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ABSTRACT

In this thesis, we first develop a dynamic relaxation technique to obtain the initial stress

field that is in static equilibrium for elastoplastic dynamic rupture models using a dynamic

solver. Then we examine inelastic response of fault zones to nearby earthquakes. Our

dynamic relaxation method mainly relies on a dynamic loading scheme that is applied on

the model boundary. The main advantage of such an explicit dynamic relaxation is that

the global mass matrix is diagonal. In addition, the global stiffness matrix is not explicitly

assembled. There are two main steps in our dynamic relaxation method for obtaining

the stress field in the inhomogeneous model: first, choose appropriate boundary nodal

force loading for the homogeneous model to obtain the desired stress field; second, apply

the same boundary nodal force loading to obtain the stress field for the same size but

inhomogeneous model. Through the two steps, we present a viable approach to calculate

stress field for inhomogenesous models.

We apply the dynamic relaxation technique to study the inelastic response of the Cal-

ico and Rodman fault zones to the 1992 Landers earthquake. We develop elastoplastic

dynamic rupture models to study the rupture propagation and final slip distribution on the

Landers faults. The initial stress field in the elastoplastic model is obtained through the

dynamic relaxation method. We present the simulation results of the inelastic response in

terms of residual displacement fields on the Earth’s surface, and compare them with the

InSAR observations in the East California Shear Zone. In addition, we compare our simu-

lation results with those of elastic models from previous studies and show the advantage of

elastoplastic models in term of data matching. The simulation results from our elastoplas-

tic models show better match with the observed data compare to the results from previous

elastic models.
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1. INTRODUCTION

The compliant fault zones, also known as low velocity fault zones, are mainly com-

posed of highly cracked and damaged rocks. The geometrical and mechanical properties

of these fault zones can provide invaluable insight to understand the past earthquake rup-

tures and subsequent healing processes. For example, one can infer some mechanics of

earthquake rupture from the responses, such as deformation information and degree of

damage, of nearby compliant fault zones.

1.1 Background and literature review

Our focus will be on the response of compliant fault zones to nearby earthquakes,

which has attracted substantial attention during the last two decades [e.g., Chester et al.,

1993; Sleep, 1995; Chester and Chester, 1998; Ben-Zion and Sammis, 2003; Duan, 2010a].

Previous studies show that some port of the compliant fault zones shows inelastic response

while the rest shows elastic response [e.g., Vidale and Li, 2003]. One of the major ap-

proaches in understanding the responses is to incorporate Interferometric Synthetic Aper-

ture Radar (InSAR) observations into numerical modeling [e.g., Fialko et al., 2002; Fialko,

2004; Barbot et al., 2009]. However, it is still under debate whether the response should

be elastic or elastoplastic [e.g., Duan et al., 2011; Duan, 2011].

In this thesis, we will investigate the inelastic response of Calico and Rodman fault

zones to the 1992 Landers earthquake through comparison with InSAR anomalies in the

same area. Our elastoplastic modeling mainly relies on the recent development of sponta-

neous rupture models [e.g. Duan, 2010a; Duan et al., 2011].

For the elastoplastic modeling, one important step is to figure out the initial stress

field over the whole model region, especially within the compliant fault zone. Obtaining

the initial stress filed through dynamic modeling is still very challenging from numerical
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perspective. In fact, the author could not find any work related to initial stress field with

compliant fault zone in current literature.

Here we propose an explicit dynamic relaxation approach to calculate the initial stress

field when the entire model is in static equilibrium. The explicit dynamic relaxation

method was initially proposed by Day [1965] for solving a static problem via a dynamic

solver. The dynamic solver usually refers to the iterative method that integrating damping

term, virtual mass and time stepping to solve a system until it reaches static equilibrium.

We apply the finite element method to discretize the static equilibrium system [e.g. Duan

and Oglesby, 2006; Duan and Day, 2008; Duan, 2010a,b; Duan et al., 2011]. Such dis-

cretization comes with two computational advantages: the global mass matrix is diagonal

and there is no need to explicitly assemble the global stiffness matrix. The two advantages

largely improve the computation efficiency and make it feasible to attack large systems.

The main ingredient into our explicit dynamic relaxation method is a boundary loading

scheme that applied to the model till it reaches static equilibrium. By static equilibrium,

we refer to both the acceleration and velocity of the system approach zero after certain

period of time. In the boundary loading scheme, we apply appropriate nodal force on the

boundary finite element nodes to obtain the desired stress field. It comes with two steps:

first, find appropriate boundary nodal force loading for the homogeneous model; second,

apply the same boundary loading to the similar model with compliant fault zones.

After the system reaches static equilibrium, the stress field over the whole model re-

gion is generated and will set as input in the elastoplastic dynamic rupture modeling. In

the elastoplastic dynamic rupture modeling, Drucker-Prager yield criterion is implemented

in determining the material failure [e.g. Drucker and Prager, 1952]. In addition, the slip

weakening law is implemented to control the rupture propagation [e.g. Ida, 1972; An-

drews, 1976]. We perform a large amount of parameter tests based on the seismic S value

introduced in Day [1982] and stress drop to obtain the reasonable rupture propagation and

2



final slip distribution on fault. By reasonable we mean that our simulation results on rup-

ture propagation and final slip distribution are consistent with the inversion results of the

Landers earthquake reported in previous studies [e.g. Cohee and Beroza, 1994; Wald and

Heaton, 1994].

Finally, we perform two similar numerical model and take the difference to emphasize

the response merely caused by material difference between compliant fault zones and host

rocks. We will further compare our simulation results with the InSAR observations of East

California Shear Zone (ECSZ) reported in literature [e.g. Cochran et al., 2009; Barbot

et al., 2009].

1.2 Outline of the thesis

The thesis is organized as follows:

1. In Section 2.1, we introduce the fixed end beam model with analytical solution to

verify our dynamic relaxation technique. Then we implement it and show the nu-

merical results as well as compare with analytical solution. This section ends with a

brief discussion on the accuracy of numerical modeling.

2. In Section 2.2 , we apply the boundary loading technique into the homogeneous

earth model to obtain the desired stress field. The numerical results and discussion

will be presented in the end of this section.

3. In Section 2.3, we add a low velocity fault zone into the same size earth model in

Section 2.2 and perform the same boundary loading force to obtain the stress field

over the whole model region. Substantial numerical experiments are presented at

the end of this section.

4. In Section 3.1, we present the modeling for the Landers earthquake as well as two

nearby compliant fault zones: Calico and Rodman. We then introduce the veloc-
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ity structure for the compliants fault zones and the corresponding stress field after

dynamic relaxation.

5. In Section 3.2, we present the results of rupture propagation and final slip distribu-

tion on fault in our numerical modeling.

6. In Section 3.3, we first show our simulation results of the response of Calico and

Rodman fault zones to the Landers rupture. Then we compare them with InSAR

data and present a brief discussion in the end of this section.

7. Finally, summary of this thesis as well as some discussions on future work are re-

ported in Section 4.
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2. DYNAMIC RELAXATION

Dynamic relaxation method provides a way to simulate the actual process of how the

system evolves to static equilibrium during a transient period. The key idea in dynamic

relaxation is to convert a time-independent static problem into a dynamic one via intro-

ducing an inertia term in the equation of motion. The small displacement elastodynamics

is governed by the equation of motion:

∇ · σ + b = ρü (2.1)

where σ is the stress tensor, b is the body force vector, ρ is the mass density, ü is the two

time derivative of global displacement.

Space-time finite element methods are applied to obtain a semidiscrete matrix equation

[e.g. Belytschko et al., 1995; Hughes and Hulbert, 1988; Hulbert and Hughes, 1990]. The

equation of motion is discretized in the follow way:

Mü + αMu̇ + Ku = Mg + Fext (2.2)

where M denotes the global mass matrix and K denotes the global stiffness matrix, Fext

denotes the external loading, α denotes the damping coefficient, u denotes the global

displacement vector, g is gravitational acceleration, ü and u̇ represent the corresponding

global acceleration and velocity vector, respectively.

The nodal elastic restoring force vector f = Ku in Equation (2.2) is found directly

from the stress tensor σ without assembling the stiffness matrix K by applying operator

F to the stress, i.e. F(σ) = Ku. Now let L be the operator that operates on the global

displacement vector to generate stress, the equations are then of the form:

5



v̇ = −αu−M−1[F(σ)−Mg − Fext] (2.3)

u̇ = v (2.4)

σ − L(u) = 0 (2.5)

when the system reaches static equilibrium, we obtain

F(σ)−Mg − Fext = 0 (2.6)

u̇ = 0 (2.7)

σ − L(u) = 0 (2.8)

Give some approximation σ̃ to the equilibrium stress, plug into Equation (2.6) to get

the residual r(σ̃)

r(σ̃) = F(σ)−Mg − Fext (2.9)

We then apply a simple iteration to solve Equation (2.6)-(2.8) by plug Equation (2.9)

into Equation (2.3):

v̇ = −αv−M−1r(σ̃) (2.10)

then solve with Equation (2.10) with Equation (2.4) and (2.5) until v = 0, at which point

the residual will be zero.
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This can be done by splitting the Equation (2.3)-(2.5) and iterating a simple Euler-

explicit calculation:

σj = L(uj) (2.11)

vj+1 = (1 + α4t)vj −M−14t[F(σ)−Mg − Fext] (2.12)

uj+1 = uj +4tvj+1 (2.13)

where the approximation solution σ̃ thus takes a successive values σj, j = 1, 2, 3, ....

When the residual r(σ̃) reaches a small enough stoping criteria (the system is in static

equilibrium), we stop the iteration and obtain the desired stress field over the whole model

region.

The proposed dynamic relaxation method mainly relies on the exterior loading Fext

in Equation (2.2). Specifically, the exterior loading Fext is given by appropriate nodal

force loading on the model boundary. Furthermore, the boundary nodal force loading is

continuously applied on the model boundary until the system reaches static equilibrium.

The implementation of the proposed algorithm is modified based on the community ver-

ified finite element code EQdyna [e.g. Duan and Oglesby, 2006; Duan and Day, 2008;

Duan, 2010a,b; Duan et al., 2011]. The code was developed by Dr.Duan, which mainly

focus on the numerical simulation of 3D dynamic rupture and seismic wave propagation

in inhomogeneous elastoplastic media.

For the equation of motion (2.1), there are typically three boundary conditions: first,

Dirichlet boundary condition, which specifies the values on the solution itself on the

boundary, and it is also known as essential boundary condition; Second, Neumann bound-

ary, which specifies the values of the derivative of the solution, and it is also known as

natural boundary condition; third, Robin boundary condition, which is the combination

7



of Dirichlet and Neumann boundary condition. For different tests, we choose different

boundary condition setup to perform different numerical experiments.

In order to verify the implementation, we perform a set of numerical experiments of

different physical models.

2.1 Fixed end beam model

First, we perform numerical experiment on a classic fixed end beam problem, in which

one end of the beam is subjected to a shear bending. In this test, we fix one end of the beam

on the wall and load the other end by concentrated load as shown in Figure 2.1. In our

implementation, we first mark the different boundary types and assign the corresponding

boundary conditions for the physical model.

The properties of material are given as follows:

1. Density: ρ = 7.8×103 kg/m3

2. Young’s modulus: E = 2.1 ×1011 Pa

3. Poisson coefficient: ν = 0.29

8



Figure 2.1: Physical model of the beam problem

We set the same materials parameters in our code and perform the numerical experi-

ments. The analytical solution of the fixed end beam problem is given in Timoshenko and

Gere [1972]:

d

L
=
FL2

3EI
, where I =

WH3

12
(2.14)

where F is the boundary loading force, E is the Young’s modulus of the beam, L is the

length of the beam, W is the width of the beam, H is the height of the beam, d is the

vertical displacement of loading end of the beam as shown in Figure 2.2.
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Loading da/L (analytical) dn/L (numerical) Error
Test 1 2.0×10−3 2.08×10−3 3.0%
Test 2 4.0×10−3 4.10×10−3 2.5%
Test 3 6.0×10−3 6.20×10−3 3.3%
Test 4 8.0×10−3 8.15×10−3 1.9%
Test 5 1.0×10−2 1.02×10−2 2.0%
Test 6 1.2×10−2 1.23×10−2 2.5%

Table 2.1: Comparison between numerical and analytical results

Figure 2.2: Bending after boundary loading

In order to verify the implementation, we test six different linearly increased loading

forces on the right end of the beam and record the corresponding vertical displacements as

shown in Table 2.1. Here the numerical error is calculated by the formula:

Error = |da/L− dn/L
da/L

| (2.15)
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We also plot the comparison between numerical and analytical results in Figure 2.3.

From the comparison in Table 2.1, one can observe that the numerical results remain quite

close to the analytical solution with error less than 5%. In addition, the numerical results

are also robust with different mesh size in the finite element method.

Figure 2.3: Comparison between numerical and analytical solution

In this section, we have successfully verified the dynamic relaxation method based on

boundary loading scheme with a classical fixed beam problem with analytical solution.

We presented the comparison between the analytical solution and numerical solution as

well as the corresponding error analysis.

2.2 Boundary loading earth model

The purpose of this thesis is to find the stress field for the earth model, especially for

the model with compliant fault zones. In general, there are two steps in finding the stress

status inside the low velocity fault zones. The first step is to find the designed stress status

11



for homogeneous material with appropriate boundary nodal force loading. The second

step is to apply the same nodal force loading on the first step to the inhomogeneous earth

model (with low velocity fault zone inside). Note that many physical parameters in the

models in step one and step two remains the same, except the P-wave and S-wave velocity.

In this section, we mainly focus on the first step which is to find the desired global

stress status over the whole model region by boundary loading as shown in Figure 2.4.

Figure 2.4: Homogeneous Earth model with boundary nodal force loading

In this test, we want to obtain the following stress status over the whole model region:
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σ11 = 1.25σ33 (2.16)

σ22 = 0.75σ33 (2.17)

σ12 = −0.433σ33 (2.18)

σ13 = σ23 = 0 (2.19)

Note that here σ11 refers to σxx in the 3D Cartesian coordinate system, so on so forth.

The material parameters of the model in this test are given as follows:

1. Density: ρ = 2.67×103 kg/m3

2. P-wave velocity: VP = 6.0 ×103 m/s

3. S-wave velocity: VS = 3.464 ×103 m/s

4. damping coefficient α: 0.15

Other parameters such as bulk modulus, shear modulus, Lame’s coefficient, Young’s mod-

ulus, Poisson’s ratio and P-wave modulus can be calculate based on the above parameters.

Note that this model is elastic and plastic deformation is not allowed here. In addition,

there is no fault within the model. Hence, we do not introduce the internal frictional coef-

ficient and cohesion of the material here.

The geometry information of the 3D is given by 20 km × 20 km × 20 km where

Xcoor ∈ [−10 km, 10 km], Ycoor ∈ [−10 km, 10 km] and Zcoor ∈ [0 km,−20 km]. In the

space-time finite element setup, we set dx = 500m and dt = 0.03s (dt ≤ dx
Vp

) in order to

avoid the numerical stability issue. Selection of appropriate nodal force loading is the key

to obtain the desired stress status. We refer to the definition of stress as the load per unit

area shown in Equation (2.20):
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Stress : σ =
F

A
=⇒ F = σ · A (2.20)

where F is the loading force, A is the cross sectional area.

The loading force is applied on the finite element nodes on the model boundary (see

Figure 2.5). In Figure 2.5, we use a mini finite element model (eight elements in to-

tal) to depict the nodes on the boundary. According to Equation (2.20), stress is defined

based on the force applied per unit area. Each face of one element has four nodes and

nodes in different position may contribute differently to that face when applied nodal force

loading.Depending on the various positions, these boundary finite element nodes can be

divided into three different categories: (i) interior boundary nodes, (ii) planar intercep-

tion nodes (exclude corner nodes) and (iii) corner nodes. For the interior boundary nodes

marked in red in Figure 2.5, each one is shared by four elements in that boundary plane

and there are four such nodes in the face of such element, thus the loading force on that el-

ement face should be Stress×Area. For the planar interceptions boundary nodes marked

green in Figure 2.5, each node is shared by two elements on that plane (e.g. x-z plane or

y-z plane), thus the nodal loading force on such element should be 1
2
× Stress × Area.

For the corner boundary nodes marked in yellow in Figure 2.5, each node only belong

one element on each plane (e.g. x-z plane), thus the loading force on that plane should be

1
4
× Stress× Area.
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Figure 2.5: Finite element nodes on the model boundary. In the showcase, there are only

eight finite elements with three different types of boundary nodes on face, edge and corner

of the model, respectively.

The following are the boundary loading force on each plane:

On the boundary parallel to Y-Z plane (Xcoor = Xmin & Xmax)

i. Fnormal dir = 1.25× ρ× g × |zcoor| × dy × dz ,

ii. Fshear dir = −0.433× ρ× g × |zcoor| × dy × dz

On the boundary parallel to X-Z plane (Ycoor = Ymin & Ymax)

i. Fnormal dir = 0.75× ρ× g × |zcoor| × dx× dz ,

ii. Fshear dir = −0.433× ρ× g × |zcoor| × dx× dz
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On the bottom of the model (Zcoor = Zmin & Ymax)

i. Fnormal dir = ρ× g × |zcoor| × dx× dy ,

In addition to model boundary nodes, the boundary between Message Passing Inter-

face (MPI) partitions also need special treatments. In our implementation, the version of

EQdyna has been paralleled with MPI along X-axis. These MPI boundary nodes can be

categorized into type (ii) as planer interceptions. In Figure 2.6, we show an example of

boundary nodes between the MPI partitions along X-axis.

Figure 2.6: Finite element nodes on MPI interface of the model. In this showcase, there is

one type of nodes between MPI partitions which do not overlap with model boundary.

After the appropriate boundary nodal force loading, we plot them in terms of vectors
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over the whole model. Note that the magnitude of loading force is depth dependent as

shown in Figure 2.7.

Figure 2.7: Vector field of the boundary nodal force loading of the homogeneous Earth

model, there are 64 finite elements in total and 56 elements on the model boundary.

After the system reaches the stop criteria of static equilibrium, we obtain the stress

field over the model. We observe that the stress status is almost identical on different

cross section layers of finite element over the whole model region as expected. In order to

visualize the stress field, we plot the element stress of one cross section layer of elements

(in Y − Z plane) in the model shown in Figure 2.8.
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Figure 2.8: Cross section of stress status with free surface loading normalized by σ33. σ11

corresponding to σxx, σ22 corresponding to σyy and σ33 corresponding to σzz, respectively.

From both Figure 2.8, one can observe that the stress field after dynamic relaxation

over the model region is very close to the desire stress field. Note that the stress field on the

top layer of finite element is not quite satisfactory due to the fact that Zcoor corresponding

to surface nodes is 0. Hence, the boundary loading on surface is 0 according to depth

dependent loading scheme. In order to improve the stress field on surface, we assign an

artificial depth to the surface node, namely β · dz (where β ∈ (0, 1), β = 1
3

in the results

showing in Figure 2.9). By applying appropriate artificial surface loading, we improve the

desired stress field on the surface finite element layer as shown in Figure 2.9.

18



Figure 2.9: Cross section of stress status with appropriate surface loading normalized by

σ33. σ11 corresponding to σxx, σ22 corresponding toσyy and σ33 corresponding to σzz,

respectively.

During the numerical experiments, we found that the damping coefficient plays an

important role, especially in term of time duration needed to reach static equilibrium. We

run several tests to examine the damping effect on the same system during the dynamic

relaxation process as shown in Figure 2.10.
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Figure 2.10: Effect of damping coefficient in the dynamic relaxation process, in which one

can find an optimal value for the system to take least time.

One can observe that neither too small nor too large damping coefficient is optimal for

the system to reach static equilibrium in the shortest duration as shown in Figure 2.10. In

this numerical model, α = 0.15 is the optimal value which take the least time to get the

system in static equilibrium.

In this section, we have applied the boundary loading technique into obtaining de-

sired stress field for the homogeneous model. In numerical experiments, we showed that

the proposed scheme is efficient and robust, thus making our method a feasible tool for

obtaining model stress field.

2.3 Stress field for model with compliant fault zone

For the model with homogeneous material, our boundary loading scheme has been

successfully verified. The first step of obtaining the stress field for the model with inho-

mogeneous material ( e.g. models contain compliant fault zone) has been accomplished.
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The next step is to apply the same boundary loading to the same size inhomogeneous

model as shown in Figure 2.11.The compliant fault zones, also known as low velocity

fault zones, are composed of fractured and damaged rocks, where the body wave veloc-

ity has been largely reduced. The geometrical information of compliant fault zones can

be used to infer the mechanics of past earthquake ruptures due to the fact that rocks near

fault core are weakened by micro-fracture events, such as micro-cracking and coalesce

of micro-joints, during dynamic rupture propagation and stress perturbation [e.g. Scholz

et al., 1993; Chester et al., 1993; Chester and Chester, 1998]. For example, the width of

compliant fault zones is a function of total fault displacement [e.g. Savage and Brodsky,

2011]. In order to study the geometrical and mechanical properties of the compliant fault

zones, such as width, depth and rigidity reduction, there have been several attempts in the

past to incorporate the seismic fault zone waves and their corresponding travel time analy-

sis for imaging low-velocity structures [e.g. Ben-Zion, 1998; Li et al., 1998; Ben-Zion and

Sammis, 2003]. In addition, Interferometric Synthetic Aperture Radar (InSAR) technique

has also been applied to study the geologic structure of the compliant fault zones and their

responses to the nearby earthquakes [e.g Fialko et al., 2002; Fialko, 2004; Barbot et al.,

2009]. For the width of the compliant fault zones, seismic studies indicates that it is in the

range of hundred meters while the InSAR studies indicates that it is in the range from one

to several kilometers. For the depth of the compliant fault zones, seismic studies shows

that the damaged fault zone are limited to shallow features of top several kilometer while

InSAR studies imply that it could be extended to several kilometers deep, even the entire

seismogenic zone. For the seismic velocity reduction, seismic studies suggest that the re-

duction is in the range 20% - 40% while InSAR studies suggest that when the reduction

is between 40% to 50% the numerical model fits the observation best. In this thesis, we

will model adapt the width and depth of compliant fault zones suggested by InSAR studies

since our ultimate goal is to compare our numerical results with the InSAR observation
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data. In this numerical model, we set the compliant fault zone to be 3.6 km wide and 2 km

deep, the velocity reduction within the compliant is 40% compare to the host rock.

We marked the compliant fault zone in blue in Figure 2.11, which is about a few

kilometers under the surface of the model. It locates in the middle of the model along

Y-axis and across the whole model along X-axis.

Figure 2.11: Earth model with low velocity fault zone, which is marked in blue on the top

of the model.

The material parameters of the compliant fault zone in our numerical experiment are

given as follows:

1. Density: ρ = 2.67×103 kg/m3

2. P-wave velocity: VP = 2.4 ×103 m/s

3. S-wave velocity: VS = 1.368 ×103 m/s

Similar to the homogeneous model, this model is also elastic and no plastic deforma-

tion is allowed here. So the internal frictional coefficient and cohesion of material is not
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introduced here either.

It is clear that velocity of body waves is much smaller within the low velocity fault

zone.The difference in P-wave and S-wave velocity will lead to other different material

physical properties, such as Young’s modulus, Poisson ratio, etc. It will cause inhomo-

geneous stress distribution around the low velocity fault zone when applying boundary

loading force. After the system reaches static equilibrium, we plot the one cross section

layer of finite element in the model to examine the stress status. Since the low velocity

fault is located in the middle of the model along Y-axis, it is better to take the Y-Z cross

section layer for visualization purpose. In addition, the stress field of these cross section

layers along X-axis is very similar because of the symmetry of the model.
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Figure 2.12: Shallow low velocity fault zone. Cross section of stress status with free

surface loading normalized by σ33. σ11 corresponding to σxx, σ22 corresponding to σyy

and σ33 corresponding to σzz, respectively.

From Figure 2.12, one can observe obvious stress heterogeneity around the low veloc-

ity fault zone. The stress field for the rest of the model remains the preserved relation as

in step one. In addition, the stress ratio within the compliant fault zone is relatively low

compare to that in the intact rocks. The reason is that compliant fault zone has relatively

small deformation compare to that in the intact rock when applying boundary loading

due to the difference in physical properties. In order to further study the effect of low

velocity fault zone location on global stress distribution, we perform several numerical

experiments with low velocity fault zone on different depth of the model. We set its depth
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to be Zcoor ∈ [−2 km,−4 km] and Zcoor ∈ [−10 km,−12 km] as shown in Figure 2.13

and Figure 2.14.

Figure 2.13: Middle depth low velocity fault zone. Cross section of stress status with free

surface loading normalized by σ33. σ11 corresponding to σxx, σ22 corresponding to σyy

and σ33 corresponding to σzz, respectively.
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Figure 2.14: Deep low velocity fault zone. Cross section of stress status with free surface

loading normalized by σ33. σ11 corresponding to σxx, σ22 corresponding to σyy and σ33

corresponding to σzz, respectively.

From Figure 2.13 and Figure 2.14, one can observe that the depth of low velocity fault

zone indeed affect its surrounding stress status. The impact of low velocity fault zone on

surface stress heterogeneity always exists, independent of depth. Considering the fact that

the boundary loading is depth dependent, the deeper the low velocity fault is, the larger

the impact area inside the model is.

In order to fit InSAR data better, Cochran et al. [2009] suggested to apply a gradually

reduced velocity within the compliant fault zone (shown in Figure 2.15) which provides

the best result.
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Figure 2.15: Velocity structure of compliant fault zone reported in Cochran et al. [2009]

Following their idea, we will test different velocity structures within the damaged fault

zones to study their impacts on the stress field when the model reaches static equilibrium.

One can observe that the velocity structure does affect the stress change around the com-

pliant fault zone.

For example, the ratio σ11/σ33 ranges from 0.6 to 1.8 on the interface between the low

velocity fault zone and its host rock as shown in Figure 2.14 (a); the ratio σ12/σ33 range

from -0.65 to -0.25 on the interface between the low velocity fault zone and its host rock

as shown in Figure 2.14 (d).

Now we will implement the idea of gradually changed velocity structure for the mate-

rial of low velocity fault zone to study its impact on the stress field.
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In the following numerical experiments, we set the length of the low velocity fault zone

to be the model length along X-axis, the depth and width of low velocity to be 3.6km and

2 km, respectively. We set the P-wave velocity to be 6000 m/s and 3600 m/s in the host

rock and the low velocity fault zone, respectively. Similarly, we plot its velocity structure

and the corresponding stress status for one finite element layer in the model from the Y-Z

plane.

In the first velocity structure we tested as shown in Figure 2.16, we reduce the P-wave

velocity one by one element from the host rock to low velocity fault zone from both Y and

Z axis direction.

Figure 2.16: Velocity structure 1
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When the system reaches static equilibrium, we plot one cross section layer of finite

element in the model from Y-Z plane shown in Figure 2.17. One can observe that the

range of stress ratio around the low velocity fault zone has reduced comparing to that in

Figure 2.14. The ratio σ11/σ33 has been reduced to [0.9, 1.4] in Figure 2.17 (a) on the

interface between the low velocity fault zone and its host rock compared to [0.6, 1.8]

as shown in Figure 2.14 (a). The ratio σ12/σ33 has been reduced to [−0.3,−0.58] in

Figure 2.17 (d) on the interface between the low velocity fault zone and its host rock

compared to [-0.25, -0.65] as shown in Figure 2.14 (d).

Figure 2.17: Stress status based on velocity structure 1. Cross section of stress status with

free surface loading normalized by σ33. σ11 corresponding to σxx, σ22 corresponding to

σyy and σ33 corresponding to σzz, respectively.
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Though the overall range of stress ratio has been largely reduced, one can still observe

relative large stress ratio change along Z-axis. Hence, we further improve the velocity

structure by add one more transitional layer along the Z-axis within the low velocity fault

zone as shown in Figure 2.18.

Figure 2.18: Velocity structure 2

Similarly, we plot one cross section layer of finite element in the model from Y-Z plane

shown in Figure 2.19. It is quite clear that the velocity structure has been reflected by stress

heterogeneity in Figure 2.19 as one can observe the boundaries between different layers

as shown in Figure 2.19 (a), (b) and (d). The stress heterogeneity within the transitional

layers along Z-axis has been improved compared to that in Figure 2.17.
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Figure 2.19: Stress status based on velocity structure 2. Cross section of stress status with

free surface loading normalized by σ33. σ11 corresponding to σxx, σ22 corresponding to

σyy and σ33 corresponding to σzz, respectively.

In order to further improve the stress heterogeneity along Z-axis, we add two more

transitional layers along the Z-axis within the low velocity fault zone as shown in Fig-

ure 2.20.
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Figure 2.20: Velocity structure 3

The cross section layer of finite element in the model from Y-Z plane has been shown

in Figure 2.21. One can observe relatively smooth change of stress ratio between the layers

with different P-wave velocity within the low velocity fault zone along Z-axis.
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Figure 2.21: Stress status based on velocity structure 3. Cross section of stress status with

free surface loading normalized by σ33. σ11 corresponding to σxx, σ22 corresponding to

σyy and σ33 corresponding to σzz, respectively.

In this section, we applied the boundary loading technique into the inhomogeneous

model with low velocity fault zone. We presented substantial numerical experiments to

study the effect of geometrical and physical quantities of low velocity fault zone on it

surrounding stress field. We found that the stress heterogeneity around low velocity fault

zone is very sensitive to its location, shape and velocity structure. Overall, we presented

a viable way to calculate the stress field for inhomogeneous model through a dynamic

solver.

We will then apply the dynamic relaxation technique in the next section for the elasto-
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plastic dynamic rupture modeling to investigate the inelastic response of compliant fault

zones to the nearby earthquake.
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3. THE INELASTIC RESPONSE OF CALICO AND RODMAN FAULT ZONES TO

THE 1992 LANDERS EARTHQUAKE

In the previous chapter, we have obtained the initial stress field for the compliant fault

zones through the dynamic relaxation technique. In this chapter, we will study the inelastic

responses of the compliant fault zones to the nearby earthquake through an elastoplastic

and dynamic modeling. Specifically, we will investigate the inelastic response of the Cal-

ico and Rodman fault zones to the 1992 Landers Earthquake and compare the simulation

results with the Interferometric synthetic aperture radar (InSAR) data.

The June 28 1992, Mw 7.3 Landers earthquake was the largest earthquake in southern

California in several decades. It occurred in the Mojave Desert in southern California,

which is dominated by a series of right lateral strike-slip faults with the Eastern California

Shear Zone (ECSZ). The responses of compliant fault zones to the Landers rupture have

attracted a great deal of attention during the past decades. Several studies indicate that

some portion of the compliant fault zone exhibits inelastic response while the rest shows

elastic response [e.g. Vidale and Li, 2003; Kang, 2014; Kang and Duan, 2015]. Hence, we

choose the elastoplastic modeling over the elastic modeling in our numerical simulation.

For the elastoplastic modeling, one of the most important steps is to obtain the stress

field over the whole model region, especially within the compliant fault zone. Our dynamic

modeling is composed of two steps: dynamic relaxation and dynamic simulation. In the

dynamic relaxation step, we apply the same boundary loading technique to obtain the

desired stress field over the whole model region. The boundary condition in dynamic

simulation will be the same as in the dynamic relaxation process. Additionally, we need

to pass not only the stress field but also the displacement field from dynamic relaxation

process to dynamic simulation process. In our spontaneous rupture modeling, boundary
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loading might cause faults to slide during dynamic relaxation process. In order to avoid the

movement of these sub-faults, we need to "lock" them during dynamic relaxation process

and "unlock" them at the beginning of dynamic simulation. Here by "lock" we refer to

assigning large enough static frictional coefficient on fault nodes. After the system reaches

static equilibrium, we obtain the desired stress filed over the whole model region and start

the dynamic simulation process.

3.1 Model setup

In our numerical model, we simplify the complicated Landers rupture fault system into

three segments: Johnson Valley fault, Emerson fault and Camp Rock fault from southeast

to northwest. In addition, we ignore the overlapping between sub-faults of the Landers

fault system. The mapview of the three non-overlapping fault segments on the surface

of 3D modeling are shown in Figure 3.1.The azimuth of the three segments are given

as 350◦ for Johnson Valley fault, 332◦ for Emerson fault and 316◦ for Camp Rock fault,

respectively.
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Figure 3.1: Numerical modeling of the Landers earthquake. The origin of coordinate

system locates at the interception between Emerson fault and Johnson Valley fault. Three

fault segments marked in green, two compliant fault zones marked in light blue which

are parallel to the Emerson fault. Profiles AA’ and BB’ will be explored in details in

Figure 3.7.

In the finite element modeling, we apply the mesh degeneration technique introduced

in Hughes (2012) for the meshing of the three-segment branching fault. We set the azimuth

of Camp Rock fault to 314◦ to keep the same branch angle ( θ = 18◦) for both Johnson

Valley fault and Camp Rock fault for simplicity in mesh generation. In our finite element

modeling, the mesh size along x and z direction is set to be 500 m, and 162.5 m along y

direction which is calculated by dx × tan(θ). The size of the whole model is given by
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x ∈ [−80 km, 80 km], y ∈ [−40 km, 40 km], z ∈ [−30 km, 0].

Two compliant fault zones Calico and Rodman are parallel with each other and are

located northeast of the Emerson fault as shown in Figure 3.1, respectively. The Calico

fault zone is about 2 km wide along y-axis, 4 km deep along z-axis and 20km long along

x-axis starting from the middle of Camp Rock fault and ending in the middle of Emerson

fault. The Rodman fault zone is about 2km wide along y-axis, 2 km deep along z-axis and

40km long along x-axis starting from the middle of Camp Rock and ending in the middle

of Johnson Valley fault.

The material parameters of the compliant fault zones in this model are given as follows:

1. Density: ρ = 2.67×103 kg/m3

2. P-wave velocity: VP = 2.4 ×103 m/s

3. S-wave velocity: VS = 1.368 ×103 m/s

4. Internal frictional angle tan(φ): 0.58

5. Cohesion: 0.1 MPa

The material parameters of the intact rocks in this model are given as follows:

1. Density: ρ = 2.67×103 kg/m3

2. P-wave velocity: VP = 6.0 ×103 m/s

3. S-wave velocity: VS = 3.464 ×103 m/s

4. Internal frictional angle tan(φ): 0.85

5. Cohesion: 20 MPa
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In this model, we add velocity structure for both compliant fault zones and the host

rocks for better simulation results following Cochran et al. [2009]. We plot a cross section

of the model to view the velocity structure implemented in our modeling as shown in

Figure 3.2. Note that in the cross section view we only plot the velocity structure around

the compliant fault zones instead of the whole model. Besides, the cross section plane

is chosen for x within [−50 km,−30 km] to cover both compliant fault zones since they

have different length along x-axis.

Figure 3.2: Velocity structure for the Landers model along profile AA’

In Figure 3.2, one can observe that the velocity structure is depth dependent for host

rocks and gradually reduced for compliant fault zones similar to Figure 4 (A) in Cochran
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et al. [2009].

The stress orientation we choose for the elastoplastic modeling is N22◦E , which is

reported in Hauksson [1994] through seismicity analysis in this region from 1981 to 1991.

The desired stress field for the dynamic modeling is given in the following:

σ11 = 0.913σ33 (3.1)

σ22 = 1.086σ33 (3.2)

σ12 = −0.492σ33 (3.3)

σ13 = σ23 = 0 (3.4)

We apply the similar boundary loading dynamic relaxation technique to generate the

stress field for our dynamic modeling. After the dynamic relaxation step is finished, we

obtain the stress field for the whole model region. In order to visualize the initial stress

field for dynamic simulation, we plot the same cross section as in the velocity structure in

Figure 3.3.
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Figure 3.3: Cross section of stress field after dynamic relaxation along profile AA’

One can observe clear stress heterogeneity around compliant fault zones as well as the

host rocks corresponding to their velocity structures as shown in Figure 3.3.

3.2 Rupture process and final slip distribution on faults

The response of compliant fault zones to nearby rupture normally refers to small scale

displacement field, which is largely determined by the rupture propagation and slip dis-

tribution on fault. Specifically, the small scale displacement around the compliant fault

zones is controlled by its dynamic stress perturbation during rupture process. In order to

study the response of compliant fault zones to the nearby Landers rupture, we first need to

verify that the rupture process and final slip distribution on the faults from our numerical

results are consistent with the inversion results reported in Cohee and Beroza [1994] and
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Wald and Heaton [1994].

In our numerical modeling, the location of the three subfaults are given in following

(also shown in Figure 3.1):

Johnson Valley fault

(x, y, z) ∈ [−50 km,−20.5 km]× [−9747.6 km,−162.5 km]× [−15 km, 0 km];

Emerson fault

(x, y, z) ∈ [−20 km, 0 km]× [0 km, 0 km]× [−15 km, 0 km];

Camp Rock fault

(x, y, z) ∈ [0.5 km, 28 km]× [−9097.7 km,−162.5 km]× [−15 km, 0 km].

After the system reaches static equilibrium, we obtain the stress field over the whole

model region. Then we follow the idea introduced in Day et al. [2005] to calculate the

stress on the three fault segments from the element stress in the elastoplastic modeling

as it plays an important role in rupture propagation and on fault slip distribution on fault.

The final slip distribution is determined by the shear stress drop on the faults. The rupture

propagation is determined by the seismic S value defined in Day [1982]:

S =
|σn|µs − τ0
τ0 − |σn|µd

(3.5)

where σn denotes the normal stress on fault, τ0 denotes the initial equilibrium value of

traction, µs denotes the static frictional coefficient, µd denotes the dynamic frictional coef-

ficient. Note that the slip weakening frictional law is applied in our numerical simulation.

According to Day [1982], the large S value will lead to slow dynamic rupture propagation

speed.

The on fault stress calculated from element stress over the whole model region is not

totally uniform mainly due to two facts: first, the stress heterogeneity in the shallow part
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of the model as shown in Figure 3.3; second, the stress heterogeneity caused by the Calico

and Rodman fault zones which was not to far away from the three fault segments as shown

in Figure 3.3. Thus, we need to manually choose appropriate frictional coefficients on

different parts of different fault segments according to the S value defined in Equation (3.5)

in order to match the inversion results. In addition, we add certain amount of cohesion on

the shallow part of the model to avoid abnormal behavior of rupture due to the stress

heterogeneity on surface.

In the dynamic simulation process, we nucleate the Landers rupture at about 7.5 km

deep along Johnson Valley fault and terminate it at 35 s when the slip on fault reaches

the static value. The rupture propagates about 10 km in Southeast direction before it

stops. Along Northwest direction, it propagates and jumps over to the Emerson fault. It

accelerates along Emerson fault and finally jumps to Camp Rock fault before it arrests as

shown in Figure 3.4. The magnitude of Landers earthquake in our simulation is 7.312Mw.

Note that the contour interval is 0.5 s in Figure 3.4. To sum up, the rupture travels around

78 km and 15 km along strike and dip direction, respectively.

As for the final slip distribution, the largest final slip is about 6 m in all three segments

and occurs in the Emerson fault although the rupture is initiated at Johnson Valley fault.

On Johnson Valley fault, the largest final slip occurs at the northeast part instead of its

nucleation center; On Emerson fault, the largest slip occurs in the left center with the

largest magnitude around 6 m. On Camp Rock fault, the largest slip occurs on the right

center close to Emerson fault.

Compare to the inversion result in Figure 3.5 (reported in Cohee and Beroza [1994]

and Wald and Heaton [1994]), the magnitude and main features of final slip distribution

are preserved in our numerical results although there are some mismatch in the deep part

of Johnson Valley and Camp Rock fault.
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Figure 3.4: Rupture contour and final slip distribution in our numerical model. Rupture

contours (a,b,c) and final strike-slip (d,e,f) on Camp Rock, Emerson and Johnson Valley

fault are plotted on top and bottom, respectively. Contour interval is 0.5 s.
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Figure 3.5: Inversion result of final slip distribution on the Landers faults reported in Wald

and Heaton [1994]

3.3 Numerical results of surface displacement around compliant fault zones and

comparison with InSAR data in the ECSZ

After dynamic simulation process is finished, the next step is to study the inelastic re-

sponse of Calico and Rodman fault zones to the Landers rupture. In order to investigate

the surface displacement caused by the compliant fault zones, we need to perform two

numerical models, one with compliant fault zones and the other not. Then we subtract the

displacement field between the two numerical models to generate the residual displace-

ment field. The residual displacement field will show the impact of the compliant fault

zones to the nearby earthquake.

We name the modeling with compliant fault zone target model and the other one ref-

erence model. The only difference between the two models is that the reference model is
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composed of homogeneous material.

The inelastic response in the numerical modeling is determined by Drucker-Prager

criterion when calculate the plastic strain accumulate over time steps. The parameter for

plastic yielding is given in the following:

1. Internal frictional angle tan(φ): 0.85 (intact rocks) V.S. 0.58 (compliant fault zones)

2. Cohesion: 20 MPa (intact rocks) V.S. 0.1 MPa (compliant fault zones)

After we finish the numerical simulation for the two models and subtract them to obtain

the residual displacement on model surface. Note that the residual displacement is a three

dimensional vector field.
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Figure 3.6: Residual displacement along X, Y and Z directions on the Earth’s surface

induced by the Landers earthquake

In Figure 3.6, we plot the residual displacement induced by Landers earthquake on the

model surface around Emerson fault, Calico and Rodman fault zones. In Figure 3.6 (a) -

(c), we show the x component, y component and z component of the residual displacement,

respectively. Note that the black dash line denotes the fault zones in Figure 3.6. One can
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observe clear difference in different residual displacement components from the magnitude

shown in the color bar in Figure 3.6. In the residual displacement along z direction as

shown in Figure 3.6 (c), one can observe clear subsidence within Calico and Rodman

fault zones. In addition, the subsidence in compressional quadrant around BB’ profile is

enhanced compared to that in the extensional quadrant.

In order to compare the residual displacement with the Interferometric Synthetic Aper-

ture Radar (InSAR) data, we need to convert it into the same dimension first. InSAR data

is recorded by satellites which continuously measure the small scale deformation changes.

Specifically, we will choose the satellite’s Line of Sight (LOS) displacement in the com-

parison. The formula to calculate LOS displacement reported in Fialko et al. [2001] is

given as the following:

dlos = [Un sin(ϕ)− Ue cos(ϕ)] sin(λ) + Uu cos(λ) + δlos (3.6)

where dlos denotes the LOS displacement, λ denotes the satellite radar incidence angle,

ϕ denotes the azimuth of the satellite heading vector, δlos denotes the measurement error,

Un, Ue, Uu represent the residual displacement along north, east and vertical up direction,

respectively.

For the satellite radar incidence angle λ and the azimuth of the satellite heading vector

ϕ, we refer to the previous studies about the 1992 Landers earthquake [e.g. Fialko, 2004;

Cochran et al., 2009; Barbot et al., 2009] where λ = 23◦ and ϕ = 188.55◦.

After all the variables needed in the formula (3.6) are collected, we plot the LOS

displacement from our numerical modeling as shown in Figure 3.7.
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Figure 3.7: Residual displacement along profile AA’ and BB’, synthetic to InSAR LOS

direction. Residual displacement marked in green curve with unit centimeter on right axis,

target and reference models are marked in solid and dash blue with unit meter on the left

axis. The shaded bands represent the compliant fault zones.

In Figure 3.7, we plot the residual displacement along profile AA’ and BB’ in green

curve with centimeter unit on the right axis and the displacement from target and reference

model in solid and dash blue on the left axis with meter unit.
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Figure 3.8: InSAR LOS displacement along profile AA’ and BB’ reported in Barbot et al.

[2009]

Compare to the InSAR observation data shown in Figure 6(a) of Barbot et al. [2009],

our synthesized LOS displacement preserve the same magnitude and same trend in gen-

eral. Compare to the results from elastic modeling in Figure 6(a) of Barbot et al. [2009]

, our synthesized LOS displacement fit the InSAR data better especially around the com-

pliant fault zones. Specifically, our synthesized LOS displacement around AA’ profile on

the left side of Calico fault zone matches the InSAR observation data better in term of

magnitude as shown in Figure 3.7.

However, our synthesized LOS displacement along AA’ profile near Rodman fault

zone is larger than that in the InSAR observation. The possible reason is that the velocity

reduction in Rodman is to high. The same issue also exists around the Calico fault zone

along BB’ profile. Hence, in order to better fit the InSAR observation data, we modify

the velocity structure in the Calico and Rodman fault zones. We reduce only 30% of body
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wave velocity in Rodman fault zone and right half of Calico fault zone close to BB’ profile

as shown in Figure 3.9 and 3.10.

Figure 3.9: Velocity structure for the Landers model along AA’ profile
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Figure 3.10: Velocity structure for the Landers model along BB’ profile
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Figure 3.11: Residual displacement along profile AA’ and BB’ with velocity structure in

Figure 3.9 and 3.10, synthetic to InSAR LOS direction. Residual displacement marked

in green curve with unit centimeter on right axis, target and reference models are marked

in solid and dash blue with unit meter on the left axis. The shaded bands represent the

compliant fault zones.

In Figure 3.11, our synthesized LOS displacement along AA’ near Rodman fault zone

and along BB’ profile near Calico fault zone got improved compared to the InSAR obser-

vation data. In order to further compare our synthesized LOS displacement and InSAR

observation data, we plot them into the same figure as shown in Figure 3.12. Since we do
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not have the InSAR observation data, we use a software to extract the data points reported

in Barbot et al. [2009]. From Figure 3.12, one can observe that our synthetic results have

a very good match with the InSAR observation data on the left side of Calico fault zone.

In addition, our synthetic results also preserve the same trend on the right side of Calico

fault zone and on both sides of Rodman fault zone.

Figure 3.12: Comparison between InSAR observation data and our synthetic residual dis-

placement along profile AA’ and BB’ with velocity structure in Figure 3.9 and 3.10

In order to the show the effect of inelastic modeling, we compare the results between

our elastoplastic modeling and elastic modeling with homogeneous initial stress field. In

the elastic modeling, homogeneous stress on fault segments is assigned and no element
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stress stress is assigned within the model.

Figure 3.13: Residual displacement along profile AA’ and BB’ with elastic modeling with

homogeneous initial stress on fault segments

Compare to the InSAR observation data, the synthetic LOS displacement from our

elastoplastic model fits much better than that of the elastic model with homogeneous initial

stress on fault segments, especially around the compliant fault zones. Around 1km left

of Calico fault zone, the LOS displacement of InSAR observation data has a "V" shape

change while the results from elastic model show different patterns. In addition, the LOS
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displacement of InSAR observation data increases within the Calico and Rodman fault

zones while the synthetic LOS displacement from the elastic model decreases within the

two compliant fault zones.

Furthermore, we will compare our results with that of the similar elastoplastic mod-

eling reported in Kang [2014] as shown in Figure 3.14. In that model, the homogeneous

initial stress field within the model is assigned based the stress orientation over the whole

model, including the compliant fault zones. Our synthesized LOS displacement fit the In-

SAR observation data better, especially around the compliant fault zones. This indicates

that the initial stress field around the compliant fault zones plays a very important role in

the response of compliant fault zones to the nearby earthquakes.
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Figure 3.14: Residual displacement along profile AA’ and BB’ with elastoplastic models

with homogeneous initial stress field reported in Kang [2014]

In this chapter, we apply the dynamic relaxation technique to obtain the stress field

for Landers earthquake modeling. We study the inelastic response of Calico and Rodman

fault zones to the Landers earthquake through an elastoplastic dynamic rupture model.

The rupture propagation and final slip distribution on three fault segments are consis-

tent with inversion results of Landers earthquake from previous studies. Our synthesized

LOS displacement shows a good match with the InSAR data, suggesting the importance

of incorporating the heterogeneous initial stress field obtained from dynamic relaxation
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method.
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4. SUMMARY AND CONCLUSIONS

In this thesis, we have studied and implemented a dynamic relaxation method to ob-

taining the stress field over the whole model region, especially for the inhomogeneous

model. This dynamic relaxation method is mainly based on the continuous nodal force

loading that is applied on the model boundary. The proposed method comes with two

steps: first, apply appropriate boundary nodal force loading on the homogeneous model to

obtain the desired stress field; additionally, apply the same boundary nodal force loading

on the inhomogeneous model to get the stress field. We then develop an elastoplastic dy-

namic rupture model to investigate the inelastic response of the compliant fault zones to

the nearby earthquake. The initial stress field for the elastoplastic modeling is generated

through applying the dynamic relaxation technique on the same model till it reaches static

equilibrium.

In Section 2, we first introduce the fixed end beam model with analytical solution to

verify our dynamic relaxation method. We experimentally exhibit the accuracy of our

numerical modeling through the error analysis between simulation results and analytical

solution. After that, we apply the same boundary nodal force loading technique into the

homogeneous model. By comparing with the desired stress field, the numerical results

from the proposed method show high accuracy and efficiency. Then, we apply the same

boundary nodal loading force to the same size inhomogeneous model to obtain the stress

field over the whole model region. Despite the fact that we do not have the analytical

solution for the inhomogeneous modeling, we present a viable approach to calculate the

stress field for the inhomogeneous model.

In Section 3, we investigate the inelastic response of the Calico and Rodman fault
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zones to the 1992 Landers earthquake through an elastoplastic dynamic rupture modeling.

The initial stress field for dynamic simulation is obtained through the dynamic relaxation

technique. The rupture propagation and final slip distribution on the Landers fault seg-

ments from the numerical modeling show a good match with inversion results from previ-

ous works in literature. Finally, our simulation results match the InSAR data well which

indicates the heterogeneous initial stress field plays an important role in determining the

response of Calico and Rodman fault zones to the Landers rupture.
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