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ABSTRACT

This dissertation proposes a new semiparametric approach for binary classification

that exploits the modeling flexibility of sparse graphical models. This approach is based on

nonparametrically estimated densities, which are notoriously difficult to obtain when the

number of dimensions is even moderately large. In this work, it is assumed that each class

can be well-represented by a family of undirected sparse graphical models, specifically

a forest-structured distribution. By making this assumption, nonparametric estimation of

only one- and two-dimensional marginal densities are required to transform the data into a

space where a linear classifier is optimal.

This work proves convergence results for the forest density classifier under certain

conditions. Its performance is illustrated by comparing it to several state-of-the-art classi-

fiers on simulated forest-distributed data as well as a panel of real datasets from different

domains. These experiments indicate that the proposedmethod is competitive with popular

methods across a wide range of applications.
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1 INTRODUCTION

The classification problem is ubiquitous, with applications in nearly every field. In

the simplest case of binary classification, the goal is to assign an observation to one of two

groups, given previous cases belonging to each group. For example, microarray datasets

may consist of expression profiles for thousands of genes for a number of samples (here,

the patients). Given the gene expression information for a new patient, how can we accu-

rately diagnose the patient as having a certain type of cancer? Alternatively, how can we

determine whether or not a cancer patient will respond to a specific drug?

Linear discriminant analysis (LDA) is one of the oldest and most widely used meth-

ods for classification due to its simplicity and robustness, and its effectiveness in a fair

number of cases. However, it is known to fail when the classes are not separable by linear

boundaries, when the number of features is large relative to the number of observations, or

when the distribution of the data for each class is far from Gaussian. Many improvements

have extended LDA to the high-dimensional setting, such as regularization approaches to

achieve sparsity (Friedman, 1989; Bickel and Levina, 2004; Guo et al., 2005; Witten and

Tibshirani, 2011).

In addition to these methods, numerous approaches exist that have weaker as-

sumptions and offer more flexibility for classifying large datasets from various domains.

Examples include Classification and Regression Trees (Breiman et al., 1984), Random

Forests (Breiman, 2001), Nearest Neighbor (Cover and Hart, 1967), Artificial Neural Net-
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works (Ripley, 1994; Cheng and Titterington, 1994), and Support Vector Machines (SVM)

(Cortes and Vapnik, 1995; Lee et al., 2004). We propose a new semiparametric approach

to classification that utilizes a flexible assumption on the dependency structure of the data,

and is motivated by the varying approaches taken by Lafferty et al. (2012), Pérez et al.

(2009), Park et al. (2011), and Tan et al. (2010).

To motivate our work, consider a binary classification problem, such as diagnosing

a patient to have one of two types of breast cancer. The explanatory variables X belongs

to some d-dimensional space Ω = Ω1× · · ·×Ωd , and the response variable Y takes values

in the set Y = {+1,−1}. Let p denote the joint probability distribution of (X,Y ). Given a

set of labeled samples {xℓ,yℓ}, the standard task is to construct a classifier f : Ω →Y , with

good performance (e.g. small misclassification error) on new unlabeled instances of X.

Assuming equal costs of misclassification for each class, the optimal (Bayes) classification

rule assigns a sample to the class with highest posterior probability, so that in the binary

case

fB(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+1 if p(Y =+1|x)≥ 1/2

−1 otherwise.

(1.1)

Through the application of Bayes’ rule, the decision boundary for the optimal classifier

can be written in terms of the likelihood ratio

LR(x) = p(x|Y =+1)
p(x|Y =−1)

. (1.2)

A new sample would then be predicted according to whether or not the likelihood ratio

is larger than the ratio of class prior probabilities, p(Y =−1)/p(Y =+1). In general, the
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conditional class densities are unknown and are difficult to estimate in a reliable manner,

particularly in high-dimensional settings. The problem then is to find a classifier whose

performance is close to that of the Bayes rule.

Methods based on density estimation have not gained much popularity. A main im-

pediment is that the classification data are multivariate, often high-dimensional, and are

typically not normally distributed. Accurately estimating the densities nonparametrically

requires a large number of labeled samples, and as that requirement grows exponentially

with the dimension, it is thus impractical for many real applications. Some methods ap-

proximate the decision boundary by simple functions, such as a linear separating hyper-

plane in the case of LDA and SVM. A second class of methods approximate the conditional

densities from some parametric family. Due to the complex interactions among variables

in the high-dimensional setting, a large number of parameters are often required, and in

many cases the assumed parametric model is not a sufficiently accurate representation of

the underlying relationships among the variables. Finally, a third class of methods assumes

conditional dependence relationships among the random variables that can be represented

by a graphical model.

We take this last approach, restricting our models to a family of distributions based

on forest-structured undirected graphical models. This flexible assumption on the structure

of the data allows the likelihood ratio to be constructed using densities of no more than two

dimensions, based on product rules. This facilitates an approach based on nonparametri-

cally estimated densities that circumvents the “curse of dimensionality” problem. Under
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certain conditions, and if the forest distribution assumption holds, the proposed method

achieves the same asymptotic loss as if we knew the exact densities.

This dissertation is organized as follows. Section 2 provides a brief introduction to

undirected graphical models and a review of relevant literature that apply graphical model

ideas to the classification task. Section 3 describes a new semiparametric approach to clas-

sification that utilizes a flexible graphical model assumption on the dependency structure

of the data. Section 4 describes the results from applying the proposed classification ap-

proach to synthetic and real datasets. A simulation study explores the performance of the

algorithm on data which follow forest-structured distributions. A comparison of the forest

density classifier with state-of-the-art approaches is provided on a panel of publicly avail-

able datasets. These examples help to evaluate its performance when the forest distribution

assumption do not hold.Section 5 provides a summary of the work and proposes future re-

search directions that extend this work. Appendices appear at the end of this document

which contain proofs for the theoretical results and supplementary simulation results.
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2 LITERATURE REVIEW

2.1 Undirected graphical models

A graphical model is a family of multivariate probability distributions defined on a

graph G = (V,E). The vertices V = {1, . . . ,d} represent the components of the random

vector x = (x1, . . . ,xd), and the edges in E encode the conditional dependencies among the

random variables. We are interested in undirected graphical models, often called Markov

random fields, which are based on graphs having only undirected edges. In these graphs,

the absence of an edge ei j ∈ E indicates that the corresponding random variables are con-

ditionally independent given all the other variables, i.e. xi ⊥⊥ x j|xV\{i, j}. This is called

the pairwise Markov property for undirected graphical models, and the joint distribution

p(x)> 0 having this property is said to beMarkov with respect to the graph G. This graph

specifies the factorization properties of p(x), as we will see in the following sections. See

Lauritzen (1996) and Jordan (1999) for more details on the conditional independence prop-

erties of undirected graphical models.

Figure 2.1 illustrates a simple example of a forest, an undirected graphical model

which has no cycles. Forests will be of particular interest in the following for our approach.

In this example, the variables x2 and x3 are conditionally independent given x1, and the

variables {x1,x2,x3} are independent of {x4,x5}.

Assuming that the dependencies among the variables for a particular dataset can be

reasonably accurately described by a graph structure, there are two different tasks to con-
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x1 x4 x5

x2 x3

Figure 2. : A simple forest on five vertices.

sider: the first is graph learning, namely estimating the typically unknown d-dimensional

distribution by a distribution that is Markov on an undirected graph, and the second is

the construction of classifiers that sensibly use this modeling assumption. We first briefly

review the relevant prior work on both tasks. To avoid redundancy in notation, we let p de-

note either the probability density function or the probability mass function as appropriate

to the context.

2.2 Graph learning

The problem of learning the graph structure from the data has a large literature. There

are many real applications, such as social networks and biological networks, where the

data are naturally represented by a graph. In data having complex relationships among the

variables, a graph may reasonably describe useful local structure in a manner that is easy

to visualize (Jordan, 1999, 2004).

The most popular methods of estimating the graph G assume that the distribution

is Gaussian, as in this case the missing edges in the graph correspond to the zeros in the

inverse covariance matrix. Meinshausen and Bühlmann (2006) developed an algorithm to

estimate the locations of the zeros in the inverse covariancematrix when the dimensionality

6



is large. However, an assumption that the data is Gaussian is often unreasonable. Liu et al.

(2012) and Xue and Zou (2012) proposed the nonparanormal model (or semi-parametric

Gaussian copula model) to relax the Gaussian assumption, while still taking advantage

of the efficient computational procedures developed under the Gaussian assumption for

high-dimensional data.

A second approach, which makes no distributional assumptions, restricts the graph

structure to be an undirected tree, where each pair of vertices is connected by only one

path. In this case, the probability distribution p(x) factorizes according to the vertices V

and edges E, providing a compact representation that involves only pairwise relationships

between the variables. To estimate an unknown discrete distribution, Chow and Liu (1968)

considered approximations from the following set of permissible tree-structured distribu-

tions

pT (x) =
d

∏
i=1

p(xmi |xm j(i)), 0 < j(i)< i,

where (m1, . . . ,md) is an unknown permutation of 1, . . . ,d, m0 = 0, j(i) ∈ {0, . . . , i−1} is

the parent of i in the dependency tree, and p(xi|x0) is defined to be equal to p(xi). They pro-

posed a computationally efficient algorithm to find the optimal pT , namely the tree-based

distribution withminimal Kullback-Leibler (KL) divergence from p. Their procedure finds

the maximum-likelihood estimator of the dependence tree. When p itself has a tree struc-

ture, Chow andWagner (1973) showed asymptotic consistency, namely that as sample size

tends to infinity, the method recovers the exact distribution, pT → p.

Recent work has extended this approach to allow a more sparse structure. Tan et al.

7



(2011) derived a procedure to remove weak edges from the learned tree, resulting in the

more general forest structure composed of a union of disjoint trees. A forest is simply

an undirected graph having no cycles. Such a forest-structured distribution admits the

factorization

pF(x) = ∏
(i, j)∈EF

p(xi,x j)

p(xi)p(x j)
∏
i∈VF

p(xi), (2.1)

where EF and VF are the edge and vertex sets of the forest. Here, a forest may include

fewer edges than the Chow-Liu tree, which by construction has d−1 edges. Lafferty et al.

(2012) extended the Chow and Liu approach to the case of multivariate continuous data by

using kernel density estimates of the univariate and bivariate densities in (2.1).

We build on these graph-learning approaches in the following section, where the

primary goal is accurate classification. In particular, we look at how the properties of the

forest distribution can be used to build a classifier with good prediction performance.

2.3 Classification

We return to the binary classification problem. Suppose that the data from each class

has a forest-structured distribution of the form Eq. (2.1). In a slight abuse of notation, we

denote the density for class y by py(x) = p(x|Y = y), and the class-conditional univariate

and bivariate densities by

pi
y(xi) = Pr(xi|Y = y)

pi j
y (xi,x j) = Pr(xi,x j|Y = y) for y ∈ {+1,−1}.

We will often use the shorthand py(xi,x j) for pi j
y (xi,x j).
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Given a labeled training set {xℓ,yℓ}n
ℓ=1, any of the referenced algorithms for model

building can be easily adapted to the purpose of classifying new observations by taking a

generative approach. Once the graphical model representing the conditional dependence

structure has been learned for each class, the corresponding estimated densities py(x) can

then be used to construct the likelihood ratio of Eq. (1.2). The naïve Bayes classifier (e.g.

John and Langley, 1995), which assumes the variables to be independent conditional on

the class, is the simplest example of this approach. Friedman et al. (1997) introduced

the generative likelihood ratio classifier based on the Chow and Liu approach as the tree-

augmented naïve Bayes (TAN) classifier. Pérez et al. (2009) formulated the continuous data

adaptations of both naïve Bayes and TAN using kernel density estimation as part of their

Kernel Based Bayesian Network paradigm, which includes classifiers that assume more

complex graph structures than the forest. However, these generative approaches may result

in poor classification performance when the classes have nearly identical distributions, as

learning the two distributions separately does not emphasize the important differences that

may aid in classification.

To allow for the learning of discriminative forests in the discrete case, Tan et al.

(2010) modified the Chow and Liu algorithm by constructing a graphical model for each

class using an objective function that simultaneously minimizes the distance from the dis-

tribution for that class and maximizes the distance from the distribution for the other class.

Once the forest structure is learned and the corresponding marginal probabilities are esti-

mated, classification proceeds by taking the ratio of the learned forest distributions.
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Park et al. (2011) proposed a very different approach for continuous data. Assuming

that there is some unknown Markov chain ordering according to which both classes are

distributed, they observed that the log-likelihood ratio is linear in the new variables

si j = log
(

p+1(xi,x j)/p−1(xi,x j)
)
− log

(
p+1(x j)/p−1(x j)

)
,

which are simply the log-ratios of univariate and bivariate densities. Their proposed algo-

rithm proceeds by nonparametrically estimating all d univariate densities and all
(d

2
)
bi-

variate densities. The log-transformed density ratios, which are pieces of the log-likelihood

ratio, are used to obtain a linear classifier. That is, the si j are treated as variables in a Fisher

linear discriminant approach.

In a recent work, Fan et al. (2016) developed a related algorithm, motivated by gener-

alizing naïve Bayes, called feature augmentation via nonparametrics and selection (FANS).

Under the naïve Bayes assumption that each feature is independent given the class labels,

the log-likelihood ratio can be written very simply as a linear combination of the log-ratios

of univariate densities,

ti = log(p+1(xi)/p−1(xi)) .

After nonparametrically estimating the univariate densities from each class, their two-step

procedure proceeds by running a penalize logistic regression in the space of the etimated

transformed variables ti.

10



3 CLASSIFICATION UNDER A FOREST DENSITY ASSUMPTION

This section describes the forest density classification method, which addresses the

binary classification problem for multivariate continuous (and mixed) data with only weak

assumptions about the data structure. This method combines aspects of the approach taken

by Lafferty et al. for estimating an arbitrary density with those of Park et al. and Fan et al.

for classification.

We begin by generalizing the latter approaches in two key aspects: we allow a gen-

eral forest dependency structure instead of restricting it to be a simple Markov chain or

assuming independence, and we allow the two classes to have potentially different depen-

dency structures. Let us now consider the structure of the optimal classifier when the two

classes have forest-structure distributions of the form given in Eq. (2.1), albeit with pos-

sibly different forests. The proof of the following lemma is straightforward and left to

Appendix A.

Lemma 1. If the class conditional densities have forest-structure distributions, then the

optimal classifier is linear in the variables log py(xi) and log py(xi,x j) for y ∈ {+1,−1}.

There are many ways to perform linear classification, including popular methods

such as LDA and SVM. For the remainder of this work, we will use linear SVM in the

transformed (log density) space.

11



3.1 Forest density classification algorithm

Let D = {(xℓ,yℓ)}n
ℓ=1 be a set of i.i.d. labeled training samples from an unknown

probability distribution p. We split the n training samples into two disjoint sets D0 and

D1 of sizes n0 and n1, respectively (n = n0 +n1). In the first step, the n0 labeled samples

in D0 are used to construct kernel density estimates p̂y(xi) and p̂y(xi,x j) of the univariate

and bivariate densities for each class y ∈ {−1,+1}. For simplicity, we use the bivariate

notation with i = j to denote the univariate density py(xi).

In the second step, we define a transformation T̂n0 : Rd →Rd(d+1) that takes a feature

vector x and returns all of its estimated univariate and bivariate log densities log p̂y(xi,x j)

for both classes. We then apply this transformation to the feature vectors in D1, and con-

struct a linear classifier using the set S = {(T̂n0(xℓ),yℓ)}n
ℓ=n0+1 of these transformed vectors

and their corresponding labels.

Estimating the log densities with an independent sample helps to simplify the theo-

retical results in the following section. In practice, the same training sample may be used

for both estimating the transformations and constructing the classifiers, particularly when

the total number of samples may be relatively small.

3.2 Theoretical properties

In this section, we present our theoretical results on the consistency of our classifier.

We begin by studying the consistency of the estimated transformation. All technical proofs

are provided in Appendix A.
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3.2.1 Estimating the nonlinear transformation

Define the oracle transformation T : Rd → Rd(d+1) that takes a feature vector x and

returns all of its exact univariate and bivariate densities. In the following, we provide the

rate of convergence of the estimated transformation T̂n0 to T in the sup norm.

As detailed in Section 3.1, our procedure estimates the univariate and bivariate den-

sities using the n0 samples in D0. We denote by ny the number of samples belonging to

class y that are used to estimate the corresponding densities. The univariate kernel density

estimator of py(xi) based on ny observations (xℓ)i = (xℓ,i) is defined as

p̂y(xi) =
1

nyh1

ny

∑
ℓ=1

K
(
(x)i − (xℓ)i

h1

)
, (x)i ∈ Ωi,

where K(·) is a univariate kernel function and h1 > 0 is the bandwidth which depends on

ny. The bivariate density py(xi,x j) is estimated using a product kernel as

p̂y(xi,x j) =
1

nyh2
2

ny

∑
ℓ=1

K
(
(x)i − (xℓ)i

h2

)
K
(
(x) j − (xℓ) j

h2

)
, (x)i ∈ Ωi,(x) j ∈ Ω j,

(3.1)

where h2 > 0 is the bivariate bandwidth. Let ν = 1 in the univariate case where i = j, and

let ν = 2 in the bivariate case.

Some smoothness assumptions on the true densities are needed to make the estima-

tion tractable, and for this we use the Hölder class. Our assumptions follow those of Liu

et al. (2011). Let Ωi j ⊂Rν be a compact space, and fix constants β ,L > 0. Given any vec-

tors s = (s1, ...,sν)∈Nν and x = (x1, ...,xν)∈ Ωi j, define |s|= s1+ · · ·+sν , s! = s1! · · ·sν !
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and xs = xs1
1 · · ·xsν

ν . Let Ds denote the differential operator

Ds =
∂ |s|

∂xs1
1 · · ·∂xsν

ν
.

For any real-valued function g on Ωi j that is ⌊β⌋–times continuously differentiable at x0 ∈

Ωi j, let g(β )x0 (x) be its Taylor polynomial of degree ⌊β⌋ at point x0:

g(β )x0 (x) = ∑
|s|≤⌊β⌋

(x−x0)s

s!
Dsg(x0).

Denote by Σ(β ,Lν ,r,x0) the set of functions g : Ωi j → R that are ⌊β⌋–times continuously

differentiable at x0 and satisfy
∣∣∣g(x)−g(β )x0 (x)

∣∣∣≤ Lν∥x−x0∥β
2 , ∀B(x0,r),

where B(x0,r) = {x : ∥x− x0∥2 ≤ r}. The set Σ(β ,Lν ,r,x0) is called the (β ,Lν ,r,x0)-

locally Hölder class of functions. We assume the following about the true univariate and

bivariate densities:

(D1) py(xi,x j) is bounded from above and away from zero and has the same compact

support Ωi j ⊂ Rν for each class y. Furthermore, there exists Lν > 0 such that

py(xi,x j) ∈ Σ(β ,Lν ,hν ,x0) ∀x0 ∈ Ωi j.

Here, we require that py(xi,x j) be bounded because our classifier is constructed in the space

of transformed variables which are log-densities.

Our result follows from the application of a finite sample bound for the kernel density

estimate due to Giné and Guillou (2002). Their conditions on the kernel are as follows:

(K1) the kernel K is a bounded, square integrable function satisfying
∫

K(t)dt = 1; and

(K2) K is in the linear span of functions ξ ≥ 0 such that the subgraph of ξ , {(s,u) ∈

14



Rν ×R : ξ (s) ≥ u}, can be represented as a finite number of Boolean operations

among sets of the form {(s,u) ∈ Rν ×R : q(s,u)≥ ψ(u)}, where q is a polynomial

on Rν ×R and ψ is an arbitrary real-valued function.

As discussed following the statement of Corollary 2.2 in Giné and Guillou (2002), under

these conditions and for any h1,h2 > 0, the classes of functions

Fh1 =

{
K
(

t − ·
h1

)
, t ∈ R

}

Fh2 =

{
K
(

t − ·
h2

)
K
(

u− ·
h2

)
, t,u ∈ R

}

are bounded measurable VC classes of functions. In other words, for ν = 1,2, the class of

functions Fhν is separable and for every probability measure P on Rν and any 0 < ε < 1

satisfies

N
(
Fhν ,L2(P),ε∥Fhν∥L2(P)

)
≤
(

A
ε

)V
,

where N(Fhν ,L2(P),ε) denotes the ε−covering number of the metric space (Fhν ,L2(P)),

and Fhν is the envelope function of Fhν . The constants A and V are called the VC charac-

teristics of the class Fhν . Additionally, we assume that

(K3) K has compact support, and for any integer ℓ≥ 1 and 1 ≤ m ≤ ⌊β⌋−1
∫

|K(t)|ℓdt < ∞,
∫

|t|β |K(t)|dt < ∞, and
∫

tmK(t)dt = 0.

This condition specifies that the kernel be β–valid (Tsybakov, 2009; Rigollet and Vert,

2009). These kernel assumptions allow, for example, both the box and triangular kernels.

Finally, we require that the sequence of kernel bandwidths {hν} satisfies

hν → 0,
ny(hν)ν

| loghν |
→ ∞ as ny → ∞. (3.2)
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It is well known that non-boundary kernel density estimators are not consistent near

the boundary of the support of the density being estimated. Numerous approaches have

been suggested to correct for the boundary effect. To simplify our analysis, we instead

consider the uniform convergence in the following result only for points in the interior of

the support, Ωo = {x ∈ Ω : d(x,∂Ω) > ε}, for some fixed ε > 0. In subsequent analyses

using these transformations, we will restrict our estimation to these points which are ε

away from the boundary.

Lemma 2. Assume that (D1) and (K1)-(K3) hold. Then,

sup
x∈Ωo

∥∥∥T̂n0(x)−T (x)
∥∥∥

∞
= OP

⎛

⎝
(

logn0

n0

) β
2+2β

⎞

⎠ . (3.3)

Now that we have provided asymptotically bivariate rates of convergence for esti-

mating T̂n0 , we turn to the performance of the linear SVM classifier constructed using these

transformed variables.

3.2.2 Asymptotic convergence to oracle SVM

Any linear classifier can be written as sign(g(x)), where g(x) = wTx and w is its

vector of weights. Our procedure constructs a linear classifier in the transformed variables

T̂n0(x). We use the formulation of support vector machines that falls under the framework

of empirical risk minimization. Consider a convex loss function φ that is Lφ -Lipschitz, i.e.

for some Lφ ≥ 0, |φ(z1)−φ(z2)|≤ Lφ |z1 − z2| for all z1,z2 in the function domain. In the

standard SVM formulation, this is the hinge loss defined as

φ(z) = max(0,1− zy),
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which is convex in z with Lipschitz constant Lφ = 1. The following definitions are are

made for points in the interior of the support Ωo. Define the empirical risk of our classifier

in terms of the loss φ as

R̂n1(w, T̂n0) =
1
n1

n1

∑
ℓ=1

φ(wTT̂n0(xℓ),yℓ). (3.4)

The vector of weights is estimated by

ŵ = argmin
w

R̂n1(w, T̂n0)+
λ
2
∥w∥2. (3.5)

For any fixed value of λ > 0, this is equivalent to the following constrained optimization

problem,

ŵ = argmin
w∈W

R̂n1(w, T̂n0), (3.6)

whereW = {w : ∥w∥ ≤ A} for some constant A > 0 (see Oneto et al., 2015).

Recall the oracle transformation T : Rd → Rd(d+1), which takes a feature vector x

and returns all of its exact univariate and bivariate densities. The expected risk is

R(w,T ) = E(X,Y )[φ(wTT (X),Y )]. (3.7)

We denote by w∗ the population minimizer,

w∗ = argmin
w∈W

R(w,T ). (3.8)

In this part, we will show that our procedure is risk consistent with the optimal lin-

ear SVM classifier, and that as the number of training samples increases, ŵ converges in

probability to the minimizer of the population risk, w∗. In order to prove this formally, we

require the uniform convergence of the empirical risk to the expected risk for all w ∈W .

We first aim to provide some intuition.
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We have in the previous section shown the uniform convergence of T̂n0(x)→ T (x).

Due to the continuity of φ , for a fixed w ∈W and at a particular instance (x,y),

lim
n0→∞

φ(wTT̂n0(x),y) = φ(wTT (x),y).

Since we assumed that the estimate T̂n0 was constructed using a separate sample D0, the

random variables
{

φ(wTT̂n0(xℓ),yℓ)
}n1

ℓ=1
of the set D1 are independent and identically dis-

tributed. Hence, for any fixed w

lim
n1,n0→∞

R̂n1(w, T̂n0) = lim
n1→∞

R̂n1(w,T ) = R(w,T ),

where the second equality is given by the law of large numbers. We now show that the

above convergence is uniform for all w ∈W . The proof for this as well as the following

results will be provided in Appendix A.

Recall that T (x) is a vector of log transformed univariate and bivariate densities

which are bounded. By Lemma 2, ∥T̂n0(x)− T (x)∥∞ is bounded with high probability

for any x ∈ Ωo. In the following results, we will further assume that ∥T̂n0(x)∥∞ < B for

some B > 0. In practice, any transformed variables that are estimated to be infinity are

thresholded at a large value. This boundedness of the estimated transformations ensures

that the loss is also bounded.

Theorem 3. Let R̂n1(w, T̂n0) and R(w,T ) be as defined in Eqs. (3.4) and (3.7) for a convex

loss function φ that is Lφ–Lipschitz. Under the assumptions of Lemma 2,

sup
w∈W

∣∣R̂n1(w, T̂n0)−R(w,T )
∣∣= OP

⎛

⎝
(

logn0

n0

) β
2+2β

+n−1/2
1

⎞

⎠ . (3.9)

We use this uniform rate to prove the following result, which states that the risk of
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our classification procedure is close to that of the optimal SVM classifier.

Corollary 4. Let ŵ and w∗ be as defined in Eqs. (3.6) and (3.8) for a fixed set W and

convex loss function φ that is Lφ–Lipschitz. Under the assumptions of Lemma 2, the risk

of our estimated classifier converges to its minimum in the set w ∈W at a rate,

R(ŵ, T̂n0)−R(w∗,T ) = OP

⎛

⎝
(

logn0

n0

) β
2+2β

+n−1/2
1

⎞

⎠ . (3.10)

We now turn to the convergence ŵ → w∗. If the loss function φ is strictly convex,

then ŵ is the minimizer of a strictly convex objective function, and is thus unique. In the

case of the hinge loss function, which is not strictly convex, although any solution is a

global minimizer, there may be more than one solution. Burges and Crisp (2000) studied

the cases where the linear SVM solution is not unique. In particular, they showed that all

solutions share the same vectorw ofweights. In these degenerate cases, the non-uniqueness

is in the intercept term in the classifier.

Theorem 5. Let ŵ and w∗ be as defined in Eqs. (3.6) and (3.8) for a fixed set W and

convex loss function φ that is Lφ–Lipschitz. Under the assumptions of Lemma 2,

ŵ P−→ w∗.

3.2.3 Remarks on Bayes risk consistency

We have thus far compared the forest density classifier with the optimal linear SVM

classifier. Specifically, we considered the effect of using a finite number of samples to

construct the classifier. Here, we briefly dicuss the performance of a new classifier rela-

tive to the optimal Bayes classifier, as defined in Eq. (1.1), under the forest distribution

assumption.
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The expectedmisclassification error for somemeasurable function g : Ω→R is given

by Rmis(g) = E{θ(g(X)Y )}, where θ is the 0−1 loss function defined as

θ(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if z ≥ 0

0 otherwise.

The Bayes classifier can then be written as fB(x) = sgn(gB(x)), where

gB(x) = p(Y =+1|x)− 1
2

is the minimizer of Rmis(g). It has been shown (Lin, 2001; Zhang, 2004) that the minimizer

of the expected risk with respect to the hinge loss among all measurable functions is

g∗(x) = sgn
{

p(Y =+1|x)− 1
2

}
.

The corresponding decision rule, f ∗(x) = sgn(g∗(x)), is therefore equivalent to the Bayes

decision rule and hence achieves the optimal Bayes risk.

The performance of our method is evaluated by comparing its expected misclassifi-

cation error to that of the Bayes classifier. This excess risk under the 0− 1 loss function

is bounded above by the excess risk with respect to the hinge loss φ (e.g., Bartlett, Jordan,

and McAuliffe, 2006). That is,

Rmis(ŵ, T̂n0)−Rmis(gB)≤ R(ŵ, T̂n0)−R(g∗).

Hence, in order to show Bayes consistency, it is sufficient to show that the excess risk in

terms of hinge loss goes to zero.

This expression can be decomposed into the estimation error and the approximation
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error,

R(ŵ, T̂n0)−R(g∗) =
(
R(ŵ, T̂n0)−R(w∗,T )

)
+
(
R(w∗,T )−R(g∗)

)
,

where w∗ is the optimal linear SVM defined in Eq.(3.8). This decomposition reflects the

variance-bias tradeoff that we see in all nonparametric estimation. The convergence of the

estimation error, or the effect of using a finite number of samples to construct the classifier,

was shown in Corollary 4.

The approximation error measures the error of the best linear SVM classifier con-

structed using infinite samples. Ensuring that the approximation error is small requires that

the class of functions considered for the classifier be sufficiently complex, and bounding

this error generally requires making further assumptions that are specific to the distribu-

tion (e.g. Steinwart and Scovel (2007) in the case where the classification is done by SVM

using radial basis functions). We do not attempt to do so, but instead emphasize once again

that if indeed each class follows a forest structured distribution, the optimal Bayes classi-

fier is linear in the transformed variables T (x) and so the optimal classifier is contained in

the class of functions considered by linear SVM.

21



4 RESULTS

In this section we use a simulation study and several real data analyses to illustrate

the performance of our proposed forest density classifier. In particular, we compare its

predictive accuracy with popular methods to better understand the utility and flexibility of

the forest structure assumption for classification.

Our proposed method (denoted as ) trains a linear support vector ma-

chine classifier in the transformed space of univariate and bivariate densities. The uni-

variate and bivariate densities are estimated using Matlab’s kernel smoothing function

with a Gaussian kernel and bandwidths which are optimal for Gaussian data.

For the bivariate densities, this function uses a Gaussian product kernel.

Our method, like many others, may be tuned to improve performance on a specific

domain by considering such things as distinct costs of misclassification and prior prob-

abilities that are different from the relative class frequencies in the training data. These

parameters can be easily specified when implementing SVM, given further knowledge

about each dataset. However, we refrain from optimizing each classifier on every domain,

and instead aim to demonstrate the validity of our approach and its competitiveness across

a broad range of problems.
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4.1 Simulation study in d = 20 dimensions

Consider the binary classification problem in d = 20 dimensions. We study the pre-

dictive performance of our forest density classification method on simulated datasets that

satisfy the assumption that each class has a forest-structured distribution.

The following experiment was designed to study the classifier’s predictive accuracy

under a variety of forest-distributed models. We consider the following factors in a 4×24

factorial design:

• Sample size of training data, n =100, 200, 400, 800.

• Class priors. The problem is either balanced (Bal), with half of the training samples

belonging to each class, or unbalanced (Unb), with 25% of the training samples

belonging to the minority class.

• Sparsity of the forest structure, measured as the number of edges in the two forests.

The structures are either fully connected trees with d − 1 edges or sparser forests

having roughly two-thirds as many edges.

• Complexity of the marginal distributions. In the simple case, the joint distribution

for each forest is multivariate normal. In the more complicated setting, the marginals

p(xi) and p(xi|x j) are either t-distributed with 3 degrees of freedom, or come from

a mixture of two normal distributions having different means and variances.

• Common structure between the two classes. In the first case, the two forests are

constructed independently of each other without constraining the forest structures to

be similar. In the second case, roughly two-thirds of the structural features (edges
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and isolated nodes) are identical for the two classes. Figure 4.1 displays an example

of a model in which two forest distributions were generated with similar dependency

structures.

The levels of these factors were chosen to represent simpler and more challenging

classification scenarios, respectively. Although the difficulty of the classification problem

cannot be fully characterized by these factors, they are common challenges that help to

illustrate the behavior of the forest density classifier.

Figure 4.1: Example of two forests with similar dependency structures.

In the following experiments, we compare the forest density classifier with a diverse

set of popular learning methods. We consider Linear Discriminant Analysis (LDA), the

5-nearest-neighbor classifier (5NN), naïve Bayes (NB), kernel support vector machines

(SVM), and a random forest (RF) classifier. These methods were implemented using the

built-in functions in Matlab, with parameters generally set to their default specifications.
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Naïve Bayes was implemented using kernel smoothing density estimates with a Gaussian

kernel. For each predictor and class, the bandwidth is automatically chosen to be a value

that is optimal for a Gaussian distribution. Kernel SVM was performed using radial basis

functions since they are frequently chosen for the kernel function in the absence of prior

knowledge of what would be a good separator between the classes. The scale value for

the kernel function is automatically chosen using a heuristic procedure as implemented by

the Matlab function . Random forest was implemented using Matlab’s bagged

decision tree function , with the number of trees set to 50. The number of

variables randomly selected for each split is set to the default value of the square root of

the total number of variables.

For each combination of factor levels, s = 100 forest-distributed models were gener-

ated. A training dataset drawn from each model was used to construct the different classi-

fiers, and the predictive accuracy of these classifiers was evaluated on an independent test

set of 1000 samples generated from the same forest-distributed models. In these test sets,

half of the observations were generated from each class. Average misclassification error

rates from the s replicates are illustrated in Figure 4.2. The full results, including standard

deviations, are displayed in Tables 4.1– 4.4. The error rates are listed as percentages for

easier reading, and for each experiment the classifiers with best performance according to a

Wilcoxon signed-rank test at the α = 0.0001 level are printed in boldface. LDA performed

no better than a random guess because of the highly nonlinear separating boundary in each

model, and has therefore been omitted from these tables.
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Figure 4.2: Summary of simulation study results. Misclassification error rates are plotted
for 5NN, NB, SVM, RF, and the forest density classifier averaged across the 100 replicate
datasets generated at each factor level combination. The misclassification error rate of
the likelihood ratio classifier given knowledge of the true forest structures (empBayes) is
plotted for reference.
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The models generated in this study represent a wide variety of forest-structured dis-

tributions. The independent generation of new forest structures in each simulation run

allowed for more variation in the datasets that were tested. The results as a whole demon-

strate that our proposed classifier performs very well when the forest density assumption

holds. We now call particular attention to a few of the interesting features in the compar-

isons between the forest density classifier and its competitors.

As expected, naïve Bayes performed particularly well when the forest structure was

sparse with marginal Gaussian densities (Table 4.1), since the sparse forest structure is

conceptually close to its assumption of independence. In the first of these models, where

the forest distributions for the different classes were independently constructed, the perfor-

mance of the forest density classifier was second only to naïve Bayes and performed just as

well when the sample size increased. However, in the models where a portion of the two

forest graphs were constrained to be identical, and hence the corresponding marginals did

not aid in discriminating between the two classes, the forest density classifier outperformed

the generative naïve Bayes classifier even for small sample sizes. This outcome reflects

a key advantage of the forest density classifier compared to generative methods such as

naïve Bayes. In these models with overlapping class structures, generative methods that

separately estimate the two distributions may blur the important differences between the

two classes that may aid in classification.

Of particular interest is the performance of the forest density classifier as compared

to that of kernel SVM, since both methods perform nonlinear classification by learning
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a linear classifier in a high-dimensional feature space. As seen with the models in Table

4.2 having tree distributions with normal marginals, kernel SVM performed well when

the classes were balanced, but the forest density classifier’s performance was just as accu-

rate for sample sizes of 400 and 800. Furthermore, the forest density classifier performed

notably better in the presence of class imbalance.

Tables 4.3 and 4.4 show that the forest density classifier generally outperformed the

other approaches, including random forest, in the cases where the data were generated

from tree and forest distributions having marginals that were mixtures of Gaussians and

t-distributions. Even at small sample sizes, the forest density classifier was competitive

with the best performing classifier.

A 5-way analysis of variance for the forest density classifier was performed to study

the behavior of the forest density classifier under different factor combinations. The

ANOVA table and results of the lack of fit test are displayed in Table 4.5, and the effects

tests for a full factorial analysis are listed in Table 4.6.
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Source DF Sum of Squares Mean Square F Ratio Prob > F

Model 31 16.2396 0.5239 171.2057 < .0001∗

Error 1888 5.7769 0.0031

Total 1919 22.0166

Source DF Sum of Squares Mean Square F Ratio Prob > F

Lack Of Fit 32 0.2927 0.0091 3.0955 < .0001∗

Pure Error 1856 5.4842 0.0030

Total Error 1888 5.7769

Table 4.5: ANOVA table and lack of fit test for the forest density classifier on the simulated
data.
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Source SS F ratio Prob > F
Prior 1.6420366 536.6442 < 0.0001 *
Sparsity 0.9071059 296.4569 < 0.0001 *
Prior*Sparsity 0.1297412 42.4015 < 0.0001 *
Common structure 7.2332893 2363.956 < 0.0001 *
Prior*Common structure 0.0128185 4.1893 0.0408 *
Sparsity*Common structure 0.0001894 0.0619 0.8036
Prior*Sparsity*Common structure 0.0007563 0.2472 0.6191
Marginal 0.1541371 50.3745 < 0.0001 *
Prior*Marginal 0.0009227 0.3015 0.5830
Sparsity*Marginal 1.2947499 423.1453 < 0.0001 *
Prior*Sparsity*Marginal 0.0405261 13.2446 0.0003 *
Common structure*Marginal 0.0036383 1.1890 0.2757
Prior*Common structure*Marginal 0.0016558 0.5411 0.4621
Sparsity*Common structure*Marginal 0.0008387 0.2741 0.6006
Prior*Sparsity*Common structure*Marginal 0.0078773 2.5744 0.1088
√

n 3.9773975 1299.878 < 0.0001 *
Prior*

√
n 0.0138639 4.5310 0.0334 *

Sparsity*
√

n 0.6833792 223.3394 < 0.0001 *
Prior*Sparsity*

√
n 0.0001158 0.0378 0.8458

Common structure*
√

n 0.0059073 1.9306 0.1649
Prior*Common structure*

√
n 0.0249595 8.1572 0.0043 *

Sparsity*Common structure*
√

n 0.0065234 2.1320 0.1444
Prior*Sparsity*Common structure*

√
n 0.0093229 3.0469 0.0811

Marginal*
√

n 0.0100945 3.2991 0.0695
Prior*Marginal*

√
n 0.0012831 0.4193 0.5173

Sparsity*Marginal*
√

n 0.0497693 16.2654 < 0.0001 *
Prior*Sparsity*Marginal*

√
n 0.0036848 1.2042 0.2726

Common structure*Marginal*
√

n 0.0078359 2.5609 0.1097
Prior*Common structure*Marginal*

√
n 0.0000066 0.0022 0.9630

Sparsity*Common structure*Marginal*
√

n 0.0152068 4.9698 0.0259 *
Prior*Sparsity*Common structure*Marginal*

√
n 0.0000010 0.0003 0.9855

Table 4.6: ANOVA effects tests for a full factorial analysis of the forest density classifier
on the simulated data. The columns give the source of variation, corresponding sum of
squares, F statistic and p-value for testing the significance of the effect.
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Closer inspection of interaction plots corresponding to significant interaction effects

in Table 4.6 showed that the performance of the forest density classifier was better in the

balanced case than the unbalanced case across the levels of priors, sparsity, and marginal

distributions. Following our intuition, the classifier also performed better when the two

class distributions were generated separately thanwhen their structures were similar, across

different levels of the other factors.

Figure 4.3: 3-way interaction plot for the simulation study. Average misclassification error
rates for the forest density classifier, plotted to show the interaction between the levels of
sparsity, marginal distributions, and sample size.

The effect of sparsity on the error rate was discovered to be less straightforward. The

interaction plots in Figure 4.3 show that the average error rate in the tree models, unlike the
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sparser forest models, is higher for the normally distributed cases than for the cases with

bivariate marginals which are mixtures of normal distributions having different variances.

This suggests that although the more complex distributions may be harder to estimate, their

distinct features may have provided more useful information in discriminating between the

two classes for the forest density classifier.

Pairwise comparisons were made separately for each of the 64 factor level combi-

nations to compare the performance of the forest density classifier with each of the four

competitor classifier. Note that the forest density classifier and the competitor classifiers

are trained and evaluated on the same training and test datasets for each simulation run, and

hence their respective error rates are paired observations. For each comparison, a one-sided

Wilcoxon signed-rank test was used to test the null hypothesis that the median difference of

the misclassification error rates for the forest density classifier and the competitor classifier

is greater than zero against the alternative that it is less than zero. Significance was tested

at the α = 0.0002 level, using the Bonferroni method to correct for the problem of multi-

plicity. Figure 4.4 displays, separately for each sample size, the proportion of the models

for which the test rejected the null hypothesis, i.e. there was enough evidence to conclude

that the misclassification error for the forest density classifier was smaller than that of its

competitor classifier. The detailed results of these tests, including the test statistics and

p-values for each model, are included in Appendix B.
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Figure 4.4: Summary of pairwise comparison tests for the simulation study. The propor-
tion of the simulation models for which a Wilcoxon signed-rank test found the median
performance of the forest density classifier to be significantly better than that of 5NN, NB,
SVM, and RF, is plotted separately for each sample size.
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4.2 Benchmark datasets

We applied our proposed method to publicly available binary classification datasets

from different domains in order to demonstrate its potential when the forest assumption

may not hold. Table 4.7 summarizes the datasets used in this analysis, all of which are

available from the UCI Machine Learning Database (Lichman, 2003). The datasets se-

lected have mostly continuous predictor variables, but range in sample size and dimen-

sionality. Since we do not deal with missing data in this paper, we removed instances with

missing values from the datasets. In particular, 35 samples were removed from the Pima

diabetes dataset that were miscoded in one variable. In the Wisconsin breast (prognostic)

dataset, which was used for the problem of predict cancer recurrence within 24 months, 4

samples with missing values were removed.

In the Ionosphere dataset, two ordinal variables are treated as categorical when con-

structing the NB classifier, so that the corresponding marginals are estimated as a multino-

mial distribution instead of a Gaussian distribution. Where features are not commensurate,

such as the Pima diabetes dataset in which one feature represents diastolic blood pressure

and another is body mass index, they were standardized prior to applying kNN and SVM,

both of which are sensitive to the scale of the data. Our proposed approach does not require

such preprocessing.

The misclassification error was estimated by 10-fold cross validation, with the folds

sampled in a stratified manner so that they have approximately the same proportions of

class labels as the full dataset. The cross validation was repeated 10 times to account for
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Dataset d n (n1,n2)

Ionosphere 34 351 (225, 126)

Liver disorder 6 345 (145, 200)

Ozone 72 1,847 (128, 1,719)

Parkinsons 22 195 (147, 48)

Pima diabetes 8 733 (252, 481)

Sonar 60 208 (111, 97)

SPECT heart 44 267 (55, 212)

Vertebral column 6 310 (210, 100)

WI breast (prognostic) 32 194 (28, 166)

WI breast (diagnostic) 30 569 (212, 357)

Table 4.7: Summary of benchmark datasets. The datasets are from the UCI ML Repos-
itory. d is the number of predictor variables, n is the total number of available training
samples, and n1 and n2 are the number of samples in the ‘positive’ and ‘negative’ classes,
respectively.

the variance in the error estimates due to taking a different random partition of the data.

For each dataset, the various classifiers were learned on the same training sets and their

performance evaluated on the same test sets. In particular, the cross-validation folds were

the same for all the experiments on each dataset.

For datasets having some degree of class imbalance, simple accuracy (or the misclas-

sification error rate) gives an incomplete picture of classifier performance. For example,

SVM often produces models which are biased towards the majority class. This can be

corrected in a number of ways, including by tuning the costs of making mistakes in each

class or by oversampling the minority class to create a balanced training dataset. As our
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interest is not focused on solving the issues raised by class imbalance, we instead measured

performance using the balanced error rate, defined as

BER = 1− 1
2
(Sensitivity+Speci f icity).

Sensitivity is the true positive rate, or the proportion of predicted positives that are actually

positive. Specificity is the true negative rate, or the proportion of predicted negatives that

are actually negative. Note that the misclassification error rates reported for the simulated

datasets in the previous subsection were estimated on a test set that had an equal number

of samples belonging to each class, and hence are equivalent to measuring the BER.

The empirical mean and standard deviation of the BER taken across the ten runs

and cross validation folds are given in Table 4.8. For each dataset, the classifier having

the smallest balanced error rate is underline, and classifiers which are not significantly

different from it according to a two-sided paired t-test at the Bonferroni-corrected α =

0.001 level are reported in bold text. In half of the cases, more than four classifiers were

found not to be significantly different from each other and none were bolded. The tests

were performed with means and variances estimated using the 100 individual accuracies

(from the 10 repeated 10-fold cross validations) and with 10 degrees of freedom.

The performance of the forest density classifier was better than SVM in six of the

ten domains, including the two most highly imbalanced datasets Ozone and SPECT, and

outperformed naïve Bayes and Random Forest in seven of the ten domains. Only for the

Parkinsons dataset did the forest density classifier perform worse than all of the other clas-

sifiers tested here, and even then its performance was not significantly worse than the other
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methods. Although there are clear winners in a couple of instances, such as naïve Bayes on

the two most highly imbalanced datasets Ozone and SPECT, these results are highly de-

pendent on both the choice of performance measure and its method of estimation. This ex-

periment demonstrates that the forest density classifier has the flexibility to handle datasets

which do not satisfy the forest density assumption, and has the potential to excel if the for-

est density assumption is reasonable. While there is not one method that is the best in every

case, the forest density classifier appears to be competitive with state-of-the-art methods

such as kernel SVM and Random Forest on various domains.
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5 CONCLUSIONS

In this work, we proposed a semiparametric classification procedure that makes a

flexible assumption about the dependency structure of the data. In particular, we assumed

that the distribution of data in each class p(x|y) follows a forest-structured distribution.

This enabled us to overcome the main issue with nonparametric density estimation of hav-

ing enough samples, since our approach estimates only univariate and bivariate densities,

which can then be used as inputs into any standard classifier.

Empirical results on simulated and real datasets demonstrated that the forest density

classifier performs as wells as popular nonparametric classifiers on a broad set of examples.

Experiments on forest-structured data validated the potential of the proposed method even

when sample sizes are small, distributions are highly non-Gaussian, classes are unbalanced,

andmany features are irrelevant to the discrimination task. Real data examples showed that

the forest density assumption is flexible enough to be useful for medical, image, chemical,

and signal processing applications.

5.1 Future work

The proposed procedure offers the opportunity to extend the basic algorithm in sev-

eral ways. We concludewith remarks on potential directions for future work, particularly in

high dimensional settings. Variable selection is an important consideration for this method

when d is very large and the number of samples is relatively limited. Classification in
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high dimensions is intrinsically difficult due to noise accumulation and spurious collinear-

ity among the predictors. The existence of many features that do not help to reduce the

classification error is a challenge for the sparse forest structured distributions, where many

of the bivariate probabilities in the transformed space will be zero. Furthermore, the pro-

posed procedure incurs a heavy computational cost when working in high dimensions due

to the estimation of an increasingly large number of low-dimensional densities. There is a

vast literature on variable selection methods that alleviates the computational burden and

improves classification performance in these challenging high-dimensional problems.

The forest density classifier allows variable selection to be incorporated in several

ways. It can be performed on the original variables and in the transformed space variables.

One approach is to test for independence among the predictor variables. For example,

hypothesis tests may be performed to determine which edges should be included. The

intuitive graphical representation underlying our new classification approach also offers

the option to use any available data or domain specific knowledge about the dependency

structure to guide the selection of log-transformed densities that are used in the classifier.

A second category of variable selection tests for the relevance of predictors to the re-

sponse. This includes Sure Independence Screening (Fan and Lv, 2010), which ranks the

marginal correlation of each variable with the response, assuming independence among the

variables. The particular form of the transformed variables can also be used to determine

which log densities are included in the classifier. For example, Tang et al. (2014) proposed

an algorithm ranks variables according to the correlation coefficient between a univariate
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or bivariate density with its pair in the second class. We are currently investigating im-

provements in performance by incorporating variable selection into the transformed space

of univariate and bivariate densities.

Another direction is to combine the variable selection and classification steps by us-

ing sparse classifiers (e.g. Clemmensen et al., 2011) and penalty-based methods such as

the Lasso that may be tailored to the forest assumptions. Finally, there are Bayesian ap-

proaches that may be relevant to the forest density classification approach, such as variable

selection using Markov random field priors (Stingo and Vannucci, 2011).
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APPENDIX A

PROOFS

A.1 Lemma 1

Proof. Let Ey and Vy denote the edge and vertex sets of the graphical model for class y.

Then the corresponding forest density is

py(x) = ∏
(i, j)∈Ey

py(xi,x j)

py(xi)py(x j)
∏
i∈Vy

py(xi)

Then, the log-likelihood ratio for a 2-class problem is

log
p+1(x)
p−1(x)

= log

{

∏
(i, j)∈E1

p+1(xi,x j)

p+1(xi)p+1(x j)
∏
i∈V1

p+1(xi)

}

− log

{

∏
(i, j)∈E2

p−1(xi,x j)

p−1(xi)p−1(x j)
∏
i∈V2

p−1(xi)

}

= ∑
(i, j)∈E1

log p+1(xi,x j)−
{

∑
(i, j)∈E1

log p+1(xi)p+1(x j)− ∑
i∈V1

log p+1(xi)

}

− ∑
(i, j)∈E2

log p−1(xi,x j)+

{

∑
(i, j)∈E2

log p−1(xi)p−1(x j)− ∑
i∈V2

log p−1(xi)

}

The log-LR can thus be written as

log
p+1(x)
p−1(x)

= ∑
(i, j)∈E1

log p+1(xi,x j)+ ∑
i∈V1

Ci,1 · log p+1(xi)

− ∑
(i, j)∈E2

log p−1(xi,x j)− ∑
i∈V2

Ci,2 · log p−1(xi),

where Ci,y = degy(i)−1 is one less than the degree of node i in the forest of class y. That

is, the likelihood ratio is linear in the new variables log py(xi) and log py(xi,x j).
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A.2 Lemma 2

To prove Lemma 2, we need the following result, which provides the convergence

rate for the kernel density estimates in the bivariate case where ν = 2. The univariate

rates can be found in the same manner. density estimates converge faster than the bivariate

density estimates.

We denote the interior region of the support for the true density by Ωo
i j = {x ∈ Ωi j :

d(x,∂Ωi j)> ε}. The following consistency result holds uniformly for x in Ωo
i j.

Lemma A.2.1. Suppose that assumptions (D1), (K1)-(K3) hold. Then, with probability

≥ 1−δ ,

sup
(xi,x j)∈Ωo

i j

∣∣p̂y(xi,x j)− py(xi,x j)
∣∣<Cδ

(
logny

ny

) β
2+2β

. (A.1)

where p̂y is the bivariate kernel density estimator defined in Eq. (3.1).

Proof of Lemma A.2.1. By the triangle inequality,

|p̂y(xi,x j)− py(xi,x j)|≤|p̂y(xi,x j)−E p̂y(xi,x j)|+ |E p̂y(xi,x j)− py(xi,x j)|. (A.2)

We begin by bounding the first summand. Corollary 2.2 in Giné and Guillou (2002) pro-

vided the following finite sample bound for the uniform consistency of the density estimate,

given the kernel assumptions in (K2) and that

sup
t∈R2

sup
hny>0

∫
K2(t−x)py(x)dx ≤ D < ∞.

This condition is satisfied under our kernel assumptions and the requirement that py(xi,x j)

is bounded. Then, there exist constants c1,c2 > 0 such that for sufficiently large ny,

Pr

[
sup

(xi,x j)∈Ωi j

| p̂y(xi,x j)−E p̂y(xi,x j)|>
ε
2

]
≤ c1 exp

(
−c2nyh2

nyε
2
)

(A.3)
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for all ε satisfying

ε ≥ c3

√
logrny

nyh2
ny

,

where rny ≥ c3h−1
ny for some constant c3. The constants c1,c2 depend only on the VC

characteristics of the kernel, D, and ∥K∥∞.

Next, we bound the second summand in Eq. (A.2). Under the assumptions (D1) and

(K3), the bias of the estimated density is well known (see Tsybakov, 2009, Proposition 1.2)

to satisfy

|E p̂y(xi,x j)− py(xi,x j)|≤ c4hβ
ny (A.4)

for all interior points (xi,x j) ∈ Ωo
i j, where c4 =

L
ℓ!
∫
∥t∥β |K(t)|dt.

Then, combining (A.2), (A.3) and (A.4), we have that

Pr

[
sup

(xi,x j)∈Ωo
i j

∣∣ p̂(xi,x j)− p(xi,x j)
∣∣> ε

]
≤ c1 exp

(
−c2nyh2

nyε
2
)

for any ε satisfying

ε ≥ max

{
c3

√
logny

nyh2
ny

,c4hβ
ny

}
.

The lemma follows by setting the bivariate bandwidth to

hny = c5

(
logny

n

)1/(2+2β )
.

This satisfies the conditions in Eq. (3.2) and minimizes the convergence rates of the two

summands in Eq. (A.2).

Proof of Lemma 2. For any (xi,x j), it follows from the Taylor expansion of log p̂y(xi,x j)
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about py(xi,x j) that

log p̂y(xi,x j)− log py(xi,x j)≤
p̂y(xi,x j)− py(xi,x j)

py(xi,x j)
. (A.5)

From Lemma A.2.1, for sufficiently large ny,

Pr

⎡

⎣ sup
(xi,x j)∈Ωo

i j

| p̂y(xi,x j)− py(xi,x j)|<Cδ

(
logny

ny

) β
2+2β

⎤

⎦≥ 1−δ ,

It follows that with high probability,
∣∣log p̂y(xi,x j)− log py(xi,x j)

∣∣≤ Cδ
pmin

y,i, j

(
logny

ny

) β
2+2β

,

where pmin
y,i, j > 0 is the lower bound on the density py(xi,x j). Now, since

sup
x∈Ωo

∥T̂ (x)−T (x)∥∞ = max
y∈{−1,+1}

max
i, j∈{1,...,d}

{
sup

(xi,x j)∈Ωo
i j

| log p̂y(xi,x j)− log py(xi,x j)|
}
,

we can take a union bound over the d univariate and
(d

2
)
bivariate densities for each class

that make up the vectors T̂ and T . It follows that

Pr

⎡

⎣ sup
x∈Ωo

∥T̂ (x)−T (x)∥∞ > max
i, j,y

⎧
⎨

⎩
Cδ

pmin
y,i, j

(
logny

ny

) β
2+2β

⎫
⎬

⎭

⎤

⎦

≤ 2
d

∑
i=1

d

∑
j=i

Pr

⎡

⎣ sup
(xi,x j)∈Ωo

i j

| log p̂y(xi,x j)− log py(xi,x j)|>
Cδ

pmin
y,i, j

(
logny

ny

) β
2+2β

⎤

⎦

≤ d(d +1) ·δ

Therefore, for some constant C′
δ , with probability ≥ 1−δ ,

sup
x∈Ωo

∥T̂n0(x)−T (x)∥∞ <C′
δ

(
logn0

n0

) β
2+2β

. (A.6)
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A.3 Theorem 3

In order to prove the theorem, we will use the following bound on the convergence

of the empirical risk which holds simultaneously for all w ∈W .

LemmaA.3.1. Given an independent sample {T̂n0(xℓ),yℓ}
n1
ℓ=1, let R̂n1(w, T̂n0) and R(w,T )

be as defined in Eqs. (3.4) and (3.7) for a convex loss function φ that is Lφ–Lipschitz. Recall

that ∥T̂n0(x)∥∞ <B for some B> 0. With probability≥ 1−δ , the following holds uniformly

for all w ∈W:

R̂n1(w, T̂n0)−R(w, T̂n0)≤
c1√
n1

+ c2

√
log(1/δ )

2n1

Proof. In order to prove bound the empirical risk uniformly over a class of functions, we

use the Rademacher average as a measure of the complexity of the class. Recall the defi-

nition of the Rademacher complexity of a function class F ,

Rn(F) = E
[

sup
f∈F

1
n

n

∑
i=1

εi f (xi)

]

where εi are independent and uniformly distributed on {±1} and (x1, ...,xn) are iid. In

our case, we are interested in the class of linear prediction functions FW = {T̂n0(x) →

wTT̂n0(x) : w ∈W}. Theorem 7 of Bartlett et al. (2002) states that for Lφ−Lipschitz loss

φ bounded by c, with probability ≥ 1−δ , every function in FW satisfies

R̂n1(w, T̂n0)−R(w, T̂n0)≤ 2LφRn1(FW)+ c

√
log(1/δ )

2n1
. (A.7)

Note that the hinge loss, given our assumptions on the boundedness of T̂n0(x), is bounded

by 1+d(d +1)AB.

We can bound the Rademacher complexity for our class of functions, using the
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Cauchy–Schwarz inequality, Jensen’s inequality, and properties of norms,

Rn(FW) =
1
n1

E
[

sup
w∈W

n1

∑
ℓ=1

εℓwTT̂n0(xℓ)

]

=
1
n1

E
[

sup
w∈W

wT
n1

∑
ℓ=1

εℓT̂n0(xℓ)

]

=
A
n1

E
[∥∥∥∥∥

n1

∑
ℓ=1

εℓT̂n0(xℓ)

∥∥∥∥∥
2

]

≤ A
n1

√√√√√E

⎡

⎣
∥∥∥∥∥

n1

∑
ℓ=1

εℓT̂n0(xℓ)

∥∥∥∥∥

2

2

⎤

⎦

≤ A
n1

√√√√E
[

n1

∑
ℓ=1

∥∥∥εℓT̂n0(xℓ)
∥∥∥

2

2

]

≤
√

d(d +1)AB
√

n1

Combining this with Eq. (A.7) gives the result.

Proof of Theorem 3. For any given w ∈ W = {w : ∥w∥2 ≤ A}, we write the difference

between the empirical risk using estimated transformations and the expected risk given in

Eq. (3.7) as follows:

R̂n1(w, T̂n0)−R(w,T ) =
(

R̂n1(w, T̂n0)−R(w, T̂n0)
)
+
(

R(w, T̂n0)−R(w,T )
)
. (A.8)

The previous lemma provided a uniform bound on the convergence R̂n1(w, T̂n0) →

R(w, T̂n0). To bound the second term, note that since the loss function φ is Lφ–Lipschitz,
∣∣∣φ(wTT̂n0(x))−φ(wTT (x))

∣∣∣≤ Lφ

∣∣∣wTT̂n0(x)−wTT (x)
∣∣∣

≤ Lφ

∣∣∣
〈

w, T̂n0(x)−T (x)
〉∣∣∣

≤ Lφ∥w∥1

∥∥∥T̂n0(x)−T (x)
∥∥∥

∞
,
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where the final line follows from Hölder’s inequality. By an application of the Cauchy-

Schwarz inequality, ∥w∥1 ≤
√

d(d +1)∥w∥2, whereas from Lemma 2,
∥∥∥T̂n0(x)−T (x)

∥∥∥
∞
= OP

⎛

⎝
(

logn0

n0

) β
2+2β

⎞

⎠ .

Since ∥w∥2 ≤ A, this second term is uniformly bounded.

Hence,

sup
w∈W

∣∣∣R̂n1(w, T̂n0)−R(w,T )
∣∣∣= OP(n

−1/2
1 )+OP

⎛

⎝
(

logn0

n0

) β
2+2β

⎞

⎠

A.4 Corollary 4

Proof. Consider the following decomposition of the excess risk of our estimated classifier

relative to the oracle SVM classifier,

R(ŵ, T̂n0)−R(w∗,T ) =
(

R(ŵ, T̂n0)−R(ŵ,T )
)
+
(

R(ŵ,T )−R(w∗,T )
)
.

Using the Lipschitz property of φ , we can easily show (as we did in the proof of Theorem 3)

that the first term converges at the uniform rate of consistency of T̂n0 given in Lemma 2,

R(ŵ, T̂n0)−R(ŵ,T ) = OP

⎛

⎝
(

logn0

n0

) β
2+2β

⎞

⎠ . (A.9)

Now consider the second term. By the definition of w∗ as the minimizer of R(w,T )

for allw∈W , we know this term to be nonnegative. We can further decompose this second
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term by adding and subtracting terms as follows,

0 ≤ R(ŵ,T )−R(w∗,T ) =
(

R(ŵ,T )− R̂n1(ŵ, T̂n0)
)
+
(

R̂n1(ŵ, T̂n0)− R̂n1(w
∗, T̂n0)

)

+
(

R̂n1(w
∗, T̂n0)−R(w∗,T )

)

≤
(

R(ŵ,T )− R̂n1(ŵ, T̂n0)
)
+
(

R̂n1(w
∗, T̂n0)−R(w∗,T )

)
,

where the inequality follows from the fact that by the definition of ŵ, R̂n1(ŵ, T̂n0) ≤

R̂n1(w, T̂n0) for any w ∈ W . By applying the convergence result in Theorem 3 to each

of the terms in this upper bound, we have that

R(ŵ,T )−R(w∗,T ) = OP(n
−1/2
1 )+OP

⎛

⎝
(

logn0

n0

) β
2+2β

⎞

⎠ . (A.10)

Therefore, combining this with Eq. (A.9),

R(ŵ, T̂n0)−R(w∗,T ) = OP(n
−1/2
1 )+OP

⎛

⎝
(

logn0

n0

) β
2+2β

⎞

⎠ .

A.5 Theorem 5

Proof. Recall from Eqs. (3.6) and (3.8) that ŵ is the minimizer of the empirical risk with

estimated T̂n0 and w∗ is the minimizer of the expected risk with oracle transformations T .

To prove that ŵ → w∗ in probability it suffices to show that R̂n1(w, T̂n0)
n0,n1→∞−−−−−→ R(w,T )

uniformly for all w ∈W . That is, as n0,n1 → ∞

sup
w∈W

∣∣R̂n1(w, T̂n0)−R(w,T )
∣∣= oP(1).

This uniform convergence is satisfied if and only the following four conditions hold

(Newey, 1991):
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1. W is compact,

2. R̂n1(w, T̂n0) converges pointwise to R(w,T )

3. R̂n1(w, T̂n0) is stochastic equicontinuous, and

4. R(w,T ) is equicontinuous.

It remains for us to show that the third and fourth conditions hold. To prove stochastic

equicontinuity, it is sufficient that R̂n1(w, T̂n0) satisfies a global Lipschitz property: for all

w1,w2 ∈W , there exists a random variable Kn1 = OP(1) such that
∣∣∣R̂n1(w1, T̂n0)− R̂n1(w2, T̂n0)

∣∣∣≤ Kn1 ||w1 −w2||2.

Note that for any w1,w2 ∈W ,
∣∣∣R̂n1(w1, T̂n0)− R̂n1(w2, T̂n0)

∣∣∣≤
1
n1

n1

∑
ℓ=1

∣∣∣φ(wT
1 T̂n0(xℓ),yℓ)−φ(wT

2 T̂n0(xℓ),yℓ)
∣∣∣ .

Hence, we only need to show that φ(wTT̂n0(x),y) is Lipschitz. Since φ is Lφ–Lipschitz,
∣∣∣φ(wT

1 T̂n0(x))−φ(wT
2 T̂n0(x))

∣∣∣≤ Lφ

∣∣∣wT
1 T̂n0(x)−wT

2 T̂n0(x)
∣∣∣

= Lφ

∣∣∣
〈

w1 −w2, T̂n0(x)
〉∣∣∣

≤ Lφ

∥∥∥T̂n0(x)
∥∥∥

2
∥w1 −w2∥2.

Recall that ∥T̂n0(x)∥∞ ≤ B. It follows that φ(wTT̂n0(x)), and hence also R̂n1(w, T̂n0), is

Lφ B
√

d(d +1)-Lipschitz.

Similarly, the equicontinuity of the limiting function R(w,T ) follows from the fact

that φ(wTT (x)) is Lφ B
√

d(d +1)-Lipschitz.
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APPENDIX B

EXTENDED SIMULATION RESULTS

B.1 Wilcoxon signed-rank test to compare classifier performance

The performance of the forest density classifier was compared with that of four alter-

native classifiers on each model in the simulation study, as described in Section 4. Detailed

results from applying a one-sidedWilcoxon signed-rank test for each simulation model are

displayed in Tables B.1–B.4. The test statistic W is defined as the sum of ranks of pos-

itive differences between the misclassification error rates for the forest density classifier

and an alternative classifier. An asterisk marks the comparisons for which the p-value

< 0.05/256. This significance level reflects a conservative Bonferroni adjustment for the

256 tests performed. In these cases, we conclude that the misclassification error for the

forest density classifier was significantly smaller than that of its competitor classifier.
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