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ABSTRACT

Sorghum bicolor is a valuable plant grown commercially for grain, forage, sugar,

and lignocellulosic biomass production. Increasing yields for these applications with-

out increasing inputs is necessary to sustainably meet future food and fuel demand.

The generation of superior plant cultivars that produce more without increased input

is facilitated by methods that can rapidly and accurately acquire plant genotypic and

phenotypic data, and this dissertation describes the development and application of

genomic and phenomic methods to improve crop productivity. The sensitivity and

specificity with which genetic variants are called from sorghum genomic sequence

data was improved by developing a variant calling workflow; this workflow interre-

lates different sources of genomic sequence data to inform the modern machine learn-

ing techniques implemented within the Broad Institute’s Genome Analysis Toolkit

(GATK). Genetic variants called in this manner have been used to dissect the genetic

basis of agriculturally important traits and improve the sorghum reference genome

assembly. Additionally, to increase the rate at which the morphology of plants can

be evaluated, an image-based phenotyping platform was developed to acquire mea-

surements of sorghum shoot architecture traits using a depth camera. Depth images

of plants are used to generate 3D reconstructions, and these reconstructions are used

to measure phenotypes, to identify the genetic bases of shoot architecture, and as

input to plant and crop modeling applications. This research facilitates the rapid and

accurate acquisition of the data necessary to increase the rate of crop improvement.
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NOMENCLATURE
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1. INTRODUCTION

Projected increases in global population size and economic affluency require global

agricultural productivity to roughly double between 2016 and 2050 (Alexandratos

et al., 2012). This demand for increased production comes at a time when yield

gains are slowing and the world seeks to mitigate the environmental damage caused

by agricultural intensification (Foley et al., 2005, 2011; Alexandratos et al., 2012).

Moreover, plant based bioenergy solutions (e.g., lignocellulosic biofuels) represent

potential energy alternatives to fossil fuels. Many promising bioenergy crops are

capable of high productivity with low inputs on marginal lands not optimal for food

crops, and improved biomass production will continue to increase the viability of

lignocellulosic biofuels (Somerville et al., 2010). As such, simultaneously increasing

crop productivity while minimizing crop inputs stands as a critical challenge for food

security, energy security, and environmental health in the 21st century.

One strategy for improving crop productivity is the development of genetically

superior cultivars with exceptional performance in target production environments.

Favorable alleles can be enriched via selection or directly identified, and favorable

combinations of alleles can be deployed into elite cultivars via traditional breeding or

genome engineering (Cobb et al., 2013; Park et al., 2015). Modern implementations

of this process (e.g., genomic selection) require knowledge regarding the state of the

genome of many individuals combined with extensive phenotypic screening. This

dissertation focuses on the topic of rapid acquisition and conversion of large amounts

(i.e. terabytes) of genomic and phenotypic data to actionable information from which

breeding decisions or genetic associations can be determined.

As the world’s fifth most produced cereal crop (http://www.fao.org/faostat)

1
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and a promising bioenergy crop, sorghum is a multi-purpose plant useful for grain,

forage, sugar, and lignocellulosic biomass production (Mullet et al., 2014). Sorghum

performs C4 photosynthesis, making it more efficient under hot and dry environ-

ments relative to C3 plants. Evolutionary relationships between sorghum and other

important food and bioenergy grasses, including rice, maize, sugarcane, and Mis-

canthus, ensure that advances in sorghum are often translatable to other crops, and

also that sorghum can benefit from the extensive research effort already invested in

maize and rice (Paterson et al., 2009). Sorghum is also readily amenable to genetic

analyses due its diploid nature, ability to make controlled crosses, and a sequenced

reference genome (800 Mbp) (Paterson et al., 2009). Since sorghum is already used

for commercial production, gains in sorghum productivity are readily translatable

to economic impacts in production settings. All of these factors make sorghum a

practical system for development and testing of tools for genetic improvement.

This dissertation describes approaches to increase the rate and accuracy with

which genetic variation can be identified from genomic sequence data and image-

based phenotyping approaches; these genetic and phenotypic data can be used to

increase the rate of productivity gains in sorghum (Figure 1.1). Specifically, this

dissertation reproduces manuscripts that introduce and document the (1) develop-

ment of high-throughput genotyping analyses that assist the rapid identification of

genetic loci of interest from genomic sequence data, (2) development of image-based

phenotyping analyses to enable rapid measurement of sorghum characteristics, and

(3) application of the developed methods to examine the genetic architecture of agri-

culturally important traits in sorghum. Continued progress in these research areas

will contribute new methods to increase the rate of sorghum improvement and will

facilitate the identification and deployment of traits useful for crop performance.

2



Figure 1.1: The development and application of novel genomics and phenomics ap-
proaches are necessary to increase the rate of crop improvement. Approaches that
integrate multiple sources of genomic sequence information from different scales, in-
cluding reduced representation, exome, and whole genome resequencing can leverage
prior knowledge to rapidly and accurately identify genetic variation. These can be
combined with image-based phenotyping platforms capable of acquiring longitudinal
data on plant growth to dissect the genetic factors underlying plant performance as
well as to drive accurate selection decisions. Ultimately, these will increase the rate
at which improved plant cultivars can be developed.
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2. RIG: RECALIBRATION AND INTERRELATION OF GENOMIC

SEQUENCE DATA WITH THE GATK 1

2.1 Overview

Recent advances in variant calling made available in the Genome Analysis Toolkit

(GATK) enable the use of validated single-nucleotide polymorphisms and indels to

improve variant calling. However, large collections of variants for this purpose of-

ten are unavailable to research communities. We introduce a workflow to generate

reliable collections of single-nucleotide polymorphisms and indels by leveraging avail-

able genomic resources to inform variant calling using the GATK. The workflow is

demonstrated for the crop plant Sorghum bicolor by (i) generating an initial set of

variants using reduced representation sequence data from an experimental cross and

association panels, (ii) using the initial variants to inform variant calling from whole-

genome sequence data of resequenced individuals, and (iii) using variants identified

from whole-genome sequence data for recalibration of the reduced representation

sequence data. The reliability of variants called with the work flow is verified by

comparison with genetically mappable variants from an independent sorghum exper-

imental cross. Comparison with a recent sorghum resequencing study shows that the

workflow identifies an additional 1.62 million high-confidence variants from the same

sequence data. Finally, the workflows performance is validated using Arabidopsis

sequence data, yielding variant call sets with 95% sensitivity and 99% positive pre-

dictive value. The Recalibration and Interrelation of genomic sequence data with the

1Reprinted from McCormick, R. F., S. K. Truong, and J. E. Mullet, 2015 RIG: recalibration and
interrelation of genomic sequence data with the GATK. G3: Genes — Genomes — Genetics 5: 655-
665 under the Creative Commons Attribution Unported License (http://creativecommons.org/
licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited. Copyright ©2015 McCormick et al.
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GATK (RIG) workflow enables the GATK to accurately identify genetic variation in

organisms lacking validated variant resources.

2.2 Introduction

The decreasing cost of high-throughput sequencing has led to a proliferation of

template preparation methods and sequence data (Sims et al., 2014). The abundance

of sequence data has motivated an interest in leveraging available data to identify

genetic variation, and software development has kept pace with this demand as ex-

emplified by the Broad Institute’s open-source Genome Analysis Toolkit (GATK).

The GATK can integrate evidence for variants from multiple samples with joint geno-

typing, and it enables the use of validated single-nucleotide polymorphisms (SNPs)

and indels to improve the accuracy of variant calling. Additionally, the GATK’s

methods are implemented in a manner amenable to reads originating from a variety

of template preparation methods and sequencing platforms (DePristo et al., 2011).

However, many research communities lack the large, validated collections of SNPs

and indels necessary for the GATK’s Best Practices procedures because of the invest-

ment necessary to produce and curate such collections (Van der Auwera et al., 2013).

As an alternative to large-scale variant validation studies, we developed the Recali-

bration and Interrelation of genomic sequence data with the GATK (RIG) workflow

to integrate information from multiple genomic sources and identify reliable sets of

variants.

The GATK has gained extensive adoption in the human genomics research com-

munity due in part to the methods it uses to account for known error sources during

variant calling; accounting for these error sources enables the GATK to consistently

outperform other modern variant callers in benchmarking studies (DePristo et al.,

2011; Nekrutenko and Taylor, 2012; Liu et al., 2013; Pirooznia et al., 2014). Multiple

5



sources of error exist, including incomplete or incorrect reference assemblies, erro-

neous realignment of reads to the reference genome (particularly in low complexity

regions and around indels), inaccurate base quality scores, and suboptimal variant

filtration parameters (DePristo et al., 2011; Li, 2014). Features of the GATK address

a number of these error sources, and we briefly describe three of the features most

relevant to the design of the RIG workflow. The first feature is Base Quality Score

Recalibration (BQSR), where the base quality scores assigned by the sequencer are

corrected with scores empirically determined from the read group data using vali-

dated variants; these recalibrated scores more accurately reflect the true reliability of

the base calls, thus correcting biases introduced by sequencing platforms (Li et al.,

2004). The second feature is the GATK’s joint genotyping methodology that can in-

tegrate the evidence for a variant from many samples on reasonable time scales; this

allows data from thousands of samples to be considered when evaluating the exis-

tence of a variant. The third feature is Variant Quality Score Recalibration (VQSR),

where raw variant calls are assigned probabilities of being true variants based on

the behavior of training variants in the raw variant calls using machine learning

techniques (McKenna et al., 2010; DePristo et al., 2011; Van der Auwera et al.,

2013). These probabilities allow users to decide which variants to use in downstream

analyses based on desired levels of specificity and sensitivity, where high specificity

indicates a low false-positive rate, and high sensitivity indicates a low false-negative

rate. Two of these three features, BQSR and VQSR, require a collection of reliable

variants to function effectively, and their benefits are inaccessible without such a

resource.

Although many research communities lack large, validated resources of known

SNPs and indels, some communities, namely agricultural research communities, of-

ten have access to a variety of genomic data sources that can be used to identify

6



reliable genetic variants for use with the RIG workflow. Two characteristics influ-

ence the optimal use of these data sources with the RIG workflow: (i) the method

used to produce the source’s raw data from which variants are called, and (ii) the

experimental design behind the source. First, many methods are available to pro-

duce the raw data from which variants are called, including reduced representation

sequencing, whole-genome sequencing (WGS), SNP chips, Sanger sequencing, and

RNA sequencing. Variants identified from two different methods can be considered

more reliable than those identified in only one, as they are less likely to be artifacts

introduced by a specific method. The RIG workflow can take advantage of multiple

data sources by using variants found from one data source to inform the analysis

of a second, read-based data source; by providing variants obtained from orthogo-

nal methods, the reliability of variant resources used in BQSR and VQSR can be

improved. Second, the experimental design behind the source also influences the

reliability of the variants obtained from the source. Two experimental design ele-

ments influencing the reliability of a genomic variant are (i) if the variant segregates

according to Mendelian expectations, and (ii) how often the variant is observed in

independent samples. Genotyping large experimental crosses provides variants where

Mendelian violations can be identified and the variants are observed at high frequen-

cies in independent samples; as such, experimental crosses represent one of the most

reliable sources of genetic variants. Association panels or population samples can

also provide a reliable source of variants given a sufficiently large sample size and

minor allele frequency. When Mendelian violations cannot be identified or when

sample sizes are small (as is common with resequencing designs), variants are con-

sidered less reliable. For our use case with sorghum, we (i) generated an initial set

of variants using reduced representation sequence data from an experimental cross

and association panels, (ii) used the initial variants to inform variant calling from

7



WGS data of resequenced individuals, and (iii) used variants identified from WGS

data for recalibration of the reduced representation sequence data. By considering

the method used to produce the raw data from which variants are called and the

experimental design behind the data source, available genomic sequence data can be

optimally leveraged to improve variant calling and subsequent analyses.

Here we present the RIG workflow to formalize the process of incorporating avail-

able genomic sequence resources when calling SNPs and indels with the GATK. The

RIG workflow is designed to leverage available genomic data in a manner that max-

imizes the information available to joint genotyping and to produce collections of

reliable variants sufficiently large to perform BQSR and VQSR; this provides the

benefits of the GATK’s methods even in the absence of a large collection of vali-

dated variants, and it is readily applicable to organisms with a reference genome

sequence and moderate sequence data resources. As an example, we describe the

RIG workflow using Sorghum bicolor sequence data and show that it readily inter-

relates reduced representation and WGS data to generate variant calls. We evaluate

the performance of the RIG workflow for sorghum sequence data using a collection of

genetically validated variants, and we compare the output of the RIG workflow with

variant calls from a recent sorghum study. Finally, we validate the workflow with

Arabidopsis sequence data and show that high sensitivity and specificity is readily

achieved.

2.3 Materials and methods

2.3.1 Sorghum analyses

The RIG workflow described in the Section 2.4 was designed as a generalization

of our use cases in leveraging existing Sorghum bicolor genomic resources to take

advantage of the GATK’s strengths. Here we describe the process of transitioning

8



from exclusive use of the naive pipeline to use of the initial informed and informed

pipelines as an example of executing the RIG workflow and constructing variant

resources (Figure 2.1, Figure 2.2, Figure 2.3, Figure 2.4).

Figure 2.1: Phase I of the RIG workflow. Phase I of the RIG workflow defines the
five entities necessary for the execution of Phase II. Once the first three entities,
the analysis target, database of likelihoods, and variant resource(s) are defined, the
user considers a hypothetical case based on those first three entities to estimate
the contents of the remaining two: the hypothetical database of likelihoods and the
shared variants. If a user is unable to make a prediction regarding the latter two
entities, the entities can either be treated as empty sets, or the user can use the
GATK to carry out the necessary procedures to generate an estimate. Once all
five entities are defined, the user can proceed to Phase II. RIG, Recalibration and
Interrelation of genomic sequence data with the GATK; GATK, Genome Analysis
Toolkit.

At the time of transitioning from the naive pipeline to the initial informed and

informed pipelines with Sorghum bicolor sequence data, we had access to reduced

representation sequence data generated internally by Digital Genotyping using the
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Figure 2.2: Phase II of the RIG workflow. Phase II of the RIG workflow determines
whether VQSR, BQSR, or both are appropriate, given the entities defined in Phase
I. The workflow always proceeds through an analysis pipeline, characterized as the
naive, the initial informed, and the informed pipelines shown in Figure 2.3. The end
result of the workflow is the production of a variant resource that can be used in
future analyses. RIG, Recalibration and Interrelation of genomic sequence data with
the GATK; VQSR, Variant Quality Score Recalibration; BQSR, Base Quality Score
Recalibration.
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Figure 2.3: RIG pipelines. These are analysis pipelines that are traversed as part
of Phase II of the RIG workflow. They correspond to cases where neither BQSR
nor VQSR are appropriate (naive pipeline), where only VQSR is appropriate (ini-
tial informed pipeline), or where both BQSR and VQSR are appropriate (informed
pipeline). When traversed, the informed pipeline emulates the GATK’s Best Prac-
tices (Van der Auwera et al., 2013). RIG, Recalibration and Interrelation of genomic
sequence data with the GATK; BQSR, Base Quality Score Recalibration; VQSR,
Variant Quality Score Recalibration; GATK, Genome Analysis Toolkit.
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Figure 2.4: Construction of variant resources. After VQSR, multiple tranches are
evaluated to choose specific and sensitive sets of variants for use in downstream
analyses and to designate as variant resources. Tranches correspond to VQSLOD
cutoffs above which a specified percentage of the variants designated as truth during
VQSR are retained in the tranche. For example, a 95% tranche indicates the VQS-
LOD cutoff at which 95% of the variants designated as truth during VQSR would
be retained. Accordingly, lower tranche percentages have greater specificity, lesser
sensitivity, and contain fewer variants, and lower percentage tranches are subsets
of greater percentage tranches. Here we show a 90% tranche being chosen as the
specific variant resource and the 95% tranche being chose as the sensitive variant
resource; both are subsequently added to the collection of variant resources. Note
that the specific variant resource generated here is a subset of the sensitive variant
resource. VQSR, Variant Quality Score Recalibration; VQSLOD, logarithm of odds
ratio that a variant is real vs. not under the trained Gaussian mixture model.
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restriction enzyme NgoMIV and a collection of WGS data generated from multiple

groups (Zheng et al., 2011; Evans et al., 2013; Mace et al., 2013; Morishige et al.,

2013). Using reduced representation sequence data for a 423 member recombinant

inbred line population, we used the naive pipeline to produce variant calls (Burow

et al., 2011; Truong et al., 2014). Preprocessing of the reads prior to variant calling,

including read-mapping to version 1 of the Sorghum bicolor reference assembly, was

performed using Picard (http://broadinstitute.github.io/picard/) and BWA

(Paterson et al., 2009; Li and Durbin, 2010). Variants were genetically mapped with

R/qtl, and variants segregating as expected in these calls were used to create a Fam-

ily Reference Variant Resource that contained 6849 SNPs and 2164 indels (Broman

et al., 2003). The Family Reference Variant Resource was considered a highly spe-

cific variant resource. Of note, the genetic positions of markers found in this manner

are also being used to anchor unplaced super contigs in the Sorghum bicolor refer-

ence genome assembly (J. Schmutz, personal communication). Similarly, reduced

representation sequence data for 733 sorghum germplasm samples processed with

the naive pipeline were used to produce a Population Reference Variant Resource

containing 62,022 SNPs and 20,801 indels. This variant resource was considered spe-

cific because we enforced a genotyping rate of 60% and a minor allele frequency of

0.05. The hard filtering parameters that we use in the naive pipeline for reduced

representation sequence data can be found within the implementation on GitHub at

https://github.com/MulletLab/RIG.

We sought to use these variants found in reduced representation sequence data

to improve the analysis of WGS data of the 49 publicly available WGS data sources

(Zheng et al., 2011; Evans et al., 2013; Mace et al., 2013). To do this, we chose 10

individuals from the 49 that represented diverse sorghum germplasm accessions. We

attempted to maximize diversity so that the sensitive variant resource constructed
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after the initial informed and informed pipelines had been executed would include

many of the variants present in the next group of individuals for BQSR; this enabled

use of the informed pipeline in the following iterations as the remaining 39 samples

were processed (individuals were processed 10 at a time due to hard disk space

limitations).

With the Family and Population Reference Variant Resources and the 10 WGS

samples as analysis targets, we met the requirements for VQSR but not BQSR (Fig-

ure 2.1, Figure 2.2, Figure 2.3). As such, we followed the initial informed pipeline.

For VQSR, the Family and Population Reference Variant Resources were both desig-

nated as truth, training, and known variants, and priors set to 15.0 and 7.0, respec-

tively. Although these settings worked for our use case, they may not always be ap-

plicable; however, we typically follow these general rules: only highly specific variant

resources should be designated as truth; variant resources designated as training do

not need to be highly specific, but their priors should be set accordingly; all resources

designated as truth should also be designated as training; and resources designated

as truth and training can also be designated as known. Other details along with the

annotations used for training the SNP and indel Gaussian mixture models can be

found with the implementation on GitHub at https://github.com/MulletLab/RIG.

Generating variant resources following VQSR is a highly user-driven process that

depends largely on the users confidence in the variant resources designated as truth

for VQSR, and it requires examining multiple tranches resulting from VQSR (Figure

2.4). Tranches represent cutoffs based on variant resources designated as truth during

VQSR, and they are generated by considering the VQSLOD scores (logarithm of odds

ratio that a variant is real vs. not under the trained Gaussian mixture model) of

truth variants that are present in the recalibrated raw variants. For example, if 90%

of the truth variants found in the raw variants had a VQSLOD score over 1.5, then
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the 90% tranche would contain all variants in the raw variants that had a VQSLOD

score over 1.5. We typically pick two tranches after VQSR, a specific tranche and a

sensitive tranche, by examining the behavior of VQSLOD scores of multiple tranches

(Figure 2.4). Specific tranches typically come from tranches where the VQSLOD

score changes by small amounts even as the tranche percentage is decreased, and

sensitive tranches are typically a non-negative VQSLOD score tranche that is more

inclusive than the specific tranche.

Having generated a temporary sensitive variant resource from the initial 10 WGS

samples using the initial informed pipeline, we proceeded down the informed pipeline

with those 10 samples to generate a sensitive Whole-Genome Sequence Variant Re-

source. We then iteratively processed the remaining 39 samples in groups of 10 (9

on the final iteration) using the informed pipeline and updating the Whole-Genome

Sequence Variant Resource each iteration; we continued to use only the Family and

Population Reference Variant Resources for VQSR (to enforce that variants desig-

nated as truth for VQSR had been identified using a different sequencing template

preparation method), and we used the newest sensitive Whole-Genome Sequence

Variant Resource for BQSR. Upon completion of all 49 genomes, we used the newest

Whole-Genome Sequence Variant Resources for BQSR and VQSR of the associa-

tion panel data (sensitive for BQSR and specific for VQSR) to generate the Sensi-

tive Population Reference Variant Resource (97.5% tranche) that was used for the

genome-wide association study.

The Independent Family (IF) set used to examine the recalibration of WGS

variants was constructed from a second biparental recombinant inbred line population

(Xu et al., 2000). Variants from this population were generated in the same fashion as

the Family Reference Variant Resource (i.e., using NgoMIV Digital Genotyping, the

naive pipeline, and checking for Mendelian segregation in R/qtl). The Raw, Sensitive,
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and Specific sets used in the comparison with the IF set were derived from the 100%

tranche, the 95% tranche, and 75% tranche of the recalibrated WGS variants (Table

A.1 and Table A.2, and Figure A.1). The Raw, Sensitive, and Specific sets used for

comparison with the Gramene42-Mace2013 set originate in the same manner, but

excluded indels, SNPs on super contigs, and variants not found in 1 of the 47 samples

to be comparable with the Gramene42-Mace2013 set. Variants and genotypes for

171 individuals from the Sensitive Population Reference Variant Resource were used

with downstream analysis tools to perform the association mapping described and

depicted in Figure A.2 and Table A.3.

2.3.2 Arabidopsis analyses

Publicly available WGS for five accessions (ICE50 ICE134, ICE150, ICE213, and

Leo-1) from Cao et al. (2011) were processed using the naive pipeline and stringently

hard filtered (parameters available on GitHub). Publicly available Sanger sequence

for 20 accessions (Ag-0, Bor-1, Br-0, Ei-2, Got-7, Gu-0, Hr-5, Kin-0, Kondara, Ms-0,

Mz-0, NFA-8, Nok-3, PNA-17, Rmx-A02, Sorbo, Sq-8, Uod-1, Wa-1, Yo-0) were ob-

tained from the Supporting Information of Nordborg et al. (2005). Publicly available

WGS for the same 20 accessions from Schmitz et al. (2013) were processed through

the initial informed pipeline, and VQSR was performed using the stringently filtered

variants from Cao et al. (2011) as a training set (prior of 7.0) and as a truth set. The

resulting 95% tranche was used for BQSR as the WGS data for the 20 accessions

were then processed through the informed pipeline. The Cao et al. (2011) variants

were again used for VQSR. All alignments and variant calling were done against

the version 10 Arabidopsis reference genome (Arabidopsis Genome Initiative et al.,

2000).

To estimate error rates of the RIG workflow for WGS data, the resulting variant
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calls for the 20 accessions were compared to Sanger data from Nordborg et al. (2005)

and variants from the Gramene database build 43, accessed January 2015 (Monaco

et al., 2014). This requires the assumption that the Sanger data were 100% spe-

cific (i.e., no false positives), and that the combination of the Sanger data and the

Gramene build 43 variants were 100% sensitive (i.e., no false negatives). Although

the WGS data strongly suggest that these assumptions are false, this still provides

a useful baseline for comparison; however, we expect that the true sensitivity and

specificity achieved in this comparison are greater than the values obtained since false

positives in the Sanger data translate to decreased sensitivity and false negatives in

the Sanger data and Gramene build 43 translate to decreased positive predictive

value. Genomic intervals used to evaluate performance were defined as a subset of

the 861 intervals from Nordborg et al. (2005). Because many of the Sanger reads

had an abundance of Ns at the beginning and end of the read, 50 bp from the ends

of each interval were removed. Excluding intervals that did not have >90% of the

bases covered at greater than 15 depth in all 20 WGS samples and >90% coverage in

all 20 Sanger samples yielded 419 intervals that covered 200,887 bp of the genome.

Two of the accessions (Got-0 and Ms-0) were dropped from the comparison due

to extensive disagreement between the Sanger variants and the WGS variants, po-

tentially due to not truly being the same accession. We also found a number of

sites that were heterozygous in the WGS accessions that that had been manually

curated by Nordborg et al. (2005) to Ns in the Sanger data. Because this generates

what appears to be a false positive in the WGS data, we used the Sanger data to

identify false negatives, and variants from both the Sanger data and Arabidopsis

variants contained in Gramene build 43 to identify false positives. Variants from the

Nordborg et al. (2005) Sanger data contained in the designated genomic intervals

but not contained in a tranche of the WGS data were considered false negatives for
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the purpose of calculating sensitivity. Variants contained in the WGS data but not

in either the Nordborg et al. (2005) or the variants present in Gramene build 43 were

considered false positives for the purpose of calculating positive predictive value.

Variant site counts used for calculating sensitivity and positive predictive value are

available in Table A.4.

For the comparison, we report positive predictive value instead of specificity as

a metric for false positives since the number of true negatives is far larger than the

number of false positives, always leading to specificity values greater than 99.9%. As

such, the performance of a tranche with a sensitivity of 95% and a positive predictive

value of 99% is interpreted as a tranche where 95% of the true variants that existed

were called and that 99% of the variants called are true variants.

2.3.3 Code and hardware

Our implementation of the workflow and pipelines are available on GitHub at

https://github.com/MulletLab/RIG as a series of Bash scripts to serve as an ex-

ample, to provide the annotations we used for hard filtering and VQSR, and to list

all of the additional software version numbers used. GATKs Scala-based job sub-

mission controller, Queue, is suggested for implementing pipelines for the GATK for

distributed computing resources; our implementation is in Bash because we expe-

rienced slowdowns in job submissions over time when using Queue (v3.1-1) on the

Whole System Genomics Initiative cluster present at Texas A&M University.

2.4 Results

2.4.1 RIG: recalibration and interrelation of genomic sequence data with the

GATK

The RIG workflow is a generalization of procedures to leverage existing genomic

data when using the GATK v3.0+. Specifically, the workflow determines whether
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VQSR and/or BQSR are appropriate to perform, and the workflow iteratively con-

structs reliable variant resources for future use with the GATK. The procedures of

the RIG workflow are divided into two phases: Phase I, where the entities necessary

for workflow execution are defined (Figure 2.1), and Phase II, where those entities

are used to execute the workflow (Figure 2.2).

2.4.2 RIG Phase I: define RIG entities

Phase I of the RIG workflow defines the five entities necessary for execution of

Phase II (Figure 2.1). The first entity is an analysis target. The analysis target

contains the sequence reads from which the user intends to call variants. Reads of

the analysis target should be preprocessed by read-mapping, duplicate marking (if

applicable), and indel realignment; this entity is depicted as a stack of BAM-format

files in Figure 2.1. The second entity is a database of likelihoods. The database

of likelihoods contains the likelihood that a variant exists at a genomic position for

all evaluated positions; this database consists of one or more gVCF-format flat files

obtained from past GATK analyses of analysis targets produced by similar template

preparation methods (i.e., a database of likelihoods for WGS samples should not

be used with an analysis target of reduced representation samples). This entity is

depicted as a stack of circles in Figure 2.1, and it can be defined as empty. The

third entity is a set of variant resources. These are one or more files of VCF-format

variant calls, and these calls should be conceptually (and physically, if necessary)

partitioned into one or both of two categories: specific variant resources with low

false positive rates, and sensitive variant resources with low false negative rates;

a specific resource is necessary for VQSR and a sensitive resource is necessary for

BQSR. As with the database of likelihoods, the variant resources can be empty

and likely will be when first executing the workflow. The fourth and fifth entities
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can either be (i) constructed hypothetically based on a users expectations of the

first three entities, or (ii) they can be empirically determined by performing the

necessary analyses with the first three entities using the GATK. The fourth entity

is a hypothetical database of likelihoods that is generated after adding the genotype

likelihoods called from the analysis target to the existing database of likelihoods. The

fifth entity is a set of shared variants. Shared variants are variants contained in both

the hypothetical database of likelihoods and in the chosen variant resources; shared

variants can be specific, sensitive, or both (or empty) depending on the classification

of the variant resource they were found in. Once all five entities are defined, the

analysis target, the database of likelihoods, the variant resources, the hypothetical

database of likelihoods, and the shared variants, a user can proceed to Phase II.

2.4.3 RIG Phase II: execute analysis

The initial question of Phase II of the RIG workflow determines whether VQSR

is appropriate based on the number of variants contained within the specific shared

variants (RIG recommends at least 10,000 SNPs and 10,000 indels; Figure 2.2). A

specific variant resource is required since false positives negatively impact the train-

ing of the Gaussian mixture models during VQSR, whereas false negatives have

lesser effect. If the specific shared variants do not satisfy these criteria, then the

RIG workflow enters the naive pipeline in which called variants are hard filtered

using user-designated filtration criteria such as depth (Figure 2.3). Variants passing

user-designated filtration criteria can then be added to the collection of variant re-

sources. Once the naive pipeline has been used to analyze enough analysis targets,

the collection of variant resources may be sufficiently large to answer yes to the initial

question.

If the specific shared variants contain at least 10,000 SNPs and 10,000 indels, the
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next question addresses if the samples and variants in the database of likelihoods (if it

is not empty) had previously undergone BQSR. If not, and if the reads corresponding

to the samples used to generate the database of likelihoods are available, then the

analysis target is updated with those reads, the database of likelihoods is set to

empty, and the user returns to RIG Phase I (Figure 2.1) with the new analysis

target and the empty database of likelihoods.

If the reads used in the construction of the database of likelihoods had previously

undergone BQSR, or if the database of likelihoods is empty, then the final assessment

determines whether the analysis target and the sensitive shared variants are appro-

priate for BQSR. A sensitive variant resource is necessary since false negatives cause

BQSR to treat true variants in the analysis target as errors and will skew quality

scores down, whereas false positives have a lesser chance to skew quality scores up.

If BQSR is appropriate, the user follows the informed pipeline which emulates the

GATKs Best Practices (Van der Auwera et al., 2013). If BQSR is not appropriate,

the user first uses the initial informed pipeline in which VQSR is performed on the

raw variants to generate a temporary sensitive variant resource which is used during

the execution of the informed pipeline that immediately follows the initial informed

pipeline (Figure 2.3).

Construction of variant resources and adding them to the collection of variant

resources is the end step of any path through the RIG workflow (Figure 2.4). Decid-

ing the criteria for generating the variant resources at the end is a highly user-driven

process that should consider the specific properties of the analysis target. For ex-

ample, we generate highly specific variant resources from experimental crosses based

on markers that segregate as expected (see the Section 2.3). Additionally, the vari-

ant annotations used for hard filtering and VQSR should differ based on how reads

should behave in the analysis target; that is, reduced representation data should not
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use the same annotations as WGS data for hard filtering and VQSR because reads

are not distributed around variants in a similar manner. To provide an example, we

discuss the methods we use to select VQSR tranches and construct variant resources

in Figure 2.4 and in the section Materials and Methods (Section 2.3. We also have

made our code available on GitHub at https://github.com/MulletLab/RIG as an

example and to provide the parameters and variant annotations we use.

2.4.4 Interrelation of genomic data enables a specificity and sensitivity framework

for variant calls

In accordance with the RIG workflow, we used reduced representation data of an

experimental cross and association panels to enable both BQSR and VQSR of WGS

data of 49 resequenced individuals for the crop plant Sorghum bicolor. By interrelat-

ing data sources produced by different template generation methods with the RIG

workflow, we enforced that the variants used to train the VQSR Gaussian mixture

models that determine a variants VQSLOD score (logarithm of odds ratio that a

variant is real vs. not real under the trained Gaussian mixture model) were found

orthogonally, providing additional confidence that the variants used for training were

real variants. Additionally, the differences in reliability of the training variants due

to the different experimental designs were also considered for training of the VQSR

models; variants from the experimental cross were assigned a higher prior likelihood

of being correct than those from the association panels. By following the RIG work-

flow, each SNP and indel in the raw WGS variants was assigned a VQSLOD score

that reflects its reliability. Figure 2.5 depicts the process of interrelating data for

VQSR and the resulting VQSLOD scores of variant calls. While interrelating data

from different template generation methods may be optimal, we also obtained good

performance by following similar processing logic using only Arabidopsis WGS data.
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In this way, the RIG workflow enables one of the greatest strengths of the GATK: the

ability to put variant calls in a probabilistic framework that allows users to define

where on the sensitivity and specificity spectrum the variants should sit for their

target downstream application.

2.4.5 Evaluation of recalibrated variants from the RIG workflow

Although a formal evaluation of the accuracy of variant calling pipelines remains

unfeasible for nonsimulated sequence data (Li, 2014), we estimated the performance

of the workflow using both sorghum and Arabidopsis sequence data. For the sorghum

data, we compared the variants called from sorghum WGS data via the RIG workflow

to (i) a collection of reliable variants that were not used to train the VQSR models

and (ii) a previously published sorghum variant calling analysis. We then used the

sorghum WGS variants to recalibrate reduced representation data, and used the re-

calibrated variants for a genome-wide association study. Lastly, we further validated

the performance of the RIG workflow using publicly available Sanger sequence and

WGS data from Arabidopsis. Evaluation of recalibrated sorghum variants:

First, we examined the overlap between the recalibrated sorghum WGS variants

and a collection of reliable variants that were not used to train the VQSR models.

This collection of reliable variants, hereafter referred to as the Independent-Family

(IF) set, originated from a biparental cross genotyped using a reduced representation

method; the IF set was obtained in a similar manner to the Family Reference Variant

Resource that was used for training during VQSR, and the IF set represented a

set of highly specific, genetically mappable variants (see the section Materials and

Methods). Of the 10,737 SNPs and 3740 indels in the IF set, 10,557 SNPs and 3632

indels had also been called from the 49 WGS samples (of which 2 samples represented

the parents of the biparental cross). The IF variants present in the recalibrated
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Figure 2.5: Interrelation of different genomic sequence data sources using the RIG
workflow. (A) Schematic of how variants from reduced representation sequence (RR)
data present in whole-genome sequence (WGS) data can be used to VQSR the WGS
raw variants and assign VQSLOD scores to those variants. (BD) Visualization of
the genomic region of Sb07g003860, a gene involved in sorghum midrib coloration
(Bout and Vermerris, 2003). (B) the Sbi1.4 gene annotation; (C) shows the assigned
VQSLOD scores for variants called in the region from WGS data; (D) shows the
depth of coverage and mapped sequence reads for reduced representation and WGS
data, respectively, for one sorghum line (BTx642). The RIG workflow enables vari-
ants called in the reduced representation sequence data to be used to inform and
recalibrate the WGS analyses, and vice versa. This puts all of the variant calls into
the GATKs probabilistic framework whereby variants can be filtered based on their
reliability. Users interested in more sensitive or specific call sets can choose more
inclusive or exclusive tranches, respectively, by changing the cutoff indicated by the
blue dotted line in Panel C. The common and standardized file formats emitted by
the GATK enable downstream interoperability between analysis and visualization
tools, such as the Integrative Genomics Viewer that produced (B) and (D) (Thor-
valdsdóttir et al., 2013). RIG, Recalibration and Interrelation of genomic sequence
data with the GATK; VQSR, Variant Quality Score Recalibration; VQSLOD, loga-
rithm of odds ratio that a variant is real vs. not under the trained Gaussian mixture
model; GATK, Genome Analysis Toolkit.
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WGS variants had median VQSLOD scores of 8.22 and 5.29 for SNPs and indels,

respectively, suggesting that the trained Gaussian mixture models correctly assigned

true variants with highly positive VQSLOD scores (Figure A.1, Table A.1, and Table

A.2). Furthermore, the proportion of IF set variants that were also contained in the

95% and 75% tranches correspond to their respective tranche cutoffs, indicating that

the tranche cutoffs were functioning as expected. Since tranche cutoffs represent

the VQSLOD score over which a certain proportion of variants from the designated

VQSR truth set will be retained, we expected the proportion of IF variants present

in each tranche to approximate the tranche cutoff. As expected, proportions of the

IF set retained in each tranche were similar to the tranche cutoff. For example, the

95% SNP tranche retained 97% of the SNPs in the IF set, and the 95% indel tranche

retained 94% of the indels in the IF set (Table A.2). These results indicate that the

Gaussian mixture models for the WGS data were adequately trained and that the

tranche cutoffs were functioning as expected.

Second, we compared the recalibrated sorghum WGS variants to a previously

published sorghum variant calling analysis. The previous study from Mace et al.

(2013) called SNPs and indels from 47 sorghum WGS samples; the SNP calls were

recently made available as part of Gramene build 42 (accessed September 2014),

hereafter referred to as the Gramene42-Mace2013 set (Monaco et al., 2014). After

excluding noncomparable variants from the calls produced by the RIG workflow

(i.e., indels, SNPs on super contigs, and variants not found in the 47 samples), we

obtained a Raw set comprised of 18,160,612 SNPs. We constructed an additional

two sets from this Raw set for comparison: the Sensitive set, derived from the 95%

tranche and comprised of 8,071,250 SNPs, and the Specific set, derived from the 75%

tranche and comprised of 3,353,064 SNPs. Of the 6,450,628 SNPs in Gramene42-

Mace2013 set, 5,002,099 were present in the Raw set. It is difficult to conclusively
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attribute the 1,448,529 SNP difference to any specific factors, and high discordance

between different variant callers is not uncommon (O’Rawe et al., 2013); we note

that Mace et al. (2013) did not perform BQSR nor realignment around indels prior to

calling SNPs, and they also used a different SNP calling algorithm. The overlapping

5,002,099 SNPs were used to compare the distribution of VQSLOD scores between

the four sets (Figure 2.6). Because the VQSLOD score of all of the SNPs in the

comparison were assigned under the same Gaussian mixture model and because the

model was adequately trained as shown by the IF validation, comparisons of the

relative sensitivity and specificity between the sets can be made. Given two sets of

variants with similar VQSLOD distributions, the larger of the two sets contains more

variants that are as likely to be true positives than the smaller set and is thus more

sensitive. Furthermore, given two sets of variants where the VQSLOD distribution

of one set contains a greater proportion of high VQSLOD score variants, the set

with the greater proportion of high VQSLOD score variants contains variants that

are more likely to be true positives and is thus more specific. As such, we find that

the Raw set is the most sensitive but least specific; correspondingly, the Specific set

is the most specific but least sensitive (Figure 2.6). The Sensitive set produced by

the RIG workflow shows a dramatic improvement over the Gramene42-Mace2013 set

in that it contains 1,620,622 more SNPs than the Gramene42-Mace2013 set while

the median VQSLOD score remains similar with fewer negative VQSLOD scores,

suggesting that the RIG workflow enabled greatly increased sensitivity without a

corresponding loss in specificity.

As a final validation of the workflow with sorghum variants, we used a set of

variants from reduced representation sequence data that had been recalibrated with

WGS data to reproduce genome wide association results from the sorghum literature.

There were 171 individuals contained within our reduced representation samples that
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Figure 2.6: Comparison of VQSLOD score distributions for RIG-produced variant
sets and a variant set from a previous study. VQSLOD (log of odds that a variant is
real vs. not under the trained Gaussian mixture model) scores were calculated during
VQSR of SNPs found in whole-genome sequence data using a Gaussian mixture
model trained using SNPs originally found in reduced representation sequence data.
For the 5,002,099 SNPs from Gramene42-Mace2013 that had been assigned VQSLOD
scores in the Raw set produced by the RIG workflow, the median VQSLOD score is
similar to the median of the 8,071,250 SNPs in the Sensitive set. The Sensitive set
contains 1,620,622 more SNPs than the 6,450,628 SNPs in Gramene42-Mace2013,
suggesting that the RIG-enabled VQSR allowed for a considerably more sensitive
call set without a corresponding loss in specificity. VQSLOD, logarithm of odds
ratio that a variant is real vs. not under the trained Gaussian mixture model; RIG,
Recalibration and Interrelation of genomic sequence data with the GATK; VQSR,
Variant Quality Score Recalibration; SNP, single-nucleotide polymorphism.
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had also previously been phenotyped as part of a sorghum association panel (Brown

et al., 2008). After recalibrating the reduced representation data with the WGS data,

we used the genotypes for these 171 individuals and phenotypes from Brown et al.

(2008) to calculate genome wide associations (Figure A.2 and A.3) and reproduced

known sorghum height QTL (Morris et al., 2013; Higgins et al., 2014). As such,

the recalibrated reduced representation variants produced by the RIG workflow are

useful for common downstream analyses, and these analyses are readily executable

due to the GATKs use of standard file formats.

2.4.6 Evaluation of recalibrated Arabidopsis variants

Some organisms may not have sufficient data available from different template

preparation methods to execute the RIG workflow as we did for sorghum. As such,

we validated the performance of the RIG workflow using only WGS data as both the

source of reliable variants and the analysis target. Efficacy of RIG was determined

by comparing the variant calls produced by RIG from publicly available Arabidopsis

WGS data against a collection of known variants from Sanger sequence data and vari-

ants present in the Gramene database (build 43; accessed January 2015) (Nordborg

et al., 2005; Cao et al., 2011; Schmitz et al., 2013; Monaco et al., 2014).

The comparison used variant calls from 419 genomic intervals spanning 200,887

bp (containing at least 2,850 SNP and 375 indels) for 18 Arabidopsis accessions.

Variants from the Sanger sequence data not present in the RIG variants were consid-

ered false negatives, and RIG variants not present in either the Sanger data or the

Gramene build 43 set were considered false positives; these values were used to esti-

mate sensitivity and positive predictive value of multiple tranches produced with RIG

from Arabidopsis WGS data (Table 2.1 and Table A.4). This yielded a conservative

estimate of RIG variant calls whereby 95% sensitivity and 99% positive predictive
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Tranche (%) Sensitivity (%) Positive Predictive Value (%)
100.0 99.9 93.7
99.9 99.3 95.4
99.0 94.9 99.2
97.5 92.0 99.3
95.0 89.3 99.4
75.0 54.3 99.6

Table 2.1: Performance of tranches from Arabidopsis WGS sequence data. Sensitiv-
ity and positive predictive value of multiple tranches of recalibrated variants from
Arabidopsis WGS data were calculated using variants found in Sanger sequence data
from Nordborg et al. (2005) for sensitivity; variants found in both the Sanger se-
quence data and in Gramene (build 43) were used to estimate positive predictive
value (Table A.4). For simplicity, the tranche percentage corresponds to both the
SNP and the indel tranche. We note that these values are not generally applicable to
other RIG analyses and these should not be taken as representative of how tranches
in other analyses will behave; tranches should be chosen based on the reliability of
the variants designated as truth for VQSR. WGS, whole-genome sequencing; SNP,
single-nucleotide polymorphism; RIG, Recalibration and Interrelation of genomic
sequence data with the GATK; VQSLOD, logarithm of odds ratio that a variant
is real vs. not under the trained Gaussian mixture model; VQSR, Variant Quality
Score Recalibration.

value are achieved in one tranche with the RIG workflow (the 99.0% tranche in this

case). As shown in the sorghum data, larger percentage tranches are more sensitive

but less specific; smaller percentage tranches are less sensitive but more specific.

The optimal choice of tranche will, again, depend on the downstream application for

which the variant set will be used. We note that the sensitivity does not correspond

with the tranche cutoffs as well as they did in the sorghum validation; this may be a

result of the low sensitivity of the Sanger variants due to manual removal of variant

calls by Nordborg et al. (2005) during data curation. Ultimately, this Arabidopsis

validation in combination with the sorghum validation demonstrates that the RIG

workflow can produce accurate call sets from a variety of genomic data sources.
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2.5 Discussion

The GATK has been shown to outperform other variant calling methods in bench-

marking studies, and the RIG workflow enables the analysis benefits afforded by the

GATK to research communities lacking validated variant resources (Liu et al., 2013;

Pirooznia et al., 2014). RIG also provides access to features absent in current reduced

representation sequence data analysis platforms. Two popular reduced representa-

tion sequence data analysis solutions, TASSEL and Stacks, are highly specialized for

their respective data sources (GBS and RAD-seq, respectively), and they perform

well in their target domains; however, they lack features that readily allow the in-

terrelation of WGS with reduced representation sequence data, as well as the ability

to accurately call indels (Catchen et al., 2011; Glaubitz et al., 2014). RIG provides

a means to access both of these features, as well as benefit from accuracy gains from

BQSR, joint genotyping, and VQSR. For organisms with a reference genome, the

RIG workflow stands as a useful analysis alternative applicable to both reduced rep-

resentation and WGS data, and RIG is also readily applicable to exome and RNA-seq

data due to the GATKs flexibility. However, because the GATK, and by extension,

RIG, cannot operate without a reference genome, software like TASSEL and Stacks

will continue to fill important analysis roles, although this may change if software

like dDocent, which allows users to take advantage of some of the GATKs benefits

even in the absence of a complete reference genome, gain adoption (Puritz et al.,

2014). Ultimately, RIG was developed in the context of a genetics lab seeking accu-

rate variant calls from multiple sequence data sources for agriculturally important

organisms with a reference genome, and we expect it will be beneficial to those with

similar use cases.

The RIG workflow requires that the shared variants are comprised of 10,000 SNPs
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and 10,000 indels for VQSR; however, the GATK developers have successfully used

considerably fewer to good effect (DePristo et al., 2011). We chose 10,000 for both

SNPs and indels as the requirement because we have obtained useful results using

these values; the values are not a hard rule. As such, the user can construct their

own values by evaluating the VQSR and BQSR reports produced by the GATK

to determine whether (i) the Gaussian mixture models were adequately trained to

distinguish between variants of differing reliability, and (ii) whether the empirically

determined base quality score recalibrations appear reasonable for the sequencing

platform.

In cases in which sequence data from different template preparation methods

are not available, it will not be possible to identify shared variants from orthogonal

approaches as we did with sorghum sequence data. We ensured the variants desig-

nated as truth for VQSR originated from an analysis target produced by a different

method (e.g., variants found in reduced representation data were used for VQSR of

a WGS analysis target). This enforced that variants used in VQSR were found in

two independent template preparation methods to approximate variants found using

orthogonal methods. Since such genomic resources may not always be available, we

also evaluated performance of a use case where only WGS data were available, and we

showed that high levels of sensitivity and positive predictive value can be achieved

using only WGS data. In cases in which the analysis target is the only source of

variants, we and other GATK users have had some success by taking the analysis

target through the naive pipeline, hard filtering to generate a temporary sensitive

variant resource, and using that temporary sensitive variant resource to BQSR the

analysis target. This procedure is iteratively repeated until the BQSR results from

the current and preceding iteration converge, and then a specific variant resource is

generated by stringently hard filtering to use as a bootstrapped variant resource in
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VQSR. This ultimately skews VQSR based on the annotations used to hard filter

the variants during bootstrapping, but communities lacking sufficient data sources

may find this procedure to be an acceptable alternative.

The RIG workflow enables research communities to use the GATK (i) to inter-

relate different sequencing template preparation methods such as reduced represen-

tation and WGS into common, standardized file formats; (ii) accurately call genetic

variants from genomic sequence data; and (iii) to iteratively refine variant resources.

The RIG workflow will contribute to progress in construction of more complete cata-

logs of genetic variation, and the ability to readily interrelate variants from different

sequence data sources using the GATK will increase the rate at which variants asso-

ciated with a phenotype lead to the identification of the genetic variation that causes

the phenotype.
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3. 3D SORGHUM RECONSTRUCTIONS FROM DEPTH IMAGES IDENTIFY

QTL REGULATING SHOOT ARCHITECTURE 1

3.1 Overview

Dissecting the genetic basis of complex traits is aided by frequent and nonde-

structive measurements. Advances in range imaging technologies enable the rapid

acquisition of three-dimensional (3D) data from an imaged scene. A depth camera

was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage,

and bioenergy crop, at multiple developmental time points from a greenhouse-grown

recombinant inbred line population. A semiautomated software pipeline was devel-

oped and used to generate segmented, 3D plant reconstructions from the images.

Automated measurements made from 3D plant reconstructions identified quantita-

tive trait loci for standard measures of shoot architecture, such as shoot height, leaf

angle, and leaf length, and for novel composite traits, such as shoot compactness.

The phenotypic variability associated with some of the quantitative trait loci dis-

played differences in temporal prevalence; for example, alleles closely linked with

the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both

leaf inclination angle and shoot height, influence leaf angle prior to an effect on

shoot height. Furthermore, variability in composite phenotypes that measure over-

all shoot architecture, such as shoot compactness, is regulated by loci underlying

component phenotypes like leaf angle. As such, depth imaging is an economical and

rapid method to acquire shoot architecture phenotypes in agriculturally important

plants like sorghum to study the genetic basis of complex traits.

1Reprinted with permission from McCormick, R. F., S. K. Truong, and J. E. Mullet, 2016,
3D sorghum reconstructions from depth images identify QTL regulating shoot architecture. Plant
Physiology 172: 823-834 (www.plantphysiol.org). Copyright ©2016 American Society of Plant
Biologists.
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3.2 Introduction

The rate-limiting step for crop improvement and for dissecting the genetic bases

of agriculturally important traits has shifted from genotyping to phenotyping, cre-

ating what is referred to as the phenotyping bottleneck (Houle et al., 2010; Furbank

and Tester, 2011). Alleviating the phenotyping bottleneck for agriculturally impor-

tant plants will help the world meet the increasing food and energy demands of the

growing global population (Somerville et al., 2010; Alexandratos et al., 2012; Cobb

et al., 2013). Approaches to alleviate the plant phenotyping bottleneck fall into two

broad categories: approaches that increase the number of individuals that can be

grown and evaluated (Fahlgren et al., 2015b) and approaches that predict perfor-

mance in silico to prioritize individuals to grow and evaluate (Hammer et al., 2010;

Technow et al., 2015). Both of these approaches will be instrumental for increas-

ing the rate of crop improvement, and both approaches are facilitated by advances

in image-based phenotyping; multiple plant measurements can be acquired rapidly

from images, and data from image-based phenotyping approaches also can inform

performance prediction (Spalding and Miller, 2013; Pound et al., 2014). As such,

the development of image-based phenotyping platforms for agriculturally important

plant species is a high priority for plant biology and crop improvement (Minervini

et al., 2015).

The diversity of crop species and the variety of traits of interest have resulted

in the development of a number of different platforms for plant phenotyping (Cobb

et al., 2013; Li et al., 2014). Commercial platforms, including the Scanalyzer series

from Lemnatec (http://www.lemnatec.com/products/; accessed February 2016)

and the Traitmill platform from CropDesign (http://www.cropdesign.com/general.

php; accessed February 2016), have gained adoption in the research community and
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have promoted the development of additional software (beyond that which the respec-

tive companies provide) to analyze the images produced by the platform (?Hartmann

et al., 2011; Fahlgren et al., 2015a). A variety of noncommercial platforms and meth-

ods developed by the research community also exist and have been demonstrated to

perform well (White et al., 2012; Fiorani and Schurr, 2013; Sirault et al., 2013; Pound

et al., 2014). Several platforms have been deployed at sufficiently large scale to ex-

amine genomic loci underlying complex traits in crop plants such as barley (Hordeum

vulgare) (Honsdorf et al., 2014), pepper (Capsicum annuum) (van der Heijden et al.,

2012), maize (Zea mays) (Liu et al., 2011), rice (Oryza sativa) (Campbell et al.,

2015), and wheat (Triticum aestivum) (Rasheed et al., 2014). These successful ap-

plications of image-based phenotyping to understand the genetic bases of complex

crop traits represent only a small fraction of the imaging modalities and crop species

available for study. Sorghum (Sorghum bicolor) is the fifth most produced cereal

crop in the world and is a promising bioenergy feedstock (Mullet et al., 2014). Re-

cent work has demonstrated that optimization of plant canopy architecture has the

potential to improve sorghum productivity (Ort et al., 2015; Truong et al., 2015). As

such, we sought to develop an image-based platform to examine the genetic bases of

shoot architecture traits in sorghum. While commercial products like the Scanalyzer

and Traitmill systems are capable of exerting fine control and extensive automation

for aboveground architecture measurements, these and other current systems did

not meet our specifications for phenotyping in terms of cost of entry, portability,

output, throughput, or potential applicability in field phenotyping scenarios (Biskup

et al., 2007; Sirault et al., 2013; Pound et al., 2014). Thus, we sought to develop

an economical (i.e. less than $1,000 U.S.) image acquisition and processing pipeline

capable of nondestructively assaying sorghum canopy architecture in a portable and

semiautomated fashion.
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Previous work has demonstrated the potential of commercial-grade depth sensors

in measuring plant architecture (Chéné et al., 2012; Azzari et al., 2013; Paulus et al.,

2014). Therefore, we used the time-of-flight depth sensor onboard Microsoft Kinect

for Windows version 2 to capture depth images from multiple perspectives of individ-

ual sorghum plants, and these images were processed to construct three-dimensional

(3D) representations of the imaged plants. In this manner, three replicates of 99 lines

from a sorghum biparental recombinant inbred line (RIL) population were imaged at

multiple time points during 1 month of development, and the resulting point clouds

were registered, meshed, and segmented to generate 3D reconstructions of the im-

aged plants. Measurements from the segmented meshes and genotypes for the RIL

population were used to identify quantitative trait loci (QTLs) underlying shoot ar-

chitecture traits. We report QTLs for shoot architecture traits such as shoot height,

leaf angle, and leaf length, and we demonstrate that the relative contributions to

phenotypic variability of the QTLs change with respect to time. We also discuss our

image analysis procedures and make our code available as part of the growing body

of low-cost, open-source, image-based plant phenotyping solutions.

3.3 Results

3.3.1 3D sorghum reconstructions from depth images

To efficiently make plant architecture measurements, a portable, economical,

semiautomated image acquisition and processing pipeline was developed. Image

acquisition was performed using a laptop, a tripod supporting a time-of-flight depth

camera, and a turntable (Figure B.1). Plants were manually transported between a

greenhouse and the nearby imaging station, and, for each plant, a series of 12 depth

and 12 red-green-blue (RGB) images were acquired as the plant made a 360◦ rotation

on the turntable. Following acquisition, images were transferred to a work station
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and processed (Figure 3.1).

Figure 3.1: Processing of image data to segmented meshes. A, Point clouds are sam-
pled from multiple perspectives around the plant. B, The point clouds are registered
to the same frame and combined. C, The combined cloud is meshed to generate a
set of polygons approximating the surface of the plant. D, The mesh is segmented
into a shoot cylinder, leaves, and an inflorescence (if one exists; Figure B.2), and
phenotypes are measured automatically.

Most of the processing steps use generally applicable procedures available in open-

source libraries and software, including registration, cleaning, and meshing of the

point clouds (Cignoni et al., 2008; Rusu and Cousins, 2011; Buch et al., 2013; Kazh-

dan and Hoppe, 2013). General solutions for the segmentation of features like leaves

and stems from plants, however, remain less developed, especially for 3D plant repre-

sentations (Paproki et al., 2012; Paulus et al., 2014; Xia et al., 2015). Because of this,

we developed a segmentation procedure for our particular application to partition

the plant mesh into component parts. The final result of the semiautomated pro-

cessing pipeline was a plant mesh segmented into a shoot cylinder, an inflorescence

(when present; Figure B.2), and individual leaves, with each individual leaf assigned

a relative order of emergence (Figure 3.1).

A total of 297 plants representing triplicate plantings of 99 plants (97 RILs and
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Trait Type Measurement Description of measured trait
Composite Shoot height Vertical distance from the lowest shoot point

to the highest shoot point, including leaves
and inflorescence

Shoot surface area Surface area of the entire shoot
Shoot center of mass Vertical distance from the lowest shoot point

to the shoots center of mass
Shoot compactness Surface area of the smallest convex polyhe-

dron that contains the entire shoot (i.e. con-
vex hull surface area)

Organ level Shoot cylinder height Vertical distance from the lowest shoot
cylinder point to the highest shoot cylinder
point

Leaf length Length of a leaf
Leaf surface area Surface area of a leaf
Leaf width Width of a leaf
Leaf angle Angle at which a leaf emerges from the shoot

cylinder

Table 3.1: Summary of the subset of traits automatically measured from the plant
mesh used for the reported QTL analyses. Additional descriptions of the methods
used to obtain the measurements are found in Section B.1

the two parental lines) from the BTx623 × IS3620C sorghum mapping population

were grown in a greenhouse environment (Burow et al., 2011). Because image-based

phenotyping is nondestructive, the same plant can be sampled at multiple time points

to enable change over time to be monitored. All 297 plants were imaged at four time

points over a 17-d interval starting 27 d after planting (DAP). The four time points,

consisting of more than 14,000 depth images and representing nearly 1,200 samples,

were processed to segmented meshes. As such, an individual plant was represented

by a time course of four segmented meshes, and a RIL was represented by three

biological replicates (Figure 3.2). A series of measurements from each mesh was

then automatically acquired (Table 3.1).

To compare the measurements obtained from the image acquisition and process-
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Figure 3.2: Plant growth over time. A, Segmented meshes for replicate 3 of RIL
175 are depicted at four different DAP time points. Leaf colors represent individual
segmented leaves and have been assigned manually to enable tracking of the same
leaf between meshes; Figure B.3 depicts how color is assigned automatically by the
platform. The shoot cylinder is colored cyan. Meshes are depicted at the same
relative scale. B, RGB data (not to scale) that correspond to the imaged plants and
were coacquired with depth images; Figure B.3 depicts original RGB images.
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ing platform with standard physical measurements of plant morphometric traits,

15 plants (with 140 leaves) from the experiment were imaged, and then leaf and

stem measurements were obtained from harvested plants 62 d after planting. Shoot

height, shoot cylinder height, leaf angle, leaf width, leaf length, and leaf area were

compared. Leaf width and leaf length were measured using both a measuring tape

and an LI-3100C Area Meter (LI-COR), and leaf area was measured using only the

LI-COR instrument. Comparisons between the measurements indicated that the

image-based measurements performed at least as well as the LI-COR leaf-scanning

instrument for leaf width and leaf length relative to hand measurements with a mea-

suring tape (Fig. 3.3). The RMSD between manual measurements and image-based

measurements for leaf length and leaf width were 7.94 and 1.84 cm, respectively; this

indicated marginally better performance than the RMSDs between manual measure-

ments and the LI-COR instrument for leaf length and leaf width, which were 9.41

and 1.94 cm, respectively. Leaf area measurements made with the depth imaging

platform and with the LI-COR instrument were well correlated (ρ of 0.92), although

the image-based platform reported, on average, larger values of leaf area than the

LI-COR instrument, with a mean difference of 52.45 cm2. Leaf angle was measured

with an RMSD of 9◦ and a ρ of 0.95 relative to hand measurements, and shoot cylin-

der height was measured with an RMSD of 7 cm and a ρ of 0.99. Measurements of

shoot height showed the lowest correlation (ρ = 0.63 and RMSD = 11 cm) due to

three outlier points; these outlier points likely represent errors in manual measure-

ment due to the inherent difficulty in identifying the true maximum height point of

the shoot in an unbiased way during manual measurement. We also note two leaf

measurement outliers in both leaf length and leaf area that occurred because the

image-based platform failed to fully reconstruct two of the leaves that were in the

same vertical plane as the sensor. Ultimately, image-based measurements were well
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correlated with manual measurements, and the coefficient of variation of the RMSD

for the measurements ranged from 0.07 to 0.3 (within the same range as measure-

ments made using standard instrumentation). As such, measurements made with

the phenotyping platform have utility for applications such as QTL mapping.

3.3.2 Genetic bases of imaged traits

To determine if the platform could be used to identify genetic loci regulating

shoot architecture, measurements obtained from the plant meshes were associated

with genetic data from the RIL population. Genotypes for members of the BTx623

× IS3620C RIL population were obtained previously and available to construct a

genetic map for mapping QTLs for the image-based phenotypes across multiple de-

velopmental time points (Morishige et al., 2013; Truong et al., 2014; McCormick

et al., 2015). Measurements obtained from plant meshes were grouped into two cat-

egories: organ-level measurements and composite measurements. Organ-level mea-

surements are segmentation dependent and measure organ-level plant architecture,

such as leaf length and shoot cylinder height; composite measurements are segmen-

tation independent and measure overall shoot architecture, such as shoot height and

shoot compactness (Table 3.1; Figures B.4 and B.5).

QTL mapping of organ-level traits identified seven unique genomic intervals with

significant contributions to phenotypic variability (Figures 3.4 and B.6; Table B.2).

A genome-wide scan under a single-QTL model was used to examine the following

phenotypes across the four time points: the average value of leaves 3, 4, and 5 for leaf

length, width, surface area, and inclination angle as well as shoot cylinder height.

Significant QTLs identified from a genome-wide scan under a single-QTL model

were used as an initial model for stepwise model traversal to identify the most likely

penalized multiple-QTL model (Manichaikul et al., 2009); the overlapping LOD-2
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Figure 3.3: Comparison of image-based measurements with measurements made
using standard methods. Axes represent measurements made via one of three meth-
ods: image-based measurements made from plant meshes, manual measurements
made with a measuring tape or protractor, and measurements with a LI-COR LI-
3100C Area Meter. Plots with an axis representing image-based measurements are
colored blue, and plots without an axis representing image-based measurements are
colored orange. Leaf area measurements made with the platform include abaxial and
adaxial leaf surfaces, so the image-based area measurements were divided by two for
comparison with LI-COR measurements of area. MD, Mean difference between mea-
surements; RMSD, root-mean-square difference; CV(RMSD), coefficient of variation
of the RMSD given the range of data on the bottom axis; , Pearson product-moment
correlation coefficient; n, number of samples from which the differences and coeffi-
cients were calculated.
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Figure 3.4: Log of the odds (LOD) profiles for organ-level traits. For each phenotype,
LOD profiles are based on chromosome-wide scans of chromosomes with QTLs based
on the most likely multiple-QTL models found by model selection (Figure B.6).
Each row represents a different trait, and within each trait are four nested rows that
each represents a different time point (DAP). Each group of columns represents a
chromosome, and each column represents a marker at its genetic position. Cells are
colored by marker LOD for the phenotype at the particular time point.

intervals of these multiple-QTL models define unique intervals on chromosomes 3, 4,

6, 7, and 10 (Table B.1).

A major source of variation in shoot architecture in the BTx623 × IS3620C RIL

population is Dwarf3 (Dw3 ), a sorghum dwarfing gene on chromosome 7 at 59.8

Mb. The parents of the imaged RIL population, BTx623 and IS3620C, are fixed for

nonfunctional and functional forms, respectively, of the Dw3 gene, which encodes an

auxin efflux protein that has pleiotropic effects on stem elongation and additional

architecture traits like leaf angle (Multani et al., 2003; Truong et al., 2015). A

significant association between Dw3 and shoot cylinder height is not observed until

the second time point (34 DAP), while different alleles of Dw3 introduce significant
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variability in leaf angle by the earliest time point (27 DAP). This is likely because

Dw3 impacts height by impacting stem elongation and the stem has not yet begun to

elongate substantially by the earliest time point; as such, the nonfunctional dw3 allele

caused smaller leaf angles prior to any significant effect on stem elongation (Multani

et al., 2003; Truong et al., 2015). Similar to Dw3, the effects of Dw2, a sorghum

dwarfing gene on chromosome 6 near 42 Mb (but not yet cloned), are significantly

associated with shoot cylinder height after the first time point (34, 39, and 44 DAP);

unlike Dw3, Dw2 is not significantly associated with any other pleiotropic effects on

leaf morphology. However, an interval distinct from Dw2 is observed on chromosome

6 near 51 Mb for leaf width.

A large interval on chromosome 10 was significantly associated with variability

in leaf length and surface area as well as shoot cylinder height. While the LOD-2

intervals for these traits overlapped when comparing all phenotype-by-time point

combinations, the LOD-2 interval for leaf surface area at 39 DAP was distinct from

any shoot cylinder height intervals. Additionally, the significant association of the

interval with shoot cylinder height is lost after 34 DAP, while the association is

maintained with leaf traits throughout the time course, suggesting that multiple

QTLs that regulate shoot architecture are present on chromosome 10 (Supplemental

Table S1).

An interval on chromosome 4 was associated with multiple leaf traits, including

length, width, and surface area, measured as the average value of leaves 3, 4, and

5 when counting green leaves starting from the bottom of the plant at the time of

acquisition. Further analysis showed that plants with BTx623 alleles of an inser-

tion/deletion (indel) marker at the leaf length maximum log of the odds (MLOD)

coordinate (chromosome 4; 62.45 Mb) had a leaf length of 50.1 cm when averaged

across the four time points. This was 5.6 cm longer than plants with IS3620C alleles,
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which had a leaf length of 44.5 cm when averaged across the four time points. Addi-

tionally, the platform captured changes in leaf length over time; plants with BTx623

alleles increased from an average length of 44.2 cm to an average length of 54.8 cm

over the 17 d, whereas plants with IS3620C alleles had leaves that increased from an

average length of 40.1 cm to an average length of 47.5 cm (Fig. 3.5).

Because segmentation-dependent traits represent organ-level traits that are often

manually measured, QTLs identified via the image-based platform for organ-level

traits were compared with QTLs identified previously for similar traits in the BTx623

× IS3620C population and previous reports on the sorghum dwarfing loci Dw2 and

Dw3 (Hart et al., 2001; Feltus et al., 2006; Brown et al., 2008; Mace and Jordan,

2011; Morris et al., 2013; Higgins et al., 2014). Most organ-level QTL intervals found

in this study overlap with comparable or related traits from previous field studies

(Table 3.2). Of note, some of the intervals, like chromosome 6 near 51 Mb and

chromosome 4 near 62 Mb, may have multiple genes that each affect different traits

or genes with pleiotropic effects, since these intervals were associated with diverse

leaf morphology traits across the studies. Additionally, the genes involved could be

environmentally responsive, since related but different traits were associated for the

intervals when comparing the greenhouse-based and field-based studies (e.g. leaf

length in this study versus leaf pitch, but not leaf length, in the previous study,

where leaf pitch measures the length of the leaf from the leaf base to the apex of

the naturally curved leaf). Overall, there was extensive overlap between the QTL

intervals identified in previous work and those identified using the imaging platform,

suggesting that these genomic loci exert phenotypic effects across multiple studies

and environments.

In addition to capturing components of plant architecture like leaf morphology,

the image-based measurements also capture overall architecture traits that integrate
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Figure 3.5: Organ-level measurement of average leaf length over time. A and B,
Meshes displaying development over time for a plant bearing BTx623 alleles (A;
RIL 257) and a plant bearing IS3620C alleles (B; RIL 306) of an indel marker on
chromosome 4 that had the MLOD for leaf length. C, Change in average leaf length
over time. Each thin line in the plot represents the average leaf length of a RIL (n
= 3) colored by its genotype. Leaf length was calculated as the average of the third,
fourth, and fifth leaves counting from the bottom, corresponding to the light green,
dark green, and blue leaves in A and B. The two thick lines represent a linear fit for
each genotype and 95% confidence intervals.
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Figure 3.6: LOD profiles for composite traits. For each phenotype, LOD profiles are
based on chromosome-wide scans of chromosomes with QTLs based on the most likely
multiple-QTL models found by model selection (Figure B.7). Each row represents
a different trait, and within each trait are four nested rows that each represents a
different time point (DAP). Each group of columns represents a chromosome, and
each column represents a marker at its genetic position. Cells are colored by marker
LOD for the phenotype at the particular time point.

component traits. These composite measurements are difficult or impossible to mea-

sure by hand and integrate how component traits interact to influence overall plant

architecture and, ultimately, how a plant canopy intercepts solar radiation. One spe-

cific example of such a measurement is shoot compactness, measured as the surface

area of the convex hull of a plant mesh. Shoot compactness is influenced by factors

like leaf angle and the height and planarity of a plant (Supplemental Fig. B.5).

Accordingly, a strong association between Dw3 and shoot compactness is present at

all time points due to the consistent effects of Dw3 on leaf angle and later effects

of Dw3 on stem growth (Fig. 3.6). As such, composite traits represent measures

of overall plant architecture and integrate the interrelationships between component

phenotypes. Additional composite traits examined were shoot surface area, shoot

center of mass, and shoot height, as described in Table 3.1.
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QTL mapping of the selected composite traits identified four genomic intervals

with significant contributions to phenotypic variability (Fig. 3.6; Supplemental Fig.

B.9; Supplemental Table B.2). Since composite traits are expected to be driven by

phenotypic variation in their component traits (and thus correlated), the composite

trait QTLs are discussed in the context of organ-level QTLs with shared intervals.

All of the composite traits were significantly associated with a large interval on

chromosome 10 at early stages of development (27 and 35 DAP). Consistent with the

observation of nonoverlapping QTL intervals for organ-level traits of leaf morphology

and shoot cylinder height on chromosome 10, at least two QTLs are likely present in

the interval; canopy compactness is a trait influenced by both leaf morphology and

shoot height, and distinct LOD peaks were observed, one at 6 Mb and one at 52 Mb

(Supplemental Table B.2).

Interestingly, one interval unique to the composite trait measurements was iden-

tified on chromosome 3 near 66 Mb for shoot height, indicating that there are ad-

ditional component traits driving variability in overall architecture that remain to

be resolved and explained by organ-level traits. Alternatively, the impact of the

QTLs on individual organ-level traits is relatively small, and only the combined ef-

fects across multiple individual traits provide sufficient power for detection. As such,

these composite traits represent a useful approach for detecting novel genetic loci.

Due to the effect of Dw3 on shoot cylinder height and leaf angle, a strong associ-

ation is present for shoot height and shoot compactness at the Dw3 locus; likewise,

Dw2 is associated with shoot height. To further quantify the influence of Dw3, the

shoot heights of individuals bearing different alleles of an indel marker near Dw3

were compared. Plants that have the dominant, functional Dw3 allele increase in

height from, on average, 60.2 to 112.6 cm over the 17-d imaging interval, and plants

with nonfunctional dw3 alleles increase in average height from 56.8 to 93.2 cm (Fig.
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3.7). Fitting a linear model to the data, Dw3 plants grew vertically at a rate of 3.1

cm d1, whereas dw3 plants grew at a rate of 2.2 cm d1 between 27 and 44 DAP.

Nondestructive, image-based phenotyping combined with high-throughput genotyp-

ing has great potential for parameterizing plant functional-structural modeling and

performance prediction with genotype-specific rates of growth.

3.4 Discussion

A time-of-flight depth camera was used to image sorghum plants from a RIL pop-

ulation, and we developed an image processing pipeline to reconstruct 3D sorghum

plants and make automated measurements from the reconstructions. Measurements

made in this manner are sufficiently rapid and accurate to enable the identification

of multiple genetic loci regulating shoot architecture. As such, we demonstrate that

depth imaging represents a useful approach for high-throughput phenotyping of crop

plant architecture for the genetic dissection of complex traits.

While the platform successfully identified QTLs regulating sorghum architecture

(Figures 3.4 and 3.6), a number of improvements will be necessary prior to its ap-

plicability in even larger scale studies. First, the acquisition process will need to be

improved. Registration artifacts were a recurring problem, introduced by nonrigid

transformations of plant leaves caused by leaf shaking on the turntable, the registra-

tion methods used, and sensor noise in acquisition. Multiple potential solutions for

these are available, including the use of a registration algorithm capable of handling

nonrigid transformations (Zheng et al., 2010; Bucksch and Khoshelham, 2013; Bro-

phy et al., 2015), the use of multiple sensors, the use of real-time mesh construction

procedures like Kinect Fusion to average sensor data and rapidly reconstruct the

plant (Izadi et al., 2011), or the use of a model-based approach to fit a geometric

plant model to the acquired points (Quan et al., 2006; Ma et al., 2008). Second, the
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Figure 3.7: Composite measurement of shoot height over time. A and B, Meshes
displaying development over time for a plant bearing IS3620C alleles (A; RIL 175)
and BTx623 alleles (B; RIL 19) of an indel marker closely linked with the Dw3 gene,
an auxin transporter that regulates plant height. C, Change in plant height over
time. Each thin line in the plot represents the average height of a RIL (n = 3)
colored by its genotype at the Dw3 locus. Shoot height was measured as the vertical
distance from the lowest shoot point to the highest shoot point, including leaves and
inflorescence (Table 3.1). The two thick lines represent a linear fit for each genotype
at Dw3 and 95% confidence intervals.
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segmentation procedure will need to be improved to better distinguish leaves that

are in contact with one another, to better automatically identify the shoot cylinder

of the plant, and to potentially make it applicable to other grass or plant species.

Progress in data-driven approaches that automatically cluster points into stem and

leaf organs using feature histograms indicate that segmenting point clouds directly

represents a viable option, at least for high-resolution laser scans (Paulus et al.,

2013; Wahabzada et al., 2015). Segmenting the point cloud directly may provide the

most general solution for both controlled-environment and field applications, where

reconstruction prior to segmentation is difficult due to occlusion. Approaches that

can accurately segment the point cloud directly also could enable automated fitting

of generalized plant or organ models to the segmented cloud, potentially yielding

methods that can automatically reconstruct and measure complex plant scenes.

A major benefit of image-based phenotyping is its nondestructive nature because

insight into the temporal onset of genetic regulation is valuable in dissecting its mech-

anistic basis. Markers tightly linked with Dw3, a gene encoding an auxin transporter,

are associated with leaf inclination angle and shoot compactness prior to their asso-

ciation with shoot height and shoot cylinder height, suggesting that changes in auxin

transport caused by different Dw3 alleles introduce variability in leaf development

and overall shoot compactness prior to large effects on stem elongation (Figures 3.4,

3.6, and 3.7). Additionally, variation in the shoot cylinder height at the earliest time

point is most associated with an interval on chromosome 10 (Figure 3.4). This QTL

is the primary driver of variability in shoot height and shoot cylinder height until

the variability in stem growth introduced by alleles of Dw2 and Dw3 increases, and

it may be related to the timing of a developmental transition (Figures 3.4 and 3.6).

It is likely that multiple QTLs are present on chromosome 10, given that distinct

LOD peaks at 2, 7, and 52 Mb were observed; additional experimentation will be
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necessary to resolve the contributions and temporal prevalence of specific QTLs in

the interval.

Many of the QTLs identified via image-based phenotyping overlapped with QTLs

for comparable traits discovered in prior field experiments (Table 3.2). These shared

QTLs represent good candidates for continued investigation, as they display robust

phenotypic effects across multiple experiments and conditions. Notably, despite shar-

ing overlapping intervals, the associated traits sometimes differed. For example, this

study identified significant associations between leaf length, width, and surface area

with an interval on chromosome 4; a similar interval was identified in previous work

for leaf curve and leaf pitch, but it was not significantly associated with leaf length in

the previous study (Table 3.2). While all of these traits are aspects of leaf morphology

and share relationships, additional experimentation will be necessary to determine

whether these represent one QTL with pleiotropic effects (as observed with Dw3 ),

one QTL with different environmental responses, different QTLs with overlapping

intervals, or some combination of these possibilities.

3.5 Conclusion

Depth imaging and subsequent processing enabled the rapid acquisition of mul-

tiple shoot architecture phenotypes from a sorghum RIL population, and genetic

loci contributing to variation in shoot architecture were identified. Depth cameras

represent a practical tool to rapidly measure plant morphology, and their applica-

tion to plant phenotyping alongside other imaging modalities will be useful for both

controlled-environment and field phenotyping scenarios. Integrated platforms that

merge image-based phenotyping approaches, genetics, and performance modeling

will enable rapid improvements in understanding plant biology and will promote the

selection and engineering of plants for superior performance in target applications.
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3.6 Materials and methods

3.6.1 Plants, greenhouse conditions, manual measurements, and image acquisition

A total of 98 RILs from the sorghum (Sorghum bicolor) BTx623 × IS3620C

recombinant inbred mapping population and the two parents (Burow et al., 2011)

were planted in triplicate with five seeds per pot in C600 pots of Sunshine MVP soil

(BWI) in a College Station, Texas, greenhouse on July 7, 2015. Plants were thinned

to one plant per pot after germination. Plants were fertilized with Osmocote Classic

(13-13-13; Everris International) and watered on demand. Tillers and senesced leaves

were removed regularly. Each of the three replicates of the 100 lines was grown on a

separate greenhouse table, and differences in shoot morphology were visibly apparent

in the population throughout development (Figures B.8 and B.9). Seeds for one of

the RILs failed to germinate (RIL 3), leaving three replicates of 99 lines for which

images were acquired. Plants were imaged at 27, 34, 39, and 44 DAP. Fifteen of the

plants were imaged at 62 DAP, harvested, and manually measured to compare the

performance of the platform relative to standard measurement techniques. Manual

measurements of leaf angle were made with a protractor, and shoot height, shoot

cylinder height, leaf length, and leaf width were measured using a measuring tape.

Additionally, leaf length, leaf width, and leaf area were measured using an LI-3100C

Area Meter (LI-COR).

Image acquisition was performed using a Microsoft Kinect for Windows version

2 sensor and the Kinect for Windows SDK (version 2.0). Twelve RGB and 12 depth

image frames were acquired at approximately 3-s intervals, and the images were saved

to disk on a laptop while the Kinect for Windows version 2 sensor was positioned on

a tripod in front of an Arqspin 12-inch motorized turntable that rotated the imaged

plant (Figure B.1). Plants were transported manually to and from the greenhouse
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to the nearby imaging station. Images were transferred from the laptop to a work

station for subsequent processing.

3.6.2 Processing images to acquire plant measurements

Procedures for processing images to acquire plant measurements and alternative

methods that were explored are explained in Appendix Section B.1. Here, brief

descriptions of procedures used for the reported analysis are outlined. For each

plant, the point cloud contained in each depth image was automatically cleaned and

registered to generate a single 3D point cloud using available open-source libraries

and algorithms, including OpenCV (http://opencv.org; accessed February 2016)

and PCL (Fischler and Bolles, 1981; Besl and McKay, 1992; Rabbani et al., 2006;

Rusu et al., 2008; Rusu and Cousins, 2011; Buch et al., 2013). This point cloud was

inspected manually, acquisition and/or registration errors were corrected manually

using MeshLab (Cignoni et al., 2008), and the cleaned point cloud was meshed to

generate a set of polygons representing the surface of the plant using available open-

source software (Bernardini et al., 1999; Corsini et al., 2012; Kazhdan and Hoppe,

2013). The plant mesh was then segmented into a shoot cylinder (composed of the

stem and leaf sheaths), individual leaves, and an inflorescence (when present; Figure

B.2). The shoot cylinder and inflorescence were labeled manually. Following this,

individual leaves were segmented using an automated procedure we developed that

uses supervoxel adjacency and geodesic paths across the adjacency graph to identify

leaf tips and grow leaf regions (Dijkstra, 1959; Surazhsky et al., 2005; Papon et al.,

2013).

Multiple measurements were automatically obtained from each mesh, both at the

level of the whole plant (i.e. segmentation-independent, composite traits) and at the

organ level (i.e. segmentation-dependent, organ-level traits). The traits measured
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are described in Table 3.2. Descriptions of how these traits were measured from

the plant mesh are provided in Appendix Section B.1, and graphical depictions of

selected measurements are shown in Supplemental Figures B.4 and B.5. Additional

implementation details can be found with the code base (see Section 3.6.4 below).

3.6.3 QTL mapping and comparison with prior QTL studies from the literature

Genotypes for the BTx623 × IS3620C RIL population were generated previ-

ously using Digital Genotyping, a restriction enzyme-based, reduced-representation

sequencing assay (Morishige et al., 2013). Genotypes were called using the naive

pipeline of the RIG workflow with the GATK, and the genetic map was constructed

as described previously with marker orderings relative to the version 3 assembly

of the sorghum reference genome, Sbi3 (Department of Energy-Joint Genome In-

stitute http://phytozome.jgi.doe.gov; accessed February 2016); this resulted in

a genetic map with 10,787 markers (McKenna et al., 2010; Goodstein et al., 2012;

Truong et al., 2014; McCormick et al., 2015). Both single- and multiple-QTL map-

ping were performed with R/qtl (Broman et al., 2003). For single-QTL mapping (i.e.

testing a single-QTL model), the complete marker set of 10,787 markers was used.

Measurements of a trait for each of the three replicates of a RIL were averaged;

average trait values were normalized using empirical normal quantile transforma-

tion prior to QTL mapping, so that the same permutation threshold would apply

to all phenotype-by-time point combinations (Peng et al., 2007). A genome-wide

scan under a single-QTL model for each phenotype-by-time point combination was

performed (Figures B.6 and B.7). If any of the reported phenotype-by-time point

combinations had a marker with a LOD greater than 3.28 (the 95% threshold ob-

tained from 25,000 permutations), its LOD-2 interval (the coordinates of the flanking

markers where the LOD had dropped by 2 units below the peak value) was retained.
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The positions (centimorgans) with the largest LOD within each LOD-2 interval for

each phenotype-by-time point combination were retained to initialize multiple-QTL

mapping.

For multiple-QTL mapping, a subset of 1,209 markers was obtained by enforcing

a minimum marker distance of 0.8 centimorgans; significant peak-LOD markers from

single-QTL mapping intervals were added back to the set if they were dropped, re-

sulting in 1,224 markers used for multiple-QTL mapping. The genetic coordinates of

the markers with the largest LOD for each LOD-2 interval from single-QTL mapping

of each phenotype-by-time point combination were used to seed model selection for

multiple-QTL mapping as implemented in R/qtl (Manichaikul et al., 2009). Main

effect, heavy chain, and light chain penalties (3.2, 4.38, and 1.94, respectively) for

model selection were obtained as 95% thresholds from 25,000 permutations of the

appropriate statistics. The multiple-QTL models with the largest penalized LOD for

each phenotype-by-time point combination are reported (Tables 3.2, B.1, and B.2;

Figures B.6 and B.7). For a given phenotype, the maximum LOD across all time

points characterized the MLOD of the phenotype (Kwak et al., 2014). A longitudinal

QTL model for each phenotype that contained QTLs at the MLOD coordinates was

used to generate the chromosome-wide LOD profile scans (Figures 3.4 and 3.6).

To compare QTLs found in this study with existing QTLs in the literature, the

physical coordinates relative to the sorghum version 1 reference assembly, Sbi1, for

QTLs in the BTx623 × IS3620C population were obtained; Mace and Jordan (2011)

determined these physical coordinates using a consensus map and QTLs identified by

Hart et al. (2001) and Feltus et al. (2006). The coordinates of Dw2 and Dw3 were

obtained from Morris et al. (2013) and Multani et al. (2003). The corresponding

locations of the markers in Sbi3 were obtained using Biopieces (www.biopieces.org)

for sequence extraction and BLAST via a local instance of Sequenceserver (Altschul
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et al., 1997; Paterson et al., 2009; Priyam et al., 2015). Physical locations relative

to Sbi3 were used as the QTL intervals for comparison with this study.

3.6.4 Code and data availability

The C++, Bash, and Python code written for image acquisition and processing,

the R code written for QTL mapping, the genotype and phenotype data, and the full

multiple-QTL models for each phenotype-by-time point combination can be found

on GitHub at

https://github.com/MulletLab/SorghumReconstructionAndPhenotyping

For each imaged plant, its depth images, a single RGB image, and the segmented

mesh can be found at the Dryad Digital Repository (http://dx.doi.org/10.5061/

dryad.9vs26).
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4. CONCLUSION

Sustainably meeting the projected food and fuel demands of the future in a car-

bon neutral manner will necessitate increased crop outputs without increasing input.

Towards the goal of sustainably increasing crop productivity, this dissertation de-

scribed two contributions to improve high-throughput genotyping and phenotyping

in agricultural systems. While additional work remains to improve the genotyping

of individuals from sequence data, crop improvement is currently limited predom-

inately by phenotyping rate, otherwise referred to as the phenotyping bottleneck.

The field of high-throughput plant phenotyping is still relatively new, and much

work remains to develop cost-effective and robust automated platforms for high-

throughput phenotyping of crop plants both in the field and in greenhouse settings

(Bao and Tang, 2016; Dengyu et al., 2016; Gélard et al., 2016; Jiang et al., 2016;

Zhang et al., 2016a,b). Interpreting the variety of measurements obtained with these

methods promises to be a challenge in of itself, as traits resulting from various im-

age transformations might not have an intuitive biological interpretations; this has

even spawned a new term, cryptotype, to represent phenotypes that measure abstract

traits (e.g., a principal component) capable of separating individuals into pre-defined

classes (Chitwood and Topp, 2015). As throughput continues to improve for both

genotyping and phenotyping technologies, novel analysis approaches will need to be

developed that can convert terabytes of genotypic and phenotypic information into

actionable conclusions.

An alternative means to solving the phenotyping bottleneck is to reduce the

number of individuals that need to be phenotyped using predictive models. One

promising research area is that of performance prediction, whereby information about
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an individual’s genome and its target production environment can be used to predict

how the individual will perform (Cooper et al., 2016; Hammer et al., 2016). This

type of performance prediction is readily enabled by the work presented in this

dissertation, as the genomic information and plant reconstructions are amenable to

functional-structural plant modeling and light interception simulations to determine

how efficiently a given crop canopy intercepts incident solar radiation (Figure 4.1).

Integrating genotypic information, high-throughput phenotyping, and performance

predictions promises to rapidly improve the rate of crop improvement by enabling

informed decisions on which germplasm should be prioritized for field trials, as well

as which traits should be targeted for engineering traits that improve productivity.

Ultimately, improving the rate of crop improvement will require useful genomics

and phenomics approaches that can be integrated within existing breeding strategies

along with novel modeling and engineering methods to generate robust and high-

performing cultivars. Doing so will require interdisciplinary teams of plant physi-

ologists, crop breeders, robotics engineers, computer scientists, synthetic biologists,

and mathematical biologists, and the lessons learned will further inform metabolic

and genome engineering as plants are designed for specific end applications beyond

producing grain or lignocellulosic biomass (Medford and Prasad, 2014; Nemhauser

and Torii, 2016).
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Figure 4.1: Simulated field planting and light interception of a 3D plant reconstruc-
tions. Plant reconstructions of a RIL line at each of four timepoints were used to
simulate how the plant canopy would intercept solar radiation using OpenAlea and
ScanAlea at each developmental time point (Chelle and Andrieu, 1998; Chelle et al.,
2004; Pradal et al., 2008). (A) Simulated field plantings with plant reconstructions
colored green. (B) Lighting simulation using a nested radiosity model where sur-
faces are colored based on the amount of intercepted light; the ground intercepts
more light at early developmental states prior to canopy closure. The coefficient of
light extinction, k̂, is obtained by fitting the light distribution at layers down the
canopy (scaled to account for plant height) to Beer-Lambert’s Law, and the coeffi-
cient quantifies the observation that the top of the canopy intercepts more light as
it closes during development.
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APPENDIX A

SUPPLEMENTAL MATERIAL FOR RIG: RECALIBRATION AND

INTERRELATION OF GENOMIC SEQUENCE DATA WITH THE GATK 1

Table A.1: Recovery of variants in the Independent-Family set within the WGS sets.
The table shows the intersection of variants between the Independent-Family (IF)
set and the Raw, Sensitive, and Specific sets from 49 WGS samples. The IF set is
comprised of genetically mappable variants from a biparental cross, and the Raw,
Sensitive, and Specific sets correspond to the variant calls generated from 49 WGS
samples at the 100%, 95%, and 75% tranches, respectively, for both the SNP and
indel models. The Independent-Family set was not used to train the VQSR Gaussian
mixture models that assigned VQSLOD scores to the WGS variants. Variants not
recovered in the WGS Raw set can either be false positives in the IF set or false
negatives in the Raw set. False negatives in the Raw set can occur if the variant did
not have sufficient coverage in the WGS data. False positives in the IF set can occur
if, in the reduced representation data, a true variant (e.g., an indel) caused errors in
read mapping that produced an artifactual variant (e.g., a SNP); such an artifactual
variant will segregate with the true variant and appear to be genetically mappable.
While procedures like indel realignment should resolve these cases, the way reads
stack and the high depth of some loci acheived with reduced representation methods
can prevent accurate local reassembly. These data show that most of the variants
from the reduced representation IF data are identified in the WGS data and that
sensitivity decreases with descending tranches.

# SNPs % SNP # indels % indel
Independent-Family (IF) 10,737 100% 3,740 100%
IF ∩ Raw 10,557 98% 3,632 97%
IF ∩ Sensitive 10,211 95% 3,402 91%
IF ∩ Specific 7,966 74% 2,330 62%

1Reprinted from “RIG: recalibration and interrelation of genomic sequence data with the GATK”
by McCormick, RF, Truong, SK, and Mullet, JE, (2015) Genes — Genomes — Genetics 5(4) 655-
665 under the Creative Commons Attribution Unported License (http://creativecommons.org/
licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited. Copyright ©2015 McCormick et al.
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Table A.2: Comparison of the Independent-Family set with WGS tranches. The
intersections of variants from the Independent-Family (IF) set with each of the WGS
variant sets were compared (see Table A.2). Assuming that the IF variants represent
“true” variants, the tranche cutoffs are in good agreement with how many of the
IF variants were present in the tranche (even though the IF variants were not used
to train the VQSR Gaussian mixture models). For example, the 95% SNP tranche
represents the minimum VQSLOD cutoff whereby 95% of the “true” variants pro-
vided to VQSR would be retained. Accordingly in our data, the 95% WGS SNP
tranche contains 97% of the available IF set SNPs, suggesting that the models were
appropriately trained and that the tranche cutoffs functioned as expected.

# SNPs % SNPS SNP tranche
min(VQSLOD of

tranche)
IF ∩ Raw 10,557 100% 100% -39,962.6819
IF ∩ Sensitive 10,211 97% 95% 0.4462
IF ∩ Specific 7,966 75% 75% 7.1643

# indels % indels indel tranche
min(VQSLOD of

tranche)
IF ∩ Raw 3,632 100% 100% -39,645.5822
IF ∩ Sensitive 3,402 94% 95% 1.1027
IF ∩ Specific 2,330 64% 75% 4.6878
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Figure A.1: Distributions of VQSLOD scores for variants from the WGS Raw set that
were also contained in the Independent-Family (IF) set. The VQSLOD distributions
of the 10,557 SNPs and 3,632 indels from the WGS raw set that were also in the
IF set are plotted here as box plots and as histograms (see Tables A.1 and A.2).
The median VQSLOD score of the SNPs and indels were 8.22 and 5.29, respectively,
suggesting that the trained Gaussian mixture models correctly assigned true variants
with positive VQSLOD scores. Variants from the IF set with low VQSLOD scores
(e.g. < 0) potentially represent the false positives described in the caption of Table
A.1 that were also called in the WGS data. Alternatively, they are true variants that
did not receive sufficient coverage in the WGS data to provide strong evidence for
their existence. The two peaks of the bimodal distribution of SNP VQSLOD scores
correspond to whether or not certain variant annotations had been calculated by
the GATK’s HaplotypeCaller. Certain variant annotations, such as MQRankSum
and ReadPosRankSum, are only calculated when a sample contains a mixture of
reads displaying both the reference allele and the alternate allele for the variant;
these annotations were typically not assigned to variants for which every sample
was genotyped as homozygous. Both MQRankSum and ReadPosRank sum were
used as annotations for training during VQSR; the lower VQSLOD peak consists
mostly of variants assigned these annotations, and the larger VQSLOD peak consists
mostly of variants that were not assigned these annotations. This suggests that these
two annotations were often associated with less reliable variants in the resequenced
sorghum lines which is expected given the inbred nature of most of the lines. A
similar effect was seen with indels, though not as extreme.
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Figure A.2: Genome-wide associations for preflag leaf height using RIG-generated
variants called from reduced representation data. Of the 733 sorghum germplasm
samples used to generate the Population Reference Variant Resource as part of the
RIG workflow, 171 of the lines had been previously phenotyped by (Brown et al.,
2008). After producing a recalibrated, sensitive variant resource with the RIG work-
flow, missing genotypes were filled in using Beagle v4 release 1274 (Browning and
Browning, 2007). Variants were pre-processed (minor allele frequency > 5%) and
converted to PLINK binary format using PLINK v1.90-1 (Purcell et al., 2007; Chang
et al., 2015). The 171 phenotypes from (Brown et al., 2008) were normalized using
an Empirical Normal Quantile Transformation (ENQT) (Peng et al., 2007). Using
GCTA v1.24.3, a genomic relationship matrix was generated and associations were
calculated using GCTA’s mixed linear model implementation (Yang et al., 2011). As
shown in Table A.3, this analysis reproduced known QTL at the sorghum dwarfing
loci Dw1, Dw2, and Dw3 on chromosomes 9, 6, and 7, respectively (Morris et al.,
2013; Higgins et al., 2014).

79



Table A.3: Comparison GWAS results from RIG-generated variants to previously
reported results. The RIG column lists the position of the most significant marker
identified by the GWAS described in Figure A.2. The Literature column lists the
position of significant peaks reported by (Morris et al., 2013) for Dw1 and Dw2 and
the position of the cloned gene for Dw3 (Multani et al., 2003). Recalibrated variants
identified from reduced representation sequence data using the RIG workflow are
capable of reproducing known sorghum genome wide associations.

Locus Chromosome RIG (Mbp) Literature (Mbp)
Dw2 6 40.2 39.7 - 42.6
Dw3 7 58.4 58.6
Dw1 9 57.2 57.2
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Table A.4: Variant site counts used to calculate sensitivity and positive predictive
value for each tranche. Subsets of each of the six tranches (75.0%, 95.0%, 97.5%,
99.0%, 99.9%, and 100.0%) were used for determining sensitivity and positive pre-

dictive value. Sensitivity was calculated using (Tranche∩Nordborg)
Nordborg

. Positive predictive

value was calculated using (Tranche∩Nordborg)+((Tranche\Nordborg)∩Gramene43)
Tranche

. For exam-
ple, the sensitivity of the 75.0% tranche is 1762

3243
= 0.543 and the positive predictive

value is 1762+20
1789

= 0.996

Variant Source Number Variant Sites
Nordborg 2005 3243

75.0% 1789
75.0% ∩ Nordborg 2005 1762

(75.0% \ Nordborg 2005) ∩ Gramene43 20
75.0% \ (Nordborg 2005 ∪ Gramene43) 7

95.0% 3014
95.0% ∩ Nordborg 2005 2897

(95.0% \ Nordborg 2005) ∩ Gramene43 98
95.0% \ (Nordborg 2005 ∪ Gramene43) 19

97.5% 3107
97.5% ∩ Nordborg 2005 2982

(97.5% \ Nordborg 2005) ∩ Gramene43 103
97.5% \ (Nordborg 2005 ∪ Gramene43) 22

99.0% 3212
99.0% ∩ Nordborg 2005 3078

(99.0% \ Nordborg 2005) ∩ Gramene43 109
99.0% \ (Nordborg 2005 ∪ Gramene43) 25

99.9% 3589
99.9% ∩ Nordborg 2005 3220

(99.9% \ Nordborg 2005) ∩ Gramene43 205
99.9% \ (Nordborg 2005 ∪ Gramene43) 164

100.0% 3716
100.0% ∩ Nordborg 2005 3241

(100.0% \ Nordborg 2005) ∩ Gramene43 240
100.0% \ (Nordborg 2005 ∪ Gramene43) 235
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR 3D SORGHUM RECONSTRUCTIONS

FROM DEPTH IMAGES IDENTIFY QTL REGULATING SHOOT

ARCHITECTURE 1

11Reprinted with permission from McCormick, R. F., S. K. Truong, and J. E. Mullet, 2016,
3D sorghum reconstructions from depth images identify QTL regulating shoot architecture. Plant
Physiology 172: 823-834 (www.plantphysiol.org). Copyright ©2016 American Society of Plant
Biologists.
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Figure B.1: Imaging platform. (A) Components of the imaging platform. The major
components include the turntable, a plant, the depth sensor, and the laptop running
the acquisition software. (B) The imaging platform in use. The imaged plant spins
on the turntable during acquisition, and a user operates the semi-automated image
acquisition software.

B.1 Image processing methods, potential alternatives, and future development

After acquiring depth images from multiple perspectives around the plant, the

point clouds stored in the images were cleaned, registered, meshed, and segmented,

and the resulting segmented meshes were automatically measured for a number of

traits. The procedures used are detailed here, along with discussion of why particular

methods were used, and discussion of some alternative approaches. The point cloud

data from the Microsoft Kinect for Windows V2 were stored as depth images and

processed using the open source libraries OpenCV (http://opencv.org; accessed

February 2016) and PCL (Rusu and Cousins, 2011). For each plant, the 12 individual

point clouds were registered to the same reference frame using iterative closest point

83

http://opencv.org


Figure B.2: Plants with inflorescences. RIL 182 (left) and RIL 374 (right) at 44
DAP. Inflorescences are colored gold. Meshes are depicted at the same relative scale.
All 1200 segmented meshes are available (see Section 3.6.4).

84



Figure B.3: Plant growth over time. (A) Segmented meshes for replicate 3 of RIL
175 are depicted at 4 different days after planting (DAP) timepoints. Leaf colors
represent individual segmented leaves and are developmentally ordered for each indi-
vidual mesh; the same leaf color between two meshes do not necessarily correspond
to the same leaf. The shoot cylinder is colored cyan. Meshes are depicted at the
same relative scale. (B) Corresponding RGB images that were co-acquired with the
depth images. RGB images are not to scale.
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Figure B.4: Visual depiction of selected measurements. (A) The shoot center of
mass (i.e. the mesh centroid) is depicted in blue. (B) Shoot height corresponds to
the vertical length of the axis-aligned bounding box of the mesh. Shoot cylinder
height corresponds to the same measurement, but for the axis-aligned bounding box
of the shoot cylinder (cyan). (C) The path corresponding to leaf length is depicted
in blue with the two end points indicated by arrows; leaf length is measured as the
length of the longest graph geodesic of the leaf mesh. (D) Shoot compactness was
measured as the surface area of the convex hull; the convex hull is shown around the
plant mesh. The mesh shown corresponds to RIL 268 at 34 DAP. Many of the trait
measurements are correlated, particularly composite traits with organ-level traits
(Figure B.5).
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Figure B.5: Composite traits integrate multiple architecture traits. Organ-level traits
are components of composite traits. The relationship between shoot compactness,
leaf angle, and shoot cylinder height are depicted here. (A) The Pearson product-
moment correlation coefficient matrix for three traits across four timepoints: the
organ-level traits of leaf angle and shoot cylinder height, and the composite trait
of shoot compactness. Shoot compactness is measured as the surface area of the
smallest polyhedron that contains the 3D plant mesh (i.e. the convex hull surface
area), and it is highly correlated with both of these traits at all timepoints. Leaf angle
is only highly correlated with shoot cylinder height once Dw3 begins to influence
shoot cylinder height (i.e., after the first timepoint). (B) Graphical, two-dimensional
representation of how leaf angle and shoot cylinder height influence convex hull area
(depicted as a polygon).
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Figure B.6: QTL mapping steps for organ-level traits leading to the final LOD
profiles shown in Figure 3.4. (A) LOD profiles for a genome-wide scan under a
single-QTL model. (B) LOD profiles for chromosome-wide scans of chromosomes
with QTL based on the most likely multiple-QTL model found by model selection
for each phenotype by timepoint combination. Each row represents a different trait,
and within each trait are four nested rows that each represents a different timepoint
(days after planting; DAP). Each group of columns represents a chromosome, and
each column represents a marker at its genetic position. Cells are colored by marker
LOD for the phenotype at the particular timepoint. Panel B differs from Figure 3.4
in that a comprehensive QTL model that includes all of the QTL found via model
selection for a given phenotype (across all timepoints) was used for the chromosome-
wide scans for each timepoint in Figure 3.4.
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Figure B.7: QTL mapping steps of composite traits leading to the final LOD profiles
shown in Figure 3.6. (A) LOD profiles for a genome-wide scan under a single-QTL
model. (B) LOD profiles for chromosome-wide scans of chromosomes with QTL
based on the most likely multiple-QTL model found by model selection for each
phenotype by timepoint combination. Each row represents a different trait, and
within each trait are four nested rows that each represents a different timepoint
(days after planting; DAP). Each group of columns represents a chromosome, and
each column represents a marker at its genetic position. Cells are colored by marker
LOD for the phenotype at the particular timepoint. Panel B differs from Figure 3.6
in that a comprehensive QTL model that includes all of the QTL found via model
selection for a given phenotype (across all timepoints) was used for the chromosome-
wide scans for each timepoint in Figure 3.6.
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Figure B.8: BTx623 x IS3620C RIL population in greenhouse. 99 members of the
BTx623 x IS3620C sorghum mapping population were planted in triplicate (97 RILs
and 2 parental lines; 99 plants per table, three tables, replicate 1 on left, 2 in middle,
and 3 on right). Phenotype data for each individual in each replicate are available
(see Code and Data Availability in the main text). All QTL analyses reported in
the main text used the average value of the three replicates for a RIL.
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Figure B.9: Plants from the BTx623 x IS3620C RIL population display variation
in shoot morphology. The images depict the plants represented by the meshes in
Figures 3.5 and 3.7 in the main text.
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Table B.1: QTL intervals by phenotype for organ-level traits. The LOD-2 inter-
vals of QTL in the multiple-QTL model obtained for each phenotype by timepoint
combination. The maximum LOD (MLOD) of an interval is indicated by a * and
was used for the multiple-QTL model of the phenotype for chromosome-wide scans
(Figure 3.4).

chr
interval
begin
(Mbp)

peak co-
ordinate
(Mbp)

interval
end
(Mbp)

peak
LOD

leaf surface area
DAP 27 10 1.77 5.72 9.86 3.41*
DAP 34 4 62.22 62.91 63.91 4.89
DAP 39 4 60.89 62.45 63.85 3.46

10 1.15 1.87 2.67 3.28
DAP 44 4 61.40 62.45 63.52 5.04*

leaf length
DAP 27 10 5.13 5.72 8.60 4.05
DAP 34 4 62.07 62.91 64.09 3.90
DAP 39 10 1.23 2.00 8.21 4.15
DAP 44 4 57.48 62.45 63.40 5.56*

10 1.23 2.00 8.21 4.55*
leaf width

DAP 27 - - - - -
DAP 34 4 60.89 62.60 64.43 3.84*

6 48.45 50.97 55.08 3.42*
DAP 39 - - - - -
DAP 44 4 60.89 62.83 63.75 3.76

leaf angle
DAP 27 7 58.48 59.87 60.28 6.89
DAP 34 3 7.11 9.61 11.46 4.13*

4 51.93 55.31 56.73 4.56*
7 59.51 59.65 59.99 10.74*

DAP 39 7 59.48 59.65 59.99 9.76
DAP 44 7 59.20 59.65 59.99 8.14

shoot cylinder height
DAP 27 10 5.27 7.46 52.24 6.03*
DAP 34 6 0.25 42.67 46.02 4.21

7 58.48 59.63 61.10 3.98
10 5.27 7.46 52.52 4.16

DAP 39 6 40.10 42.77 44.83 5.60*
7 59.05 59.85 59.99 7.90

DAP 44 6 40.10 43.30 44.83 4.88
7 59.20 59.65 59.99 9.81*
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Table B.2: QTL intervals by phenotype for composite traits. The LOD-2 intervals of
QTL in the multiple-QTL model obtained for each phenotype by timepoint combi-
nation. The maximum LOD (MLOD) of an interval is indicated by a * and was used
for the multiple-QTL model of the phenotype for chromosome-wide scans (Figure
3.6).

chr
interval
begin
(Mbp)

peak co-
ordinate
(Mbp)

interval
end
(Mbp)

peak
LOD

shoot surface area
DAP 27 10 5.06 6.97 52.52 3.55
DAP 34 10 5.55 51.93 52.82 3.82*
DAP 39 - - - - -
DAP 44 - - - - -

shoot center of mass
DAP 27 10 5.40 7.48 49.62 6.60
DAP 34 10 5.27 7.46 8.21 6.72*
DAP 39 10 5.27 7.46 48.94 5.68
DAP 44 - - - - -

shoot height
DAP 27 10 5.27 5.63 7.59 5.87*
DAP 34 3 65.26 66.41 69.08 3.63*

10 5.27 7.46 8.60 4.11
DAP 39 7 58.85 59.53 60.95 4.86
DAP 44 6 40.10 44.37 47.42 4.20*

7 59.05 59.65 59.99 8.73*
shoot compactness

DAP 27 7 57.29 59.65 60.47 4.02
10 5.06 5.63 52.52 4.86*

DAP 34 7 59.20 59.63 59.99 8.72
10 5.27 51.93 52.82 3.89

DAP 39 7 59.20 59.63 59.99 10.87*
10 5.55 52.24 52.82 3.95

DAP 44 7 59.05 59.53 59.99 9.67
10 6.54 52.24 52.82 3.95
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(ICP) and prerejective random sample consensus (RANSAC) if ICP failed to provide

a good fit (Besl and McKay, 1992; Buch et al., 2013). Points corresponding to the

plant pot were removed using RANSAC to fit circles, planes, and cylinders to identify

points belonging to the pot (Fischler and Bolles, 1981). After pot removal, the

registration was refined, and the combined point clouds were cleaned by removing

outlier points and using region growing to retain points corresponding to the plant

(Rabbani et al., 2006; Rusu et al., 2008). These procedures were automated using

classes from the OpenCV and PCL libraries.

The combined clouds were then visually examined, and artifacts arising from sen-

sor noise in acquisition, non-rigid plant transforms caused by airflow or leaf shaking

during acquisition, and errors in registration were manually corrected using MeshLab

(Cignoni et al., 2008). Point clouds from progressively later timepoints required pro-

gressively more manual cleaning, likely due either to increased leaf shaking caused

by the turntable as the plants grew larger, or increased sensor noise as the plants

increased in distance from the sensor; as such, the final two timepoints (DAP 48

and 55) were not processed and not included in the analysis. Once a point cloud

was prepared, ball-pivoting and Poisson-disk sampling were performed (automated

with MeshLab server) to create a point cloud with oriented abaxial and adaxial leaf

point normals, and the point cloud was then meshed using Screened Poisson Surface

Reconstruction (Bernardini et al., 1999; Corsini et al., 2012; Kazhdan and Hoppe,

2013).

Points in the mesh corresponding to the shoot cylinder of the plant (composed of

leaf sheaths and stem) and the inflorescence (when present) were then segmented us-

ing a machine learning approach. A subset of the meshes were manually labeled and

fast point feature histograms were calculated for all points in all meshes (Rusu et al.,

2009a,b). Features from labeled meshes were used to train a multi-class classifier us-
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ing AdaBoost.MH with real valued decision stumps as implemented in MultiBoost,

and the classifier was then used to label the remaining meshes (Schapire and Singer,

1999; Benbouzid et al., 2012). While this worked for many meshes, some meshes

had unsatisfactory labeling, and we opted to manually label all shoot cylinder and

inflorescence points for the final reported analysis. Point labels were assigned as

specific colors in the mesh, with cyan and gold corresponding to the shoot cylinder

and inflorescence, respectively.

Following this, individual leaves were segmented using an automated procedure.

The vertices in the mesh were first clustered into supervoxels, and supervoxel ad-

jacency was determined (Papon et al., 2013). Geodesic lengths (calculated via Di-

jkstras algorithm) across the supervoxel adjacency graph were used to iteratively

label unlabeled supervoxels (Dijkstra, 1959; Surazhsky et al., 2005). The lowest

shoot cylinder-labeled supervoxel was used as the starting point of a geodesic path,

and the most distant unlabeled supervoxel was identified. If the supervoxel had a

sufficiently large geodesic length and euclidean distance from any other leaf-labeled

supervoxel, the supervoxel was considered a new leaf tip and labeled as such; oth-

erwise, the supervoxel was labeled based on the label of adjacent supervoxels (all

points comprising the supervoxel were similarly labeled). Once all leaf tips had been

identified, leaf segmentations were refined by finding paths between the shoot cylin-

der and the leaf tips in the developmental order that the leaves had emerged from

the shoot cylinder such that developmentally older leaves were prioritized to improve

segmentation of leaves found in the whorl.

Multiple measurements were automatically obtained from each mesh, and the

entirety of the measurements made and the methods for making them can be found

within the code base. The manuscript reports measurements of shoot height, shoot

cylinder height, shoot center of mass, shoot compactness, shoot surface area, leaf
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length, leaf width, leaf surface area, and leaf angle. Brief descriptions of how these

traits were measured are provided below, and graphical depictions of selected mea-

surements are shown in Figure B.4 and Figure B.5.

Shoot height was measured as the height of the axis-aligned bounding box of

the entire plant mesh after the first principal component of the shoot cylinder was

aligned to the axis representing height. Shoot cylinder height was measured in the

same manner as shoot height, but only for mesh vertices labeled as shoot cylinder

(i.e. colored cyan). The shoot center of mass is the average height of the vertices in

the mesh (i.e. the height of the centroid). Shoot compactness was measured as the

surface area of the convex hull of the plant mesh using PCL’s interface with libqhull

(Barber et al., 1996). Shoot surface area was measured as the summation of the area

of individual polygons comprising the mesh.

Leaf measurements were made by first finding the largest connected mesh of

vertices with the same leaf label; that is, if during segmentation not all vertices

labeled as the particular leaf were connected, the largest connected mesh was retained

as the leaf mesh. Leaf length was measured as the length of the longest of all shortest

paths between two vertices in the mesh (i.e. the longest graph geodesic in the graph

formed by the mesh edges and vertices). Leaf width was approximated by modeling

the leaf as a box of known length (the maximum geodesic length), and surface area

(the summation of polygon area), and height (leaf thickness, fixed as 1 cm for all

leaves). Leaf angle was measured starting at the leaf vertex with the minimum

geodesic length to the bottom of the shoot cylinder (this leaf vertex is referred to as

the leaf base), and the path with the maximum geodesic length was found for the

leaf mesh starting from the leaf base. A right triangle was formed by three points:

(a) point α, the leaf base, (b) point β, reached by traveling along the path of α’s

maximum geodesic from α to 76 mm along the geodesics path, and (c) point γ,

96



reached by moving up the vertical axis by the vertical distance between α and β.

Leaf angle was calculated as the angle between (α, β) and (α, γ).

A variety of additional methods were considered for registration, meshing, seg-

mentation, and measurement, but they either did not work consistently with the

dataset or were outside the scope of work to implement. A few of these alternatives

are discussed here.

Registration of the point clouds could potentially be improved by using a non-rigid

registration approach (Zheng et al., 2010; Bucksch and Khoshelham, 2013; Brophy

et al., 2015). Some non-rigid registration approaches depend on skeletonization, and

we attempted mesh skeletonization using thinning and potential field approaches

described by Cornea et al. (2007). While this worked for some meshes, performance

was not sufficiently consistent to merit adoption for a non-rigid registration approach.

Future development of the platform will consider additional testing of skeletonization

and non-rigid registration approaches.

The meshing procedure employed combines two common meshing algorithms,

ball-pivoting and Screened Poisson Surface Reconstruction (Bernardini et al., 1999;

Kazhdan and Hoppe, 2013); the use of Screened Poisson Surface Reconstruction is

potentially suboptimal since it assumes a water tight surface, and thin, flat leaves are

reconstructed as thicker than they otherwise should be. For our application, we were

predominately interested in approaches that would reconstruct a fully connected and

consistent leaf surface so that we could compare leaf measurements across different

genotypes. In our hands, meshing approaches like ball-pivoting (that do not impose

watertightness) inconsistently meshed leaf surfaces due to the nature of the point

cloud thickness at leaves; in the resulting mesh, some portions of the leaf would have

faces with normals corresponding to both an abaxial and adaxial leaf surface, and

some portions with only one or the other (which precluded consistent measurements
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across plants). This was mitigated to some extent by applying smoothing opera-

tions on the point cloud, but it still failed to account for the fact that leaves often

have ripples, tears, curls, and folding that caused treatment as a 2D surface to not

consistently work well given the Kinect’s resolution.

After testing multiple approaches, the final approach uses ball-pivoting (which

mostly captures the abaxial and adaxial leaf surfaces and correctly orients point

normals for those surfaces), followed by Poisson-disk sampling to sample the ball-

pivoting mesh to points, followed by Screened Poissson Surface Reconstruction of

those points; this provided the most consistent results across the thousand meshes

(whereas using one meshing approach alone did not). Future development will con-

sider alternative meshing approaches that are potentially better suited to the gener-

ally thin, flat nature of leaves.

Automated stem segmentation was attempted in a number of ways, though none

had sufficiently satisfactory performance on the entire dataset. The first attempt

used region growing as described in Rabbani et al. (2006); this worked well on some

meshes, but the transition between stems and leaves, and individual leaves, were

often too smooth to obtain consistent segmentation. Additionally, RANSAC was

tested for use in identifying the shoot cylinder, though this also often performed

poorly in distinguishing the whorl from the shoot cylinder. Lastly, we tested a

machine learning approach described above using a multi-class classifier and point

features to distinguish shoot cylinder from leaf points. Of the three methods, this had

the best performance, though still insufficient for use in downstream measurements.

As such, we opted to manually label stems and segment leaves automatically given

information on the stem. Efficient segmentation of the mesh into individual organs

remains an outstanding issue for rapidly making accurate organ-level measurements.

Future development will also consider improvements to measurement techniques,
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particularly for leaf morphology. Implementing an approach that models the leaf

as a B-spline will better describe traits including leaf angle, leaf pitch, and leaf

curvature, and potentially improve the ability to formally describe plant architec-

ture obtained from images as an L-system, such as with OpenAlea and L-py, for

functional-structural plant modeling (Pradal et al., 2008; Boudon et al., 2012).
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