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ABSTRACT

Cancer cells are known to exhibit atypical metabolic characteristics. While al-

terations in tumor cell metabolism are necessary for the sustained uncontrolled cell

growth that characterizes cancer, it is also a vulnerability which can be exploited to

design therapies that preferentially target cancer cells. We develop a testable theo-

retical framework for cancer therapy design which is used to elucidate a role for the

metabolism targeting anti-diabetic drug Metformin as part of a combination cocktail

therapy that could potentially provide better and less toxic clinical outcomes.

Castration-resistant prostate cancer is an advanced form of prostate cancer with

limited treatment options where patients become refractory to surgical or medical

castration. We use Boolean logic modeling of the key signaling pathways implicated

in the development and progression of this malignancy to simultaneously test vari-

ous combinations of agents for their e�cacy in attenuating cancer growth and design

targeted therapies for the management of the disease. Furthermore, stochastic com-

putational modeling is utilized to identify potentially vulnerable components in the

network that may serve as viable candidates for drug development.

Finally, we present novel transcriptome assemblies and functional annotations

for Pacific whiteleg shrimp, a non-model organism of significant economic import

that lacks solid transcriptome and genome references. In addition, as evaluating the

quality of de novo transcriptome assemblies has proven to be challenging, we propose

a pipeline comprising multiple quality check metrics that in unison provide a clear

evaluation of assembly performance.
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1. INTRODUCTION1

The uncontrolled cell proliferation that is characteristically associated with cancer

is usually accompanied by alterations in the genome and cell metabolism. Indeed,

the phenomenon of cancer cells metabolizing glucose using a less e�cient anaerobic

process even in the presence of normal oxygen levels, termed the “Warburg e↵ect”,

is currently considered to be one of the hallmarks of cancer. Diabetes, much like

cancer, is defined by significant metabolic changes. Recent epidemiological studies

have shown that diabetes patients treated with the anti-diabetic drug Metformin,

have significantly lowered risk of cancer as compared to patients treated with other

anti-diabetic drugs. In Section 2, we utilize a Boolean logic model of the pathways

commonly mutated in cancer to not only investigate the e�cacy of Metformin for

cancer therapeutic purposes but also demonstrate how Metformin in concert with

other cancer drugs could provide better and less toxic clinical outcomes as compared

to using cancer drugs alone.

Prostate cancer is one of the most prevalent cancers in males in the United States

and amongst the leading causes of cancer related deaths. A particularly virulent form

of this disease is castration-resistant prostate cancer (CRPC), where patients no

longer respond to medical or surgical castration. CRPC is a complex, multifaceted

1Parts of this section are reprinted with permission from O. A. Arshad, P. S. Venkatasubramani,
A. Datta and J. Venkatraj “Using Boolean Logic Modeling of Gene Regulatory Networks to Exploit
the Links between Cancer and Metabolism for Therapeutic Purposes”, IEEE Journal of Biomed-
ical and Health Informatics, vol. 20, no. 1, pp. 399-407, 2016, doi: 10.1109/JBHI.2014.2368391
c� 2016 IEEE; Osama A. Arshad and Aniruddha Datta, “Towards Targeted Combinatorial Therapy
Design for the Treatment of Castration-resistant Prostate Cancer”, Proceedings of the 7th ACM In-
ternational Conference on Bioinformatics, Computational Biology and Health Informatics, Seattle,
WA, Oct 2-5 2016, doi: 10.1145/2975167.2985671 c� 2016 ACM; and Noushin Gha↵ari, Osama
A. Arshad, Hyundoo Jeong, John Thiltges, Michael F. Criscitiello, Byung-Jun Yoon, Aniruddha
Datta, Charles D. Johnson, “De novo Transcriptome Assemblies and Annotation for Pacific White-
leg Shrimp”, Signal and Information Processing (GlobalSIP), 2014 IEEE Global Conference on,
Atlanta GA, 3-5 Dec, 2014, doi:10.1109/GlobalSIP.2014.7032342 c� 2014 IEEE.
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and heterogeneous malady with limited standard treatment options. The growth

and progression of prostate cancer is a complicated process that involves multiple

pathways. In Section 3, the signaling network comprising the integral constituents

of the signature pathways involved in the development and progression of prostate

cancer is modeled as a combinatorial circuit. The failures in the gene regulatory

network that lead to cancer are abstracted as faults in the equivalent circuit and

the Boolean circuit model is then used to design therapies tailored to counteract the

e↵ect of each molecular abnormality and to propose potentially e↵ective combina-

torial therapy regimens. Furthermore, stochastic computational modeling is utilized

to identify potentially vulnerable components in the network that may serve as vi-

able candidates for drug development. The results presented herein can aid in the

design of scientifically well-grounded targeted therapies that can be employed for the

treatment of prostate cancer patients.

RNA-Seq, the high-throughput sequencing of expressed messenger RNA, has

emerged as the technology of choice for transcriptome studies. For non-model or-

ganisms, those that lack a reference genome, the RNA-Seq reads must be assembled

de novo. De novo transcriptome assembly techniques provide an incredible opportu-

nity to establish molecular level knowledge about organisms. In Section 4, we present

novel transcriptome assemblies and functional annotations for Pacific whiteleg shrimp

(Litopenaeus vannamei), a species of great importance in global mariculture, that

lacks solid transcriptome and genome references. We examine the new Pacific white-

leg transcriptome assemblies via multiple metrics, and provide further annotations

for the species.

2



2. USING BOOLEAN LOGIC MODELING OF GENE REGULATORY

NETWORKS TO EXPLOIT THE LINKS BETWEEN CANCER AND

METABOLISM FOR THERAPEUTIC PURPOSES1

2.1 Introduction

Cancer has traditionally been described as a condition that evolves via a multi-

step process accumulating mutations with six essential genetic alterations or hall-

marks leading to changes in cell physiology including genomic instability and in-

creased mutability [34]. However, recently aerobic glycolysis or the “Warburg Ef-

fect”, where cancer cells switch to glycolysis (an event common in normal cells when

there is a lack of oxygen) even when oxygen is available, which is an alteration in the

metabolic phenotype, has been added as a seventh hallmark [95]. Type 2 diabetes

mellitus (T2D) on the other hand has been described as a group of metabolic diseases

in which a person has high blood sugar, either because the body does not produce

enough insulin, or the cells do not respond to the insulin that is produced. There is

thus a metabolic shift in T2D where abundant blood glucose, a key biological fuel

essential for fast proliferating cancer cells, is available. Added to this scenario are the

hyperinsulinemic [93] environment in T2D and increased gene expression of glycolytic

enzymes in cancer [74], permitting an ideal microenvironment for tumor cells. Con-

sequently, the connection of metabolic alterations in both diseases has juxtaposed

these two conditions at the clinical, biological and genetic levels [30, 77, 87].

Epidemiological studies have also demonstrated a positive association between

T2D and the risk of cancer and cancer-related mortality [17]. Moreover, the diabetic

1 c� 2016 IEEE. Reprinted, with permission, from O. A. Arshad, P. S. Venkatasubramani, A.
Datta and J. Venkatraj “Using Boolean Logic Modeling of Gene Regulatory Networks to Exploit
the Links between Cancer and Metabolism for Therapeutic Purposes”, IEEE Journal of Biomedical
and Health Informatics, vol. 20, no. 1, pp. 399-407, 2016.

3
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drug Metformin has been shown to have a direct anti-cancer activity against breast

and other cancers [86]. We exploit the association between T2D and cancer to develop

a testable theoretical framework for cancer therapy design involving Metformin and

chemotherapeutic drugs.

2.2 Biological background

Cancer cells exhibit unique metabolic characteristics. In this section we discuss

the features of tumor cell metabolism and look at how targeting altered tumor cell

metabolism through Metformin might a↵ord a therapeutic opportunity.

2.2.1 Cancer cell metabolism

Cancer cells are known to exhibit characteristic alterations in their metabolic

activity [12, 19, 45, 50]. Metabolism in normal cells di↵ers in aerobic and anaerobic

conditions. In the presence of oxygen, non-malignant cells convert glucose to pyru-

vate through a multi-step process called glycolysis. The pyruvate that is produced

is transported to the mitochondria, the power house of the cell. The mitochondria

then oxidize the pyruvate via a process called oxidative phosphorylation (OXPHOS)

to generate adenosine triphosphate (ATP). ATP is the energy currency of the cell

and is capable of storing large amounts of energy in its phosphoanhydride bonds.

When the supply of oxygen is limited however, the cells shunt the pyruvate away

from the mitochondria and convert it to lactate. Otto Warburg observed in the 1920s

an anomalous characteristic of tumor cell metabolism that cancer cells even in the

presence of oxygen opt for the latter route i.e. irrespective of the extracellular levels

of oxygen, cancer cells continue to metabolize glucose to lactate instead of utilizing

mitochondrial OXPHOS. This peculiar characteristic of cancer cell metabolism is

called “aerobic glycolysis” or the “Warburg e↵ect” [91].

On the face of it, the Warburg e↵ect is counterintuitive as it is a highly ine�cient

4



method for energy production: for every molecule of glucose, glycolysis generates 2

molecules of ATP whereas OXPHOS produces 34 molecules. Cancer cells presum-

ably have a high demand for energy so the metabolic switch to aerobic glycolysis

does not seem rational. There are a number of reasons for this switch, the most im-

portant of which is that it allows cancer cells to divert the intermediate bimolecular

products of the glycolytic chain towards biosynthetic pathways. Normal cells, in the

quiescent state produce energy as e�ciently as possible. However, a cancer cell is

tuned to incessant growth and proliferation. Towards this end, the tumor cells in-

stead of metabolizing glucose with the goal of e�cient energy generation, divert the

nutrients towards anabolic processes that will provide the necessary substrates for

cell growth. Aerobic glycolysis allows cells to divert intermediates towards biomass

accumulation. In order to make up for the ine�ciency of aerobic glycolysis, the can-

cer cells take up much larger amounts of glucose. Indeed, enhanced glucose uptake

and the accompanying increased glycolytic flux is a universal metabolic alteration in

cancer, and forms the basis of the positron emission tomography (PET) scan tech-

nique for cancer detection. Another advantage of aerobic glycolysis is that it confers

better survivability in an oxygen starved (hypoxic) environment, conditions which

are common in tumor tissue [64].

One of the principal mechanisms behind the switch to aerobic glycolysis is the

constitutive expression of the Hypoxia Inducible Factor 1 (HIF-1), which is a tran-

scription factor ordinarily activated by hypoxic stress [11, 45]. HIF-1 drives many

of the metabolic adaptations in cancer [19, 44]. First it increases the uptake of glu-

cose by upregulating the glucose transporters. Second, it increases glycolytic flux

by activating enzymes in the glycolytic pathway. Third, it shunts pyruvate away

from the mitochondria (pyruvate enters the tri-carboxylic acid (TCA) cycle in the

mitochondria through conversion to acetyl-CoA. This reaction is catalyzed by pyru-

5



vate dehydrogenase (PDH). HIF-1 inhibits PDH by activating pyruvate dehydroge-

nase kinase 1 thereby slowing the entry of pyruvate into the TCA cycle). Finally,

HIF-1 activates the enzyme lactate dehydrogenase A (LDHA) which catalyzes the

conversion of pyruvate to lactate, and upregulates monocarboxolate transporter 4

(MCT-4) to discharge the lactate into the extracellular matrix (ECM). This leads to

the acidification of the ECM milieu which in turn promotes metastasis. Therefore,

HIF initiates a transcriptional cascade which acts as a key driver of the metabolic

adaptation of cancer cells.

In addition to the Warburg e↵ect, another major facet of the metabolic repro-

gramming in cancer cells is increased “de novo fatty acid synthesis”, a process where

the cells synthesize the requisite lipids in-house rather than relying on the circulating

exogenous supply from the blood stream as normal cells do [78]. The endogenous

synthesis of lipids requires citrate which is derived from the TCA cycle. To sus-

tain the TCA cycle, the depleted citrate is replenished through a process called

anaplerosis [19]. Sterol Regulatory Element Binding Protein (SREBP) is a master

transcriptional regulator of genes involved in de novo lipid and sterol biosynthe-

sis [24]. Enhanced expression of SREBP has been shown to correlate with breast

cancer progression [78].

Thus, fundamental alterations in tumor cell metabolism include aerobic glycolysis

and de novo lipid synthesis with HIF-1 and SREBP as key markers of the metabolic

reprogramming that takes place in cancer cells.

2.2.2 Metformin and cancer

Altered tumor metabolism is of paramount importance for sustained uncontrolled

cell growth, a vulnerability that can be exploited for therapeutic intervention [45,78].

In the context of targeting cancer metabolism, the widely used anti-diabetic drug

6



Metformin has garnered attention for its potential anti-cancer properties suggesting

a role for this drug in cancer therapy and prevention [8,22,69,70]. Tumor cells have a

voracious appetite for glucose. Metformin suppresses hepatic gluconeogenesis which

reduces glucose levels thereby diminishing the tumor fuel supply. The principal mech-

anism of action of Metformin is the activation of adenosine monophosphate activated

protein kinase (AMPK), the cellular energy sensor which when activated switches on

ATP-generating pathways and diminishes energy consuming biosynthetic processes

thereby curtailing proliferation. Activation of AMPK by Metformin, phosphorylates

the tuberous sclerosis complex (TSC) which in turn inhibits the mammalian target

of rapamycin (mTOR) complex, the master stimulator of protein synthesis and cell

growth.

In view of the central role of energy metabolism in cell proliferation, we investigate

the therapeutic value of Metformin for cancer treatment. Moreover, there are several

other potential benefits of adding Metformin to cancer therapy regimens. It is an

FDA approved stable oral agent with a long history of use, is widely available, has

an extremely low toxicity profile and is very inexpensive [54].

2.3 Therapy design

Cancer is an umbrella term for a set of diseases characterized by a break down

in cell cycle control that allows cells to escape the usual controls on cell proliferation

and survival. In [47], the authors take the view that in essence, it is a disease

that results in aberrant signaling caused by breakdown(s) in the normal signaling

pathway of a given cell, and therefore it can be meaningfully treated or managed

through remedying the e↵ect of such breakdown(s). By adopting a similar approach,

we consider the signaling pathways commonly mutated in cancer, map the biological

pathway information to a digital circuit which is then used to determine the possible

7



fault locations and devise an appropriate therapeutic scheme.

2.3.1 Pathway model

Mutations in the PI3K/AKT/mTOR and Ras/MEK/ERK (MAPK) signaling

pathways are common in breast cancer malignancies with frequent genetic alteration

in several key players from these pathways [37, 79]. These pathways are activated

via growth factor receptor tyrosine kinases and regulate cell metabolism, survival

and growth. A schematic representation of these pathways is given in [47]. To

this schematic, we add the pathway segment incorporating the transcription factors

HIF-1 and SREBP. This leads us to our signaling pathway model of Fig. 2.1. The

black and red lines in the diagram indicate relationships which are activating and

inhibitory respectively.

The red boxes show breast cancer drugs and their points of intervention in the

pathway. The cancer drugs in our model are “targeted molecular therapies”, agents

which act with great specificity on particular molecules in the signal transduction net-

work known to be important in cancer [6,48,62,76]. The cancer drugs are Lapatinib

(a dual tyrosine kinase inhibitor of EGFR and ERBB2) [6,48,62,76], Trastuzumab (a

monoclonal anti-body targeting ERBB2) [6, 48, 62, 76], Cixutumumab (anti-IGF1R

monoclonal antibody) [59], U0126 (MAPK pathway inhibitor targeting MEK) [23,27]

and LY294002 (PI3K/Akt pathway inhibitor targeting PIK3CA) [48,62,76].

Genes exhibit switch-like on/o↵ behavior and thus a gene regulatory network

(GRN) can be modeled with a Boolean circuit [47]. The marginal interactions

amongst genes represented by the signal transduction network, can be translated

to an equivalent Boolean network. For example if either of two genes say A or B can

activate a third gene C, then this component of the GRN can be represented by an

OR gate with inputs A and B and output C. Using such a procedure outlined in [47]

8



Figure 2.1: A schematic diagram of signaling pathways commonly mutated in breast
cancer.

for translating the interactions of di↵erent genes in a signaling network to a logic

circuit, we can model the pathways in Fig. 2.1. with a Boolean circuit, to arrive at

Fig. 2.2. In this circuit, there are nine outputs, 6 of which are transcription factors

(marked in yellow) and the remaining (which are not colored) reflect the activation

status of some key proteins from our target signaling pathways.

2.3.2 Fault locations and drug intervention points

In normal cells, cell division is under extremely tight control and cells only di-

vide to form further cells if they receive external signals to do so. These external

9



Figure 2.2: Boolean circuit model.

signals that stimulate a cell to divide are called growth factors or mitogens. Cancer

is characterized by a breakdown in cell signaling in which cells are set-free from the

10



usual controls on cell-cycle progression and continue to grow and proliferate even

in the absence of mitogenic signaling. Such abnormalities in the signaling network

can be modeled as stuck-at faults where a point in the network is permanently fixed

(stuck) at a particular value of either 1 (stuck-at-1 fault) or zero (stuck-at-0 fault)

corresponding respectively to the constitutive (perpetual) activation or inactivation

of a gene [47]. For example, in cancerous cells, the proto-oncogenes can get mutated

to become oncogenes or a tumor suppressor gene can lose its braking function. For

instance, if the PIK3CA proto-oncogene, a gene frequently mutated in breast can-

cer [37] mutates to PIK3CA oncogene, the encoded PIK3CA oncoprotein can become

constitutively active and start perpetually signaling to the downstream proteins. In

that case, even if there is no mitogenic signaling from the outside, the cell will be

stimulated to divide. Such constitutive activation of PIK3CA can be modeled as a

stuck-at-1 fault. Similarly, mutation in the PTEN tumor suppressor can cause a cell

to ultimately undergo uncontrolled cell division, and possibly turn cancerous. Such

a fault that renders PTEN inactive, corresponds to a stuck-at-0 fault. Thus, cancer

is a disease of aberrant cell signaling caused by failures in the signaling pathways

which can be represented as stuck-at faults in the network. For simplicity, we con-

sider single stuck-at faults. From the network in Fig. 2.1, we identify 27 possible

fault locations illustrated in Fig. 2.3 with the “stuck-at-1” faults in black numerals

and the “stuck-at-0” faults in red.

The intervention points in the Boolean circuit for the cancer drugs are shown in

Fig. 2.4. Since the cancer drugs of Fig. 2.1, with the exception of Metformin, break or

stop the e↵ect of the kinase (to which they bind) on the molecules further downstream

of the signaling cascade, a drug of this type can be modeled as an inverted input to

an “AND” gate at the point of intervention [47]. As discussed in sub-section 2.2.2,

Metformin however acts as an activator of the AMPK, overcoming the dysregulation

11



Figure 2.3: Possible fault locations.

of AMPK in cancer. Thus, in order to incorporate the e↵ect of Metformin in our

Boolean network, its action is modeled via the activation of AMPK.

12



Figure 2.4: Drug intervention locations.

2.3.3 Fault classification

In this sub-section we group the faults identified in Fig. 2.3 into di↵erent classes

of equivalent faults based on their output to the non-proliferative input. The input

13



and output vectors are defined as:

INPUT = [EGF,HBEGF, IGF,NRG1,PTEN]

OUTPUT = [FOS-JUN, SP1, SRF-ELK1, SRF-ELK4, SREBP,HIF-1,

BCL2,BCL2L1,CCND1]

Each input can take on binary values. We set the input vector to [00001] which

corresponds to the growth factors being absent and the tumor suppressor PTEN

being active i.e. non-proliferation. For each of the 27 faults that may cause cancer,

the output is tabulated in Table 2.1a. Fault location zero corresponds to the fault-free

case.

Based on the outputs, the faults can be grouped together into classes of equivalent

faults. Faults which produce identical output for the same input test vector are

equivalent. From the outputs in Table 2.1a, the sets of equivalent faults for the test

vector [00001] are shown in Table 2.1b.

2.3.4 Simulation results for drug intervention

The total number of drugs is six, so we define a binary drug vector of length six

with each component having a value of either 1 if the corresponding drug is applied,

and zero if it is not. Thus, there are a total number of 26 = 64 possible drug vectors

representing all the possible drug combinations. For each of the 27 faults that may

cause cancer, the simulation determines the output for every drug combination and

maps the output to a real number indicating the extent of proliferation. The drug

vector is defined as follows:

DRUG V ECTOR = [Metformin,Lapatinib,Trastuzumab,Cixutumumab,U0126,

LY294002]
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Table 2.1: Fault classification.

(a) Output vector for all single stuck-at faults with input = [00001].

Fault Location FOS-JUN SP1 SRF-ELK1 SRF-ELK4 SREBP HIF-1 BCL2 BCL2L1 CCND1

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1
7 0 0 0 0 1 1 1 1 1
8 0 0 0 0 1 1 1 1 1
9 0 0 0 0 1 1 1 1 1
10 0 0 0 0 1 1 1 1 1
11 0 0 0 0 1 1 1 1 1
12 0 0 0 0 1 1 1 1 1
13 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0
16 0 1 1 1 1 1 1 1 0
17 0 1 1 1 1 1 1 1 0
18 0 1 1 1 1 1 1 1 0
19 0 0 0 0 0 0 0 0 1
20 0 0 0 0 1 1 1 1 0
21 0 0 0 0 1 1 1 1 0
22 0 0 0 0 1 1 1 1 0
23 0 0 0 0 0 0 1 1 0
24 0 0 0 0 0 0 1 1 0
25 0 0 0 0 1 0 0 0 0
26 0 0 0 0 0 1 0 0 0
27 0 0 0 0 0 1 0 0 0

(b) Equivalent fault groups for input = [00001].

Output Equivalent Fault Groups

000000000 0, 13, 14, 15
111111111 1, 2, 3, 4, 5, 6
000011111 7, 8, 9, 10, 11, 12
011111110 16, 17, 18
000000001 19
000011110 20, 21, 22
000000110 23, 24
000010000 25
000001000 26, 27
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The input and output vectors are defined as before in the previous sub-section.

Again, for the simulation we set the input vector to [00001] i.e. a non-proliferative

input. For this input, we expect all the outputs comprising proliferative transcrip-

tion factors, metabolic adaptation markers, cell-cycle progression and anti-apoptotic

proteins to be de-activated or turned o↵ and indeed, for the fault-free scenario, this is

certainly the case. However, faults in the signaling network, can cause a proliferative

(non-zero) output even for the non-proliferative input. Our objective is to nullify

the e↵ect of the faults by targeted drug intervention to produce an output as close

to [000000000] and as far away from the extremely proliferative output [111111111]

as possible.

To quantify the degree of abnormal behavior, we define a transformation as in [47]

to map the 29 = 512 output vectors to the continuous real number scale. Since the

first six components of the output vector are transcription factors, and the remaining

are the activation status of some proteins, these two groups of outputs have di↵erent

biological significance and are encoded separately. Defining N1 to be the number of

active transcription factors and N2 to be the number of active remaining outputs,

the transformation below maps in a many-to-one fashion the output vector to a real

number:

Output = [a, b, c, d, e, f, g, h, i]

N1 = [a+ b+ c+ d+ e+ f ]

N2 = [g + h+ i]

P = N1 ⇥N2

S = N1 +N2

 (output) = ↵P + (1� ↵)S

16



where ↵ 2 (0, 1) is a free design parameter that defines the convex combination of

the sum and product of N1 and N2. It determines the relative weights assigned to

the sum and product. Since there is no obvious reason to assign greater weight to

the sum or product term relative to the other, we assign equal weights by selecting

a value for ↵ that is right in the middle of the parameter space. Hence, ↵ is chosen

to be 0.5 for the simulation. Thus, we have ↵ = 0.5(N1N2 + N1 + N2). Note that

this is a non-linear cost function with a product term N1N2. As a consequence, this

transformation produces a higher cost (for the same number of total active output

components), when genes from both groups in the output vector are expressed com-

pared to the situation when only one group in isolation is trying to drive proliferation.

This makes sense as we expect that the extent of proliferation will be higher when

both sets of genes, which when deregulated play important complementary roles to-

wards unchecked proliferation, are simultaneously active. It is pertinent to point out

however, that the results that follow are not predicated on the exact definition of the

mapping.
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Figure 2.5: Drug vector response.
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The values of the function  for all possible faults and drug combinations are

shown in Fig. 2.5. with the fault locations and drug vectors along the horizontal

and vertical directions respectively. The outputs are color-coded on a scale with red

representing extreme proliferation and green non-proliferation. The color codes used

are listed on the right side of Fig. 2.5. Again fault location zero corresponds to the

fault-free case.

We would like to drive as many of the faults towards green (non-proliferation)

as possible using as few of the cancer drugs as we can since these drugs have toxic

side e↵ects. From Fig. 2.5 we can immediately see the benefit of Metformin. It

mitigates the e↵ect of faults 7-12, which are faults in the insulin/insulin-like growth

factor (IGF) signaling pathway and the PI3K/AKT pathway, the pathway involved in

regulating cell metabolism. From the previous sub-section, these faults are classified

in the same fault group and it is for this class of faults that we expect Metformin to

show therapeutic benefit i.e. Metformin should ameliorate the e↵ect of faults that

lead to the de-regulation or hyper-activation of the PI3K/AKT/mTOR axis. Indeed,

Metformin has been shown to overcome the dysregulation of the PI3K pathway by

suppression of mTOR through AMPK activation in breast cancer cells. A number of

studies have indicated the anti-tumorigenic e↵ects of Metformin in multiple cancer

cell lines including breast cancer with the use of Metformin as an anti-cancer agent

now being evaluated in clinical trials [15, 22, 31, 69, 81]. Moreover, one of the most

common ways in which the PI3K/AKT/mTOR pathway can be deregulated in breast

cancer is the loss of PTEN, the negative regulator of this cascade, an event found in

up to 40% of breast tumors [68]. Metformin has been shown to delay the onset of

tumors in PTEN-negative mice [38]. Experimental studies have also demonstrated

the benefit of Metformin in combination with chemotherapeutic agents and provided

a rationale for Metformin as part of combination therapy for breast cancer [36]. All
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in all, our simulation results with respect to the therapeutic benefit of Metformin for

cancer seem to be in concordance with the literature.

Note that no drug vector has any e↵ect on fault 18. This makes sense as fault

18 corresponds to a mutation in the ERK1/ERK2 protein. This fault is downstream

of all the drugs in our pathway model, so no drug combination is able to counteract

the e↵ect of this particular fault. In addition, the faults 13-15 produce an all zero

output i.e. these faults are “undetectable” as they generate the same output as the

fault-free case. Since we are only concerned with faults that can induce cancer, we do

not have to worry about these particular faults as they produce a non-proliferative

output.

The best two-drug vector in terms of driving faults towards green is 100010, the

combination of Metformin and U0126. However, considering cancer drugs only (i.e.

excluding Metformin) the best drug vector is 000011, i.e. the drug combination

of U0126 and LY294002 is the best two drug combination of cancer drugs. If to

this combination we add Metformin, we see we get an even better result as more

of the faults are driven towards green. This better outcome is obtained at minimal

additional cost as in contrast to cancer drugs, Metformin is inexpensive and does not

have adverse side-e↵ects. We conclude that incorporating Metformin in the mix for

cancer therapy can lead to improved outcomes.

Therefore, it seems that U0126 and LY294002 along with Metformin should be

a potent combination therapy for breast cancer. We thus propose that a cancer

combination therapy of U0126 or some other MEK (mitogen-activated protein kinase)

inhibitor and LY294002 along with Metformin can lead to better therapeutic results.

The exact same cancer drug combination of U0126 and LY294002 has been proposed

as a therapeutic approach in the prevention and treatment of human melanoma [7].

Furthermore, recently a similar drug combination that targets the MAPK and PI3K
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pathways has shown promising results for Rhabdomyosarcoma [71]. Since these very

signaling pathways are the most frequently deregulated signaling cascades in human

breast cancer [37, 79], it is reasonable to expect the above drug combination to be

e↵ective for breast cancer malignancies. The fact that our model prediction regarding

the therapeutic potential of Metformin is in consonance with the literature and that

the proposed cancer drug combination has shown promising results in other cancers

with frequent mutations in the same pathways, suggests that this particular cancer

therapeutic regimen warrants further investigation. In any case, our results indicate

at a minimum that incorporating the metabolism-targeting drug Metformin in the

cancer therapy cocktail should give better outcomes compared with the use of cancer

drugs alone.

Thus, by computer simulation of the Boolean logic equivalent model of the critical

gene regulatory pathways of breast cancer, we have been able to demonstrate the

benefit of Metformin use in cancer therapy which suggests a role for this drug in

combination with cancer drugs. The theoretical results presented herein regarding

the potential benefits of including the metabolism targeting drug Metformin as part

of a combination cocktail therapy for cancer ultimately need to be validated via

actual experiments on cancer cell lines.

The work presented here has some limitations. One of the major impediments to

the success of therapeutic intervention in cancer is the presence of feedback signaling.

Any attempt to counter the deregulation of a particular signaling pathway by admin-

istering targeted therapy is counteracted in cancer by exploiting the redundancy in

the cellular signaling network through the compensatory activation of feedback loops

which ultimately limit the potency of any attempted therapeutic intervention [55].

Furthermore, a tumor population is generally heterogeneous in that it is comprised of

a number of di↵erent subpopulations that harbor distinct mutations with the result
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that no two cancers are completely alike [60]. As a consequence di↵erent subpopula-

tions require di↵erent treatments. These issues of tumor heterogeneity and feedback

signaling are complex research problems in their own right but need to be addressed

i.e. a comprehensive system model needs to incorporate these considerations. Some

preliminary progress in this direction has been made [61, 82].

22



3. TOWARDS TARGETED COMBINATORIAL THERAPY DESIGN FOR

THE TREATMENT OF CASTRATION-RESISTANT PROSTATE CANCER

3.1 Background

Prostate cancer is the most common noncutaneous male malignancy and one

of the leading causes of cancer mortality in the western world [80]. The growth

and progression of prostate cancer is stimulated by androgens [26]. Androgens are

male sex steroid hormones that are responsible for the development of male char-

acteristics. Testosterone is the most important androgen in men. The e↵ects of

androgens are mediated through the androgen receptor (AR) [10]. The androgen

receptor is a nuclear receptor, which is activated in response to the binding of an-

drogens. Upon activation, it mediates transcription of target genes that modulate

growth and di↵erentiation of prostate epithelial cells. In malignant prostate cells,

androgen signaling is deregulated and the homeostatic balance between the rate of

cell proliferation and programmed cell death is lost. As prostate cancer relies on

androgens for growth, the main line of treatment focuses on abrogating the action of

androgens. Androgen deprivation therapy (ADT) in the form of surgical or medical

castration is the cornerstone of treatment for prostate cancer [20]. Initially, andro-

gen ablation induces significant regression of the tumor. However, the response to

ADT is temporary and prostate cancer invariably stops responding to this treatment

regimen, leading to a clinical condition that is known as hormone-refractory prostate

cancer, androgen-independent prostate cancer or castration-resistant prostate cancer

(CRPC). CRPC is a more aggressive and typically lethal phenotype where the tumor

continues to grow in spite of the very low levels (<50 ng/ml) of circulating serum

testosterone. Standard treatment options are limited and palliative docetaxel-based
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chemotherapy is generally used for patients who have become refractory to hormone

treatment. However, median survival time for patients following first-line chemother-

apeutic treatment is just eighteen to twenty-four months [49]. There is therefore a

clear rationale for advances in alternative therapeutics in order to evolve and expand

the landscape of treatment options for malignant forms of prostate cancer that recur

after abatement.

Over recent years, there has been a significant e↵ort towards furthering our un-

derstanding of the molecular mechanisms underpinning tumor development, growth

and progression. It is now appreciated that in spite of castrate levels of androgens,

the cancer cells are able to maintain persistent androgen receptor signaling through

a variety of contributory mechanisms including AR gene amplification that results in

overexpression of AR, gain-of-function mutations in AR which enable promiscuous

activation of the receptor through other steroids or even in the absence of ligand bind-

ing, changes in AR co-activators and the expression of AR splice variants [14]. This

compensatory response allows cancer cells to survive in a low testosterone environ-

ment and the reactivated AR signaling axis continues to play a role after neoplastic

transformation. Additionally, certain androgen-independent cellular signaling path-

ways that promote proliferation and inhibit apoptosis, have been critically implicated

as drivers of continued progression of prostate cancer. Hence, accumulating evidence

indicates that the growth and progression of prostate cancer is a complicated process

that involves interaction between multiple pathways. Advances in our knowledge of

the biology of prostate cancer has led to the development of a number of novel thera-

pies designed to target signaling pathways involved in disease progression. With the

exception of certain androgen synthesis and AR signaling antagonists that have re-

ceived regulatory approval, these advanced agents are under various stages of clinical

trials [67].
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Castration-resistant prostate cancer is a complex malady. Given the inherent

complexity of the CRPC signaling cascade, there is no one dominant molecular driver

across all tumors and hence no single drug can act as a “magic bullet” by being

uniformly e↵ective for treating the malignancy [3,4]. At best, limited benefit will be

derived from targeting a single molecule. Rational combinations of signal-modulating

therapeutic agents have higher likelihood of yielding better outcomes. While there

are several drugs being tested on cell lines, most of these studies focus on a single

pharmaceutical agent and very few of those experiments involve trying out drug

combinations. Furthermore, prostate cancer is a markedly heterogeneous disease,

with di↵erent tumors varying in their composition and makeup. In other words,

di↵erent tumors will harbor di↵erent malfunctions in the signaling pathways. Thus,

tailored targeted therapies based on individual tumor characteristics are required to

maximize the potential benefits from treatment.

Mathematical and computational modeling plays a pivotal role in systems biol-

ogy in elucidating biological insights from large-scale biomolecular signaling networks

that are not amenable to straightforward intuitive interpretation. A diverse array of

formalisms have been proposed in this domain as suitable representations for complex

multicomponent networks such as cellular signaling pathways [88]. Amongst these

frameworks, Boolean network models [35, 43] have emerged as an extremely use-

ful parameter-free approach to capture the qualitative behavior of extensive genetic

networks wherein knowledge of kinetic parameters is scarce. Boolean logic models

have been successfully applied to study biological signaling networks and cellular

processes [5, 89], for instance the cell cycle [25], apoptosis [75], the T-cell survival

network [97], hypoxia stress response pathways [83] and the gene regulatory network

regulating cortical area development [29]. In this section, we use Boolean logic mod-

eling of the key signaling pathways implicated in the development and progression
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of prostate cancer to simultaneously test various combinations of agents for their

e�cacy in attenuating cancer growth and design targeted therapies for the manage-

ment of the disease. In addition, we attempt to delineate components in the signaling

network that can be pharmacologically manipulated to therapeutic advantage.

3.2 Boolean modeling of prostate cancer signaling

Cellular processes such as growth and division are regulated by an interconnected

network of molecules referred to as signaling pathways. Key cellular signal trans-

duction pathways known to play a major role in cell survival, growth, di↵erentiation

and the development of castration-resistance in prostate cancer are the Androgen Re-

ceptor (AR), PI3K/AKT/mTOR and Mitogen-Activated Protein Kinase (MAPK)

pathways. The aberrant behavior of prostate cancer cells is characterized by dys-

function in these selective oncogenic signaling pathways promoting malignant char-

acteristics. These pathways play a role in a diverse range of essential physiological

cellular processes such as di↵erentiation, survival, proliferation, protein synthesis

and metabolism. Malfunctions in these pathways are common in prostate cancer

malignancies. For example, approximately 70% of advanced prostate cancers have

genomic alterations in the PI3K/AKT/mTOR pathway [13]. These three pathways

are the most frequently over-activated pathways increasing survival of cancer cells

and promoting cancer progression [96]. A schematic representation of these pathways

is given in [40–42].

In the context of methodologies that are applied to model cellular signal trans-

duction networks, Boolean networks are probably the simplest where the state of

each node in the network is either active (on) or inactive (o↵). In a Boolean net-

work, the nodes are the genes and the edges represent the interaction amongst the

genes. Since the molecules in a gene-regulatory-network (GRN) exhibit switch-like
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behavior, genes may be regarded as binary devices where a gene can be considered

to be active if it is being transcribed and inactive if it is not. Moreover, the relation-

ships amongst the genes may be represented by means of logical functions. Thus, a

GRN is amenable to such a representation. The Boolean formalism is analogous to

a digital circuit where logic gates can be used to represent the regulatory relation-

ships amongst the nodes and the activation level of the nodes is indicated by binary

logic. The biological interactions amongst the various nodes (genes) represented in

the gene regulatory network of prostate cancer can therefore be translated to an

equivalent Boolean circuit [92]. Let’s say either gene X or Y can activate a third

gene Z, then we can model this component of the signaling network with an OR gate

with two inputs, namely X and Y and with output Z. Thus, the prostate cancer sig-

naling network can be mapped to the combinational circuit shown in Fig. 3.1. This

digital logic circuit represents our multi-input multi-output (MIMO) systems model

of the prostate cancer signaling transduction network. Each node is assigned a nu-

meric label in parentheses. These labels also serve to enumerate the fault locations

with stuck-at-one and stuck-at-zero faults in black and red numerals respectively.

The dotted arrows indicate the intervention points for the respective drugs. These

pharmacologic agents are highly specific pathway inhibitors. These reagents modu-

late growth-factor receptors and the downstream pathways abnormally activated in

CRPC by targeting with great specificity certain signaling nodes in the network.

Cancer is a disease of abnormal cell signaling caused by a breakdown in the

normal signaling pathways leading to the loss of cell cycle control and uncontrolled

cell proliferation. These abnormalities in the signaling network can be represented

as stuck-at faults [2]. A stuck-at fault is said to occur when a line in the network

is permanently set to a fixed value of one (stuck-at-one fault) or zero (stuck-at-zero

fault) with the result that the state of the line is stuck at the faulty value and no
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longer depends on the state of the signaling network upstream that drives that line

i.e. the faulty line has a constant (1/0) value independent of other signal values

in the circuit. A stuck-at-fault can occur either at the input or output of a gate.

An example of a stuck-at-fault is given in Fig. 3.2. Suppose the input vector is

<abcd>= 1100. In this case, the output is 0. However, if there is a stuck-at-one

fault at the output of the NAND gate (at the location marked with a cross) with

the same input vector as before, the output of the faulty circuit is one instead of

zero. This notion of stuck-at-faults has immediate biological relevance: on account

of mutations or other structural abnormalities, a gene might become dysfunctional

and hence stuck at a particular state irrespective of the signals that it is receiving

from surrounding genes [47]. These biological defects can be abstracted as stuck-at

faults. For instance, as discussed earlier, a diverse array of mechanisms engender

persistent AR signaling in CRPC even with castrate serum levels of androgen. This

constitutive (permanent) activation of the androgen receptor where the receptor

remains active i.e. continues to signal downstream even in the absence of androgens

can be represented as a stuck-at-1 fault. By the same token, the inactivation in

cancer of a tumor suppressor, which acts as a molecular brake on cell growth in

a normal cell, can be represented as a stuck-at-0 fault. From our Boolean circuit

model, we can explicitly enumerate the di↵erent locations where a fault can occur.

These fault locations are numbered in Fig. 3.1 with the stuck-at-0 and stuck-at-1

faults in red and black numerals respectively. There is a total number of 24 possible

fault locations.

The objective is to counteract the e↵ect of these faults by targeted drug inter-

vention, so we incorporate the drugs in our model. The drug intervention points are

illustrated in Fig. 3.1 which are the locations of the molecules that these prostate

cancer drugs are known to target. Since the drugs inhibit the activity of their target

29



1
X

a = 1

b = 1

c = 0

d = 0

0/1

Figure 3.2: Circuit with stuck-at fault.

i.e. the main mechanism of action of the anti-cancer drugs is to cut o↵ downstream

signaling, their action is incorporated in our model as an inverted input to an AND

gate with the result that whenever the drug is applied, the gene that it targets is

turned o↵.

3.3 Simulation for fault mitigation with drug intervention

We can now use our Boolean model to test di↵erent combination therapies in

terms of their e�cacy in mitigating the e↵ects of the faults. For each fault, we would

like to intervene with the best possible drug combination i.e. we want to determine

which set of drugs would be most e↵ective in attempting to nullify the e↵ect of that

fault, thereby providing us with a targeted therapy based on the tumor signature.

Define, the input vector as follows:

INPUT = [EGF,HBEGF, IGF,NRG1,PTEN,NKX3. 1,Androgens]
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The first four components of this vector are growth factors, which are external

signals that stimulate a cell to grow and replicate. The next two input components,

namely PTEN and NKX3.1 are tumor suppressors which act as molecular brakes

on cell division. The last input vector component consists of the external hormones

that stimulate the AR pathway in a normal prostate cell. The input vector is set

to be [0000110]. This corresponds to all the external signals that stimulate cell

growth being absent and the molecular brakes being active i.e. this input vector

corresponds to a non-proliferative input which produces a non-proliferative output

in the fault-free case. The output vector is defined to be:

OUTPUT = [SP1, SRF-ELK1,PSA,TMPRSS2,BCL2,CDK2-CyclinE]

The output vector consists of key markers of cell growth and proliferation in

prostate cancer. In the fault-free scenario, a non-proliferative input to the regula-

tory network should produce a non-proliferative output characterized by the all-zero

vector. However, faults in the network will produce a non-zero (proliferative) out-

put even when the input is non-proliferative. The objective is to drive the faulty

network’s output as close as possible to that of the fault-free circuit i.e. towards the

all-zero vector through targeted drug intervention. Define, the drug vector as:

DRUG V ECTOR = [Lapatinib,Cixutumumab,AZD6244,BKM120,AZD5363,

Temsirolimus,Enzalutamide]

Each component of the drug vector is one if the corresponding drug is applied and

is zero otherwise i.e. the ith bit of the drug vector is one if the drug is selected and zero

if it is not. Thus, for example, the drug vector [0010010] represents the combination

of AZD6244 and Temsirolimus. Since, the total number of drugs is seven, the number
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of possible drug combinations is 128. The objective is to determine the best possible

therapy for each fault. Each fault represents a di↵erent molecular abnormality and

hence a tumor with a di↵erent profile.

For each of the faults, the problem is to find the drug selection that can rectify

the fault i.e. change the faulty output to the correct output. If that is not possible,

the best drug vector will drive the output as close as possible to the fault-free output.

A simple metric that can be used as a distance measure to determine how far the

output vector is from the fault-free vector is Hamming distance. Faults that produce

an output vector with a greater Hamming distance from the correct output have

more of the proliferative genes active and presumably a greater proliferative e↵ect.

Since the correct output is the all-zero vector, the Hamming distance of the output

vector from the correct output is simply the Hamming weight of the output vector

(for binary vectors Hamming weight is equivalent to the L1-norm). For each fault,

we determine the output under every possible drug vector. The best therapy for

that fault is the drug vector that produces the output with the smallest Hamming

weight. In addition, since the drugs have deleterious side-e↵ects, we would like to

choose a drug combination with the fewest number of drugs. Thus, the best targeted

therapy for each of the cancer-inducing faults is the one that under the presence

of the fault, produces the best output with the smallest Hamming weight with the

minimal number of drugs. The best therapy for each of the faults is shown in table

3.1 with the drug vector defined as above. Note that for certain faults, no drug

vector can improve the output. Such faults are said to be untestable since no test

(drug vector in this case) can rectify the fault. This is because there are no drugs on

the fan-out of these genes. However, all these faults with the exception of fault 18

are minimally proliferative as they produce a faulty output with the least possible

Hamming weight of one.
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Table 3.1: Best therapy for each fault.

Fault Location Drug Vector

1 1000000
2 1000000
3 0100000
4 1000000
5 0011000
6 0011000
7 0000100
8 0001000
9 0001000
10 0000100
11 0000100
12 0000100
13 0000100
14 0000001
15 0000001
16 0010000
17 0010000
18 0000000
19 0000010
20 0000010
21 0000010
22 0000000
23 0000000
24 0000000

Thus, there are many locations in the gene regulatory network of prostate cancer

where malfunctions can occur resulting in a cancer that is di↵erent, requiring a

specific targeted therapy. The table facilitates arriving at such a therapy as it maps

each malfunction to an appropriate set of drugs. The look-up table can be used

to devise therapies that have a higher likelihood of success since they are tailored

specifically to the molecular abnormalities in critical pathways and thereby facilitates

an individualized approach to therapy design.

To determine the best combination therapy across all faults, for each drug com-

33



bination we determine the sum of the Hamming weights of the output vector across

all possible combinations of faults and choose the drug combination that yields the

smallest total. In order to keep the computation tractable, we restrict the num-

ber of possible faults in any fault combination to be no more than three i.e. up to

three genes can be faulty simultaneously. We constrain the cardinality of the drug

vector to be less than or equal to three, in essence limiting the number of drugs in

the combination to three since on account of the harmful side-e↵ects of the drugs,

administering four or more cancer drugs simultaneously might not be prudent.

For the Boolean network (BN) of Fig. 3.1, let N , M and P be the total number of

primary inputs, primary outputs and fault locations respectively, then N=7, M=6

and P=24. Let x 2 X and z 2 Z be the input and output vectors respectively

where X and Z represent the space of all binary vectors of dimensions N and M

respectively. Let x⇤ = [0, 0, 0, 0, 1, 1, 0] be the input vector corresponding to the

non-proliferative input.

Let D represent the total number of drug combinations (vectors) with no more

than three drugs in any combination, then D =
3P

k=0

�
7
k

�
. Denote each drug vector in

the drug space as di with i = 0, . . . , D � 1 (d0 is the all-zero drug vector meaning

no drug is applied). Let D be this space of drug vectors.

Let C be the total number of fault combinations with no more than three faults

in any combination, then C =
3P

k=0

�
P
k

�
. Assign each fault combination in the fault

space a label fj with j = 0, . . . , C � 1 (f0 represents the fault-free case). Let F be

this set of faults.

Let  denote the mapping from a given input vector, drug combination and fault

combination to an output vector: x 2 X ,d 2 D, f 2 F  �! z 2 Z i.e.  represents

the output of the BN for a given input x when a drug combination d is applied under

fault scenario f . Let  i be the ith component of this M-dimensional vector  .
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The best drug vector di, i 2 {0, 1, . . . , D � 1} for each single fault fj, j 2

{1, 2, . . . , P} is the vector of smallest Hamming weight that minimizes k (x⇤,di, fj)k1.

The optimal drug combination across all faults is:

d⇤
i = argmin

di

C�1X

j=1

k (x⇤,di, fj)k1

d⇤
i is determined by exhaustive enumeration by explicitly searching for the drug

combination that for a non-proliferative input, minimizes the sum of Hamming

weights (L1-norms) of the output vector across all possible combinations of faults.

This gives the drug cocktail of AZD6244, AZD5363 and Enzalutamide as a combina-

tion therapy for advanced prostate cancer. In a recent study, the drug combination

of AZD5363 and Enzalutamide has demonstrated an impressive response in prostate

cancer models [85]. Moreover, AZD6244 in partnership with an AKT pathway in-

hibitor (analogous to AZD5363), has been proposed as a strategy for the treatment

of CRPC [65]. Thus, we propose that the aforementioned drug triad which repre-

sents a horizontal blockade approach, wherein combination therapy is used for the

concerted pharmacologic inhibition of multiple compensatory pathways, as a thera-

peutic modality that may attenuate prostate cancer survival and growth.

3.4 Node vulnerability assessment

In electronic circuits, reliability refers to the probability of a circuit functioning

as intended i.e. producing the correct output. Reliability assessment is used to de-

termine the vulnerability of a circuit to faults. A number of di↵erent techniques

have been proposed for reliability analysis in digital circuits [16]. Recently, in [33] a

scalable, e�cient and accurate simulation-based framework based on stochastic com-

putations was introduced for logic circuit reliability evaluation. In biological systems,

dysfunctions in nodes in the signaling network cause deviation from normative be-

35



havior. Reliability assessment methodologies can be leveraged on Boolean network

models of pathways to determine the vulnerability of the network to the dysfunction

of each node [1,99]. In this section we conduct a stochastic logic based vulnerability

analysis of the prostate cancer signal transduction network in order to discover the

most vulnerable nodes thereby allowing us to prioritize such segments in the network

whose perturbation has the greatest potential to yield the most clinical benefit.

In stochastic logic, signal probabilities are encoded in random binary bit streams

(the signal probability of a node corresponds to the likelihood of that node having

logic value one). For example, the binary sequence 0110010100 of length ten encodes

the probability 0.4 since the proportion of ones in this sequence is 4
10 . In practice, the

length of the stochastic sequences typically used is much larger. Since the biological

literature is devoid of precise ligand binding probabilities, each primary input is

assumed equally likely to be 0 or 1 i.e. all primary input signal probabilities are

taken to be 0.5.

Stochastic logic often makes use of Bernoulli sequences for the random binary

streams where each bit in the stream is generated independently from a Bernoulli

random variable with a probability of one equal to p. The use of probabilistic se-

quences inevitably introduces stochastic fluctuations which implies that the result

produced is non-deterministic. These fluctuations can be significantly reduced by

representing the initial input probabilities by non-Bernoulli sequences [52] defined

as random permutations of sequences containing a fixed number of ones and zeros.

For a given probability p and sequence length L, a non-Bernoulli sequence contains

a fixed number pL of ones, with the positions of the ones determined by a random

permutation. Thus, for example, to represent the probability 0.5 by a non-Bernoulli

stream of length 10, we could randomly permute the sequence 1111100000 which

has five ones (instead of generating each bit from a Bernoulli random variable with
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p = 0.5 as would have been done to represent the same probability by a Bernoulli

sequence). We use non-Bernoulli sequences of random permutations of fixed number

of ones and zeros in order to encode the initial input probabilities.

A logic circuit operating on stochastic bit streams (see Fig. 3.3 for an example),

accepts as input random sequences representing the probability of each input being

one and produces ones and zeros like any digital circuit [100] i.e. a stochastic logic

circuit uses Boolean gates to operate on sequences of random bits. Each bit-stream

represents a stochastic number interpreted as the probability of seeing a one in an

arbitrary position. Thus, the computations performed by such a circuit are proba-

bilistic in nature. The output bit stream produced can be decoded as the probability

of the output being one by counting the number of ones in the stream and dividing

by its length.

0001111010
p1 = 0.5

1110000101
0111111101

p2 = 0.8

0110000101
0010100111

p3 = 0.5

0110100111
pout = 0.6

Figure 3.3: A stochastic logic circuit.

The vulnerability of a node is defined as the probability that the system produces

incorrect output if that particular node is dysfunctional (faulty) i.e. it is the proba-

bility that the output of the network is di↵erent when that node is dysfunctional and

is the complement of reliability. The procedure to determine the node vulnerabilities

is illustrated in Fig. 3.4 is as follows. We generate non-Bernoulli sequences of length

L=1,000,000 in which exactly half of the bits are set to one at each of the seven
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Figure 3.4: Stochastic architecture for computation of node vulnerability.

initial inputs (denoted by x1 to x7 in Fig. 3.4). The input stochastic sequences are

propagated through both the original error-free circuit and the circuit in which the

node of interest is dysfunctional. As discussed in the previous section, the dysfunc-

tion of a node is represented by a corresponding stuck-at fault of the requisite type

at the particular location. This produces two sets of stochastic bit streams, one at

each of the primary outputs of the fault-free circuit and the other at the primary

outputs of the unreliable circuit (represented by y1 to y6 and y⇤1 to y⇤6 respectively in

Fig. 3.4). The proportion of ones in the output bit stream encodes the output signal

probabilities i.e. the probability of the output being one. Since the reliability of the

circuit under the fault is the probability that the circuit output is same as that of the

fault-free circuit, the sequence encoding the output reliability can be obtained from

the output sequence of the faulty circuit by comparing it to the output sequence of
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the fault-free circuit and setting each bit to one whenever the corresponding bits in

the sequences are the same and zero if they are di↵erent. The proportion of ones in

this resulting sequence will then correspond to the reliability of that output. Thus,

we can obtain the stochastic sequence representing the reliability of each output by

taking the XOR of each output bit stream of the faulty circuit with the complement

of the corresponding output bitstreams of the fault-free circuit. For a circuit with

multiple primary outputs as is the case here, the stochastic sequence encoding the

joint output reliability can be obtained by taking the stochastic AND of the outputs

of the XOR gates as the stochastic AND operation on the output of XOR gates

produces a one only if all the corresponding bits at each XOR gate are one i.e. if all

the corresponding bits in the respective outputs of the fault-free and faulty circuit

are same. We then take the complement of the bit stream at the output of this

AND gate to obtain the stream that encodes vulnerability. This bit stream can then

be decoded to determine the node vulnerability with the proportion of ones in this

stream equivalent to the vulnerability of the node.

Let x1,x2, . . . ,xN represent input non-Bernoulli sequences of length L with each

sequence represented as a vector of length L whose ith component is equal to the

ith bit in the sequence. Define the L ⇥ N matrix X =

✓
x>
1 x>

2 . . . x>
N

◆
. Thus,

each row of this matrix contains the corresponding bits of each of the primary input

streams. The vulnerability vj of node j 2 {1, 2, . . . , P} is given by:

vj =
1

L

LX

k=1

 
MY

i=1

 i(x = [Xk1, . . . , XkN ],d0, fj)�  0
i(x = [Xk1, . . . , XkN ],d0, f0)

!0

where 0 is the bit-complement operator and � is the binary XOR operator.

The procedure for computing the vulnerability of a node described above and
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depicted in Fig. 3.4 is summarized as follows:

1. Generate non-Bernoulli streams encoding input probabilities at each of the

primary inputs.

2. Propagate the input binary streams through the fault-free circuit and obtain a

random bit sequence for each output.

3. Propagate the same input binary streams through the circuit with a stuck-at

fault at the location of the node whose vulnerability we want to determine and

again obtain a random bit sequence for each output.

4. XOR each primary output sequence from the faulty circuit obtained in step 3

with the complement of the corresponding primary output sequence from the

fault-free circuit.

5. AND all the sequences obtained from each XOR gate. Take the complement

of the stream so obtained. The vulnerability of the node is the fraction of ones

in the resulting bit stream.

Thus, in a nutshell, the node vulnerabilities are obtained by propagating the initial

input stochastic bit streams encoding the input probabilities through both the faulty

and fault-free circuit, comparing the respective outputs obtained from each and de-

coding probabilities from the resulting streams. The vulnerability values so obtained

are given in Table 3.2.

Vulnerability assessment can be used to identify candidates for targeted drug

development. Nodes whose vulnerabilities are higher should be presumably better

targets for drugs since potentially therapeutic benefit is more likely for nodes which

are more vulnerable. We observe that the AR-mediated signaling axis remains a
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Table 3.2: Node vulnerabilities.

Node Vulnerability (%)

1 6.25
2 6.25
3 6.25
4 6.25
5 6.25
6 6.25
7 24.98
8 6.25
9 6.25
10 24.98
11 24.98
12 24.98
13 24.98
14 12.47
15 12.47
16 6.25
17 6.25
18 6.25
19 1.57
20 1.57
21 1.57
22 1.57
23 1.57
24 24.98

valid target. Furthermore, we see that dysfunction in the AKT nexus and the loss

of tumor-suppressors have higher vulnerability values so drugs that attempt to alle-

viate these aberrations should be e↵ective in attenuating tumor growth. The design

of anti-cancer therapeutics directed at the loss of tumor suppressors has been dif-

ficult [21]. Additionally, AKT-selective drug development is challenging due to its

homology with other kinases [9]. These complications notwithstanding, accelerated

development of novel agents that target these aberrations is warranted. In contrast,

the vulnerabilities for certain nodes such as those in the mTOR axis are low in-
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dicating that they might not be attractive targets for drug development. Indeed,

marginal clinical activity has been observed for mTOR inhibition with agents such

as everolimus and temsirolimus failing to impact tumor proliferation in men with

prostate cancer [20, 73]. Finally, in terms of the key pathways implicated in the

disease we see that castration-resistant prostate cancer shows most vulnerability on

aggregate to dysfunction in the AKT pathway. In a study it was demonstrated that

the AKT pathway dominates AR signaling in CRPC [39].
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4. DE NOVO TRANSCRIPTOME ASSEMBLIES AND ANNOTATION FOR

PACIFIC WHITELEG SHRIMP1

4.1 Introduction

RNA-Seq, the sequencing of expressed messenger RNA by leveraging next gen-

eration deep-sequencing (NGS) technology, enables the rapid profiling of the tran-

scriptome [57, 90]. For non-model species, the reference genome is not available and

the massive amounts of short reads generated by RNA-Seq must therefore be assem-

bled de novo by aligning them against each other into a set of putative transcripts.

The goal of de novo transcriptome assembly is to reconstruct full-length transcripts

from the short reads [56]. Accurate de novo assembly is a fundamental first step

towards the reliable annotation of important non-model organisms for which little

to no genomic information is available. Clearly, putting together a transcriptome

from millions of short reads with sequencing errors in the absence of a reference is a

computationally challenging problem. Moreover, in comparison to genome assembly,

transcriptome assembly presents additional specific challenges [63] (for instance on

account of alternative splicing, a single gene can code for multiple transcripts). To

address the unique challenges of de novo transcriptome assembly, a number of soft-

ware programs have been developed specifically for this purpose. There is though,

no universal best transcriptome assembly program. Thus, it is important to under-

stand the power and limitations of each algorithm, and choose the appropriate tool

1Parts of this section are reprinted with permission from Noushin Gha↵ari, Osama Ar-
shad, Hyundoo Jeong, John Thiltges, Michael Criscitiello, Byung-Jun Yoon, Aniruddha
Datta, Charles Johnson, “Examining De Novo Transcriptome Assemblies via a Quality As-
sessment Pipeline”, IEEE/ACM Transactions on Computational Biology and Bioinformatics,
doi:10.1109/TCBB.2015.2446478 c� 2015 IEEE and “De novo Transcriptome Assemblies and An-
notation for Pacific Whiteleg Shrimp”, Signal and Information Processing (GlobalSIP), 2014 IEEE
Global Conference on, Atlanta GA, 3-5 Dec, 2014, doi:10.1109/GlobalSIP.2014.7032342 c� 2014
IEEE.
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accordingly.

Pacific whiteleg shrimp (Litopenaeus vannamei) is a prawn native to the eastern

Pacific Ocean from southern Sonora Mexico to northern Peru, and largely farmed in

the United States. Litopenaeus vannamei is a decapod (e.g., crabs, lobster, shrimp)

crustacean of great interest as the dominant species in the global aquaculture indus-

try. Whiteleg shrimp has great potential to provide food security. It however, su↵ers

from pandemics caused by viruses [53]. Limited genomic information is available for

this organism and there is a pressing need for enriching the current transcriptomic

knowledge for this species.

In this study we used three leading transcriptome assembly algorithms namely

SOAPdenovo-Trans [94], Trans-ABySS [72] and Trinity [32] to reconstruct the tran-

scriptome of L. vannamei. We evaluate the assemblies across a number of metrics.

Furthermore, the output transcripts from each assembly algorithm are annotated.

Fig. 4.1 depicts the pipeline used to assess the quality of the resultant assemblies

and annotate the transcripts. The results presentented herein will serve to improve

the available transcriptome knowledge for an important non-model species.

4.2 RNA-Seq dataset

The RNA-Seq dataset consists of paired-end reads sequenced using Illumina

HiSeq technology from samples obtained from shrimp abdominal muscle, hepatopan-

creas, gills and pleopods. The reads from the di↵erent samples were pooled together.

The total number of reads is 199,528,356 in each read-pair with each read 100 base-

pairs (bp) in length representing a total of about 40 Gigabases of sequence data.

4.3 Transcriptome assembly

Shrimp RNA-Seq reads [28] are assembled into contigs (contiguous sequences)

or transcripts using three state-of-the-art de novo transcriptome assemblers: 1-
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Figure 4.1: Transcriptome assembly, quality assessment, and annotation pipeline for
Pacific whiteleg shrimp.

SOAPdenovo-Trans (release 1.03), 2- Trans-ABySS (version 1.5.1), 3- Trinity (release

r2013-02-25). Default parameters were used for each program. It is customary to

discard the short contigs of an assembly. Transcripts shorter than 200 base pairs (bp)

are filtered out from the SOAPdenovo-Trans and Trans-ABySS assemblies (Trinity

by default will only include transcripts longer than 200 bp in the final assembly).

4.4 Assembly statistics

Basic metrics of an assembly pertain to the size of the output along with statistics

related to the length of the contigs [84] and include the total size in base pairs (span)

of the assembly, number of assembled transcripts, length of the largest contig and

the mean, median and N50 (defined as the contig size such that all the contigs equal

to or greater than that size account for half of the total assembled bases [63]) of the

contig length. These statistics for the three transcript assemblies are shown in Table
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4.1.

We see from Table 4.1 that Trans-ABySS produces the largest number of tran-

scripts whilst SOAPdenovo-Trans produces the fewest transcripts. However, SOAP

produces longer transcripts as the mean and median contig length of its assembly is

longer than those of the others. Trinity, produces somewhat fewer transcripts than

Trans-ABySS but it creates the assembly with the largest span. Moreover, its N50

value is higher than those of the other assemblies.

Table 4.1: Standard assembly metrics.

SOAPdenovo-Trans Trans-ABySS Trinity

Total number of contigs 62,514 119,772 110,474
Length of largest contig (bp) 30,864 17,067 31,344

Assembly size (bp) 74,156,520 105,766,302 125,657,935
Mean contig length (bp) 1,186 883 1,137
Median contig length (bp) 503 479 429

N50 (bp) 2,596 1,498 2,701
GC Content (%) 41.34 42.61 44.12

4.5 Evaluation of completeness of assemblies

The Core Eukaryotic Genes Mapping Approach (CEGMA) pipeline (version 2.5)

[66] was used to evaluate the “completeness” of the assemblies. The pipeline defines a

set of 248 highly-conserved proteins that are present in a wide variety of eukaryotes.

Completeness refers to how many of these 248 core eukaryotic genes (CEGs) are

present in the assemblies and is one of the metrics that can be used to assess the

quality of an assembly. The number of CEGs represented in each assembly is shown

in Table 4.2. We see that all three assemblers produce fairly complete assemblies

preserving a very high number of CEGs. Trinity, in particular, performed very well,
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conserving 246 CEGs.

Table 4.2: CEGMA evaluation.

SOAPdenovo-Trans Trans-ABySS Trinity

No. of 248 ultra-conserved CEGs present 239 241 246
Completeness (percentage of CEGs present) 96.37 97.18 99.19

4.6 DETONATE evaluation

Recently, a transcriptome assembly evaluation methodology and corresponding

software package called DETONATE (DE novo TranscriptOme rNa-seq Assembly

with or without the Truth Evaluation) [51] has been developed. DETONATE is

based on a probabilistic model and evaluates assemblies with or without a reference.

The two components of the package are RSEM-VAL and REF-EVAL. RSEM-EVAL

is a reference-free approach that only relies on the input RNA-Seq reads used to

create the assembly and the assembly itself. REF-EVAL needs a reference and pro-

vides more information about the assembly than currently available tools. In this

study, we used RSEM-EVAL since the ground-truth transcriptome of L. Vannamei

is under construction. RSEM-EVAL is a model-based approach and provides a score

to evaluate the assembly. The score is the log joint probability of the assembly and

the reads, under the defined model.

We computed the RSEM-EVAL scores for the three assemblies. The scores are

shown in Table 4.3. Higher scores correspond to better asssemblies. Based on RSEM-

EVAL scores, we have the following rank ordering of the assemblers in terms of

assembly quality: Trinity > Trans-ABySS > SOAPdenovo-Trans.
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Table 4.3: RSEM-EVAL score for di↵erent assemblies.

RSEM-EVAL score

SOAPdenovo-Trans -18,898,212,410
Trans-ABySS -13,589,448,379

Trinity -4,295,090,084

4.7 Mapping of reads to assembled transcriptome

Another metric that can be used to evaluate the quality of an assembly is the

alignment rate of the input reads against the assembled contigs. The greater the

number of reads that map to the contigs, the better is the quality of the assembly.

A “good” assembler will preserve the input information and utilize as much of the

reads as possible to re-construct transcripts [98].

The input reads were mapped back to the assembled transcriptome using the

program bowtie2 [46] with default parameters. The read-mapping rate (percentage

of reads assembled into contigs) for each assembler is shown in Table 4.4. One can

observe that Trinity and Trans-ABySS transcripts have higher read-mapping rates

compared to SOAPdenovo-Trans.

Table 4.4: Read-mapping rate.

SOAPdenovo-Trans Trans-ABySS Trinity

No. of input reads 199,528,356
No. of reads mapped to contigs 151,233,987 181,585,589 179,204,712

Read mapping rate (%) 75.80 91.01 89.81
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4.8 BLAST against Daphnia pulex references

Assembled transcripts of non-model organisms are generally validated by a simi-

larity search with the reference sequences of a related organism that is well character-

ized [84]. The assembled transcripts of whiteleg shrimp were analyzed for sequence

conservation against the references of a related species Daphnia pulex (water flea)

obtained from the Joint Genome Institute (JGI) [18] using BLAST [58], a program

designed to perform homology searches. The BLASTX and BLASTN tools were used

to find similarities between the contigs and D. pulex proteins and transcripts/CDS,

respectively.

An important parameter in a BLAST search is the “Expect (E)-value” which

defines the expected number of hits by chance, with the closer the E-value threshold

to zero, the more significant the matches [58]. We filtered our BLASTN and BLASTX

results for two significance levels of 1E-4 and 1E-10 respectively. The number of

transcripts with a BLASTX hit against the Daphnia pulex protein data set is shown

in Fig. 4.2.

BLASTN of the contigs from each assembly against the Daphnia pulex transcript

and CDS sequences was also carried out, and the results are presented in Fig. 4.3.

Trans-ABySS transcripts have the highest absolute number of hits against the ref-

erence proteins (BLASTX), while the Trinity transcripts have the largest number of

hits against the reference transcripts (BLASTN). The relative proportion of the con-

tigs with a significant hit (ratio of contigs with a significant hit to the total number

of contigs in the assembly) is fairly consistent across all three assemblers.

We also compared the protein homologies with Daphnia pulex for the three

transcriptome assemblies. The homologous proteins in Daphnia pulex found from

BLASTX for each assembly were intersected with the other assemblies to find the
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Figure 4.2: Contig BLASTX hits against Daphnia pulex protein database.

shared proteins. Fig. 4.4 shows the results as Venn diagrams that depict the unique

and identical significant protein hits amongst the assemblies. There is a very high

degree of concordance in the homologous proteins found in Daphnia pulex from all

three assemblies.

4.9 BLAST against UniProt/SwissProt databases

The protein sequences and functional annotations for the assemblies were assigned

by employing the BLASTX tool (BLAST+ version 2.2.29). BLASTX queries all six

open reading frames (ORF) of a sequence against the protein database. We used the

latest version of UniProt/SwissProt databases (released July 2014) as the reference.

The BLASTX results for each assembly were sorted based on the most appearing

protein hits. Comparing the protein hit frequencies shows that Trinity and Trans-
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Figure 4.3: Contig BLASTN hits against Daphnia pulex transcript database.

ABySS have more similar BLASTX results. Fig. 4.5 breaks down the appearance

of protein hits for di↵erent assemblies (with X in the figure defined as the total

number of hits). Trans-ABySS has 86,122 hits, Trinity 81,122 and SOAPdenovo-

Trans 44,972. The variation of the protein hits is likely caused by the larger total

contigs that Trans-ABySS and Trinity algorithms produced. It should be noted that

if the goal of the de novo transcriptome assembly study is to investigate the functional

annotations of the species, the total number of contigs will play an important role.

Intersecting multiple BLASTX results on di↵erent assemblies can increase the

confidence on the accuracy of the reported protein. We selected the proteins that

appeared at least 15 times in the SOAPdenovo-Trans results and cross-checked them

with Trinity and Trans-ABySS results. More than 99% of those proteins were in
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Figure 4.4: Comparision of Daphnia pulex protein homologs found by BLASTX
search from each assembly for di↵erent E-value thresholds.

common between the three assemblies. Our recommendation is to rely on the protein

hits that are shared between at least two assembly BLASTX results.

4.10 Contigs intersection

The assembly methods di↵er in how they handle the challenges of reconstructing

a complete transcriptome from short RNA-Seq reads. However, it is important to en-

sure that their final product is similar. To examine the resemblance, we used BLAST

(version 2.29+) to match similar contigs between assemblies. A BLAST database

was made from each assembly, and BlastN compared each database/assembly pair.

Hits with �90% identity were considered matches, and were reported. Fig. 4.6 shows

the results. The figure confirms that each of the three assemblers shares the majority

of its transcripts with the other two. Trinity has the most unique transcripts when

its contigs set is intersected with the other two contig sets. SOAPdenovo-Trans has
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Figure 4.5: BLASTX search results for assemblies against UniProt and SwissProt
databases.

the maximum contigs shared. However, it has the minimum total contigs among all

three assemblers. Overall, the intersection of contigs indicates great compatibility

among the three assembled contig sets.
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Figure 4.6: Intersection of each contig set with other assemblies’ contigs.
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5. SUMMARY1

Cancer cells are known to show atypical metabolic characteristics: an “Achilles'

heel” [19] that provides a therapeutic opportunity. We have investigated via simula-

tions the benefit of targeting tumor cell metabolism by using the anti-diabetic drug

Metformin. The biological pathways involved in cell growth and metabolic regula-

tion were mapped to a Boolean network. The equivalent digital circuit was used to

identify locations at which faults could occur and categorize them into equivalent

classes based on their output. We incorporated the drug intervention points into our

model allowing us to test di↵erent combination therapies in terms of their e�cacy

in mitigating the e↵ects of faults in the network. We have shown that incorporating

Metformin in the therapeutic regimen can lead to better outcomes. We predict that

a combination therapy of Metformin and cancer drugs will lead to improved cancer

therapy design. One of our long term objectives is to experimentally validate such

predictions using cancer cell lines.

Castration-resistant prostate cancer is a hormone refractory phenotype of sig-

nificant morbidity and mortality in the prostate cancer disease continuum where

patients no longer respond to androgen ablation therapy. The biomolecular network

representing the signaling pathways involved in the pathogenesis of this lethal ma-

lignancy is translated to a digital circuit. The locations of possible malfunctions in

the digital circuit are identified and computer simulation of the equivalent model

1Parts of this section are reprinted with permission from O. A. Arshad, P. S. Venkatasubramani,
A. Datta and J. Venkatraj “Using Boolean Logic Modeling of Gene Regulatory Networks to Exploit
the Links between Cancer and Metabolism for Therapeutic Purposes”, IEEE Journal of Biomedical
and Health Informatics, vol. 20, no. 1, pp. 309-407, 2016, doi: 10.1109/JBHI.2014.2368391 c� 2016
IEEE and Noushin Gha↵ari, Osama Arshad, Hyundoo Jeong, John Thiltges, Michael Criscitiello,
Byung-Jun Yoon, Aniruddha Datta, Charles Johnson, “Examining De Novo Transcriptome Assem-
blies via a Quality Assessment Pipeline”, IEEE/ACM Transactions on Computational Biology and
Bioinformatics, doi:10.1109/TCBB.2015.2446478 c� 2015 IEEE.
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is used to predict e↵ective therapies that mitigate the e↵ect of di↵erent faults. A

prospectively attractive combinatorial therapeutic strategy for the constellation of

abnormalities is to leverage an AR axis targeted agent in conjunction with reciprocal

inhibitors of other dysregulated pathways that are fundamental in coordinately driv-

ing oncogenesis. Proof of principle of clinical use for the proposed regimen remains

to be demonstrated. A reliability (vulnerability) analysis methodology of digital cir-

cuits premised on stochastic logic modeling is utilized to quantify the vulnerability

of the network to the dysfunction in discrete components in the signaling cascade

thereby identifying key variables as targets for intervention that conceivably might

be exploited by a new generation of novel therapeutics. These findings can con-

tribute to the development of new rational approaches for the possible treatment

of androgen-refractory prostate cancer. There is however a paucity of companion

predictive biomarkers that can be used for the stratification of patients based on

molecular aberrations in order to prescribe the apposite treatment. Furthermore, the

histological and clinical heterogeneity of CRPC and the inherent redundancy along

with the presence of feedback loops in pathways whose molecular underpinnings in

the context of the disease induction and development are not yet fully understood,

tender any potential translation into objective clinical e�cacy of therapeutic impli-

cations derived from computations fraught with challenges.

New de novo transcriptome assembly and annotation methods provide an incred-

ible opportunity to study the transcriptome of organisms that lack an assembled and

annotated genome. There are currently a number of de novo transcriptome assembly

methods, but it has been di�cult to evaluate the quality of these assemblies. In

order to assess the quality of the transcriptome assemblies, we composed a workflow

of multiple quality check measurements that in combination provide a clear eval-

uation of the assembly performance. We presented novel transcriptome assemblies
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and functional annotations for Pacific whiteleg shrimp (Litopenaeus vannamei), a

mariculture species with great national and international interest, and no solid tran-

scriptome/genome reference. We examined Pacific whiteleg transcriptome assemblies

via multiple metrics, and provide an improved gene annotation. Our investigations

show that assessing the quality of an assembly purely based on the assembler’s sta-

tistical measurements can be misleading; we propose a hybrid approach that consists

of statistical quality checks and further biological-based evaluations.
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