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ABSTRACT 

 

In this dissertation, a system based modeling and simulation were investigated for 

FPSO power system components and a few experimental results were evaluated to 

determine core losses in a synchronous generator under non-sinusoidal current. 

  Modeling and simulation results are presented to predict both the utility and the 

motor side challenges caused by different harmonic distortion levels. VFD was modeled 

as a rectifier and an inverter isolated by the DC link in the middle of the rectifier and the 

inverter in order to have faster and more accurate analysis of harmonics on both the utility 

and the motor side. Finite element analysis shows that reducing current harmonic level 

causes lower core losses in the machine.  

 Each component from the simulation, specifically synchronous generator, phase 

shifting transformer, multipulse rectifier, multilevel inverter, umbilical cable and 

induction motor, can be replaced or combined with any other topologies which is one of 

the biggest benefits of the system based modeling and simulation.  
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1. INTRODUCTION

Decreasing of the onshore oil and gas reserves pushed the oil companies to search 

for offshore reserves to fulfill their production needs. Although there are large reserves 

under the seabed, accessing them is much harder than accessing onshore reserves. Oil has 

been produced from offshore since the 1950s but oil exploration moved to deeper waters 

further from the shore in the 1970s; thus, floating production systems have started to be 

used. Floating, Production, Storage and Offloading (FPSO) systems are floating vessels 

located near oil platforms. A FPSO may produce up to 300,000 barrels of oil per day 

(BOPD) and it may store more than two million barrel of on-board oil in the vessel. In the 

beginning, converted tankers were used for floating oil production systems. 

Due to the development on the FPSO technology, more modern systems have been 

built. The offshore electrical generation and distribution design depends on the driver 

system selection. FPSOs include large rotating equipment such as large compressors, large 

pumps and large generators. The drivers for the large compressors and pumps must be 

determined before determining the power generation system [1]. The rotating components 

such as compressors and pumps used to be driven by gas turbines. However, the gas 

turbines are being replaced by electric motors such as induction motors.  In recent years, 

gas turbines have only been used for power generation. Variable frequency drive systems 

(VFDs) are becoming more popular to drive the large electric motors which are connected 

to the compressors and pumps on a FPSO. Although there are numerous benefits to 

installing VFDs, there are some disadvantages. Inrush current or voltages and high orders 



2 

of current harmonics are the main downsides of the VFDs [2]. These harmonics cause 

more core losses in both generators and motors. In this dissertation, core losses in a 

synchronous generator and induction motor are described with the finite element analysis 

(FEA) simulations and experimental studies. 

The VFD is located between the utility and the motors, and it includes a 

transformer, a rectifier, and an inverter. Multi-winding phase-shifting transformers allow 

the reduction of the harmonic levels produced by rectifiers. Transformers also limit the 

short circuit power which may be provided by the grid and they provide great isolation 

between the utility and semiconductors [2]. The transformer’s number of windings 

depends on the number of pulses of the rectifier and the level of the multilevel inverter. 

Umbilical cables are used to deliver the power to the motors located under the sea. 

These cables cannot be evaluated in the same way as onshore power distribution cables. 

Resonance issues are challenges to installing umbilical cables which causes motor starting 

issues [3]. 

Due to the size, cost and environmental challenges of the FPSO systems, 

simulation and smaller scale experimental analysis are important to predict future 

problems. In this study, the main power components from the generator to the motor 

shown in Figure 1 are simulated and the results are discussed. System based simulations 

simplify the improvement of each component, which can be replaced with new topologies. 

These main power components are only part of the FPSO power systems. The other power 

components are shown in a general electric schematic of a FPSO in Appendix A. 
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Figure 1: Main power system components 
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2. FLOATING PRODUCTION STORAGE AND OFFLOADING (FPSO)

PLATFORMS 

In recent years, FPSOs are becoming more popular with the oil industry as it tends 

to search for more offshore sources. These systems are designed to be an alternative to 

other types of offshore oil production systems such as fixed oil platforms. FPSOs are huge 

and costly floating vessels which can cost up to 1 billion dollars. They are equipped with 

the technology for separation and treatment of crude oil, gas and water. Produced fluid oil 

and gas from sub-sea arrive on board through flexible pipelines. FPSOs have a huge 

capacity for storage and are able to transfer stored oil and gas to the shore using shuttle 

tankers. Figure 2 shows a typical FPSO while transferring stored oil to a shuttle tanker. 

Figure 2: Typical FPSO while transferring oil to a shuttle tanker adapted from [4] 
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Figure 3: Gas turbines are used for power generation 

FPSOs are also grid free power supplies to oil production systems. Treated gas is 

used for power generation, and one of the biggest advantages of an FPSO is that produced 

gas is processed and used in gas turbines as shown in Figure 3. An FPSO can supply 

multiple oil platforms or mobile sub-sea oil pumps as shown in Figure 4. These oil 

production units need electrical power to inject water to the reserve and to pump the oil 

and gas to the earth’s surface. Subsea umbilical cables are used for energy distribution to 

the subsea and oil platforms.  The power cables and other flexible pipelines must be 

protected from damage due to the harsh offshore weather conditions. Therefore, turret 

mooring technology is used for FPSOs. 
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Figure 4: Multiple oil pumping systems can be supplied by an FPSO adapted from 

[4] 

2.1 Turret Mooring System 

All of the power cable and pipelines going to the oil platforms and sea-bed pumps 

go through the turret, which is attached to the hull of the vessel. The turret mooring system 

is an essential feature of an FPSO. The turret is moored to the seabed with chains, anchors, 

and wires. It also has a bearing system that allows the FPSO free 360° rotation around the 
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turret. Therefore, strong winds occurring offshore cannot force the subsea cables and 

pipelines to move and be damaged. Figure 5 shows the connection of the mooring chairs 

and anchors under the sea. 

Figure 5: Turret mooring system adapted from [4] 

2.2 Main Electric Power Components of an FPSO 

Most of the parts used for oil and gas production demand electrical power. Figure 

6 shows the electrical power components on a FPSO. The main equipment on a FPSO 

consists mostly of electrically driven systems such as compressors and pumps. Machine 
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drive systems, such as VFDs, increase the efficiency, availability and reliability [3]. 

However, VFDs includes many semiconductors, which produce high current harmonic 

distortions. These harmonic distortions produce different challenges on both the generator 

side and the motor side. 

The motor drive system is connected between the generator and the motors in order 

to adjust the desired voltage and current for the motors. The motors are connected to 

electrical submersible pump (ESP) systems which are able to pump the offshore oil and 

gas through umbilical subsea cables. The components of a simplified main power system 

are illustrated in Figure 7. Gas turbines are usually used as a prime mover for the 

generators on a FPSO. ESP systems are used to pump the oil and gas, and these pumps are 

usually operated with induction motors. 

Figure 6: Power system components on a FPSO adapted from [5] 
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Figure 7: Simplified power system components on a FPSO 
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3. POWER SYSTEM COMPONENTS

In this section, the main power system components of a FPSO; synchronous 

generator, phase-shifting transformer, VFD, subsea cable and induction motor as shown 

in Figure 8 will be described. 

Figure 8: The main power components used for this dissertation 

3.1 Synchronous Generator 

Synchronous generators are commonly used for power generation. They are high 

efficient electric machines. Generated waveform is synchronized with the rotor speed and 

the frequency can be easily calculated by f=N*P/120. Where P is the number of the poles 

and N is the speed of the rotor. Synchronous generator can be started by exciting the rotor 

field with a DC source. However, permanent magnet synchronous generators do not 

require a DC excitation. 
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Synchronous generators used for FPSOs are huge generators. They can be up to 

40-50 MW. In given electric schematic of the FPSO, 18 MW synchronous generator has 

been used. However, simulations and experimental results have been obtained on a smaller 

scale synchronous generator which will be described in following sections. 

Although synchronous generators are high efficient machines, the efficiency can 

be lower due to the high harmonic distortions at the output of the generators. Variable 

frequency drive used to drive induction motors on a FPSO are the main harmonic 

producers which cause higher copper and core losses in the synchronous generator. 

Therefore, determining harmonic content is very important in order to maintain generator 

efficiency at high values. 

3.2 Medium Voltage Variable Frequency Drives 

Variable frequency converters are connected as an interface between the utility 

supply and the induction motor. VFDs must be able to maintain the following 

requirements: adjusting the frequency to the required output speed, adjusting the output 

voltage in order to have constant air gap flux in constant torque region, and supplying 

continuous rated current at any frequency [6]. 

Medium voltage drives have voltage ratings from 2.3kV to 13.8kV, and they are 

mostly used for fan, compressor, and pump applications [7]. Although VFDs generate a 

large amount of harmonics and heat, they are widely used because of their economic and 

operation benefits. VFDs mostly provide economic benefits to fans and pumps. For 
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instance, when a pump runs at 80% of full speed, it uses around 50% of full load power. 

The other economic benefit is the reduction of maintenance when using a VFD; there is 

no need to use mechanical speed control gearboxes. 

VFDs basically consist of a rectifier and an inverter. The rectifier converts the AC 

supply voltage to a DC voltage at the output, and the inverter converts this DC voltage to 

an adjustable AC voltage and frequency. VFDs can be categorized as uncontrolled DC bus 

VFDs, which are shown in Figure 9, and controlled DC bus VFDs, which are shown in 

Figure 10.  For uncontrolled DC bus VFDs, diode rectifiers are used with a fixed DC 

voltage, and they are commonly used for motor drives. However, in controlled DC bus 

VFDs, the DC bus voltage is flexible and is controlled using semiconductors. 

Rectifiers produce high harmonic distortions and North American and European 

standards such as IEEE Standard 519-1992 limit the harmonic distortion level [8]. 

Therefore, multipulse rectifiers are commonly used in the most motor drive applications. 

Figure 9: Uncontrolled DC bus VFD 
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Figure 10: Controlled DC bus VFD 

3.3 Multipulse Diode Rectifier 

Harmonic requirements are the motivation for the use of multipulse diode rectifiers 

by most of the high-power drive manufacturers. These requirements are set by the 

harmonic standards [8]. Multipulse rectifiers are used with phase shifting transformers, 

which are able to reduce the current harmonic distortions. Some of the low-order 

harmonics generated by six pulse rectifiers are cancelled by those transformers. Increasing 

the pulse number of the rectifier reduces line current harmonics. 30-pulse rectifiers or 

more are rarely used in practice because increasing the number of pulses increases the cost 

of the transformers without significant performance improvement. Another advantage of 

the phase shifting transformer is to block the common-mode voltages generated by 
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rectifiers and inverters. This protects the motor terminals from the premature winding 

insulation failure caused by the common-mode voltages [9]. 

3.3.1 Six-Pulse Diode Rectifier 

A simplified model of a six-pulse rectifier is shown in Figure 11. 𝑣𝑎, 𝑣𝑏 and 𝑣𝑐 are 

the AC phase voltages. Assuming all diodes are ideal with no voltage drop and no loss. 

The phase voltages; 

𝑣𝑎 = √2𝑉𝑃𝐻𝑠𝑖𝑛(𝜔𝑡)

𝑣𝑏 = √2𝑉𝑃𝐻𝑠𝑖𝑛(𝜔𝑡 − 2𝜋/3)

𝑣𝑐 = √2𝑉𝑃𝐻𝑠𝑖𝑛(𝜔𝑡 − 4𝜋/3)

𝑉𝑃𝐻: rms phase voltage 

𝜔  : angular frequency 𝜔 = 2𝜋𝑓 
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Figure 11: Six pulse diode rectifier with a resistive load adapted from [9] 

The line to line voltage can be calculated as follows; 

𝑣𝑎𝑏 = 𝑣𝑎 − 𝑣𝑏 = √2𝑉𝐿𝐿𝑠𝑖𝑛(𝜔𝑡 + 𝜋/6)

𝑉𝐿𝐿: rms value of the line to line voltage 𝑉𝐿𝐿 = √3𝑉𝑃𝐻 

The average DC voltage, 𝑉𝑑𝑎𝑣𝑔 =
1

𝜋/3
∫ √2𝑉𝐿𝐿 sin(𝜔𝑡 + 𝜋/6)𝑑(𝜔𝑡) =

3√2

𝜋

𝜋/2

𝜋/6
𝑉𝐿𝐿 
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The DC voltage Vd has 6 pulses per cycle of the AC voltage source frequency, 

which is why it is called a six-pulse rectifier, and the phase current ia has 2 pulses per half 

cycle of the source frequency as shown in Figure 12. 

For six pulse rectifiers, the total harmonic distortion is too high, but it decreases as 

the pulse number of the rectifier increases. This will be discussed in following chapters. 

Figure 12: Six pulse diode rectifier waveforms with a resistive load adapted from 

[9] 
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3.3.2 Series Type of Multipulse Diode Rectifier 

Figure 13 shows the 12 pulse series type of diode rectifier, which is supplied by a 

phase shifting transformer. The transformer has two secondary windings for each phase 

in order to supply two series connected six pulse rectifiers. To achieve the desired phase 

shifting angle 𝛿 =
60

# 𝑜𝑓 𝑠𝑖𝑥 𝑝𝑢𝑙𝑠𝑒 𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑟𝑠
between secondary windings, the upper 

secondary windings are connected as a wye connection and the lower secondary windings 

are connected as a delta connection. If the rectifiers have more than 12 pulses, the phase 

shifting angle can be adjusted by making zigzag connections in the secondary windings of 

the transformer, which will be discussed later. Cd is the DC filter capacitance, which is 

usually selected to be sufficiently large to have no ripple in the DC voltage Vd. Simulation 

results for the primary side current waveforms and harmonic analysis will be discussed in 

following sections for the series type of the rectifier up to 36 pulses [9]. 
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Figure 13: Series type 12-pulse rectifier adapted from [9] 

3.3.3 Separate Type of Multipulse Diode Rectifier 

The difference from the series type of 12 pulse rectifier is that each six pulse 

rectifier is connected to different DC loads instead of a single DC load. These rectifiers 

are used with cascaded H-bridge multilevel inverter drives. The pulse number of the 

rectifier can be increased based on the desired multilevel inverter level. Each six pulse 

rectifier supplies an isolated DC voltage to cascaded H-bridge inverters. The phase 

shifting transformer again has six windings on the secondary side for a 12 pulse diode 

rectifier; the upper three windings are wye connected and the lower three windings are 

delta connected in order to achieve the desired phase shifting as shown in Figure 14 [9]. 
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Figure 14: Separate type 12-pulse diode rectifier adapted from [9] 

3.4 Phase-Shifting Transformers 

Phase-shifting transformers are designed for non-linear loads in order to reduce 

current harmonic distortions. They usually have multi-windings in the secondary side of 

the transformer, thus multiphase nonlinear loads can be connected. Using phase-shifting 

transformers is mandatory for multipulse diode rectifiers. They provide three main 

advantages: electric isolation between the utility supply and the rectifier, harmonic 

cancellation by phase displacement, and a proper secondary side voltage [9]. 
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3.4.1 Harmonic Current Cancellation 

This section explains the phase displacement of the current harmonics when the 

secondary side of the phase shifting transformer is referred to the primary side. This 

method shows that certain current harmonics are cancelled by the phase displacement. 

Figure 15 shows a nonlinear load connected to a delta/wye transformer. This nonlinear 

load can be a six pulse rectifier [9]. 

Assuming windings turns ratio, 
𝑁1

𝑁2
= √3 

the voltage ratio becomes, 
𝑉𝐴𝐵

𝑉𝑎𝑏
= √3 

The line currents of the non-resistive load can be expressed by the following 

equations for a balanced three-phase system. 

𝑖𝑎 = ∑ 𝐼𝑛 sin(𝑛𝜔𝑡) …

∞

𝑛=1,5,7,11,13,…

𝑖𝑏 = ∑ 𝐼𝑛 sin(𝑛(𝜔𝑡 − 120°)) …

∞

𝑛=1,5,7,11,13,…

𝑖𝑐 = ∑ 𝐼𝑛 sin(𝑛(𝜔𝑡 − 240°)) …

∞

𝑛=1,5,7,11,13,…
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Figure 15: Harmonic currents in both sides of the transformer adapted from [9] 

𝑖𝑎𝑝
′  and 𝑖𝑏𝑝

′  are the secondary side currents referred to the primary side of the phase shifting

transformer and 𝐼𝑛 is the peak value of the nth order current harmonic. 

𝑖𝑎𝑝
′ = 𝑖𝑎

𝑁2

𝑁1
=

1

√3
(𝐼1 sin( 𝜔𝑡) + 𝐼5 sin( 5𝜔𝑡) + 𝐼7 sin( 7𝜔𝑡) + 𝐼11 sin( 11𝜔𝑡)

+ 𝐼13 sin( 13𝜔𝑡) + ⋯)

𝑖𝑏𝑝
′ = 𝑖𝑎

𝑁2

𝑁1
=

1

√3
(𝐼1 sin( 𝜔𝑡 − 120°) + 𝐼5 sin( 5𝜔𝑡 − 240°) + 𝐼7 sin( 7𝜔𝑡 − 120°)

+ 𝐼11 sin( 11𝜔𝑡 − 240°) + 𝐼13 sin( 13𝜔𝑡 − 120°) + ⋯)

The primary current can be described as 

𝑖𝑎
′ = 𝑖𝑎𝑝

′ − 𝑖𝑏𝑝
′ (𝐼1 sin ( 𝜔𝑡 + 30°) + 𝐼5 sin ( 5𝜔𝑡 − 30°) + 𝐼7 sin ( 7𝜔𝑡 + 30°)

+ 𝐼11 sin ( 11𝜔𝑡 − 30°) + 𝐼13 sin ( 13𝜔𝑡 + 30°) + ⋯)
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𝑖𝑎
′ = ∑ 𝐼𝑛 sin(𝑛𝜔𝑡 − 𝛿) + ∑ 𝐼𝑛 sin(𝑛𝜔𝑡 + 𝛿)

∞

𝑛=5,11,17,23,…

∞

𝑛=1,7,13,19,…

Positive sequence harmonics Negative sequence harmonics 

When the secondary side currents are referred to the primary side of the phase-

shifting transformer, the relationship between the phase angles of the harmonic current 

can be expressed as;  

∠𝑖𝑎𝑛
′ = ∠𝑖𝑎𝑛 − 𝛿 for n = 1,7,13,19…   Positive sequence harmonics 

∠𝑖𝑎𝑛
′ = ∠𝑖𝑎𝑛 + 𝛿 for n = 5,11,17,23…  Negative sequence harmonics 

The above equations are valid for any values of 𝛿. 

As explained before, multipulse rectifiers are used with phase shifting 

transformers. Increasing the pulse number of the multipulse rectifier moves the dominant 

current harmonics to higher orders. The following example investigates the harmonic 

cancellation of the 12 pulse rectifier by a phase shifting transformer as shown in Figure 

16 [9]. 
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Figure 16: Harmonic current cancellation of 12 pulse rectifier adapted from [9] 

Assuming the voltage ratio is 
𝑉𝐴𝐵

𝑉𝑎𝑏
=

𝑉𝐴𝐵

𝑉𝑎̃𝑏̃

= 2 and the phase shifting angle 𝛿 of the 

secondary side windings are 0° and 30° respectively because of the wye/delta connection 

in the secondary side of the transformer, the secondary side line currents can be described 

as 

𝑖𝑎 = ∑ 𝐼𝑛 sin(𝑛𝜔𝑡) …

∞

𝑛=1,5,7,11,13,…

𝑖𝑎̃ = ∑ 𝐼𝑛 sin(𝑛(𝜔𝑡 + 𝛿) …

∞

𝑛=1,5,7,11,13,…
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The phase angles of all the harmonic currents of the primary side referred current 

𝑖𝑎
′  remain the same because of the wye/wye connection. However, they change for the 

referred current 𝑖𝑎̃
′  because of delta connection.

𝑖𝑎
′ =

1

2
(𝐼1 sin( 𝜔𝑡) + 𝐼5 sin( 5𝜔𝑡) + 𝐼7 sin( 7𝜔𝑡) + 𝐼11 sin( 11𝜔𝑡)

+ 𝐼13 sin( 13𝜔𝑡) + ⋯)

𝑖𝑎̃
′ =

1

2
( ∑ 𝐼𝑛 sin(𝑛(𝜔𝑡 + 𝛿) − 𝛿) + ∑ 𝐼𝑛 sin(𝑛(𝜔𝑡 + 𝛿) + 𝛿)

∞

𝑛=5,11,17,…

∞

𝑛=1,7,13,…

) 

For 𝛿 = 30° 

𝑖𝑎̃
′ =

1

2
(𝐼1 sin(𝜔𝑡) − 𝐼5 sin(5𝜔𝑡) − 𝐼7 sin(7𝜔𝑡) + 𝐼11 sin(11𝜔𝑡) + 𝐼13 sin(13𝜔𝑡) − ⋯)

The primary side line current can be calculated as 

𝑖𝐴 = 𝑖𝑎
′ + 𝑖𝑎̃

′ = 𝐼1 sin 𝜔𝑡 + 𝐼11 sin 𝜔𝑡 + 𝐼13 sin 𝜔𝑡 + 𝐼23 sin 𝜔𝑡 + ⋯

where the dominant current harmonics are the 11th and 13th, and the 5th, 7th, 17th, and 19th 

harmonic currents are 180° out of phase, which means that they are cancelled. The 

following sections will give more examples of this harmonic cancellation with simulation 

results. 
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3.4.2 Mathematical Model of the Three-Phase Transformer 

There are three windings in each side of the transformer: ap, bp, and cp represent 

primary side windings and as, bs and cs represent secondary side windings of the 

transformer a shown in Figure 17. 

Figure 17: Three-phase transformer windings 

Terminal voltages equations 

𝑉𝑎𝑝 = 𝑟𝑎𝑝𝑖𝑎𝑝 +
𝑑λ𝑎𝑝

𝑑𝑡

𝑉𝑏𝑝 = 𝑟𝑏𝑝𝑖𝑏𝑝 +
𝑑λ𝑏𝑝

𝑑𝑡
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𝑉𝑐𝑝 = 𝑟𝑐𝑝𝑖𝑐𝑝 +
𝑑λ𝑐𝑝

𝑑𝑡

𝑉𝑎𝑠 = 𝑟𝑎𝑠𝑖𝑎𝑠 +
𝑑λ𝑎𝑠

𝑑𝑡

𝑉𝑏𝑠 = 𝑟𝑏𝑠𝑖𝑏𝑠 +
𝑑λ𝑏𝑠

𝑑𝑡

𝑉𝑐𝑠 = 𝑟𝑐𝑠𝑖𝑐𝑠 +
𝑑λ𝑐𝑠

𝑑𝑡

Flux linkages for primary side windings 

λ𝑎𝑝 = (𝐿𝑙𝑝 + 𝐿𝑎𝑝𝑎𝑝)𝑖𝑎𝑝 + 𝐿𝑎𝑝𝑏𝑝𝑖𝑏𝑝 + 𝐿𝑎𝑝𝑐𝑝𝑖𝑐𝑝 + 𝐿𝑎𝑝𝑎𝑠𝑖𝑎𝑠 + 𝐿𝑎𝑝𝑏𝑠𝑖𝑏𝑠 + 𝐿𝑎𝑝𝑐𝑠𝑖𝑐𝑠 

λ𝑏𝑝 = (𝐿𝑙𝑝 + 𝐿𝑏𝑝𝑏𝑝)𝑖𝑏𝑝 + 𝐿𝑎𝑝𝑏𝑝𝑖𝑎𝑝 + 𝐿𝑏𝑝𝑐𝑝𝑖𝑐𝑝 + 𝐿𝑏𝑝𝑎𝑠𝑖𝑎𝑠 + 𝐿𝑏𝑝𝑏𝑠𝑖𝑏𝑠 + 𝐿𝑏𝑝𝑐𝑠𝑖𝑐𝑠 

λ𝑐𝑝 = (𝐿𝑙𝑝 + 𝐿𝑐𝑝𝑐𝑝)𝑖𝑐𝑝 + 𝐿𝑎𝑝𝑐𝑝𝑖𝑎𝑝 + 𝐿𝑏𝑝𝑐𝑝𝑖𝑏𝑝 + 𝐿𝑐𝑝𝑎𝑠𝑖𝑎𝑠 + 𝐿𝑐𝑝𝑏𝑠𝑖𝑏𝑠 + 𝐿𝑐𝑝𝑐𝑠𝑖𝑐𝑠 

Flux linkages for secondary side windings, 

λ𝑎𝑠 = (𝐿𝑙𝑠 + 𝐿𝑎𝑠𝑎𝑠)𝑖𝑎𝑠 + 𝐿𝑎𝑠𝑏𝑠𝑖𝑏𝑠 + 𝐿𝑎𝑠𝑐𝑠𝑖𝑐𝑠 + 𝐿𝑎𝑠𝑎𝑝𝑖𝑎𝑝 + 𝐿𝑎𝑠𝑏𝑝𝑖𝑏𝑝 + 𝐿𝑎𝑠𝑐𝑝𝑖𝑐𝑝

λ𝑏𝑠 = (𝐿𝑙𝑠 + 𝐿𝑏𝑠𝑏𝑠)𝑖𝑏𝑠 + 𝐿𝑎𝑠𝑏𝑠𝑖𝑎𝑠 + 𝐿𝑏𝑠𝑐𝑠𝑖𝑐𝑠 + 𝐿𝑏𝑠𝑎𝑝𝑖𝑎𝑝 + 𝐿𝑏𝑠𝑏𝑝𝑖𝑏𝑝 + 𝐿𝑏𝑠𝑐𝑝𝑖𝑐𝑝

λ𝑐𝑠 = (𝐿𝑙𝑠 + 𝐿𝑐𝑠𝑐𝑠)𝑖𝑐𝑠 + 𝐿𝑎𝑠𝑐𝑠𝑖𝑎𝑠 + 𝐿𝑏𝑠𝑐𝑠𝑖𝑏𝑠 + 𝐿𝑐𝑠𝑎𝑝𝑖𝑎𝑝 + 𝐿𝑐𝑠𝑏𝑝𝑖𝑏𝑝 + 𝐿𝑐𝑠𝑐𝑝𝑖𝑐𝑝
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𝐿𝑙𝑝    : self inductance 

𝐿𝑎𝑝𝑎𝑝: magnetizing inductance    

𝐿𝑎𝑝𝑏𝑝: mutual inductance 

𝐿𝑎𝑝𝑎𝑝 = 𝐿𝑏𝑝𝑏𝑝 = 𝐿𝑐𝑝𝑐𝑝 = 𝐾𝑠𝑁𝑝
2 =̂ 𝐿𝑠𝑝

𝐿𝑎𝑝𝑏𝑝 = 𝐿𝑎𝑝𝑐𝑝 = 𝐿𝑏𝑝𝑐𝑝 = −𝐾𝑚𝑁𝑝
2 =̂ −𝐿𝑚𝑝

𝐿𝑎𝑠𝑎𝑠 = 𝐿𝑏𝑠𝑏𝑠 = 𝐿𝑐𝑠𝑐𝑠 = 𝐾𝑠𝑁𝑠
2 =̂ 𝐿𝑠𝑠

𝐿𝑎𝑠𝑏𝑠 = 𝐿𝑎𝑠𝑐𝑠 = 𝐿𝑏𝑠𝑐𝑠 = −𝐾𝑚𝑁𝑠
2 =̂ −𝐿𝑚𝑠

𝐿𝑎𝑝𝑎𝑠 = 𝐿𝑏𝑝𝑏𝑠 = 𝐿𝑐𝑝𝑐𝑠 = 𝐾𝑠𝑁𝑝𝑁𝑠 =̂ 𝐿𝑠𝑝𝑠 

𝐿𝑎𝑝𝑏𝑠 = 𝐿𝑎𝑝𝑐𝑠 = 𝐿𝑐𝑝𝑏𝑠 = −𝐾𝑚𝑁𝑝𝑁𝑠 =̂ −𝐿𝑚𝑝𝑠 

Voltage equations become 

𝑉𝑎𝑝 = 𝑟𝑝𝑖𝑎𝑝 + 𝐿𝑙𝑝

𝑑𝑖𝑎𝑝

𝑑𝑡
+ 𝐿𝑠𝑝

𝑑𝑖𝑎𝑝

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑏𝑝

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑐𝑝

𝑑𝑡
+ 𝐿𝑠𝑝

𝑑𝑖𝑎𝑠
′

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑏𝑠
′

𝑑𝑡

−
1

2
𝐿𝑠𝑝

𝑑𝑖𝑐𝑠
′

𝑑𝑡

𝑉𝑏𝑝 = 𝑟𝑝𝑖𝑏𝑝 + 𝐿𝑙𝑝

𝑑𝑖𝑏𝑝

𝑑𝑡
+ 𝐿𝑠𝑝

𝑑𝑖𝑏𝑝

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑎𝑝

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑐𝑝

𝑑𝑡
+ 𝐿𝑠𝑝

𝑑𝑖𝑏𝑠
′

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑎𝑠
′

𝑑𝑡

−
1

2
𝐿𝑠𝑝

𝑑𝑖𝑐𝑠
′

𝑑𝑡
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𝑉𝑐𝑝 = 𝑟𝑝𝑖𝑐𝑝 + 𝐿𝑙𝑝

𝑑𝑖𝑐𝑝

𝑑𝑡
+ 𝐿𝑠𝑝

𝑑𝑖𝑐𝑝

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑎𝑝

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑏𝑝

𝑑𝑡
+ 𝐿𝑠𝑝

𝑑𝑖𝑐𝑠
′

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑎𝑠
′

𝑑𝑡

−
1

2
𝐿𝑠𝑝

𝑑𝑖𝑏𝑠
′

𝑑𝑡

𝑉𝑎𝑠
′ = 𝑟𝑠

′𝑖𝑎𝑠
′ + 𝐿𝑙𝑠

′
𝑑𝑖𝑎𝑠

′

𝑑𝑡
+ 𝐿𝑠𝑝

𝑑𝑖𝑎𝑠
′

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑏𝑠
′

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑐𝑠
′

𝑑𝑡
+ 𝐿𝑠𝑝

𝑑𝑖𝑎𝑝

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑏𝑝

𝑑𝑡

−
1

2
𝐿𝑠𝑝

𝑑𝑖𝑐𝑝

𝑑𝑡

𝑉𝑏𝑠
′ = 𝑟𝑠

′𝑖𝑏𝑠
′ + 𝐿𝑙𝑠

′
𝑑𝑖𝑏𝑠

′

𝑑𝑡
+ 𝐿𝑠𝑝

𝑑𝑖𝑏𝑠
′

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑎𝑠
′

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑐𝑠
′

𝑑𝑡
+ 𝐿𝑠𝑝

𝑑𝑖𝑏𝑝

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑎𝑝

𝑑𝑡

−
1

2
𝐿𝑠𝑝

𝑑𝑖𝑐𝑝

𝑑𝑡

𝑉𝑐𝑠
′ = 𝑟𝑠

′𝑖𝑐𝑠
′ + 𝐿𝑙𝑠

′
𝑑𝑖𝑐𝑠

′

𝑑𝑡
+ 𝐿𝑠𝑝

𝑑𝑖𝑐𝑠
′

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑎𝑠
′

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑏𝑠
′

𝑑𝑡
+ 𝐿𝑠𝑝

𝑑𝑖𝑐𝑝

𝑑𝑡
−

1

2
𝐿𝑠𝑝

𝑑𝑖𝑎𝑝

𝑑𝑡

−
1

2
𝐿𝑠𝑝

𝑑𝑖𝑏𝑝

𝑑𝑡

Since current equations 

𝑖𝑎𝑝 + 𝑖𝑏𝑝 + 𝑖𝑐𝑝 = 0 ==> 𝑖𝑎𝑝 = −(𝑖𝑏𝑝 + 𝑖𝑐𝑝) 

𝑖𝑎𝑠
′ + 𝑖𝑏𝑠

′ + 𝑖𝑐𝑠
′ = 0 ==> 𝑖𝑎𝑠

′ = −(𝑖𝑏𝑠
′ + 𝑖𝑐𝑠

′ )
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Final voltage equations 

𝑉𝑎𝑝 = 𝑟𝑝𝑖𝑎𝑝 + 𝐿𝑙𝑝

𝑑𝑖𝑎𝑝

𝑑𝑡
+

3

2
𝐿𝑠𝑝

𝑑𝑖𝑎𝑝

𝑑𝑡
+

3

2
𝐿𝑠𝑝

𝑑𝑖𝑎𝑠
′

𝑑𝑡

𝑉𝑏𝑝 = 𝑟𝑝𝑖𝑏𝑝 + 𝐿𝑙𝑝

𝑑𝑖𝑏𝑝

𝑑𝑡
+

3

2
𝐿𝑠𝑝

𝑑𝑖𝑏𝑝

𝑑𝑡
+

3

2
𝐿𝑠𝑝

𝑑𝑖𝑏𝑠
′

𝑑𝑡

𝑉𝑐𝑝 = 𝑟𝑝𝑖𝑐𝑝 + 𝐿𝑙𝑝

𝑑𝑖𝑐𝑝

𝑑𝑡
+

3

2
𝐿𝑠𝑝

𝑑𝑖𝑐𝑝

𝑑𝑡
+

3

2
𝐿𝑠𝑝

𝑑𝑖𝑐𝑠
′

𝑑𝑡

𝑉𝑎𝑠
′ = 𝑟𝑠

′𝑖𝑎𝑠
′ + 𝐿𝑙𝑠

′
𝑑𝑖𝑎𝑠

′

𝑑𝑡
+

3

2
𝐿𝑠𝑝
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𝑑𝑖𝑏𝑝

𝑑𝑡

𝑉𝑐𝑠
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′𝑖𝑐𝑠
′ + 𝐿𝑙𝑠

′
𝑑𝑖𝑐𝑠

′

𝑑𝑡
+
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𝐿𝑠𝑝
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′

𝑑𝑡
+

3

2
𝐿𝑠𝑝

𝑑𝑖𝑐𝑝

𝑑𝑡

3.4.3 Mathematical Model of the Multi-Winding Phase-Shifting Transformer 

In this study, three-phase in the primary side and 18-phase in the secondary side 

phase-shifting transformer is modeled. 18-phase in the secondary side supplies 36-pulse 

rectifier, each three phases are connected to each six pulse diode rectifiers. All windings 

are located in the same core as shown in Figure 18. Zigzag connection is used for the 

secondary side windings in order to achieve required phase shifting angle between the 

windings. In zigzag connection two windings needed for each secondary phase. 
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Figure 18: Multi-winding phase-shifting transformer windings 
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Same voltage equations are used for the calculations but each two secondary side 

windings are zigzag connected as shown in Figure 19. 𝑉𝑎𝑥1, 𝑉𝑏𝑥1, 𝑎𝑛𝑑 𝑉𝑐𝑥1 are the new 

secondary side voltages for three phases and it continues up to 𝑉𝑎𝑥6, 𝑉𝑏𝑥6, 𝑎𝑛𝑑 𝑉𝑐𝑥6. 

They must be in same voltage level but phase-shifted. As mentioned before phase 

shifting angle 𝛿 = 60
6⁄ = 10° for the 18-phase phase-shifting transformer. Secondary

side voltages waveform example is shown in Figure 20. 

𝑉𝑎𝑥1 = 𝑉𝑎𝑠1 + 𝑉𝑐𝑠2 

𝑉𝑏𝑥1 = 𝑉𝑏𝑠1 + 𝑉𝑎𝑠2 

𝑉𝑐𝑥1 = 𝑉𝑐𝑠1 + 𝑉𝑏𝑠2 

: 

: 

: 

𝑉𝑎𝑥6 = 𝑉𝑎𝑠11 + 𝑉𝑐𝑠12 

𝑉𝑏𝑥6 = 𝑉𝑏𝑠11 + 𝑉𝑎𝑠12 

𝑉𝑐𝑥6 = 𝑉𝑐𝑠11 + 𝑉𝑏𝑠12 
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Figure 19: Zigzag winding connection 

Figure 20: Secondary side voltages of the 18-phase phase-shifting transformer 
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3.5 Multilevel Inverter 

Inverters are used to convert DC power to AC power of desired voltage and 

frequency. Controlling the switches of the inverter, any required AC voltage and 

frequency can be obtained at the output. Multilevel inverters are able to provide required 

AC voltage level using multiple DC sources as an input. In recent years, multilevel 

inverters have become more popular especially for motor drive systems due to their high 

power ratings, high efficiency and lower switching losses [10]. There are several 

multilevel inverter topologies but diode-clamped multilevel inverters, flying capacitor 

multilevel inverters and cascaded H-bridge multilevel inverters are most commonly used 

for motor drive applications. 

3.5.1 Diode-Clamped Multilevel Inverters 

Diode-clamped multilevel inverter is one of the well-known multilevel inverter 

topologies. The diodes are used as clamping devices to clamp the dc input voltage in order 

to produce AC voltage at the output [9, 10]. A three phase three-level diode clamped 

multilevel inverter is shown in Figure 21. DZ1 and DZ2 are clamping diodes and S1, S2, S3 

and S4 are the active switches with the anti-parallel diodes D1, D2, D3 and D4. When S2 

and S3 are on, output of phase A is connected to neutral point  Z and the DC voltage across 

each capacitor is E which is normally equal to half of Vd. 
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Figure 21: Three-level diode-clamped multilevel inverter adapted from [9] 

Table 1 shows the switching states of the phase A. When switching states P and N 

define upper and lower two switches respectively, switching state O represents inner two 

switches. When both upper switches are on, output voltage vaz is +E and when lower two 

switches are on, output voltage vaz is –E. Output voltage is zero while inner two switches 

are on. The direction of load current iA decides which clamping diodes will be on or off. 

For a positive load current, upper clamping diode DZ1 is on and for a negative load current, 

lower clamping diode DZ2 is on. 

Table 1: Switching states adapted from [9] 

Switching 

States 

Device Switching Status for Phase A Inverter terminal 

Voltage 

VAZ 
S1 S2 S3 S4 

P On On Off Off E 

O Off On On Off 0 

N Off Off On On -E 
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Figure 22 shows an example of the switching states, gate signals and inverter 

output voltages of the three-level diode clamped multilevel inverter. Vg1, Vg2, Vg3 and Vg4 

are gate signals for the switches. The gate signals can be generated by different modulation 

techniques such as carrier-based modulation. Terminal voltage VAZ has three level as +E, 

0 and –E. Terminal voltages of all three phases are balanced with a 2𝜋/3 phase shifting 

angle and line-to-line voltage has 5 voltage levels as shown in Figure23 [9]. 

Figure 22: Terminal voltage, switching states and gate signals adapted from [9] 
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Figure 23: Inverter output voltages adapted from [9] 

3.5.2 Flying-Capacitor Multilevel Inverters  

Figure 24 shows a 5-level flying capacitor multilevel inverter. There are four pair 

of switches and eight switches in total for each leg. Each pair has individual gate signal. 

For instance, switches 𝑆1, 𝑆1
′  are one pair and one gate signal for both these two switches 

and 4 individual gate signals for switches in each leg [9]. 
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Figure 24: 5-level flying capacitor multilevel inverter adapted from [9] 

The output voltage of the 5-level flying capacitor multilevel inverter has 5 voltage 

levels as shown in Figure 25. When the switches S1, S2, S3 and S4 are on, phase voltage 

VAN is 4E. However, there are 4 sets of different switching states for voltage level of 3E 

and 1E and 6 sets of different switching states for voltage level of 2E as shown in Table 

2. The switching frequency is set to 720 Hz for each switch therefore, the equivalent

inverter switching frequency is 2880 Hz which is four times of the device switching 

frequency. Although flying-capacitor multilevel inverters lower the THD, there are some 

limitations of these type of multilevel configuration. They need several capacitors and 

their discharge units. Moreover, capacitor voltage balancing is also challenging. 

Therefore, flying-capacitor multilevel inverters are not commonly used for drive systems 

[9]. 
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Figure 25: Voltage waveforms of the 5-level flying capacitor multilevel inverter [9] 

Table 2: Switching states of 5-level flying capacitor multilevel inverter [9] 
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3.5.3 Cascaded H-Bridge Multilevel Inverters 

Cascaded H-bridge multilevel inverters are one of the most popular multilevel 

inverter used for medium voltage motor drive systems [9, 11]. Figure 26 shows a single-

phase H-bridge power cell of inverter. Multiple of these power cells are used in order to 

build cascaded H-bridge multilevel inverter. Each cell needs isolated DC supplies which 

are the outputs of the multipulse diode rectifiers explained in section 3.3. Each leg includes 

two IGBT switching devices. 

Figure 26: A single phase H-bridge cell adapted from [9] 

Unipolar pulse-width modulation (PWM) is usually used for gate signals. Two 

modulating sinusoidal signals are compared with the triangular carrier 𝑣𝑟 in order to 

generate two gate signals for the upper switches S1 and S3 as shown in Figure 27. 
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Modulating sinusoidal signals have same magnitude and amplitude but 180° out of phase. 

For the example, switching frequency is 900 Hz. Dominant harmonic orders are 

2𝑚𝑓 −
+1 𝑎𝑛𝑑 2𝑚𝑓 −

+3 𝑎𝑡 𝑡ℎ𝑒 output voltage of the inverter  which means that dominant

harmonics are neighbor to 1800 Hz as shown in Figure 28. 

Figure 27: PWM waveforms adapted from [9] 
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Figure 28: Harmonic spectrum adapted from [9] 

Figure 29 shows an example of three-phase five-level cascaded H-bridge 

multilevel inverter. The level of the inverter can be calculated 

𝑚 = 2𝐻 + 1 

where m is the level number and H is the number of H-bridge cells for one phase. 

Phase shifting between the H-bridge cells can be calculated 

𝛿 = 360°/(𝑚 − 1) 
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Figure 29: An example of a five-level H-bridge cascaded multilevel inverter 

adapted from [9] 

3.5.4 Comparing Multilevel Inverter Topologies 

All these multilevel inverter topologies have some advantages and disadvantages. 

For the same input voltage, double inverter output voltage can be obtained from cascaded 

H-bridge multilevel inverter as compared to other two topologies. Moreover, cascaded H-

bridge multilevel inverters do not include any flying capacitors and clamping diodes which 

lower the size and cost. 
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Cascaded H-bridge multilevel inverter topology has the advantage of weight and 

cost as compared to the other two multilevel inverter topologies. Figure 30 shows the 

weight comparison of the 5-level multilevel topologies and Figure 31 shows the cost 

comparison as well [12]. 

Figure 30: Weight comparison between multilevel inverter topologies 
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Figure 31: Cost comparison between multilevel inverter topologies 

3.6 Subsea Umbilical Cable 

Subsea umbilical cables are widely used for off-shore oil platforms. Traditional 

transmission lines longer than 250 km are known as long lines. Although, subsea cables 

can be up to 80 km long, they are called as long cables. Long cable can be modeled with 

several π-sections as shown in Figure 32. Shunt capacitors can be ignored for low 

frequencies. However, they should not be ignored for drive systems because of their high 

switching frequencies [8]. 
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Figure 32: Long line equivalent circuit adapted from [8] 

3.6.1 Modeling the Cable 

Transmission lines are analyzed by lumped parameters in order to approximate the 

real line systems. The line can be modelled by T-sections or π-sections [13]. In this study, 

π-section model has been used for all simulations and all analysis has been done using 

ANSYS Simplorer and MATLAB Simulink. 

where, 

R: total resistance, 

X: total inductive reactance, 

B: total susceptance 

2𝑁2 ≫ |𝑗𝐵 ∗ (𝑅 + 𝑗𝑋)|
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N: number of the π-sections 

In figure 33, curve has been obtained from the equation above and curve b is for 

adequate representation [13]. 10 π-sections have been applied for a 5 km cable  for 

simulation. 

Figure 33: Number of π-sections adapted from [13] 

In this study, General Cable Exzhellent XXI has been chosen as shown in Figure 

34. This cable can supply three different three-phase systems but only one three-phase has

been used for the simulations. Figure 35 shows the cross-section of the coaxial cable in 

order to calculate the inductance parameters. 
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Figure 34: Umbilical subsea cable adapted from [14] 

Figure 35: Cross-section of a coaxial cable adapted from [14] 
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Internal inductance of the cable can be calculated as 

𝐿𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 =
𝜇0

8𝜋
 𝐻/𝑚 

External inductance of the cable can be calculated as 

𝐿𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 =
𝜇0

2𝜋
𝑙𝑛

𝑟𝑠

𝑟𝑤

[𝐻/𝑚] 

where, 

K= 1  

S= distance between conductor of cable axes 

rw: wire radius 

Mutual inductance can be calculated as 

𝐿𝑚𝑢𝑡𝑢𝑎𝑙 =
𝜇0

2𝜋
𝑙𝑛

(𝐾𝑥𝑆)

𝑟𝑤

[𝑚𝐻/𝑘𝑚] 
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3.6.2 Skin Effect 

Alternating current tends to flow on the skin of the cable. Due to the higher 

frequency harmonics caused by VFDs, skin effect should be accounted for the cable model 

for drive systems. For the modeling of skin effect, ladder branch method has been used as 

shown in Figure 36 and an example of MATLAB Simulink model of the cable is given in 

Figure 37. x is found as √10 and additional branches can be added for each decade of the 

frequency which can be calculated as in Table 3 [15]. 

Figure 36: R-L Ladder adapted from [15] 

Figure 37: A part of the umbilical cable modeled in MATLAB Simulink 
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Table 3: Skin effect R and L factors adapted from [15] 

# of Branches R1 L1 

1 RDC Lint 

2 1.32 RDC 1.68 Lint 

3 1.42 RDC 1.94 Lint 

4 1.45 RDC 2.03 Lint 

5 1.457 RDC 2.06 Lint 

6 1.461 RDC 2.07 Lint 

3.6.3 Calculating Cable Parameters for Each π-Sections 

Cable parameters have been calculated for each π-sections for a 5 km cable from 

Table 4 [14]. 

Table 4: Cable parameters 

RDC 0.124 Ω/km 

Lint 50 μH/km 

Lmut 316 μH/km 

C 0.252 μF/km 

𝑅𝐷𝐶−𝜋 =
𝑟𝑥𝐿

10
= 0.062 𝛺/𝜋 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 
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𝐿𝜋 =
(𝑙𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝑙𝑚𝑢𝑡𝑢𝑎𝑙)𝑥𝐿

10
= (25 + 158) 𝜇𝐻/𝜋 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

𝐶𝜋 =
𝑐𝑥𝐿

10
= 0.126 𝜇𝐹/𝜋 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

For the ladder model, 3 branches have been calculated 

𝑅1 = 1.42 × 𝑅𝐷𝐶 = 0.08804 𝛺 

𝑅2 = 𝑅1 × 𝑥 = 0.27841 𝛺 

𝑅3 = 𝑅1 × 𝑥2  = 0.8804 𝛺

𝐿1 = 1.94 × 𝐿𝑖𝑛𝑡 = 48.5 𝜇𝐻 

𝐿2 = 𝐿1/𝑥 = 15.337 𝜇𝐻 

𝐿3 = 𝐿1/𝑥2 = 4.85 𝜇𝐻

Shunt capacitors have been calculated as 

𝐶1 = 𝐶2 =
𝐶𝜋

2
= 0.063 𝜇𝐹 
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3.7 Induction Motor 

Induction motors are commonly used in oil pumping systems due to its advantages. 

There are the some advantages of induction motors; 

 low cost

 simple and almost unbreakable

 less maintenance required

 higher power factor

 high efficiency

Induction motors are connected to electrical submersible pumps (ESP) for oil 

production in offshore as shown in Figure 38. They can be driven by VFDs as explained 

in previous sections. Due to producing high harmonic distortion of the VFDs, there are 

some issues occur in induction motors such as more copper and core losses, motor starting 

issues and voltage ripple. In this study, only core losses have been analyzed and other 

issues have left as a future work. These induction motors designed for FPSOs are generally 

large machines and can be up to 40 MW. However, simulation results have been obtained 

on a smaller scale induction motor which will be described in following sections. 
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Figure 38: Electrical Submersible Pump adapted from PFT [16] 
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4. HARMONIC ANALYSIS

Due to DC link in the middle of the rectifier and the inverter, harmonic analysis 

can be presented as utility side harmonics caused by the multipulse rectifier and motor 

side harmonics caused by multilevel inverter. 

4.1 Multipulse Diode Rectifier Harmonics 

Six-pulse diode rectifier causes high order current harmonics on the utility side. 

Due to the limitation of current harmonic distortion by IEEE Standard 519-1992, rectifier 

pulse number is increased in order to keep harmonic distortion in the limits. The DC link 

is connected to a resistive load for all following diode rectifier simulations and multipulse 

diode rectifiers are series connected. Secondary side windings are zigzag connected to 

have desired phase shifting for all rectifier pulse levels. 

Figure 39 shows a six pulse diode rectifier which is connected to a synchronous 

generator through a delta/wye connected transformer and Figure 40 shows the primary 

side current waveform. 3rd harmonic cancelled by the transformer thus; 5th and 7th 

harmonics are the dominant harmonics as shown in Figure 41. While 22% THD occurs on 

the primary side windings, 29% THD occurs on the secondary side windings. 
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Figure 39: Six pulse rectifier is connected to a generator 

Figure 40: Primary side current waveform of the six pulse rectifier 

Figure 41: Current harmonic order of the six pulse rectifier 
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Two six-pulse diode rectifiers are connected to series to see the effect of the 12-

pulse diode rectifier on the primary side windings of the phase shifting transformer as 

shown in Figure 42. Phase shifting angle 𝛿 = 60
2⁄ = 30° between the secondary side

windings. Figure 43 shows the primary side current waveform. 11th and 13th are the 

dominant harmonics while cancelling low order harmonics with the phase displacement 

in the transformer as shown in Figure 44, and THD is about 12%. 

Figure 42: Twelve pulse rectifier is connected to a generator 
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Figure 43: Primary side current waveform of the twelve pulse rectifier 

Figure 44: Current harmonic order of the twelve pulse rectifier 

18-pulse diode rectifier is built by 3 series connected diode rectifiers as shown in 

Figure 45. Required phase shifting angle 𝛿 = 60
3⁄ = 20° between the zig-zag connected

secondary side windings of the phase shifting transformer. Primary side current waveform 

is illustrated in Figure 46. 17th and 19th harmonics are the dominant harmonics for the 18-

pulse diode rectifier as shown in Figure 47, and THD occurs about 7% in the primary side 

windings of the phase shifting transformer. 
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Figure 45: Eighteen pulse rectifier is connected to a generator 



59 

Figure 46: Primary side current waveform of the eighteen pulse rectifier 

Figure 47: Current harmonic order of the eighteen pulse rectifier 

4 six-pulse diode rectifiers are series connected for 24-pulse rectifier as shown in 

Figure 48. Required phase shifting angle 𝛿 = 60
4⁄ = 15° between the secondary side

windings of the phase-shifting transformer. Figure 49 shows the primary side current 

waveform of the phase-shifting transformer and THD is about 5%. 23rd and 25th are the 

dominant harmonics for the 24-pulse rectifier as shown in Figure 50. 
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Figure 48: Twenty-four pulse rectifier is connected to a generator 
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Figure 49: Primary side current waveform of the twenty-four pulse rectifier 

Figure 50: Current harmonic order of the twenty-four pulse rectifier 

30-pulse diode rectifier consists of 5 series connected six-pulse diode rectifiers as 

shown in Figure 51. Phase shifting angle 𝛿 = 60
5⁄ = 12° between secondary side

windings of the phase-shifting transformer. The primary side current waveform is shown 

in Figure 52 and THD is about 3%. 29th and 31st are the dominant harmonics for the 30-

pulse rectifier as shown in Figure 53. 
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Figure 51: Thirty pulse rectifier is connected to a generator 
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Figure 52: Primary side current waveform of the thirty pulse rectifier 

Figure 53: Current harmonic order of the thirty pulse rectifier 

6 six-pulse diode rectifiers are series connected for 36-pulse rectifier as shown in 

Figure 54. Desired phase shifting angle 𝛿 = 60
6⁄ = 10° between the secondary side

windings of the transformer. The primary side current waveform is closer to sine wave as 

shown in Figure 55 and THD is about 2% which is within the limits. 35th and 37th are the 

dominant harmonics for the 36-pulse rectifier as shown in Figure 56. 
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Figure 54: Thirty-six pulse rectifier is connected to a generator 
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Figure 55: Primary side current waveform of the thirty-six pulse rectifier 

Figure 56: Current harmonic order of the thirty-six pulse rectifier 

It is possible to achieve almost sine primary side current waveform with the 48-

pulse rectifier and 72-pulse rectifier as shown in Figure 57 and Figure 58 respectively. 

Although the rectifier pulse number can be increased more to achieve less THD, it is costly 

and unnecessary. The phase-shifting transformer size will also be much larger for more 

pulses. Figure 59 shows the reducing THD graph up to 72-pulse diode rectifier. 36-pulse 

rectifier provides THD in the limits of the harmonic distortion standards, thus the system 

should be designed with the 36-pulse rectifier. 
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Figure 57: Primary side current waveform of the forty-eight pulse rectifier 

Figure 58: Primary side current waveform of the seventy-two pulse rectifier 
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Figure 59: THD occurring in the secondary side windings 

Table 5: Total harmonic distortion for the primary side and the secondary side 

windings 
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4.2 Multilevel Inverter 

In this section, output voltage harmonics of the cascaded H-bridge inverter 

harmonic results are simulated from 3-level to 17 level. 100 Volt DC supply is used for 

each H-bridge inverter cell. Each cell consists of 4 IGBTs and proposed PWM method is 

used for switching them. Triangular carrier frequency is 900 Hz for all simulation results. 

3-level H-bridge multilevel inverter cell is supplied with a 100 V DC voltage 

source shown in Figure 60 and output voltage of the cell VAC as shown in Figure 61. THD 

of the VAC is around 76%. 

Figure 60: 3-level H-bridge multilevel inverter 

Figure 61: 3-level output voltage waveform 
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5-level cascaded H-bridge multilevel inverter cells are connected to 100 V DC 

voltage sources as shown in Figure 62. Output AC peak voltage is 200 V as shown in 

Figure 63 and THD is measured 38%. 

Figure 62: 5-level H-bridge multilevel inverter 

Figure 63: 5-level output voltage waveform 
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7-level cascaded H-bridge multilevel inverter cells are connected to the DC voltage 

sources as shown in Figure 64. Output AC peak voltage is 300 V as shown in Figure 65 

and THD is measured 38%. 

Figure 64: 7-level H-bridge multilevel inverter 

Figure 65: 7-level output voltage waveform 
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9-level cascaded H-bridge multilevel inverter is connected as shown in Figure 66. 

Output peak voltage is 400 V as shown in Figure 67 and THD is measured 14%. 

Figure 66: 9-level H-bridge multilevel inverter 

Figure 67. 9-level output voltage waveform 
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11-level cascaded H-bridge multilevel inverter is connected as shown in Figure 68. 

Output peak voltage is 500 V as shown in Figure 69 and THD is measured 11.1%. 

Figure 68: 11-level H-bridge multilevel inverter 

Figure 69: 11-level output voltage waveform 



73 

13-level cascaded H-bridge multilevel inverter is connected as shown in Figure 70. 

Output AC voltage waveform is closer to sine wave with 600 peak voltage as shown in 

Figure 71 and THD is reduced to 9.2% for 13-level cascaded H-bridge inverter. 

Figure 70: 13-level H-bridge multilevel inverter 
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Figure 71: 13-level output voltage waveform 

Figure 72: 15-level output voltage waveform 

Figure 73: 17-level output voltage waveform 
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Output voltages waveforms of 15-level and 17-level cascaded H-bridge inverter 

are almost pure sine wave as shown in Figure 72 and Figure 73 respectively. The harmonic 

standards limit the utility side harmonic percentage, thus cascaded H-bridge inverter level 

should be depended on the pulse number of the multipulse rectifier. As explained before, 

36-pulse rectifier causes current THD within the limits, thus 13-level H-bridge cascaded 

inverter should be the best for most of the motor drive applications. Even though 

increasing the inverter level above 13-level is able to obtain a better output voltage 

waveform, it is not efficient due to cost and size. THD reduction is not big for 13-level 

cascaded H-bridge multilevel inverter and higher levels as shown in Figure 74. 

Figure 74: Total harmonic distortion of multilevel inverter 
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5. CORE LOSSES

Core loss occurs in a magnetic material when the alternating magnetic field is 

applied to the material. Traditionally, hysteresis and eddy current losses are called as core 

losses of the material [17, 18]. Core loss equations are ordinarily performed with the 

varying magnitude and frequency of the magnetic field. Where Ph represents the hysteresis 

losses, Pe represents the eddy current losses and Pc is the total core loss [18]. 

𝑃ℎ = 𝑘ℎ𝑓𝐵1.5

𝑃𝑒 = 𝑘𝑒𝑓2𝐵2

𝑃𝑐 = 𝑃ℎ + 𝑃𝑒  

where kh, ke are the hysteresis and eddy current coefficients respectively, B is the flux 

density, 𝑓 is the frequency of the alternating flux. Core loss coefficients depend on the 

conductivity and lamination of the material [18]. In order to explain core losses, numerous 

methods and models have been discussed [18, 19, 20, 21]. 

5.1 Hysteresis Loss 

Hysteresis loss is due to the reversal of magnetization of the material which can be 

explained on the B-H loop as shown in Figure 75. While the magnetizing force is changed, 

the magnetic flux is measured in order to obtain the hysteresis loop. H is increased from 
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zero when the material has never been previously magnetized. When H is increased to 

point a, core material reaches the magnetic saturation. When the magnetizing force is 

reduced to zero, still some magnetic flux remains in the material, which is called 

retentivity point. While H is reversed and increased in the negative direction, flux density 

becomes zero at point c which is called coercivity. The material will again reach the 

magnetic saturation point in the opposite direction at point d as the magnetizing force is 

increased in the negative direction. When the magnetizing force is reduced to zero, equal 

remanence occurs in the opposite direction at point e. As H is increased, B becomes zero 

and the loop is completed. In order to remove the remanence in the material, a force is 

needed which is called coercive force. This coercivity of the material causes heat in the 

core which is called hysteresis loss [17]. 

Figure 75: Hysteresis loop adapted from [17] 
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5.2 Eddy Current Losses 

Circulating currents occur in the conducting core material due to the induced 

voltage in the material called as eddy currents as shown in Figure 76. These currents cause 

heat in the core material which is called as eddy current losses. Laminated core material 

is normally used to lower the eddy current losses. 

Figure 76: Eddy currents in the laminated magnetic core 
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6. SIMULATION AND EXPERIMENTAL RESULTS

Simulation results are obtained for both synchronous generator and induction 

motor and experimental results are obtained for the synchronous generator. MATLAB 

Simulink and ANSYS Simplorer have been used for harmonic analysis and ANSYS 

Maxwell FEA has been used for core loss analysis. In order to show the harmonic effects 

in the synchronous generator and induction motor, MATLAB Simulink, ANSYS 

Simplorer and ANSYS Maxwell FEA has been co-simulated. 

6.1 Core Losses in the Synchronous Generator 

In this study, a 5 kVA, 4 poles, 3-phase synchronous generator has been selected. 

Stator of the synchronous generator has 48 slots as shown in Figure 77. 

Figure 77: Stator of the synchronous generator with no windings 
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12 coils of #17 wired 24 turns each, 4 coils in each phase connected in series as 

illustrated in Figure 78. Turn span is 9 slots as shown in Figure 79. Black color represents 

phase A, red color is for phase B and blue color is for phase C. 

Figure 78: Winding configuration of the stator slots 

Figure 79: Turn span is 9 slots 
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Figure 80 shows the Maxwell ANSYS FEA model of the synchronous generator. 

Synchronous generator has been set to 1800 rpm rated speed for the FEA analysis and in 

the experiment, 5 kW DC motor has been operated as a prime mover of the synchronous 

generator to drive it at rated frequency of 60 Hz. DC machine has been driven manually 

by DC power sources. A force cell has been attached to the bottom of the synchronous 

generator to measure the force which has been used in the calculation of input power of 

the synchronous generator as shown in Figure 81. 

Figure 80: FEA model of the synchronous generator 
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Figure 81: Force cell connection under the synchronous generator 

Although simulation study provides the flexibility to obtain more results for 

numerous configurations, experimental study is limited due to the equipment costs and 

space. Experimental results have been obtained for the 1 kW, 2 kW and 3 kW output power 

of the synchronous generator and three different configurations have been applied for each 

load level. Experimental setup includes a synchronous generator, DC motor, DC power 

supplies, transformers, 6-pulse rectifiers and the force cell as shown in Figure 82. 
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Figure 82: Experiment setup for the synchronous generator 

Synchronous generator is connected to a three-phase resistive load without rectifier 

in configuration 1 as shown in Figure 83. In configuration 2, resistive load is connected to 

transformer through 6-pulse rectifier as shown in Figure 84. In configuration 3, resistive 

load is connected wye/delta phase-shifting transformer through 12-pulse rectifier as shown 

in Figure 85. 
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Figure 83: Configuration 1 

Figure 84: Configuration 2 
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Figure 85: Configuration 3 

For each configuration, output power of the synchronous generator has been set to 

1 kW, 2 kW and 3 kW power levels. Force of the synchronous generator shaft is measured 

in order to calculate input power of the generator as shown in Table 6. 

Table 6: Measured force 

pound-force [lbf] 

1 kW 2 kW 3 kW 

no rectifier 11.85 21.90 28.75 

6-pulse 14.05 22.70 29.70 

12-pulse 12.75 22.35 29.10 
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Measured force values have been multiplied by the distance between the rotor and 

the force cell which is about 5.5 inches as shown in Table 7. 

Table 7: Calculated pound-force-inches 

pound-force inches [lbf.in] 

1 kW 2 kW 3 kW 

no rectifier 65.18 120.45 158.13 

6-pulse 77.28 124.85 163.35 

12-pulse 70.13 122.93 160.05 

Calculated lbf.in values has been multiplied by 0.113 in order to calculate the 

torque values as shown in Table 8. 

Table 8: Calculated torque 

Torque [Nm] 

1 kW 2 kW 3 kW 

no rectifier 7.36 13.61 17.87 

6-pulse 8.73 14.11 18.46 

12-pulse 7.92 13.89 18.09 

Calculated torque values multiply by the angular speed in order to calculate input 

power of the synchronous generator as shown in table 9. 
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Table 9: Calculated input power 

Input Power [W] 

1 kW 2 kW 3 kW 

no rectifier 1388.23 2565.59 3368.07 

6-pulse 1645.96 2659.31 3479.36 

12-pulse 1493.67 2618.31 3409.07 

Finally the efficiency is calculated for each configuration by 

%𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
𝑥100% 

Table 10: Calculated % efficiency of the synchronous generator 

% Efficiency 

1 kW 2 kW 3 kW 

no rectifier 72.03 77.95 89.07 

6-pulse 60.75 75.21 86.22 

12-pulse 66.95 76.39 88.00 

Synchronous generator efficiency results show that more harmonic components 

occurring at the terminal of the generator cause less efficiency. Applying 12-pulse rectifier 

in same power level causes less losses and higher efficiency comparing to 6-pulse rectifier 

configuration. The efficiency is the lowest for 1 kW output power configuration for no 

load, six-pulse rectifier and 12-pulse rectifier connections as shown in Figure 86. 

Increasing the load 2 kW causes higher efficiency than 1 kW output power as shown in 
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Figure 87. Highest efficiency has been achieved at 3 kW output power as shown in Figure 

88. 

Figure 86: % Efficiency for 1 kW output power 
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Figure 87: % Efficiency for 2 kW output power 

Figure 88: % Efficiency for 3 kW output power 
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6.1.2 Comparison of the Simulation & Experimental Results 

M-19 26 gauge material has been used for the synchronous generator. Total core 

loss vs. magnetic field by frequency data is given in the data sheet of this material as 

shown in Figure 89. All core loss values have been entered to FEA for each frequency up 

to 2 kHz. FEA total core loss values are calculated for all three configurations as shown 

in Table 11. 

Table 11: FEA total core loss values in watts 

FEA 

no rectifier 6-pulse 12-pulse 

1 kW 89.93 99.58 93.87 

2 kW 96.85 111.74 105.54 

3 kW 105.96 136.36 117.20 

Calculation of experimental total core losses is more challenging since all the 

calculations must be done manually. Each frequency value of the magnetic field has been 

matched with the given data in the material data sheet in Microsoft Excel. Core loss 

coefficients ke and kh are also calculated from the same data in MATLAB. Core losses 

have been calculated per pound, and the stator weight has been calculated 42 pounds from 

given generator parameters, thus total core loss has been calculated as shown in Table 11. 
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Figure 89: Total core loss Pc vs. magnetic field B by frequency 

Total core losses from both FEA and experiment are almost equal in all three 

configurations for three output power levels of the synchronous generator as shown in 

Figure 90, Figure 91 and Figure 92 respectively. 
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Figure 90: Comparison of total losses when there is no rectifier 

Figure 91: Comparison of total losses when the load connected to six pulse rectifier 
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Figure 92: Comparison of total losses when the load connected to twelve pulse 

rectifier 

Same total core loss values have been used for comparison of the same output 

power levels as shown Figure 93, Figure 94 and Figure 95 respectively. Total core loss is 

the highest at 6-pulse diode rectifier connection for all power levels due to its high 

harmonic distortion. 
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Figure 93: Total core losses at Pout = 1kW 

Figure 94: Total core losses at Pout = 2kW 
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Figure 95: Total core losses at Pout = 3kW 

6.2 Total Core Losses in the Induction Machine 

In this dissertation, total core losses have been calculated with only FEA 

simulation. A 7.5 HP, 4 poles, 3-phase squirrel cage induction motor has been performed. 

Some other parameters of the induction motor are given in Table 12. M19 26 gauge non-

oriented silicon steel material has been used for the induction machine as well. Therefore, 

same total core loss vs. magnetic field values have been used for FEA simulation. 
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Table 12: Induction motor parameters 

Induction machine has been connected to different levels of multilevel inverters 

through the long cable as shown in Figure 96. Separated DC sources supply for each H-

bridge inverter cell which was already described in section 4.2. DC source, multilevel 

inverter and long cable have been modeled in MATLAB and Simplorer then co-simulated 

with FEA simulation. Total core loss values have been obtained when no inverter in the 

system and when 3-level, 5-level, 7-level, 9-level, 11-level, 13-level, 15-level and 17-level 

multilevel inverters are connected to the motor as shown in Figure 97. The results show 

that increasing the level of the multilevel inverter causes less harmonic distortions and less 

total core losses. There is a major difference in total core loss between 3-level and 5-level 
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connected configurations and less core loss difference occurs between 7-level and other 

higher level configurations. 

Figure 96: Simplified model of the motor side connection 

Figure 97: Total core losses in induction motor 
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7. CONCLUSIONS AND FUTURE WORK

In this dissertation, a system-based modeling and simulations for main power 

components of a FPSO are built and core losses in synchronous generator and induction 

motor are studied under different harmonic levels of current. Due to the complexity of the 

FPSO power system, each components have been simulated and analyzed separately 

before connecting to each other. 

Phase-shifting transformer has a significant role in reducing utility side harmonics 

which is limited by the harmonic standards. Harmonic analysis has been done on the utility 

side as well as the motor side. 

Core losses are the second largest losses after the copper losses in a machine. 

Determining these losses is crucial before building large real applications as FPSOs. 

Lower core losses in a machine can be achieved with a good design of the machine 

lamination and reducing harmonic distortion at the machine terminals. FEA simulation 

results show that increasing the pulse number of the VFDs causes lower harmonic 

distortion which reduces core losses in synchronous generator and induction motor. 

Simulation results are also supported and proved with the experimental results for the 

synchronous generator core losses. 

Future work can include: 

 Resonance issues caused by the subsea cable for core loss analysis of the induction

motor. 
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 Experimental studies for the induction motor.

 Size and cost analysis on a small scale experiment in order to predict real

application size and cost. 
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APPENDIX A 

Figure 98: Electric schematic of an FPSO 
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APPENDIX B 
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APPENDIX C 

Table 13: Synchronous generator specifications 
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APPENDIX D

Figure 99: Cable data sheet 



106 

APPENDIX E 

VITA 

Abdulkadir Bostanci received his B.S. and M.S. degrees from Yildiz Technical 

University, Istanbul, Turkey in 2006 and 2008 respectively. Both degrees are in electrical 

engineering. He joined the doctoral program of the Department of Electrical Engineering 

at Texas A&M University and received his Ph.D. in May 2017. 

He can be reached at akadbos@gmail.com or through Prof. Hamid A. Toliyat, 

Department of Electrical and Computer Engineering, Texas A&M University, College 

Station, Texas, 77843-3128. 

mailto:akadbos@gmail.com



