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ABSTRACT

A multivariate time series could be partitioned either horizontally (over time) to in-

duce local stationarity or vertically (over the variables) to reduce dimension and the high

computational cost. Dimension reduction for a high-dimensional time series by linearly

transforming it into several lower-dimensional subseries (vertical partition) where any two

subseries are uncorrelated both temporally and cross-sectionally is of central importance

in the modern age of big data. It reduces the challenging multivariate estimation problem

with many parameters to that of a number of disjoint lower-dimensional problems with

much fewer parameters. A notable example in the previous studies is the dynamic orthog-

onal components (DOC) utilizing nonlinear optimization which works well for stationary

and low-dimensional time series data. First we reduce the computational burden of DOC

by connecting it to the time series principal components analysis (TS-PCA) method in

recent studies based on eigenanalysis of a positive-definite matrix. Next, we extend DOC

to nonstationary processes which can be divided into several nearly homogeneous seg-

ments. Consistency and joint asymptotic normality of the estimates of the Givens angles

parameterizing orthogonal matrices in each segment are established under some regularity

conditions. Applications to multivariate volatility modeling in finance are illustrated using

simulated and real datasets.
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1. INTRODUCTION

High-dimensional nonstationary time series data are often encountered in a variety of

fields, such as management of climate risks in agriculture ([44]), electrocardiogram anal-

ysis ([2]), electroencephalography (EEG) analysis ([30], [40]), macroeconomics analysis

([11], [36]), trading volatility analysis ([27]), bond price prediction ([50]), etc.

Fitting multivariate models to high-dimensional time series data is computationally ex-

pensive and will encounter convergence problems in optimization routine due to the large

number of parameters involved. For example, the standard multivariate volatility models

such as VEC-GARCH([13]) or BEKK([25]), formulate the conditional covariance matrix

in terms of linear combinations of the squares and cross products of the data and thus the

number of parameters contained in the coefficient matrix for a d dimensional time series

are O(d2) and will be problematic for large d.

Dimension reduction is thus of vital importance to the analysis of high-dimensional

time series data. In the following we will review some of the most popular dimension

reduction methods. Principal component analysis (PCA), developed by [45] and [31], ex-

plains the covariance structure of a set of variables through a few linear combinations of

them, called principal components (PCs), with decreasing variance. An integer r (r << d)

is chosen such that the first r PCs explain a high percentage of the total variation of the

data and dimensional reduction is achieved by analyzing the r PCs instead of the original

time series. For example, orthogonal GARCH (O-GARCH) [3] and generalized orthogo-

nal GARCH (GO-GARCH) models [51] use PCA of the covariance matrix to decorrelate

a multivariate series of asset returns cross-sectionally before applying volatility models to

the uncorrelted components separately. Canonical correlation analysis (CCA) ([32], [14])

finds linear combinations of variables such that the "predictability" of the transformed vari-
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ables are maximized sequentially. "Predictability" is measured by the cross-correlation

between the current observation of the transformed variable with its own past. Factor

model ([46]) finds a canonical representation of the time series using a mall number of

common factors. The number of common latent factors is decided by the eigen-analysis

of the lagged sample covariance matrices. Independent component analysis (ICA) ([7])

projects a multivariate time series to a new space spanned by non-Gaussian independent

components. Similar to PCA, ICA also considers decorrelating the components cross-

sectionally, but with respect to their higher order moments. For example, Kurtosis or the

fourth-moment cumulant, is often applied to measure the non-Gaussianity in ICA. Dy-

namic factor models ([15], [28] and [23]) in spectral-domain, as analogues of PCA, have

been proposed to explain the serial correlations in the latent factors, where the factor load-

ings are derived from an eigen-analysis of the spectral density matrix.

It is ironic that most of these multivariate statistics techniques are applied almost ver-

batim to time series data without adequate accounting of the temporal dependence. This

problem can be solved by dynamic orthogonal component (DOC) method ([41]) which

decorrelates the time series both contemporaneously and serially. It finds an orthogonal

transformation matrix M such that it minimizes the sum of squares of the off-diagonal

entries of the first few lagged autocovariance matrices of the transformed series. Once

M is found, modeling a high-dimensional series is then reduced to analyzing a sequence

of univariate series which is much easier to model and predict, and then the univariate

results are combined and transformed back to a parsimonious model for the original high-

dimensional series.

The mixing matrix M in DOC is parameterized using the Givens angles and finding it

involves solving a non-convex optimization problem. This makes DOC computationally

expensive and hence not suitable for high-dimensional multivariate time series. However,

we show that the recent time series PCA (TS-PCA) method ([17]) which segments a high-
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dimensional time series into several lower-dimensional decorrelated subseries, is of great

help in managing the computational bottle-neck. In the following the phrase decorrelated

subseries means that they are uncorrelated both contemporaneously and serially. In this

setting, the subseries are modelled separately using the DOC method by taking advantage

of the substantial dimension reduction. The TS-PCA method is based on an eigenanalysis

of a positive definite matrix defined as a quadratic function of the first few autocovariance

matrices, and can be viewed as a natural extension of the standard PCA for multiple time

series. As in PCA, it finds a time-invariant matrix transforming the series into several

decorrelated subseries, but unlike PCA the subseries have varying dimensions.

Covariance stationarity is a key assumption in developing the statistical theory of the

DOC methodology. However, for many real life examples the stationarity feature is often

violated, and it is common to consider classes of nonstationary models such as locally

stationary and piecewise stationary processes([1] and [19]). For example, [20] and [21]

have considered piecewise AR and GARCH models, respectively, and in [5] the nature of

nonstationarity is due to time-varying covariance matrices of multivariate time series.

The primary contribution of our work is to extend the stationary DOC methodology

in [41] to a high-dimensional nonstationary setup where the series can be segmented into

several locally stationary segments. We rely on a change point detection method in [18]

to divide the whole observed series into several nearly stationary segments, and then DOC

is applied to each segment separately. Our secondary contribution is to ease the computa-

tional burden of DOC for high-dimensional series and potentially replace the nonconvex

optimization in DOC by the eigenanalysis of a positive-definite function as in TS-PCA.

This second goal is nearly achieved by exploring the equivalence or close connection be-

tween DOC and TS-PCA both for in mean and in volatility [16, Section 5].

The outline of the dissertation is as follows: In Section 2 the key ideas and steps

of DOC and TS-PCA methods are reviewed. Also the connection between these two

3



methods are discussed. A methodology for time-varying DOC (TVDOC) is developed in

Section 3 for a class of multivariate piecewise stationary times series. Asymptotic prop-

erties of the estimators of the Givens angles of the mixing matrices for various segments

are derived under some regularity conditions on the underlying processes. The TVDOC

method is illustrated using simulation and real data where the important role of TS-PCA

is highlighted. Section 4 concludes the dissertation. The technical proofs and additional

information about the numerical examples are provided in the Appendix.
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2. DOC AND TS-PCA FOR MULTIVARIATE STATIONARY TIME SERIES

2.1 Introduction

Fitting standard multivariate time series models such as vector autoregressive (VAR)

models to high-dimensional data is challenging statistically due to a large number of pa-

rameters. In the time-domain, dimension reduction methods such as canonical correlation

analysis [14], factor models [46], principal component analysis [3, 48, 9] and independent

component analysis [7] are based on the idea of finding instantaneous linear combinations

of the variables with simpler univariate time series structures. In the spectral-domain, ana-

logues of the principal component analysis (PCA) and factor models have been introduced

by [15], [28] and [23] for stationary and nonstationary time series, respectively, where

here linear combinations may involve current and lagged values of the observed multivari-

ate series.

Dimension reduction via time-invariant linear transformations of a multivariate time

series has the more ambitious goal of extending the classical PCA from sample data to the

(dependent) time series data setup. Its key task is to find a matrix so that the subseries of

the transformed (segmented, vertically partitioned) series are decorrelated [41, 17] in the

sense that they are uncorrelated both contemporaneously and serially. This more stringent

requirement is in contrast to some of the earlier approaches cited above, and those in fi-

nance like the orthogonal GARCH (O-GARCH) [3] and generalized orthogonal GARCH

(GO-GARCH) models [51] where PCA of the marginal (lag-zero) covariance matrix of

the data is used to decorrelate only cross-sectionally a multivariate series of asset returns.

Another related method is the independent component anslysis (ICA) which finds a matrix

such that the linearly transformed subseries are independent cross-sectionally [34].

More formally for any multivariate time series X t = (x1,t, x2,t, . . . , xd,t)
′ each d × d
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autocovariance matrix has O(d2) unknown parameters. Even under the covariance sta-

tionarity assumption estimating all these covariance parameters simultaneously is a chal-

lenging statistical problem. The large number of covariance parameters can be reduced

considerably by assuming that the d-dimensional observed process X t is a time-invariant

linear transformation of q decorrelated latent (unobserved) subseries s(i)t , i = 1, 2, . . . , q,

of dimensions di,
∑q

i=1 di = d. This amounts to assuming that there exist an invertible

matrix M and a latent time series st such that

X t = Mst, st = (s
(1)
t , . . . , s

(q)
t )′ with cov(s(i)t , s(j)s ) = 0, i ̸= j, (2.1)

and the s
(i)
t ’s are referred to as the decorrelated subseries of X t. In modeling volatility in

finance, one may require that certain transformations of s(i)t ’s are decorrelated, i.e.

cov
(
h(s

(i)
t ),h(s(j)s )

)
= 0, i ̸= j, (2.2)

where h(·) is a function acting componentwise on its vector argument. Popular examples

of h(·) are the identity, square and Huber functions, see (2.4).

An important advantage of (2.1)-(2.2) is that regardless of the size of the dimension d,

modeling a high-dimensional series is reduced to the simpler task of modeling q disjoint

(lower-dimensional) subseries. The vector of lower-dimensional models (forecasts) will

then be combined and transformed back to a parsimonious model (forecast) for the original

high-dimensional series X t. We note that whereas the classical PCA always ensures ex-

istence of an orthogonal matrix M and the principal components (PCs) for variables with

finite second moments, existence of M and decorrelated subseries s(i)t ’s in (2.1) cannot be

guaranteed due to the additional and stringent requirement of decorrelation of s(i)t ’s over

time. In the recent literature, there are two important special cases of (2.1) depending on

6



whether all the latent subseries s(i)t ’s are required to be univariate or not.

First, when all di’s are equal to one, then (2.1) reduces to the framework of dynamic

orthogonal components (DOC) in mean in [41] which is still more general than the clas-

sical PCA in that an orthogonal matrix M is found so that the cross-covariances between

any two pairs of univariate DOCs is zero. In this case, we denote a univariate DOC by

si,t to distinguish it from a low-dimensional subseries s
(i)
t . As noted earlier existence of

DOCs is not ensured, however, when they exist as soon as the mixing matrix M is found,

they are computed using st = M−1X t, and univariate ARMA or volatility models like the

GARCH(1,1) are fitted to each DOC si,t, i = 1, . . . , d, separately. Even though existence

of M and univariate DOCs si,t cannot be guaranteed, still for practical reasons one may

choose an M so that the DOCs si,t’s are as close to being decorrelated as possible.

The orthogonal matrix M in DOC analysis [41, Section 2.3] is parameterized in terms

of the Givens angles and its estimation involves optimization of a nonconvex objective

function defined as the sum of squares of the off-diagonal entries of the first few lagged

autocovariance matrices of the transformed data. It is computationally expensive for di-

mensions as low as five and hence not suitable for high-dimensional time series which are

often encountered in business and economics. This computational challenge might be re-

duced considerably by relaxing the requirement that all the subseries be univariate. In fact,

when some of the di’s are bigger than one, the setup in (2.1) reduces to the time series PCA

(TS-PCA) method in [17] which has the goal of segmenting a multivariate stationary time

series into several (lower-dimensional) decorrelated subseries. Unlike the DOC method

which finds M by solving a nonconvex optimization problem, the TS-PCA method relies

on eigenanalysis of a positive-definite matrix defined as a quadratic function of the first

few autocorrelation matrices, see (2.11). It is a natural extension of the standard PCA and

the DOC for multiple time series in that as in PCA and DOC it finds an orthogonal matrix

transforming a multivariate series into several decorrelated subseries, but unlike PCA and

7



DOC some of the subseries could have dimensions greater than one.

The vertical partitioning or the TS-PCA method seems ideal for managing the com-

putational bottle-neck encountered in modeling high-dimensional time series. Dividing

up a large computational problem into several smaller problems opens up the possibility

of parallel computing. In particular, solving the nonlinear optimization problem in DOC

[41, Section 2.6] can be reduced to solving many subproblems of much lower dimensions.

Moreover, after applying TS-PCA to a high-dimensional time series the mere existence

of low-dimensional (non-singleton) subseries is an indication that the time series is not in

DOC, while its leading to all one-dimensional subseries should be taken as the indication

that the time series is already in DOC. In the former case, the low-dimensional subseries

can be partitioned further using the DOC method by taking advantage of the substantial

dimension reduction.

In the following sections, we provide a brief review of DOC and TS-PCA methods

and discuss the connections between them. Recall that their goals are similar, but they use

different objective functions and optimization methods. They transform a multivariate sta-

tionary time series into decorrelated univariate series and decorrelated (low-dimensional)

subseries, respectively. The objective function of DOC is statistically meaningful and non-

convex in M while that of TS-PCA is less so but quadratic in M.

Let Yt be a multivariate stationary time series and Ft be the information in its past his-

tory up to and including the current time t. The series can be decomposed as Yt = µt+et,

where µt = E(Yt|Ft−1) is the conditional mean and et is the serially uncorrelated noise.

Let Σt = cov(Yt|Ft−1) be the conditional covariance matrix of Yt and Σy = cov(Yt) be

its unconditional (marginal) covariance matrix. The time-varying conditional covariance

matrix Σt is also referred to as the volatility matrices of the returns of financial assets.

Developing simple and interpretable dynamic models for µt and Σt is a key goal of multi-

variate time series analysis.

8



2.2 DOC for stationary time series

In [41] a DOC in mean for µt and a separate DOC in volatility for Σt are introduced.

Here we work with X t = Yt − µt or take µt = 0 and focus on DOC in volatility for Σt,

unless stated otherwise.

The goal of DOC in volatility is to find a nonsingular mixing matrix M such that the la-

tent time series {st}nt=1 enjoys quadratic orthogonality in the sense that the autocovariance

matrices

Γ(ℓ) = cov(s2t , s
2
t−l), ℓ = 0, ±1,±2, · · · (2.3)

are diagonal and cov(si,tsj,t, si,t−ℓsj,t−ℓ) = 0 for i ̸= j and for all lags ℓ = 1, 2, · · · . In

developing the DOC methodology, it is convenient to have the components of X t uncor-

related at each time point. A way to do this is by setting zt = UX t, where U = Λ−1/2P′

and Λ,P are the diagonal matrix of eigenvalues and the orthogonal matrix of the eigen-

vectors of the sample covariance matrix of the data. Then, using (2.1) the latent vector of

DOCs has the representation

st = M−1X t = M−1U−1zt = Wzt, where W = (UM)−1,

which implies that cov(st) = W cov(zt)W′. Since cov (zt) = I, it follows that the sep-

arating matrix W is an orthogonal matrix provided that cov (st) = I, which we assume

from here on. When the determinant of W is equal to one, its d0 := d(d−1)/2 free entries

can be reparameterized using the Givens angles [41, Section 2.3], conveniently collected

in a vector θ of dimension p where its components take value in (−π, π]. From here on,

W is denoted by Wθ and st by st(θ) = Wθzt, to emphasize their dependence on the

vector θ, see [41] for more details on the structure of Wθ.
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Given the time series data X t, t = 1, . . . , n or the zero-mean, uncorrelated zt, t =

1, . . . , n and a vector function h(·), the sample cross-covariance function of the compo-

nentwise transformed latent process is defined by

Γ̂h(s(θ))(ℓ) = Ê{h(st(θ))h(st−ℓ(θ))
′} − Ê{h(st(θ))}Ê{h(st−ℓ(θ))}′, ℓ = 0, 1, 2 . . . ,

where Ê(·) is the sample expectation operator. Ideally, one should choose θ so that these

covariance matrices are as close to being diagonal as possible at all lags, but here for a

given positive integer m1 we restrict attention to a prespecified set of lags ℓ ∈ N0 := {0 ≤

ℓ ≤ m1} which always includes the lag 0.

An objective function for estimating Wθ or θ in the modeling time-varying volatility

would naturally rely on the dynamic structure or cross-correlations which amounts to tak-

ing h(s) = s2, namely the square of the entries of the latent vector. However, since asset

returns usually exhibit heavy tails applying the following Huber’s function

hc(s) =

 s2 if |s| ≤ c,

2|s|c− c2 if |s| > c,
(2.4)

to each si,t would make the procedure more robust to outliers [41]. We use c = 2.25 in our

computations in Section 4.

To define the objective function, we vectorize and arrange all the off-diagonal elements

of {Γ̂h(s(θ))(ℓ)|ℓ ∈ N0} in the vector f̄n(θ) = Ê{f(zt,θ)} where f(zt,θ) is a vector with

entries

f ℓ
ij(zt,θ) = hi(st(θ))hj(st−ℓ(θ))− Ê{hi(st(θ))}Ê{hj(st−ℓ(θ))}, (2.5)
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indexed by i < j for ℓ = 0, and by i ̸= j for ℓ > 0. Since the lagged cross-dependence

is typically strongest at lower lags, we use the following larger weights for the lower-lag

cross-covariance matrices:

ϕℓ =
1− ℓ/|N0|

Σℓ(1− ℓ/|N0|)
/(d0 + d0I{ℓ ̸=0}) for ℓ ∈ N0,

where |N0| is the cardinality of the set N0 and I{·} denotes an indicator function. Arranging

these weights into the following diagonal matrix

Φ = diag{ϕℓ1 , · · · , ϕℓ1 , ϕℓ2 , · · · , ϕℓ2 , · · · , ϕℓ|N̄0|
, · · · , ϕℓ|N̄0|

},

the objective function is then defined as a quadratic form in the off-diagonal entries of the

cross-covariance matrices:

Jn(θ) = f̄n(θ)
′Φf̄n(θ). (2.6)

An estimator of θ̂n is defined as its minimizer: θ̂n = argminθJn(θ). Finally, the separat-

ing matrix is estimated as Wθ̂n
and the estimated DOC series is given by ŝt = Wθ̂n

zt.

There are three sources of nonuniqueness in estimating M and st, related to the scale,

sign and the order of the DOCs. These stem from the matrix product on the right hand

side of (2.1) where Mst = MHH−1st, for any invertible matrix H. The scale of DOCs

can be fixed by assuming cov(st) = I , then taking H to be a signed permutation matrix

allows identification of the DOCs up to a signed permutation which is sufficient for fore-

casting purposes for several situations discussed in [41, Section 2.4]. In addition, since

the objective function is nonconvex its numerical optimization requires special attention

to avoid getting stuck at the local minima. A way to address this issue is to work with

several initial values in the high-dimensional parameter space as in [47].

11



Existence of DOCs implies that the off-diagonal elements of Γh(s(θ))(ℓ) are zero for

ℓ ≥ 0, so that one may develop a Ljung-Box type test for their existence by testing

the hypothesis that all these off-diagonal elements are zero. Let hi,t−ℓ = hi(st−ℓ) and

ρhi,j(ℓ) = corr{hi,t, hj,t−ℓ} where h(·) is the square function for DOC in volatility. The

null and alternative hypothesis to test for the existence of DOCs are,

H0 : ρhi,j(ℓ) = 0, for all i ̸= j, ℓ = 0, 1, 2, · · · ,m; (2.7)

Ha : ρhi,j(ℓ) ̸= 0, for some i ̸= j, ℓ = 0, 1, 2, · · · ,m. (2.8)

The test statistic used is

Q0
d(m) = nΣi<jρ

h
i,j(0)

2 + n(n+ 2)Σm
k=1Σi̸=jρ

h
i,j(k)

2/(n− k), (2.9)

which under H0, is asymptotically distributed as a χ2 distribution with d(d − 1)/2 +

md(d−1) degrees of freedom [39]. The null hypothesis is rejected for larger values of the

test statistic.

2.3 TS-PCA for high-dimensional time series

Estimation of the mixing matrix in DOC involves nonlinear optimization, is compu-

tationally expensive and hence not suited for high-dimensional data [41]. In this section,

we review the computationally attractive TS-PCA method [17] involving eigenanalysis of

a suitable positive-definite matrix in the spirit of classical PCA. We discuss its potential

connection with and role in reducing the computational burden encountered in DOC anal-

ysis.

To describe the TS-PCA methodology, it is convenient to assume that the two time

12



series in (2.1) are standardized, namely

var(X t) = Id and var(st) = Id. (2.10)

For a pre-selected positive integer k0, consider the positive-definite matrix

Wx =

k0∑
k=0

Γx(k)Γx(k)
′ = Id +

k1∑
k=1

Γx(k)Γx(k)
′, (2.11)

where Γx(k) = corr(X t+k,X t) is the cross-correlation matrix of the standardized time

series. In contrast to using nonconvex optimization in DOC, TS-PCA finds the mixing

matrix M in (2.1) by relying on the simpler task of eigenanalysis of the matrix Wx. Let

Γx be the d × d orthogonal matrix of the eigenvectors of Wx. Then, the matrix M is

identified as a column-permutation of an estimator of Γx. The permutation is designed

to group the transformed series ŝt = Γ̂
′
xX t into a number of decorrelated subseries of

lower dimensions so that the within-subseries correlations are significant while those of

the between-subseries are not. The following is the two-step TS-PCA procedure in [17,

Section 2.2]:

1. Find a consistent estimator of Wx, and let Γ̂x be the orthogonal matrix obtained

from its eigenanalysis (spectral decomposition).

2. Obtain the matrix M̂ = (M̂1, . . . , M̂q) by permutating the columns of Γ̂x so that

ŝt = Γ̂
′
xX t is segmented into q decorrelated subseries as in (2.1).

As for a consistent estimator of Wx, it is known that for large dimensions d, the sample

autocovariance matrix Γ̂x(k) =
1
n

∑n−k
t=1 (X t+k−X̄)(X t−X̄)′ with X̄ = 1

n

∑n
t=1 X t, is

not a consistent estimator for Γx(k). Consider a regularized estimator such as the threshold

13



estimator

Tu(Γ̂x(k)) = (Γ̂
(k)
i,j I{|Γ̂

(k)
i,j | ≥ u})i,j=1,2,··· ,d,

where u = λ(log d/n)1/2 is the threshold level and λ > 0 is a tuning parameter, I(·) is the

indicator function and Γ̂
(k)
i,j represents the (i, j)-th entry of Γ̂x(k) [12]. Then, the threshold

estimator defined by

Ŵ(thres)
x = Id +

k0∑
k=1

Tu(Γ̂x(k))Tu(Γ̂x(k))
′,

is known to be consistent for Wx [17, Lemma 8] for a suitable choice of the tuning param-

eter (m, k0, λ), where m is the number of lags in the multiple null hypothesis in (2.12).

The consistent estimator above provides an estimator for M up to a regrouping of

its columns. Intuitively, the permutation in Step 2 is found by visually examining the

cross-correlograms of pairs of components of ẑt = Γ̂
′
xX t, and putting in the same group

those components which have significant cross-correlations at all lags. This amounts to

obtaining M by rearranging the columns of Γ̂x according to the grouping suggested by the

cross-correlograms. Though the idea of visual inspection of pairwise cross-correlations is

not practical for high-dimensional time series, its core insight is used to develop automatic

permutation rules based on certain functionals of the cross-correlations. More precisely,

with ρ(k) as the lag-k cross-correlation between two component series of ẑt, we say these

two components are connected if the multiple null hypothesis

H0 : ρ(k) = 0, for any k = 0,±1, . . . ,±m, (2.12)

is rejected. Evidently, connected components with significant cross-correlation should be-

long to the same group. Thus, the permutation in Step 2 starts with d groups of singletons,
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then two groups are combined if connected pairs in ẑt are split over two groups, and the

process is continued until all connected pairs are united in one group.

A method for identifying the connected pairs using cross-correlations ρ̂i,j(h) of the

series ẑt, for any pair (1 ≤ i < j ≤ d), is based on their maximum,

L̂n(i, j) = max|l|≤m|ρ̂i,j(l)|. (2.13)

The null hypothesis of significant cross-correlations would be rejected for the (i, j) pair

if this statistic is greater than a specified threshold. To avoid multiple tests for d0 =

d(d − 1)/2 pairs, a ratio statistic is used to single out those pairs for which H0 will be

rejected. It is based on the rearrangement in descending order: L̂1 ≥ L̂2 ≥ ... ≥ L̂d0 and

defining r̂ as

r̂ = arg max
1≤j≤c0.p

L̂j

L̂j+1

, (2.14)

where c0 ∈ (0, 1) is used to guard against dividing by 0. Once r̂ is determined, the

pairs corresponding to the first r̂ maximum cross-correlations are declared connected or

significantly cross-correlated and groups are formed based on these pairs.

An extension of TS-PCA to segment multivariate volatility processes in [17, Section

5] amounts to applying the above procedure to the target matrix:

Wx =
∑

B∈Bt−1

[E{X tX
′
tI(B)}]2 , (2.15)

where Bt−1 is a π-class and the σ-algebra it generate is Ft−1 = σ(X t−1,X t−2, · · · ). The

target matrix Wx is estimated by

Ŵx =
n∑

ℓ=1

k0∑
k=1

{ 1

n− k

n∑
t=k+1

X tX
′
tI(X

′
t−kX t−k ≤ X ′

ℓXℓ)}2,
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see [26].

2.4 Connection between DOC and TS-PCA

The connection between DOC and TS-PCA is not evident and has not been studied.

The following result sheds some light on the possible connections between their objective

functions.

Lemma 1. Let {X t} be a mean-zero stationary process satisfying X t = Mst. Then,

(a)

cov(st, st−ℓ) = MΓx(ℓ)M
′. (2.16)

(b) provided that {X t} is Gaussian,we have

cov(s2t , s
2
t−ℓ) = 2(MΓx(ℓ)M

′) ◦ (MΓx(ℓ)M
′), (2.17)

where ◦ denotes the Hadamard product two matrices.

The equivalence between DOC in mean and TS-PCA is immediate from the iden-

tity in (A.1). However, if one could replace the Hadamard product in the identity (A.2)

by the usual matrix product, then the equivalence between DOC in volatility and TS-

PCA for volatility processes would be immediate. Unfortunately, this does not seem

to be possible mostly because of the following observation: A key difference between

DOC in volatility and TS-PCA in volatility lies in their assumptions on the latent pro-

cess st. Recall that DOC assumes that cov(s2t , s
2
t−ℓ) is diagonal for ℓ = 0,±1,±2, . . . ,

and cov(stistj, st−ℓ,ist−ℓ,j) = 0 for i ̸= j and ℓ = 1, 2, . . . ; while TS-PCA requires the

conditional covariance cov(st|Ft−1) to be block diagonal. Without any additional assump-

tion, these two sets of conditions do not nest each other. When st follows the multivariate

GARCH model, as pointed out in Matteson and Tsay (2011), the assumption for DOC in

volatility implies that cov(st|Ft−1) is diagonal.
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Nevertheless, we provide further support on their close connections through a simula-

tion study reported in the Appendix. Furthermore, the recent papers by [33] on principal

component volatility (PCV) and the paper by [38] are closely related to this topic.
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3. DOC FOR NONSTATIONARY TIME SERIES

3.1 Introduction

The key assumptions in both TS-PCA and DOC methods are stationarity of the data

and existence of time-invariance of the linear transformations. For many real life exam-

ples, however, the stationarity feature is often violated for reasonably long time series. In

such situations, it is natural and common to work with locally homogeneous or piecewise

stationary processes ([1]). For example, [19] presented a class of nonstationary time series

models with evolutionary spectral representation which can be approximated arbitrarily

closely by AR models with time-varying coefficients. [20] considered piecewise AR pro-

cesses, and then piecewise GARCH and stochastic volatility models in [21]. [37] studied

structural breaks in spectral distribution of piece-wise stationary time series, and [5] con-

sidered change point detections in covariance matrices of nonstationary time series.

We extend the TS-PCA and DOC methods to the nonstationary setup where the se-

ries is composed of several locally homogeneous segments due to changes in its volatility

or other features. The key challenge is the identification of the change points or finding

the locally homogeneous intervals. A parametric approach to the problem will assume a

subjective global model for the series which may lack the flexibility to deal with sudden

changes, see [10]. A local parametric approach due to [43], which assumes that the volatil-

ity process is approximately constant locally but time-varying over longer stretch of time,

is ideal for the problem at hand. It allows developing a data-based method to select the

change-points, the ensuing intervals of homogeniety ([18]) and estimation of the mixing

matrices. Our proposed time-varying TS-PCA and DOC methods combines the merits

of the decorrelating methods restricted by stationarity assumption and the change point

detection method in [18] such that the TS-PCA or DOC could be applied to analyze the
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partitioned stationary segments of the data separately.

3.2 TVDOC for piece-wise stationary data

Stationarity assumption central to DOC analysis [41] may not be tenable in practice es-

pecially for asset returns where there could be drastic structural changes over time. Thus,

it is desirable to study and extend the DOC methodology to nonstationary data where the

mixing matrix is time-varying.

In this section, we propose a time-varying DOC (TVDOC) methodology for multi-

variate piecewise stationary data generalizing the stationary DOC. It relies on a change

point detection method, reviewed in Section 3.2, to divide the whole series into a number

of locally homogeneous segments, and then stationary DOC technique is applied to each

segment separately.

For simplicity, we consider the case where the original series X t is standardized with

E(X t) = 0 and cov(X t) = I, has only one change point at the known time point k0(n).

It is straightforward to generalize the results to the multiple change points situation. Let

us denote the two stationary segments by X
(1)
t = X t if t ≤ k0(n) and X

(2)
t = X t if

k0(n) + 1 ≤ t ≤ n, and their angle parameters for each segment by θi and st(θi), respec-

tively. Recall that st(θi) = Wθi
X

(i)
t for i = 1, 2, and that in TVDOC we estimate θi by

minimizing the two separate objective functions J (i)(θi) = f̄ (i)(θi)
′Φnf̄

(i)(θi), i = 1, 2,

where as before, f̄ (i)(θi) = Êf(X t,θi) and f(X t,θi) is the vector that stacks up all

the off-diagonal elements in the lagged autocovariance matrices ĉov(s2t (θi), s
2
t−ℓ(θi)). Set

θ = (θ′
1,θ

′
2)

′, ḡ(θ) = (f̄ (1)(θ1)
′, f̄ (2)(θ2)

′)′, and let

Θ = {θji , 2 ≤ j ≤ d, 1 ≤ i ≤ j − 1, where θji ∈ (−π, π]},

be the parameter space and Θ̄ be a sufficiently large compact subset of Θ.
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3.3 Asymptotic properties of TVDOC

In this section, we establish strong consistency of the estimator θ̂ = (θ̂
′
1, θ̂

′
2)

′ in the

TVDOC setup under the Conditions C1-C4 which are similar to those in [41]. Then,

the joint asymptotic normality for (θ̂
′
1, θ̂

′
2)

′ is proved using the concept of near-epoch-

dependence for triangular array of random variables. In what follows, θ0 = (θ′
01,θ

′
02)

′

stands for the true value of the parameter. With suitable modifications, our theoretical

results are still valid when the Huber’s function is used.

C1. There exists unique minimizer θ0i ∈ Θ̄ for J (i)(θ), i = 1, 2.

C2. The process X(i)
t is stationary and ergodic with E||X(i)

t ||2 < ∞ for i = 1, 2.

C3. sup
θ∈Θ

E||st(θ)4||2 < ∞ and sup
θ∈Θ

E||∂st(θ)
2

∂θi
X

(i)
t ||2 < ∞.

C4. Wθ0i
has a unique continuous inverse.

Theorem 1. (Strong Consistency) Under Conditions C1− C4, θ̂ a.s.−→ θ0 as n → ∞.

To establish the joint asymptotic normality for (θ̂
′
1, θ̂

′
2)

′, we introduce the concept of

near-epoch-dependence for triangular array of random variables, which is one of the most

general concepts of weak temporal dependence for nonlinear models. Its origin can be

traced to as far back as [35] and it has been widely used in the econometrics literature, see

e.g. [52], [4], and [22] among others.

Definition A triangular array of random variables {Xn,t} is L2-near-epoch-dependent

(L2-NED) on a triangular array of random variables {Un,t} if for k ≥ 0,

sup
n

sup
t
||Xn,t − E[Xn,t|Un,t−k, · · · , Un,t+k]|| ≤ v(k),

and v(k) → 0 as k → ∞.

Definition A sequence δk is of size −λ if δk = O(k−λ−ϵ) for some ϵ > 0.
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The following assumptions are imposed to facilitate our theoretical derivations.

C5. limn→+∞
k0(n)

n−k0(n)
= c, for a positive constant c.

C6. Let sn,t = st(θ01) if t ≤ k0(n) and sn,t = st(θ02) if t > k0(n). Then, for some

r > 2, {sn,t} is a triangular array of mean zero random vectors that is L2-NED of size -1

on an α-mixing base {Un,t} of size −r/(r − 2) and sup
n
sup
t
E||sn,t||4r < ∞.

C7. Let ḡ(θ0) = (f̄ (1)(θ01)
′, f̄ (2)(θ02)

′)′. lim
n→∞

var(
√
nḡ(θ0)) = V0 = diag(V1,1,V2,2)

for some positive definite matrix V0.

C8. There exists a weakly consistent estimator V̂n := diag(V̂1,1, V̂2,2) for V0, namely

V̂n −V0
P→ 0 as n → ∞.

For i = 1, 2, note that f̄ (i)(θi) is continuously differentiable with respect to θi on Θ.

We denote its matrix gradient by F̄ (i)(θi) and define the matrices

Gi = F̄ (i)(θ̂i)
′ΦnV̂i,iΦnF̄

(i)(θ̂i), Hi = F̄ (i)(θ̂i)
′ΦnF̄

(i)(θ̂i),

and

An = diag(G−1/2
1 , G

−1/2
2 )diag(H1, H2).

Theorem 2. (Asymptotic Normality) Under Conditions C1− C8, as n → ∞,

An ×
√
n

(θ̂1 − θ1)

(θ̂2 − θ2)

 D→ N (02p, I2p) , where p := d(d− 1)/2.

Some remarks on the assumptions are in order: Assumption C5 controls the two seg-

ment lengths so that both grow to infinity. Assumption C6 allows for general serial cor-

relation in sn,t and it accounts for potential heteroscedasticity across different segments

of the latent process. Similar conditions have been considered in the change-point detec-

tion literature, see e.g. [4] and [8]. Assumption C7 ensures the existence of a positive
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definite asymptotic covariance matrix for ḡ(θ0). As {sn,t} is L2-NED of size -1, it can

be shown that f̄ (1)(θ01) and f̄ (2)(θ02) are asymptotically uncorrelated, which implies the

asymptotic independence between θ̂1 and θ̂2. Assumption C8 requires the existence of

a consistent covariance estimator for V, which can be constructed based on the classical

kernel-window estimation.

We note that, in practice, the change point k0(n) is unknown and needs to be estimated

from the data as described in the next subsection. Let k̂(n) be a consistent estimator such

that

n−1|k̂(n)− k0(n)| = op(1). (3.1)

Then following the arguments in Corollary 1 of [8], we expect that the conclusion in

Theorem 4 remains valid if k0(n) is replaced by k̂(n).

3.4 Change point detection

Identification of change points or segmenting a nonstationary series into locally homo-

geneous intervals is an important step in the development of TVDOC. There are diverse

change point detection methods in the literature. A parametric approach which usually as-

sumes a subjective global model for the series may lack the flexibility to deal with sudden

changes [10].

We rely on a local parametric approach due to [43] as implemented by [18, Section

2] which assumes that the volatility process is approximately constant locally but time-

varying over longer stretch of time. For our goals here, it leads to an ideal data-based and

sequential testing method to detect the change-points. More specifically, for a given t one

starts with a set of K candidate intervals of increasing lengths of the form It,k = (t−mk, t]

with mk = m0a
k, 1 ≤ k ≤ K, with prespecified m0 and a multiplier a > 1. The short-

est interval It,0 is always accepted due its smaller modeling bias relative to others. Next,

for a longer interval It,k with k = 1, . . . , K which nests the previously accepted inter-
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val It,k−1, the focus will be on testing the status of the new time points in the interval

Jt,k = [t − mk, t − mk−1] as potential change points. A log-likelihood ratio test in [18]

is used to sequentially screen all the new time points in the interval Jt,k. One accepts the

interval It,k if all the time points are found to be insignificant as potential change point.

The procedure is then continued in the next longer interval until either a change point is

detected or the longest interval It,K is reached. Otherwise, the procedure terminates and

the last accepted interval is selected.

The choice of m0 is delicate and it is recommended to be chosen small as compared

to the sample size so that smaller candidate intervals are constructed to capture all poten-

tial change points. In our experience, we found satisfactory results when m0 was around

(1/8)th of the sample size, and for fixed a = 1.25 and K = 5 as suggested in [18].

3.5 Simulation and data analysis

In this section, we illustrate the TVDOC method and compare its performance with

DOC, PCA and TVPCA using simulated and real datasets with dimensions ranging from

d = 3 to 135. The latter high-dimensional dataset highlights the important role of TS-

PCA as a tool to vertically partition a high-dimensional time series into lower-dimensional

decorrelated subseries suitable for further analysis by the DOC method.

3.5.1 A simulation study

Using a simulation experiment we illustrate the TVDOC methodology and assess its

performance relative to DOC and other methods when the assumption of stationarity or

constant mixing matrix is violated.

We consider the GARCH(1, 1) − tν model for each volatility component sit, i =

1, 2, · · · , d, where tν(0, 1) denote the standardized Student-t distribution with ν degrees
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of freedom. The multivariate volatility model for the original time series of innovations is:

et = Mst = MV
1/2
t ϵt,

Vt = diag{σ2
1t, · · · , σ2

dt}, ϵit
iid∼ tvi(0, 1),

Σt = MVtM
′, σ2

it = ωi + αis
2
i,t−1 + βiσ

2
i,t−1,

(3.2)

where ωi > 0, and αi, βi ≥ 0 to ensure positiveness of the variances. It is further assumed

that νi > 2 and αi + βi < 1, to ensure second order stationarity and ergodicity of the

process see [29, Theorem 2.5].

In each simulation experiment for series of length n = 1000, 2000, the DOCs s(1)t , t =

1, . . . , n/2, and s
(2)
t , t = n/2 + 1, . . . , n, are simulated as in (3.2) with vi = 6, ωi =

0.01, αi = 0.09, βi = 0.90 for i = 1, 2. Two fixed d × d mixing matrices M1 and M2

are constructed whose entries are iid draws from a standard normal distribution (these

matrices are presented in the Appendix). We set Mt = M1 for the first n/2 observations

and Mt = M2 for the rest, denote the first segment of the series as X(1)
t and the second as

X
(2)
t , then X

(i)
t = Mis

(i)
t for i = 1, 2.

We use the following Amari metric [6] to assess the performance or accuracy of an

estimator M̂1 with the true M1:

A(M1, M̂1) =
1

2d

d∑
i=1

(∑d
j=1 |m̃ij|

maxj|m̃ij|
− 1

)
+

1

2d

d∑
j=1

(∑d
i=1 |m̃ij|

maxi|m̃ij|
− 1

)
,

where m̃ij = (M1M̂
−1
1 )ij and d is the dimension of a square matrix. It takes values be-

tween 0 and d−1, and is equal to zero if and only if M1 and M̂1 represent permutations of

the same components. The metric is invariant to permutation and scaling of the matrices,

and is thus ideal for comparing various estimated mixing matrices.

We conduct simulation experiments to assess the performance of the following four
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methods for estimating the mixing matrix Mt for dimensions d = 5, 10 where the change-

point is known to be k0 = n/2 + 1. We note that for TVPCA (time-varying PCA) and

TVDOC methods, the mixing matrices M̂1 and M̂2 are estimated separately for the two

segments X(1)
t and X

(2)
t , while the PCA and DOC method are applied to the whole series

X t obtaining a single mixing matrix denoted by M̂. The notation TVDOC(k) or DOC(k)

in Table 3.1 corresponds to using N0 = {0, 1, · · · , k} or including the first k lags in the

objective function (2.6). Table 3.1 shows the means and standard deviations of the Amari

errors based on 10000 runs of the simulation experiments. The Amari error here is the

distance between the matrices M1 and M2 and their estimated counterparts M̂1, M̂2 for

TVPCA and TVDOC. However, for the PCA and DOC the Amari error is computed not-

ing that A(Mi, M̂i) = A(Mi, M̂), i = 1, 2.

It can be seen from Table 3.1 that TVDOC method outperforms DOC/PCA/TVPCA

d=5 d=10
n=1000 n=2000 n=1000 n=2000

A(M1, M̂1) A(M2, M̂2) A(M1, M̂1) A(M2, M̂2) A(M1, M̂1) A(M2, M̂2) A(M1, M̂1) A(M2, M̂2)
PCA 1.39(0.18) 1.89(0.22) 1.43(0.13) 1.93(0.18) 3.27(0.32) 3.95(0.44) 3.24(0.29) 4.02(0.40)
DOC(1) 1.21(0.16) 1.72(0.16) 1.18(0.22) 1.69(0.15) 3.21(0.27) 3.36(0.45) 3.18(0.26) 3.20(0.36)
DOC(2) 1.27(0.19) 1.72(0.15) 1.19(0.18) 1.74(0.16) 3.21(0.27) 3.38(0.52) 3.25(0.24) 3.21(0.39)
DOC(3) 1.23(0.17) 1.77(0.15) 1.18(0.18) 1.74(0.18) 3.30(0.29) 3.46(0.52) 3.21(0.30) 3.29(0.47)
TVPCA 1.31(0.23) 1.79(0.21) 1.29(0.26) 1.83(0.21) 2.93(0.28) 3.20(0.29) 3.01(0.33) 3.32(0.29)
TVDOC(1) 0.69(0.16) 0.72(0.17) 0.51(0.11) 0.51(0.10) 2.18(0.29) 2.19(0.32) 1.57(0.24) 1.55(0.24)
TVDOC(2) 0.80(0.20) 0.81(0.18) 0.55(0.13) 0.58(0.15) 2.34(0.30) 2.42(0.28) 1.75(0.24) 1.77(0.29)
TVDOC(3) 0.83(0.19) 0.84(0.19) 0.59(0.16) 0.61(0.16) 2.45(0.28) 2.49(0.29) 1.90(0.25) 1.87(0.27)

Table 3.1: Mean (SD) of the values of the Amari error between the true and estimated
mixing matrices of indicated methods, dimensions and sample sizes.

algorithms for different choices of the dimension d and the sample size n. For exam-

ple, when d=5 and n=1000, the Amari measure of 0.69 for TVDOC(1) is about 49.6% of

the measure for PCA, 52.7% for TVPCA and 57.1% for DOC(1). The smaller averages

and standard deviations of the Amari metric for the TVDOC estimator indicate its mixing

matrix estimator is less biased and more stable than the other methods. The better perfor-
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mance of the TVDOC indicates that, for the analysis of nonstationary multivariate time

series, it is plausible to divide the whole time span into several homogeneous segments

and then apply DOC to each segment separately.

3.5.2 Real data analysis

We illustrate the details of implementing TVDOC and TS-PCA methods by analyzing

two real datasets of dimensions 3 (Example 1) and 135 (Example 2), respectively.

Example 1. First, we consider a three-dimensional time series of the daily log returns

in percentage of the S&P 500 Index, Cisco System and Intel Corporation stocks from Jan-

uary 2, 2007 through January 2, 2012, with n = 1259 observations. This dataset is a shorter,

but a more recent segment of the same three series analyzed in [41] and includes data for

2008, the year of financial crisis. The return series plotted in Figure 3.1 show presence of

Figure 3.1: Daily log returns of (a) S&P 500 Index, (b) Intel Corporation stock and (c)
Cisco Systems stock. The vertical lines indicate the locations of the two change points.
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volatility clusters where the volatilities generally move together, and as might be expected

there is increased volatility in the fourth quarter of 2008 in each series due to the financial

crisis. We note that the three series are pairwise correlated and their (contemporaneous)

sample correlations are about 0.5. It is expected and we show that TVDOC outperforms

DOC in such a dataset with changing volatility and a nonstationary pattern.

In applying the TVDOC to the data we use the method in [18] for detecting change

points in the series. As noted earlier the number of detected change points depends on

the tuning parameter m0. For example, it segments the time series into two parts over the

time ranges from 1 to 610 and 611 to 1259 when m0 = 200, while reducing m0 to 150 it

divides the series into three segments over the time ranges 1 to 290, 291 to 656 and 657 to

1259. Note that for the latter segmentation the middle segment has larger volatility while

the other two seem reasonably homogeneous.

A VAR (3) model, with order selected using the AIC with the upper bound of 5, is fit-

ted to the whole series to prewhiten it. Let its residual series be denoted by êt and divided

into three segments ê1,t, ê2,t and ê3,t, respectively. The multivariate Ljung-Box statistics

and the p-values for êi,t and ê2i,t in Table 3.2 reveal that, indeed, the VAR(3) model has

removed the serial correlation, but significant serial correlation remains in the squared

residuals in each segment, indicating conditional heteroscedasticity.

Next, for each êi,t, i = 1, 2, 3, we check whether it is already DOC in volatility. In Ta-

ble 3.2, the observed DOC test statistics Q0
3(ê

2
i,t, 10) for the three segments are very large

relative to a χ2 with 63 degrees of freedom, indicating that êi,t are not DOC in volatility.

Thus, one may model them as linear combinations of their respective DOCs, namely as

êi,t = Misi,t. To this end, we first decorrelate êi,t using ẑi,t = Λ̂
−1/2

i P̂′
iêi,t, where Λ̂i and

P̂i are the diagonal matrix of eigenvalues and the orthogonal matrix of eigenvectors of

their sample covariance matrices, and apply DOC to ẑi,t by estimating the mixing matrix

Mi and the DOCs ŝi,t. For example, the Ljung-Box type test statistic Q0
3(ŝ

2
1,t, 10) = 95.34
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m
segment1 5 10 15 20

ê1,t
62.21 103.81 146.23 186.81
0.05 0.15 0.24 0.35

ê21,t
64.69 126.75 179.66 200.99
0.03 0.01 0.01 0.14

ϵ̂1,t
58.68 98.69 140.1 180.58
0.08 0.25 0.36 0.47

ϵ̂21,t
24.42 53.36 69.91 80.74
0.99 1 1 1

segment2 5 10 15 20

ê2,t
49.31 98.85 142.41 206.43

0.3 0.25 0.31 0.09

ê22,t
210.11 390.44 585.29 717.24

0 0 0 0

ϵ̂2,t
30.93 70.32 104.8 163.4
0.95 0.94 0.97 0.81

ϵ̂22,t
43.34 93.89 155.93 216.16
0.54 0.37 0.1 0.03

segment3 5 10 15 20

ê3,t
74.99 111.52 160.69 191.73

0 0.06 0.06 0.26

ê23,t
211.65 308.34 352.35 377.32

0 0 0 0

ϵ̂3,t
65.51 103.99 152.43 183.76
0.02 0.15 0.14 0.41

ϵ̂23,t
48.98 91.74 118.61 132.15
0.32 0.43 0.84 1

Table 3.2: Ljung-Box statistics and p-values for (a) the residual and the squared residuals
of the fitted VAR(3) and (b) the standardized residual and their squares of the fitted DOC-
GARCH(1, 1)− t model for S&P 500 Index, Cisco and Intel stock’s daily percentage log-
returns.
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indicates that ŝ21,t is already DOC in volatility. Finally, we apply the GARCH(1, 1) − t

model in (3.2) to each DOC in each segment, i.e. ŝi,k,t, i, k = 1, 2, 3. Denoting the esti-

mated GARCH residuals for each segment as ϵ̂i,t, it can be seen from Table 3.2 that this

TVDOC-GARCH(1, 1) − t model has successfully decorrelated the original time series

Xt.

Next, we use Figure 3.2 to compare the performances of TVDOC, DOC, O-GARCH

0.0
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5.0

7.5

2008 2010 2012
year
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nd
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D

variable

TVDOC

DOC

OGARCH

DCC

Figure 3.2: Conditional standard deviation fitted using 4 different models, TVDOC-
GARCH, DOC-GARCH, O-GARCH and DCC-GARCH for S&P 500 Index daily per-
centage log returns.

([3]) and DCC ([24]) models by fitting them to the three segments of the series, separately.

Figure 3.2 shows the results for the fitted conditional standard deviations for the S&P 500

series, while Figure 3.3 shows the results for the estimated conditional correlations be-

tween the S&P 500 Index and Intel Corporation returns, respectively. A rolling window

correlation estimator with a 6-month window is also plotted for comparison.
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It can be seen from Figure 3.2 that for the conditional standard deviation estimation
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Figure 3.3: Conditional correlations fitted using 4 different models, TVDOC-GARCH,
DOC-GARCH, O-GARCH and DCC-GARCH for S&P 500 Index and Intel Corporation
daily percentage log returns. A rolling window correlation estimator with a 6-month win-
dow is plotted with brown solid lines.

on the first and second segments of data, the performances of the four models are simi-

lar to each other. Figure 3.2 also shows that on the third segment, the O-GARCH model

performs worse than the other three in the sense that it fails to capture the large volatil-
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ity. For the fitted correlations, the results for TVDOC and DOC are comparable and they

outperform the other two. For example, in the second segment, it can be seen from Fig-

ure 3.3 that the correlations estimated using TVDOC and DOC match up closely with the

rolling window correlation estimator (viewed as a proxy for the true correlation). How-

ever, the conditional correlation fitted by DCC is oscillating slightly around zero and it

doesn’t match up with the rolling window estimator. Figure 3.3 also shows that, for the

third segment, the correlations estimated by TVDOC and DOC match up with the rolling

window estimator more closely than the other two methods.

Next, we illustrate the use of TS-PCA in partitioning vertically a high-dimensional

macroeconomic time series and highlight its potential role in DOC analysis.

Example 2. We apply the TS-PCA to FRED-MD [42], a large monthly macroeco-

nomic data available at research.stlouisfed.org/econ/mccracken. The lat-

est available version is from January 01, 1959 to August 01, 2015, with n = 680 obser-

vations for d = 135 series, with some missing values. The dimension of the series here is

much larger than d = 25 in Example 4 in [16]. We present results for various choice of

the tuning parameters (λ, k0,m) appearing in TS-PCA. The tuning parameter λ seems to

have the most influence on the number of non-singleton subseries as seen in Table 3.3.

We also assess the impact of k0 by fixing λ = 2,m = 25 and varying k0 from 1 to 5.

The resulting subseries with more than 1 components are shown in the Appendix where

it can be seen that its impact is minimal, only for k0 = 3 a four-dimensional subseries

appears in the list.
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λ Time Grouping

1 0.14
{115,127}, {116,126}, {122,130},

{118,124,129}, {125,128},

2 0.12
{61,125}, {64,126}, {75,128},

{86,127}, {89,129},

3 0.11
{17,96}, {37,111}, {47,108}, {56,112},

{77,106,109,110}, {100,103}, {105,113}

4 0.12
{32,67}, {46,74},

{59,65,66,68,69}, {71,87}

5 0.10
{31,39}, {33,41}, {36,38}, {37,108},

{40,42,65,66,67,68,69,70,71,72}, {107,110}

Table 3.3: Computation times (in minutes) and the non-singleton subseries from applying
TS-PCA to the FRED-MD data, with k0 = 5,m = 25 fixed and varying λ from 1 to 5.
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4. SUMMARY AND CONCLUSIONS

4.1 Challenges

We have extended the stationary DOC analysis to the high-dimensional nonstation-

ary setup, and have explored the connections between the DOC and the TS-PCA methods.

Computationally, TS-PCA is much faster than DOC, but its objective function is less statis-

tically interpretable than that in DOC. Nevertheless, TS-PCA has the potential to overcome

the computational bottle-neck encountered in optimizing the DOC’s nonconvex objective

function.

4.2 Further study

A number of problems remain unsolved for our proposed method. The first one is

that of existence of the mixing matrix M for a given a high dimensional data series X t

or establishing a valid test for deciding when it exists. Only after the test shows that the

series could be grouped into lower-dimensional subseries, one can apply TS-PCA method

to preprocess the data. If it cannot be grouped, then the second question is, how to design

an alternative method to reduce the data dimension and then make it possible to apply the

DOC model? The third problem is that of studying the impact of estimating the change

points on our asymptotic results.
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APPENDIX A

SUPPLEMENTARY MATERIALS

A.1 DOC vs TS-PCA

We illustrate that DOC (in mean and volatility) and TS-PCA are closely related to each

other, such a connection is helpful in replacing the challenging nonconvex optimization

problem in DOC by the simpler eigenanalysis of the two target positive-definite matrices

for TS-PCA in mean and volatility. It is easier to see that DOC in mean and TS-PCA in

mean are doing nearly the same thing, but using different objective functions. However,

connecting the TS-PCA for volatility processes in [16, Section 5] to DOC in volatility does

not seem straightforward. A good starting point might be to apply TS-PCA directly to s2t .

First, we assess the tendency of TS-PCA in mean in segmenting a high-dimensional

time series into lower-dimensional subseries. To this end, we simulate multivariate time

series data which are DOC in mean. We use the VAR(2) model st = C1st−1+C2st−2+ et

to generate the d-dimensional orthogonal component st of length n = 500 where et is a

d-dimensional white noise N(0d, Id), and C1, C2 are given diagonal matrices. Then we

simulate data X t = Mst using a d× d mixing matrix M generated with entries drawn iid

from a standard normal distribution.

For d = 5, 10, the simulated coefficient matrices and the mixing matrix are, respec-

tively,

C1 = diag(−0.458, 0.007,−0.366,−0.242,−0.149),

C2 = diag(0.296, 0.263, 0.392, 0.632, 0.246),

M =



−0.59 0.14 0.06 0.48 0.22

1.59 1.10 0.77 0.44 −0.96

−2.32 −0.41 −0.81 0.35 −1.10

0.63 0.05 −0.84 −0.34 1.22

−2.25 −0.24 −0.24 1.85 0.07


,
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and

C1 = diag(−0.009, 0.039,−0.185,−0.053, 0.0159,−0.114,−0.076,−0.17,−0.222,−0.308),

C2 = diag(0.259, 0.593, 0.186, 0.509, 0.274, 0.329, 0.251, 0.2661, 0.298, 0.228),

M =



0.78 0.16 0.14 −1.0 0.87 2.07 0.20 1.02 −0.61 −0.56

−0.68 −0.11 2.26 0.03 −1.29 0.24 0.95 −0.92 −1.03 1.56

0.71 −0.17 −0.94 −1.21 −1.45 −0.04 −0.15 0.91 −1.33 −0.78

−0.87 0.51 −1.20 −0.86 2.07 −0.65 0.10 −1.11 0.67 −1.49

0.18 −0.58 0.81 0.33 −1.08 −2.26 0.25 0.03 −0.22 0.58

1.56 0.31 −1.50 −1.41 1.15 −0.60 0.03 0.58 0.97 −0.83

−2.02 −0.64 −0.03 −0.66 −0.26 −0.95 −0.43 1.44 −0.08 −0.47

−0.31 −0.24 0.59 0.34 1.56 −1.70 −0.19 1.31 −0.01 −0.41

2.58 0.56 0.64 −1.32 −0.07 0.09 −0.13 0.69 2.64 −1.35

1.55 0.81 0.89 0.61 −0.37 −1.24 1.25 0.57 −0.65 −1.30



.

To compare the performance of DOC in volatility and TS-PCA for volatility processes

in [16], we simulate from the GARCH(1, 1) − tν model for each component sit, i =

1, 2, · · · , d, with length n = 500, where tν(0, 1) denote the standardized Student-t dis-

tribution with ν degrees of freedom. The two mixing matrices M in (A.1) and (A.1) are

used to simulate the data X t = Mst for the dimensions d = 5, 10, respectively. TS-PCA

in volatility is applied to obtain the estimate ŝt of st. Then we fit a GARCH(1,1) model

to each of the component series of st and calculate the residuals ϵ̂t. The simulation is

repeated 1000 times and the tuning parameters for TS-PCA in Volatility are set at m = 25,

λ = 2 and k0 = 5. The simulation results reported in Table A.1, the average time cost for

the methods during each simulation, the Amari error between the estimated and the true

M for both the TS-PCA and DOC method. It can be seen from Table A.1 that DOC has

smaller Amari errors than the TS-PCA while its time cost is larger than that of TS-PCA.

We also compare the 1-step ahead out-of-sample prediction performances between TS-

PCA and DOC. For volatility methods, during each of the 1000 simulations, we repeat the
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mean volatility
A(M̂,M) Time MSE A(M̂,M) Time MSE

d=5
TSPCA 1.29(0.13) 0.04 5.14(2.32) 1.44(0.04) 0.51 127.29(200.11)

DOC 0.56(0.19) 0.38 4.91(2.15) 0.92(0.21) 0.45 97.72(100.49)
d=10

TSPCA 3.41(0.19) 0.07 10.62(2.87) 3.47(0.19) 1.18 176.02(120.34)
DOC 2.06(0.34) 6.45 10.49(3.08) 2.59(0.31) 6.76 179.84(124.56)

Table A.1: The Amari error between the estimated and the true M, the time cost (in sec-
ond), as well as the 1-step ahead out-of-sample prediction mean squared error for the
TS-PCA and DOC methods.

following steps 1 to 4 for k = 1, 2, · · · , 5:

Step 1: Apply TS-PCA or DOC to estimate M̂ and ŝt so that X t = M̂ŝt for t =

1, 2, · · · , T − k.

Step 2: In TS-PCA, fit GARCH(1,1) to the m-th segmented subseries ŝ(m)
t if it is uni-

variate and BEKK(1,1) otherwise which is defined as,

cov(ŝ(m)
t |Ft−1) = A0A

′
0 +A1ŝ

(m)
t−1ŝ

(m)′

t−1 A
′
1 +B1cov(ŝ(m)

t−1|Ft−2)B
′
1.

In DOC, fit GARCH(1,1) to each component of st.

Step 3: Make 1-step ahead prediction using the fitted models and transform back to get

ĉov(XT−k+1|FT−k) = M̂cov(ŝT−k+1|FT−k)M̂
′

Step 4: E(cov(XT−k+1|FT−k)) = E(E(XT−k+1X
′
T−k+1|FT−k)) = E(XT−k+1X

′
T−k+1),

thus XT−k+1X
′
T−k+1 is a good approximation of E(XT−k+1X

′
T−k+1|FT−k). Now cal-

culate the mean squared error (MSE) between this approximated conditional covariance
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matrix and the predicted one by,

1

d2
||XT−k+1X

′
T−k+1 − ĉov(XT−k+1|FT−k)||22.

Finally, calculate the average of the MSE for the 5 repeats. The method with the

smaller such average has better performance in predicting the conditional covariance. The

prediction procedures for the mean methods are similar. The only differences are that the

GARCH(1,1) is replaced by AR(p), BEKK(1,1) is replaced by VAR(p), with p selected by

AIC and back-transformation is replaced by X̂T−k+1 = M̂ŝT−k. The prediction MSEs for

the simulated data mentioned above are listed in Table A.1. It can be seen that for most

of the cases, the out-of-sample prediction performance for DOC and TSPCA are similar.

When d = 5, the performance for DOC in volatility is better than that of TSPCA in volatil-

ity by having a smaller MSE.

Deeper connections between DOC and TS-PCA in volatility is revealed by the fol-

lowing surprising identity involving the covariance matrices of s2t and X t and the mixing

matrix M.

Lemma 2. Let {X t} be a mean-zero stationary process satisfying X t = Mst. Then,

(a)

cov(st, st−h) = MΓx(h)M
′. (A.1)

(b) provided that {X t} is Gaussian, we have

cov(s2t , s
2
t−h) = 2(MΓx(h)M

′) ◦ (MΓx(h)M
′), (A.2)

where ◦ denotes the Hadamard product two matrices.
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Proof. (a) The conclusion holds since for any i ̸= j,

cov(st,i, st−h,j) = Est,ist−h,j = E

[(
d∑

k=1

Mi,kX t,k

)(
d∑

k=1

Mj,kX t−h,k

)]

=
d∑

m=1

d∑
n=1

Mi,mMj,nE (X t,mX t−h,n)

=
d∑

m=1

d∑
n=1

Mi,mMj,nΓx(h)m,n

= [(Mi,1, · · · ,Mi,d)Γx(h)(Mj,1, · · · ,Mj,d)
′] .

(b) st = MX t implies that st,i =
∑d

k=1 Mi,kX t,k. Thus,

Es2t,is
2
t−h,j = E

( d∑
k=1

Mi,kX t,k

)2( d∑
k=1

Mj,kX t−h,k

)2


= E

[
d∑

m=1

d∑
n=1

Mi,mMi,nX t,mX t,n

d∑
α=1

d∑
β=1

Mj,αMj,βX t−h,αX t−h,β

]

=
d∑

m=1

d∑
n=1

d∑
α=1

d∑
β=1

Mi,mMi,nMj,αMj,βEX t,mX t,nX t−h,αX t−h,β

=
d∑

m=1

d∑
n=1

d∑
α=1

d∑
β=1

Mi,mMi,nMj,αMj,β(EX t,mX t,nEX t−h,αX t−h,β

+ EX t,mX t−h,αEX t,nX t−h,β + EX t,mX t−h,βEX t,nX t−h,α),

where the last equal is based on the conclusion stated in [15, Equation (2.3.8)]. Then we
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index 2 3 4 5 22 23 56 57 58
count 1 1 1 2 12 12 12 12 12
index 59 60 65 67 69 70 79 80 84
count 12 12 398 109 1 1 1 1 5
index 102 124 125 126 127 131 133 134 136
count 168 1 1 1 1 154 2 2 42

Table A.2: The index and the number of missing values in the FRED-MD data.

have,

cov(s2t,i, s
2
t−h,j) = Es2t,is

2
t−h,j − Es2t,iEs

2
t−h,j

=
d∑

m=1

d∑
n=1

d∑
α=1

d∑
β=1

Mi,mMi,nMj,αMj,β(Γx(0)m,nΓx(0)α,β

+ Γx(h)m,αΓx(h)n,β + Γx(0)m,βΓx(0)α,n)

−
d∑

m=1

d∑
n=1

d∑
α=1

d∑
β=1

Mi,mMi,nMj,αMj,β (Γx(0)m,nΓx(0)α,β)

= 2
d∑

m=1

d∑
n=1

d∑
α=1

d∑
β=1

Mi,mMi,nMj,αMj,β (Γx(h)m,αΓx(h)n,β)

= 2

[
d∑

m=1

d∑
n=1

Mi,mMj,αΓx(h)m,α

][
d∑

α=1

d∑
β=1

Mi,nMj,βΓx(h)n,β

]
= 2 [(Mi,1, · · · ,Mi,d)Γx(h)(Mj,1, · · · ,Mj,d)

′]
2
.

Thus, the conclusion holds.

A.2 More on FRED-MD in 3.5.2

There are 27 series in FRED-MD data that contain missing values, the index and num-

ber of missing values are shown in Table A.2. For each series, we replaced its missing val-

ues by the mean of its observed values, and have used the imputed series in the subsequent

analysis. In Section 4 of the paper, the TS-PCA method was applied to the FRED-MD

data for various choices of the tuning parameter λ and fixed m = 25, k0 = 5. Here, since
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k0 Time Grouping

1 0.07
{15,120}, {56,116,117},

{61,123}, {91,125}

2 0.07
{17,126}, {60,128},
{76,121}, {92,127}

3 0.08
{65,128}, {71,125},

{83,119,122,126}, {87,127}
4 0.09 {65,128}

5 0.10
{61,125}, {64,126}, {75,128},

{86,127}, {89,129},

Table A.3: Computational times (in minutes) and the resulting non-singleton groups by
applying TS-PCA to the FRED-MD data, with λ = 2,m = 25 and k0 varying from 1 to 5.

d = 135 is reasonably large it of interest to assess the impact of k0 on the dimensions

of the subseries. We fix λ = 2,m = 25 and vary k0 from 1 to 5, the resulting subseries

with more than 1 components are shown in the Table A.3. It can be seen that, as in the

low-dimensional cases, the impact of k0 is minimal in the sense that the non-univariate

subseries in the table have two components, except for k0 = 1, 3 where four-component

and three-component subseries appear in the list.

A.3 Theorems

As f̄ (i)(θi) is continuously differentiable with respect to θi, its matrix gradient exists

and is denoted by F̄ (i)(θi) :=
∂f̄ (i)(θi)

∂θi
. Let F (i) denote the a.s. limit of F̄ (i)(θ0i). Then [41,

Lemma A4 in supplementary material] implies F (i) exists and F (i) = E{ ∂
∂θ
F̄ (i)(θ)|θ=θ0i

}.

Recall that ḡ(θ) = (f̄ (1)(θ1)
′, f̄ (2)(θ2)

′)′, then define Ḡn = ∂ḡn(θ)
∂θ

. Let SO(d) be the

subgroup of O(d) with determinant 1. It is compact and closed under matrix multiplication

and inversion.

Lemma 3. Suppose {Un,t} is an α-mixing sequence of size −r/(r − 2). If {Xn,t} is L2-

NED of size −λ on {Un,t} and sup
n

sup
t
||Xn,t|| < ∞, then for any ℓ ≥ 0, {Xn,tXn,t−ℓ} is

L2-NED on {Un,t} of size −λ.
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Lemma 4. Under Conditions C1-C9,

|Ḡn(θ)−G(θ)| a.s.→ 0.

as n → ∞ for any Wθ ∈ SO(d).

Lemma 5. Under Conditions C1-C9,

(i) As n → ∞, ∂Ḡn(θ)
∂θ

a.s.→ ∂G(θ)
∂θ

.

(ii) There exists finite, point-wise, uniform bounds such that

∣∣∣∣∣∣∣∣∂Ḡn(θ)

∂θ

∣∣∣∣∣∣∣∣
F

≤ Bn and
∣∣∣∣∣∣∣∣∂G(θ)

∂θ

∣∣∣∣∣∣∣∣
F

≤ B

for any Wθ ∈ SO(d) and Bn
a.s.→ B as n → ∞.

Lemma 6. Under Conditions C1-C9, as n → ∞, sup
Wθ∈SO(d)

|Ḡn(θ)−G(θ)| a.s.→ 0.

Theorem 3. (Strong Consistency) Under C1− C4, θ̂ a.s.−→ θ0 as n, n− k0(n) → ∞.

Theorem 4. (Asymptotic Normality) Under C1− C8, as n → ∞,

An ×
√
n

(θ̂1 − θ1)

(θ̂2 − θ2)

 D→ N (02d0 , I2d0) ,

where d0 := d(d− 1)/2.
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A.4 Proofs of the results in A.3

Proof of Lemma 3. Let F t+m
t−m = σ(Un,t−m, · · · , Un,t+m) and note that,

||Xn,tXn,t−ℓ − E[Xn,tXn,t−ℓ|F t+m
t−m−2ℓ]||

= ||Xn,tXn,t−ℓ −Xn,tE[Xn,t−ℓ|F t+m
t−m−2ℓ] +Xn,tE[Xn,t−ℓ|F t+m

t−m−2ℓ]

− E[Xn,t|F t+m
t−m ]E[Xn,t−ℓ|F t+m

t−m−2ℓ] + E[Xn,t|F t+m
t−m ]E[Xn,t−ℓ|F t+m

t−m−2ℓ]

− E[Xn,tXn,t−ℓ|F t+m
t−m−2ℓ]||

≤ ||Xn,tXn,t−ℓ −Xn,tE[Xn,t−ℓ|F t+m
t−m−2ℓ]||

+ ||Xn,tE[Xn,t−ℓ|F t+m
t−m−2ℓ]− E[Xn,t|F t+m

t−m ]E[Xn,t−ℓ|F t+m
t−m−2ℓ]||

+ ||E[Xn,t|F t+m
t−m ]E[Xn,t−ℓ|F t+m

t−m−2ℓ]− E[Xn,tXn,t−ℓ|F t+m
t−m−2ℓ]||

≤ ||Xn,t||||Xn,t−ℓ − E[Xn,t−ℓ|F t+m
t−m−2ℓ]||

+ ||Xn,t−ℓ||||Xn,t − E[Xn,t|F t+m
t−m ]||

+ ||E[E[Xn,t|F t+m
t−m ]Xn,t−ℓ −Xn,tXn,t−ℓ|F t+m

t−m−2ℓ]||

≤ ||Xn,t||v(m+ ℓ) + ||Xn,t−ℓ||v(m) + ||E[Xn,t|F t+m
t−m ]Xn,t−ℓ −Xn,tXn,t−ℓ||

≤ ||Xn,t||v(m+ ℓ) + 2||Xn,t−ℓ||v(m),

where we have used the fact that F t+m
t−m ⊂ F t+m

t−m−2ℓ. Therefore, Xn,tXn,t−ℓ is L2-NED of

the same size as {Xn,t} provided that sup
n

sup
t
||Xn,t|| < ∞.

Proof of Lemma 4. Denote diag(A,B) as the block diagonal matrices where the upper left

and lower right block are matrx A and B, respectively. Notice that

Ḡn =
∂ḡn(θ)

∂θ
= diag

(
1

k0

k0∑
t=1

∂f(xt, θ1)

∂θ1
,

1

n− k0

n∑
t=k0+1

∂f(xt, θ2)

∂θ2

)
.

Define f̄
(1)
n (θ1) = 1

k0

∑k0
t=1 f(xt, θ1), f

(1)(θ1) = Ef(xt, θ1) for 1 ≤ t ≤ k0 and
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f̄
(2)
n (θ2) = 1

n−k0

∑n
t=k0+1 f(xt, θ2), f

(2)(θ2) = Ef(xt, θ2) for k0 + 1 ≤ t ≤ n. It suf-

fices to show that as n → ∞,

∂f̄
(1)
n

∂θ1

a.s.→ ∂f (1)(θ1)

∂θ1
and

∂f̄
(2)
n

∂θ2

a.s.→ ∂f (2)(θ2)

∂θ2
.

As the proofs for both terms are similar, we consider only the first one. Denote the

(i, j)-th element of f̄ (1)
n (θ1) as

f̄
(1)
n,k = ĉov(s2t,i, s

2
t−ℓ,j) = Ês2t,is

2
t−ℓ,j − Ês2t,iÊs2t−ℓ,j, (A.3)

To show the convergence ∂f̄
(1)
n (θ1)
∂θ1

→ ∂f (1)(θ1)
∂θ1

, it suffices to show it only for the first

term in (A.3) since the proof for the second one is very similar. Defining f
(1)
n,i,j,t = s2t,is

2
t−ℓ,j ,

then f
(1)
n,i,j =

1
k0

∑k0
t=1 f

(1)
n,i,j,t. Notice that

∂f̄
(1)
n,i,j,t(θ1)

∂θ1,a,b
= Tr

[(
∂f̄

(1)
n,i,j,t(θ1)

∂Wθ1

)′
∂Wθ1

∂θ1,a,b

]
,

where

∂f̄
(1)
n,i,j,t(θ1)

∂Wθ1,i′,j′
= s2t,i

∂s2t−ℓ,j

∂Wθ1,i′,j′
+ s2t−ℓ,j

∂s2t,i
∂Wθ1,i′,j′

= s2t,i
∂(
∑d

p=1Wθ1,j,pxt−ℓ,p)
2

∂Wθ1,i′,j′
+ s2t−ℓ,j

∂(
∑d

p=1Wθ1,i,pxt,p)
2

∂Wθ1,i′,j′

= 2s2t,ist−ℓ,jxt−ℓ,j′1(j = i′) + 2s2t−ℓ,jst,ixt,j′1(i = i′),

and

∂Wθ1

∂θ1,a,b
= Q1,2(θ1,1,2) · · ·Qa−1,b(θ1,a−1,b)

∂Qa,b(θ1,a,b)

∂θ1,a,b
Qa+1,b(θ1,a+1,b) · · ·Qd−1,d(θ1,d−1,d).

49



Obviously,
∂f̄

(1)
n,i,j,t(θ1)

∂θ1,a,b
is a measurable function of {st}. Also notice that {st} is station-

ary and ergodic. Thus it follows from [49, TH 3.5.7] that {∂f̄
(1)
n,i,j,t(θ1)

∂Wθ1,i
′,j′

} is stationary and

ergodic.

Since s2t,ist−ℓ,jxt−ℓ,j′ ≤ 1
2
s4t,i +

1
2
(st−ℓ,jxt−ℓ,j′)

2 ≤ 1
2
s4t,i +

1
4
s4t−ℓ,j +

1
4
x4
t−ℓ,j′ , then,

E|s2t,ist−ℓ,jxt−ℓ,j′ | ≤
1

2
Es4t,i +

1

4
Es4t−ℓ,j +

1

4
Ex4

t−ℓ,j′
C2
< ∞.

Similarly, E|s2t−ℓ,jst,ixt,j′ | < ∞ and thus E||∂f̄
(1)
n,i,j,t(θ1)

∂Wθ1,i
′,j′

|| < ∞. Finally, it follows from

[49, TH 3.5.8] that

∂f̄
(1)
n (θ1)

∂θ1

a.s.→ ∂f (1)(θ1)

∂θ1
.

Proof of Lemma 5. Notice that

∂2f
(1)
n,i,j,t

∂θ21,a,b
=

∂
∑

i1,j1

∂f
(1)
n,i,j,t(θ1)

∂Wθ1,i1,j1

∂Wθ1,i1,j1

∂θ1,a,b

∂θ1,a,b

=
∑

i1,j1,i2,j2

∂2f
(1)
n,i,j,t(θ1)

∂Wθ1,i1,j1∂Wθ1,i2,j2

∂Wθ1,i1,j1

∂θ1,a,b

∂Wθ1,i2,j2

∂θ1,a,b

+
∑
i1,j1

∂f
(1)
n,i,j,t(θ1)

∂Wθ1,i1,j1

∂2Wθ1,i1,j1

∂θ21,a,b
.

Notice also that

∂2f
(1)
n,i,j,t(θ1)

∂Wθ1,i1,j1∂Wθ1,i2,j2

= 2
∂(s2t−ℓ,jst,ixt,j1(i = i1) + s2t,ist−ℓ,jxt−ℓ,j11(j = i1))

∂Wθ1,i2,j2

.
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WLOG, consider only the first term, which could be further written as,

4
∂st−ℓ,j

∂Wθ1,i2,j2

st−ℓ,jst,ixt,j11(i = i1) + 2
∂st,i

∂Wθ1,i2,j2

s2t−ℓ,jxt,j11(i = i1)

= 4xt−ℓ,j2st−ℓ,jst,ixt,j11(i = i1)1(j = i2) + 2xt,j2s
2
t−ℓ,jxt,j11(i = i1)1(i = i2).

Also we have,

∂2Wθ1

∂θ21,a,b
= Q1,2(θ1,1,2) · · ·Qa−1,b(θ1,a−1,b)

∂2Qa,b(θ1,a,b)

∂θ21,a,b
· · ·Qd−1,d(θ1,d−1,d).

Thus
∂2f

(1)
n,i,j,t

∂θ21,a,b
is a measurable function of {st}. Notice that

E|xt−ℓ,j2st−ℓ,jst,ixt,j1|
Holder′s Ineq

≤ (E|xt−ℓ,j2 |4E|st−ℓ,j|4E|st,i|4E|xt,j1 |4)1/4
C2
< ∞.

Similarly, E|xt,j2s
2
t−ℓ,jxt,j1 | < ∞. Thus, E| ∂2f

(1)
n,i,j,t(θ1)

∂Wθ1,i1,j1
∂Wθ1,i2,j2

| < ∞ and also we have

E| ∂2f
(1)
n,i,j,t(θ1)

∂Wθ1,i1,j1
∂Wθ1,i2,j2

| < ∞. The rest of the proof follows exactly from the proof of Lemma

A4 in the supplementary material for [41].

Proof of Lemma 6. By applying the results in Lemmas 4-5, the proof follows exactly from

the proof for Lemma A5 in the supplementary material of [41].

Proof of Theorem 3. [41, Theorem 1] verifies that θ̂i
a.s.−→ θ0i. Thus θ̂ a.s.−→ θ0.

Proof of Theorem 4. For clarity, we drop the subscript n in {sn,t} in the proof below. Re-

call that ḡ(θ) = (f̄ (1)(θ1)
′, f̄ (2)(θ2)

′)′ and let

Ψn =

Φn 0

0 Φn

 .

Applying DOC to each segment to estimate θ1 and θ2 is equivalent to solving the
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problem,

θ̂ = (θ̂1, θ̂2) = argmin
(θ1,θ2)∈Θ×Θ

(J (1)(θ1) + J (2)(θ2)) = argmin
(θ1,θ2)∈Θ×Θ

ḡ(θ)′Ψnḡ(θ),

where J (i)(θi) is the objective function for the i-th segment. Define

gt(θ) =

f(X t,θ1)

0

× 1{1 ≤ t ≤ k0(n)}+

 0

f(X t,θ2)

× 1{k0(n) < t ≤ n}.

Then ḡ(θ) = 1
k0

∑k0
t=1 gt(θ) +

1
n−k0

∑n
t=k0+1 gt(θ). By the mean value theorem, we

have

ḡ(θ̂) = ḡ(θ0) + Ḡ(θ̂
∗
)(θ̂ − θ0) (A.4)

where Ḡ(θ) := ∂ḡ(θ)
∂θ

and θ̂
∗

is between θ0 and θ̂. Since Ḡ(θ̂)′Ψnḡ(θ̂) = 0, multiplying

both sizes of (A.4) by Ḡ(θ̂)′Ψn and rearranging the terms, we obtain

θ̂ − θ0 = −(Ḡ(θ̂)′ΨnḠ(θ̂
∗
))−1Ḡ(θ̂

∗
)′Ψnḡ(θ0). (A.5)

By Theorem 3, θ̂
∗ a.s.→ θ0. By Lemma 6, we have sup

θ∈Θ |Ḡ(θ) − G(θ)| a.s.→ 0 with

G(θ) := E{ ∂
∂θ
gt(θ)}. Therefore we get

|Ḡ(θ̂
∗
)−G(θ0)| ≤|Ḡ(θ̂

∗
)−G(θ̂

∗
)|+ |G(θ̂

∗
)−G(θ0)|

≤ sup
θ∗∈Θ

|Ḡ(θ∗)−G(θ∗)|+ |G(θ̂
∗
)−G(θ0)|

a.s.→ 0.

Let Φ := lim
n→∞

Φn and define Ψ by replacing Φn with Φ in Ψn. Then θ̂ − θ0 has

the same asymptotic distribution as that of −(G(θ0)
′ΨG(θ0))

−1G(θ0)Ψḡ(θ0). Denote
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B = diag(F (1)′Φ, F (2)′Φ) and C = diag(F (1)′ΦF (1), F (2)′ΦF (2)). If
√
nḡ(θ0) converges

to N(0,V0), then by (A.5),

(
√
n(θ̂1 − θ01)

′,
√
n(θ̂2 − θ02)

′)′ → C−1BV
1/2
0 N(0, I).

Notice that An →
[
BV0B

′]−1/2
C under Assumption C8. Then the conclusion fol-

lows from the Slutsky’s theorem.

Below we prove that
√
nḡ(θ0) converges to N(0,V0). By the Wold-device, it is equiv-

alent to show that for any b = (b(1)
′
, b(2)

′
)′,

b(1)
′
√
n

k0(n)

k0(n)∑
t=1

f(X t,θ01) + b(2)
′

√
n

n− k0(n)

n∑
t=k0(n)+1

f(X t,θ02) (A.6)

converges to a normal distribution. Recall that for any p ∈ {1, 2, · · · , d}, Est,p = 0 and

Es2t,p = 1, where st,p denotes the pth component of st. Define Ês2ℓ,k :=
1

n−ℓ

∑n
t=ℓ+1 s

2
t−ℓ,k.

Then we have

√
n

k0(n)
b(1)

′
k0(n)∑
t=1

f(X t,θ1) =

√
n

k0(n)

k0(n)∑
t=ℓ+1

∑
(p,q,ℓ)∈H

b
(1)
p,q,ℓ(s

2
t,ps

2
t−ℓ,q − Ês20,pÊs2ℓ,q)

=

√
n

k0(n)

k0(n)∑
t=ℓ+1

∑
(p,q,ℓ)∈H

b
(1)
p,q,ℓ{(s

2
t,ps

2
t−ℓ,q − 1)− (s2t,p − 1)− (s2t−ℓ,q − 1)− 1}

−
√
n
∑

(p,q,ℓ)∈H

b
(1)
p,q,ℓ{(Ês20,pÊs2ℓ,q − 1)− (Ês20,p − 1)− (Ês2ℓ,q − 1)− 1}

=
∑

(p,q,ℓ)∈H

n

k0(n)
b
(1)
p,q,ℓ

1√
n

k0(n)∑
t=ℓ+1

(1, 1, 1)(s2t,ps
2
t−ℓ,q − 1, s2t,p − 1, s2t−ℓ,q − 1)′

−
√
n
∑

(p,q,ℓ)∈H

b
(1)
p,q,ℓ(Ês20,p − 1)(Ês2ℓ,q − 1) (A.7)

Let b̃(1)p,q,ℓ :=
n

k0(n)
b
(1)
p,q,ℓ, which is bounded by C5. Since

√
n(Ês20,p − 1) = OP(1) and
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(Ês2ℓ,q − 1) = oP(1) under C6. Then
√
n
∑

(p,q,ℓ)∈H b
(1)
p,q,ℓ(Ês20,p − 1)(Ês2ℓ,q − 1) = oP(1)

and (A.7) can be rewritten as,

(1, 1, 1)
1√
n

k0(n)∑
t=ℓ+1

∑
(p,q,ℓ)

b̃
(1)
p,q,ℓ(s

2
t,ps

2
t−ℓ,q − 1, s2t,p − 1, s2t−ℓ,q − 1)′ + o(1).

Letting b̃
(2)
t,p,q,ℓ :=

n
n−k0(n)

b
(2)
p,q,ℓ, the second term of (A.6) can be similarly rewritten as,

(1, 1, 1)
1√
n

n∑
t=k0(n)+1

∑
(p,q,ℓ)

b̃
(2)
p,q,ℓ(s

2
t,ps

2
t−ℓ,q − 1, s2t,p − 1, s2t−ℓ,q − 1)′ + o(1).

Define Zn,t =
∑

(p,q,ℓ)∈H b̃
(1)
p,q,ℓ(s

2
t,ps

2
t−ℓ,q − 1, s2t,p − 1, s2t−ℓ,q − 1)′ if t ≤ k0(n) and

Zn,t =
∑

(p,q,ℓ)∈H b̃
(2)
p,q,ℓ(s

2
t,ps

2
t−ℓ,q − 1, s2t,p − 1, s2t−ℓ,q − 1)′ if t > k0(n). Then (A.6) is

equal to (1, 1, 1) 1√
n

∑n
t=1Zn,t. By the continuous mapping theorem, it suffices to show

that 1√
n

∑n
t=1Zn,t is asymptotically normal.

To this end, notice that E|Zn,t|r ≤ Cmax
t,p,q

{E(s2t,ps
2
t−ℓ,q)

r, E(s2t,p)
r, 1} for some positive

constant C. Besides, E(s2t,p)
r < ∞ and E(s2rt,ps

2r
t−ℓ,q) ≤ {E(s4rt,p)E(s4rt−ℓ,q)}1/2 < ∞,

where we have used C6 and the Cauchy-Schwarz inequality. Thus, {Zn,t} has finite r-th

moment. By C6, {sn,t} is L2-NED on {Un,t}. Applying Lemma 3, {Zn,t} is also L2-

NED on {Un,t} with the same size as that for {st,p}. Therefore, by [22, Corollary 1],

1√
n

∑n
t=1Zn,t converges to a normal distribution and the proof is thus completed.
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