 

Fig. 3.13.Influence of the initial damage state on the size of caving 

produced. In this example case, the Elastic modulus of the formation is 

taken to be 145 Kpsi, Poisson ratio and Vertical stress are assumed to be 0.3 

and 4000 psi respectively. 

h = 0.1 
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h = 0.5 
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In a normal faulting regime, in-situ stress increases with depth. From Fig. 3.14, it 

is expected that small cavings will be produced at deeper locations.  

  3.7.3   Effect of Back Stress on Unstable Crack Growth 

 The radial stress, which is termed back stress, acting on the propagating crack near 

the wellbore can significantly affect the size of caving produced and the failure process. 

As the length of the propagating crack increases, both the hoops and back stresses increase. 

But a small value of the back stress is sufficient enough to halt the unstable growth of the 

crack; Dyskin and Germanovich (1991) showed that the back stress required to stop the 

unstable crack growth is related to the hoops stress through 


h

a
crr

0199.0,   ................................................................................................ (3.17) 

 

 

Fig. 3.14.Influence of in-situ stress loading on the size of caving 

produced. In this example case, h, Poisson ratio and elastic modulus are 

assumed to be 0.5in., 0.3, and 145Kpsi respectively. 
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The authors assumed constant back stress in their numerical analyses to determine this 

empirical relation. In the synthetic cases below, the impacts of back stress is highlighted. 

As shown in Figs. 3.15 and 3.16 both the hoops and radial stresses increase as the 

inclination angle of the well increases, as well as the distance to the borehole reduces; the 

data in Tables 3.6 and 3.7 were used in plotting the curves in Figs. 3.15 and 3.16 

respectively.  

 

Inclination  

Inclination  

Inclination  

Fig. 3.15. Variation of (a) hoops stress, (b) radial stress, and (c) vertical stress around a 

circular wellbore with well angles. In this case A, the well azimuth is zero. 

(a) (b) 

(c) 
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Vertical Stress, psi 9000 

Minimum Horizontal Stress, psi 7000 

Max. Horizontal Stress, psi 8500 

Pore Pressure, psi 6000 

Wellbore Pressure, psi 4000 

Poisson Ratio 0.3 

Wellbore Diameter, in 8.5 

Distance of Crack to Boundary, h, in 1 

 

 
Table 3.1. Stress state and mechanical properties of the formation for case A 

Fig. 3.16. Variation of (a) hoops stress, (b) radial stress, and (c) vertical stress 

around a circular wellbore with well angles. In this case B, the well azimuth is 

zero. 

(a) (b) 

(c) 
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Synthetic Case B 

Vertical Stress, psi 9000 

Minimum Horizontal Stress, psi 5000 

Max. Horizontal Stress, psi 6500 

Pore Pressure, psi 2000 

Wellbore Pressure, psi 2000 

Poisson Ratio 0.3 

Wellbore Diameter, in 8.5 

Distance of Crack to Boundary, h, in 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A very low wellbore pressure will support the growth of unstable crack growth; this is no 

news, as many past studies on shear failure theory have shown that the borehole will have 

wider failure extent as the wellbore pressure falls below the critical collapse pressure. 

 

Table 3.2. Stress state and mechanical properties of the formation for case B 

Fig. 3.17. Crack propagation in Case A. 
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From Fig. 3.17, the crack located at distance 1 inch from the wellbore boundary will 

propagate unstably, consequently, suggesting that the breakout depth is greater than 1 inch 

at this location. But in case B, the unstable crack propagation was halted after the crack 

has propagated a relatively distance around the borehole. The unstable propagation of 

crack around a vertical well will first be halted, as shown in Fig. 18. The implication of 

Fig. 18 is that borehole collapse potential increases with increase in well angle, although 

the size of cavings produced in highly deviated wells reduces with borehole inclination. 

3.8 Summary 

 This paper presents a rigorous approach for estimating the geometry of caving 

produced during wellbore breakout. We assumed the geometry of the caving to be 

rectangular in shape, which is a reasonable approximation to the irregular-angular plates 

Fig. 3.18. Crack propagation and arrest in Case B. 
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often observed in the field. From extensive parametric studies conducted, the following 

conclusions are drawn: 

1. As the size of initial damage region around the wellbore, prior to the onset of borehole 

failure, increases, the size of caving producible during the breakout process reduces. 

2. As the wellbore shape changes from circular to elliptical, the size of caving 

producible reduces. 

3. Assuming all other parameters remain the same, the size of caving reduces as the well 

inclination angle increases. But the potential for borehole failure increases with well 

inclination angle. 
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4. DEVELOPMENT OF AN ENERGY-CONSISTENT EROSION CONSTITUTIVE 

RELATION FOR DEFORMABLE POROUS MEDIA 

 

4.1 Scope 

 In this paper an erosion constitutive law based on virtual power principle is 

derived. The law overcomes the limitation of the pressure gradient phenomenological 

constitutive law, currently being used in the industry today; it is valid for both rigid and 

mobile porous media. When the rigid porous medium assumption is made, the proposed 

constitutive law reduces to the form of the pressure-gradient phenomenological model; 

hence, the empirical parameter often called spatial frequency of erosion starter points is 

linked to physico-mechanical parameters. The study further developed constitutive 

equations of the damaged region around the wellbore during the erosion process. When 

the borehole is created in an isotropic elastic medium, the near well region is often 

damaged; the degree of damage greatly depends on the magnitudes of the in-situ stresses 

and the confining pressure. Plasticity theories, which are often used to describe the 

inelastic response of the damaged zone does not characterize the damage itself. But in this 

study, the nonlinear elastic and inelastic behaviors of the damaged zone are modeled using 

continuum damage theory. The generation of micro-cracks, which is a physical 

characterization of damage of the material, reduces its load bearing capacity. We further 

proved that the proposed constitutive law satisfies the principle of frame indifference if 

and only if the angular and linear momentum laws are satisfied. The proposed constitutive 

law and governing equations can be used to rigorously model reservoir and wellbore 

erosions during controlled and uncontrolled production of oil and gas. 
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4.2 Background on Wellbore Erosion 

 

 Solid particles (especially sand) production can be a nightmare during oil and gas 

production from unconsolidated sandstone formations; it erodes and damages subsurface 

and surface equipment. On the other hand, sand production around the producing well 

interval increases the production rate of the reservoir fluids. In addition, catastrophic sand 

production can help to bridge a blowing well. Hence, sand production can be “a menace 

or a hero”, depending on the prevailing situation.  

 With 70% of oil reserves located in such formations, extensive research studies 

have been conducted to understand sand production mechanisms. Bratli and Risnes 

(1981), Perkins and Weingarten (1988), Vaziri (1988), and Morita et al. (1989) addressed 

the sand production as a wellbore stability problem, predicting the onset of sanding. But 

in recent years, starting with the work of Vardoulakis et al. 1996, sand production has 

since been treated as a three-phase fluid flow problem. Three-phase erosion kinetic 

equations, coupled with an erosion constitutive law define the tensile-sanding problem 

when geomechanical aspects of the problem are disregarded (Vardoulakis et al. 2000 and 

Scheuermann et al. 2001). Some other studies have coupled mechanical damage of the 

rock with sand erosion (Papamichos 2004, Stavropoulou et al. 1998, and Gravanis et al. 

2016). Other studies on sand erosion are: a field study by Papamichos and Malmanger 

(2001), an experimental study by Papamichos (2006), and theoretical studies with 

modified erosion constitutive laws by Papamichos and Stavropoulou (1998), Wan et al. 

(2002), Wang et al. (2004), Vardoulakis and Papamichos (2003a and 2003b). 
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 In all the past sand erosion studies, phenomenological erosion constitutive laws 

either  based on filtration theories of Einstein (1937), Iwasaki (1937), and Sakthivadivel 

and Irmay (1966) or driven by pore pressure gradient. In a recent study by Papamichos 

(2010), the constitutive laws based on theories of filtration of fines through a coarse solid 

matrix and porosity diffusion models (Vardoulakis and Papamichos 2003a) do not agree 

with experiments. Only the phenomenological constitutive law driven by pressure gradient 

agrees with the experiment. 

 But in this study an erosion constitutive law based on virtual power principle is 

derived. The law overcomes the limitation of the pressure gradient phenomenological 

constitutive law; it is valid for both rigid and mobile porous media. When the rigid porous 

medium assumption is made, the proposed constitutive law reduces to the form of the 

pressure-gradient phenomenological model; hence, the empirical parameter often called 

spatial frequency of erosion starter points is linked to physico-mechanical parameters.  

 The study further developed constitutive equations of the damaged region around 

the wellbore, prior to erosion occurrence and during the erosion process. When the 

borehole is created in an isotropic elastic medium, the near well region is often damaged; 

the degree of damage greatly depends on the magnitudes of the in-situ stresses and the 

confining pressure. Plasticity theories are often used to describe the inelastic response of 

the damaged zone; this approach does not characterize the damage itself. But in this study, 

the nonlinear elastic and inelastic behaviors of the damaged zone are modeled using 

continuum damage theory. The generation of micro-cracks, which is a physical 

characterization of damage of the material, reduces its load bearing capacity. Many 
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authors have proposed different physical definition of damage: Rousselier (1981) 

proposed porosity as damage variable, Mudry (1983) used the radius of cavities and 

Lemaitre and Chaboche (1985) defined the damage variable as the relative area of micro-

cracks and intersections of cavities in any plane oriented by its normal. And as stated by 

Kachanov (1986), the choice of the damage parameter can be by physical microstructural 

analysis or by direct generalization of experimental data. Lemaitre (1985), Lee et al. 

(1985), Celentano et al. (2004), Nichols and Abell (2003), Nichols and Totoev (1999), 

Voyiadjis and Kattan (1999, 2009), Voyiadjis (1988), and Voyiadjis (2011) used a more 

rational approach based on energy: the damage variable is defined as the ratio of the 

difference in the elastic moduli to the damaged modulus. In this approach, a damage 

function, and a generalized thermodynamic force associated with the damage are often 

derived. And using consistency condition and mathematical optimization technique, the 

relationship between damage and the strain is developed. 

 Introduction of effective stress concept by Kackanov (1958) pioneered continuum 

damage mechanics. And several engineering failure analyses have been conducted by 

many authors through this theory. Krajcinovic (1983, 1985), Krajcinovic and Foneksa 

(1981), Ju and Lee (1991), and Ju and Chen (1994a and 1994b) worked on the brittle 

fracture of engineering materials. And Lemaitre (1985 and 1986), Chaboche (1979, 1981, 

1988a, and1988b), and Chow and Wang (1987) applied the theory to ductile failure of 

engineering materials. Similarly, the effective stress concept will be used in this study to 

characterize the impacts of damage on the elastic properties of the formations.  
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 And when the damaged rock formation is being eroded, the elastic properties of 

the formation are further degraded. Therefore, the damage variable is assumed to be the 

superposition of the erosion induced porosity and the total volumetric strain due to 

mechanical damage. Papamichos et al. (2001) conducted experimental studies that 

confirmed that the volumetric strain change describes a second order effect, which Lord 

Kelvin (1875) and Reiner (1947) had identified to be the cause of cracking in rocks. 

Similarly, Brace et al. (1966) had performed similar experiments and had showed that the 

volumetric strain due to cracking is equal to the induced porosity in the damaged material 

body. Therefore, the superposition of the two induced porosities is reasonable, as 

supported by these experiments. 

 Both erosion and mechanical damage of the rock due to stress concentration are 

coupled through the damage variable. This simply means that since stress concentration 

leads to reduced strength of the rock against the seepage forces, the amount of grains 

leaving the rock matrix increases. And as the erosion process proceeds, the strength of the 

rock reduces. The reduction in the strength of the rock can lead to shear failure of the rock; 

thus, increasing the volume of solid particles being transported into the borehole. As the 

borehole diameter increases, because of shear failure and erosion, the stress concentration 

around the enlarged borehole section also increases. But if rock compaction exceeds 

cracking, thence, the degree of damage of the region around the wellbore reduces. 

Consequently, the erosion potential around the borehole should reduce, although an 

increased borehole diameter increases the seepage forces acting on the grains.  
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 In summary, the main objectives of this article are: (1) to develop a comprehensive 

erosion constitutive relation for deformable porous media and (2) to determine the critical 

erosion hydraulic gradient. 

4.3 Erosion Constitutive Law for Deformable Porous Media 

4.3.1 Definition of Terms 

 Following Vardoulakis et al. (1996) three-phase erosion kinetic model, the bulk 

erosion-induced porosity at the current configuration of the porous material body is 

defined as 

dV
vdV

  ....................................................................................................................... (4.1) 

where vdV  is the volume of interconnected voids created by erosion only and dV is the 

representative volume element. The concentration of solid grains leaving the matrix of the 

rock due to erosion is  

vdV
fs

dV
c  ..................................................................................................................... (4.2) 

dVfs is the volume of the fluidized particles, and the bulk density of the fluidized particles 

and fluid mixture is  

 
f

cscρ   1  ......................................................................................................... (4.3) 

As derived by Oyedokun and Schubert (2017), the volumetric strain due to the second 

order effects in an isotropic elastic material body, which is subjected to polyaxial loading 

is  
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m  is the mean normal stress, 4  and n are empirical constants that are determined from 

experiment, K, is the bulk modulus of the material body, and G is the shear modulus of the 

material body.  

         The damage variable is thus defined as 

 dD   ................................................................................................................... (4.5) 

 4.3.2 Derivation of the Energy-Consistent Erosion Constitutive Law 

 

 Consider a part Ω0 in the reference configuration of a material body, B. After time 

t, the material body has a different configuration, 𝐵𝑡, due to a homogeneous motion; the 

new configuration of the part, Ω𝑡, also follows the same motion as the region 𝐵𝑡. The 

removal of the material points in the deformed configuration is not described by the 

smooth function 𝜒𝑠 𝑿, 𝑡) that maps a material point in the reference configuration to the 

corresponding spatial point in the deformed configuration; the mapping is one-to-one. 

Erosion process transports the particle occupying the spatial point through a different 

mapping function, which is not a subject of discussion in this article.  

 The removal of solid-grains from the matrix by erosion occurs through a shearing 

action (Partheniades 1965, Zreik et al. 1998, Mehta 1991, and Khilar et al. 1985). 
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Therefore, the resistive power against erosion of the matrix in the current configuration is 

proposed as 






t

dt

d
d sT.I  ......................................................................................................... (4.6) 

T is the total shearing resistive force against the removal of the grains, in the 

current/deformed configuration; this stress measure is the Cauchy stress. From linearized 

Mohr-Coulomb failure theory (Jaeger and Cook 1979), the shear strength can be 

represented as the superposition of the cohesion and frictional strength of the rock: 

tan σCT   .............................................................................................................. (4.7) 

C is the cohesive strength of the rock, 𝝈 is the effective normal stress acting on the grains, 

and 𝜑 is the angle of internal friction. The rate of work done in removing 𝛿𝑐 concentration 

of particles across the boundary of the material body in the current configuration is  

 




t

sccpp d    s  n.  ............................................................................................. (4.8) 

where 
cp  is the critical pressure required to unseat the grains, and the velocity of the 

fluidized particles is 
s

. It should be noted that the difference between the prevailing fluid 

pressure and the critical erosion pressure is equal to the difference of the fluid Cauchy 

stress and the critical erosion Cauchy stress; mathematically this is represented as 

f
c

f
cpp   ........................................................................................................... (4.9) 

The inertial power expended due to the removal of 𝛿𝑐 concentration of the particles across 

the boundary of the material body in the current configuration is  
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




t

s
c

dt

d
d  

2

s 2v


 ....................................................................................................... (4.10) 

Proposition 1. The Cauchy stress difference is equal to the pressure difference 

Proof. The Cauchy stress of the fluid is defined as 

ff

ep  2   ..................................................................................................... (4.11) 

The assumption is that the fluid behavior is Newtonian; even when the concentration of 

fluidized particles in the void space is greater than zero, an effective viscosity, 𝜇𝑒, which 

is based on linear mixture of the different species in the flow stream, is used, and the 

behavior of the non-Newtonian fluid can be represented by the equivalent-Newtonian 

stress. Suppose the critical Cauchy stress that initiates erosion is defined as  

 ff

c

c

ec

f

c
p Dˆ 2   ............................................................................................. (4.12) 

where 𝑝𝑐, 𝜇𝑒
𝑐, and 𝐃𝑐

𝑓 are the critical erosion pressure, critical-equivalent viscosity of the 

fluid, and the critical strain rate function of the fluid.  

Material constitutive law are based on dynamical processes. Letting the constitutive class 

of the fluid be defined by ℂ . By considering a simple kinematical constraint such that 

  )(  ......................................................................................................... (4.13) 

Where Lin = {all linear transformations on ℜ3}, and Lin+ = {𝐋 ∈ Lin, det 𝐋) > 0  } . 

The dynamical process  𝜒𝑓 , 𝐓
𝑓 ∈ ℂ satisfies 𝛾 𝐅𝑓) = 0. The constraint axiom of a 

material body is that, if   𝜒𝑓 , 𝐓
𝑓 ∈ ℂ then  𝜒𝑓 , 𝐓

𝑓 + 𝐍𝑓 ∈ ℂ, where 𝐃𝑓 . 𝐍𝑓 = 0, for all 

𝐃𝑓 consistent with the constraint 𝛾 𝐅𝑓) = 0. It is noted that stress power associated with 

a process  𝜒𝑓 , 𝐓
𝑓  is 𝐓𝑓 . 𝐃𝑓. In the same vein, for the dynamical process  𝜒𝑓 , 𝐓

𝑓 + 𝐍𝑓 , 
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the stress power should be  𝐓𝑓 + 𝐍𝑓). 𝐃𝑓. For the constraint axiom of the material body 

to be valid, it thus implies that  𝐓𝑓 + 𝐍𝑓). 𝐃𝑓 = 𝐓𝑓 . 𝐃𝑓 . Consequently, it can be inferred 

that N does no work for allowable motions. Considering the idea that  

0)( f

dt

d
F  ................................................................................................................. (4.14) 

Assuming incompressibility,  

1 det )()(  ff FF  ..................................................................................................... (4.15) 

Hence, 

   I DFFFFF . )( tr)()(  det det
1 ffffff

dt

d







 
   ......................................................... (4.16) 

for all admissible 𝐃𝑓 . It thus implies that 𝐃𝑓 . 𝜋𝐈 = 0, where 𝜋 is an arbitrary scalar value. 

Hence, {𝐍𝑓} = {𝜋𝐈}. Knowing the constraint tr 𝐃𝑓) = 0, thus implies incompressibility. 

Therefore,  𝜒𝑓 , 𝐓
𝑓 ∈ ℂ ⟹  𝜒𝑓 , 𝐓

𝑓 − π𝐈 ∈ ℂ for all 𝜋 ∈ ℜ. The implication of this 

conclusion is that two incompressible fluids, which are undergoing the same dynamical 

process, are equivalent if and only if their dissipative powers are the same. As a 

consequence of this constraint and conclusion, it thus implies that 2𝜇𝑒𝐃
𝑓 = 2𝜇𝑒

𝑐 𝐃̂𝑐
𝑓
,

∀ 𝐃𝑓 ≠ 0. 

        Also, when the fluid constitutive class is Eulerian, the proposition above holds; there 

is no need to prove that, as Eq. 4.9 defines the statement.  

Power Balance.  Thus from the foregoing, the total power required to remove 𝛿𝑐 

concentration of particles from the matrix of the porous material should be equal to the 

rate of work done in creating 𝛿𝜙 porosity in the matrix plus the inertial power expended 
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in transporting 𝛿𝑐 concentration of particles away from the matrix, and the power 

expended by the conventional body force. Mathematically, this law can be expressed in 

the current configuration of the material body as 

   
  



t tt

sccpp
dt

d
c

dt

d
sc

t

s
d. sd sd  

2

sd 0  2 nvT.Ivvb 


  ....... (4.17) 

It should be noted that the conservation equation above is not limited to a rigid porous 

medium. If the velocity of the matrix is 
m

, the relative velocity of the fluidized particles 

is thus 

mass  ,  ......................................................................................................... (4.18) 

as,  is the absolute particle velocity.  

Proposition 2. The proposed power balance law is frame indifferent if and only if the 

linear and angular momentum laws are satisfied 

Proof. A basic principle underlying any physical law is that it must be frame-indifferent. 

The Cauchy stress 𝐓̃ in a different frame is related to the Cauchy stress in the “old” frame 

through 

T  
~
  ................................................................................................................... (4.19) 

Q(t) is a rotation tensor. There has been some controversies as to whether only rotations 

or all orthogonal tensors should be used when referring to the frame-indifference principle. 

Truesdell and Noll (1965) stated that the tensor should be an orthogonal tensor, while 

Chadwick (1976) and Gurtin (1981) argued that it should be a rotation. As concluded by 

Murdoch (2003), we also claim that the tensor should be a rotation tensor. 
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      In the same vein, the outward unit normal vector is also transformed accordingly as 

  
~
  ........................................................................................................................ (4.20) 

The velocity is known not to be frame-indifferent, and its transformation is  

sss
   

~   y  ..................................................................................................... (4.21) 

𝐲 𝑡) is a spatial point at each fixed time t.  By substituting equations (4.19) into (4.17) 

yields 



 



 









t

t t

dt

d

dt

d

dt

d

d s

d sd 
~

s
~~

                

~

TT





T.I

.QQQTQ.IT

 ......................................................... (4.22) 

Noting that, 𝜌̃𝑠 = 𝜌𝑠 and 𝜙̃ = 𝜙. Similarly, substituting equations (4.20) and (4.21) into 

(4.17) yields 

 

 

     
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  
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vbvn
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



  (4.23) 

where, 
ss  QQQ  TT   yw  is a rigid velocity field and b is the generalized body force; 

noting that 𝐐T𝐐̇ is a skew tensor. Let  

  











t

scsccpp
s

pW

t

~~

d  
~
 ~d ~ .~ ~ s

~ ~~~
,~ 

~ ~.bnv   .............................................. (4.24) 

    




t

ss cccppspW

t

d   d  .  s , b. n   ................................................ (4.25) 
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and  

    
 



t t

ss cccppspgW d   d  .  s , b. n   ........................................... (4.26) 

For frame indifference, it is required that 

   spWspW
~

,
~

,   .................................................................................................. (4.27) 

But from Eq. 4.21,  

     spgWspWspW ,,
~

,
~

  ............................................................................... (4.28) 

By letting 𝜶 = 𝐐T𝐲̇ and 𝝀 denoting the axial vector corresponding to the skew tensor 𝐐T𝐐̇, 

then  

     
 



















t t

ccspgW
ff

d    . d    .  s, r  b . λ α b r  nT . λ α nT   (4.29) 

From the balances of linear and angular momentum, the power expended on the sub-region 

Ω𝑡 over the rigid velocity field 𝐰𝑠 is zero, if and only if the linear and angular momentum 

balances are satisfied and n is the inward unit normal vector fields on ∂Ω𝑡 = Γ𝑡), but 

outward unit normal vector field on the fluid domain . Consequently, the proposed balance 

law will be frame-indifferent. 

Remark. From the foregoing, it is evident that the impact of fluid viscosity in an erosion 

process, especially when the particles are loose is insignificant. The pressure difference 

across the grain is more significant; this is the same conclusion drawn by Papamichos 

(2010) in his experimental and theoretical studies. In the event the particles are not loose, 

then erosion potential increases as the viscosity of the fluid increases. On the contrary, if 

the power supply to the system remains the same, the flow velocity reduces and the erosion 
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potential reduces. These two phenomena counteract each other, and the dominant effect 

wins.  

Using Reynolds transport and divergence theorems, Eq. 4.15 becomes 

   
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 ..................... (4.30) 

F is the deformation gradient and 𝐓𝑚 is the material description of the Cauchy stress T. 

The porosity of the porous medium referenced to the deformed configuration is related to 

the undeformed configuration through the relation 𝛿𝜙 = det 𝐅) 𝛿Φ, for any arbitrary 

volume of the continuum. Similarly, the first Piola-Kirchhoff stress, S, is related to the 

Cauchy stress 𝐓𝑚 through the relation 𝐒 = det 𝐅)𝐓𝑚𝐅−𝑇; by substituting this relation in 

Eq. 4.30, yields 
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 .................................... (4.31) 

Since Eq. 4.30 is valid for any arbitrary volume of the continuum, the local form of the 

erosion constitutive equation is, 

   sCsCcpp vbL
F

 S.Iv
F

 S.I  ) tr(
)det(
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


 .............. (4.32) 

And assuming the density of the solid grain is constant, which is valid for geomaterials, 

the erosion constitutive equation becomes 
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For an isochoric erosion process, time independent shear strength, 0




t

S
, rigid/immobile 

porous matrix, and neglecting the power expended by the generalized body force, Eq. 4.33 

reduces to the form of the phenomenological model proposed by Papamichos (2004); 

supposing the initial concentration of particles in the void space is zero 
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By comparing Papamichos’ phenomenological model, 

 cppp 

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

t
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with Eq. 4.32, it is obvious that the erosion starter parameter, which is  

S.I

v sC

p   ................................................................................................................. (4.36) 

is valid, if and only if there is no spatial variation of the concentration of the fluidized 

particles and velocity of the fluidized particles is also spatially independent. This rigorous 

derivation has shown the deficiency in the phenomenological model; some of the authors 

highlighted in the introduction made 𝜆𝑝 a function of porosity, to capture other inherent 

nonlinearities. But near the boundary (borehole wall), where the concentration of the 

fluidized particles and flow velocity are almost constant, the phenomenological model will 

be valid. 
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4.4 Derivation of Critical Erosion Hydraulic Gradient 

             To account for the pressure drops due to shearing action between the fluid and the 

fluidized particles and non-Darcy flow behavior around the wellbore, Brinkman (1947) 

and Forchheimer modifications of Darcy’s law are introduced respectively 
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D is the total porosity in the matrix, due to both erosion and mechanical damage. 

According to Brinkman, the drag force on a spherical particle, considering the influence 

of other surrounding particles on the particle, is  
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and the force due to pressure differential across the grain is 

p
pd


8

3

3

4
p F  ..................................................................................................... (4.39) 

Thus, the total force acting to unseat the grain is 𝐅𝑻 = 𝐅d + 𝐅p. 

The virtual power required to force the grain out of the rock matrix should be equal to the 

restraining power, provided energy dissipated due to cracking, sliding, or rolling of the 

grains are neglected,  

sδsδ vvn TcAcN   ............................................................................................. (4.40) 

Eq.4.39 assumes that all contact areas with the particle are equal. 𝐴𝐶  is the contact area 

between two particles, as shown in Fig. 4.1.  

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwi8nr6fhrnPAhVIySYKHb_BCXQQFggrMAE&url=http%3A%2F%2Fwww.comsol.com%2Fmodel%2Fforchheimer-flow-4413&usg=AFQjCNEmvyGZjmMg6fyel2tJGeZKhOIiQQ&bvm=bv.134495766,d.cWw
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Therefore, substituting equations 4.37, 4.38, and 4.39 into 4.40, the critical erosion 

hydraulic gradient is  

  gscAcNcp   
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pd π
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Where the radius of contact is  

N
pd

c 
2

  ............................................................................................................ (4.43) 

And using Betti reciprocity theorem, the normal overlap is 

 

E

pσ d

N




21
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𝛿𝑐 𝛿𝑐 

𝛿𝑁 

Fig. 4.1. Geometry of two spherical particles elastically deforming in 

contact. The dashed line represents the undeformed surface of each particle. 
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              Considering an application to the petroleum industry, where the erosion of the 

borehole is severe due to high pressure gradient. As the diameter of the wellbore increases, 

the drag forces acting on the intact grains increases; also, the stress concentration around 

the wellbore increases. But depending on the degree of damage on the shear strength of 

the matrix, the critical erosion hydraulic gradient can either increase or decrease. Farther 

into the formation, where erosion has not occurred, and the second order effects are 

negligibly compared to the compaction of the matrix, erosion potential is significantly low 

because the critical hydraulic gradient will increase. Even nearer to the borehole wall, 

where erosion potential can be high, if compaction rate is faster than the rate of erosion, 

the critical hydraulic gradient will increase. This could be the reason why erosion-induced 

sand production will not continue indefinitely. 

4.5 Three-Phase Erosion Governing Equations  

 The mass-balance equations for the three phases in the foregoing problem are fluid, 

fluidized-particles, and the solid skeleton. Considering the solid skeleton, the mass balance 

for this species in the porous medium is 

    mvsst
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
 11  ............................................................................. (4.45) 

Similarly, the mass-balance equation for the fluidized particles is  
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𝑫𝑝 is the dispersion tensor, which will be very significant when considering axial erosion 

along the wellbore. 
.
m is the net mass rate of eroded particles; in the event the deposition 

of the particles in the porous medium is significant, the deposition rate will be subtracted 



 

93 

 

from the erosion mass rate. In this study, the mass of particles deposited back into the 

porous medium is insignificant. Finally, the mass balance for the fluid phase is  
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The fluidized particles and the fluid are assumed to have the same velocity, thus ignoring 

any slip between these species.  

               Disregarding energy dissipation due to plastic deformation of the grains, but 

considering energy dissipation due to elastic damage, the constitutive relations between 

the effective stresses acting on the grains of the porous rock and strains are written in 

compact form as 
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210212  ....................................................... (4.48) 

Damage due to dilatancy effect is usually smaller compared to massive damage caused by 

erosion of the grains of the matrix; thus it may be disregarded. But in a case where the 

dilatancy effect is highly significant, the superposition of the damage variables is 

proposed.  

              Based on the significant erosion of the matrix, the permeability of the matrix will 

not be isotropic after damage. In this framework, the simple relation between permeability 

and porosity, Carman-Kozeny relation, is used 

 21

3

0



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Furthermore, as the erosion front moves into the formation, the cohesive strength of the 

rock reduces with time. And to account for the change in the cohesion of the rock, the 
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cohesive strength of the rock is treated as a stiffness modulus between contacting grains; 

hence the cohesive strength of the rock reduces at the same rate as the Young’s modulus. 

              From equation (4.33), the mass generation rate per unit density of the fluidized-

solid particles is  
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By combining equations (4.45) to (450) and including the fluid velocity relation given in 

equation (4.37), gives the governing equations for the three-phase erosion kinetic problem. 

Depending on the state of the formation and the reservoir response, different boundary 

conditions exist, but for blowout during the drilling phase, the reservoir is assumed to be 

infinite acting. Typical boundary and initial conditions during the uncontrolled production 

of hydrocarbons are as follows: 

Inner Boundary Conditions for Erosion around a Borehole: 
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bw
ptwrxp  ),(  ....................................................................................................... (4.52) 

0
),(  twrxC  ....................................................................................................... (4.53) 

zow,  is the density of the fluid at the wellbore surface and L is the length of the borehole. 

Depending on the pressure condition at the surface, the density value can be a mixture of 

solids, gas, and liquid phases, since gas will come out of solution if the pressure is below 

the bubble-point of the oil. Or if the reservoir fluid is gas, then the density of the gas 
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changes with pressure and temperature (this is significant for deepwater operations). zov  

is the velocity at which the wellbore slurry exits; the assumption here is that both solid 

and fluid phases have the same velocity. 
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is the sand-face velocity of the fluid. Assuming the pressure wave front is uniform, and 

noting that its speed will be greater than the velocity of the erosion front (Fig. 4.2), the 

fluid particles at the front move at Darcy’s velocity. Furthermore, since the pressure 

gradient in the epsilon neighborhood of the front will not be significant, erosion cannot 

occur. 

Outer Boundary Conditions for Erosion around a Borehole: 

0),( Re txC  .............................................................................................................. (4.55) 

iptxp ),(
Re  .............................................................................................................. (4.56) 

0Re
),(  tx  ............................................................................................................ (4.57) 

Initial Conditions for Fluid Flow in a Producing Reservoir: 

0)0,( xC  ................................................................................................................... (4.58) 

ipxp )0,(  ................................................................................................................. (4.59) 
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 tx  ............................................................................................................ (4.60) 
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4.6 Critical Observations from the Proposed Erosion Constitutive Relation 

 From the proposed erosion constitutive relation, the following points, which agree 

with experimental findings, can be deduced by inspection: 

a. Prior to significant erosion of the matrix, the sand-rate increases with the same profile 

as the fluid velocity; this is the transient state of the sand production process. 

b. As sand production increases, the formation will respond by compacting. 

c. The compaction of the eroding formation reduces the erosion rate, det (F) <1, and also 

the rate of compaction further influences the reduction in erosion rate. 

𝑟𝑡 

𝑝𝑏𝑤 

𝑝𝑖 

Pressure 

wave front 

Erosion front 

Fig 4.2. Pressure wave and erosion fronts during radial erosion.  
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d. For constant fluid flux (which is not realistic in long eroding-reservoir in the field), 

the mass rate has a relatively linear relationship with the fluid-flux. This linear 

relationship is projected to occur when the erosion front is thin (a sharp interface). 

e. The increment in sand rate with applied stress is assumed to be link to significant 

second-order effects, which reduce the critical hydraulic gradient and increase 

permeability to flow. Consequently, increasing the resultant hydraulic gradient (this is 

a non-linear coupling as observed in experiments by Papamichos, 2010). 

4.7 Numerical Application  

 Axial erosion around a wellbore section is simulated using the derived erosion 

equations above. In this example, the matrix is assumed to be subjected to an isochoric 

deformation and that no cohesion exists among the grains. The example couples fluid flow 

in an open channel (wellbore) and a porous medium (Fig. 4.3). The fluid flow in the 

channel is described by Navier-Stokes equation and a Forchheimer-corrected version of 

the Brinkman-correction of the Darcy’s equation is used in the porous medium. The 

viscous effects around the boundary of the open-channel and the porous medium cause 

some disturbances around the borehole, which can initiate erosion around the regions near 

the borehole wall. 

 Axial erosion often occurs in perforation channels, which are enhanced-conduits 

for the production of hydrocarbons into the wellbore. Perforation erosion is a big problem 

in the petroleum industry and it has attracted the attention of many researchers. But most 

of their solutions are based on empirical models, which are limited in their applications. 

In the same vein, axial erosion also occurs along the wellbore wall during uncontrolled 
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(well blowouts) or controlled production of oil and gas. This example is expected to shed 

more light into the mechanisms for axial erosion. 

 

 

Model 

Parameter 

Value/ Expression Description 

Φ0 0.4 Initial porosity 

𝑘0 2.9608E-13m2 Initial permeability 

𝜌𝑠 2650 kg/m3 Density of solid particles 

𝜌𝑤 980 kg/m3 Density of pristine fluid 

𝐶0 0 mol./m3 Initial concentration of particles in 

the void space 

𝐶𝑠 1 mol./m3 Normalized concentration of the 

fluidized particles 

𝜇𝑓 0.001 Pa.s Viscosity of pristine fluid 

𝐷𝐿 3.56 E-6 m2/s Molecular diffusion 

𝑆𝑉 5.5158E7 Pa Vertical stress 

𝑆𝐻 4.8263 E7 Pa Maximum horizontal stress 

𝑆ℎ 4.1369 E7 Pa Minimum horizontal stress 

𝐶𝐹 1.75

√150Φ3
 

Friction coefficient 

 

 

 

 

 

 

 

 

 

Table 4.1. Model parameters for axial erosion simulation. 
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Fig.4.4. Pressure (in KPa) distribution in the open-channel and porous medium  

at the onset of erosion. 

Wellbore  

No-Slip 

Condition  

No-Slip 

Condition  

Navier Stokes and 

Brinkman- Forchheimer 

Boundary   

Porous Medium   

Inlet  

Fig. 4.3.  Model domain and boundary conditions notation. 

Outlet   
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The computational domain is a small section of the wellbore, and the other porous medium 

at the left hand side of the wellbore subdomain has been omitted in this simulation, since 

the objective of the simulation is to investigate the erosion potential around the wellbore. 

In this example, the pressure difference across the section is 6.89MPa (1000 psi) and the 

inlet velocity is 200 cm/s; the other model parameters are listed in Table 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.5. Velocity (in m/s) distribution in 

the open-channel and porous medium at 

the onset of erosion. 

Disturbances 

Fig.4.6. Shear rate (in 1/s) distribution 

in the open-channel and porous 

medium at the onset of erosion.  
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Fig. 4.5 shows the disturbances at the boundary of the open channel and the porous 

medium. This observation agrees with the proposition of Vardoulakis et al. (2000); they 

argued that near the boundary of the open channel and the porous medium, Darcy’s law 

will not be valid. Furthermore, Fig. 4.6 shows the shear rate distribution at the onset of 

erosion. Farther into the porous medium the shearing rate reduces as a result of low 

disturbance; the shear rate profile is continuous across the boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.7. Distribution of fluidized particles concentration (in mol. /m3) in the 

porous medium during the erosion process at times (a) 3s, (b) 10s, and (c) 20s. 

(a) (b) (c) 
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The erosion front in this case is uniform because the pressure and velocity distributions at 

the front are almost uniform (Figs. 4.7 and 4.8). In a case where the pressure and velocity 

distributions are not uniform, also the erosion front will not be uniform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.8. porosity evolution in the porous medium during the erosion process at times (a) 

3s, (b) 10s, and (c) 20s. 

(a) (b) (c) 
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4.8 Summary 

 An energy-consistent erosion constitutive relation for deformable porous medium 

is proposed. The model reveals the weakness of the well-known phenomenological 

model when the pressure gradient in the producing formation is not steep towards the 

wellbore. For axial erosion around the wellbore, the momentum transport by viscous 

effects on the porous layers can unseat the grains of the matrix. While a radial erosion in 

the producing formation occurs, when the sum of both the viscous stress and pressure 

difference across the grains (seepage forces) exceeds the critical hydraulic gradient. For 

competent formation, higher hydraulic gradient will be required to break the bonds 

between the particles; this is unlikely in most cases. It thus suggests that erosion will 

occur in weakly-cemented and unconsolidated formations. By inspection of the derived 

conceptual model, the following observations are restated: 

1. Prior to significant erosion of the matrix, the sand-rate increases with the same 

profile as the fluid velocity; this is the transient state of the sand production process. 

2. As sand production increases, the formation will respond by compacting. 

3. The compaction of the eroding formation reduces the erosion rate, det (F) <1, and 

also the rate of compaction further influences the reduction in erosion rate. 

4. For constant fluid flux (which is not realistic in long eroding-reservoir in the field), 

the mass rate has a relatively linear relationship with the fluid-flux. This linear 

relationship is projected to occur when the erosion front is thin (a sharp interface). 
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5. The increment in sand rate with applied stress is assumed to be link to significant 

second-order effects, which reduce the critical hydraulic gradient and increase 

permeability to flow. Consequently, increasing the resultant hydraulic gradient (this 

is a non-linear coupling as observed in experiments by Papamichos, 2010). 
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 5. A THERMODYNAMICALLY CONSISTENT MULTIPHASE-FIELD MODEL 

FOR NON-ISOTHERMAL TRANSPORT OF GAS-LIQUID-SOLID 

PARTICLE FLOW: THEORETICAL DEVELOPMENT 

 

5.1 Scope 

 

           To rigorously predict the potential for self-killing due to sedimentation in the 

wellbore, the study on the transport of cavings or produced sand in the wellbore is highly 

essential. The hydrodynamic interactions between the solid and fluid particles play a big 

role in understanding the transport process. In addition, the constitutive relation of the 

fluid mixture may not be Newtonian as different “fluid species” mix up in the wellbore; a 

three-phase fluid flow problem can ensue when the reservoir fluid is oil or both gas and 

water are produced. In this study, a thermodynamically consistent phase-field model based 

on the notion of internal configurational forces are derived to characterize the n-phase 

mixture of gas, liquid, solid, water, and any other component. The model is based on 

averaged Navier-Stokes and Cahn-Hilliard system of equations. A free energy is 

introduced to account for the surface tension among the different components of the 

mixture and their contact lines. 

5.2 Background on Multiphase Fluid Modeling  

 The modeling of multiphase-fluid, especially fluid-particle systems, is very 

complicated, as the hydrodynamic interactions among the different species in the mixture 

have significant impact on the transport process. One of the questions that arises when 

investigating fluid-particle flow process is understanding what governs the non-uniform 
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distribution of the dispersed phase concentration. Prior to the advent of supercomputing 

machines, these studies were mainly experimental, and some of the developed empirical 

relations are still in use today (Othmer 1956, Leva 1959, Zenz and Othmer 1960).  

Davidson and Harrison (1963) and Kunii and Levenspiel (1969) integrated the 

mechanisms responsible for the observed heterogeneities into design calculations, which 

dominated multiphase-fluid studies in the subsequent years. Their attempts sparked 

application of fundamental principles in solving complex flow problems. Pritchett et al. 

(1978), and Gidaspow and Ettenhadieh (1983) pioneered the application of continuity and 

momentum balance equations for two-phase flow problems. Their works formed the 

foundation on which many computational fluid dynamics (CFD) simulations are based. 

 The use of CFD simulations in the investigation of complex multiphase-fluid 

systems is rapidly increasing today, though some of the empirical relations still remain. 

CFD-based models are built on three levels of details. The most fundamental approach is 

the use of Newtonian equations for translation and rotation of each solid particles, while 

ensuring that Navier-Stokes and continuity equations are satisfied at each point in the fluid 

phase. No slip condition is placed between the solid and fluid phases and between the fluid 

and the boundaries of the domain. 

 The second level of description is the use of discrete particle modeling. This 

approach entails the replacement of the fluid velocity at each point by its average over a 

representative volume element. The force exerted on each particle by the fluid is related 

to the particle’s velocity relative to the locally averaged fluid velocity, and the local 

concentration of the particles; many empirical correlations have been developed in this 
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regard. Furthermore, Newtonian equations of motion are then used to solve the kinetics 

and kinematics of each solid particles, taking into account the direct collisions among the 

particles. Some of the notable works on the use of discrete particle modeling for particle-

fluid system include Tsuji et al. (1993), Hoomans et al. (1996), Cundall and Strack (1979); 

Cundall and Strack developed the soft-particle modeling approach. In the soft particle 

modeling approach, particles can deform and the deformations are then used to determine 

the interacting forces between them. The non-linear relationship between force and 

displacement was developed by Hertz (1882) and it was improved upon by Mindlin and 

Deresiewicz (1953) and Di Renzo and Di Maio (2004); this model is rarely used for 

modeling flow of particulates due to its complication and high computing cost. 

Nevertheless, simpler versions of the nonlinear model have been developed by Walton 

and Braun (1986) and Walton (1993); Walton used semi-latched spring force-

displacement model in the normal direction and an approximate form of the Mndlin and 

Deresiewicz theory in the tangential direction, for constant normal force. Other authors 

who have contributed to the development of particle-particle interactions, using simplified 

models of Hertz-Mindlin and Deresiewicz are Thornton and Yin (1991), Langston et al. 

(1994), Thornton (1997), and Vu-Quoc and Zhang (1999a,b); for further information, the 

paper by Zhu (2007) gives detailed overview of the discrete particle modeling approach. 

 The most common method for modeling flow of dense particle-fluid flow is based 

on Eulerian descriptions of both solid and fluid phases of the continuum. The velocities of 

the fluid and solid particles are averaged over the local spatial domain. The velocity fields 

of the phases are then defined at all points in space; hence, resulting into two equations 
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for the two species. This approach is less computationally demanding compared to the 

first two approaches mentioned earlier. Nevertheless, unlike the discrete particle models, 

the Euler-Euler method suffers the disadvantage that closures must be formulated for 

certain terms in the governing momentum equation in the particle phase; these terms are 

generated from the process of averaging the momentum equation and are related to the 

velocity fields and particle concentration. However, the discrete particle method does not 

provide means of properly representing these averaged terms. 

 Significant progress has been made in the modeling of multiphase flow. Anderson 

and Jackson (1967) derived the continuum equations of motion for the gas-particle flow. 

Garg et al. (1975 and 1978) performed some numerical experiments on the derived 

equations to obtain the bubble behavior in a fluidized bed. Balzer and Simonim (1993), 

Balzer et al. (1996), Boemer et al. (1997), Ding and Gidaspow (1990), Ding and 

Lyczkowski (1992), Enwald and Peirano (1995), Gidaspow et al. (1983), Gidaspow 

(1994), Kuipers (1990), Lavieville et al. (1995), Lun and Savage (1986), Nott (1991), 

Sinclair and Jackson (1989), Syamlal (1987), Ljus (2000), and Wachem et al. (2001) 

improved the constitutive models and performed several simulations on gas-solid flows. 

Similarly, Ishii (1975) derived the multiphase fluid-fluid governing equations using 

different assumptions from Anderson and Jackon’s; its model is more accurate for flow of 

immiscible fluids.  

 Another major setback for the common two-fluid model is that the models fail 

when the mixture behavior significantly deviates from being Newtonian. For liquid-liquid, 

gas-liquid, solid-gas, or liquid-solid mixtures, the two-fluid model assumes a Newtonian 
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behavior of each phase, and based on many experimental findings, this approximation in 

the constitutive behavior of the mixture works for certain range of composition. When the 

volume fraction of the solid particles, for example in a fluid-solid mixture, is very high, 

the mixture cannot be represented as a Newtonian fluid. To overcome this limitations of 

the Euler-Euler method, advanced modeling methods are being proposed by many authors. 

5.2.1 Advanced Modeling Methods for Multicomponent Fluid Flows 

 

 Most studies on three-phase systems do not consider hydrodynamic interactions 

among the species of the mixture (Barret and Blowey 1996, 1999a, 1999b, 2001, Blowey 

et al. 1996, Copetti 2000, Eyre 1993, Garcke et al. 2000). Also, the studies on the two-

fluid models are inaccurate as the mixture significantly deviates from Newtonian fluid. 

 Projection method was used by Smith et al. (2002) to understand the motion of 

triple junction in level-set framework. Kan et al. (1998) used immersed boundary method 

(Peskin 1977) to simulate compound drop of three immiscible fluids. Kim et al. (1997), 

Milliken and Leal (1994), and Stone and Leal (1990) used boundary integral methods to 

study effect of surfactants drop dynamics, while Eggleton et al. (2001) studied the effect 

of surfactant on tip-streaming. Drumright and Renardy (2004), James and Lowengrub 

(2004), and Renardy et al. (2002) studied the effect of insoluble surfactants on drop 

deformations in two and three dimensions using volume of fluid methods. Jan and 

Tryggvason (1991) performed an investigation on the effect of surfactants on the dynamics 

of rising bubbles using immersed boundary/front-tracking algorithm. Ceniceros (2003) 

used hybrid level-set/front-tracking algorithm to study the effect of surfactants on 

capillary waves. Furthermore, Johnson and Borhan (2000) studied the effect of surfactants 
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on the evolution of the shape of non-spherical drop with a translational motion in a slow 

moving fluid, using a combination of boundary integral method and finite difference 

scheme. 

 Kim et al. (2004) simulated three-phase systems and suppressed the hydrodynamic 

interactions, while Kim and Lowengrub (2005) included the influence of the 

hydrodynamic interactions using thermodynamically consistent phase-field model. 

 In this work, thermodynamically consistent phase-field model is used to 

investigate the flow of multicomponent phases of a mixture, but with the addition of 

internal workings in the bulk of the different phases and interfaces due to the internal 

configurational forces. Lowengrub and Truskinovsky (1998) introduced a generalized 

force component into the energy equation, which they failed to ascribe its source. This 

study has been able to identify this generalized force as the micro-force responsible for 

the volume expansion of each phase. The derived system of equations couples averaged 

linear momentum balance to the Cahn-Hilliard type equations for the phase variables; 

mass ratios of the fluid components are the components of the vector order-parameter. The 

advantages of this approach over previous attempts include: (1) there is no need to perform 

any correction steps to multiple junctions, (2) incorporating other physical properties like 

miscible and immiscible fluid components is easy, and (3) a balance law for the micro-

forces system is presented. 

5.2.2 Phase-Field Model 

 

 The use of diffuse interface deviates from the perspective of Gibbs who assumed 

sharp interface. Many authors have used the concept of diffuse interface to model the 
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continuity of physical quantities across this boundary (Falk 1980, 1983, 1990, Pengtao et 

al. 2013, Igor et al. 2010, Kim 2012, Anderson et al. 1998, Jacqmin 1999, Truskinovsky 

1993, Zhang and Wang 2016, Fried and Gurtin 1993, and Antanovskii 1994); the order 

parameter is coupled with other field variables to ensure their continuity across the 

interface. In this study, the order parameter is the mass concentrations of the species in the 

mixture. In essence this variable identifies the state of each phase in the continuum 

(mixture). The internal micro-force is the conjugate to the rate at which this variable 

changes and it expends power during the creation of a surface, for example, the evolution 

or dissolution of gas. 

5.2.3  The Notion of Configurational Forces 

 

 The notion of internal configurational forces was introduced into continuum 

physics by the works of Burton (1892), Eshelby (1951, 1970, and 1975), Herring (1951), 

Peach and Koehler (1950); their proposition was that additional force system is needed to 

adequately describe phenomena that are associated with the material body, especially 

phenomena that the standard Newtonian force system cannot describe. For example, the 

creation of new surfaces in a material body cannot be described by Newtonian force 

system. Newtonian force system is responsible for deformation or stretching of a material 

body. 

 Gurtin (2000) and Gurtin and Struthers (1990) further expatiated on this notion. 

Their argument was that the balance of micro-forces should be a basic concept in 

continuum physics. These forces are linked to the integrity of the material structure, and 

do perform work during transport of material particles and the evolution of material 
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structures. Configurational stress is different from residual stress, which is a stress in the 

reference configuration of an undeformed material body; it is referenced to the standard 

Newtonian force system. The internal configurational force system becomes 

indeterminate when there is no change in the material structure, but becomes dominant as 

changes (not due to deformation or straining) occur in the material. This notion will be 

added to the total energy system of the mixture in this study. 

 Consider a migrating control volume, , containing a part, P, that is intersecting 

an interface,, which separates two phases in the region. The total working of the 

migrating control volume consists of: 

1. The contributions associated with the workings within the bulk of the material body. 

These workings are subdivided into two parts, which are 

a. Working due to standard Newtonian forces 

dVda

PP
tt
    

   










 ........................................................................................... (5.1) 

b. Working due to internal configurational forces in the bulk of the material of the 

corresponding phase 

  dVda

PP

     



 ........................................................................................... (5.2) 

This net configurational working tends to increase the volume of part P through addition 

of materials at its boundary. 

2. The contributions associated with the moving interface.  
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  dsda

P

   

 

  







 
.y



 ..................................................................... (5.3) 

P is the first Piola- Kirchhoff stress.  is the conjugate velocity following the boundary 

surface to part P, and 
.

y is the corresponding motion velocity following the boundary 

surface of part P. The force responsible for the migration of the interface is  and the 

corresponding work-conjugate velocity is v. y* is the corresponding motion velocity 

following the interface.


 is the internal force that pins the material points at the 

interface. Q is the interfacial stress, which can be further subdivided into surface tension 

and surface shear.   is characterized as the interface inertia force, and it is responsible 

for temporal changes in momentum of the interface. 

5.3 Model Development 

 Considering 
fN  number of species in a mixture, the mass concentration of each 

species at any point in time is  

 

M

kM

kc   ....................................................................................................................... (5.4) 

Where, 




f
N

1k

k
MM  is the total mass of the mixture, and  

1
f

N

1


k

k
c  ..................................................................................................................... (5.5) 
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Fig. 5.1 shows the representative volume element of three components of a mixture. The 

widths of the interfaces differ because of the difference in the strengths of the internal 

configurational forces of each species and the interfaces. For rigorous modeling of the 

behavior of the mixture, the constitutive behavior of the interfaces should not be relegated 

to the strength of the surface tension only. But for simplicity, I will account for the 

influence of surface tension on the constitutive behavior of the mixture by defining a free 

energy that will include the gradient energies.  

 Let the part in each of the phases, which is far from the interfaces, move at a 

velocity 𝒚̇𝑘 and has a density 

(1) 

(2) 

(3) 

 

 

 

Fig.5.1. Representative volume element of the mixture of three species 

having different interface widths. 
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kV

kM

k   ....................................................................................................................... (5.6) 

where k
V  is the volume of species k in the mixture. The volume fraction of each species 

is defined as 

V

kV

k   .......................................................................................................................... (5.7) 

and the mixture density, 




f
N

1k

kk
 , is also related to its components’ densities via 

kkk
c      .............................................................................................................. (5.8) 

or  





f
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1

k k

k
c


 ................................................................................................................... (5.9) 

It should be noted that one of the components of the proposed mixture is gas, whose 

density is dependent on pressure. The density of the gas phase is 

T
k

R
k

Z

k
pM

k
  .............................................................................................................. (5.10) 

Lowengrub and Truskinovsky (1998) termed the mixture of incompressible fluid 

components as quasi-incompressible because the mixture density is not constant, but 

depends on the mass fractions of the components. In this work, the presence of gas makes 

the mixture compressible; hence, degeneracy will not exist in the free energy equation.   
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 The mass-averaged velocity field of the mixture is  


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5.3.1   Mass Balance of Species 

 By local spatial averaging, the mass balance for each species in arbitrary region P 

is 

 

  k

.
mkkkkkt
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

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
  .................................................................................... (5.12) 

𝑚̇𝑘 is the net rate of mass supply of each species in an arbitrary sub region P. For the 

foregoing problem, the net rate of mass supply of the solid particles is zero, while the 

magnitude of the supply of gas is same as the magnitude of the mass of liquid depleted in 

the liquid matrix. As a result, equation (5.13) holds for the mixture mass balance. 

Depending on the mechanism responsible for sand production, the mass rate for the solid 

particles may be continuous or intermittent. At the early stage of the erosion process, the 

rate of sand production is continuous until severe compaction of the reservoir impedes the 

transport process. In case of wellbore breakout, the influx time of the cavings into the 

wellbore may be very short. The mass rate of the solid particles is the rate at which the 

slender rock layers buckle; this rate may not be constant, as the tendency for the formation 

of the slender rock layers reduces as the failure process progresses. By summing Eq. 5.12 

in k, the mass balance for the mixture is  
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It should be noted that the conservation of mass of each species states that  

  0 




kkt
k 


 ................................................................................................ (5.14) 

From equations (5.12) and (5.14), yields the mass concentration equation 

k
m

kk
c   J.    ....................................................................................................... (5.15) 

where, k  is the diffusion flux. 

5.3.2  Balance of Linear Momentum 

 For each component, the balance of linear momentum is  

 
kckc

kkDt

kD
kc       ............................................................................... (5.16) 

Dt

kD
 is the material derivative with respect to component velocity, k  is the first Cauchy 

stress for each component, c is the gravity force and k
  is the sum of the forces due 

to the interactions among the phases. Noting that by disregarding the inter particle-particle 

interaction forces and summing over k, yields the condition necessary for the conservation 

of linear momentum for the mixture: 

 




f
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k
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Thus, the resulting linear momentum of the mixture is 

c   y  ....................................................................................................... (5.18) 

where the stress tensor of the mixture is  




f
N
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k

kkk
c

k
 . One of the objectives 

of this study is to derive thermodynamically consistent constitutive relations for T and 𝑱𝑘.  

5.3.3 Energy Balance of the Mixture 

 The total global energy of the mixture is 
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 The conjugate velocity following part P is related to the order parameter via 

k
c

k
c

k




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𝒎 is the unit vector normal to the state surface; and defining micro-stress 𝒕𝑘 as 

kkk
c tC       ..................................................................................................... (5.21a) 
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and substituting equations (5.20) and (5.21) into (5.19), the total global energy of the 

mixture becomes 
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Noting that 𝒚̇ = 𝒖 is the velocity vector. e is the internal energy of the system, r is the 

density of the heat sources that keeps the temperature of the mixture constant, and 𝑓𝑘 is 

the external (micro) body force to the part P. The internal (micro) body force does no 

work, since it is internal to part P. The workings at the interface are not included in the 

energy balance equation above, but by defining a Cahn-Hilliard type free energy equation 

which includes the surface tension, the influence of the interfacial stress can be 

incorporated into the constitutive behavior of the mixture.  

 By using divergence theorem in Eq. 5.22, and applying the balance of mechanical 

power and mass balance of the mixture, the energy balance equation in local form yields 
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5.3.4 The Second Postulate of Thermodynamics; Clausius-Duhem Inequality 

 All admissible thermodynamic process must not violate the conventional entropy 

inequality, which states that the rate of increase of entropy in a sub-region, P, in the 

material should not be less than the sum of entropy generation within the sub-region and 

influx of entropy across the boundary of P.   

 The diffusion of one phase into another sub-region causes some dissipation in the 

total energy of the system, as power is expended; hence, the diffusion of the evolved gas 
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in the liquid matrix to the gas matrix is a dissipative process and the energy expended 

needs to be accounted for in the foregoing problem. The conventional power balance does 

not take into account this additional energy expended, but by following the micro-entropy 

imbalance relation postulated by Podio-Guidugli (2006), the entropy inequality becomes 
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By combining the first postulate of thermodynamics (Eq. 5.23) with the second (Eq. 5.24) 

the Clausius-Duhem inequality in local form becomes 
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From the balance of the micro-forces (in local form) in the bulk of part P (Eq. 5.2), a sub-

region far away from the interfaces, 

0 kfkgk  ......................................................................................................... (5.26) 

the Clausius-Duhem inequality yields 
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It should be noted that  𝒒𝑟 is the heat flux, T is the absolute temperature of the mixture, 𝜓 

is the Helmholtz free energy, and 𝜂 is the entropy of the system. For invariance under 

change in observer, the conjugate pairs of stress and rate of deformation for the stress 
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power are used in the development of the constitutive relation of the mixture. 𝜇𝑘 is the 

chemical potential of each species, which characterizes the diffusion process. 

5.3.5 Constitutive Relations  

 Based on the coupled processes in the foregoing problem, the independent 

variables in the constitutive model are proposed to be  kkkckckcT,T   ,,,,,, D . D is 

the symmetric part of the velocity gradient. The gradients of mass concentration, 

temperature, and chemical potential are included to account for non-local behavior in the 

material-makeup of the mixture. The time rate of change of the mass concentration of the 

species is introduced to account for the intrinsic rate dependency in material structure as 

a result of the motion of the interfaces. 

 Hence, the following response functions are proposed to define the constitutive 

behavior of the mixture at each point in time. 
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These response functions are defined to obey Truesdell (Truesdell and Noll 1992) 

principle of equipresence, which states that a quantity present as an independent variable 
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in one constitutive equation should be present in all, except if its presence violates some 

laws of physics or the rule of invariance. The response function A in equation (5.33) is a 

linear transformation over the nine-dimensional space of tensors, and L is the velocity 

gradient; L = D + W. A is added to the stress response function to include the effect of 

viscosity. The response function may depend nonlinearly on the velocity gradient, which 

will necessitate dependency on acceleration gradients. Since no allowance for acceleration 

gradient is desired, a linear dependency on the velocity gradient is preferred. For material 

objectivity 
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and 
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 Using Chain rule, the time rate of change of the Helmholtz free energy can be 

expressed as   
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and by using the variational derivative of the free energy functional yields the relation 

 

   
kk

k
k

k
k

c
k

c

k
c

kc

k
ckc

k
c

TT
T

T
T























































D.D.

D...D.
D








ˆˆ
 

ˆ

ˆˆ
 

ˆ
 

ˆ
 

 

ˆ

 ............................................. (5.37) 

By substituting Eq. (5.36) into Eq. (5.27) and using the Coleman-Noll entropy principle 

to place restrictions on the response functions, the following relations are derived: 
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and the reduced form of the entropy inequality is 
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It should be noted that the Coleman-Noll entropy principle states that the second postulate 

must hold for any thermodynamic process irrespective of the difficulty involved in 

producing such process in the laboratory. Thus, the above relations suggest that the 

response functions should each depend on the following independent variables 

 
kkk

c
k

cTT   ,,,,, ˆ  ...................................................................................... (5.44) 

 
kkk

c
k

cTT
kk

  ,,,,,, ˆ DJJ  ............................................................................... (5.45) 

 
kkk

c
k

cTT
kk

  ,,,,, t̂t  .................................................................................... (5.46) 

 
kkk

c
k

cTT   ,,,,, ˆ  ...................................................................................... (5.47) 



 

124 

 

 
kkk

c
k

c
k

cTT   ,,,,,,, 
r

ˆ
r

Dqq  .......................................................................... (5.48) 

     D ADTT   ,,,,,,    ,,,,,,, ˆ
kkk

c
k

c
k

cTT
kkk

c
k

c
k

cTT     ..................... (5.49) 

The derived relation for the chemical potential is same as the generalized chemical 

potential in Kim and Lowengrub (2005), except that the external micro-force is 

incorporated into equation (5.40). Another difference between the two models is the absent 

of a Lagrange multiplier in Eq. (5. 40), which Kim and Lowengrub introduced to exploit 

degeneracy in the quasi-incompressible mixture flow. As mentioned earlier, the foregoing 

model development assumes a compressible mixture. 

 Using a response function A that is linearly dependent on the velocity gradient 

suggests that the constitutive relation between the Cauchy stress and the independent 

variables is  
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𝜇 and 𝜆 are scalar functions of these independent variables  kkkkk cccTT   ,,,,,,  , 

while p is fluid pressure. The constitutive relation shows that additional fluid stresses are 

introduced by gradient of concentration and temperature; the additional stress due to 

concentration gradients mimic the surface tension stresses.  

 It is obvious from these relations that rate dependency can only enter the 

constitutive model through heat flux and Cauchy stress. The diffusion flux depends on the 

velocity gradient of the mixture if the free energy is so constructed to incorporate the 
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chemical potentials of each species. By further restricting the free energy to not depend 

explicitly on the chemical potentials and their gradients, the response functions become 
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In this case, 𝜇 and 𝜆 are scalar functions of the independent variables  kckckcTT ,,,,  . 

The reduced form of the entropy inequality becomes 
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For the inequality above to be satisfied for all  
kkk

c
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cT,T   ,,,,,, D , it thus 

implies that 
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𝒂𝑘 and 𝒃𝑘 are arbitrary vectors, characterizing dissipation due to heterogeneities in each 

of the phases, 𝑴𝑘 is the mobility tensor for component k, and 𝛿𝑘 is the net dissipation 

density. Therefore, by substituting equation (5.58) into (5.57), and considering each of the 

components of the mixture, the chemical potential is thus derived as 
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Eq. (5.60) assumes that all the species are in thermal equilibrium with each other in each 

part, P, of the continuum. Since each of the phases is assumed to be homogeneous and 

isotropic, except at the interfaces, vectors 𝒂𝑘 and 𝒃𝑘 will be zero. 

5.3.6 Constructing the Free Energy Functional and Diffuse Interface Thickness 

 The free energy is constructed to account for both the bulk and interfacial energies. 

Cahn and Hilliard (1958) developed a framework for constructing free energy for two-

phase problems. The choice of the free energy functional should support both forward and 

backward diffusion, thus, a generalized form of the Cahn-Hilliard free energy equation 

developed by Steinbach et al. (1995) is proposed in this work. Considering the dissipation 

due to the diffusion in each of the species, the total free energy density is constructed as 
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𝑓1 𝑇) is the free energy density due heat transfer in the mixture, 𝑓2 𝑐𝑘) is the energy 

density due to the phobic effect among the phases, 𝑓3 ∇𝑐𝑘) is the energy responsible for 

the philic effect between the phases, and 𝑓4 𝜇𝑘) is the dissipation density due to diffusion 

in each of the phases; this construction is unlike the classical definition of free energy as 

a function of concentration only. The gradient energy term also represents the nonlocal 

interactions between the phases, the mixing/blending of the phases.  

 The profile of the order parameter across the interface is dependent on the 

competition between the bulk and interfacial energies. Thus, the free energy of the mixture 

considering a slight deviation from thermal equilibrium among the phases is  
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And substituting the equation (5.60) into (5.61) yields 
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Although multiphase systems are sensitive to the triple-point energies, these energies and 

other higher-order energies are disregarded as the physical assumption is that the triple 

point between the three different phases adjusts according to the dynamics of the dual 

phase boundaries. 𝑚𝑗𝑘 is the driving force for the phase transition between the phases at 

sharing interface contacts, and it is defined as the deviation from the two-phase 
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equilibrium between the two phases. This force depends on the temperature and mobility 

of the interface. But in this study, thermal equilibrium is assumed to exist between the 

phases, hence the total free energy becomes 
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Based on the definition proposed by Wheeler et al. (1992), the surface tension, 𝜎𝑗𝑘, and 

thickness of the interface, 𝜆𝑗𝑘 , are related according to  

jkjk   
2
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Eq. (5.65) is defined as the interfacial (gradient) energy coefficient which is often assumed 

to be constant for simplicity. 
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 The determination of the interface width is controlled by the concentrations of each 

phase and the bulk-free energies. Van-der-Waals (1893) hypothesized that equilibrium 

interphase profile minimizes the free energy, and at equilibrium the chemical potential is 

zero. Then, by using calculus of variation, the three coupled governing equations relating 

the interface widths with the phase concentrations are (assuming equilibrium conditions) 
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The general boundary conditions derived from calculus of variation are 
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At the boundaries of each phases, far from the interfaces, the mass concentrations are 

specified to be 1, thus implying the variation of the mass concentrations will be zero. 
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Similarly, at these boundaries, there are no influx, therefore, 𝒏. ∇𝑐𝑘 = 0; n is the unit 

normal vector to the boundary surfaces. There are many models describing the relationship 

between the phase concentration and interface thickness for binary systems (Jacqmin 

1999, Pengtao et al. 2004, Badalassi et al. 2003, Anderson et al. 1998, Kim 2012). The 

major difference in these models is in the definition of the bulk free energy. They assumed 

isothermal transport process and no dissipation during the diffusion of the species to the 

interfaces. Equations (5.68a, 5.68b, and 5.68c) define the relationship between the 

interfacial width of a flat surface and the concentrations at a point in time (quasi-

equilibrium). Cahn and Hilliard (1959) extended van-der-Waals’ hypothesis to a time-

dependent scenario: 
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 The surface tensions acting at each interface increases as the temperature increases, 

but the thickness of the interface reduces with increase in temperature. Therefore, for the 

foregoing problem, the surface tension acting at each interface, at equilibrium, is 

determined by substituting the relationship between the concentrations and interfacial 

widths in Eq. 67 into the free energy density relation, to obtain,  
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𝑧 is the coordinate axis normal to the interface. 
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5.4 Governing Field Equations 

The governing field equations, based on continuum phase field model, for the flow 

of multicomponent fluid are essentially the balance of linear momentum, mass 

concentration equation, equation of chemical potential, balance of internal configurational 

forces, continuity equation of the mixture, and energy equation; these relations consider 

the hydrodynamic interactions among the species. 

Substituting Eq. (5.59) into Eq. (5.15), and assuming isotropy, the mass 

concentration equations become 

k
mkkk
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Furthermore, by substituting Eq. (5.50) into Eq. (5.18), the linear momentum equation of 

the mixture yields 
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By substituting Eq. (5.39) into Eq. (5.26), the balance of internal configurational forces is 
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Similarly, by replacing the definition of the microstress tensor into the chemical potential 

equation, it yields 
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The continuity equation of the mixture is 
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Finally, by substituting the expressions of the Cauchy stress and microstress tensors into 

Eq. (5.23), and using the thermodynamic relations between enthalpy and internal energy, 

the energy equation of the system becomes 
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 (5.75) 

𝐶𝑝,𝑘 is specific heat capacity at constant pressure for each species and 𝛼𝑘 is the bulk 

expansion coefficient; this property is determined from equations for state, for gases.  

When solving the field equations for a three-dimensional domain, there are eight 

dependent variables to be solved for, which are velocity vector (3-dependent variables), 

pressure of the mixture (1-dependent variable), temperature of the mixture (1-dependent 

variable), and mass concentrations of each phase (3-dependent variables). 

5.5 Summary 

 A thermodynamically consistent multiphase-field model is developed for the 

flow of gas, liquid, and cavings mixture in the wellbore. The internal workings due to 

the internal configurational force system in the bulk of each phase are incorporated into 

the model. Using Coleman-Noll entropy principle to place restrictions on the proposed 

response functions, which are defined to obey Truesdell principle of equipresence, it is 
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derived that the mixture stress tensor is a function of effective viscosity of the mixture, 

temperature gradient, and mass concentration gradients of each species of the mixture. 

The additional stress due to concentration gradient mimics surface tension, while the 

additional stress due to temperature gradient is another non-local constitutive behavior of 

the mixture as a result of a non-isothermal transport process. 
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6. A QUICK AND ENERGY CONSISTENT ANALYTICAL METHOD FOR 

PREDICTING HYDRAULIC FRACTURE PROPAGATION THROUGH 

HETEROGENEOUS LAYERED MEDIA AND FORMATIONS WITH NATURAL 

FRACTURES: THE USE OF AN EFFECTIVE FRACTURE TOUGHNESS 

 

6.1 Scope  

 An effective fracture toughness, based on equivalent energy release-rate 

hypothesis is presented for homogenizing heterogeneous layered media. Using crack 

closure method, the energy released when a mode-1 fracture propagates through an 

equivalent homogenized layer is equated to the sum of the energies released in the 

heterogeneous layered media. And from extensive numerical experiments, the predictions 

of fracture tips’ positions through this proposed method are of the same range of accuracy 

as the known linear blend rule; the weakest link arguments technique performed poorly 

when compared to the other two methods. Therefore, homogenizing heterogeneous 

layered media with energy consistent approach will reduce the complexities associated 

with modeling fracture propagation in multi-layer without losing accuracy. Furthermore, 

an effective fracture toughness, based on equivalent energy release rate, equivalent strain 

energy, and modified Kachanov’s damage theory is presented in this study. The proposed 

approach will reduce the computation time required in predicting fracture containment 

potential in formations with opened or sealed natural fractures. And comparing the 

proposed phenomenological model with the rigorous solution provided by Mori-Tanaka, 

it was observed that the margin of error was negligible. The benefit of the proposed 
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phenomenological model over the Mori-Tanaka’s effective shear modulus model is the 

ease of estimating the effective fracture toughness. Thus, these models can be applied to 

quickly estimate the potential for hydraulic fracture containment or broaching possibilities 

during oil and gas blowouts and fracturing operations. 

6.2 Background on Hydraulic Fracture Modeling and Effective Fracture 

Toughness 

 “Pseudo-3D” (P-3D) models are often used for quick hydraulic fracturing design 

or prediction of hydraulic fracture containment in the petroleum industry; these models 

are less computationally expensive compared to the fully 3D and planar 3D models (Brady 

et al. 1993, Clifton and Abou-Sayed 1979, 1981, Hirth and Lothe 1968, and Bui 1977). In 

the P-3D models, the fluid flow is assumed to be one-dimensional along the length of the 

fracture, while the pressure profile in each elliptic cross sections is constrained to be linear. 

And as assumed in the PKN model (Perkins and Kern 1961, Nordgren 1972) that the cross 

sections are independent of each other, so that the plane strain assumption decouples the 

fluid flow and solid mechanics; similarly, this constraint is applied in the P3D models. 

The linear pressure profile in the cross sections is based on the assumption that the vertical 

fracture extension is slow such that the dynamic pressure gradient in the vertical sections 

is negligible.  

 Many authors have contributed to the development of the equilibrium height 

problem (P-3D), starting from the work of Simonson et al. (1978), who developed the 

model for symmetric 3-layer formation, with constant internal applied pressure. Ahmed 

(1984), and Newberry et al. (1985) solved an asymmetric 3-layer equilibrium height 
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problem; while Fung et al. (1987) and Economides and Nolte (2000) extended the 

asymmetric equilibrium height problem to multi-layer formations with constant and 

linearly varying pressure profiles in the vertical sections respectively. But as pointed out 

by Liu and Valko (2015), the model developed by Economides and Nolte has some 

intrinsic errors; and sometimes yield unacceptable results. Other notable contributions to 

the development of the P-3D models include Palmer and Carroll (1982, 1983), Palmer and 

Craig (1984), Settari (1986), Meyer (1986), Advani et al. (1990), and Adachi et al. (2010). 

 Analytical P-3D model for asymmetric multi-layer formations with linearly 

varying pressure profile in each cross section is very complicated, and difficult to tract. 

To reduce the complexity, an effective fracture toughness, based on equivalent energy 

release rate, developed for the upper and lower layers will condense the multi-layer 

problem to the classical three-layer problem, which algebra is tractable. 

 In the same vein, we also proposed in this paper the use of an effective fracture 

toughness, based on the same hypothesis mentioned earlier, which can approximately 

describe hydraulic fracture propagation in formations with natural fractures. The 

interactions between hydraulic and natural fractures have been studied by many authors 

in the past (Olson and Dahi 2009, Zhou et al. 2015, Renshaw and Pollard 1995, Dahi and 

Olson 2011, Gu et al. 2012, Gu and Weng 2010, Chuprakov et al. 2013, Zhou et al. 2008, 

Warpinski and Teufel 1987, Gao and Rice 1989, Wu and Olson 2014). From the various 

studies, there are three possibilities that may occur when a hydraulic fracture intersect a 

natural fracture: (1) the hydraulic fracture may cross the natural fracture without change 

in propagation direction (2) the hydraulic fracture is arrested by the natural fracture; 
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consequently, the natural fracture, becoming part of the hydraulic fracture network and 

propagates from its end(s) or (3) from a weak point along its length. 

 In this study, the complex hydraulic fracture network created by the interactions 

of the parent hydraulic fracture with ordered and disordered natural fractures will be 

simplified such that an effective fracture toughness, dependent on area of the 

discontinuities of a representative volume element and the mechanical properties of the 

formation matrix can suggest the containment potential of the hydraulic fracture in the 

host formation. 

 In past studies, the use of linear blend rule (Atkins 1980, Atkins and Mai 1985, 

Eriksson and Atkins 1995, and Eriksson 1998) and weakest link arguments (Landes and 

Shaffer 1980, Wallin et al. 1984, Slatcher 1986, Iwadate et al. 1983, Beremin 1983, Sainte 

et al. 1995) have been used to homogenize heterogeneous layered media. However, 

Heerens et al. (1994) showed that the predictions through the weakest link method are 

inaccurate.  

6.3 Mathematical Formulations 

6.3.1    Effective Fracture Toughness for Layered Media 

 Fractures tend to grow in the direction that maximizes the potential energy 

released. And as a result, most hydraulic fractures propagate in mode-1; although 

diversion may occur at the boundary of two formations or when intercepted by natural 

fractures. In this study, the hydraulic fracture is assumed to propagate through boundaries 

in mode-1 only.  
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 As the hydraulic fracture propagates through each formation, there is an increase 

in the total energy released; and considering Fig. 6.1, the total energy released is  

 



NH

H

L

T dzdxG

1 0

  1  ......................................................................................................... (6.1) 

where G1 is the energy release rate, as defined by Griffith (1921). Layers n+1 to N can be 

lumped together as a heterogeneous formation having a varying fracture toughness )(3, zKc

, while layers 1 to n-1 are also lumped together as a heterogeneous formation 1, having 

mode-1 fracture toughness )(1, zKc
. Therefore, the multi-layer equilibrium-height problem 

reduces to the classical three-layer problem (Fig. 6.2). 

Assuming the formations have a linearly elastic response, the energy released per unit 

length of the fracture is 

   

NH H

dzGdzG
0 0

1

 1)(- 1  ........................................................................................ (6.2) 

Using superposition theorem, the normal stresses at the tips of the vertical fracture plane 

(in the y-z plane) at arbitrary positions z0 and z1 are 
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with the extension of the upper tip by 0z , new fracture surfaces are created in 00 zz  and 

the displacement of the upper-right face is  

)0(2
4

1
zzIKyyu 


 


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Using crack closure method (Irwin 1958 and Broek 1991), the work done by the normal 

stress in the fracture extension is equal to the energy required to close the fracture after 

opening 
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The factor 2 in Eq.6.6 accounts for the right and left surfaces of the fracture. And 

),0()(2 zwzu yy


 . Therefore, the total energy released when the upper fracture tip 

propagates from the bottom of formation n+1 to point h from the bottom of layer N is 
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Where, the Irwin (1957) criterion, ICI KK   was implied in Eq. 6.7. From Fig. 6.2, the 

equivalent energy released, as the upper tip propagates into the abutting layer (lumped), 

is 
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Hence, the effective fracture toughness for the lumped upper layer, 
            



ICK  can be 

estimated from the hypothesis that 
            


 . Supposing the in-situ stresses are uniformly 

distributed throughout each layer, and the upper layers are lumped as a homogeneous 

formation with fracture toughness, 
            



ICK , therefore, the effective fracture toughness of 

the upper layer can be determined from the algebraic expression below. It should be noted 

that a Heaviside function was used to represent the uniformly distributed in-situ stresses 

in each layer in Eq. 6.8 above. And   and   are averaged properties (Poisson ratio 

function and shear modulus respectively) of the formations; for plane strain 

approximation,  43  and plane stress      13 . 
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Alternatively, the shear modulus and Poisson ratio can also be represented with Heaviside 

functions, which will further make Eq. 6.9 more complicated. Similarly, the effective 

fracture toughness for the formations below the host formation can be estimated from      

Eq. 6.10 
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   6.3.2 Effective Fracture Toughness Derivation Without Tensile Stresses 

 As fracture propagates through each medium, the tensile forces acting on the 

fracture edges, away from the tips reduces with crack length. Thus, neglecting the tensile 

force contributions and following the same procedure in Section 6.3.1 above, the effective 

fracture toughness for the homogenized upper and lower barriers, based on equivalent 

energy-release rate hypothesis are derived as 
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6.3.3 Minimum Fracture Extension Pressures 

 When the pressure driving the hydraulic fracture is assumed to be constant, the 

fracture extension pressure was derived by Simonson et al. (1978) as 


h

IC
K

z
h

S
F

P  )(
min,2
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where, h is the half thickness of the host formation. But when the displacements of the 

upper and lower tips of the fracture are significant, the hydrostatic pressure can 

significantly affect the extension potential.  

The fracture extension pressure may not only be affected by gravity, but the relative 

positions of the fracture tips can affect the value. Considering the three different cases in 

Fig. 6.3. The critical extension pressures for the lower and upper tips in case 1 respectively, 

as derived in the Appendix A are  
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Noting that min,2 hS  is the minimum principal in-situ stress at the host formation. Cases 2 

and 3 are not very common; but could be relevant to the extension of existing fractures in 

formations. In case 2, the critical extension pressures for the upper and lower tips are 

respectively derived in Appendix A as shown in Eq. 6.18 and Eq. 6.19 respectively. 
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, where hu is the displacement of the upper tip. For case 3, the 

critical extension pressures for the upper and lower tips are 
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6.3.4 Effective Fracture Toughness for Formations with Disordered Natural 

 Fractures 

 The growth of hydraulic fractures in formations with natural fractures depends on 

many factors, including the orientation of the micro cracks, the infill materials in the 

cracks, the tensile strength of the rock, treatment pressure, fluid viscosity, and many other 

factors as studied by Zhou et al. 2015. To describe the random path of the hydraulic 
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fracture in disordered natural fracture network will be very complicated. But the use of 

damage theory with the crack closure method (described above) can approximately 

suggest the containment potential of the hydraulic fracture.  

 Sometimes the natural fractures may be filled with materials that have higher 

modulus than the rock matrix; on the other hand the infill materials may have lower 

Young’s modulus than the matrix. The surface density of the cracks and its mechanical 

strength affect the bearing capacity of the crack-matrix system. If the cracks are filled with 

higher modulus materials, they help to reinforce the strength of the crack-matrix system; 

but when the cracks are empty or filled with lower modulus materials, there is a reduction 

in the bearing capacity of the crack-matrix system. This is the crux of the effective stress 

introduced by Kachanov (2013); in the classical continuum damage theory, the inclusions 

are empty; thus, this study will cover both opened and filled discontinuities. For disordered 

natural fracture network, the impact of the inclinations of the natural fractures to the 

propagating hydraulic fracture cannot be included in the model development in a 

deterministic way, except by the use of random theory, which we have decided not to 

pursue in this paper. 

 As mentioned in the previous section, the effective fracture toughness that 

describes the containment potential of the hydraulic fracture, propagating in the rock with 

natural fractures, is based on the use of equivalent energy released rate and equivalent 

strain energy (by compressional loading) hypotheses. In the equivalent system, the 

hydraulic fracture network is represented by a mode-1 fracture propagating in a 

homogeneous medium; and having the same energy released as the fracture propagates to 
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the same height or length. In the equivalent system, the energy released due to mode-2 

propagation of the hydraulic fracture is disregarded: when hydraulic fracture is arrested 

by a natural fracture and consequently the natural fracture propagates from its ends, if the 

natural fracture is inclined to the direction of maximum in-situ stress in the plane, the 

propagation will be mixed mode. 

 The model development are based on the following assumptions: 

Assumption 1: The surface discontinuities do not evolve with the applied loadings. This 

suggest that there is no need to develop an evolution equation for the damage variable, 

which is the ratio of the effective surface area of the discontinuities in a representative 

volume element (RVE) and surface area of the RVE.  

Assumption 2: The surface discontinuities are isotopically distributed. 

Assumption 3: The rock behaves as a linearly elastic material.  

Assumption 4: The natural fractures are filled with a material that also has a linearly 

elastic response. 

 The effective stress tensor defined by Kachanov for a material body having empty 

inclusions is given as 




1

σ
σ'  ..................................................................................................................... (6.20) 

But assuming the filling of the discontinuities reduces its effective area relative to the 

matrix, then, the effective area of the discontinuities is proposed as 

   1, SeS  ......................................................................................................... (6.21) 
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where   is the ratio of elastic moduli of the infill material and the matrix, and   is a 

constant parameter. In a case where the infill material has higher elastic modulus than the 

matrix, then the overall elastic modulus of the inclusion-matrix system will be higher; a 

reinforcement of the matrix. But the works by Elselby (1957), Hashin and Shtrikman 

(1963), Hill (1965), Mori and Tanaka (1973), Willis (1981), Walpole (1981), Weng 

(1984), and Chen et al. (1992) provide more rigorous studies on the impact of inclusions 

on the elastic modulus of the host matrix. However, the computation of the effective 

fracture toughness is demanding (Li and Zhou 2012).  

 As stated in Assumption 1, the damage variable is defined as 

  


 1
,

S

eS
D  ............................................................................................... (6.22) 

And using the crack closure method, the energy released in the damaged rock material is 

equivalent to the energy released in a virgin rock with the normal stress acting on the face 

of the fracture being the effective stress, i.e. 
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by substituting equations (6.22)-(6.25) into (6.21),  the effective fracture toughness can be 

determined from the algebraic expression 
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Since damage prior to loading is under consideration and not damage induced by the 

loading; thus, considering a compression loading of the RVE. The elastic strain energy 

(compressional loading) and the effective elastic energy are equivalent, i.e.  

 

'
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1
dv' dv 
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Hence, the relationship between the damaged and virgin shear moduli is 

 
2

11'
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The constant parameter,  , can be determined by curve-fitting the effective shear modulus 

in Eq. 6.30 with Mori-Tanaka’s model or from experiment. 

When the contributions of the tensile stresses along the fracture edges are disregarded, the 

damaged fracture toughness of the formation becomes 
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   11'
IC

K
IC
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6.3.5 Effective Fracture Toughness for Formations with Ordered Natural 

 Fractures 

 When the natural fractures are oriented in the same direction, the path of the main 

hydraulic fracture stem can be easily traced compared to the disordered pattern. In this 

case the energy released as the fracture propagates in both modes 1 and 2 is 
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Where, c is the path of the main hydraulic fracture, and 𝑐2 is the distance the fracture 

propagates in mixed mode. N is the number of repeated pattern of the natural fractures; in 

other words, the number of rows. Eq. (6.32) is derived based on the assumption that the 

natural fracture will propagate from one of its ends, when it arrests the hydraulic fracture.  
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Depending on the projected path, the steps in Section 6.3.4 can be followed in estimating 

the effective fracture toughness from equation (6.32).  

6.4 Numerical Examples 

 A hydraulic fracture stands in layer 6, with its tips at the top and bottom of the 

formation, which is 9m (30 ft.) thick. Using the full multi-layer equilibrium height model, 

the tips displacements at different internal pressures are shown in Figs 6.4, 6.5, and 6.6. 
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Table 6.1 shows the description of the layers. While the use of the energy-released-based 

effective fracture toughness for the same range of pressures are shown in Figs. 6.7, 6.8, 

and 6.9. The equivalent three-layer system, based on equivalent energy release rate 

hypothesis, (3ER-EHP) to the eleven-layer problem (11-EHP) is shown in Table 6.2 

below.  

 

Layer Top Thickness Stress KIC E 𝝂 Lithology 

 m. m. MPa MPa√𝑚 MPa - - 

1 2743.200 152.40 52.30 1.10 29510 0.3 Shale 

2 2895.600 30.480 53.99 1.10 29510 0.3 Shale 

3 2926.080 4.572 49.02 1.32 29510 0.26 Sand 

4 2930.652 15.240 54.50 1.10 29510 0.3 Shale 

5 2945.892 3.048 49.34 1.32 29510 0.26 Sand 

6 2948.940 9.144 54.79 1.10 29510 0.3 Shale 

7 2958.084 3.048 49.54 1.32 29510 0.26 Sand 

8 2961.132 4.572 54.97 1.10 29510 0.3 Shale 

9 2965.704 3.048 49.67 1.32 29510 0.26 Sand 

10 2968.752 30.480 55.35 1.10 29510 0.3 Shale 

11 2999.232 152.400 57.05 1.10 29510 0.3 Shale 

 

 

 

 

Layer Top Thickness Stress KIC E 𝝂 Lithology 

 m. m. MPa MPa√𝑚 MPa - - 

1 2743.200 152.40 52.30 0.672 29510 0.3 Shaly-Sand 

2 2895.600 30.480 53.99 0.672 29510 0.3 Shaly-Sand 

3 2926.080 4.572 49.02 0.672 29510 0.3 Shaly-Sand 

4 2930.652 15.240 54.50 0.672 29510 0.3 Shaly-Sand 

5 2945.892 3.048 49.34 0.672 29510 0.3 Shaly-Sand 

6 2948.940 9.144 54.79 1.10 29510 0.3 Shale 

7 2958.084 3.048 49.54 0.676 29510 0.3 Shaly-Sand 

8 2961.132 4.572 54.97 0.676 29510 0.3 Shaly-Sand 

9 2965.704 3.048 49.67 0.676 29510 0.3 Shaly-Sand 

10 2968.752 30.480 55.35 0.676 29510 0.3 Shaly-Sand 

11 2999.232 152.400 57.05 0.676 29510 0.3 Shaly-Sand 

Table 6.1.Description of the formation properties and in-situ stress profiles for the 11-layer 

problem. 

Table 6.2.Description of the formation properties and in-situ stress profiles for the equivalent 

three-layer problem. 

3 

2 

1 
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Comparing the region maps in Figs. 6.4, 6.5, and 6.6 and Figs. 6.7, 6.8, and 6.9, it is 

evident that the two solutions are equivalent. 

 

 

 

  

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.6. Region map of the tips 

positions when the pressure inside 

the fracture is 54.47MPa (7900 psi) 

for 11-EHP.  

A 
B 

Fig. 6.4. Region map of the tips 

positions when the pressure inside the 

fracture is 53.09MPa (7700 psi) for 

11-EHP.  

A 

Fig. 6.5. Region map of the tips 

positions when the pressure inside 

the fracture is 53.78MPa (7800 psi) 

for 11-EHP.  

C 

A 

B 

A 

Fig.6.7. Region map of the tips 

positions when the pressure inside 

the fracture is 53.09MPa (7700 psi) 

for 3ER-EHP.  
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Points A, B, and C in Figs. 6.4, 6.5, 6.7, and 6.8 are not the practical solutions to the 

nonlinear equation; at these pressure values, the initial upper and lower tips are stable. In 

Figs. 6.6 and 6.9 Point B is the pair solution to the practical solution A. From the map, the 

upper tip is located at depth 2790 m, while the lower tip is located at depth 3005 m.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the linear blend rule and weakest link arguments, the effective fracture toughness 

for the upper and lower barriers are 1.11 MPa and 1.1 MPa respectively. The locations of 

the tips in these equivalent systems are similar to the 3ER-EHP (Figs. 6.10 and 6.11); for 

shorthand writing, the equivalent three layer problem based on blend rule is 3BR-EHP, 

and that based on weakest link arguments is 3WL-EHP. In this case, both 3ER-EHP and 

3WL-EHP yielded similar results, while 3BR-EHP and 3ERR-EHP gave more accurate 

Fig. 6.8. Region map of the tips 

positions when the pressure inside 

the fracture is 53.78MPa (7800 psi) 

for 3ER-EHP.  

C 

A 

B 

Fig. 6.9. Region map of the tips 

positions when the pressure inside 

the fracture is 54.47MPa (7900 psi) 

for 3ER-EHP.  

A 
B 
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positions of the tips relative to the other homogenization methods (Figs. 6.12, 6.13, 6.14, 

6.15, and 6.16). 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From these examples, it is evident that the use of energy-release rate hypothesis for 

homogenizing multilayer problems may not be accurate (to a small degree), except when 

the contributions of the tensile stresses are neglected.  

 Table 6.3 shows the description of eleven layers with significant modulus 

contrasts. And the effective fracture toughness for the upper and lower barriers using the 

equivalent energy release rate hypothesis are 1.44MPa and 1.59 MPa respectively. While 

the effective fracture toughness for the upper and lower homogenized barriers when using 

A 
B 

Fig. 6.11. Region map of the tips 

positions when the pressure inside the 

fracture is 54.47MPa (7900 psi) for 

3WL-EHP.  

A 
B 

Fig. 6.10. Region map of the tips 

positions when the pressure inside the 

fracture is 54.47MPa (7900 psi) for 

3BR-EHP.  
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the linear blend rule are 4.17 MPa and 5.46 MPa respectively; and using the weakest point 

arguments, the effective fracture toughness are 1.6MPa and 3.28MPa respectively. In the 

same vein, the effective fracture toughness using the reduced equivalent energy release 

rate hypothesis (3ERR-EHP) are 3.38MPa and 4.15 MPa respectively. 

 Alternatively, the use of equivalent strain energy hypothesis, which is 

mathematically tedious, may be used in lieu of the energy released rate; this comparison 

will not be pursued in this paper. 

 

Layer Top Thickness Stress KIC E 𝝂 Lithology 

 m. m. MPa MPa√𝑚 MPa - - 

1 2743.200 152.40 52.30 5.10 29510 0.3 Shale 

2 2895.600 30.480 53.99 1.10 29510 0.3 Sand  

3 2926.080 4.572 49.02 3.32 29510 0.26 Shale 

4 2930.652 15.240 54.50 1.10 29510 0.3 Shale 

5 2945.892 3.048 49.34 5.32 29510 0.26 Shale 

6 2948.940 9.144 54.79 1.10 29510 0.3 Shale 

7 2958.084 3.048 49.54 6.32 29510 0.26 Sand 

8 2961.132 4.572 54.97 2.10 29510 0.3 Shale 

9 2965.704 3.048 49.67 1.32 29510 0.26 Sand 

10 2968.752 30.480 55.35 3.10 29510 0.3 Shale 

11 2999.232 152.400 57.05 6.10 29510 0.3 Shale 

 

 

 

The tensile stress is greatest at the tips of the fracture, and reduces along the length of 

the fracture.  Along the edges of the fracture, away from the tips, the Irwin criterion, 

ICI KK  , does not apply; but ICI KK   . Thus, neglecting the tensile stress contribution 

in the crack closure energy function will yield more accurate results; and this is evident  

Table 6.3. Description of the formation properties and in-situ stress profiles for the 11-EHP, Case 2. 
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in the two example cases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.13. Region map of the tips 

positions when the pressure inside the 

fracture is 54.47MPa (7900 psi) for 

3ER-EHP, Case 2.  

Fig. 6.12. Region map of the tips 

positions when the pressure inside 

the fracture is 54.47MPa (7900 psi) 

for 11-EHP, Case 2.  

A 

A 

Fig. 6.14. Region map of the tips 

positions when the pressure inside the 

fracture is 54.47MPa (7900 psi) for 

3BR-EHP, Case 2.  

A 

Fig. 6.15. Region map of the tips 

positions when the pressure inside the 

fracture is 54.47MPa (7900 psi) for 

3WL-EHP, Case 2.  

A 
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A 

Fig.6.16. Region map of the tips positions when 

the pressure inside the fracture is 54.47MPa 

(7900 psi) for 3EER-EHP, Case 2.  
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Fig. 6.17. Variations of the normalized shear modulus, , and 

normalized fracture toughness with damage in any material 

displaying a linear elastic response.   in this case. 
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 Fig. 6.17 shows that the impact of damage on the elastic properties of the formation 

matrix do not follow the same path. The Young’s and shear moduli are more severely 

damaged than the fracture toughness. And based on isotropic damage assumption, the 

Poisson ratio will not be affected by the presence of the discontinuities (damage), based 

on the continuum damage theory; the impact of damage on other elastic properties are 

beyond the scope of this article. And Figs. 6.18a and 6.18b, show the variations of the 

effective shear modulus and fracture toughness when the discontinuities (inclusions, or 

natural fractures) are filled with material having lower or higher Young’s modulus. 

 To compare the predictions of the proposed effective shear modulus for the 

damaged/reinforced material with Mori-Tanaka’s model, Table 6.4 shows the three cases: 

 

 

Case  Matrix 

Young’s 

Mod. 

Infill 

Young’s 

Mod. 

Matrix 

Poisson 

Ratio 

Infill 

Poisson 

Ratio 

 GPa. GPa -- -- 

1 29.5 0 0.3 0 

2 29.5 5.0 0.3 0.33 

3 20.0 25.0 0.26 0.25 

 

 

 

 

 As observed in Fig.6. 19a, the prediction from the proposed phenomenological 

model mimics the rigorous Mori-Tanaka model. In the second and third cases, the values 

of   are 2.5 and 1.2 respectively. 

 

Table 6.4. Elastic Properties of the Matrix and Inclusions. 
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6.5 Summary 

 Using equivalent energy release-rate hypothesis, an effective fracture toughness 

was derived to homogenize heterogeneous layered media. Homogenizing heterogeneous 

layered media into a single layer can reduce multi-layer equilibrium-height problem to the 

classical three-layer equilibrium-height problem. And the reduction of the multi-layer 

problem to the classical three-layer problem reduces the model complexity. The 

predictions from the proposed model have the same range of accuracy as the well-known 

linear blend rule; while the predictions from the weakest link arguments method were also 

observed to be inaccurate.  

 

 

 

Fig. 6.18. (a) Variation of the normalized shear modulus, , considering different infill 

materials (b) Variation of normalized fracture toughness, ,  with damage considering 

different infill materials. 

𝜆 = 2 

𝜆 = 1.5 

𝜆 = 1 

𝜆 = 0.5 

𝜆 = 2 
𝜆 = 1.5 

𝜆 = 1 

𝜆 = 0.5 

 a)  b) 
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Furthermore, an effective fracture toughness formulation for predicting the growth of 

hydraulic fracture in a formation with micro-cracks or any other form of ordered or 

disordered inclusions was developed. The formulation is based on the use of damage 

theory, equivalent energy-release rate, and equivalent strain-energy hypotheses.  

The presence of infill materials in the micro-cracks (closed natural fractures) will 

affect the overall elastic properties of the damaged/reinforced rock-fracture system. And 

using a phenomenological approach, which is based on the use of an effective area, the 

Fig. 6.19. Comparing the performance of the proposed model for effective shear 

modulus of a material body having   (a) empty or open natural fractures, Case 1, (b) 

micro-fractures filled with lower modulus material, Case 2, and (c) micro-fractures 

filled with higher modulus material, Case 3.  

Mori-Tanaka 

Proposed Model 

Mori-Tanaka 

Proposed 

Model 

Mori-Tanaka 

Proposed 

Model 

 a)  b) 

 c) 
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proposed model performs very well as the rigorous Mori-Tanaka model, when the 

fractures are open.Then using the Mori-Tanaka model for the effective shear modulus, as 

reference, the constant parameter in the proposed model can be determined; 

subsequently, estimating the effective fracture toughness for the rock-closed fracture 

system. The benefit of the proposed model over the Mori-Tanaka is its simplicity in 

computing the effective fracture toughness.  
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7. CONCLUSIONS AND FUTURE WORKS  

 

The main objectives of this work are to develop the hydromechanical frameworks 

for predicting the potential for self-killing of oil and gas wells, and a quick model for 

determining the hydraulic fracture containment potential in heterogeneous media. Thus, 

the two main sources of sand production, wellbore breakout and erosion, are treated in this 

study. Also, a thermodynamically consistent phase-field model is developed to rigorously 

predict the hydrodynamics of gas-liquid-solid flow in the wellbore. Furthermore, using 

equivalent energy released rate hypothesis alongside continuum damage theory, an 

effective fracture toughness model for predicting fracture containment potential in 

heterogeneous media is proposed. 

7.1 Wellbore Breakout Mechanisms 

 The following conclusions are drawn from the study on shear failure and extensile 

splitting/cracking in rocks: 

 When the wellbore orientation is not aligned in the directions of the in-situ 

principal stresses, the direction of the first breakout episode is not parallel to the 

minimum in-situ horizontal stress; the breakout angle significantly depends on the 

well deviation and azimuthal angles and the depth of burial. For subsequent 

breakout episodes, the breakout angle tends to turn in the direction of the minimum 

horizontal in-situ stress. 

 For the first time a theoretical framework for predicting the morphology of toroidal 

breakout is proposed in this work. In a homogeneous formation, the fracture angles 
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are the same for both propagating shear fractures, and the two failure lines will 

definitely meet at the center. When the formation is heterogeneous, the intersecting 

location depends greatly on the degree of vertical heterogeneity layout of the 

formation. If the upper layer is “softer” than the lower layer, the shear fracture 

lines will intersect at the upper layer. And if the layout is reversed, the two lines 

will intersect at the lower layer; in a nutshell, irrespective of the layout, the two 

lines will intersect in the softer layer. Knowing the breakout azimuth and location 

of the intersection of the projected shear fractures, the breakout volume can be 

approximately determined; this approach saves a lot of computation efforts. 

 The size of splinter/caving produced during breakout significantly depends on the 

prevailing in-situ stress loadings, the initial damage distribution around the 

borehole, the mechanical properties of the rock, the geometry of the borehole, and 

a necessary condition for unstable crack growth around the borehole.  As the radial 

or back stress acting on the representative microcrack increases, the potential for 

caving generation reduces; hence this is one of the reasons wellbore breakout is 

not a continuous process. The unstable crack growth phase is independent of the 

stress changes around the borehole, but as the length of the slender rock layer 

reaches a limiting buckling length the breakout episode ends as the slender rock 

layer buckles. Assuming all parameters are same, except plane strain modulus, 

breakout width in sandstone is expected to be wider than shale, since caving size 

increases with the plain strain modulus of the rock when other parameters are kept 

constant. More so, higher in-situ stress magnitude reduces the size of caving. It 
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thus implies that larger splinter/ boulder will be produced at shallow depth than in 

deep formations. Another consequence of higher hoops stress distribution around 

the borehole is that large cavings will be produced in a vertical well than in a 

horizontal well, when the in-situ stress loadings are same in the two well profiles. 

Hence, it can be inferred that under same in-situ stress loading, pressure and 

velocity distributions in the wellbore, a vertical well may likely bridge than a 

horizontal well. But this inference is dependent on the failure potential around the 

wellbore, since a horizontal wellbore has higher potential to fail than a vertical 

well. 

 In addition, the broader the initial damage around the wellbore is the less likely the 

formation of splinter/caving because the standing crack at the mid-point of the 

damaged zone (average representation of the damaged zone) experiences higher 

back stress as its distance to the boundary increases. But once the unstable crack-

growth phase can be reached, the breakout width will be wider as the initial 

damaged zone is broader. 

 Furthermore, the geometry of the wellbore has significant impact on the size of the 

splinter to be produced. As the wellbore becomes more elliptic the limiting 

buckling length of the slender rock layer reduces. This suggests that peradventure 

when the unstable crack growth phase is reached around a typical elliptic wellbore, 

the size of the splinter produced will be smaller to that produced from a circular 

wellbore. 
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7.2 Erosion 

 An energy-consistent erosion constitutive relation for deformable porous medium 

is proposed. The model reveals the weakness of the well-known phenomenological model 

when the pressure gradient in the producing formation is not steep towards the wellbore. 

For axial erosion around the wellbore, the momentum transport by viscous effects on the 

porous layers can unseat the grains of the matrix. While a radial erosion in the producing 

formation occurs, when the sum of both the viscous stress and pressure difference across 

the grains (seepage forces) exceeds the critical hydraulic gradient. For competent 

formation, higher hydraulic gradient will be required to break the bonds between the 

particles; this is unlikely in most cases. It thus suggests that erosion will occur in weakly-

cemented and unconsolidated formations. By inspection of the derived conceptual model, 

the following observations are restated: 

 Prior to significant erosion of the matrix, the sand-rate increases with the same 

profile as the fluid velocity; this is the transient state of the sand production 

process. 

 As sand production increases, the formation will respond by compacting. 

 The compaction of the eroding formation reduces the erosion rate, det (F) <1, and 

also the rate of compaction further influences the reduction in erosion rate. 

 For constant fluid flux (which is not realistic in long eroding-reservoir in the field), 

the mass rate has a relatively linear relationship with the fluid-flux. This linear 

relationship is projected to occur when the erosion front is thin (a sharp interface). 
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 The increment in sand rate with applied stress is assumed to be link to significant 

second-order effects, which reduce the critical hydraulic gradient and increase 

permeability to flow. Consequently, increasing the resultant hydraulic gradient 

(this is a non-linear coupling as observed in experiments by Papamichos, 2010). 

7.3 Thermodynamically Consistent Multiphase-Field Modeling of Gas-Liquid-

Solid Flow 

 A thermodynamically consistent multiphase-field model is developed for the flow 

of gas, liquid, and cavings mixture in the wellbore. The internal workings due to the 

internal configurational force system in the bulk of each phase are incorporated into the 

model. Using Coleman-Noll entropy principle to place restrictions on the proposed 

response functions, which are defined to obey Truesdell principle of equipresence, it is 

derived that the mixture stress tensor is a function of effective viscosity of the mixture, 

temperature gradient, and mass concentration gradients of each species of the mixture. 

The additional stress due to concentration gradient mimics surface tension, while the 

additional stress due to temperature gradient is another non-local constitutive behavior of 

the mixture due to a non-isothermal transport process. 

7.4 Quick Method for Predicting Fracture Broaching 

 Using equivalent energy release-rate hypothesis, an effective fracture toughness 

was derived to homogenize heterogeneous layered media. Homogenizing heterogeneous 

layered media into a single layer can reduce multi-layer equilibrium-height problem to the 

classical three-layer equilibrium-height problem. And the reduction of the multi-layer 

problem to the classical three-layer problem reduces the model complexity. The 
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predictions from the proposed model have the same range of accuracy as the well-known 

linear blend rule; while the predictions from the weakest link arguments method were also 

observed to be inaccurate.  

Furthermore, an effective fracture toughness formulation for predicting the growth 

of hydraulic fracture in a formation with micro-cracks or any other form of ordered or 

disordered inclusions was developed. The formulation is based on the use of damage 

theory, equivalent energy-release rate, and equivalent strain-energy hypotheses. The 

presence of infill materials in the micro-cracks (closed natural fractures) will affect the 

overall elastic properties of the damaged/reinforced rock-fracture system. And using a 

phenomenological approach, which is based on the use of an effective area, the proposed 

model performs very well as the rigorous Mori-Tanaka model, when the fractures are 

open. Then using the Mori-Tanaka model for the effective shear modulus, as reference, 

the constant parameter in the proposed model can be determined; subsequently, estimating 

the effective fracture toughness for the rock-closed fracture system. The benefit of the 

proposed model over the Mori-Tanaka is its simplicity in computing the effective fracture 

toughness.  

7.5 Future Works 

 This study is relatively new in petroleum geomechanics, hence further studies are 

needed to better understand the self-killing phenomenon. Some of these works include: 

 A numerical implementation of the multiphase-field model for flow of gas, liquid, 

and cavings in the wellbore. 

 The impact of in-hole tubular on self-killing potential. 
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 Coupling all the multiphysics, erosion, wellbore breakout, wellbore 

hydrodynamics, and reservoir compaction into a single functioning simulator. 

 The impact of fluid flow stresses on the size of caving. 

 The influence of casing setting depth on wellbore bridging. 

 Complete well-bridging analysis. As the cavings settle in the wellbore, due to 

partial bridging criterion, what will be the packing distribution that will 

consequently stanch the flow? 
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NOMENCLATURE 

  

𝐷  damage variable  

𝐺𝐼+ energy release rate in upper 

barriers 

 

𝐺𝐼− energy release rate in lower 

barriers 

 

ℎ𝑢 displacement of the upper tip  

ℎ𝑑 displacement of the lower tip  

𝐾𝐼+ stress intensity factor at upper 

tip 

 

𝐾𝐼− stress intensity factor at lower 

tip 

 

𝐾𝐼𝐶

+
 effective fracture toughness for 

upper homogenized upper 

barriers 

 

𝐾𝐼𝐶

−
 effective fracture toughness for 

homogenized lower barriers 

 

𝑃𝐹𝑈 minimum fracture extension 

pressure for upper tip 

 

𝑃𝐹𝐷 

 

minimum fracture extension 

pressure for lower tip 

 



 

170 

 

𝑆ℎ,𝑚𝑖𝑛 minimum horizontal in-situ 

stress 

 

𝑢𝑦𝑦
+ fracture half width in the upper 

barriers 

 

𝑢𝑦𝑦
− fracture half width in the lower 

barriers 

 

𝜇𝑛 formation, n,  shear modulus  

𝜇
𝑢

 Averaged shear modulus for 

upper barriers 

 

𝜇
𝑑

 Averaged shear modulus for 

lower barriers 

 

𝜆 ratio of inclusion and 

undamaged matrix elastic 

moduli 

 

𝜙 Ratio of the surface area of 

discontinuity to surface area of 

representative volume element 

 

𝐶0 Cohesion of Rock  

𝑇 Temperature  

𝑻 Cauhcy stress  

𝑺 First Piola-Kirchhoff stress 

tensor 
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𝜃𝐵 , 𝜍𝐵 Breakout width  

𝑟𝑏𝑘 Breakout depth  

𝑝𝑤 Wellbore pressure  

𝑝0 Formation pressure  

𝜎𝑣 Vertical stress or overburden 

stress 

 

𝑆𝐻, 𝜎𝐻 Maximum horizontal in-situ 

stress 

 

𝑆ℎ, 𝜎ℎ Minimum horizontal in-situ 

stress 

 

𝜎𝜃𝜃 Hoops stress  

𝜎𝑟𝑟 Radial stress  

𝑆 Strain energy density factor  

𝐹 Wedging force driving the 

micro crack 

 

𝑙 Micro crack half length  

𝑑𝜓 Volumetric strain due to 

mechanical loading 

 

𝐸 Young’s Modulus  

𝐿𝐵 Caving width  

𝑡𝐵 Caving height  
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𝑝𝑐 Critical erosion pressure  

𝑫𝑓 Symmetric velocity gradient 

tensor of fluid 

 

𝑸 Rotation tensor  

𝑣𝑠 Velocity of grains  

𝑭 Deformation gradient  

𝑳 Velocity gradient  

𝑁𝑐 Coordination number of packed 

rock grains 

 

𝐴𝑐 Area of contact of packed 

grains 

 

𝑘 permeability  
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APPENDIX A 

DERIVATION OF MINIMUM FRACTURE PROPAGATION PRESSURE FOR 

THREE-LAYER PROBLEM 

 

Sneddon and Elliot (1946) derived the stress intensity factor at the tip of a fracture 

subjected to a constant internal pressure. Modifying the equation by including the effect 

of gravity, the stress intensity factor at the bottom tip, when the fracture is contained in 

formation 𝑛 only: 
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Substituting (A.6.3) and (A.6.4) into (A.6.1), 
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Solving (A.6.5) and substituting (A.6.2) back yields 
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Therefore, the critical pressure at the mid position 𝑄 to cause the lower tip to move is 
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At the upper tip, the stress intensity factor is 
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Substituting (A.6.11) and (A.6.12) into (A.6.9), 
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Solving (A.6.13) and substituting (A.6.2) back yields 
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Therefore, the critical pressure at midpoint 𝑄 to cause the upper tip to move is 
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Noting that 𝑙 = ℎ𝜉 . Hence, extending the derivation to three layer: the stress intensity 

factor at the upper tip is  
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Therefore, the minimum fracture extension pressure for the upper tip at any location 𝑧 is 

𝑝𝑄  in A.6.17; since the algebraic expression is complicated, it will not be displayed in this 

paper. In the same vein, when 𝑘1 approaches unity, the fracture extension pressure for the 

upper tip corresponds to case 2 in Fig. 6.3. And when  𝑘3 approaches unity, the fracture 

extension pressure for the upper tip corresponds to case 3 in Fig. 6.3.  

Similarly, the stress intensity factor at the lower tip is 
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And when 𝑘1 approaches unity, the fracture extension pressure for the lower tip 

corresponds to case 3 in Fig. 6.3. While when  𝑘3 approaches unity, the fracture extension 

pressure for the lower tip corresponds to case 2 in Fig. 6.3. 
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APPENDIX B 

 LIST OF PUBLICATIONS WRITTEN FROM THE DISSERTATION 

 

B.1 Peer-Reviewed Articles: 

I. Oyedokun O, Schubert J. 2016. A Quick and Energy Consistent Analytical 

Method for Predicting Hydraulic Fracture Propagation through Layered Media 

and Jointed Rock Mass: The Use of an Effective Fracture Toughness. Journal 

of Natural Gas Science and Engineering (Accepted, in Press): The paper 

presents an effective fracture toughness, which is based on equivalent energy 

release-rate hypothesis for homogenizing heterogeneous layered media. 

B.2 Manuscripts Under Peer Review 

II. Oyedokun, O. and Schubert, J. Theoretical Development on Morphology of 

Wellbore Toroidal Breakout. In 50th US Rock Mechanics/Geomechanics 

Symposium. American Rock Mechanics Association: The study presents two 

methodologies based on shear-failure theory and fracture mechanics 

approach for predicting the shape of type B breakout. 

III. Oyedokun O. and Schubert J. 2017. A Thermodynamically Consistent 

MultiPhase-Field Model for Non-Isothermal Transport of Gas-Liquid-Solid 

Particle Flow. Part 1: Theoretical Development (Submitted to Journal of Fluid 

Mechanics): The paper presents a thermodynamically consistent multiphase-

field model for modeling non-isothermal transport of fluid and solid particles. 
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IV. Oyedokun O. and Schubert J. 2017. Estimating Caving Size during Wellbore 

Breakout. (Submitted to International Journal of Rock Mechanics and Mining 

Sciences): The paper presents a framework for determining the dimensions of 

caving generated during the breakout process. The limiting buckling lengths 

of the slender rock-layers, which form during the process are determined using 

theory of plate buckling. 

V. Oyedokun O. and Schubert J. 2017. Development of an Energy-Consistent 

Erosion Constitutive Relation for Deformable Porous Media (submitted to 

Transport in Porous Media): The proposed erosion constitutive relation, which 

satisfies the principle of frame indifference, captures the impacts of compacton 

on the rate of erosion. 

 

 

 




