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ABSTRACT 

 

In the past two decades, functional porous materials have gained tremendous 

attention in scientific and technological research. Metal-organic frameworks (MOFs) and 

porous polymer networks (PPNs) emerged as novel categories of porous materials with 

ultrahigh porosity, enormous surface area, tunable pore size and shape, and adjustable 

functionalization. Hence, MOFs/PPNs have demonstrated great potential for gas 

adsorption and heterogeneous catalysis, which has been my research focus.  

Firstly, utilizing labile MOFs as templates, a general post-synthetic method was 

invented to synthesize a series of Ti-MOFs. The crystallinity of these Ti-MOFs was well 

maintained throughout, as confirmed from powder X-ray diffractions and gas adsorption 

measurements. This work provides a first time reported systematic strategy to construct 

Ti-MOFs while highlighting the potential of Ti-MOFs in photocatalytic applications. 

Two stable porphyrin based PPNs have been synthesized through a facile one-pot 

approach by the aromatic substitution reactions of pyrrole and aldehydes. Among them, 

PPN-24(Fe) performs high catalytic efficiency as a biomimetic catalyst for the oxidation 

reaction of 2, 2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in the presence 

of H2O2.  

In next section, we report the design of a flexible Zr-MOF system, namely PCN-

700 series, for the realization of switchable catalysis in cycloaddition reactions of CO2 

with epoxides. The breathing amplitudes of the PCN-700 series are magnified through 

pre-functionalization of organic linkers and post-synthetic linker installation. Experiments 
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and molecular simulations confirm that the catalytic activities of the PCN-700 series can 

be switched on and off upon guest-induced reversible structural transformation. 

MOFs have become a burgeoning field of research and a great potential candidate 

for hydrogen storage. As way of example, MOFs constructed by carboxylate, azolate or 

mixed linkers, are discussed in the context of hydrogen storage. Last but not least, the 

post-synthetic modifications on MOF materials to increase the hydrogen storage capacities 

will be carefully illustrated. 

Intensive efforts have been made to investigate PPNs as one type of the most 

promising candidates for carbon capture. A detailed correlation study between the 

structural and chemical features of PPNs and their adsorption capacities will be discussed, 

mainly focusing on the physical interactions and chemical reactions. 
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NOMENCLATURE 

 

MOFs: metal-organic frameworks  

PPNs: porous polymer networks  

POPs: porous organic polymers  

POFs: porous organic frameworks 

CMPs: conjugated microporous polymers 

PIMs: polymers of intrinsic microporosity  

HCP: hypercrosslinked polymers 

CTFs: covalent triazine-based frameworks 

PAFs: porous aromatic frameworks 

COFs: covalent organic frameworks 

TB-MOPs: Trӧger’s base-derived microporous organic polymers 

BILPs: benzimidazole-linked polymers 

TBILPs: triazine-based benzimidazole-linked polymers  

FCTFs: perfluorinated triazine linked frameworks  

ALPs: azo-linked polymers 

PCPs: porous cationic polymers 

BIPLP: bis(imino)pyridine linked polymer 

COP: covalent organic polymer  

IUPAC: International Union of Pure and Applied Chemistry  

HKUST: Hong Kong University of Science and Technology  
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MIL: Material from Institute Lavoisier  

ZIFs: zeolitic imidazole frameworks  

IRMOF: isoreticular metal-organic framework  

UMCM: university of michigan crystalline material 

PSMO: postsynthetic metathesis and oxidation  

SBUs: secondary building units  

BET surface area: Brunauer–Emmett–Teller surface area 

CCS: carbon capture and storage  

ICP-MS: inductively coupled plasma mass spectrometry  

EDS: energy-dispersive X-ray spectroscopy  

FE-SEM: field-emission scanning electron microscopy 

TGA: thermogravimetric analyzer 

SC-XRD: single-crystal X-ray diffraction  

PXRD: powder X-ray diffraction 

PSA: pressure swing adsorption 

 

Abbreviations of Selected Chemicals 

BDC: beneze-1,4-dicarboxylate  

BET: Brunauer–Emmett–Teller  

BTC: benzene-1,3,5-tricarboxylate  

BPDC: 4,4'-biphenyldicarboxylate 

DMF: N,N-dimethylformamide  
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DEF: N,N-diethylformamide 

DMA: N,N-dimethylacetamide  

BTB: 4,4,4-benzene-1,3,5-triyl-tribenzoate ligand 

BTTri: 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene  

BTT: 1,3,5-benzenetristetrazolate 

AC: activated carbon 

ABTS: 2, 2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) 

MB: methylene blue 

TPDC: p-terphenyl-4,4''-dicarboxylate 

H2Me4-BPDC: 2,2',6,6'-tetramethylbiphenyl-4,4'-dicarboxylic acid 

H2(CF3)2-BPDC: (2,2'-bis(trifluoromethyl)-biphenyl-4,4'-dicarboxylatic acid) 

H2Me-BPDC: (2-methylbiphenyl-4,4'-dicarboxylic acid) 

HATP: 2,3,6,7,10,11-hexaaminotriphenylene  

TFPM: tetrakis(4-formylphenyl)methane 

TBA: 1,2,4,5-benzenetetramine tetrahydrochloride  

FA: fumarate 

NDC: 2,6-napthalene dicarboxylate 
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1. INTRODUCTION* 

 

In the past two decades, porous materials have gained tremendous attention in 

scientific and technological research due to their capability of adsorbing and interacting 

with atoms, ions and molecules.1 The functionalities and prospective applications of the 

porous materials are largely dependent on their pore size distribution and pore surface 

properties. Under the motivation of achieving larger surface area and better framework 

properties, metal-organic frameworks (MOFs)2 and porous polymer networks (PPNs)3-4 

emerged as novel categories of porous materials with ultrahigh porosity, enormous surface 

area and novel functionalization. 

 

1.1 Metal-organic frameworks (MOFs) 

MOFs are a novel category of inorganic-organic hybrid crystalline porous 

materials with infinite framework structure composed of inorganic secondary building 

units (SBUs, generally metal clusters) and organic linkers.5 The variability of both 

inorganic composites and organic composites makes MOFs extremely diverse in 

structures, functions and applications. MOFs with pore walls of one-carbon-atom thin are 

quite common. In other words, almost all the atoms in forming MOFs can be used as a 

surface, therefore the surface areas of MOFs are very high. By careful selection of the 

 

*Reproduced in part with permission from “Nanostructured materials for next-generation energy storage 

and conversion: hydrogen storage in metal-organic frameworks”, by Zou, L.; Zhou, H.-C., Springer-

Verlag GmbH Germany 2017 DOI: 10.1007/978-3-662-53514-1. Copyright 2017 by Springer. 

http://www.springer.com/
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appropriate combination of organic ligand and metal units, MOFs can possess 

extraordinarily large pore size (the pore size can be as large as 98 Å) or exceptionally high 

Brunauer–Emmett–Teller surface areas (the BET surface area can be as high as 6240 

m2/g). Due to its crystalline nature, MOFs provide uniformly distributed pores that are 

suitable for the applications of gas storage6, gas separation7, sensors8, drug delivery9, 

catalysis10-11 and many other applications.  

 

1.2 Porous polymer networks (PPNs) 

PPNs, another new category of hyper-crosslinked polymeric materials constructed 

from organic covalent bond exclusively, emerged as an alternative porous material with 

extremely high thermal and chemical stabilities.12 PPNs can be crystalline (which also 

called as covalent organic frameworks, COFs) or amorphous, great structure tunable (pore 

size, surface functionality, etc.), light weight (composed of light elements, typically H, B, 

C, N, and O) and their BET surface area can be as high as 6461 m2/g. Various chemical 

reactions have been applied to constructing organic porous materials, including Friedel–

Crafts alkylations,13 metal-catalyzed coupling reactions (Sonogashira coupling,14 

Yamamoto coupling,12 etc.), Schiff-base chemistry,15 and boronic acid condensation16-17. 

The combined favorable properties of extremely high stability, large surface area, tunable 

pore size and permanent porosity have enabled PPNs as ideal candidates for various 

applications, including gas adsorption, gas separation, sensors, and catalysis. 
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1.3 MOFs and PPNs for heterogeneous catalysis 

Heterogeneous catalysis was one of the earliest proposed applications proposed 

for porous MOFs and PPNs, as well as one of the earliest demonstrated applications. 

Recently, rapid progress in catalysis was achieved for porous coordination solids, which 

can offer well-defined coordination nanospace and functional groups/sites appropriate for 

catalysis.  

Using MOFs/PPNs as heterogeneous catalysts could have the following principal 

advantages: (1) enhanced catalyst reactivity and stability due to the spatial separation of 

catalytic sites in the framework, which can contribute to cooperative catalysis character of 

enzymes; (2) permeable channels and coordination nanospace, which endow recognition 

effects and allow the facile access of substrates to the catalytically active sites, bestowing 

the catalytic reactions with shape-, size-, chemo-, or enantio-selectivity; (3) framework 

flexibility and dynamics, which will bring new applications to catalysis by enforcing 

chemical, physical, or environmental stimuli responses; and (4) easy tunability and 

modification of the polar–nonpolar and hydrophobic–hydrophilic properties, which is 

essential for many catalysis reactions. (5), the ability to separate and reuse heterogeneous 

catalysts would be highly attractive in large-scale reactions, where separation and waste 

disposal can be costly. The last but important feature of MOFs for catalysis is that the 

assembly process of MOFs combines merits of various metal ions or clusters and 

designable organic ligands, which offers innumerous structural topologies and diversified 

porosities. 
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1.4 Metal-organic frameworks for hydrogen storage 

The concerns of energy resource consumption from fossil fuel use, related global 

warming has gained momentum to develop sustainable energy carriers such as hydrogen 

gas (H2). The energy density of hydrogen is much higher than petroleum such as gasoline 

and the combustion of hydrogen emits no carbon dioxide (CO2). However, the application 

of H2 as fuel in transportation would limited if there is not an effective storage technology 

due to its volatile nature. In the past few decades, MOFs have become a great potential 

candidate for hydrogen storage due to their exceptional high porosity, high crystallinity, 

uniform yet tunable pore size and pore shape, great diversity and various kinds of 

hydrogen occupation sites. In 2003, the initial H2 storage data, a remarkable 4.5 wt % at 

77 K and 1 atm, was demonstrated by MOF-5, which was synthesized by Zn ionic salt and 

beneze-1,4-dicarboxylate (BDC) ligand.18 The maximum H2 uptake in MOF-5 varied from 

1.3 to 5.2 wt% at 77 K depending on fabrication and activation parameters. Since then, 

numerous reports of porous MOFs with different topologies and porosities have 

demonstrated relatively high H2 storage. Coupled with measurements of porosity, some 

understanding of many factors that affect the hydrogen uptake by porous MOFs have been 

developed. Here, some technical elements are introduced in this section in tailoring MOFs 

as hydrogen storage resins, including syntax, synthesis, fabrication, evaluation and 

benchmark testing. As way of example, MOFs constructed by carboxylate, azolate or 

mixed linkers, are discussed in the context of hydrogen storage. Last but not least, the 

post-synthetic modifications on MOF materials to increase the hydrogen storage capacities 

will be carefully illustrated.  
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1.5 Porous organic polymers for carbon capture 

One of the most pressing environmental concerns of our age is the escalating level of 

atmospheric CO2, which necessitate the process of carbon capture.  Since the beginning of 

the industrial age, the CO2 concentration has increased from 280 to 390 ppm in 2011, an 

increase of approximately 40%. Carbon capture and storage (CCS) is a family of 

technologies, which can reduce CO2 emissions. CCS includes three steps: a) separation of 

CO2 from emission sources before entering the atmosphere (carbon capture); b) 

transportation to a storage site; and c) permanent subterranean or submarine storage. To 

sidestep the traditional “wet scrubbing” methods, which suffers from the high regeneration 

cost, fouling of the equipment and solvent boil-off, intensive efforts have been made to 

investigate the use of solid porous materials as an alternative approach, including MOFs and 

PPNs. Taking amine scrubbing as the model, aminated porous materials usually exhibit very 

large adsorption enthalpies for CO2 and high CO2/N2 selectivity. However, constructed with 

the soft Lewis acids and hard Lewis bases, MOF materials usually suffer from limited 

physicochemical stability.  

PPNs are a class of adsorbents that exhibit surface areas comparable to those of 

MOFs, but have much higher physicochemical stability arising from the entirely covalently 

bonding in the framework. By loading polyamine onto PPN-6, which has an exceptionally 

high surface area and an extremely robust all-carbon scaffold based on biphenyl rings, our 

group successfully demonstrated the polyamine tethered PPN-6 with dramatic increases in 

CO2-uptake capacities at low pressures and exceptionally high CO2/N2 adsorption selectivity 

under ambient conditions. The key to obtaining porous polymers with high amine loading is 
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to judiciously select efficient reactions and starting materials with ultrahigh surface areas. 

PPN-6, constructed with Tetrakis(4-bromophenyl)methane using a modified Yamamoto 

homocoupling polymerization procedure, has an exceptionally high surface area and an 

extremely robust all-carbon scaffold based on biphenyl rings. After two postfunctionalized 

steps, amine-grafting PPN-6 was successfully obtained. Among these materials, PPN-6-

CH2DETA has the best performance. At 295 K and 0.15 bar, PPN-6-CH2DETA takes up 3.0 

mmol g-1 of CO2 (11.8 wt%). This value is comparable to other top-performing materials, 

such as mmen-CuBTTri (9.5 wt% at 298 K) and MgMOF-74 (22.0 wt% at 293 K), but PPN-

CH2DETA stands out with respect to its physicochemical stability arising from the covalent 

bonding in the framework. Significantly, there was no apparent loss in capacity after 20 

cycles.  

Besides, a significant number of porous organic polymers (POPs) have been studied 

for carbon capture, some of which have demonstrated promising performances. The major 

advantages of POPs over other porous materials are their high porosity, structural diversity, 

and ultrahigh physicochemical stability, the combination of which enables an enormous 

scope of postsynthetic modifications to introduce specific CO2-philic functionalities. In 

general, POPs can be handled under standard wet chemical reaction conditions without 

significant degradation of the framework or loss of porosity, and are ideal for applications in 

capturing CO2 from harsh flue gas conditions. 
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2. FRAMEWORK TEMPLATING STRATEGY: A GENERAL STEPWISE 

POSTSYNTHETIC APPROACH TOWARDS TITANIUM METAL-ORGANIC 

FRAMEWORKS FOR PHOTOCATALYTIC CATALYSIS* 

 

2.1 Background 

Over the past few years, metal-organic frameworks (MOFs) have attracted 

tremendous attention owing to their crystalline nature, pore tunability, structure diversity, 

as well as numerous potential applications such as gas adsorption, separation, catalysis, 

and sensing.19-22 In particular, most applications demand robust MOFs, making those 

constructed with high valent metals particularly desirable.23-25 While great efforts have 

been devoted to the development of MOFs containing trivalent metals, such as Fe3+, Cr3+, 

and Al3+,26-27 MOFs constructed with tetravalent metals are much less explored. Recently, 

the research on Zr-MOFs has flourished owing to the use of modulating reagent, which 

facilitates the formation of single crystals.28-30 With the high charge to radius ratio (Z/r), 

Zr4+ forms strong coordination bonds with carboxylates, which endows the frameworks 

with extraordinary stability, enabling their applications under harsh conditions. However, 

titanium, even though in the same group as zirconium in the periodic table, has barely 

been adopted to construct MOFs despite its great abundance in the Earth’s crust, low 

toxicity, and even higher Z/r ratio. Moreover, unlike zirconium clusters, which merely act 

 

 

*Reproduced in part with permission from “A versatile synthetic route for the preparation of titanium 

metal-organic frameworks: high valence metathesis and oxidation”, by Zou, L.; Feng, D.; Liu, T.-F.; 

Chen, Y.-P.; Yuan, S.; Wang, K.; Zhou, H.-C., Chem. Sci. 2016, 7(2), 1063-1069. Copyright 2016 by 

Royal Society of Chemistry.   
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as inorganic nodes to sustain the frameworks, titanium-oxo clusters provide additional 

photocatalytic properties. Because Ti(IV) is coordinated by oxygen atoms, the titanium 

building blocks in Ti-MOFs can be viewed as TiO2 nanoparticles. In addition, the 

integration of tunable functions on organic linkers of MOFs with those of the inorganic 

components will lead to Ti-MOF platforms promising for photocatalysis.     

Férey, Serre, and coworks have initially demonstrated the preparation of titanium 

MOFs, MIL-9131 and MIL-12532. In particular, MIL-125 and its NH2-functionalized 

counterpart, MIL-125-NH2
33, showed great potential in light-driven water splitting and 

CO2 reduction applications.34-35 Recently, another titanium MOF, NTU-936 was reported 

by Zhang group. However, no other Ti-MOFs have been reported despite the burgeoning 

of many other high-valent-metal MOFs. The daunting challenge of synthesizing Ti-MOFs 

reliably lies in the lack of general synthetic methods. Three major reasons could account 

for such situation: a) the high Z/r value on Ti4+ results in strong coordination bonds 

between titanium nodes and the ligands. Accordingly, the poor reversibility of the metal-

ligand bond association/dissociation obstacles the formation of crystalline products;37 b) 

most of the reactive titanium sources suffer from severe hydrolysis, which limits the 

variation of synthetic conditions; c) all the known titanium carboxylates exhibit low 

symmetry or unsuitable connectivity, which hampers the easy formation of periodic 

networks with the organic linkers.38 

As the photocatalytic properties of Ti-MOFs can be greatly affected by the 

titanium oxo building units, the exploration of new synthetic approaches to diversify the 

category of Ti-MOF materials is of great importance. Framework templating (post-
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synthetic metathesis) has emerged as an alternative synthetic strategy in the field of MOFs 

due to its exceptional capability of obtaining certain MOFs that cannot or hardly be 

achieved directly.39-42 Moreover, the MOFs obtained from framework templating strategy 

have more predictable structures and topologies. However, the majority of the reported 

metal metathesis processes occur between two low valent metal species categorized as 

soft or borderline Lewis acids. For high valent (+3 or +4) ones, due to the inertness of the 

starting metal-ligand bonds, the exchange rates are extremely slow. Another serious 

drawback is that the parent framework would be damaged by these hard lewis acid species 

owing to a long reaction time ranging from a few days to several weeks. Recently, our 

group developed a post-synthetic metathesis and oxidation (PSMO) strategy to achieve a 

stable Cr(III)-MOF from the Mg(II) parent MOF, which undergoes an metal metathesis 

between same valent metal species (M(II) to M(II)) followed by an oxidation step (M(II) 

to M(III)).   

 

2.2 Framework templating strategy towards Ti-MOFs 

Along this line, we herein present a general synthetic method towards Ti(IV) 

MOFs, which is accomplished through M(II) to Ti(III) or M(III) to Ti(III) metathesis, and 

then a mild oxidation step to Ti(IV). Starting from judiciously selected template 

frameworks, PCN-333(Sc)37, MIL-100(Sc)43, MOF-74(Zn)44, and MOF-74(Mg), ulitizing 

the PSMO strategy, we successfully synthesized a series of porous photoactive titanium 

MOFs, PCN-333(Sc)-Ti, MIL-100(Sc)-Ti, MOF-74(Zn)-Ti and MOF-74(Mg)-Ti (Figure 
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1). These Ti-MOFs not only maintain good crystallinity throughout, but also demonstrate 

excellent photocatalytic degradation of methylene blue.  

 

Figure 1. Schematic illustration of the stepwise procedure for the design of Ti-MOFs from 

the template MOFs: a) MIL-100(Sc) and PCN-333(Sc) metal metathesis with Ti(III), 

followed by metal node oxidation in the air; b) similar process for MOF-74(Zn) and MOF-

74(Mg). 

 

There are several prerequisites for the targeting metal species in the PSMO 

approach: a) the targeting high valent metal species have to exhibit a suitable reduced state 

that can be conveniently achieved; b) the reduced species in lower oxidation states can 

undergo metal metathesis with a considerable rate to guarantee the framework 

crystallinity; c) the reduced species can survive under exchanging environment. 

Fortunately, Ti(IV) meets all these prerequisites which enables PSMO as a feasible 

synthetic approach. The reduced state Ti(III), with lower charge and larger radius, 

undergoes a ligand dissociation rate around 105 sec-1 in the aqueous media, which is even 

faster than some M(II) transition metal species in the third period, such as Ni(II).45 More 
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importantly, Ti(III)/Ti(IV) has higher redox potential than Cr(II)/Cr(III) in similar 

coordination environment of weak field ligands, making Ti(III) easier to handle than Cr(II) 

during the exchange process.   

Meanwhile, the template MOFs were also selected with careful consideration. a) 

the metal species in these template MOFs cannot be reduced by Ti(III), avoiding 

producing the strong Lewis acidic Ti(IV) and even less stable low valent MOFs, to 

preserve the frameworks’ crystallinity; b) all the template MOFs contain open metal sites, 

which are occupied by the weakly coordinated neutral solvent molecules. These open 

metal sites could effectively accelerate the metal metathesis rate. c) the metal species in 

the template MOFs are all six coordinated, which possess similar coordination 

environment with titanium.  

We firstly chose two scandium MOFs, PCN-333(Sc) and MIL-100(Sc), as the 

template MOFs. As Sc(III) has almost the same radius with Ti(III), the skeleton of the 

framework won’t be altered after metal metathesis. The typical exchange process is: First, 

the as-synthesized crystals were washed with anhydrous DMF, bubbled with nitrogen and 

transferred into the glove box, where TiCl3(THF)3 was added, resulting in an evident color 

change from white to purple in merely three minutes. In order to facilitate this metathesis 

process, the crystals were sealed in a vial and kept at 120°C for 24 hours. Meantime, the 

mother liquid was refreshed every 8 hours. After reaching the exchange equilibrium, the 

excess TiCl3 molecules were removed by centrifuge, yielding the dark purple crystals. 

This crystalline sample was treated with oxygen/water-free methanol for three days and 

activated at 150oC for 5 hours. The activated sample was oxidized in the air causing an 
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apparent color change from dark purple to white. Using this dry oxidation method, we 

would be able to keep the MOFs’ crystallinity to the highest level.  

The ratio of titanium in these two Ti-MOFs was analyzed using inductively 

coupled plasma mass spectrometry (ICP-MS) and energy-dispersive X-ray spectroscopy 

(EDS) analyses (Table 1). The metal exchange ratio of PCN-333(Sc)-Ti is 88.0%, which 

is much higher than the 48.8% of MIL-100(Sc)-Ti. Such difference can be ascribed to the 

more flexible lattice in PCN-333(Sc), as well as the faster diffusion rate for the elongated 

framework.46-47 Although PCN-333(Sc) possesses the same inorganic building block with 

MIL-100(Sc), the longer linkers in PCN-333(Sc) endow the lattice with higher flexbility 

to facilitate the metal exchange completeness. Meanwhile, the larger ligand gives rise to 

the larger pores and windows in PCN-333(Sc), which further enhance the diffusion rate 

inside the MOF materials. 

Table 1. EDS and ICP-MS analysis for Titanium MOFs. 

Ti%a) 333(Sc)-Ti 100(Sc)-Ti 74(Zn)-Ti 74(Mg)-Ti 

EDS 85.9% 52.0% 100% 35.1% 

ICP-MS 88.0% 48.8% 94.7% 37.9% 

a) atomic percentage. 

 

Despite of many successful examples in metal exchange, MOFs featured with one 

dimensional metal chains is conspicuously absent from the known examples of metal 

exchange. The successful metathesis of PCN-333(Sc) and MIL-100(Sc) provokes us to 

conduct metal metathesis in MOF-74. Considering that  Zn2+and Mg2+ ions, the weaker 
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lewis acidic species, bond more weakly with carboxylates compared with Sc3+, MOF-

74(Zn) and MOF-74(Mg)  were selected as templates for metal metathesis. As expected, 

an exchange ratio of 94.7% was finally achieved for the metathesis of MOF-74(Zn) with 

TiCl3(THF)3. To the best of our knowledge, MOF-74(Zn)-Ti is the first reported example 

of MOFs which undergoes the complete metal exchange with one dimensional metal 

chain. Starting with MOF-74(Mg), a much lower exchange ratio, 37.9%, was observed, 

which can be attributed to the more robust framework arising from the stronger metal to 

solvent bonding compared to the Zn2+ isostructure. 

 

2.3 The well-maintained crystallinity of Ti-MOFs 

PXRD patterns of the MOFs before and after metal exchange well coincide with 

each other, indicating the obtained products have the same structure with templates and 

the crystallinity was well-maintained during the whole PSMO process (Figure 2). N2 

adsorption measurements were also conducted to evaluate the intactness of these Ti-MOFs 

(Figure 3). As can been observed from the N2 adsorption isotherms, the porosity of the Ti-

MOFs is kept intactness compared to their corresponding template MOFs. The small 

decrement could be ascribed to the inevitable loss of the ordered structure during metal 

exchange process as well as the increased crystal density due to the extra anions required 

to balance the charge of the Ti(IV) species. 
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Figure 2. PXRD patterns for template MOFs and the corresponding titanium MOFs. 

 

 

 

Figure 3. N2 uptakes for template MOFs and the corresponding titanium MOFs at 77 K, 

1 atm. 
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2.4 The optical properties of Ti-MOFs 

With the diverse titanium-oxo clusters being exchanged into the frameworks, we 

investigated the optical properties of these titanium MOFs using diffuse reflectance UV-

Vis absorption spectroscopy (Figure 4). Compared with the absorption edge at 380 nm of 

PCN-333(Sc)-Ti and MIL-100(Sc)-Ti, MOF-74(Zn)-Ti and MOF-74(Mg)-Ti show an 

extra absorption band centered at about 450 nm with the absorption edge extended to 

around 660 nm. Meanwhile, there were obvious color differences between these titanium 

MOFs: PCN-333(Sc)-Ti and MIL-100(Sc)-Ti are white, MOF-74(Mg)-Ti is orange, while 

MOF-74(Zn)-Ti is dark red. Such differences can be probably ascribed to two reasons. On 

one hand, PCN-333(Sc)-Ti and MIL-100(Sc)-Ti are composed of trinuclear cluster while 

MOF-74(Zn)-Ti and MOF-74(Mg)-Ti are composed of one dimensional titanium chain, 

which result in distinguished differences of  HOMO-LUMO gaps. On the other hand, as a 

good electron donation moiety,  DOBDC would provide effective ligand to metal charge 

transfer in Ti-MOF-74 strcutures, resulting in visible light absorption. 
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Figure 4. UV/Vis absorption spectra of PCN-333(Sc)-Ti (black),  MIL-100(Sc)-Ti (red), 

MOF-74(Zn)-Ti (green) and MOF-74(Mg)-Ti (blue). 

 

2.5 Photodegradation of methylene blue (MB) utilizing Ti-MOFs 

To examine the photocatalytic potential of these titanium frameworks, the 

degradation of methylene blue (MB) was tested as a representative. 15 mg of MOFs was 

suspended in 15 mL of 500 μM aqueous solution of MB. The solution was stirred in the 

dark for 2 hours to achieve the adsorption equilibrium before illuminated with a 300 W 

Xe lamp. The concentration change of MB was monitored by measuring the optical 

absorption at 660 nm of the suspension at regular intervals (Figure 5a). The photo-

degradation of MB in the presence of TiO2 was relatively slow, with less than 4% of MB 

degraded after an illumination time of nine minutes. However, in the presence of PCN-

333(Sc)-Ti and especially MOF-74(Zn)-Ti, the photodegradation of MB was much faster, 

with conversions up to 30% and 98% respectively after only nine minutes.  
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The excellent photocatalytic performance of MOF-74(Zn)-Ti can be attributed to 

its capability of absorbing broader range of the irrdiating light and longer excitation 

lifetime. To illustrate photodegaradation of MB within the system of MOF-74(Zn)-Ti, we 

herein present a proposed mechanism (Figure 5b): In this photochemical reaction, MOF-

74(Zn)-Ti acts as the chromophore. Upon excitation, electrons transfer from DOBDC to 

the Ti-oxo metal center, reducing Ti4+ into Ti3+ ions, which separates the electron-hole 

couple. Meanwhile the oxidized DOBDC is stabilized by the formation of thermodynamic 

product, benzoquinone species, presumably by sequential electron transfer step.48 The 

benzoquinone species are reduced by highly reductive MB which is followed by the 

oxidation of Ti3+ ions by O2, fullfilling the catalytic cycle. The formation of Ti3+ and 

benzoquinone dicarboxylate intermediate efficiently prevented the electron–hole 

recombination, which inherently accelerate the photocatalytic activity of MOF-74(Zn)-Ti. 
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Figure 5. a)Photo-degradation of MB using PCN-333(Sc)-Ti, MIL-100(Sc)-Ti, MOF-

74(Zn)-Ti, and MOF-74(Mg)-Ti in solution over time with Xenon light irradiation; b) 

Proposed mechanism of MB degradation of MOF-74(Zn)-Ti in the presence of air. 

 

2.6 Summary 

In summary, we have successfully demonstrated a systematic framework 

templating strategy towards various titanium MOFs, PCN-333(Sc)-Ti, MIL-100(Sc)-Ti, 
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MOF-74(Zn)-Ti and MOF-74(Mg)-Ti, which exhibit high porosity and excellent 

photocatalytic activity. The titanium ratio in PCN-333(Sc)-Ti and MOF-74(Zn)-Ti 

reaches up to 88.0% and 94.7%, respectively. The crystallinity is well maintained during 

the PSMO process as confirmed by nitrogen uptakes and PXRD patterns. This study 

manifests an effective method to explore promising Ti-MOF platforms for photocatalytic 

applications. 
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3. FACILE ONE-POT SYNTHESIS OF PORPHYRIN BASED PPNS AS 

BIOMIMETIC CATALYSTS* 

 

 

3.1 Background 

Catalytic activity of metalloprophyrin complexes have been extensively studied 

since the discovery of the heme-containing enzymes, cytochrome P45049. Inspired by the 

porphyrin core as the active site in cytochrome P450, many metalloporphyrin catalysts for 

hydroxylation, cyclopropanation, olefination, C-H insertion and N-H insertions have been 

explored.50-51 Direct application of the metalloporphyrin complexes in aqueous solution is 

usually challenging due to the formation of catalytically inactive dimers in the oxidizing 

reaction media.52 With this consideration, various methods have been developed to 

heterogenize metalloporphyrin catalyst, including covalent bond formation, ion-pair 

formation, encapsulation or immobilization on supports such as zeolites, clays or 

mesoporous silica.53-55 However, these methods usually dilute the density of active sites,56-

57 yield unwelcome interactions between substrate and catalyst, or lead to leaching of the 

complexes from substrate.58-59 

As an alternative solution, advanced porous materials have been demonstrated as 

promising candidates to heterogenize metalloporphyrin because of their tuneable 

 

 

 

*Reproduced in part with permission from “Facile one-pot synthesis of porphyrin based porous polymer 

networks (PPNs) as biomimetic catalysts”, by Zou, L.; Feng, D.; Liu, T.-F.; Chen, Y.-P.; Fordham, S.; 

Yuan, S.; Tian, J.; Zhou, H.-C., Chem. Commun. 2015, 51(19), 4005-4008. Copyright 2015 by Royal 

Society of Chemistry.   
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properties, high surface areas and controllable porosity. In the last two decades, MOFs 

have been extensively investigated in scientific and technological research. Recently, 

porphyrin derivatives have been introduced into MOFs by either linker modification or 

encapsulation.60-61 MOFs possess many advantages, such as large surface area, tuneable 

structures, and feasible platform for post-synthetic modifications. However, most MOFs, 

constructed with soft Lewis acids (metal ions) and hard Lewis bases (carboxylates), suffer 

from limited stability, which highly restrained their potential in industry applications. 

Porous polymer networks (PPNs), hyper-cross linked organic polymers based on covalent-

bonds connections, have provided an alternative way to construct functional porous 

materials with extremely high chemical and thermal stability. Some research has been 

focused on synthesizing PPN materials with metalloporphyrin active centers utilizing pre-

synthesized metalloporphyrin monomers via either C-C cross coupling reactions using Pd-

catalyst or condensation with tetra(4-aminophenyl)methane.62-64 Nevertheless, their 

synthetic methodologies are usually not scalable due to the complicated synthesis 

procedure for the monomers or the requirement of expensive metal catalysts for 

polymerization. Preparation of porphyrinic porous organic polymers (POPs) with 2D 

planar structure via bottom-up strategy has been initially reported by Bhaumik et al.65 

However, incorporation of porphyrinic active site into 3D porous framework through the 

one-pot facile synthesis was absence thus far. 

 Herein, we report a facile one-pot synthetic strategy to produce large scale 

porphyrin containing PPNs, PPN-23 and PPN-24 (Figure 6), of which PPN-24 is the firstly 

reported 3D porphyrin based PPNs obtained by using this facile strategy. This unique 
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methodology is based on the extended condensation reaction between pyrrole and 

aromatic aldehydes including benzene-1, 3, 5-tricaialdehyde66 (PPN-23) and tetrakis(4-

formylphenyl)silane67 (PPN-24). This condensation process yields black fluffy PPNs with 

high porosity, excellent thermal and chemical stability. Moreover, the synthetic procedure 

is very cost- and time- efficient and the final material can be easily functionalized with 

metal ions, such as iron(III), zinc(II), copper(II) and cobalt(II), through an effortless post-

synthetic reaction.68 The catalytic activity of PPN-24(Fe) has been well demonstrated by 

catalytic oxidation of 2, 2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in the 

presence of H2O2. The catalytic activity of PPN-24(Fe) exhibits the feasibility of precisely 

designing stable porous polymer materials for mimicking heme-based protein 

applications. 

 

3.2 Detailed synthetic methodology of PPN-23 and PPN-24 

The synthesis were accomplished by treatment of pyrrole with benzene-1, 3, 5-

tricaialdehyde (PPN-23) or tetrakis(4-formylphenyl)silane (PPN-24) in refluxed propionic 

acid media for 12 hours. Under acidic condition, aromatic aldehydes were activated 

through protonation, followed by electrophilic aromatic substitution of the activated 

carbons of pyrrole, and further condensation to yield macrocyclic porphyrin building 

blocks with free aldehyde groups. This condensation process continues until the finish of 

the polymerization. After the reaction, black fluffy powder was washed to afford the PPN-

23 and PPN-24. FT-IR was employed to confirm the formation of porphyrin networks. 

Bands corresponding to 1720-1740 cm-1 (C=O stretching) are absent, suggesting all the 
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aldehyde starting materials have been consumed in the polymerization reaction. The 

strong bands observed at 3317 cm-1, 969 cm-1 and 802 cm-1 can be attributed to the 

characteristic stretching, bending and rocking vibrations of N-H bonds in porphyrin 

center, confirms the formation of microporous porphyrin networks. Field-emission 

scanning electron microscopy (FE-SEM) images show that PPN-23 and PPN-24 are 

composed of agglomerated sphere-shaped particles with sizes ranging from 1.0 to 3.2 μm 

in diameter (Figure 7). 

 

 

Figure 6. Synthetic strategy of a) PPN-23 and b) PPN-24: (Simplified using provided 

symbols ). 
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Figure 7. SEM images of a) PPN-23 and b) PPN-24. 

 

3.3 Nitrogen adsorption measurements for PPN-23 and PPN-24 

Porosities of these PPNs have been established from the N2 sorption analysis at 77 

K. As evident from Figure 8, both PPN-23 and PPN-24 exhibit type I isotherm, typical for 

microporous solids, where a steep gas uptake at low relative pressure and a mostly flat 

extrapolation in the intermediate sections of P/Po are observed. N2 uptakes of 102 cm3 g-1 

and 187 cm3 g-1 have been obtained for PPN-23 and PPN-24, respectively. The Brunauer-

Emmett-Teller (BET) surface areas for PPN-23 and PPN-24 are 271 m2 g-1 and 478 m2 g-

1, respectively (Langmuir surface areas 426 m2 g-1 and 754 m2 g-1, respectively), suggesting 

the permanent porosity of  PPN-23 and PPN-24.  
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Figure 8. N2 isotherms for PPN-23 and PPN-24 at 77 K, 1 atm. 

 

3.4 Thermal and chemical stability test for PPN-24 

PPN-24 was taken as an example for stability test. The high thermal stability of 

PPN-24 was confirmed by thermogravimetric analyzer (TGA) measurement. During the 

departure of the guest molecules below 70 oC, about 10% weight loss was observed. From 

the phase transition a decomposition temperature of around 320 °C is observed for the 

fresh sample. Moreover, the chemical stability was tested through treatment with water. 

After treatment with water for 36 hours, samples were measured by N2 sorption at 77K 

after typical activation procedures. A reduction of the N2 sorption capacity of less than 

15% was observed, suggesting only a slight destroy of framework during these treatments. 

The excellent chemical stability can be ascribe to the strong covalent-bond connections, 

which endow the framework with high stability in aqueous solution. Both the thermal and 

chemical stability of PPN-24 boost their further applications, especially in biomimetic 

catalysis. 
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3.5 Biomimetic catalysis of ABTS in the presence of H2O2 using PPN-24(Fe) 

To demonstrate these porphyrin based PPNs are ideal platform for heterogeneous 

biomimetic catalysis, we post-synthetically modified PPN-24 through the insertion of 

Fe(III) in porphyrin center. The as-synthesized PPN-24 was mixed with FeCl2 (high 

reaction rate than FeCl3) in DMF and heated at 100 oC for 12 hours to afford the 

catalytically active species PPN-24(Fe). Meanwhile Fe(II) was oxidized to Fe(III) by the 

oxygen in air. The color of PPN-24 also changed from black to dark red due to the presence 

of Fe(III) ion. The successful incorporation of iron was confirmed by electron dispersive 

spectroscopy (EDS), which proves the high density of active iron-porphyrin centers in 

PPN-24(Fe).  

PPN-24(Fe) possesses all the prerequisites for heterogeneous artificial enzymes: 

a) a high density of active centers; b) excellent chemical and thermal stability; c) low cost 

and feasible synthetic procedure. As a probe reaction to evaluate the heme protein 

biomimetic capacity, the oxidation of 2-2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic 

acid) (ABTS) to ABTS+• by PPN-24(Fe) in the presence of H2O2 was examined (Figure 

9a).69-70 The oxidation product can be monitored with the absorbance of the soret band at 

418 nm (Figure 9b) by ultraviolet–visible (UV-Vis) spectroscopy.71 The reaction was 

performed with 30 mM ABTS, 10 mM H2O2, 5.0 mg/mL PCN-24(Fe) in critic buffer at 

room temperature. The increase of the absorbance at 418 nm well demonstrates the 

biomimetic activity of PCN-24(Fe) in aqueous environment. Meanwhile, we recorded the 

color change for the whole process, which changed from colorless to dark green in just 15 

minutes (Figure 9c).  
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Figure 9. Oxidation reaction of ABTS catalyzed by PPN-24(Fe). a) The oxidation reaction 

scheme for ABTS in which ABTS is oxidized to ABTS●+ by PPN-24(Fe) in the presence 

of H2O2. b) UV-Vis absorbance changes over time for PPN-24(Fe) catalyzed ABTS 

oxidation, and c) The color changes of solution after (a) 1 min, (b) 3 min, (c) 5 min, (d) 7 

min, (e) 10 min, (f) 15 min. 

 

3.6 Summary 

In this context, we have successfully demonstrated a facile one-spot synthetic 

strategy to construct 3D, porous, highly stable PPN-24(Fe), which exhibits great catalytic 

activity for the oxidation of ABTS. The integration of the high porosity and enhanced 
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thermal and chemical stability in PPN-24(Fe) are beneficial for future studies in the 

synthesis of biomimetic catalytically active PPN materials.  
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4. FLEXIBLE ZIRCONIUM METAL-ORGANIC FRAMEWORKS AS 

BIOINSPIRED SWITCHABLE CATALYSTS* 

 

4.1 Introduction 

The enzyme activity is often modulated through feedback loops and a variety of 

trigger-induced effects,72 while most of the reactions promoted by artificial catalysts 

usually process according to the initial reaction conditions. Inspired by nature, chemists 

are now devoting their efforts to developing catalysts whose activity can be controlled by 

external stimuli.73-74 Such systems are capable of alternating the environment of the active 

center, which in turn regulates the reaction rate and selectivity, functioning as allosteric 

catalysts.75-76 However, the field is still in its infancy and the research on engineering 

stimuli-response molecules with high ‘on’/‘off’ rate ratios, wide substrate scope and the 

ability to catalyze multiple classes of reaction has still remained a challenge. In this regard, 

flexible MOFs might be a suitable platform for the development of artificial switchable 

catalysts in consideration of their inherent cavities and dynamic behaviors. 

MOFs are a promising class of highly ordered porous materials with diverse 

applications in the fields of gas storage/separation, sensing, and catalysis.2, 8, 10, 77 An 

increasing number of MOFs with various structures, porosities and framework 

 

 

 

*Reproduced in part with permission from “Flexible zirconium metal-organic frameworks as 

bioinspired switchable catalysts”, by Yuan, S.; Zou, L.; Chen, Y.-P.; Li, H.; Qin, J.; Zhang, Q.; Lu, W.; 

Hall, M.; Zhou, H.-C., Angew. Chem. Int. Ed. 2016, 55, 10776-10780. Copyright 2016 by John Wiley 

& Sons. (co-first coauthor)   
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compositions have been extensively explored in the past decades.78 Among them, flexible 

MOFs are especially interesting because they combine crystalline order of the underlying 

coordination framework with cooperative structural transformability.79-81 Additionally, 

they are able to respond to various chemical and physical stimuli such as light, pressure, 

temperature or guest molecules.82-85 A prominent example is the so-called “breathing 

effect” in which the MOF framework experiences a reversible unit-cell dimensional 

change as a result of host-guest interactions.86 This leads to unique sorption behaviors 

which have never been observed in other systems.87-88 Moreover, the inherent cavities and 

dynamic behaviors of flexible MOFs are reminiscent of sophisticated biological systems 

such as regulatory enzymes. In nature, enzyme activity can be tuned by allosteric 

regulation in which a regulator induces a conformational change in the enzyme and thus a 

prominent variation in activity (Figure 10a). Likewise, flexible MOFs can allow the host 

structures to be altered by means of external stimuli, thus potentially blocking or 

unblocking the catalytic center inside, which resembles an allosteric enzyme in a sense 

(Figure 10b). Different from other porous materials such as zeolites and activated carbons, 

flexible MOFs respond to the stimuli with retention of high regularity, which allows for 

structure characterization by means of crystallography, therefore maximizing 

understanding of the correlation between the applied stimuli and the ensuing catalytic 

properties.89-90 



 

31 

 

 

Figure 10. Schematic representation of allosteric enzymes (a) and flexible MOFs (b). 

 

In order to design a switchable MOF catalyst, a highly stable framework with 

dynamic pore architectures is indispensable. The Zr6 cluster, in this regard, could be a 

promising building unit for the construction of switchable MOF catalysts. Firstly, the 

dihedral angles between the Zr6 cluster and carboxylate linker vary from 0 to 14.5o in 

different Zr-MOFs, suggesting extensive flexibility in the Zr–carboxylate junction.28, 91 

Secondly, the Zr6 cluster can be easily modified with external carboxylate moieties by 

post-synthesis, providing a rather unique approach to control the breathing behaviors.92-93 

In addition, the terminal -OH–/H2O on Zr4+ are reported to be strong Lewis acidic sites, 

endowing the Zr-MOFs with additional catalytic properties.94 And last but not least, the 

chemical inertness of Zr6 clusters make the flexible Zr-MOFs robust platforms for a 

variety of catalytic applications.95 Although Zr-MOFs is one of the research focuses in 

recent years, the reported Zr-MOFs usually show limited breathing amplitude that mainly 

derived from linker flexibility.96-97 
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Herein, we perform a comprehensive study on structural design, flexibility 

manipulation, porosity engineering, and catalytic-activity control within a flexible Zr-

MOF system. PCN-700-Me2, a flexible Zr-MOF, is initially synthesized through 

topology-guided design in combination with a kinetically controlled process35. The as-

synthesized PCN-700 crystals exhibit a significant breathing behavior upon 

desolvation/solvation with the retention of single crystallinity, which allows us to study 

the structural transformation by using the single crystal crystallography. A successive 

single-crystal X-ray diffraction study suggests that the structural transformation occurs in 

a scissor-jack-like fashion, which involves not only the distortion of the Zr–carboxylate 

junction, but also the rotation of the carbon–carbon (C–C) bond between two adjacent 

phenyl rings. Therefore, the breathing amplitude of PCN-700 series can also be modulated 

through linker design to manipulate the C–C rotation. Moreover, the flexible behaviors 

are further magnified by subsequent installation of linear carboxylate linkers with different 

lengths between coordinatively-unsaturated Zr6 clusters, which control the opening and 

closing of the porosity. Most interestingly, the dramatic contraction of the unit cell along 

the c-axis alters the cavity environment by blocking the Lewis active sites of the Zr6 

clusters, an ‘off-switch’ similar to the effect of regulators on allosteric enzymes. 

Furthermore, experiments and molecular simulations are conducted to confirm and 

explain the conformation induced activity change. With the readily tunable flexibility and 

porosity, as well as switchable catalytic activity in PCN-700 series, a wide range of 

promising applications can be envisioned. 
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4.2 Results and discussion 

4.2.1 Design and synthesis of the parent MOF 

Zirconium has been demonstrated to form hexanuclear clusters with diversified 

connectivity ranging from 6-connected to 12-connected.98 Among them, the 

combination of Zr6 clusters with linear linkers usually gives rise to a rigid fcu net, a 

kind of thermodynamically stable products in which the Zr6 cluster is 12-connected 

(Figure 11a).28 Indeed, the reactions between Zr4+ ions and linear linkers such as BDC, 

BPDC and TPDC (BDC = 1,4-benzenedicarboxylate, BPDC = 4,4'-

biphenyldicarboxylate, and TPDC = p-terphenyl-4,4''-dicarboxylate) consistently 

yield the 12-connected fcu net (UiO-66, UiO-67 and UiO-68, respectively) under 

solvothermal conditions. Fundamentally, this phenomenon can be understood through 

enthalpy changes: the Zr–carboxylate bond formation is a process associated with a 

negative enthalpy change, dictating that high-connected networks are 

thermodynamically more favorable than the low-connected ones.99-100 In order to 

obtain flexible Zr-MOFs, a topology-guided design is adopted in combination with 

kinetically controlled synthesis. After careful examination of the fcu net, it is clear that 

the fcu net can be turned into a flexible bcu net by removing four linkers in the 

equatorial plane of the octahedral Zr6 cluster (Figure 11b).101 The resulting bcu net 

can be expected to shrink along the c-axis while expanding within the ab-plane by 

changing the dihedral angles between the Zr6 cluster and the carboxylate linker (Figure 

11c). 
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Figure 11. Topology-guided design of PCN-700. (a) fcu net formed with 12-connected 

nodes; (b) bcu net formed with 8-connected nodes; and (c) a flexible single bipyramid in 

bcu net shrinking along c-axis while expanding within ab-plane. 

 

We and other groups have demonstrated that the vertex geometry of MOFs can be 

controlled by the substitutes on the linkers.93, 102 For example, bulky functional groups can 

be introduced on the 2- and 2′-positions of BPDC linker to create steric hindrance, 

therefore twisted the two carboxylate groups off the coplanar position (Figure 12a and b). 

Thus, it is necessary for the formation of the fcu net to overcome the rotational energy 

barrier of the two adjacent phenyl rings and form in-plane carboxylates. This will increase 

the energy battier of fcu net formation, as two carboxylate groups on the linker are 

required to be coplanar in order to give rise to an fcu net. As a result, a bcu net can be 

readily obtained at relatively low temperature as a kinetically favorable product, 
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designated as PCN-700-Me2 (Fig. 12d and f). It should be noted that if the reaction 

temperature is raised to 150 oC or higher, the fcu net will be generated as a 

thermodynamically preferred product (Fig. 12c and e). 

Single-crystal X-ray diffraction (SC-XRD) study reveals that PCN-700-Me2 

crystalizes in the tetragonal crystal system with a P42/mmc space group (Fig. 12f). Each 

Zr6 cluster is coordinated to eight (CH3)2-BPDC linkers [(CH3)2-BPDC = 2,2'-

dimethylbiphenyl-4,4'-dicarboxylate] and eight terminal -OH–/H2O. The overall structure 

can be simplified as a bcu net which is able to shrink along c-axis while expand in the ab-

plane (Fig. 11d). Usually, the breathing behaviors of MOFs can be triggered by guest 

molecules. To quantify the structural flexibility, the crystals of PCN-700-Me2 were 

examined before and after solvent removal by SC-XRD. The result shows that PCN-700-

Me2 sustains significant reduction in the c-axis parameter (from 14.92 Å to 11.24 Å) and 

unit cell volume (from 8844 Å3 to 6933 Å3) upon solvent removal, which prompts us to 

gather SC-XRD data for the intermediates during the structural transformation, in the hope 

of disclosing the breathing mechanism. 
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Figure 12. Kinetic control in the synthesis of PCN-700. (a) Linker conformation in fcu 

structure, a thermodynamic product favored at high temperature (150 °C); (b) linker 

conformation in bcu structure, a kinetic product favored at relatively lower temperature 

(120 °C); (c) fcu structure viewed in the c-axis direction; (d) bcu structure viewed in the 

c-axis direction. Green arrow indicates the contraction mode; (e) overview of fcu 

structure; and (f) overview of bcu structure. 

 

4.2.2 SC-XRD investigation of structural evolution 

The most distinctive advantage of MOFs is their long-range ordered crystalline 

nature, which can provide a unique insight into the structure-property correlation by means 

of crystallography.103-104 However, most flexible MOF crystals tend to crack upon 

desolvation, necessitating the characterization of the structural changes by sophisticated 

in situ PXRD techniques.105-106 The robust PCN-700, on the other hand, retains high 

crystalline quality after solvent removal/incorporation, which provides an ideal platform 
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to gather accurate SC-XRD data for the intermediates during the structural changes in 

order to shed light on the breathing mechanism. 

With this in mind, we carried out successive SC-XRD analyses on PCN-700-Me2 

during desolvation, generating “snapshots” for the breathing process. Crystallographic 

data clearly shows that PCN-700-Me2 exhibits a scissor-jack-like behavior, shrinking 

along the c-direction by tweaking the metal–linker conjugation angle (Figure 13a). A 

significant decrease in c-axis parameter (from 14.92 Å to 11.24 Å) and a slight increase 

in a/b-axis parameter (from 24.35 Å to 24.84 Å) are also observed upon guest removal. 

The flexible Zr–carboxylate connection, acting as a hinge, is primarily responsible for the 

breathing behavior. As shown in Figure 13f, PCN-700-Me2 undergoes a large 

conformational change which is associated with the bending of Zr–O–C angle (from 133o 

to 130o) and, more intuitively, the varying dihedral angle between the equatorial plane of 

O–Zr–Zr–O and the plane of carboxylate (from 10o to 32o). The bending of Zr–carboxylate 

bond affords a closer packing along c-direction, which gives rise to a shrinkage of the c-

axis. A closer investigation indicates that the breathing motion of PCN-700-Me2 is a 

collective result. Along with the bending of Zr–carboxylate bond, we also observe a 

rotation of C–C bond between two phenyl rings, which alleviates the steric hindrance 

within the structure by arranging the two methyl groups on adjacent linkers as far apart as 

possible. As a collateral effect of the rotation of the C–C bond, the Zr6 cluster tilts about 

14o (Figure 13d), eliminating the mirror planes originally passing through Zr6 clusters. 

Although the reduced symmetry changes the unit cell assignment, all of the derivative 

structures in this work are still assigned with same unit cell as in pristine PCN-700-Me2 
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to clearly illustrate the structural transformation. An overlap of structural conformations 

during desolvation (Figure 13g) underlines the fact that the bending of Zr–carboxylate 

junction and the conformational change of the organic linker together account for the 

breathing behavior of PCN-700-Me2. 

 

Figure 13. SC-XRD study of the breathing behavior. (a) and (b) Graphic representations 

of PCN-700-Me2 structures before and after desolvation. Inserted photos are the 

microscope view of the respective single crystal, manifesting the exceptionally large c-

axial breathing. (c) and (d) Crystal structures of PCN-700-Me2 before and after 

desolvation. Orange arrow indicates the rotation of cluster. (e) and (f) A close view of 

linker conformation before and after desolvation. And (g) an overlap of structural 

conformations during desolvation. 
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It should be noted that the axial breathing amplitude of PCN-700-Me2 is much 

larger than the volumetric breathing amplitude, which is rare among the reported flexible 

MOFs. For example, the largest axial breathing amplitude is 100% in MIL-88D, while its 

volumetric breathing amplitude is 230%.107 In contrast, the bcu network expands across 

the ab-plane and simultaneously shrinks along the c-axis, or vice versa, which magnifies 

the axial rather than volumetric breathing amplitudes. PCN-700-Me2 is a unique case with 

exceptionally large axial breathing, so much that the nearly uniaxial breathing behavior 

can be directly observed on a real crystal under a microscope (Figure 13a and b). One 

particular pristine PCN-700-Me2 crystal was measured with a length of 126 µm along c-

axis (c-direction is determined by Apex 2), it shrank to 93 µm upon activation (35% 

contraction, determined by Zeiss AxioImager.M2 Microscope). These values match very 

well with the cell parameters determined by SC-XRD (32% contraction, determined by 

Apex 2). Such high elastic behavior in macroscopic single crystals is rarely observed to 

the best of our knowledge.108 

 

4.2.3 Modulate MOF flexibility through linker design 

The SC-XRD investigation of the breathing mechanism manifests the structure-

property correlations, which further enable us to judiciously modulate the flexibility of the 

PCN-700 system. Since PCN-700-Me2 undergoes unit-cell dimensional contraction along 

c-axis, which involves a rotation of the C–C bond between phenyl rings, we speculate that 

the framework flexibility can be tuned by changing the substituents on the phenyl rings of 

the linker. Linkers with bulky substituents will form a relatively rigid framework because 
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the substituents repel each other along c-axis which hinders the structural contraction. 

Meanwhile, the C–C bond rotation will also be restrained due to the steric hindrance of 

the substituents, which further rigidifies the framework. To tune the breathing amplitude, 

linkers with substituents of different bulkiness were synthesized, and designated as 

H2Me4-BPDC (2,2',6,6'-tetramethylbiphenyl-4,4'-dicarboxylic acid), H2(CF3)2-BPDC 

(2,2'-bis(trifluoromethyl)-biphenyl-4,4'-dicarboxylatic acid), and H2Me-BPDC (2-

methylbiphenyl-4,4'-dicarboxylic acid) (Table 2). As expected, H2Me4-BPDC and 

H2(CF3)2-BPDC give rise to MOFs with dramatically increased structural rigidity because 

of the elevated steric hindrance. Among them, PCN-700-Me4 exhibits the highest degree 

of rigidity while only small changes along c-axis (15.36 Å to 14.08 Å) and unit cell volume 

(9008 Å3 to 8170 Å3) were observed upon desolvation. 

Intuitively, linkers with less bulky substituents tend to form more flexible MOF 

structures, as demonstrated in MIL-53 and MIL-88 systems.109-110 However, this is not 

always the case because steric effect could possibly lead to different framework 

topologies.111 As in the case of PCN-700 system, the substituents on the phenyl rings are 

required to be large enough to provide two off-plane carboxylate groups in order to form 

the bcu structure. As far as steric hindrance is concerned, H2Me-BPDC is expected to 

generate an even more flexible MOF than PCN-700-Me2. While H2Me2-BPDC produces 

PCN-700 analogue when reacting with ZrCl4, however, only the UiO-67 isostructure was 

obtained by using H2Me-BPDC under identical synthetic conditions. Clearly, the steric 

hindrance between the methyl group and hydrogen can be readily overcome under the 

solvothermal conditions, therefore the thermodynamic product, fcu net, is formed. In order 
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to obtain a bcu net, at least one methyl group needs to be preinstalled on each phenyl ring 

of the linker. By far, PCN-700-Me2 is the most flexible one we obtained with the PCN-

700 structure. 

Table 2. Linkers utilized to tune the breathing amplitude. 

Linker 

Topolog

y 

In DMF Without solvent ∆c/ 

% 

∆V/ 

% c / Å a / Å V / Å3 c / Å a / Å V / Å3 

 

H2Me4-BPDC 

bcu 15.36 24.22 9008 14.08 24.08 8170 9.09 10.3 

 

H2(CF3)2-BPDC 

bcu 15.00 24.40 8930 12.09 24.67 7352 24.1 21.5 

 

H2Me2-BPDC 

bcu 14.92 24.35 8844 11.24 24.84 6933 32.7 27.6 

 

H2Me-BPDC 

fcu - - - - - -   

 

 

4.2.4 Magnify breathing amplitude through linker installation 

With the most flexible PCN-700-Me2 in hand, we intend to explore its breathing 

amplitude. Since PCN-700-Me2 crystals shrink upon the removal of guest, we propose that 

they could swell if the guest-host interaction is strong enough. Indeed, some solvents are 

reported to induce a large swelling of flexible MOFs. For instance, the structure of MIL-
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88C can be completely opened up by diethylformamide, generating a huge increase in cell 

volume of about 170%. However, PCN-700-Me2 shows a very limited dependence on the 

solvents; only slight changes in unit cell parameters (from 15.40 Å to 14.17 Å) were 

observed in various solvents such as water, methanol, hexane, dichloromethane, acetone, 

isopropanol, dimethylformamide (DMF), acetonitrile, and diethylformamide. For most of 

the flexible MOFs, the desolvated sample with a shrunken structure usually can be restored 

by soaking in solvents. But the desolvated PCN-700-Me2 maintains its structure in 

common solvents at room temperature and is reversed by treating with trifluoroacetic 

acid/DMF solution. In this sense, PCN-700-Me2 solid can be considered as ‘rigid’ under 

common solvents. This is tentatively attributed to the existence of hydrogen interaction 

between terminal OH−/H2O groups from adjacent clusters and the rigid nature of MIV–

carboxylate conjunctions. Compared with MII-and MIII-based MOFs, the MIV-based 

MOFs usually shows a higher degree of rigidity possibly due to the stronger MIV–

carboxylate interaction,112 so that the weak van der Waals interactions between solvent 

molecules and framework is not strong enough to open up the structure. In order to open 

up PCN-700-Me2, we need guest molecules that interact strongly with the framework. 

Given that the 8-connected Zr6 cluster can bind to carboxylate moieties through 

coordination bonds,113-115 we speculate that the structure of PCN-700-Me2 can be opened 

up by carboxylates as guests. In our previous work, we have demonstrated that linear 

carboxylate linkers with proper lengths can be installed between neighboring Zr6 clusters 

by replacement of terminal OH–/H2O ligands (Figure 14).93 Herein, we use linker 

installation method to explore the possible breathing amplitude of PCN-700-Me2. 
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Figure 14. Schematic representation of linker installation process. 

 

To carry out linker installation, PCN-700-Me2 crystals are exposed to a DMF 

solution of linear linker at 75 oC for 24 h. Four linear linkers with different lengths, namely 

FA (fumarate), BDC (1,4-benzenedicarboxylate), NDC (2,6-napthalene dicarboxylate) 

and BPDC (4,4'-biphenyldicarboxylate), have been successfully installed in PCN-700 

respectively. By virtue of high stability, single crystal to single crystal transformation can 

be realized which enabled us to uncover structures of resulting MOFs via SC-XRD. The 

existence and position of subsequently installed linkers are unambiguously observed in 

the crystallographically resolved structures. As shown in Figure 14b, the subsequently 

installed linkers bridge adjacent clusters together along the c-axis. Each cluster is 10-

connected with eight original Me2-BPDC and two new linkers. The resulting MOFs after 

linker installation can be formulated as Zr6O4(OH)6(H2O)2(Me2-BPDC)8L2 where L stands 

for the different installed linkers. From the topological point of view, the overall structure 

is transformed to a rigid bct net from a flexible bcu net. As illustrated in Figure 15a, the 

subsequently installed linkers support the MOF structure as the jack screws support the 

scissor jack. As a result, four rigid MOFs with gradually changed cell parameters are 

derived from the flexible parent MOF. The channel size along a-axis is directly correlated 
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to the linker length. The length of FA (4.95 Å) is shorter than the distance between 

adjacent Zr6 clusters in pristine PCN-700-Me2 (6.98 Å) so that the installation of FA 

squeezes the structure. The installation of BDC linker did not change the unit cell 

parameter by a large amount, whereas the NDC and BPDC open up the structures. These 

results are reinforced by PXRD patterns and N2 isotherms (Figure 15d). Because of the 

uniaxial breathing mode of PCN-700-Me2, the 1D channel that perpendicular to the ab-

plane has hardly changed regardless of the large breathing amplitude (Figure 15c and e).  

Similar to a scissor jack that can be lifted and lowered by driving screws, the 

crystal height along c-direction, parallel to the c-axis parameter, can also be precisely 

controlled by changing the lengths of installed linkers. For comparison, one batch of 

crystals with identical size are picked and installed with different linkers respectively. We 

show that the cell parameters along c-axis is tunable in a range of 11.8 Å to 19.1 Å, and 

the crystal height (c-direction) varies from 101 µm to 156 µm. As shown in Figure 15, the 

change of crystal size matched very well with the change of cell parameters.  

It is worth pointing out that the linker installation can induce a much larger unit 

cell dimension change (62% contraction along c-axis) than the removal of solvent (32% 

contraction along c-axis), indicating that a larger breathing amplitude can be achieved by 

stronger guest–host interactions such as coordination bonds.  



 

45 

 

 

Figure 15. Porosity engineering by linker installation. (a) Representations of PCN-700-

Me2 structures with different linkers installed. Inserted photos are the microscope view of 

the corresponding single crystal. (b) Single crystal structures PCN-700-Me2 with different 

linkers along a-axis showing dramatic change of c lattice parameter. (c) Single crystal 

structures PCN-700-Me2 with different linkers along c-axis showing the slight change in 

1D channels. (d) and (e) N2 isotherms and pore size distribution of PCN-700-Me2 and 

derivates. 
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4.2.5 Reversible control of catalytic activity 

Flexible MOFs, with inherent cavities and dynamic behaviors, are expected to 

possess interesting properties as host matrices for catalysts. For example, the stimuli-

induced structural transformation may change the cavity environment and in turn 

influence the catalytic activity of the encapsulated catalyst, which is a potential mimic of 

allosteric regulation. In other words, the surrounding environment of the catalytic sites in 

a MOF performs a similar function to the enzyme pocket in enzymatic catalysis. 

Nevertheless, flexible MOFs for switchable catalysis have not been widely explored. This 

could be ascribed to the fact that the close-conformation of flexible MOFs can be opened 

up by solvent molecules under common catalytic conditions. In contrast to most flexible 

MOFs, the desolvated PCN-700-Me2 sample shows little dependence on the nature of 

solvent. In fact, it hardly expands in any common solvents at room temperature. These 

observations suggest that PCN-700-Me2 solid can be considered as ‘rigid’ under common 

catalytic reaction conditions. The closed conformation and opened conformation is 

expected to show dramatically different catalytic activity in the same solvent. 

The atom-economical cycloaddition reactions of CO2 with epoxides yield cyclic 

carbonates, which have wide applications in pharmaceutical and chemical industry. As a 

proof of concept, this reaction is selected to evaluate the Lewis-acid catalytic activity of 

PCN-700-Me2. The performances of as-synthesized PCN-700-Me2 (denoted as PCN-700-

o, o stands for open conformation) and desolvated PCN-700-Me2 (denoted as PCN-700-

c, c stands for closed conformation) samples were examined with different epoxides at 50 

oC under 1 atm CO2 pressure and solvent-free condition (Table 3). In order to eliminate 
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the possibility of size selectivity, substrates with small sizes were selected to ensure 

negligible pore diffusion that might affect the reaction rates under the given set of reaction 

conditions. Propylene oxide conversion steadily increased from 36% to 90% as the 

reaction time elapsed from 2 to 10 h and then levelled off. So the reaction time is set to be 

10 h for all the catalysts. Considering the mild reaction condition, solvent free protocol 

and high TON/TOF, PCN-700-o stands out from the reported MOFs for catalyzing the 

cycloaddition reaction of CO2. Importantly, the activity of PCN-700-o can be turned off 

by the removal of solvent. As shown in Table 3, the desolvated sample, PCN-700-c, shows 

prominently decreased performance. Yet, the catalytic activity of PCN-700-c can be 

restored by acid treatment which expands the shrunken structure to the original state. In 

this way, the reversible control of catalytic activity through a breathing effect is realized. 

The catalytic activity of PCN-700-Me2 was turned on and off for four times, demonstrating 

a successful reversible control of the catalytic activity towards CO2 fixation reaction 

(Figure 16). 
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Table 3. Catalytic synthesis of cyclic carbonates from CO2 and epoxides.a 

 

Entry R Catalyst Conversion(%)c TONd TOF(h-1)e 

1 Me - 15.1 - - 

2 Me ZrCl4
b 67.9 131.8 13.2 

3 Me PCN-700-o 93.2 244.0 24.4 

4 Me PCN-700-c 29.1 76.2 7.6 

5 Ph PCN-700-o 83.3 218.0 21.8 

6 Ph PCN-700-c 37.0 96.9 9.7 

7 Et PCN-700-o 91.7 240.0 24.0 

8 Et PCN-700-c 27.5 72.0 7.2 

9 CH2Cl PCN-700-o 92.3 241.6 24.2 

10 CH2Cl PCN-700-c 30.2 79.0 7.9 

a Typical reaction conditions: 5.0 mmol epoxides, 0.3 mmol TBAB, 6.0 mg PCN-700 

(0.0191 mmol Zr), under CO2 balloon, reaction temperature 50 oC, reaction time 10 h. b 

6.0 mg ZrCl4. c Conversion calculated from the 1H NMR spectra. d Turnover number 

(product (mmol)/metal (mmol)). e Turnover frequency (product (mmol)/metal 

(mmol)/time (h)). 
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Figure 16. Reversibility test of PCN-700-Me2 catalyzed cycloaddition reaction of CO2 

with propylene oxide at 50 oC for 10 h. 

 

 

Figure 17. Structure of PCN-700-o (a) and PCN-700-c (b) showing the accessibility of 

active -OH–/H2O center (as shown in red). 

 

In order to elucidate the mechanism of the switchable catalytic activity, control 

experiments were further conducted. The difference in catalytic activity of PCN-700-o 

and PCN-700-c could be possibly attributed to (i) different diffusion rates of substrate and 

(ii) different Lewis acid sites. To eliminate the influence of substrate diffusion, Vmax, 
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represents the maximum rate achieved by catalysts at saturating substrate concentrations, 

was measured. Vmax of PCN-700-o and PCN-700-c was calculated to be 25.8 and 3.35 

µM·min-1 respectively, showing a clear difference in maximum reaction velocity. Usually, 

Vmax depends on the efficiency and concentration of active sites, which is believed to be 

the –OH–/H2O groups on the Zr6 clusters.94 To prove this, control experiments were 

carried out under the same condition using UiO-67 as a Lewis acid which has no accessible 

–OH–/H2O groups on the clusters. The Vmax(UiO-67) was tested to be 2.19 µM·min-1 

which is about 11 times smaller than Vmax(PCN-700-o), indicating the prominent influence 

of –OH–/H2O groups. In PCN-700 structure, there are two pairs of symmetrically 

independent –OH–/H2O groups on one Zr6 cluster along c-direction and b-direction, 

respectively. The –OH–/H2O groups along c-direction and b-direction in PCN-700-o are 

both accessible by substrates (Figure 17a) whereas –OH–/H2O groups in PCN-700-c are 

only accessible from b-direction because of the close packing of ligand and clusters along 

c-direction, leaving no room for substrates (Figure 17b). 

The halved active site in PCN-700-c is expected to reduce the Vmax by half. 

However, the experimental data suggested that the Vmax (PCN-700-c) is actually reduced 

by 87% compared to that of Vmax (PCN-700-o). We propose that the –OH–/H2O groups 

along c-direction are more active than those along b-direction, thus burying the –OH–/H2O 

groups along c-direction caused a dramatic decrease of catalytic activity for PCN-700-c. 

Indeed, we observed that the –OH–/H2O groups along c-direction selectively deprotonate 

to react with basic metal hydroxides, whereas the –OH–/H2O groups along b-direction tend 

to act as bases to react with molybdic acid. To test our hypothesis, we used density 
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functional theory to calculate the relative acidities of Zr6 models of PCN-700-o and PCN-

700-c. The calculated ∆pKa value for the PCN-700-o-Zr6 model (the pKa of –OH–/H2O 

along the b-direction minus that along the c-direction) is 0.56. Similarly, this ∆pKa value 

for the PCN-700-c-Zr6 model is 2.82. The stronger acidity of –OH–/H2O along the c-

direction than that along the b-direction is consistent with the experimental observations 

above-mentioned. The different acidity in the two directions can be tentatively attributed 

to the unequal electron distribution resulting from the asymmetric organic linkers. 

Consistent with this explanation, the asymmetric character is more notable in PCN-700-c 

than that in PCN-700-o, which explains the larger ∆pKa value of PCN-700-c-Zr6 than that 

of PCN-700-o-Zr6. In addition, the calculated ∆pKa value along the b-direction for the 

closed and open Zr6 models (pKa of –OH/H2O in b-direction of PCN-700-c-Zr6 minus that 

of PCN-700-o-Zr6) is 1.55. Thus, the remarkable decrease of acidity along the b-direction, 

as well as the only availability of the b-direction for catalysis in PCN-700-c, results in a 

much lower catalytic activity of PCN-700-c than that of PCN-700-o. In short, upon 

removal of solvent, PCN-700-Me2 experiences a dramatic shrinkage along c-axis which 

changes the cavity environment and catalytic activity. From what we observed, we 

consider this unique function as a simple mimic of complicated allosteric enzymes, 

allowing manually control of catalytic properties.  

 

4.3 Conclusions 

We present here a comprehensive study on a flexible Zr-MOF system as a 

switchable catalyst. The parent structure (PCN-700-Me2) is constructed through topology-
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guided design in combination with kinetically controlled synthesis. Single crystal X-ray 

diffraction was employed to study the mechanism of the structural transformation, which 

reveals that PCN-700-Me2 squeezes its unit cell along c-axis in a scissor-jack-like fashion. 

Organic linkers with different functional groups are utilized to rationally adjust the 

framework flexibility. A linker installation strategy is further exploited to magnify the 

breathing amplitude. Furthermore, the activity of PCN-700-Me2 as a Lewis acid catalyst 

can be turned on and off by structural breathing, making it a bioinspired switchable 

catalyst. In light of its tunable flexibility and porosity, as well as switchable catalytic 

activity, PCN-700 system can be expected to serve as a versatile platform for a variety of 

promising applications. We believe that the concept of switchable catalysis within flexible 

MOF systems will not only lead to a new generation of catalysts, but also open up a field 

of study intersecting with both crystalline porous materials and artificial enzymes. 
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5. HYDROGEN STORAGE IN METAL-ORGANIC FRAMEWORKS* 

 

5.1 Introduction 

The concerns of energy resource consumption from fossil fuel use, related global 

warming has gained momentum to develop sustainable energy carriers such as hydrogen 

gas (H2). The energy density of hydrogen is much higher than petroleum such as gasoline 

and the combustion of hydrogen emits no carbon dioxide (CO2). However, the application 

of H2 as fuel in transportation would limited if there is not an effective storage technology 

due to its volatile nature. The currently used liquid fuels, such as gasoline and diesel, can 

be easily stored in simple tanks at ambient condition. A gaseous fuel, such as hydrogen 

poses a real challenge because up to 13 kg of hydrogen would be consumed per trip of 450 

km driven, suggesting safe hydrogen storage and transport technologies are critical in the 

21st century. In general, hydrogen can be stored in through compression or entrapped. The 

former by liquefaction or isothermal compression and the latter by storage in solid porous 

materials.116-117 Based on the interaction strength between the hydrogen molecules and the 

framework, the storage methods usually can be divided into two categories: chemisorption 

and physisorption.  

According to the International Union of Pure and Applied Chemistry (IUPAC), 

chemisorption is defined as “the adsorption that results from strong interactions, such as 

 

 

*Reproduced in part with permission from “Nanostructured materials for next-generation energy 

storage and conversion: hydrogen storage in metal-organic frameworks”, by Zou, L.; Zhou, H.-C., 

Springer-Verlag GmbH Germany 2017 DOI: 10.1007/978-3-662-53514-1. copyright 2017 by Springer. 

http://www.springer.com/


 

54 

 

chemical bond formation between the hydrogen and the material”. The physisorption is 

the “adsorption in which the non-chemical bonding forces involved is van der Waals 

forces, which do not involve a significant change in the electronic orbital patterns of the 

species involved”. In physisorbed materials, hydrogen molecules are normally adsorbed 

on the pores’ surface of the materials. Since the interaction energy is very low and no 

activation energy is needed, the physisorption processes are usually reversible. The H2 

adsorption inside the porous materials such as metal-organic frameworks, porous 

carbons,118-119 organic polymers120-121 and zeolites122-123 belongs to this category. Much 

research has been focused on the synthesis of highly porous materials with enhanced 

interactions with hydrogen.  

In the past few decades, metal-organic frameworks (MOFs),2, 84, 121, 124-126 

constructed with coordination bonds between organic linkers and inorganic metal clusters, 

have become a burgeoning field of research and a great potential candidate for hydrogen 

storage due to their exceptional high porosity, high crystallinity, uniform yet tunable pore 

size and pore shape, great diversity and various kinds of hydrogen occupation sites. The 

U.S. Department of Energy (DOE) 2017 target for a hydrogen storage system, is set at 

“5.5 weight-percent gravimetric capacity, 40 g L-1 of volumetric capacity at an operating 

temperature of -40 to 60 C under a maximum delivery pressure of 100 bar”.6 It is very 

important to be aware that the targets are for an entire system, so the performance of the 

storage material must be even better in order to account for the storage container as well 

as temperature regulating apparatus. In 2003, the initial H2 storage data, a remarkable 4.5 

wt % at 77 K and 1 atm, were demonstrated by MOF-5, which was synthesized by Zn 
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ionic salt and beneze-1,4-dicarboxylate (BDC) ligand.18 The maximum H2 uptake in 

MOF-5 varied from 1.3 to 5.2 wt% at 77 K depending on fabrication and activation 

parameters. Since then, numerous reports of porous MOFs with different topologies and 

porosities have demonstrated relatively high H2 storage. Coupled with measurements of 

porosity, some understanding of many factors that affect the hydrogen uptake by porous 

MOFs have been developed.  

A number of monographs have been devoted to meta-organic frameworks (MOFs) 

fabrication, activation and use as hydrogen storage materials.127-131 Here, some technical 

elements are introduced in tailoring MOFs as hydrogen storage resins, including syntax, 

synthesis, fabrication, evaluation and benchmark testing. As way of example, MOFs 

constructed by carboxylate, azolate or mixed linkers, are discussed in the context of 

hydrogen storage. Last but not least, the post-synthetic modifications on MOF materials 

to increase the hydrogen storage capacities will be carefully illustrated. 6, 132-134  

 

5.2 Syntax used for hydrogen storage 

As it is already mentioned in the introduction, there is a great need to standardize 

definitions and terminologies before we explore the hydrogen storage in MOFs. 

 

5.2.1 Adsorption or absorption 

Adsorption (Figure 18a) refers the adhesion of atoms, ions, or molecules to a 

surface while absorption (Figure 18b) is a physical or chemical process in which atoms, 

ions or molecules permeation through the bulk volume of the materials and incorporated 



 

56 

 

into the internal structure of the adsorbent. From the figure, it can be seen that the 

adsorption requires a large surface area to be effective.  

 

Figure 18. A simplified schematic of adsorption versus absorption. 

 

5.2.2 Chemisorption and physisorption 

Chemisorption is a process which involves a chemical reaction between the surface 

and the adsorbate while new chemical bonds are generated at the adsorbent surface. 

Usually, chemisorption only occurs in a monolayer on the surface. Physisorption, also 

called physical adsorption, is a process in which the force involved are the weak 

intermolecular van der Waals forces. The physisorption is normally multilayer adsorption, 

which highly depends on the temperature and pressure. There is no hard boundary between 

the physisorption and the chemisorption and the H-H bond is treated as a distinction. If 

the H-H bond is destroyed in the sorbed state, then it is considered chemisorption; 

otherwise, it is a physisorption phenomenon. In general, the binding energy threshold is 

about 0.5 eV per adsorbed species to differentiate the process of physisorption and 

chemisorption. 
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5.2.3 Langmuir surface area and BET surface area 

Porous materials can be classified by their pore sizes into three categories, 

macroporous (> 500 Å), mesoporous (20-500 Å) and microporous (< 20 Å). The 

microporous materials can be further classified as: ultramicroporous (< 7 Å) or 

supermicroporous (8-20 Å). Most MOFs reported so far are microporous materials, while 

the development of the mesoporous MOFs bursts out recently.  

The Langmuir adsorption model (Figure 19a), in which only a monolayer of gas 

molecules is allowed to adsorb onto the surface, explains adsorption by assuming the 

adsorbate behaves like ideal gas under isothermal conditions. In the Langmuir model, the 

following assumptions are proposed specifically for the simplest situation: the adsorption 

of a single adsorbate onto a series of equivalent sites on the surface. 

1. The surface containing the adsorbing sites is homogeneous, which is a 

perfectly flat plane with no corrugations; 

2. The gas molecule adsorbs into an immobile state; 

3. All adsorbing sites are equivalent; 

4. Each site can hold at most one molecule (mono-layer coverage only); and 

5. There are no interactions between adsorbates on adjacent sites. 
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Figure 19. A one-dimensional representation of the process involving adsorption of 

hydrogen molecule onto a surface, (a) Langmuir model monolayer adsorption, or (b) 

Brunauer–Emmett–Teller (BET) multilayer adsorption. 

 

The Brunauer, Emmett and Teller (BET) theory was developed by Stephen 

Brunauer, Paul Emmett, and Edward Teller and they published a paper about the “physical 

adsorption of gas molecules on a solid surface” in 1938. This BET theory is an extension 

of the Langmuir theory.  The BET model is in which multiple layers of gas may be 

adsorbed to the surface (Figure 19b). For a given nitrogen isotherm, the BET model will 

always predict a smaller surface area than the Langmuir model. The BET theory extended 

the Langmuir theory to incorporate multi-layer adsorption, where the: 

1. Gas molecules physically adsorb in infinite layers; 

2. The layers are non-interacting; and 

3. The Langmuir model is valid for each independent layer. 

In the analysis of surface coverage, nitrogen gas is commonly used due to its high 

purity, gas inertness, low cost (compared to helium) and the strong interactions with most 

solids. Liquid nitrogen temperature (77K) is usually employed when measuring the 

nitrogen uptake due to the weak interactions between gaseous and solid phases to achieve 
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detectable amounts of adsorption. The data collected are displayed in the form of an 

isotherm, which plots the amount of nitrogen adsorbed as a function of the relative 

pressure. There are five types of adsorption isotherms possible.135 

Type I isotherm: Type I isotherm is a pseudo-Langmuir isotherm (Figure 20). 

Microporous materials with pore diameters less than 20 Å usually have this type of 

isotherm. This isotherm depicts monolayer adsorption, which can be readily explained by 

the Langmuir isotherms. 

Type II isotherm: A type II isotherm (Figure 20) has a different profile from that 

obtained from a single layer Langmuir model.  At low pressure (concentration), material 

micropores are filled with gas molecules, such as nitrogen gas.  The plateau region 

represents the formation of the monolayer. At higher pressure, multilayer adsorption 

occurs and continues until condensation due to capillary forces occurs. 

Type III isotherm: A type III isotherm (Figure 20) shows the formation of a 

multilayer. Since there is no asymptote observed in the curve, no monolayer is formed, 

but BET is not applicable. 

Type IV isotherm: A type IV isotherm (Figure 20) occurs when capillary 

condensation occurs. At the lower pressures, it shows the formation of a monolayer 

followed by a formation of multilayers at higher pressure regions. Mesoporous materials 

with pore diameters between 20 - 500 Å have this type of isotherm. 

Type V isotherm: Type V isotherms (Figure 20) are very similar to type IV 

isotherms and but are not applicable to BET model. 
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In both Type IV and V isotherms, phenomenon of capillary condensation of gas 

can be seen. 

 

 

Figure 20. The type I-V isotherm plots the gas volume adsorbed as pressure increases 

(where Po stands for saturation pressure). Reprinted from ref.135.  

 

When using the BET model to calculate the surface area, special care needs to be 

taken since the calculation results highly depend on the selected pressure region.136  The 

Grand Canomical Monte Carlo (GCMC) simulation has been developed to calculate the 

BET surface area using the nitrogen isotherm and the results have already been confirmed 

by comparing with the experimental results.137  In addition, the difference between the 

Langmuir surface area and the BET surface area becomes smaller if the MOFs have a 
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larger crystal density.  In other words, when the void volume increases, the difference 

between the Langmuir and BET surface area becomes significant. 

 

5.2.4 Excess and total adsorption amount of hydrogen 

The hydrogen uptake is usually represented as the excess or total adsorption 

amount.  The excess adsorption is the difference between the gas phase hydrogen which 

would be presented in the equal volume of the adsorbed phase with and without the 

adsorbent.138 As we all know, the hydrogen gas density increases as pressure increases. 

Hence, the excess adsorption would reach saturation at high pressure and then decrease. 

So we can conclude that at lower pressures, the excess and total adsorption amounts are 

very close. The total adsorption of hydrogen can be calculated from the excess adsorption 

isotherm and the total skeletal volume of the adsorbents.139  

The total amount of adsorbed gas can be expressed as follows.140 

    𝑁(𝑡𝑜𝑡𝑎𝑙) = 𝑁(𝑒𝑥𝑐𝑒𝑠𝑠) + 𝑑(𝑔𝑎𝑠) ∗ 𝑉(𝑝𝑜𝑟𝑒)                                (1) 

where N(total) is the total adsorption (mg g-1), N(excess) is the excess adsorption 

(mg g-1) which is the quantity measured, d(gas) is the compressed gas at a given 

temperature and pressure in g cm-3 and Vpore is the volume of pores. 

Generally, hydrogen adsorption capacities in MOFs can also be represented in 

wt%, which can be expressed as:  

              𝑤𝑡% =
𝑚𝑎𝑠𝑠 (ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛)

𝑚𝑎𝑠𝑠 (𝑠𝑎𝑚𝑝𝑙𝑒)+𝑚𝑎𝑠𝑠 (ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛)
                                 (2) 
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5.2.5 Isosteric heat of the hydrogen adsorption 

For all the materials, the hydrogen uptake capabilities decrease with the increase 

of temperature.  The strength of this decrease as well as the hydrogen uptake capability at 

low pressure are mainly governed by the heat of adsorption.  Typically, the isosteric heat 

of hydrogen adsorption can be calculated from the adsorption isotherms measured at two 

independent temperatures, for example nitrogen at 77 K and argon at 87 K, 

respectively.141-142 The isosteric heat of hydrogen adsorption is one of the key 

thermodynamic variables for the design of a practical hydrogen adsorption samples. 

However, the small temperature range leads to a very high uncertainty when the heat of 

adsorption is calculated. Only a few publications presented the isosteric heat of adsorption 

with higher accuracy from several isotherms measured at various temperatures. 

 

5.3 Engineering novel MOFs for hydrogen storage 

Metal-organic frameworks (MOFs) have been fabricated using hydrothermal or 

solvothermal conditions.  The hydrothermal synthetic conditions use water as the solvent 

while the solvothermal conditions use high boiling point organic solvent, such as N,N-

dimethylformamide (DMF), N,N-diethylformamide (DEF), N,N-dimethylacetamide 

(DMA).  Normally, both inorganic metal salts and organic linkers are dissolved in solvents 

and placed in sealed vials to produce MOFs at high temperature, generally ranging from 

60 - 180 C. Modulating agents, which can balance the association / dissociation of the 

coordination bonds, are another very important factor in the MOF synthesis, especially for 

the formation of the crystalline MOFs starting from high valent metal ions.  Sometimes, 
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mixed solvents are utilized to control the reaction polarity, the solubility of the starting 

materials as well as the rate of the product recrystallization, so that highly crystalline 

products can be formed.  For example, solvents with low boiling point could be added in 

order to facilitate the product formation during the synthesis.  Every MOF is unique and 

the synthetic conditions usually vary a different MOF materials.  

The assembly process of MOFs combines merits of various inorganic metal ions 

or clusters and designable organic linkers, which offers large structural topologies and 

diversified porosity properties.  For the coordinating atoms in the organic linkers, they can 

be oxygen, nitrogen and sometimes mixed coordinated atoms in one linker.  For the 

geometry, the organic linkers can be linear, trigonal, and tetragonal and so on.  For the 

connectivity, the organic linkers can be two connected, three connected, four connected, 

and sometimes, even six or eight connected.  The varieties of the organic linkers provide 

lots of chances to synthesize novel MOF materials.  Starting from the organic linkers, we 

can classify the MOF materials into three categories: MOFs based on carboxylate linkers, 

MOFs based on azolate linkers and MOFs based on mixed linkers.  These three categories 

of MOFs are discussed in the following sections. 

 

5.3.1 MOFs based on carboxylate linkers 

Organic carboxylate linkers are the most commonly reported ligands used to 

synthesize MOFs with exceptional high surface area. Various metal ions, such as Zn, Cu, 

Mn, Co, Cr, Ni, Al and lanthanide metals, have been utilized in the synthesis of MOFs. 
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The structures, functionalization and the hydrogen storage capabilities of several MOFs 

will be demonstrated in this chapter.  

In 2003, the first hydrogen sorption properties using MOF material (Figure 21), 

MOF-5, was reported by Yaghi’s group.18 MOF-5 are constructed with inorganic four 

connected Zn clusters and organic linkers, benzene-1,4-dicarboxylate (BDC), with a cubic 

three-dimensional extended porous structure.139 Due to the isolated linkers, which are 

accessible from all sides to the gas molecules, such a structure is ideal for hydrogen 

storage. An extraordinarily high apparent surface area (about 2000 m2 g-1 equivalent to the 

area of a regular football field) was observed due to the scaffolding-like nature of MOF-

5. At 77 K and 0.7 bar, 4.5 weight-percent (wt%) hydrogen absorption was observed using 

MOF-5 as absorbent. And later revised maximum hydrogen capacity of 4.5 – 5.2 wt% at 

77 K and 50 bar for MOF-5 131, that has been confirmed independently.143-144 

 

Figure 21. Single-crystal X-ray structure of MOF-5 illustrated for a single cube fragment 

of their respective cubic three-dimensional extended structure.  On each of the corners is 

a cluster of an oxygen-centered zinc tetrahedron that is bridged by six carboxylates of an 

organic linker.  The large yellow spheres represent the largest sphere that would fit in the 

cavities without touching the van der Waals atoms of the frameworks.  Reprinted from 

ref.139. 
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The hydrogen uptake varied as a function of pore size and degree of ionic or 

electrostatic forces through formulation of Zn-MOF-5 variants. Here, the metal center and 

inorganic linkers were fixed but the organic ligand varied, the maximum hydrogen uptake 

increased with surface area. Among them, MOF-177 (Figure 22), which is synthesized 

with Zn4 inorganic cluster and 4,4,4-benzene-1,3,5-triyl-tribenzoate (BTB) ligand 

(Figure 22b), has the highest apparent surface area of 4746 m2 g-1. Indeed, its hydrogen 

uptake is the highest (7.5 wt% at 77 K and 70 bar).143   

 

Figure 22. a) Single crystal structure of MOF-177; b) The synthetic ligand for MOF-177, 

BTB; c) Saturation H2 uptake plotted against Langmuir surface area. Reprinted from ref. 
143.  
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The Sabo group demonstrated the effect of Pd in MOF-5 on hydrogen 

adsorption.145 After being incorporated with Pd in MOF-5, the surface area was anticipated 

to be decreased. However, the hydrogen capacity was found to be 1.86 wt% at 77 K and 

1 bar, while the hydrogen adsorption is only 1.15 wt% at 77 K and 1 bar before the Pd 

impregnation. The enhanced storage capacity can be ascribed to dissociation of hydrogen 

molecules causing a primary spillover at the Pd catalyst and meantime MOF-5 acting as a 

secondary spillover receptor. This would increase the isosteric heat of hydrogen 

adsorption, which improves the hydrogen adsorption capacity. 

Hong Kong University of Science and Technology MOF-1 (HKUST-1) is the 

firstly-reported Cu MOF146 (Figure 23), which is composed of copper paddlewheel 

clusters and trigonal benzene-1,3,5-tricarboxylate (BTC) linker. HKUST-1 is a face-

centered cubic crystal with a BET surface area of about 1500 m2 g-1. The advantage of 

HKUST-1 compared with MOF-5 is that it has open metal sites, which are occupied with 

the weakly coordinated solvent molecules. These solvent molecules can be removed, 

leading to an increase in the local interaction energy of hydrogen molecules. This 

observation can be confirmed with the isosteric heat (qst, 3.8-5.2 kJ mol-1) of hydrogen 

adsorption in HKUST-1, which is about 1.0-2.0 kJ mol-1 larger compared with that of 

MOF-5. Accordingly, the hydrogen uptake of HKUST-1 almost double that of MOF-5 at 

low pressures.147-148  However, at high pressures, MOF-5 has a much higher hydrogen 

adsorption capacity compared with HKUST-1, which indicates that the hydrogen adsorbed 

capacity at low pressures strongly depends on the binding affinity of H2 to the frameworks, 
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while the amount adsorbed at higher pressures is mainly determined by the surface area 

of the framework.149  

 

Figure 23. Single crystal X-ray structure of HKUST-1 (copper is denoted as a color in 

blue, oxygen in red and carbon in grey). 

 

 

Several Cr- and Al-based MOFs have also been evaluated for the hydrogen 

adsorption.  Material from Institute Lavoisier MOF-53 (MIL-53) is composed of trivalent 

metal ions (Cr/Al/Sc/Fe) and BDC ligands (Figure 24).86, 150 MIL-53 is highly porous and 

shows both high chemical and high thermal stability. It exhibits one-dimensional channel 

filled with free disordered solvent molecules. When the free molecules are removed, the 

pore size of MIL-53(Cr) decreased from 13.04 Å to 7.85 Å, indicating very high breathing 

effect. It was found that the transition between the hydrated form and the anhydrous solid 

is fully reversible. The MIL-53(Cr) showed a maximal hydrogen capacity of 3.1 wt% at 

77 K and 16 bar, whereas MIL-53(Al) exhibited the capacity of 3.8 wt%.  
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Figure 24. Representation of the structure of MIL-53 showing the breathing effect due to 

the removal of water molecules: hydrated (left) and anhydrous form (right).  The 

anhydrous form of MIL-53 was tested for the hydrogen adsorption experiment. Reprinted 

from ref.86.  

 

Furthermore, the hydrogen adsorption using Cr-based MIL-100 and MIL-101 as 

adsorbents was carefully examined by the Férey group (Figure 25).26, 151-153  MIL-100 was 

composed of trimeric chromium (III) octahedral clusters and the BTC ligand.  MIL-100 

has two types of cages in its structure: the smaller cage is delimited by twelve pentagonal 

faces and the larger by sixteen faces, which include twelve pentagonal and four hexagonal 

faces.  The accessible diameters of the two cages are 25 Å and 29 Å, respectively.  The 

MIL-100 had a Langmuir surface area of 2700 m2 g-1 and a maximum hydrogen uptake of 

3.28 wt% at 77 K and 26.5 bar.  MIL-101 was built up from the same trimeric chromium 

(III) octahedral clusters and BDC linkers.  MIL-101 also has two types of cages with 

accessible diameters of 29 Å and 34 Å, respectively.  However, additional treatment is 

required for MIL-101 to remove most of the BDC ligands in the pores.  The Langmuir 

surface area of MIL-101 is 5500 m2 g-1 and the hydrogen adsorption capacity can reach to 

6.1 wt% at 77 K and 80 bar.  This higher hydrogen adsorption capacity of MIL-101 could 

be ascribed to its high adsorption heat (9.3 to 10.0 kJ mol-1 at low coverage), which arose 

http://www.chemspider.com/Chemical-Structure.937.html
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from the strong adsorption affinity between the unsaturated metal sites and hydrogen 

molecules. 

 

 

Figure 25. “Schematic view of the porous solids MIL-100 and MIL-101. Left: Trimers of 

chromium octahedra which assemble with either BTC (MIL-100) or BDC (MIL-101) to 

form the hybrid supertetrahedra; Center: Hybrid supertetrahedra; Right: Cages of MIL-

100 and MIL-101.”26 Reprinted from ref.153.  

 

In addition, Zhou group developed a general synthetic method, which is derived 

from the rationalization of the MOF growth from both a kinetic and a thermodynamic 

perspective, to synthesize 34 large single crystals of iron-containing MOFs (Figure 26).37  

Among them, PCN-250 was constructed with 6-connected (Fe2M) building blocks and a 

rectangular tetratopic linker.  Interestingly, anther framework isomer of PCN-250, PCN-

250 was synthesized under a different synthetic condition. Along one axis, the ligands 
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constructing the same cube in PCN-250 adopt mirror configurations and are alternatively 

arranged while in PCN-250, ligands adopt the same configuration in the one cube and 

mirror configuration in the adjacent cubes along any axis.  PCN-250 shows a record high 

H2 uptake of 3.07 wt% and 28 g L-1 at 1.2 bar and 77 K.  Also, PCN-250 exhibits one of 

the highest total H2 volumetric uptake of 60 g L-1 at 40 bar and 77 K.  The high uptakes 

of H2 can be attributed to suitable size of the cages in PCN-250 and the well-dispersed and 

highly charged open metal sites.  Moreover, PCN-250 can be maintained stable in water 

for more than six months. 

   

 

Figure 26. Structures of PCN-250 and PCN-250′. 
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5.3.2 MOFs based on azolate linkers 

All the aforementioned MOFs are using oxygen as the coordinated atom, the 

coordinated atom can also be nitrogen.  Lots of heterocyclic ligands have been 

successfully used in the synthesis of the porous MOF materials, including imidazole, 

triazole, pyrazole, and tetrazole. 

Among them, zeolitic imidazole frameworks (ZIFs) are a special category of 

MOFs constructed with organic imidazolate linkers and the tetrahedrally coordinated 

zinc/cobalt clusters.  Various ZIFs have been well documented and they usually have 

exceptional high chemical, thermal and water stability, which enable great promise for 

real industrial hydrogen adsorption.154-155  For example, ZIF-8 (Figure 27), constructed 

with six-ring ZnN4 clusters and MeIM (2-methylimidazolate), is a prototypical ZIF 

compound with a sodalite zeolite-type structure.  The excess hydrogen adsorption capacity 

of ZIF-8 is 3.1 wt % at 77 K and 30 bar.154, 156-158  To our surprise, both of the two strongest 

adsorption sites are associated with organic linkers, instead of metal clusters, which is in 

strong contrast with carboxylates based MOFs.  This discovery is very important and it 

will lead to the right direction to optimize this class of ZIF materials for hydrogen 

adsorption.  

Recently, the Long group reported a copper framework, Cu-BTTri starting from 

the trizaolate linker, 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene (BTTri, Figure 28).159  Cu-

BTTri has a sodalite structure, which consists of BTTri linked (Cu4Cl) square clusters in 

which each copper center has a terminal solvent molecules directed toward the interior of 

the large pore.  After activation, the framework has exposed copper metal sites, which can 
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enhance the interactions between the hydrogen molecules and the framework.  The BET 

surface area of CuBTTri is 1770 m2 g-1 and the H2 uptake capacity is 1.2 wt% at 1.2 bar 

and 77 K.  Moreover, Cu-BTTri exhibits a really high thermal stability of up to 270 oC 

and exceptional stability in air, boiling water, and even acidic media. 

 

 

Figure 27. Imidazolate linker, structure, and network topology of ZIF-8.  Yellow sphere 

represents the free volume in the frameworks.  Reprinted from ref.158.   

 

Long et al. synthesized another new Mn-based MOF by using the tritopic 

tetrazolate ligand, BTT (1,3,5-benzenetristetrazolate) (Figure 29).129  This framework 

showed a high nitrogen surface area of up to 2100 m2 g-1.  The framework contained 

coordinately unsaturated Mn sites, which have a strong hydrogen binding.  So the isosteric 

heat of hydrogen adsorption at zero surface coverage is 10.1 kJ mol-1.  As a result, the high 
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hydrogen adsorption heat gives rise to the high total hydrogen uptake (6.9 wt% at 77 K 

and 90 bar).  Surprisingly, since the hydrogen adsorption did not reach to the saturation 

yet at 90 bar, the hydrogen adsorption is anticipated to further increase with pressure.  

 

Figure 28. A portion of the structure of the sodalite-type framework of Cu-BTTri.  Purple 

is Cu, green is Cl, gray is C, and blue is N, respectively; framework atoms are omitted for 

clarity. Reprinted from ref.159.  

 

5.3.3 MOFs based on mixed linkers 

Mixed ligand coordination systems have also been taken advantage of to explore 

their hydrogen storage potential.  Although it becomes increasingly difficult to design 

materials that contain two different metal-binding functionalities, frameworks with 

impressive hydrogen storage properties have been demonstrated using this strategy.  A 

novel approach for the bottom-up assembly of hierarchical building blocks:  simple 

molecular building blocks (MBBs) and the resultant super molecular building blocks 

(SBBs) to build highly coordinated nets. Indeed, Cu(TZI)3 was synthesized from the 
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solvothermal reaction between 5-tetrazolylisophthalic acid (H3TZI) and Cu salt in a 

DMF/ethanol solution (Figure 30).160  H3TZI possesses two carboxylate groups and a 

tetrazolate ring.  In this structure, the carboxylate groups serve to construct the famous 

paddlewheel building unit, while the tetrazolate groups to form a triangular cluster. In this 

triangular cluster, each copper ion exhibits two empty coordination sites, which 

presumably have a higher affinity with hydrogen molecules and hence enhance the 

isosteric heat of adsorption. As expected, the isosteric heat of adsorption is 9.5 kJ mol-1 

while the H2 uptake is 2.4 wt% at 1 bar and 77 K.  Similar approach may reduce the 

serendipity associated with this method and could potentially lead to particularly complex, 

but well-engineered and effective hydrogen storage materials. 

 

 

Figure 29. Portions of the crystal structure: (a) chemical structure of the ligand H3BTT, 

(b) a square-planar Mn4Cl cluster connected by eight tetrazolate linkers, (c) a sodalite 

cage-like unit, and (d) a cube of eight such units sharing square Mn4Cl faces. Reprinted 

from ref.129.  
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Figure 30. (Left) Select fragments from the crystal structure. C = gray, N = blue, O = red, 

Cu = green; the 5-position of the 1,3-BDC ligand is highlighted in orange; the yellow 

spheres indicate the cavity of truncated cuboctahedra; some spheres, all solvent molecules, 

and all hydrogen atoms have been omitted for clarity. (Right) Schematic showing the 

corresponding strategy from MBBs to SBBs to MOFs. Reprinted from ref.160.  

 

 

5.4 Postsynthetic modification of MOFs to improve the hydrogen storage  

Postsynthetic modification of MOFs is a widely used powerful strategy to change 

the functional properties of MOF materials, such as the surface area, pore size and pore 

volume, and to synthesize novel MOFs, which cannot or hardly be achieved using the 
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direct synthetic method.  Moreover, specific functional groups can be incorporated into 

the frameworks to change their chemical properties or provide strong interaction sites for 

hydrogen without losing their crystallinity.  

 

5.4.1 Post modification of the inorganic clusters 

Modification of the inorganic clusters is less common compared with the 

postsynthetic modification of the organic linkers. The Zhou group also developed the 

postsynthetic metathesis and oxidation (PSMO) strategy to synthesize novel MOF 

materials.161-163 Starting with the labile Mg-MOFs, they firstly used Fe(II) and Cr(II) to 

exchange with the Mg cations in the MOFs so that the exchange process is accelerated 

and the overall structure can be preserved.  Then, the intermediate Fe(II)- and Cr(II)- 

MOFs can be oxidized in the air to form the ultra-water-stable Fe(III)- and Cr(III) MOFs 

while maintaining the single crystallinity.  Significantly, the single crystalline MOFs that 

contain high valence metals, especially Cr(III), were very rare until this work.  

The Férey group reported amine-grafting at open metal sites in MIL-101(Cr).164  

By replacing coordinated water molecules with ethylene diamine, diethylenetriamine, or 

3-aminopropyltrialkoxysilane, the effective BET surface area is anticipated to be reduced.  

But the powder X-ray diffraction (PXRD) patterns are well indexed with each other, which 

confirms that the crystallinity before and after postsynthetic modification is well 

maintained.  Then metal complexes, such as [PdCl4]2-, [PtCl6]2- or [AuCl4]-, were 

incorporated into the MOF materials.  They were reduced to afford nanoparticles around 
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2 - 4 nm in size, which could increase the hydrogen storage ability as confirmed by several 

reports.165-166 

In another report, Hupp and his co-workers reported that the H2 storage capacity 

of MOFs can be increased by the postsynthetic modification of the open metal sites with 

a pyridine ligand.167 A careful investigation reveals that the MOFs’ internal surface area, 

pore volume, and ability to absorb molecular hydrogen can be modulated by postsynthetic 

modification.  However, it should be noted that the hydrogen uptake capacity decreases 

significantly as compared to the frameworks with open metal sites. 

Suh and his co-workers demonstrated that the gas adsorption properties can be 

changes by postsynthetic replace coordinated water molecules with bidendate organic 

linkers (Figure 31).168  Firstly, they synthesized a porous MOF, SNU-30, by the 

solvothermal reaction, which has open metal sites coordinated by water molecules.  Then 

linker 3,6-di(4-pyridyl)-1,2,4,5-tetrazine (bpta, Figure 31a), was postsynthetically inserted 

between two paddle-wheel shaped zinc clusters to afford the single crystalline SNU-31SC, 

which divided the channels into smaller pores, enabling efficient gas movement. 

Moreover, the inserted bpta linkers can be removed by immersing the SUN-31SC in N,N-

diethylformamide (DEF) and at the same time, the crystallinity was well maintained upon 

modification.  The BET surface area of SNU-30 measured from the N2 isotherm was 704 

m2 g-1.  At 1 bar and 77 K, the H2 uptake of SNU-30 reached to 1.42 wt% and the isosteric 

hydrogen adsorption heat for SNU-30 ranges from 8.12 to 7.27 kJ mol-1. In addition, an 

excess of hydrogen uptake of SNU-30 reaches to 2.75 wt % while the total uptake reaches 
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to 3.27 wt % at 61 bar and 77 K. Interestingly, the postsynthetically modified framework 

did not adsorb H2, N2, O2, CH4 but selectively adsorbed CO2. 

 

 

Figure 31. a) The chemical structure of ligand, bpta; b) The X-ray crystal structure of 

SNU-31 SC.  Views seen on the ab plane.  Color scheme: Zn=green, C=gray, O=red, 

N=blue, bpta linker=pink. 

 

5.4.2 Post modification of the organic linkers 

The hydrogen uptake capacity of MOFs can also be modulated by post-

modification of organic linkers, which have been successfully demonstrated by the Cohen 

group (Figure 32) by incorporating of phenyl groups into the frameworks.169 The MOFs 

connected with NH2 functionalized ligand, NH2-MOFs, which include isoreticular metal-

organic framework 3 (IRMOF-3), 1,4-diazabicyclo[2.2.2]octane scaffold MOF 1 (DMOF-

1), and university of michigan crystalline material-1 (UMCM-1). UMCM-1-NH2 can react 

with anhydrides or isocyanates to form amide groups.  The pore volume, pore size and the 

surface area of the MOFs will be changed by this postsynthetic modification.  At the same 

time, this modification will alter the isosteric heat of the hydrogen adsorption and the 
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hydrogen uptake capacities.  The hydrogen storage capacities of IRMOF-3-AMPh (where 

AMPh is the benzoic anhydride substituent), IRMOF-3-URPh (where URPh is the 

isocyanate substituent), and UMCM-1-AMPh increased up to 1.73 wt %, 1.54 wt %, and 

1.54 wt %, respectively, at 77 K and 1 atm.  In comparison, IRMOF-3 and UMCM-1-NH2 

only demonstrated the hydrogen uptake as 1.51 wt % and 1.35 wt %, respectively.  

Moreover, the isosteric heats of hydrogen adsorption in MOFs having aromatic ring 

substituents were higher compared with those with alkyl chain substituents.  These results 

suggest that the optimal interaction geometry between the MOF and H2 is that the H2 

molecules are located at the centers of the phenyl rings in the ligand. 

  

 

Figure 32. Schematic representation of the three modified MOFs of IRMOF-3-AMPh, 

IRMOF-3-URPh, and UMCM-1-AMPh. 

 

Recently, the effect of lithium (Li) on hydrogen adsorption properties of MOFs 

has already been thoroughly explored by several theoretical research groups, such as the 

grand canonical ensemble Monte Carlo (GCMC) simulations.170-173 The GCMC 

simulations have been validated by the fact that the simulated results by GCMC match 
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very well with the experimental data for the hydrogen storage in MOFs without Li.  Then 

the GCMC technique was utilized to simulate five Li-doped MOFs (Figure 33).  

Simulation results suggest that the Li atoms are preferred to bind to the center of the 

aromatic rings with Li atoms on adjacent aromatic rings on the opposite sides, as we can 

see from Figure 33. More importantly, the high electron affinity of the aromatic rings can 

create positive Li sites, leading to a very strong binding affinity between H2 and MOFs.  

From their results, the hydrogen uptake of Li-MOF-C30, in which the molar ratio of C/Li 

is 5, would reach to 3.89 wt % at 20 bar and 300 K and 4.56 wt % at 50 bar and 300 K, 

which exhibits the highest storage capacity for hydrogen at room temperature to-date. In 

contrast, the hydrogen uptakes for the MOF-C30 before doping Li were only 0.25 wt % at 

300 K and 20 bar and 0.56 wt % at 300 K and 50 bar, respectively. From the results, we 

can conclude that doping Li on MOFs is a very critical strategy to enhance hydrogen 

uptake at room temperature.174  

 

Figure 33. “Li-doped MOFs. In each case the zinc cluster couples to six aromatic linkers 

through the O-C-O common to each linker. These MOFs are named according to the 

number of aromatic carbon atoms. The large violet atoms in the linkers represent Li atoms 

above the linkers while small violet Li atoms lie below the linkers. The CxLi ratio 

considers only aromatic carbon atoms.”20 Reprinted from ref.170.  
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Hydrogen uptake increased with increasing surface area (Figure 34), where the 

hydrogen BET surface area was determined using hydrogen adsorption isotherms for Li-

doped MOF at 300K compared to the un-doped MOF at 77K, using rigid rotor model for 

hydrogen diameter of 0.351 nm. For both MOF systems without Li and Li-doped, there is 

a linear correspondence of H2 uptake with the H2 BET surface area. It was also found that 

the slope increased with increasing ratio of Li to C. The data confirmed that the Li 

concentration is the driving force for increasing H2 uptake capacity at ambient 

temperature. 

 

 

Figure 34. “Gravimetric H2 uptake at 300 K and 100 bar plotted against the H2 BET 

surface area for MOF without Li and Li-MOF systems.  This demonstrates that both 

surface area and the ratio of Li to C are important for the higher performance in hydrogen 

uptake”.20 Reprinted from ref.170.  
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The promoting effect of Li on H2 adsorption on MOFs was confirmed by Mulfort 

and Hupp groups (Figure 35).175-176 They doped Li on a special Zn MOFs and the hydrogen 

uptakes before and after the Li doping was found to be 0.93 wt % and 1.63 wt % at 77 K 

and 1 bar, respectively. After being doped with Li, the Zn-MOF nearly doubled the 

hydrogen capacity. Notably, the striking increase in H2 uptake cannot be solely attributed 

to strong interactions between H2 and Li. Instead, it is most likely augmented by the 

increased ligand polarizability and framework displacement effects. 

 

 

Figure 35. Left: The chemically reduction of Zn MOF in the solid state by lithium metal; 

Right: the comparison of the hydrogen uptake before and after the lithium reduction. 

Reprinted from ref.176.  

 

5.4.3 Post modification of MOFs by doping catalysts 

Li and Yang groups have successfully demonstrated that the hydrogen uptake 

capacities in MOFs would greatly increase by doping Pt/AC (activated carbon) catalyst 

into MOF materials (Figure 36).177 For spillover experiments, the active carbon was the 

primary receptor for hydrogen spillover and MOFs are the secondary spillover receptor.  

The hydrogen molecules are adsorbed rapidly on the Pt catalyst and then dissociated into 

hydrogen atoms.  Then the hydrogen atoms would diffuse into the active carbon and then 
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to the MOF surface.  The H2 uptake on pure IRMOF-8 was ∼0.5 wt % at 298 K and 100 

bar. In a Pt/AC and IRMOF-8 physical mixture (at 1:9 weight ratio), the hydrogen 

adsorption amount was increased to 1.8 wt % under the same conditions.178  In addition, 

if Pt/AC and IR-MOF-8 are well-connected by more carbon bridges, the hydrogen uptake 

can reach to 4 wt % at 298 K and 100 bar, which is the highest experimental hydrogen 

uptake capacity reported for MOFs at ambient temperature. And there is no apparent 

saturation even at 100 bar, suggesting that a further increase in hydrogen uptake capacity 

can be reached at higher pressures. The isosteric heat of the hydrogen adsorption ranged 

between 20 and 23 kJ mol-1, which can be ascribed to that the hydrogen atoms have a 

much stronger binding ability to both the inorganic metal clusters and the organic linkers 

compared with molecular hydrogen. Similar results were also obtained by using the 

combination of Pt/AC catalyst with other MOFs, including MOF-5, MOF-177, covalent 

organic-framework 1 (COF-1), HKUST-1 and MIL-101.179  
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Figure 36. “High-pressure hydrogen isotherms at 298 K for pure IRMOF-8 (■), 5 wt % 

Pt/AC catalyst (◊), a mixture of Pt/AC and IRMOF-8:  adsorption (○), desorption 

(▲).”1Reprinted from ref.177.  

 

5.5 Summary 

MOFs with defined crystalline structures, extremely high surface areas and very 

high pore volumes can be regarded as good candidate materials for hydrogen storage. 

MOFs usually exhibit excellent performance for hydrogen adsorption at very low 

temperatures, such as 77 K and 87 K. However, it is still a great challenge to store 

hydrogen at ambient temperature, which can be ascribed to the relatively weak interactions 

between molecular hydrogen and MOFs. To achieve high H2 storage capacity in a MOF 

at ambient temperature, the MOF should possess not only a very high surface area but also 

a high isosteric heat of H2 adsorption. 
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6. POROUS ORGANIC POLYMERS FOR POST-COMBUSTION CARBON 

CAPTURE 

 

 

6.1 Introduction 

The CO2 concentration in the atmosphere has increased dramatically in the past few 

decades and is held as one of the major causes for global warming.180 Since the beginning of 

the industrial age, the CO2 concentration has increased from 280 to 390 ppm in 2011, an 

increase of approximately 40%.181 These emissions stem predominately from the burning of 

fossil fuels (coal, petroleum, and natural gas) and are projected to continue to increase in the 

foreseeable future.182 The increase of the CO2 concentration affects the incoming and 

outgoing energy in the atmosphere, resulting in a significant increase of the average 

atmospheric temperature. It is beyond all doubt that strategies to mitigate the increase of the 

CO2 concentration in the atmosphere are urgently required.183 

Carbon capture and storage (CCS)184 is a family of technologies, which can reduce 

CO2 emissions.185-186 CCS includes three steps: a) separation of CO2 from emission sources 

before entering the atmosphere (carbon capture); b) transportation to a storage site; and c) 

permanent subterranean or submarine storage. In the latter two steps, captured CO2 is 

pressurized to ~100 bar or more and transported to a storage site, where it is injected and 

trapped underground for hundreds to thousands of years. So far, a growing number of fully 

integrated CCS projects have reached pilot prior to commercialization. However, the large 

energy penalty and considerable cost of the carbon capture process are slowing down the 

deployment of commercial CCS projects.  
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6.1.1 Carbon capture scenarios 

Exploring cost-effective and scalable technologies for carbon capture from emission 

sources is regarded as one of the most efficient strategies to reduce anthropogenic CO2 

emissions.187 Generally, based on the fundamental chemical process involved in the 

combustion of fossil fuels, three basic CO2 capture scenarios can be adopted: a) post-

combustion capture, b) pre-combustion capture, and c) oxy-fuel combustion.188-189 In 

addition, the carbon capture used for CH4 purification and direct air capture will also be 

discussed. 

Post-combustion capture: The goal of the post-combustion process is to separate 

CO2 from N2 after combustion of fossil fuels before it enters the atmosphere. The combustion 

of fossil fuels in air generates flue gas consisting of 15% CO2, majority N2, and other minor 

components such as H2O, CO, NOx, and SOx (Table 4).159 After the removal of SOx, flue gas 

enters the carbon capture process at near atmospheric pressures and elevated temperatures 

(40 - 80 oC).190-191 This carbon capture scenario is the most feasible on a short time scale since 

many of the proposed technologies can be retrofitted to the existing fossil fuel consuming 

power plants.  

Pre-combustion capture: In pre-combustion capture, a primary fuel reacts with 

oxygen or air, producing synthesis gas (syngas), mainly composed of CO and H2. Then CO 

passes through a shift converter and reacts with steam to produce CO2 (25% - 35%) and 

additional H2 (30% - 50%) at high pressure (5 - 40 bar) in the catalytic reactor (Table 4). 

Therefore, the target in pre-combustion is to separate CO2 from H2.192 The capture usually 

operates at elevated pressures (~30 bar) and temperatures (~40 oC) with an adsorbent bed. A 
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pressure drop is later applied to recycle those adsorbents.189,193 The energy requirement of 

this pressure swing adsorption (PSA) cycle is low. However, the temperature and efficiency 

associated with H2-rich turbine fuel are problematic.  

Oxy-fuel combustion: In a conventional oxy-fuel combustion setup, nearly pure 

oxygen is fed into the plant and diluted with CO2 from the flue steam to a partial pressure of 

0.21 bar. In this way, not only can the temperature of the fuel combustion be easily controlled, 

but also the NOx impurity can be reduced when coal is burned in an O2-enriched 

atmosphere.194 The gaseous product contains mainly CO2 (55 - 65%) and H2O (25 – 35%). 

After condensation and water removal, nearly pure CO2 can be directly subjected to 

sequestration.195 While pre-combustion and post-combustion capture cannot be easily 

implanted for industry, 95% of carbon capture processes has been achieved by oxy-fuel 

combustion.196 One significant advantage of this process is that flue gas is almost entirely 

composed of CO2, which greatly benefits the following separation process. Most of the 

existing power plants can be readily retrofitted with an oxy-fuel combustion system. 

However, the stringent requirement for nearly pure oxygen significantly enhances the cost, 

making the implementation of oxy-fuel combustion challenging.  

CH4 purification: Carbon capture can also be utilized for natural gas purification 

(mainly CH4).197-198 When natural gas is extracted from wells, it often contains 20 – 40 wt% 

of CO2, which is generally vented to the atmosphere. The significant challenge in this 

separation is the special technologies and materials are required to withstand high pressures 

during extraction of natural gas.  
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Table 4. Benchmark parameters showing typical compositions of gases (vol%) in post-

combustion, pre-combustion and methane reformation processes as well as several 

physical parameters relevant to carbon capture.189 

 

 

Post-

combustion 

Pre-

combustiona 

Kinetic 

Diameter (Å) 

Quadrupole 

momentb 

CO2 15-16% 25-35% 3.30 43.0 

N2 70-75% 0.3-2.3% 3.64 15.2 

H2  30-50% 2.89 6.62 

H2O 5-7% 15-40% 2.65  

O2 3-4%  3.45 3.9 

CO 20 ppm 0.5-0.7% 3.75 25.0 

SOx 800 ppm    

NOx 500 ppm    

H2S  0.1-0.2% 3.60  

a)before water-gas shift reaction; b)10-27esu-1 cm-1. 

Direct carbon capture: The target here is to separate CO2 directly from the 

atmosphere, where CO2 is highly dilute with a partial pressure of 400 ppm. Until now, 

relatively few adsorbents have demonstrated effective abilities to remove CO2 through direct 

sequestration.199 However, carbon capture in enclosed environments, such as submarines and 

aircraft, have been reported using materials including supported poly(ethylene imine) or 

poly(ethylene glycol). 
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6.1.2 Currently used materials 

All large scale commercial CO2 capture systems rely on the basic premise of the 

original patent, wherein some bases dispersed in an aqueous solution binds to acidic gases 

present in the flue gas stream. Hundreds of plants operate on these systems with more 

coming on-line in the future.200 The process involves the absorption of CO2 into an 

aqueous solution of amine with low volatility at ambient temperature and the regeneration 

of amine by stripping with water vapor at 100 °C to 120 °C. Aqueous amine solutions, 

however, have several major drawbacks, which have generally made it uneconomical for 

implementation in existing power plants.201 Engineering and system design concerns of 

the typical corrosiveness of amine solutions and vapors means that costly designs must be 

implemented for longevity, and frequent housekeeping is necessary to keep the system 

running safely.202 The volatility and stability of some amines also pose problems in 

material lifetime, requiring additives and recharging of amines that are lost or oxidized.203-

204 In addition, the parasitic energy costs associated with stripping CO2 from the sorbents 

can divert 20-30% of generated energy towards the capture process, resulting in the largest 

economic barrier.205-206 Therefore, commercial amine systems have been developing other 

approaches to tackle the problems inherent involved with aqueous amine capture.207-209 

As an alternative, porous solid materials have been demonstrated as potential 

media for carbon capture,210-212 including zeolites,154, 213-214 porous carbons,215-216 and 

silica217-218. Carbon capture by traditional sorbents, such as zeolites and porous carbons, 

is much more energy-efficient as compared to aqueous amine solutions. First, the absence 

of new chemical bonds formation between the sorbates and sorbents leads to significantly 
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less energy demands for regeneration. In addition, the heat capacities of sorbents are only 

a fraction of that of the amine solution, further reducing the energetic costs involved with 

heating aqueous solutions.219 However, the porous carbons are limited by low CO2/N2 

selectivities, while zeolites suffer from impaired performance in the presence of 

water.220,221 Therefore, there is an urgent need to develop advanced sorbents with excellent 

CO2/N2 selectivity, high CO2 capacity, and enduring performance under flue gas 

conditions. 

More recently, metal-organic frameworks (MOFs) have garnered a significant 

amount of attention as porous materials for carbon capture.7, 189, 222-223 MOFs comprise 

metal-containing nodes and organic linkers that are assembled through coordination 

bonds. They have geometrically and crystallographically well-defined structures and in 

many cases, these structures are robust enough to allow the removal of included guest 

species, resulting in permanent porosity. The crystallinity of MOFs also allows precise 

structural characterization by diffraction methods, thus facilitating their rational design 

and the formulation of structure–function relationships. Such remarkable and easy 

tunability is quite different from those of traditional porous materials, such as zeolites and 

activated carbon. However, constructed with soft Lewis acids and hard Lewis bases, MOF 

materials usually suffer from limited physicochemical stability. 

Porous organic polymers (POPs) are composed predominantly of carbon, boron, 

oxygen, and nitrogen that are connected through strong covalent bonds.16, 22, 224-225 A 

significant number of POPs have been studied for carbon capture, some of which have 

demonstrated promising performances.193 The major advantages of POPs over other 
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porous materials are their high porosity, structural diversity, and ultrahigh 

physicochemical stability, the combination of which enables an enormous scope of 

postsynthetic modifications to introduce specific CO2-philic functionalities. In general, 

POPs can be handled under standard wet chemical reaction conditions without significant 

degradation of the framework or loss of porosity, and are ideal for applications in capturing 

CO2 from harsh flue gas conditions. 

 

6.1.3 Porous organic polymers 

POPs are a new category of hyper-crosslinked polymeric materials constructed from 

organic covalent bonds exclusively.226-228 POPs can be successfully synthesized by 

incorporating multitopic monomers, which provide cross-links between propagating polymer 

chains, into well-known step growth and chain growth polymerizations. POP materials have 

been used in many potential and important applications, such as gas adsorption,229-230 gas 

separation,231-232 optoelectronics,233-234 catalysis,78, 235 proton conductivity,236 chemical 

sensor,237 drug delivery,238 as well as energy storage239-240. Different types of POPs have been 

denoted by various names, including porous polymer networks (PPNs),4, 241 porous organic 

frameworks (POFs),242,243 conjugated microporous polymers (CMPs),244-245 polymers of 

intrinsic microporosity (PIMs),246-247 hypercrosslinked polymers (HCP),248-249 covalent 

triazine-based frameworks (CTFs),250-251 porous aromatic frameworks (PAFs),22, 252 

crystalline covalent organic frameworks (COFs)16-17 and so on. For convenience, we will use 

the term POPs to broadly label these materials. 
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Using POPs as carbon capture materials has the following principal advantages: a) 

constructed from comparatively rigid monomers, POPs can yield pores with rigid walls, 

leading to permanent porosity. The surface areas of POPs are comparable to the most porous 

materials. In particular, PPN-4, made by linking tetrakis(phenyl) subunits using Yamamoto 

coupling, has demonstrated the highest Brunauer–Emmett–Teller (BET) surface areas (6461 

m2/g) among all POP materials published so far.4 b) The synthesis of POPs have drawn from 

an enormous number of modern bond forming methodologies, including boronic acid 

condensation,17, 253 metal-catalyzed coupling,4, 12, 14, 254 imine formation,15, 255-256 Friedel-

Crafts alkylation,13, 251 and so on. The assembly process of POPs combines merits of the 

enormous reaction choices and rational design of monomers, leading to numerous structural 

topologies and diversified porosities. c) POPs, composed of light elements (typically H, B, 

C, N, and O), are usually lightweight materials, therefore, their gravimetric carbon capture 

capacities tend to be higher. d) Due to the nature of covalent bonds, POPs usually have very 

high stability compared with most MOFs, which are linked through coordination bonds. 135, 

136 The exceptional chemical and water stability enable their reusability. The combination of 

favorable properties of large surface area, tunable pore size, high stability and easy 

functionalization enable POPs as ideal candidates for carbon capture. Although some 

excellent reviews already documented the synthesis and application of POPs,3, 257-258 very 

few review reports have focused on the developments and achievements of POP materials 

for carbon capture.193, 259 

This review is intended to provide readers with a comprehensive overview of the 

considerations associated with carbon capture using POPs. First, various definitions and 
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terminologies used to evaluate the performance of POPs for carbon capture, including the 

CO2 capacity, enthalpy of CO2 adsorption, selectivity and frequently used regeneration 

strategies are introduced in Section 2. A detailed correlation study between the structural and 

chemical features of POPs and their adsorption capacities will also be discussed, focusing on 

their physical interactions (Section 3) and chemical reactions (Section 4). Ultrahigh-surface-

area POPs usually have weak physical interactions with CO2 molecules, and they could find 

use in pre-combustion carbon capture, where the processes operate at elevated pressures.222, 

260-262 Chemical functionalization of POPs with polar groups, including nitrogen-rich 

groups,263-264 oxygen-rich groups,265-266 and inorganic ions,241, 267-270 can be utilized to 

enhance the average dipole-quadruple interactions with CO2 with a result of improved CO2 

capacity. Moreover, alkyl-amine functionalized POPs can undergo chemical reactions with 

CO2 and therefore tend to have higher adsorption enthalpies and selectivities.12, 271-273 Such 

materials have great potential for practical applications in post-combustion carbon capture. 

Finally, a concise outlook for utilizing POPs for carbon capture will be discussed in Section 

5, noting areas in which further work is needed to develop the next-generation POPs for 

practical applications. The current challenges toward using POPs in CO2 capture will be 

outlined clearly so that the relevant scientific fields can move the conversation forward 

towards practical solutions. 

 

6.2 Carbon capture in porous organic polymers based on physical interactions 

POPs have been proven to be the potential materials in carbon capture applications, 

which can be attributed to the large permanent surface areas, suitable pore size 
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distributions, as well as suitable interactions with carbon dioxide.274 The CO2 uptake 

capacities at 1 bar and 273 K, the CO2 uptake capacities at 1 bar and 298 K, the CO2 uptake 

capacities at 0.15 bar and 298 K, CO2/N2 selectivity and heats of adsorption for selected 

POPs are listed in Table 5. Note that some data have been taken approximately from the 

figures or curves published in the literature. Many POPs exhibit good performances for 

carbon capture at 1 bar and 273K/298K. Notably, it is important to address the conditions 

relevant to the post-combustion carbon capture process of CO2 (0.15 bar, 40 oC). We urge 

that these pressure and temperature conditions be implemented as standard conditions in 

future reports of CO2 adsorbent testing in order to effectively evaluate their applicability 

to post-combustion carbon capture and expedite the design and discovery process. 

CO2 adsorption is a well-established CO2 separation approach used in the chemical 

and petroleum industries today. Adsorbents typically fall into either of two categories: 1) 

physical adsorption, which is temperature and pressure dependent (adsorption occurs at 

high pressures and low temperatures) and 2) chemical adsorption, where adsorption of 

CO2 depends on the acid–base neutralization reaction.275 For the physical adsorption 

mechanism, the separation of gas mixtures mainly depends on the physical properties of 

gas molecules, as discussed previously in Section 2.3. Materials that physically adsorb 

CO2 usually consume less energy to regenerate because lack of new bond formation 

between the adsorbate and sorbent, as in the case of chemisorption. Hence, chemical 

functionalization of POPs with polar groups can be utilized to enhance the average dipole-

quadruple interactions with carbon dioxide, leading to higher carbon capture capacity as well 

as higher selectivity. 
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Table 5. Summary of low pressure CO2 uptakes, CO2/N2 selectivity and heats of adsorption 

in selected POPs. 

  

POPs 
Main functional 

group 

BET 

(m2g-1) 

CO2(mmo

l/g) 

1bar, 

273K 

CO2(mmo

l/g) 

1bar, 

298K 

CO2(mmol/

g) 

0.15bar, 

298K 

CO2/N2 

Selectivity# △HCO2 

(kJmol
−1) 

Ref. 

IAST 
Henry’

s law 

COF-1 None functional 750 2.23      222 

COF-5 None functional 1670 1.34      222 

COF-6 None functional 750 1.40      222 

COF-8 None functional 1350 1.22      222 

COF-10 None functional 1760 1.02      222 

COF-102 None functional 3620 1.38      222 

COF-103 None functional 3530 1.39      222 

BILP-1 Benzimidazole 1172 4.27 2.97 0.69  36 26.5 276 

BILP-2 Benzimidazole 708 3.38 2.36   71 28.6 277 

BILP-3 Benzimidazole 1306 5.11 3.00 1.02  31 28.6 278 

BILP-4 Benzimidazole 1135 5.34 3.59   32 28.7 277 

BILP-5 Benzimidazole 599 2.91 1.98   36 28.8 277 

BILP-6 Benzimidazole 1261 5.00 2.84 1.07  39 28.4 278 

BILP-7 Benzimidazole 1122 4.39 2.77   34 27.8 277 

BILP-10 Benzimidazole 787 4.09 2.55 0.73 57  38.2 279 

BILP-11 Benzimidazole 658 3.09 2.00 0.61 56  32.0 279 

BILP-12 Benzimidazole 1497 5.07 3.18 0.72 31  27.6 279 

BILP-13 Benzimidazole 677 2.57 1.79 0.43 32  26.7 279 

BILP-15 Benzimidazole 448 2.61    63 33 280 

BILP-16 Benzimidazole 435 2.60    49 32 280 

BILP-

15(AC) 
Benzimidazole 862 3.41    50 28.9 280 

BILP-

16(AC) 
Benzimidazole 643 3.41    49 31.6 280 

BIPLP-1 
Bis(imino)pyrid

ine 
1580 2.30 1.20 0.25  16 32.2 267 

Cu/BF4/ 

BIPLP-1 

Bis(imino)pyrid

ine and CuBF4 
380 2.5 1.75 0.53  64 32.3 267 

BILP-101 Benzimidazole 536  2.47 0.82 71 80 33 281 

TBILP-1 
Triazine and 

benzimidazole 
330 2.66 1.77 0.55 62 63 35 282 

TBILP-2 
Triazine and 

benzimidazole 
1080 5.18 3.32 0.98 43 40 29 282 

COP-19 Triazine 640 2.44 1.32 0.40 131.2   283 
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Table 5. Continued 1 

POPs 
Main functional 

group 

BET 

(m2g-1) 

CO2(mmo

l/g) 

1bar, 

273K 

CO2(mmo

l/g) 

1bar, 

298K 

CO2(mmol/

g) 

0.15bar, 

298K 

CO2/N2 

Selectivity# △HCO2 

(kJmol
−1) 

Ref. 

IAST 
Henry’

s law 

Azo-COP-

1 
Azo 635 2.45 1.48 0.39 63.7  29.3 284 

Azo-COP-

2 
Azo 729 2.50 1.52 0.41 109.6  24.8 284 

Azo-COP-

3 
Azo 493 1.91 1.18 0.36 78.6  32.1 284 

TB-COP-1 Azo 1340 5.19 3.16 0.74 68.9  25.9 263 

ALP-1 Azo 1235 5.36 3.25  28 27 29.2 285 

ALP-2 Azo 1065 4.79 2.45  26 27 27.9 285 

ALP-3 Azo 975 3.77 2.29  35 35 29.6 285 

ALP-4 Azo 862 3.52 1.84  26 28 28.2 285 

ALP-6 Azo 698 3.48 2.05 0.64   28.6 286 

ALP-7 Azo 412 2.32 1.39 0.41   30.7 286 

POF1B Hydroxyl 917 4.28 2.05 0.49    242 

POF2B Hydroxyl 769 3.52 1.60 0.40    242 

POF3B Hydroxyl 608 2.90 1.47 0.36    242 

NPOF-1-

NH2 
Aromatic amine 1535 5.84 3.77 1.07 25  32.1 243 

NPOF-4-

NH2 
Aromatic amine 554 2.90 1.89  38 40 30.1 287 

PPN-6 None functional 4023  1.4 0.22*   17 269 

PPN-6-

SO3H 
-SO3H 1254  3.6 1.15* 155  30.4 269 

PPN-6-

SO3Li 
-SO3Li 1186  3.7 1.45* 414  35.7 269 

PPN-6-

SO3NH4 
-SO3NH4 593 7.5 3.7 1.78*  196 40 241 

PPN-6-

CH2Cl 
Chloromethyl 1740  1.48 0.25* 13  21 12 

PPN-6-

DETA 
Alkyl amine 555  4.31 3.08* 442  55 12 

PPN-125 Hydroxyl 703  1.87 0.45   25 272 

PPN-125-

DETA 
Alkyl amine 229  2.05 1.43   62 272 

PPN-80 Alkyl amine   1.57 1.02   72 273 

PPN-81 Alkyl amine   1.87 1.36 4716  54 273 

COP-97 Melamine 59 2.34 2.09 1.52 779.2  46 283 

PPN-101 Benzimidazole 1096 2.5 1.45 0.39    67 
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Table 5. Continued 2 

POPs 
Main functional 

group 

BET 

(m2g-1) 

CO2(mmo

l/g) 

1bar, 

273K 

CO2(mmo

l/g) 

1bar, 

298K 

CO2(mmol/

g) 

0.15bar, 

298K 

CO2/N2 

Selectivity# △HCO2 

(kJmol
−1) 

Ref. 

IAST 
Henry’

s law 

TAPOP-1 Triazine 930 4.2     27.8 288 

TAPOP-2 Triazine 940 3.6     34.7 288 

Fe-POP-1 
Porphyrin and 

Fe3+ 
875 5.21      65 

Fe-POP-2 
Porphyrin and 

Fe3+ 
855 5.10      65 

Fe-POP-3 
Porphyrin and 

Fe3+ 
750 2.47      65 

PFPOP-1 Hydroxyl 570 3.34 1.40 0.49 43.7  26.9 289 

PFPOP-2 Hydroxyl 630 4.11 1.86 0.55 52.1  30.2 289 

PFPOP-3 Hydroxyl 530 4.74 2.06 0.60 56.5  32.5 289 

MAPOP-1 Hydroxyl 310 2.86 1.50 0.36   29.0 290 

MAPOP-2 Hydroxyl 660 2.77 1.55 0.43   30.6 290 

MAPOP-3 Hydroxyl 920 2.64 1.57 0.43   31.8 290 

MAPOP-4 Hydroxyl 820 3.07 1.80 0.45   29.5 290 

MKPOP-1 Hydroxyl 510 1.98 1.41 0.43   23.5 291 

MKPOP-2 Hydroxyl 160 1.43 1.07 0.39   18.3 291 

MKPOP-3 Hydroxyl 590 2.61 1.68 0.45   27.1 291 

MKPOP-4 Hydroxyl 480 1.93 1.32 0.43   23.6 291 

PCP-Cl Pyridinium, Cl- 755 2.31 1.40 0.34 34  28.5 292 

PCP-BF4 
Pyridinium, 

BF4
- 

586 2.20 1.33 0.34 30  31.6 292 

PCP-PF6 
Pyridinium, 

PF6
- 

433 1.78 1.07 0.27 36  30.8 292 

Polymer 1 Phosphonium 1168 2.18 1.09 0.25  56 35.5 268 

Polymer 2 Phosphonium 1015 2.80 1.61 0.41  45 30.1 268 

Polymer 3 Phosphonium 904 2.32 1.45 0.30  36 27.2 268 

Polymer 4 Phosphonium 852 2.84 1.55 0.41  28 24.2 268 

Polymer 5 Phosphonium 823 2.57 1.48 0.34  46 25.9 268 

Polymer 

2+6 
Phosphonium 770 2.93 1.70 0.45   30.1 268 

Network A Non-functional 4077 2.65 1.45 0.20  8.7 23.7 260 

Network B Imine 1847 3.29 1.63 0.30  19.5 21.8 260 

Network C Triazole 1237 3.86 2.20 0.5  14.2 33.7 260 

Network D Non-functional 1213 2.42 1.33 0.25  12.2 26.1 260 

Network E Non-functional 1470 2.95 1.77 0.35  9.2 25.4 260 



 

98 

 

Table 5. Continued 3 

POPs 
Main functional 

group 

BET 

(m2g-1) 

CO2(mmo

l/g) 

1bar, 

273K 

CO2(mmo

l/g) 

1bar, 

298K 

CO2(mmol/

g) 

0.15bar, 

298K 

CO2/N2 

Selectivity# △HCO2 

(kJmol
−1) 

Ref. 

IAST 
Henry’

s law 

Network F Aromatic amine 653 1.80 1.08 0.25  12.2 26.7 260 

Network G Carbazole 1056 2.15 1.25 0.30  15.1 26.6 260 

Network-1 Hydroxyl 414 1.85 1.25   16 31 13 

Network-2 Hydroxyl 538 2.28 1.46   23 31 13 

Network-3 Hydroxyl 333 1.89 1.24    31 13 

Network-4 Hydroxyl 1015 3.96 2.27    31 13 

Network-

4R 
Hydroxyl 927 3.46 2.21   26 31 13 

Network-

4S 
Hydroxyl 981 3.50 2.21    31 13 

Network-5 Hydroxyl 657 2.79 1.80    31 13 

Network-6 Hydroxyl 650 2.24 1.41    31 13 

CMP-1  837 2.05      265 

CMP-1-

COOH 
Carboxyl group 522 1.60      265 

CMP-1-

(CH3)2 
Methyl group 899 1.62      265 

CMP-1-

(OH)2 
Hydroxyl group 1043 1.80      265 

DA-CMP-

1 
Aromatic amine 662 2.28 1.35 0.30 60.4 37.1 30 244 

DA-CMP-

2 
Aromatic amine 603 1.64 0.95 0.24 63.1 33.1 30 244 

TCMP-0 Triazine 963 2.38 1.34 0.25  9.6  245 

TNCMP-2 Triazine 995 2.62 1.45 0.30  7.6  245 

TCMP-3 Triazine 691 2.25 1.26 0.20  25.2  245 

TCMP-5 Triazine 494 1.22 0.68 0.15  17.0  245 

TB-MOP Aromatic amine 694 4.05 2.57 0.80  50.6  293 

PAF-1 Non-functional 5600 2.05 1.08    15.6 262 

PAF-3 Non-functional 2932 3.48 1.82   87 19.2 262 

PAF-4 Non-functional 2246 2.41 1.15   44 16.2 262 

PAF-26-

COOH 
Carboxyl group 717 2.32 1.45 0.33 20  28.1 270 

PAF-26-

COOLi 
Inorganic ion 591 2.54 1.61 0.36 24  31.8 270 

PAF-26-

COONa 
Inorganic ion 483 2.67 1.61 0.36 53  35.0 270 
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Table 5. Continued 4 

POPs 
Main functional 

group 

BET 

(m2g-1) 

CO2(mmo

l/g) 

1bar, 

273K 

CO2(mmo

l/g) 

1bar, 

298K 

CO2(mmol/

g) 

0.15bar, 

298K 

CO2/N2 

Selectivity# △HCO2 

(kJmol
−1) 

Ref. 

IAST 
Henry’

s law 

PAF-26-

COOK 
Inorganic ion 430 2.41 1.54 0.40 50  32.6 270 

PAF-26-

COOMg 
Inorganic ion 572 2.76 1.67 0.40 73  30.0 270 

PAF-30 Triazine 540 2.39 1.53 0.52   36.9 264 

PAF-33 Non-functional 821 2.16 1.25 0.27  19.4 27.4 294 

PAF-33-

NH2 
Amino group 370 1.19 0.75 0.33  79.8 32.9 294 

PAF-33-

COOH 
Carboxyl group 445 1.94 1.21 0.29  104.3 30.0 294 

PAF-34 Non-functional 953 2.50 1.39 0.17  26.3 27.2 294 

PAF-34-

OH 
Hydroxyl group 771 2.21 1.25 0.27  39.1 30.7 294 

PAF-35 Non-functional 567 1.77 1.01 0.22  29.9 30.3 294 

PAF-56P Triazine 553.4  1.52 0.33 40   295 

POM1-IM 
Imidazolium 

salt 
926 3.16     25.6 296 

POM2-IM 
Imidazolium 

salt 
653 3.30   13  31.1 296 

POM3-IM 
Imidazolium 

salt 
575 3.23     31.5 296 

POM4-IM 
Imidazolium 

salt 
632 2.41      296 

POM5-IM 
Imidazolium 

salt 
50 1.30      296 

POM6-IM 
Imidazolium 

salt 
659 1.25      296 

PON-1 Non-functional 1422  2.61 0.55    297 

PON-2 Non-functional 168  0.77 0.27    297 

PON-3 Non-functional 51  0.86 0.32    297 

[HO2C]25%-

H2P-COF 
Carboxyl group 786 2.18 1.32 0.34   38.2 266 

[HO2C]50%-

H2P-COF 
Carboxyl group 673 3.05 1.52 0.34   39.6 266 

[HO2C]75%-

H2P-COF 
Carboxyl group 482 3.57 1.64 0.34   41.2 266 

[HO2C]100%

-H2P-COF 
Carboxyl group 364 3.95 1.73 0.50 77  43.5 266 

CPP 
Triazole and 

amine 
579 3.57 2.27 0.72  94 33.5 298 

Cage 2 Imine 533 3.00      299 
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Table 5. Continued 5 

POPs 
Main functional 

group 

BET 

(m2g-1) 

CO2(mmo

l/g) 

1bar, 

273K 

CO2(mmo

l/g) 

1bar, 

298K 

CO2(mmol/

g) 

0.15bar, 

298K 

CO2/N2 

Selectivity# △HCO2 

(kJmol
−1) 

Ref. 

IAST 
Henry’

s law 

om-ph-MR Melamine 256 2.50 1.77 0.86  100 32.2 300 

SNU-C1-

sca 
Triazole 830 4.38 3.14 0.75   31.2 301 

SNW-1 Melamine 821  2.19 0.67 50  35 302 

TCPF-

4(dried) 
Aromatic amine 1404 4.66 2.86 0.80  56 30 303 

TCPF-4 

(humidifie

d) 

Aromatic amine 1404 3.00 1.75     303 

TBMID Aromatic amine 688 3.30 2.20 0.50  58.8 33.5 304 

PECONF-1 Aromatic amine 499 1.86 1.34  135 51 29 305 

PECONF-2 Aromatic amine 637 2.85 1.98   44 31 305 

PECONF-3 Aromatic amine 851 3.49 2.47   41 26 305 

PECONF-4 Aromatic amine  2.95 1.96   51 34 305 

#CO2/N2 selectivity at 298 K. *CO2 uptake at 0.15 bar and 295 K. 

 

 

6.2.1 Non-functionalized porous organic polymers 

To date, a number of different types of coupling reactions and monomers have 

been successfully applied to synthesize various POPs. POPs with ultrahigh-surface-area 

usually have very weak physical interactions with CO2 molecules and are thus applicable 

as materials in pre-combustion carbon capture. Among them, porous materials constructed 

from boron-oxygen bonds are among the first-reported and well-studied systems, often 

known as COFs.17, 224, 306-308 Diboronic acids undergo condensation reactions, such as 

cyclotrimerization or reactions with ortho-benzenediol moieties to form six or five-

membered rings that lend to network formation.17 Since the formation of boroxine ring is 

quite reversible, such COFs typically have good crystallinity with long-range order, 
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making it possible to precisely design new COFs with atomic level control. Moreover, 

boroxine ring-based COFs usually have a narrow pore size distribution compared with 

amorphous porous materials. Unfortunately, the boroxine rings show relatively high 

sensitivities to moisture, which results in framework decomposition and reformation of 

boronic acids. As a result, boroxine-linked COFs may not be appropriate materials for 

CO2 capture. The introduction of specific functional groups onto the surface of such COFs, 

either by using pre-synthetic monomer or post-functionalization, may improve their water 

stability or enable their application in high-pressure CO2 separation.309-313 

Unlike the moisture sensitive nature of boroxine rings, polymers based on carbon-

carbon bonds are relatively stable. Common strategies, such as Suzuki coupling,297, 314 

Sonogashira reaction,260, 315-317 Yamamoto reaction,4, 262, 269, 318-319 Eglinton coupling,225, 

320 and Friedel-Crafts reaction,321, 322 give rise to the carbon-carbon coupling to produce 

amorphous solids. One of the current benchmark polymer for carbon capture is PPN-6,269 

also known as PAF-1.318 The irreversible nature of carbon-carbon bond formation 

precludes the formation of structures with long-range order. Structural disorder and 

defects lead to relatively broad powder X-ray diffraction (PXRD) peaks and pore size 

distributions observed in amorphous polymers. These materials have the potential to be 

applied in carbon capture due to their extraordinary chemical and thermal stabilities, large 

surface areas, and low cost. 

Several aspects of POPs have been intensively studied and applied in order to 

guide the design and improve the carbon capture properties of these porous polymers. In 

general, it has been observed that: 1) Larger surface area will provide more adsorption 
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sites and 2) proper design of pore size that are compatible with the dimensions of CO2 

molecules will significantly improve the selectivity of POPs over other gaseous 

components in a mixture. 

 

6.2.1.1 The effect of surface area on carbon capture 

High surface area is one of the most notable properties of POPs. While high surface 

area may have little contribution to adsorption at low pressure,317, 323 it will dramatically 

increase the number of adsorption sites for CO2 at elevated pressures, which is ideal for 

pre-combustion capture process.192 At a significantly high pressure, almost all the 

adsorption sites on the surface are available for CO2 binding. Additional CO2 molecules 

may further condense inside the pores beyond monolayers coverages, creating multiple-

layers, and thus further increasing the overall capacity. It has been reported that the amount 

of excess CO2 uptake is directly related to the total pore volume as well as the BET surface 

area.324 PPN-4, with the highest surface area (6461 m2 g-1), showed excellent CO2 

adsorption at high pressure (3.89 mmol/g at 295 K, 50 bar).4 Thus, targeting high surface 

area polymers is an effective method to synthesizing materials with high CO2 capacity. 

Additionally, the pore properties may also affect the CO2 capacity, which has been 

investigated by Jiang and coworkers.325 The CO2 adsorption capacities of various COF 

materials was simulated at high pressure (30 bar) in order to demonstrate the relationship 

between the CO2 adsorption capacity and various pore properties, such as density, pore 

volume, BET surface area, and free volume. Both the gravimetric and volumetric CO2 

capacities demonstrate corresponding trends with all four of the pore-related parameters. 
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Specifically, the CO2 capacity increases with surface area, porosity, free volume, and 

decreases with density. As previously mentioned, at high pressure conditions CO2 binding 

is maximized, thus an adsorbent with a large free volume and surface area has more space 

and active sites to accommodate sorbate molecules and hence exhibit enhanced CO2 

uptake. Moreover, 3D COFs tend to have lower density and larger free pore volume, 

porosity and surface area than 2D and 1D structures (Figure 37). As a result, 3D COFs 

usually have larger capacities for CO2 adsorption at high pressures. Based on this study, 

the four aforementioned pore parameters could be later applied to evaluate and predict the 

overall theoretical saturated CO2 capacity in other COF materials.  

 

Figure 37.  Co-condensation of boronic acid building blocks to give 2D COFs (COF-1, -

6, -8, and -10) having systematically designed porous structures. Coloring scheme: C, gray; 

B, yellow; O, red. 
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Figure 38. CO2 adsorption isotherms at 298 K in PAFs: (a) at low pressure; (b) at high 

pressure. Reprinted from ref.326  

 

Theoretically, polymers formed from all carbon-carbon bonds are expected to 

follow the same trend, which was evidenced by the simulated results of a series of PAF 

structures.326 As shown in Figure 38, the CO2 capacities of a PAF-30X series (X=1, 2, 3, 

4, representing the number of phenyl rings in the monomers) showed significant 

dependence on the linker length at different pressure regions. At low pressure (Figure 38a), 

the CO2 adsorptions decreased in the order of PAF-301 > PAF-302 > PAF-303 > PAF-

304. This order was exactly opposite to that of the linker lengths but in accord with the 

isosteric heats, since smaller pores lead to stronger interaction with CO2 molecules, and 

isosteric heats dominate the adsorption property at lower pressure. However, structures 

with larger surface areas start to show higher capacities at high pressure (Figure 38b). Near 

the high pressure region (p > 55 bar), where CO2 capacities are approaching the saturated 

values, and the condition is close to pre-combustion practice, the order of adsorption is 

entirely opposite to that at low pressure, i.e. PAF-304 > PAF-303 > PAF-302 > PAF-301, 

indicating that surface area and pore volume dominate the saturated CO2 capacity. In 

contrast, Cooper et al. reported a negative correlation between surface area and linker 
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length in a CMP series.316 Such observations might be caused by possible network 

interpenetration and increased flexibility of longer linkages. 

 

6.2.1.2 The effect of pore size on carbon capture 

Pore structure is one of the key properties to be studied and characterized when 

considering a given POP for carbon capture. In addition to the functionalities present at 

the pore surface, the pore size also dramatically affects the adsorption capacity and the 

selectivity of CO2 over other gases. By targeting pore sizes near the kinetic diameter of 

CO2 (3.3 Å), the number of double or multiple interactions between adsorbed CO2 and the 

pore walls can be increased. Such strategy has been successfully used for hydrogen gas 

storage in different kinds of materials327, including COFs308, CMPs316, PIMs328 and so on. 

Due to the distinct differences between the sizes and polarizabilities of CO2 and other gas 

molecules,329 tuning the pore size to around the diameter of CO2 can lead to enhanced 

carbon capture performance. In such cases, CO2 molecules can interact with multiple faces 

of the pores, while other gas molecules are prevented from forming strong interactions 

because of their lack of or reduced polarizability. Proper design of microporous structures 

is one key criteria to improve the selectivity by a kinetic approach. 

After the first COF material was reported by Yaghi’s group in 2005,16 the pore 

sizes in such COFs have been well studied. As mentioned before, the formation of 

boroxine ring is reversible to some extent, resulting in polymers with certain crystallinity. 

By applying isoreticular chemistry to COF materials, the pore sizes were enlarged 

symmetrically, while the relative crystalline properties were well-maintained. On the other 
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hand, carbon-carbon bond forming reactions are virtually irreversible, producing 

amorphous solids in most cases. For these reasons, precise control of pore properties in all 

carbon-carbon bond containing polymers is notably difficult. 

 

6.2.1.3 Polymer sponge 

Several other types of POPs have also been reported for carbon capture purposes. 

Among them, the hyper-cross-linked polymer (also known as “polymer sponge”), reported 

by Cooper and coworkers, is a unique candidate for pre-combustion CO2 adsorption 

(Figure 39).261 Similar to the carbon-carbon bonds linked polymer, this hyper-cross-linked 

polymer displays extraordinary stability, even in the presence of a boiling acidic solution. 

Although the surface area of this polymer is relatively low, the gravimetric CO2 capacity 

reached 15.32 mmol/g under dry conditions at 298 K and 40 bar. The flexible nature of 

this polymer enables CO2 adsorption via physical swelling, different from that of rigid 

materials. Performance was further enhanced at high pressures leading to a higher CO2 

capacity and an enhanced CO2 selectivity over some of the top performing MOFs and 

inorganic sorbents. Moreover, the adsorption is hardly affected by the presence of water 

vapor due to the hydrophobicity of this carbon-based network. The CO2 sorption remains 

at 13.17 mmol/g under wet conditions at 298K and 40 bar, which is about 86% of their 

dry CO2 capacity. By contrast, the MOF sample, HKUST-1, retains only 28% of its dry 

CO2 capacity under the same conditions, while zeolite 13x only remains 6%. The low-

cost, extraordinary stability, high CO2 capacity, and excellent selectivity makes the 
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polymer sponge a promising candidate for pre-combustion carbon capture in industrial 

settings.  

 

 

Figure 39. Synthesis of the hyper-cross-linked polymer. Adapted from ref. 261.  

 

6.2.2 Nitrogen-rich porous organic polymers 

At this point, it is important to note that targeting high surface area materials may 

not always be the best approach to improve CO2 capacity at low pressure. Incorporating 

specific functional groups in order to enhance CO2-adsorbent interactions may be an even 

more effective strategy. Studies have shown that introducing nitrogen sites in POPs has 

great potential for increasing CO2 uptake and selectivity of the materials through specific 

dipole-quadrupole interactions and/or hydrogen bonding. To date, a series of nitrogen-rich 

functionalities have been incorporated into POPs for higher CO2 uptake and selectivity, 

including aromatic amines, imidazole, triazole, triazine, melamine, azo, imine, imide, 

tetrazole, and so on. 
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6.2.2.1 Aromatic amine functionalized porous organic polymers  

Aromatic amine based POPs refer to polymeric materials containing amine groups, 

that are directly bound to the aromatic rings of the monomers. These POPs can be 

classified into three categories: primary, secondary and tertiary aromatic amine based 

materials. 

In primary aromatic amine based POPs, the CO2 adsorption capacities are often 

related to the existence of nitrogen functional sites and suitable pore sizes for CO2. 243-244, 

287 For instance, as introducing –NH2 groups into NPOF-4 to generate NPOF-4-NH2, the 

isosteric heat of CO2 adsorption (Qst) was improved from 23.2 kJ mol-1 (NPOF-4) to 30.1 

kJ mol-1 (NPOF-4-NH2) (Figure 40).287  The siginificant enhancement originated from the 

large quadrupole moment of CO2 that forms stronger interaction with polar -NH2 groups. 

Besides the enhanced CO2-adsorbent affinity, post-synthetic modification produced 

narrower pores in NPOF-4-NH2 than NPOF-4, that lead to higher Qst in NPOF-4-NH2 by 

multiple wall interactions. 

Similar examples have also been reported in POPs with secondary aromatic amines, 

such as TBMID,304 PECONF,305 and PTPA-3330. The existence of secondary aromatic 

amines groups promotes favorable interactions between polymers and CO2, thus 

enhancing the CO2 uptake. There are two ways to incorporate the secondary amines into 

POPs. In the cases of PECONF, secondary aromatic amine groups are introduced into the 

polymer via the reaction between primary amines and halogenated monomers. By 

removing the generated hydrogen halide, the monomers were cross-link to form networks 

with a high density of secondary aromatic amine groups. PECONF has CO2 uptake of 3.50 
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mmol/g at 273 K and 1 bar. The other way to incorporate the secondary aromatic amine 

groups into POPs is to employ monomers containing secondary aromatic amine groups in 

polymerization, which is found in the synthesis of TBMID.304 Following polymerization 

via Sonogashira-Hagihara cross-coupling, secondary aromatic amine groups from the 

isoindigo monomers were successfully embodied within TBMID. As expected, the strong 

dipole-quadrupole interactions between secondary aromatic amine groups and CO2 

endowed TBMID with high affinity towards CO2, which was supported by the high 

isosteric heats of CO2 adsorption (33.5 kJ mol-1). TBMID also demonstrated a high CO2 

uptake of 3.30 mmol/g at 273K and 1.13 bar with a CO2/N2 selectivity of 58.8. 

 

Figure 40. Schematic representation of NPOF-4 synthesis and its post-synthesis 

modification.  

 

So far, POPs containing tertiary aromatic amine groups have been reported 

most.263, 286, 288-290, 293, 303, 331 Among them, a typical example is Trӧger’s base-derived 

microporous organic polymers (TB-MOPs) 293. In the synthesis of TB-MOPs, tertiary 
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aromatic amines are formed via Trögerization of terminal amines attached to tetrahedral 

monomers through a one-pot metal-free synthetic approach. The CO2 adsorption results 

show 4.05 mmol/g and 2.57 mmol/g at 273 K and 298 K, respectively. Besides the high 

CO2 uptake, TB-MOP also exhibits excellent selectivity for CO2 over N2, which are 45.2 

and 50.6 at 273 and 298 K, respectively. In addition, the heats of adsorption were measured 

in the range of 24.5-29.5 kJ mol-1, which were relatively high in MOP materials but still 

lower than the energy of chemisorptive process. The inherent microporosity could also be 

responsible for the high CO2 capacity due to multiple wall interactions. 

It is worth pointing out that a general trend between the CO2 uptake of POPs and 

the types of aromatic amine (primary, secondary or tertiary) cannot be concluded. The 

CO2 uptake of POPs is a result of multiple variables, such as inherent pore size, surface 

area, and density of polar groups. In general, arylamines have less affinity towards CO2 

compared with alkylamines, since the charge density on arylamine nitrogen sites is lower 

than that of alkylamines. Nevertheless, arylamine incorporated POPs exhibit considerable 

CO2 uptakes and could be considered as good CO2 adsorbents with enhanced stability due 

to rigidity of aromatic units that promote permanent porosity.  

 

6.2.2.2 Benzimidazole-linked porous organic polymers 

El-Kaderi et al. reported the synthesis of a series of benzimidazole-linked 

polymers (BILPs) formed via condensation reactions.276-278, 280-282, 332 For example, BILP-

1, formed by the template-free synthesis from 2,3,6,7,10,11-hexaaminotriphenylene 

(HATP) and tetrakis(4-formylphenyl)methane (TFPM), exhibits a BET surface area of 



 

111 

 

1172 m2 g-1 and CO2 uptake of 2.97 mmol/g at 298 K and 1 bar (Figure 41).276 Notably, 

BILP-1 is stable in the presence of 2 M HCl due to the chemical robustness of the 

imidazole ring. Moreover, BILP-4 shows BET surface area of 1135 m2 g-1 and 

significantly high CO2 uptake of 5.34 mmol/g at 273 K and 1 bar.277 In addition, BILP-

101, synthesized from 1,2,4,5-benzenetetramine tetrahydrochloride (TBA) and 1,3,5-

triformylbenzene, exhibits a CO2 uptake of 0.82 mmol/g at 298 K and 0.15 bar and 

exceptional CO2 selectivity over N2 (80) at 298 K.281 The relatively high CO2 uptake and 

selectivity over N2 and CH4 by BILPs are most likely because of favorable interactions of 

the polarizable CO2 molecules with the framework through dipole-quadrupole interactions 

and/or hydrogen bonding via proton-free and protonated nitrogen sites of imidazole rings. 

 

 

Figure 41. Synthesis of BILP-1. Reprinted from ref. 276.  

 

In order to study the effect of acid on textural properties of BILPs, HCl-free 

amine building units and diluted acid with variable acid/amine ratios are used in the 

synthesis (Figure 42).280 According to the proposed mechanism of imidazole moiety 

formation, the acid protonates the carbonyl groups of the aldehyde moiety and catalyzes 

the formation of imine bond. Since imine-bond formation is reversible, acid can be used 

to control the rate of condensation and thus improve the surface area of the polymers. 
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After optimizing the amount of HCl used and its concentration, the surface areas of 

BILP-15 and BILP-16 increased significantly by 92% and 47%. A noticable increase in 

CO2 uptake was observed from 2.60 mmol/g to 3.41 mmol/g at 273 K and 1 bar.  

In 2014, the El-Kaderi group also reported the synthesis of triazine-based 

benzimidazole-linked polymers (TBILPs), namely TBILP-1 and TBILP-2, by 

condensation reactions of 2,4,6-tris(4-formylphenyl)-1,3,5-triazine (TFPT) with 1,2,4,5-

benzenetetraamine tetrachloride (BTA) and 2,3,6,7,14,15-hexaaminotriptycene (HATT), 

respectively.282 TBILP-1 shows very high selectivity (63) for CO2 over N2 t 298K. TBILP-

2 exhibits significantly high CO2 uptake (5.18 mmol/g) at 1 bar and 273 K, which can be 

attributed to the combined effects of the Lewis basic 1,3,5-triazine and imidazole-building 

units of the frameworks. Both TBILPs shows the moderate isosteric heats of adsorption 

for CO2, which permits high and reversible CO2 uptake at ambient temperature. In the 

same year, the Zhou group reported the synthesis of PPN-101 from tetrahedral aldehyde 

and amine monomer.67 PPN-101 shows a high BET surface area of 1095 m2 g-1 and a CO2 

uptake of 5.34 mmol/g at 273 K and 1 bar. The calculated CO2/N2 selectivity is 199 due 

to the presence of benzimidazole units in the framework. 
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Figure 42. Proposed mechanism of imidazole moiety formation by the acid-catalyzed 

process. Adapted from ref. 280. 

 

Pyrene-derived BILPs are also known for their high surface areas, chemical 

stability and N-rich pore walls, which may have a great potential in CO2 capture and 

separation. Four novel pyrene-derived BILPs were synthesized by Sekizkardes and 

coworkers (Figure 43).279 The BET surface areas of BILP-10, 11, 12, 13 were measured 

to be 787, 658, 1497, 677 m2 g-1, respectively. Among them, BILP-12 demonstrated the 

highest CO2 uptake of 5.07 mmol/g at 273 K and 1 bar, while BILP-11 had the best 

selectivity of 56 for CO2/N2 at 298 K. Overall, these BILPs are very competitive materials 

in terms of CO2 capture and separation.  



 

114 

 

 

Figure 43. Synthesis of BILP-10, BILP-11, BILP-12, and BILP-13. Adapted from ref. 279. 

 

6.2.2.3 Triazole-linked porous organic polymers 

Triazole-linked POPs are usually synthesized by click reactions between azide and 

alkynyl moieties.301 For example, Cooper et al. reported a series of networks synthesized 

by click reactions (Figure 44).260 Among them, network C refers to tetrahedral-based 

polytriazole, which is formed through click chemistry from tetrahedral monomers. 

Although the surface area of network C is not the highest among the studied networks, it 

exhibits the highest CO2 uptake (2.20 mmol/g) at 298 K and 1 bar. The promising CO2 

uptake performance of network C most likely stems from the electron-rich triazole unit in 

the network. Moreover, network C has the highest heat of adsorption (33.7 kJ mol-1) at 

low coverage compared with other networks, which is important for post-combustion 
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carbon capture which occurs in the low pressure regime. In addition, this number is 

maintained at higher coverage. 

 

 

Figure 44. Synthetic route for network C. Adapted from ref. 333. 

 

6.2.2.4 Triazine-linked porous organic polymers 

Introduction of stable electron-withdrawing triazine units into POP systems could 

be advantageous to both in stability and electronic structure of the POP materials.334 

Triazine-linked POPs were first developed by Thomas and co-workers through 

ionothermal synthesis reaction.251 Ordered microporous POPs can be obtained from the 

trimerization of nitrile units in a melt ZnCl2 at 400 oC. Later, perfluorinated triazine linked 

framework (FCTF-1) were reported by Han et al for carbon capture.335 The perfluorinated 

materials often exhibit hydrophobic and lipophobic characteristics as well as the 

extraordinary affinity to CO2. In particular, FCTF-1 has the following advantages: a) the 

N-rich framework favors CO2 adsorption, while the electronegativity of F can further 
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enhance the electrostatic interactions with CO2; b) The incorporation of F results in 

smaller pore size (less than 0.5 nm), which can promote the CO2 adsorption via multiwall 

interactions as well as enhance CO2-N2 separation by kinetic selectivity; c) the 

hydrophobic nature of F units enables the materials great water stability, and more 

importantly, FCTF-1 can retain its high CO2 capture performance even in the presence of 

water; d) since no strong chemical adsorption is involved, regeneration is facile.  

In 2012, the Cooper group reported the synthesis of a series of conjugated 

microporous polymers based on electron-withdrawing 1,3,5-triazine linkage (TCMPs) by 

palladium-catalyzed Sonogashira-Hagihara cross-coupling reaction.245 Although the 

surface areas of the TCMPs were similar to the corresponding benzene-linked CMPs, the 

CO2 capacity was higher. In paticular, TNCMP-2 exhibited high surface area (995 m2 g-1) 

and efficient CO2 uptake (1.45 mmol/g) at 298 K and 1 bar.  

In 2015, Zhu et al. reported the synthesis of porous aromatic framework PAF-

56P via cross-coupling of cyanuric chloride and p-terophenyl monomers (Figure 45).295 

PAF-56P exhibits a three dimensional framework with a large pore size of 12.0 Å and a 

high CO2 uptake (1.52 mmol/g) at 298 K and 1 bar. When PAF-56P was integrated with 

glassy polysulfone (PSF Udel P-3500) matrices to make PAF-56P/PSF hollow fiber 

membranes for CO2 capture, the membranes showed high selectivity of CO2 over N2 (as 

high as 38.9) due to the abundance of basic nitrogen sites in the PAF-56P framework. 
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Figure 45. a) Synthesis of PAF-56P and b) PAF-56P stacked structure drawn by materials 

studio. Adapted from ref.295. 

 
 

6.2.2.5 Melamine functionalized porous organic polymers 

In 2014, the Zhu group reported the synthesis of N-rich SNW-1 from melamine 

and terephthalaldehyde monomers linked through C-N bond formation (Figure 46).302 

SNW-1 exhibits a three-dimensional framework with a surface area of 821 m2 g-1 and 

major pore size around 5 Å.336 The high CO2 sorption capacity and selectivity of SNW-1 

can be attributed to the microporous properties and existence of abundant N-H groups 

present within the frameworks. Small pores of SNW-1 are most likely to be highly packed 

with CO2 molecules via Van der Waals interactions. The N-H moieties in the SNW-1 can 

interact strongly with CO2 molecules, which is favorable for high CO2 adsorption.  

 

Figure 46. Schematic representation of chemical structure of SNW-1. Adapted from ref. 
336. 
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Figure 47. Schematic representation showing the synthetic route of ordered mesoporous 

phenolic-functionalized melamine resin (om-ph-MR). Reprinted from ref. 300. 

 

Despite the high N con tent, melamin resin (MR) cannot be used for carbon capture 

due to its nonporous nature. In 2015, Choi and coworkers reported a co-assembling 

method to make a highly-ordered mesoporous polymeric network with high nitrogen 

content from nonporous melamine resin monomer (Figure 47).300 The phenolic resin (PR) 

units can form hydrogen bonding with a well known surfactant Fluroinc F127 to produce 

a highly ordered mesoporous copolymer network. The resultant polymer om-ph-MR 

shows an unexpected increased CO2 selectivity with temperature rise. The exceptional 

selectivity is likely because of the abundant nitrogen moieties permitting a high binding 

affinity with CO2 plus the presence of the well-defined mesopores (2.5-2.9 nm) facilitating 

N2 release at higher temperature. 
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6.2.2.6 Azo-linked porous organic polymers 

In 2013, Yavuz and Coskun reported the synthesis of nanoporous azo-COPs by 

catalyst-free coupling of aromatic nitro and amine moieties under basic conditions (Figure 

48).284 These azo- COPs have BET surface areas up to 729 m2 g-1 and CO2 uptake up to 

2.50 mmol/g at 273 K and 1 bar. Particularly, these azo-COPs exhibit a significant increase 

in the CO2 selectivity over N2 at increased temperature, which is most likely due to the 

N2-phobic azo groups in the polymer. Monte Carlo simulations reveal that although N2 

adsorption is enthalpically favorable, the entropy loss upon binding of N2 molecules leads 

to N2 phobicity of azo groups. This work also shows the importance of azo groups in 

separation of CO2 and N2 mixtures efficiently, which is promising for the post-combustion 

CO2 separation.  

 

Figure 48. Synthesis route for azo-COPs. Adapted from ref. 284. 

 

In the following year, El-Kaderi et al. reported a facile method to synthesize highly 

porous azo-linked polymers (ALPs) by homocoupling of aniline-like building units 

catalyzed by copper (I) bromide.285 Among them, ALP-1 showes a high BET surface area 

of 1235 m2 g-1 as well as high thermal and chemical stability. In addition, ALP-1 exhibits 
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a remarkable gravimatrical CO2 uptake (5.36 mmol/g) at 273 K and 1 bar. The azo group 

can function as the Lewis basic site, while the electron deficient carbon atom in CO2 can 

function as Lewis acid, generating enhanced dipole-quadruple interactions between these 

two metrics.  

 

6.2.2.7 Imine-linked porous organic polymers 

Utilizing the strategy of formation of imine bonds is a reversible reaction by 

dynamic covalent chemistry, crystalline imine-linked COFs were developed by the Yaghi 

group.15 The imine linked COFs are good candidates for carbon capture due to the 

enhanced affinities of nitrogen atoms to CO2. The imine-based POPs can be synthesized 

by co-condensation of aldehydes with amines or hydrazides. Many research groups have 

focused on developing crystalline COFs via novel synthetic strategies, which would 

greatly promote the development of the imine linked COFs and provide better candidates 

for practical carbon capture.299, 337-345 

In 2012, Banerjee and coworkers reported the two imine-linked COFs, TpPa-1 and 

TpPa-2 for carbon capture (Figure 49).346 These COFs were synthesized via Schiff base 

reactions of 1,3,5-triformylphloroglucinol (Tp) with p-phenylenediamine (Pa-1) and 2,5-

dimethyl-p-phenylenediamine (Pa-2) under solvothermal conditions. Surprisingly, the 

enol-imine group underwent irreversible proton tautomerization to form the keto-enamine 

product. Both TpPa-1 and TpPa-2 showed exceptional acidic stability and water stability. 

TpPa-2 is stable even in 9N NaOH as TpPa-1 and TpPa-2 demonstrated reversible type-I 

adsorption isotherms during the N2 uptake measurement with the BET surface areas of 



 

121 

 

535 m2 g-1 and 339 m2 g-1, respectively. The CO2 adsorption of TpPa-1 and TpPa-2 are 

3.48 mmol/g and 2.86 mmol/g at 273 K and 1 bar, respectively. Additionally, the synthetic 

strategy was applied to other starting materials, such as benzidine (BD), affording TpBD 

COFs. Moreover, TpBD can be obtained with solvent free mechanochemical grinding 

while maintaining its crystallinity and the porosity.347 Microwave-assisted solvothermal 

method was also employed to synthesize TpPa-1, which exhibited enhanced crystallinity 

and porosity with an increased CO2 uptake of 4.95 mmol/g at 273 K and 1 bar.348 To 

further enhance the stability and crystallinity, Banerjee group discovered that introducing 

–OH units adjacent to the –C=N- centers can create intramolecular O-H⋅⋅⋅N=C hydrogen 

bonds.349 The generated COF, namely DhaTph, also showed improved crystallinity and 

chemical stability compared with the COF lacking intramolecular hydrogen bonding. The 

CO2 uptake of DhaTph is 2.91 mmol/g at 273 K and 1 bar. 

 

 

Figure 49. a) Schematic representation of the synthesis of TpPa-1 and TpPa-2 by the 

combined reversible and irreversible reaction of Tp with Pa-1 and Pa-2, respectively. b) 

TpPa-1 stacked structure drawn by materials studio. 
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Figure 50. a) Schematic representation of the synthesis of COF-JLU2. b) Top views of 

the AA stacking structure of COF-JLU2. 

 

An azine-linked COF, namely COF-JLU2, was designed and synthesized by 

condensation of 1,3,5-triformylphloroglucinol and hydrazine under solvothermal 

conditions (Figure 50).350 COF-JLU2 combines the following merits: permanent 

microporosity, high crystallinity, and good stability. The BET surface area of COF-JLU2 

is 410 m2 g-1, while the CO2 uptake is 4.93 mmol/g at 273K and 1 bar. The CO2 adsorption 

capacity is comparable to some excellent POP materials, including CPOP-1 (4.81 

mmol/g)351 and PPF-1 (3.09 mmol/g)352. The excellent CO2 capacity can be attributed to 

the inherent microporosity and the abundant heteroatom activated sites in the skeleton. 

The Qst of COF-JLU2 for CO2 was calculated to be 31 kJ mol-1 at low coverage. The 

selectivity of CO2/N2 was 77, which was calculated using Henry’s law.  
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6.2.3 Oxygen-rich porous organic polymers 

Another commonly used functional groups in POPs to enhance the CO2 binding 

energy by dipole-quadrupole interactions are oxygen-containing moieties, such as the 

hydroxyl groups and carboxyl groups. These functional groups are highly polar, leading 

to the strong dipole-quadruple interactions with CO2. 

  

6.2.3.1 Multi-hydroxyl-containing porous organic polymers 

Han’s group utilized phenol formaldehyde resin (PF) chemistry to construct three 

hydroxyl-containing porous organic polymers (PFPOP 1-3, Figure 51).289 These PFPOP 

materials are prepared by combining four –OH containing phenol with trialdehydes under 

catalyst-free conditions. Due to the carbon-carbon bond linkages, these PFPOPs 

demonstrate high thermal and chemical stability. All of the PFPOPs present Type I BET 

isotherms, with slight sorption hysteresis and specific surface areas of PFPOP-1, PFPOP-

2 and PFPOP-3 are 570, 630, and 530 m2·g-1, respectively. The microporous properties 

and internal structures containing abundant hydroxyl groups make these materials suitable 

for carbon capture. Among them, PFPOP-3 has the highest CO2 storage capacity of 4.74 

mmol/g at 273 K and 1 bar. Meanwhile, PFPOPs show considerable CO2 over N2 

selectivity (43.7 – 56.5 by IAST) in the flue gas composition (CO2/N2 = 15/85) at 273 K 

and 1.0 bar. Han group further explored this type of chemistry and created a series of 

mannitol-based acetal–linked POPs (MAPOPs) with decent CO2 capacities.290  

Compared to MAPOPs, Li and coworkers extended the aromatic acetyl monomers 

to more functionalities.291 The corresponding polymers, namely mannitol-based ketal-
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linked porous organic polymers (MKPOPs), demonstrated BET surface areas steaming 

from 160 to 590 m2·g-1 with exceptionally relative low CO2 adsorption capacities (1.43 

mmol/g to 2.61 mmol/g at 273 K and 1 bar) and relative low heats of adsorption (18.3 - 

27.1 kJ·mol-1).  

 

Figure 51. Synthesis of PFPOP-1, PFPOP-2, and PFPOP-3. Adapted from ref. 289. 
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Figure 52. Synthesis of hydroxyl-containing MOP networks via Friedel−Crafts alkylation 

with FDA at 80 °C for 18 h. Adapted from ref.13. 

 

Later, a series of alcohol-containing POPs were synthesized by Friedel-Crafts 

alkylation reaction of aromatic monomers and formaldehyde dimethyl acetal (FDA) 

(Figure 52).13 CO2 adsorptions were measured under both dry and wet conditions. For 

binaphthol (BINOL) network 1 & 2, naphthalen-1-ol and naphthalen-2-ol were employed 

as monomers, respectively. The CO2 uptakes were found to be 1.25 mmol/g and 1.46 

mmol/g at 298 K and 1 bar, respectively. For network 4, which utilized 4,4'-bi-1-naphthol, 

a much higher CO2 adsorption of 2.27 mmol/g is detected at 298 K and 1 bar. At 273 K, 

network 4 achieved an even higher CO2 uptake at 3.96 mmol/g. The CO2/N2 selectivity 

was calculated up to be 26 for network 4R. The authors also found that these BINOL 

networks, though showing high CO2 uptake under dry conditions, actually adsorbed less 

CO2 in the presence of water, indicating that high CO2 adsorption capacities under dry 
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condition does not guarantee high CO2 adsorptions under more realistic wet conditions. 

 

6.2.3.2 Multi-carboxyl-containing porous organic polymers 

Carboxylic acid groups have been reported to trigger a dipolar interaction with 

carbon dioxide.200, 265, 353-355 Huang and coworkers successfully synthesized a series of 

two-dimensional COFs as outstanding CO2 capture materials through easy channel-wall 

functionalization (Figure 53).266 Carboxyl groups were introduced into the framework via 

a one step, metal-freecatalytic synthesis. The carboxyl groups were located at the termini 

of the pore surfaces and they have similar acidity to that of the free catalytic synthesis. 

Those carboxyl groups were located at the terminus of the pore surfaces and they have 

similar acidities to that of the free carboxylic acid. Moreover, the ratio of carboxyl group 

was easily tuned by adjusting the amount of 2,5-dihydroxyterephthalaldehyde (DHTA) in 

the synthetic process. The BET surface area of [HO2C]x%-H2P-COF decreased from 786 

to 364 m2 g-1 after the modification, and the isosteric heat increased proportionally with 

the increasing amounts of carboxylic acid loading. The functionalization of channel walls 

with carboxylic acid groups significantly enhanced the CO2 adsorption capacity. The CO2 

adsorption of [HO2C]100%-H2P-COF reached to 4.1 mmol g-1 at 273 K and 1 bar, which is 

one of the highest value among all the reported 2D and 3D COFs. The CO2/N2 selectivity 

of-[HO2C]100%-H2P-COF was found to be 77 with the IAST methods. The CO2 capacity 

of [HO2C]100%-H2P-COF was also comparable to those of other top-class members.356, 357 

Furthermore, [HO2C]100%-H2P-COF can be recycled for more than ten cycles without 

significant decline in the uptake capacity, suggesting complete regeneration and excellent 
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cycling performance.    

Figure 53. Synthesis of [HO2C]x%-H2P-COFs with channel walls functionalized with 

carboxylic acid groups through the ring opening reaction of [OH]x%-H2P-COFs with 

succinic anhydride. Adapted from ref.266. 

 

6.2.4 Inorganic ions functionalized porous organic polymers 

Figure 54. Synthetic route for sulfonate functionalized PPNs.  

 

 

Since the introduction of polar functionalities has been shown to significantly 

increase the isosteric heat and CO2/N2 adsorption selectivity,159, 265, 353 Lu and coworkers 

were able to graft PPN-6 with CO2-philic groups. PPN-6 was modified by reacting with 

chlorosulfonic acid to produce PPN-6-SO3H, which was latterly neutralized to PPN-6-
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SO3Li (Figure 54).269 As a result of introducing functional groups into the polymer, the 

corresponding product PPN-6-SO3H and PPN-6-SO3Li demonstrated reduced BET 

surface areas of 1254 and 1186 m2·g-1 , respectively. However, both materials have 

significantly increased gravimetric CO2 uptakes with values of 3.60 mmol/g and 3.70 

mmol/g, respectively. The addition of Li+ in the framework promoted the CO2 uptake by 

providing three open coordination sites to interact with CO2 molecules electrostatically. 

The significant enhancement by Li+ was also observed in the CO2/N2 selectivity (414 for 

PPN-6-SO3Li vs. 150 for PPN-6-SO3H) at 295 K and 1 bar. As expected, PPN-6-SO3H 

and PPN-6-SO3Li showed significantly high heats of adsorption of 30.4 and 35.7 kJ·mol-

1 at zero loading.  

Later, the approach was further extended the use of PPN-6-SO3H by mixing with 

ammonia hydroxide, where the NH4
+ moieties with reduced basicity could bind to CO2 

reversibly (Figure 54). As the result of the incorporation of NH4
+ moieties in the network, 

the BET surface area further dropped to 593 m2·g-1. However, PPN-6-SO3NH4 

demonstrated the higher CO2 adsorption capacity (1.78 mmol/g) at 0.15 bar and 295 K, 

with the calculated adsorption enthalpy of 40 kJ·mol-1 at zero-loading. This moderate heat 

capacity made PPN-6-SO3NH4 easier to regenerate compared to other top performing 

adsorbents. Under the simulated flue gas condition, the IAST adsorption selectivity for 

PPN-6-SO3NH4 was calculated to be 796 at 313 K and 1 bar. Moreover, the working 

capacity of PPN-6-SO3NH4 stemmed from 0.47 mmol/g between 40 oC and 120 oC, to 

1.25 mmol/g between 40 oC and 150 oC.  
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Additionally, Ma and coworkers synthesized another series of carboxylate 

modified porous aromatic framework (PAF-26-COOH), followed by post-metalation with 

Li+, Na+, K+, and Mg2+ for the purpose of increasing CO2 capture.270 After replacement of 

hydrogen with metal ions, the BET surface area decreased with the increasing ionic radius. 

However, the incorporation of metal ions led to improved CO2 adsorption as well as the 

isosteric heat of adsorption. The Qst of PAF-26-COOH was 28.1 kJ mol-1, while that of 

PAF-26-COONa reached to 35.0 kJ mol-1. The Qst values for different metal replaced 

PAF-26-COOM are directly related to the basicities of their compensated alkali or alkaline 

earth ions. The CO2/N2 selectivities were measured by IAST methods, showing that all 

the functionalized PAF-26 materials had high selectivity.  

In order to explore the influences of the ionic charge on CO2 adsorption, Hu and 

coworkers used the conjugated cationic triazatriangulenium(TATA) as the skeleton to 

build two frameworks, TAPOP-1 and TAPOP-2.288 Both of the polymers were synthesized 

via FeCl3-promoted oxidative reaction of thiophene-/carbazole-functionalized TATA 

derivatives (Figure 55). TAPOP-1 and TAPOP-2 demonstrated BET specific surface areas 

of 930 and 940 m2·g-1 with dominantly microporosity. Due to the presence of charges that 

interact with CO2 quadrupole moment, these two polymers exhibited relative high CO2 

uptakes with values of 4.20 mmol/g and 3.60 mmol/g at 273 K and 1 bar, respectively. 

The calculated heats of adsorption were 27.8 and 34.7 kJ·mol-1   
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Figure 55. Synthesis of TAPOPs. Adapted from ref.288. 

  

Buyukcakir and coworkers incorporated 1,1’-bis(4-iodophenyl)-4,4’-bipyridine]-

1,1’-diium salts, with counter ions Cl-, BF4
-, and PF6

-, as the precursors to synthesize a 

series of porous cationic polymers (PCPs).292 By increasing the ionic radius of the counter 

ions (PF6
- > BF4

-> Cl-), the BET surface area decreased from 755 (Cl-), 586 (BF4
-), to 433 

(PF6
-) m2·g-1. As the introduction of counter ions into the polymers, CO2 adsorption 

capacities were not improved compared to the neutral frameworks. However, the isosteric 

heats of adsorption were found in a range of 28.5 - 31.6 kJ·mol-1, which was much higher 

than the values reported for non-charged POPs with similar structures.358 The DFT 

calculation indicated the binding geometries between CO2 and pyridinium ions were found 

similar for these three cases. Interestingly, PCP-Cl demonstrated excellent catalytic ability 

to convert CO2 into cyclic carbonates due to their nucleophilicity and good leaving ability.  
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Considering ionic POPs could have strong interactions with CO2, Wang and 

coworkers reported several hypercrosslinked phosphonium-embedded polymers (Figure 

56).268 The BET surface area varied from 770 to 1168 m2·g-1, which could be a result of 

either the increasing ionic radius or increasing the length of alkyl chains. The DFT studies 

indicated that the phosphonium units in the polymer had high interaction energies, which 

was in good agreement with the high CO2 adsorption capacity. Moreover, the CO2/N2 

selectivity of these polymers also decreased with increasing anion size, while no 

significant changes resulted from the length of alkyl chains were observed. In addition, 

the polymer containing Br- counter ions and methyl chain demonstrated excellent catalytic 

activity in the conversion of CO2 and epoxides into cyclic carbonates, whose efficiency 

were much higher than the polystyrene resin-support phosphonium catalyst.  

 

Figure 56. Synthesis of phosphonium–based polymers.  

 

Arab and coworkers introduced the first highly porous bis(imino)pyridine linked 
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polymer (BIPLP-1) through a bottom-up methods to generate chelating sites in the 

polymerization process under metal-free conditions (Figure 57).267 Postsynthetic 

modification of BIPLP-1 was applied with Cu(BF4)2 to incorporate BF4
- and fluorinated 

ions aiming at increasing the CO2 adsorption capacity. The BET areas of the polymer were 

measured to be 1580 m2 g-1 and 380 m2 g-1 before and after postsynthetic modification. 

Though the surface areas were sacrificed for the modifications, the functionalization 

dramatically enhanced the CO2 uptake capacity by 200% at 0.15 bar due to the strong CO2-

framework interactions. As a result of the postsynthetic modification, the CO2 uptake 

capacity increased by 50% at 1 bar and 298 K. In addition, the CO2/N2 selectivity was 

improved from 16 to 101 at 273 K following functionalization.  

 

  

Wang and coworkers successfully prepared a new series of imidazolium salt-

modified porous hypercrosslinked polymer (POM-IMs) by Friedel-Crafts reaction using 

benzyl halides and modified with N-methylimidazole (Figure 58).296 The synthetic 

approach is based on the one-step Friedel–Crafts alkylation between aromatic monomers 

Figure 57. Synthesis of BIPLP-1 and its postsynthetic modification with Cu(BF4)2. 
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and formaldehyde dimethyl acetal. Though POM-IMs’ porosities decreased upon 

functionalization, the CO2 uptake remained the same or increased slightly. The CO2 

capture capacity was 2.41 – 3.30 mmol/g at 273 K and 1 bar. These materials also 

demonstrated exceptional water resistance. The CO2 capture capacities of the POP were 

maintained after prolonged treatment with hot water (80 ℃, 18 h). Interestingly, these 

materials, compared to traditional polystyrene resin supported imidazolium salts and the 

homogeneous imidazolium salts, showed much higher activities for the conversion of CO2 

into various cyclic carbonates, which may be due to the synergistic effect of the porous 

structure (CO2 capture) and the functionalized imidazolium salt (CO2 conversion). 

 

 

Porphyrin networks with high CO2 uptake have also been reported.63 Modak and 

coworkers used a facile one-pot bottom-up synthesis to achieve a series of porphyrinic Fe-

Figure 58. The typical structure of POM-IM.  
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POPs with exceptionally high CO2 adsorption capacity.65 The synthesis involved the 

crosslinking of repeated porphyrin units through the electrophilic substitution on pyrrole 

with linear di-aldehydes, phenyl complexes and small amounts of FeCl3. Increasing the 

length of phenyl linkers, the BET surfaces areas decreased from 875, 855 to 750 m2·g-1 

for Fe-POP-1, -2, and -3. The strong van der Waals force between CO2 and basic porphyrin 

subunits of Fe-POP-1 were most likely responsible for its high CO2 adsorption capacity of 

4.32 mmol/g at 273 K and 1 bar.  

The Cu(I)-catalyzed click chemistry between alkynes and azides has been widely 

applied in the synthesis of polymers. Recently, a phthalocyanine-based porous polymer 

(CPP) was prepared via Cu(I)-catalyzed click reaction that showed a BET surface area of 

579 m2·g-1.298 CPP also demonstrated very high CO2 affinity with a value of 3.57 mmol/g 

(273 K) and 2.27 mmol/g (298 K) at 1 bar. In addition, the adsorption selectivity of CPP 

was 94 for CO2/N2. The calculated heated adsorption was 33.5 kJ·mol-1. 

 

6.2.5 Multi-functional porous organic polymers 

CMP networks were synthesized via Sonogashira-Hagihara cross-coupling 

reaction of 1,3,5-triethynylbenzene with either 2,5-dibromobenzoic acid or 2,5-

dibromoaniline to yield the corresponding carboxylic acid- and amine-functionalized 

CMP networks (Figure 59).265, 267 Based on the BET surface data of CMPs, Dawson and 

coworkers concluded that the CO2 adsorption was dependent not only on the surface area 

and pore volume but also the pore size and functional groups present. In terms of the 

functional groups, the isosteric heats of CMPs were in the order: –COOH > –(OH)2 > –
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NH2 > –(CH3)2 > non-functionalized. This finding indicated that the acidic functional 

groups may outperform aromatic amino groups in terms of increasing CO2 capture 

capacity surprisingly. Compared to other reported systems, the isosteric heat of CMP-1-

COOH was higher than activated carbon but lower than some MOFs, such as 

HCu(Cu4Cl)3(BTTri)8(en)5, which had high heat adsorption of 90 kJ mol-1, reported by 

Long et al.159 

 

Figure 59. Synthesis of functionalized CMPs using (i) DMF, NEt3, Pd(PPh3)4, CuI, 100

℃, 72 h. Adapted from ref. 265. 

 

A series of porous aromatic framework (PAF) materials for carbon capture were 

synthesized by Sonogashira-Hagihara coupling reactions using tri(4-ethynylphenyl)amine 

and various aryl halides.294 Yuan and coworkers compared the unmodified PAF with -

COOH, -NH2, -OH functionalized PAF in terms of CO2 adsorption capacity, isosteric heat 

and CO2/N2 selectivity. The results showed that PAF-33-COOH had the highest CO2 

uptake at 1.94 mmol/g among all the samples, which proved that the functionalization 

effectively improved CO2 affinity. Based on Henry's law, these PAF materials show high 

CO2 over N2 selectivity, especially for PAF-33-NH2 with an extraordinarily high value of 
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250.5, ranking PAF-33–NH2 among the best porous adsorbents for separating CO2 from 

N2. 

Different strategies have been utilized to carry out the pore surface engineering of 

POPs, such as quantitative click reactions between the ethynyl units and azide compounds 

(Figure 60).359 A variety of functional groups, including ethyl, acetate, hydroxyl, 

carboxylic acid, and amino groups, have been tethered to the pore walls of parent COFs. 

The surface area, pore size and pore volume decreased due to the pore surface 

functionalization. However, the CO2 capacities showed to be highly dependent on the 

interactions of the functional groups and CO2 molecules. The non-polar ethynyl and ethyl 

groups interact weekly with CO2, resulting in poor CO2 adsorption capacities when these 

functional groups were utilized. It was observed that polar ester units could interact with 

CO2 via dipole-quadrupole interactions. As for carboxylic acid and the hydroxyl 

functionalized COFs, they interact via dipole-quadrupole and hydrogen bonding 

interactions, leading to enhanced CO2 capacities. However, the amine groups, which form 

acid-base pairs with CO2, led to the largest CO2 adsorption capacity among this series of 

materials. To sum up, both the CO2 capacity and heat of adsorption decreased in the order: 

EtNH2- > EtOH- > AcOH- > MeOAc- > Et- ~ ethylyl- , which were in the same strength 

order of the interactions between functional groups and CO2. For the strongly interacting 

materials, the maximal CO2 capacities occurred when 50% of the available sites were 

functionalization. This observed phenomenon is the result of a balance between the two 

contradictory effects of enhanced affinity and decreased porosity. These results 
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demonstrated that the precise pore surface engineering played a vital role in enhancing the 

CO2 uptake.  

 

Figure 60. (A) Schematic of Pore Surface Engineering of Imine-Linked COFs with 

Various Functional Groups via Click Reactions; (B) Pore Structures of COFs with 

Different Functional Groups (Gray, C; Blue, N; Red, O). Reprinted from ref. 359.  

 

 

6.3 Carbon capture in porous organic polymers based on chemical reactions 

Chemisorption of CO2 in porous materials involves the reaction between CO2 with 

functional groups in the framework. Adsorption is relatively easy in such cases due to the 

enthalpic favorability, but as such, also disfavors the reverse process, making regeneration 

a power-intensive process. Amine scrubbing process for CO2 capture and separation has 

been well studies since 1930s.360 Due to the well-understood strong interaction between 

amine and CO2, capturing CO2 by aqueous amine solution is very efficient and it is still 

considered as one of the record holder for CO2 uptake. It is worth noting that the 

mechanisms of the reaction between CO2 and different alkylamines are slightly different. 

Reactions between primary and secondary amines and CO2 generate carbamate, whereas 
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tertiary amines, which have steric bulky nitrogen center form bicarbonate.361 Taking 

amine scrubbing as the model, aminated porous materials usually exhibit very large 

adsorption enthalpies for CO2 and high CO2/N2 selectivity. Amine-tethered POPs are one 

of the most promising materials for the separation of CO2 from other gases.362 

In 2009, PAF-1 (also known as PPN-6), a porous polymer possessing an extremely 

high BET surface area of 5600 m2 g−1, was synthesized via the Yamamoto-Ullman cross 

coupling of tetrakis(4-bromophenyl)methane.22 Since then, several other similar porous 

polymers based on other tetrahedral building blocks with high surface areas were reported. 

12, 271, 363 These polymers were functionalized with various alkylamines to increase the 

CO2 uptake and the CO2/N2 selectivity.  

Inspired by the impressive CO2 separation results after incorporation of N,N-

dimethylethylenediamine in a MOF,364 PPN-6 was post-synthetically modified with 

chloromethyl groups.12 Those chloromethyl groups were later used to tether amine groups, 

which selectively react with CO2 (Figure 61). The modified PPN-6 demonstrated not only 

high CO2 capacity but also good selectivity over nitrogen, oxygen, and other molecules 

commonly found in the flue gas. The best performing POP for carbon capture is PPN-6-

CH2DETA with a CO2 uptake of 4.31 mmol/g at 1 bar and 295 K, and approximately 3.08 

mmol/g at 0.15 bar and 295 K. The isosteric heat of adsorption for CO2 is approximately 

55 kJ mol-1, indicating the promising nature of this material for CO2 separation, especially 

at higher temperatures. 
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Figure 61. Synthetic route for polyamine-tethered PPNs. a: 

CH3COOH/HCl/H3PO4/HCHO, 90 °C, 3 days; b: amine, 90 °C, 3 days. 

 

In contrast with other top performance CO2 sorbents such as Mg-MOF-74 which 

collapse under moist conditions,365 (this process has since been mitigated somewhat with 

MOF development to increase water stability366) amine-tethered POPs are not only stable 

to water but also have an improved CO2 capacity, with a decent regeneration energy. 

Several groups have researched the mechanisms of CO2 adsorption and put forward two 

possible explanations (Figure 62). The first mechanism suggestes that two amine moieties 

react with one CO2 to produce a carbamate,367 which can be further converted to urea with 

release of water and complication of later CO2  regeneration.368 The second mechanism 

involves one amine group that reacts with one CO2 molecule and one water molecule to 

produce a tethered ammonium bicarbonate.  

Another approach to amine tethering was demonstrated by preparing PAF-1-CH2-

phthalimide, which was then deprotected by hydrazine to produce PAF-1-CH2NH2 (Figure 

63).363 PAF-1-CH2NH2  exhibited CO2 uptake of 4.38 mmol/g  at 1 bar and 273 K and 1.52 

mmol/g at 0.15 bar and 273 K. The uptake at this pressure may be analogous to the roughly 
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15% partial pressure of CO2 in flue gas and thus may be a more relevant parameter for 

this application. Compared to the CO2 isosteric heat of adsorption (Qst) of 15.6 kJ mol-1 in 

PAF-1, the amine tetered PAF-1-CH2NH2 increased to 57.6 kJ mol-1. As the sorption sites 

are filled with only one amine per anchoring site/monomer, the Qst of PAF-1-CH2NH2 

decreased quickly after initial loading.  

 

 

Later investigations revealed that PPN-6-CH2DETA had an IAST CO2/N2 

selectivity of 3.6 x 1010 and high overall loading of 1.04 mmol g-1, which were superior to 

other materials (Table 6).271 This selectivity value can be understood better by comparing 

the resultant purity of gases after the mixture separation by these materials. The purity of 

the desorbed CO2 from PPN-6-CH2DETA after capture from a gas misture of 0.04% CO2, 

78.96% N2, and 21% O2 is 99.999993%. The high selectivity, and the high purity of 

Figure 62. The mechanism of CO2 adsorpion without moisture (A) and with moisture (B).  
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seperation, in addition to the low energy required for desorption (the heat of adsoption of 

54 kJ mol-1), indicate that this material is by far a top performer for direct air capture for 

CO2 and would also be ideal for other CO2 sorbent applications such as for flue gas 

capture, and especially for applications requiring maintenance of CO2 levels in closed 

atmospheres such as in submarines, spacecraft, and in other scrubber and rebreather 

technologies.  

 

Figure 63. The synthetic procedure for the functionalized PAF-1. The PAF-1 framework 

is schematically represented as an adamantane cage. Adapted from ref. 363. 

 

Despite their promising performance in carbon capure applications, amine 

functionalized PAF-1/PPN-6 materials also have a major obstacle to widespread 

applications. Their synthesis, using Yamamoto polymerization, requires the use of an 

equimolar amount of bis(1,5-cyclooctadiene)nickel(0) (Ni(COD)2), which is both very 
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expensive and non-recoverable. This makes the large scale synthesis of these materials 

non-economical (though still highly promising for some applications such as in scrubbers 

on submarines and in space). Therefore, synthesis of POPs using other coupling reactions 

is necessary to lower the cost. PPN-125 (POF1B), synthesized from phloroglucinol (1,3,5-

trihydroxybenzene) and terephthalaldehyde, only requires HCl as a catalyst and thus is 

cheap enough for widespread applications.242, 272 It also possesses exposed hydroxyl 

moieties which are easily functionalized with epichlorohydrin and diethylenetriamine 

(DETA), resulting in an extremely economical synthesis for PPN-125-DETA (Figure 64). 

 

Table 6. Comparison of CO2 loading, IAST selectivity, and CO2 purity data for CO2 

capture from “air” containing 400 ppm CO2.271 

Material 

CO2  

(mmol/g) 

N2
a N2 + O2

a 

SIAST Purity SIAST Purity 

MgMOF-74369 0.16 401 13.8   

Zeolite NaX369 0.02 166 6.2   

mmen-CuBTTri364 0.05 1239 33.1   

PPN-6-CH2Cl 0.001 11 0.4 11 0.4 

mmen-

Mg2(dobpdc)370 

2.05 4.9E04b 96.1 4.2E04b 94.4 

PPN-6-CH2EDA 0.15 5078 67.0 5086 67.0 

PPN-6-CH2DETA 1.04 3.8E10 99.9 3.6E10 99.9 

a balance gas; b “Molar selectivity” 
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However, it has been found that a higher proportion of tetrafunctional monomers 

compared to bifunctional monomers was found to increase surface area in conjugated 

POPs, due to a greater amount of cross-linking.371 This explains why in PPN-125, a BET 

surface area of only 702 m2 g−1 was found, as opposed to 6400 m2 g−1 for PPN-6.272 After 

amine loading on PPN-125, a CO2 uptake of 1.43 mmol/g was found at 298 K and 0.15 

bar. The heat of adsorption for PPN-125-DETA is 61 kJ mol-1 at zero-coverage, and it 

remains high even at relatively high loadings. This high enthalpy is close to values 

calculated to produce adsorbents which consume a minimum amount of energy overall 

through temperature swing adsorption/desorption when separating CO2 from air.372 The 

high heat of adsorption also suggests a high CO2 uptake at higher temperature. This is why 

POF1B, synthesized from the same reactants as PPN-125 under different conditions and 

investigated for CO2 uptake with unmodified hydroxyl moieties, has very high CO2 

uptakes at 273K and atmospheric pressure, but low uptakes at 298K and low pressure 

compared to amine-functionalized polymers.242  

The low heat capacity of PPN-125-DETA leads reason to why PPN-125-DETA 

has a low regeneration cost that is only one-third of that of monoethanolamine aqueous 

solutions, which are currently used for CO2 capture. Additionally, it was demonstrated to 

have over 90% capacity retention over 50 cycles of CO2 adsorption/desorption. As all tests 

were conducted under dry conditions which could lead to irreversible urea formation, 

PPN-125-DETA should exhibit both better uptake and higher recyclability under realistic 

humid conditions that have yet to be tested.  
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Figure 64. The synthesis of PPN-125-DETA using HCl as a polymerization catalyst, 

triethylamine(TEA) as a weak base to promote the reaction of the hydroxyl groups with 

the epichlorohydrin, and diethylenetriamine(DETA) to open the ethylene oxide ring and  

anchor to the polymer. Reprinted from ref. 272.  

 

Another strategy to incorporate amines into POPs was approached by using them 

as linkers to form a dimeric polymers. The reaction of 2,4,6-tris(chloromethyl)mesitylene 

and ethylene diamine produced PPN-80, while the same reaction templated with 

copolymer P123 produced mesoporous PPN-81 (Figure 65).273 Templates have been 

applied to conventional polymers to enhance the porosities.30 As for porous polymer 

structures, in spite of the fact that most networks guarantee the intrinsic porosities from 

the atomic level, using templates is also an efficient and cheap way to tune the porosities. 

A hiearchical system of pores was formed in PPN-81 and these mesopores not only 

contributed to the porosity, but also served as channels to improve the diffusion of gas 
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molecules. At zero loading, PPN-81 had a higher heat of adsorption for CO2 (72 kJ mol-1) 

than that of PPN-80 (54 kJ mol-1) due to the higher degree of polymerization. In other 

words, PPN-81 had a higher amine density than PPN-80, and acorrdingly a higher a higher 

CO2 uptake at 0.15 atm (approximately 1.87 mmol/g at 295 K vs approximately 1.57 

mmol/g for PPN-80). PPN-81 possessed an excellent CO2/N2 selectivity at 1 bar (4716), 

and recyclability (no loss over 6 cycles). The adsorption temperature of 10°C and 

regeneration (desorption) temperature of 60°C tested would likely be most appropriate for 

applications such as in rebreathers. Overall, the relative performances between PPN-80, 

PPN-81, and PPN-125 suggest that a templated version of PPN-125 should be worth 

investigating. 

 

Figure 65. Polymerization of monomers to form PPN-80 in the absence of template and 

PPN-81 in the presence of template. Reprinted from ref. 273. 

 

PPN-6-DETA and PPN-125-DETA compare favorably to 30% MEA in all tested 

metrics relative to carbon capture applications (Table 7). Additionally, PPN-125-DETA 

both has a far lower cost and higher demonstrated stability than other types of sorbent with 
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higher CO2 uptakes such as mmen-CuBTTri,364 mmen-Mg2(dobpdc),370 or IRMOF-74-III-

CH2NH2,
366

 MIL-101-DETA possesses similar stability and higher CO2 uptake than PPN-

125-DETA at room temperature and 0.15 atm pressure (2.13 mmol/g vs 1.43 mmol/g), but 

the overall cost of MIL-101-DETA synthesis is likely to be much higher.373-374 The 

improvement of approximately 150% in CO2 uptake under these conditions seen between 

PPN-80 and PPN-81 suggests that a templated synthesis of PPN-125 could produce a 

polymer with CO2 uptake of up to 2.30 mmol/g.  

Table 7. Calculated parameters for 30% MEA375-376, PPN-6-CH2-DETA12, 375, and PPN-

125-DETA using a temperature swing adsorption/desorption carbon capture method. 

Values for 30% MEA and PPN-6-CH2-DETA were taken from the literature. 

 

Parameters 

 
30% MEA 

PPN-6-CH2-

DETAa) 

PPN-125-

DETAb) 

Working Capacity 

(mmol/g) 
0.83 2.1 0.97 

Heat capacity at 40 ºC 

(J/g∙K) 
3.5 1.2 1.0 

Δhcap (J/g) 280 84 86 

Δhads (J/g) 100 194 48 

Regeneration Energy (J/g) 380 278 134 

Working 

Capacity/Regeneration 

Energy (mmol/kJ) 

2.2 7.5 7.2 

Energy Efficiency 

(kJ/kgCO2) 
10519 3019 3156 

a)desorption temperature is 115 oC; b) desorption temperature is 120 oC 

 

Testing of these materials under realistic humid conditions may increase the total 

CO2 uptake. A covalent organic polymer (COP-19) synthesized from melamine and 

terephthaldehyde was impregnated with polyethylamine(PEI) to make COP-97, which 
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demonstrated a CO2 uptake of 1.65 mmol/g at 0.15 bar and 298 K with a very high CO2/N2 

selectivity and good recyclability over 10 cycles.283 This uptake increased to 2.38 mmol/g, 

when a moist mixed gas (15% CO2, 3.8% H2O) was used at 297K. As the higher 

temperature facilitates the bicarbonate-forming reaction shown, it further increased to 2.52 

mmol/g at 313K. 

In contrast, what may be currently considered one of the best solid amine CO2 flue 

gas sorbents is a MOF-derived porous carbon monolith saturated with 

tetraethylenepentamine, TEPA@MDCM.377 This material showed a CO2 uptake of 5.6 

mmol g-1 under “simulated flue gas conditions” of 75°C (348 K) and 0.15 atm CO2. This 

material demonstrates a loss of approximately 25% of its CO2 uptake capacity over 80 

adsorption/desorption cycles, and about a 12% mass loss over 90 cycles, indicating 

slightly less stability than a material like PPN-125-DETA with covalently tethered 

alkylamines. The uptake also decreased at a lower temperature, presumably due to slower 

adsorption kinetics in a limited adsorption time in this material with most of the pore 

volume saturated with amines. TEPA@MDCM may also not be low-cost, due to the 

necessity of successively synthesizing the MOF, carbonizing it, and impregnating it with 

alkylamine.  

In general, CO2 uptake by solid alkylamine-based POPs under applicable 

conditions appears to be dominated by the density of accessible alkylamine sites. An 

optimal material is inexpensive, highly stable and recyclable and has an extremely high 

pore volume that is mostly filled with reactive alkylamines providing high uptake and 

selectivity.  
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6.4 Concluding remarks and outlooks 

In conclusion, there has been significant research progress in the exploration of 

POPs as potential porous solid adsorbents for carbon capture. Ultrahigh-surface-area 

POPs can find use in the pre-combustion carbon capture, while the highly functionalized 

POPs can be utilized in the post-combustion carbon capture. Chemical functionalization 

of POPs provides abundant binding sites with CO2 molecules, leading to higher adsorption 

capacities, especially at lower pressure. The affinities between POP materials and CO2 

molecules can be classified into two categories: physical interactions and chemical 

reactions. In the case where physical interactions dominate, bond formation is 

absent/negligible during the adsorption process, and thus the capacity and selectivity at 

low pressures will be relatively low while the regeneration process will be facile. When 

chemical bond formation dominates, they usually have very high selectivity, although the 

regeneration takes more energy. An ideal sorbent for capturing CO2 from post-combustion 

capture should have high CO2 adsorption capacity, high selectivity, minimal regeneration 

energy, and long-term stability under the operating conditions.  

From the foregoing discussions, it is clear that POPs are well on the way to 

fulfilling most of these criteria. However, there are still some aspects in urgent need of 

improvement: a), the crystallinity of the POPs. For the majority of the aforementioned 

examples, the quantity of binding sites occupied by CO2 molecules is far less than the total 

calculated binding sites due to the amorphous nature of the POPs that hinders their full 

accessibility. For example, although large amount of polyamines has been introduced into 

PPN-6-DETA through post synthetic approaches, those amine chains are not arranged in 
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order due the amorphous structure of PPN-6 and the flexibility of amine chains, resulting 

in only one-third utilization of the amine sites. Moreover, amorphous POPs are hard to 

characterize even by PXRD, which makes it difficult to reveal the structure of POPs and 

thus challenging to study the mechanism of CO2 capture. b) For now, the performance of 

carbon capture materials has mostly been evaluated by single component CO2 uptake 

isotherms or the breakthrough experiments using a CO2/N2 mixed gas. However, the 

presence of water and other minor components (O2, CO, SOx, NOx) may have significant 

consequences on the performances of the materials, which needs more exploration. c) The 

synthetic cost should be further decreased in order to scale the materials up for industrial 

application. The expensive catalysts, complicated monomer synthesis as well as the 

tedious post-functionalization would result in very high cost of the material, making it 

impractical for real applications. Nevertheless, tremendous efforts have already been made 

in improving the carbon capture properties of POP materials, and we believe that POPs 

are capable of serving as next-generation materials for real-world carbon capture 

applications. 
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7. CONCLUSION 

 

The exploration of new structures and new applications are of the central value of 

MOFs/PPNs study. In this dissertation, five independent projects based on various 

applications using metal-organic frameworks and porous polymer networks have been 

accomplished. In the first project, utilizing PCN-333(Sc), MIL-100(Sc), MOF-74(Zn), and 

MOF-74(Mg) as templates, a series of Ti-MOFs were obtained using a stepwise 

framework templating strategy. The crystallinity of these Ti-MOFs was well maintained 

throughout, as confirmed from powder X-ray diffraction and gas adsorption 

measurements. This work provides a systematic strategy to construct Ti-MOFs while 

highlighting the potential of Ti-MOFs in photocatalytic applications.  

Secondly, stable metalloporphyrin based PPN-23 and PPN-24, have been 

synthesized through a facile one-pot bottom-up approach. PPN-24(Fe) performs great 

catalytic efficiency as a biomimetic catalyst for the oxidation reaction of ABTS in the 

presence of H2O2.  

Thirdly, we have conducted a very comprehensive study on flexible zirconium 

MOFs, which can be used as switchable catalysts. Single crystal XRD was utilized to 

confirm the structural transformation. The pore size of these Zr MOFs can be modified by 

both the predesigned ligand with different functional groups and the post-functionalized 

strategy by insertion of organic linkers with different sizes. Furthermore, the activity of 

PCN-700-Me2 as a Lewis acid catalyst can be turned on and off, making it a switchable 
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catalyst. The discovery of the switchable catalysis within flexible MOFs will open up a 

field of study intersecting with both crystalline porous materials and switchable catalysts.  

Also, MOFs usually exhibit excellent performance for hydrogen adsorption. As 

way of example, MOFs constructed by carboxylate, azolate or mixed linkers, are 

discussed. The post-synthetic modifications on MOF materials to increase the hydrogen 

storage capacities are also carefully illustrated.  

Last but not least, intensive efforts have been made to investigate porous organic 

polymers (POPs) as one type of the most promising candidates for carbon capture. This 

section provides a critical and in-depth analysis of recent POP research as it pertains to 

carbon capture.  A detailed correlation study between the structural and chemical features 

of POPs and their adsorption capacities are carefully discussed, mainly focusing on the 

physical interactions and chemical reactions. 

In conclusion, functional porous materials have demonstrated great potential in 

various applications, especially in heterogeneous catalysis and gas storage. Porous 

materials with desirable properties can be rationally designed and functionalized for 

specific applications. This work not only demonstrated several strategies of engineering 

functional porous materials for different applications, but also shed light on the 

development of many other functional porous materials and their applications.  
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