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ABSTRACT

Wireless networks are increasingly being used to serve both real-time and non

real-time flows. The former includes applications such as VoIP and video streaming,

while the latter includes applications like file transfer and web browsing. These flows

have very different service requirements. On the one hand, real-time flows usually

require a strict per-packet delay bound, since late packets may not be useful to the

application. On the other hand, non real-time flows do not pose any stringent delay

requisites and only demand high throughput.

Serving flows that have heterogeneous requirements necessitates the deployment

of algorithms and rules for resource allocation that attempt to satisfy these needs.

However, existing hardware does not allow such reconfigurability and is limited to

providing a once-size-fits all solution. The objective of this work is to design, develop

and demonstrate an architecture, specifically for software reconfigured hardware at

the PHY-MAC layers that can provide such functionality at a per-flow and per-

packet level, and to illustrate its superior performance to conventionally deployed

solutions.
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NOMENCLATURE

AP Access Point

MAC Medium Access Control

PHY Physical Layer

USRP Universal Software Radio Peripheral

SDN Software Defined Networks

SDR Software Defined Radio

NI National Instruments

QoS Quality of Service

TCP Transmission Control Protocol

UDP User Datagram Protocol

FPGA Field Programmable Gate Array

DSP Digital Signal Processor

CSI Channel State Indicators

MCS Modulation and Coding Scheme
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1. INTRODUCTION

Wireless networks are being increasingly used to serve both real-time and non

real-time traffic. The former involves applications like VoIP and multimedia stream-

ing while the latter involves applications like File-Transfer and web browsing. These

two flows pose very different service requirements. On one hand, real-time flows

usually require a strict per-packet delay guarantee since late packets might not be

of use to the application. On the other hand, non real-time flows do not pose any

stringent delay requisites and only demand high throughput.

Next-generation applications in areas such as Augmented Reality (AR), vehic-

ular networks and Unmanned Aerial Systems (UAS) go a step further in imposing

tightness of the delay constraint. The current WiFi standards have been primarily

optimized to support best-effort traffic and can certainly not meet the few millisec-

ond level latency requirement that these control applications expect. This is due

to the fact that WiFi is built around random access, and treats all packets identi-

cally irrespective of the nature of the flow. Thus, wireless networks need to evolve

not only to satisfy throughput requirements but to also meet other stipulations on

low-latency.

While quite a few Medium Access Control (MAC) protocols have been proposed

to target the above mentioned metrics, not many have been experimentally evaluated

to establish realistic performance guarantees. MAC protocols have very strict timing

requirements, which leads to tight coupling between the protocols and the underlying

hardware. Our goal is to fill this void in building a platform for such experimentation,

and conducting realistic performance analysis experiments on it.

Data networks require decision making rules at both an individual packet level, as
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well as the level of aggregates of packets such as flows. The timescale at which these

decision rules operate are different. We entitle the low-level decisions made on a

per-packet basis such as modulation and scheduling decisions at the sub-millisecond

timescale as “mechanisms”, while high-level schemes on a larger-timescale basis over

aggregates of packets that choose between different scheduling schemes are called

“policies”. For example, two available mechanisms at the MAC layer might be Max-

weight scheduling and Deficit-based queuing (to be defined later), whereas the choice

of which of them to employ on a flow is a policy decision.

Our first objective is to implement mechanisms (operating at timescales less than

1ms) that account for different service requirements of non real-time (elastic) and

real-time (inelastic) flows on a per-packet level. Choosing a set of mechanisms results

in a set of performance statistics perceived by flows, such as throughput, latency,

jitter and loss rate, which together quantify the Quality of Service (QoS) of that

particular flow. We also desire to study the impact on QoS on flows attained by

choosing different sets of mechanisms.

Following this, we develop control schemes using which policy decisions (operating

at larger timescales of the order of seconds) on which mechanisms to deploy can be

selected in a centralized fashion. Thus, our second goal is to construct a framework,

whereby these decisions can be communicated to a wireless Access Point (AP), and

its impact on the QoS of a particular flow can be measured.

1.1 System Architecture

We now proceed to illustrate a framework designed to achieve our centralized con-

trol objective. Figure 1.1 shows a high-level overview of the complete control system

at the wireless Access Point (AP). The diagram illustrates per-packet mechanisms

at three layers that we would ideally desire to implement. At the physical layer, the
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antenna radiation pattern determines the received signal strength at the destination.

Also at the physical layer, the modulation scheme employed chooses how best to

utilize the received signal strength by choosing an appropriate modulation scheme.

Finally, at the data link layer, MAC chooses which packet to schedule from different

competing flows at each time.

Figure 1.1: High-Level Overview of the Wireless Control

These three elements are typically implemented on a single chipset with tight

integration in commercially available hardware, with little room for choice between

possible mechanisms. The principle reason for such integration is the need to sup-

port large data rates, which implies per-packet processing and transmission must
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be accomplished at sub-millisecond timescales. However, central to our ideas is the

ability to reconfigure hardware dynamically. Thus, we require a platform that can

support fast reconfigurability, while yet supporting reasonable data rates.

Our architecture is built around a programmable MAC platform called WiMAC

[1], which is a general-purpose wireless testbed for the rapid prototyping of user-

definable MAC protocols. The hardware of WiMAC consists of an NI USRP that

supports the modulation and coding schemes, as well as simple scheduling deci-

sions, coupled with a host computer (typically a laptop) that supports more com-

plex scheduling decisions, as well as networking and application functionalities. This

platform is paired with software reconfigurable antennas that are controlled by an

independent setup using an Arduino microcontroller providing decisions serially com-

municated to it via a host computer (typically an Intel NUC).

As mentioned above, the functionality of WiMAC in taking scheduling decisions

is split between the Host (software) and the USRP Target (hardware). Both are

programmed using the LabView Communications Design Suite with an appropriate

use-point (host or USRP) specified for running each block. At the current stage of

evolution, WiMAC allows for relatively simple scheduling decisions to be made on

the USRP, necessitating the need to push most aspects of scheduling decisions to the

host computer. However, per-packet processing is still feasible at the sub-millisecond

range, and hence throughput of the order of 10− 15 Mbps is still attainable. Thus,

in our architecture, the mechanism is implemented on the host computer. Finally,

we note that it appears that this limitation will likely be overcome using the next

version of LabView Communications that allows for greater functionality (and hence

higher per-packet processing speeds) on the USRP.

An additional limitation at the current time is our inability to configure the an-

tenna radiation pattern at a per-packet level. The reconfigurable antennas are driven
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through a system independent of the USRP that actually performs the modulation

and coding functionalities. Thus, the radiation pattern has to be relatively static

as far as each packet is concerned, and can only be changed over packet aggregates.

This limitation too appears to be temporary, and we are already working on driv-

ing antenna reconfiguration directly via USRP to attain per-packet selection of the

radiation pattern.

Once we have a platform for mechanism design, we need to be able to actually

select which combination of mechanisms to use on a packet aggregate basis. As

mentioned above, we entitle this choice as a policy decision, and the policy is what

results in a certain vector of QoS statistics to be achieved for a particular flow.

Furthermore, the impact of a policy decision on QoS needs to be communicated

back, so as to obtain feedback on the performance of a particular flow.

Our architecture uses centralized determination of policies, and our choice of

protocol for communicating policy decisions as well as feedback on their impact is

OpenFlow [2]. OpenFlow provides a completely defined communication protocol

that enables a centralized controller to interact with the connected switches in order

to perform further processing on routing and packet forwarding. As is clear from the

description, OpenFlow is intended to operate on the network layer, whereas we desire

functionality on the PHY-MAC layers. Indeed, OpenFlow is an implementation of

the concept of Software Defined Networking (SDN) that calls for dynamic reconfig-

uration at the network layer. However, we find that this limitation to the network

layer is relatively easy to overcome, and the advantage provided by OpenFlow in

terms its increasing hardware support outweighs any benefits of designing a custom

protocol.

To summarize, the overall objective of this work is to create a set of mechanisms

that can be implemented on the WiMAC, with a corresponding set of policies selected

5



using a centralized SDN controller communicating OpenFlow. Built on a mechanism-

policy separation framework, the proposed system intends to achieve reconfigurability

at the PHY, MAC and antenna layers.

1.2 Related Work - Mechanisms

1.2.1 Max-Weight Scheduling

The class of Max-Weight scheduling policies has been extensively studied in net-

working theory since its first conception in [3]. The algorithm operates by finding

a maximum weight schedule of the conflict graph at each instant of decision. The

weight is usually characterized by the state parameters of each client, such as the

queue length of the packet buffer and the transmission rate of the wireless channel.

Max-Weight scheduling has been applied to various setups of wireless networks

to achieve optimal throughput performance without having prior-knowledge of the

nature of arrival processes [4, 5, 6, 7]. Moreover, Max-Weight scheduling has also

been proved to achieve good delay performance under some conditions [8, 9].

As a centralized control algorithm, Max-Weight is especially suitable for wireless

infrastructure-based networks where the Access Point (AP) can periodically collect

channel and queue state information of its clients. This would be followed by solving

the maximum weight independent set problem which, in our case reduces to simply

finding a single link with the largest weight.

1.1.1.1 Q-CSMA: A Distributed Algorithm for Ad-hoc P2P Networks

The absence of a centralized infrastructure in ad-hoc P2P networks necessitates

the nodes to perform their own activity decisions based on local information.

Q-CSMA (Queue-length based CSMA/CA) is a distributed approximation of the

Max-Weight algorithm for ad-hoc P2P wireless networks which has been shown to

be throughput optimal [10].
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In [11, 12], it was suggested that, by using weights as functions of queue lengths,

one can achieve throughput optimality. Proceeding this, a network utility maximiza-

tion interpretation was provided for the CSMA algorithm [10, 13].

In Q-CSMA, a link makes transmission decisions based on the states of its neigh-

bouring links in the preceding time slot. The weights correspond to some function of

queue lengths and are assumed to change very slowly compared to the time needed

for the CSMA Markov chain to attain steady state. Here, flowss are characterized

according to their intended destinations (essentially Virtual Output Queueing).

1.1.1.2 Experimental Evaluation of Q-CSMA

Despite the marked progress in theoretical aspects of Max-Weight based schedul-

ing policies, realistic implementations have been hard to come by. Majority of the

current implementations have been used only to study parameter setting or as a

verification over elementary scenarios [14, 15].

A notable exception amongst these class of implementations is the experimental

evaluation of distributed optimal CSMA protocols by Nardelli et al. in [16].

The implementation itself revolves around a Common Code Architecture (CCA)

presented in [15]. This comprises of both a simulation over Glomosim and a protocol

implementation over standard 802.11 hardware which incorporates a driver modi-

fication to adapt the Contention Window (CW) of transmitters as the algorithm

requires.

The authors have then proceeded to investigate the behavior of Q-CSMA in vari-

ous scenarios differing in network topology as well as channel qualities of contending

links. The throughput performance of Q-CSMA when exposed to congestion (with

multiple competing TCP flows) has also been examined.

It is worthwhile to note that such an experimental study has not only deepened
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the general understanding of the protocol in question and the philosophy behind its

conception, it could also potentially motivate the design of future optimal enhance-

ments as required by the consumer.

1.2.2 Deficit based Queues for Delay-Sensitive Traffic

Providing services for flows with delay constraints over wireless links has gained

extensive research interest over the past decade. The early work done in this regard

[17, 18, 19] didn’t theoretically address three very important problems for providing

services: scheduling algorithms, admission control, and utility maximization.

At the same time, other well-known scheduling mechanisms proposed to enable

QoS support on unreliable wireless channels [4, 5, 6, 7] fail to provide provable

performance guarantee on per-packet delays.

To target these open-ended issues, work by Hou et al. [20] provides a tractable

formulation for real-time wireless networks. The model incorporates both delay

bounds and delivery ratio requirements for real-time flows in wireless networks.

The system in picture is an infrastructure based wireless network with an AP

and a group of clients. Each client generates one real-time flow.

Time is slotted where the length of a time slot is chosen to be large enough to

accommodate the time needed to transmit a packet with its overheads. These slots

are further combined to form intervals, where packet arrivals are assumed to happen

at the beginning of each interval. Packets from real-time flows are constrained with

a delay bound equal to the length of the interval. In other words, packets arriving

at the beginning of an interval are valid only if they are transmitted by the end of

that interval. Packets unable to meet the delay bound are considered to have expired

and are discarded from the system. Thus, dropping expired packets would guarantee

that the delay of every delivered packet is at most one interval duration.
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A client’s performance is quantified by its timely-throughput, which is defined

as the average number of successfully delivered packets per interval measured on a

long-term basis. Each client is specified to have a rigid timely throughput demand

(also called the delivery ratio).

The authors establish an admission control algorithm to evaluate the feasibility of

a set of clients (with respect to the above criteria). They further propose two Largest-

Deficit-First scheduling mechanisms and prove that these are feasibly optimal in the

idea that they can satisfy the needs of every feasible set of clients.

Similar to Max-Weight though there has been theoretical progress in terms of

enhancements proposed to the Largest-Deficit-First scheduling policies, there has

been no practical implementation of the same.

1.2.3 Unresolved Issues with the Mechanism Propositions

Wireless networks are expected to support both best effort as well real-time traffic.

As mentioned earlier, depending on their nature, flows demand specific QoS requisites

including minimum bandwidth and maximum delay constraints. The framework

proposed to fulfil these requirements should maintain the stability of the queues and

guarantee throughput optimality as well.

The Max Weight scheduling based mechanisms proposed in literature (see [5] for

a survey) only consider flows with best-effort traffic, thereby not taking into account

strict per-packet delay bounds which are critical in real-time flows.

At the same time, although the framework proposed in [20] for Largest-Deficit-

First based scheduling also provides a basic insight into how to deal with both elastic

and inelastic flows, it lacks any kind of realistic implementation.

In this work, not only do we provide an implementation platform to incorporate

both of the above scheduling mechanisms, we also enforce the ability to configure the
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MAC policies that are part of these mechanisms real-time via a controller operating

remotely.

1.3 Related Work - Policies

1.3.1 Software Defined Networks

Re-configurability has always been a major challenge in the networking area. The

recent explosion of mobile devices and cloud-based services have created a need for

reconfiguration of flow rules according to changing traffic patterns.

As the network scales, the complexity involved in maintaining it grows expo-

nentially. Deploying fresh services too becomes an arduous task. Software Defined

Networking (SDN) is an architecture which tries to address these challenges by de-

coupling the control and forwarding functions.

SDN is a promising concept that has the potential to reform the way networks

are being designed, tested and operated [21]. Apart from enabling network admin-

istrators to have a centralized vision of the network, it also provides a standardized

interface to configure devices remotely. This provides a platform to drive a large

network through a logically centralized controller and to define custom policies as

well.

1.3.2 OpenFlow

What began as a research project has now well advanced to become an open

standard that enables researchers to deploy their innovations in network switches

without forcing them to expose their internal implementations. Building on the well-

documented control and data plane abstraction - OpenFlow [2] provides a completely

defined communication protocol along with an abstraction of the flow tables.

Combined with a set of associated instructions, each entry in a flow table com-

prises of a number of fields for a packet to match to. The instruction set involves
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actions on the packet or modification of the pipeline processing to forward packets

to other flow tables.

OpenFlow enables a centralized controller to interact with the switches by adding,

deleting or modifying flow table entries in order to perform further processing. The

protocol runs over TCP/TLS (Transport Layer Security) connection so that the

communication remains private without having to compromise on the security of the

whole network.

1.3.3 Unresolved Issues with Policy Reconfiguration using OpenFlow

OpenFlow is intended for reconfiguration of Network Layer protocols by program-

ming the flow tables in Ethernet switches and routers so that the Layer 3 protocols

can be tested and controlled completely via software [22, 23]. The prime use cases

for SDNs have also been in Network Virtualization [24] or for security purposes [25].

Thus, both OpenFlow and, more generally, the SDN concept have always been tar-

geted towards applications operating at the Network layer. We wish to extend the

centralized control using OpenFlow protocol to incorporate policy selection at the

MAC and PHY layers.

1.4 Organization

The rest of the thesis is organized as follows. Chapter 2 describes the traf-

fic model and formulates the problem of maximizing the utility for the system in

picture. Chapter 3 summarizes related efforts on MAC implementation including

tweaking commodity hardware and Software-Defined Radio based approaches. This

is followed by a discussion on the design principles of WiMAC and an overview of its

802.11 Application framework. Chapter 4 proceeds to talk about finer execution de-

tails including mechanism implementation using WiMAC and policy implementation

using OpenFlow. The re-configurable system results are analyzed in Chapter 5 and
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the optimality of our approach is justified with performance comparisons. Chapter

6 concludes the thesis with an insight into possible extensions in future.
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2. SYSTEM MODEL AND PROBLEM STATEMENT

The network is represented by the figure shown in Figure 2.1. There exists a single

scheduler on the Access Point with a set of L downlinks originating from it, one to

each of the clients. The links are depicted by l and are number from 1, 2, · · · ,L.

Figure 2.1: Downlink Scheduler

Traffic is taken to be composed of both elastic and inelastic flows, where an

inelastic flow is one that has a per packet delay requirement imposed on it. As

opposed to this, elastic flows do not have such requirements.

Time is slotted where the length of a time slot is chosen to be large enough to

accommodate the time needed for transmitting a packet and all overheads with the
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least constellation size (BPSK).

A set of T consecutive time slots is grouped into an interval. We assume that

packet arrivals only occur at the beginning of an interval, and every inelastic packet

has a deadline of T time slots. In other words, packets that are generated at the

beginning of an interval are only useful if they are delivered no later than the end

of that interval. Packets unable to meet the delay bound are considered to have

expired and are dropped from the system. Hence by dropping expired packets, it is

guaranteed that the delay of every delivered packet is at most one interval duration.

It is required that the loss probability at link l ∈ L due to deadline expiry must

be no more than ql. For elastic traffic we correlate a utility function Ul(xel) which is

a function of the mean elastic arrival rate per interval xel. Ul(.) is assumed to be a

concave function.

For a given interval, the vector ai = (ail)l∈L denotes the number of inelastic packet

arrivals at every link, where ail is a random variable with mean xil and variance σ2
il.

Similarly, ae = (ael)l∈L characterizes the number of elastic packet arrivals at every

link in a given interval.

The channel state is assumed to be constant throughout a single interval, inde-

pendent between two different intervals, and independent of packet arrivals. The

vector c = (cl)l∈L depicts the number of packets link l can successfully transmit in

one time slot of a given interval.

A feasible schedule s = (sil,t, sel,t) is one such that sil,t, sel,t denote the number

of inelastic and elastic packets respectively that could potentially be scheduled for

transmission at link l ∈ L and time slot t ∈ 1, 2, · · · , T . Hence, sil,t + sel,t > 0

translates to link l being scheduled to transmit in time slot t of the interval.
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We now have the following constraints:

∑T
t=1 sil,t ≤ ail ∀ l ∈ L

sil,t + sel,t ≤ cl ∀ l ∈ L and t ∈ {1, 2, · · · , T}

We denote S(ai, c) to be the set of all feasible schedules when the arrival state is

ai and the channel state is c.

At the beginning of every interval, a feasible schedule must be chosen to serve the

links and decide the number of elastic packets to be injected in the network. Thus,

one primary goal is to find a function Pr(s|ai, c) which is the probability of using

schedule s ∈ S(ai, c) when the inelastic arrivals are given by ai and the channel state

is c, subject to the constraint that the loss probability at link l ∈ L due to deadline

expiry cannot exceed ql. For the elastic traffic, we wish to select the vector ae in

such a way that we maximize the network utility while keeping the queues stable.

To proceed with the problem formulation, we first define µi(ai, c) to be the ex-

pected number of inelastic packets served. Similarly, µe(ai, c) denotes the expected

number of elastic packets that can be served. Therefore, we have the following con-

straints:

µil(ai, c) ≤
∑

s∈S(ai,c)
∑T

t=1 sil,tPr(s|ai, c)

µel(ai, c) ≤
∑

s∈S(ai,c)
∑T

t=1 sel,tPr(s|ai, c)

For mixed traffic therefore, the expected service is given by:

µil
def
=

∑
ai

∑
c µil(ai, c)Pr(c)Pr(ai)
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µel
def
=

∑
ai

∑
c µel(ai, c)Pr(c)Pr(ai)

and with the given capacity and QoS constraints: µil ≥ xl(1− pl) and xl ≤ µel.

The objective is to maximize the following for a given vector w ∈ R|L|+ which

weights the share of channel bandwidth to be allocated for the inelastic flows:

max
µi(ai, c), µe(ai, c)

µi(ai, c), µe(ai, c)

∑
l∈L Ul(xel) + wlµil
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3. WIMAC: A TESTBED FOR PROGRAMMABLE MAC

Due to the advent and widespread use of emerging applications such as multi-

media streaming, the traffic served by Wi-Fi has been rising exponentially. To cope

with the continued increase and in some sense to stay ahead, wireless networks need

to keep evolving not only to satisfy the throughput requirements but to also meet

other crucial performance metrics such as low-latency & power consumption.

3.1 Background on Wireless Platforms

3.1.1 Need for MAC Prototyping

A wide variety of MAC protocols have been proposed in the academia in order

to face the above mentioned challenges. But if you take a close look at the number

of these propositions actually making it to the deployment stage, the number is

surprisingly minimal [26, 27, 28, 29, 30].

This can be attributed to the lack of experimentation of the proposed protocols

without which the performance guarantees provided would solely be based on sim-

ulation events alone. Needless to say, such results are inadequate when it comes to

implementing them in real-world scenarios.

3.1.2 Tweaking Commodity Hardware

With ever-changing wireless standards and protocols, there has been a conscious

shift towards a programmatic approach for designing and implementing wireless ra-

dios. In commercial wireless network interface cards, MAC layer operations are inter-

linked with the configuration of driver suites that are specific to individual chipsets,

such as the ath family for Atheros chipsets and the rt2x00 family for Ralink chipsets.

However, these drivers are limited in terms of functionality and have no access
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to the basic MAC parameters, such as packet format and frame timing. To address

this shortcoming, propositions like SoftMAC [31], MadMAC [32] and FlexMAC [33]

follow design strategies that involve building a software platform to implement cus-

tomized MAC protocols on commercial 802.11 hardware. However, despite the added

functionality, having been built on commodity hardware, these platforms suffer from

limited scope of redefinable methods and fail to support protocols outside the Carrier

Sense Multiple Access (CSMA)-based category.

Following an alternate approach, Doerr et al. [34] propose MultiMAC to enable

switching between multiple MAC protocols to achieve higher performance results in

a varying environment. Despite the protocol-level adaptability, this platform too

does not offer the required flexibility in MAC implementation.

3.1.3 Where does the MAC Layer fall Short?

Wireless protocols require different experimentation strategies depending on their

location on the OSI stack.

PHY layer protocols are subject to stringent timing requirements of throughput

sensitive flows. As is the case in Software Defined Radios (SDRs), with dedicated

FPGAs or DSPs PHY layer experimentation can be conducted to meet the required

specifications to establish realistic performance measures.

The Network Layer has to consider complex topologies in order to derive reach-

ability information to make appropriate routing decisions. Experimentation of the

Network Layer is achieved using abstraction in the software domain as is the case with

OpenFlow [2]. This greatly aids in the effectuation of the network layer protocols

which are being proposed.

Differing from the above two layers, implementing MAC protocols presents its

own challenges. Since the MAC layer serves as the junction between the PHY and
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other high level layers, it is required to interface with the PHY closely and smoothly.

As a result of this, commodity products usually have MAC functionality unified with

the PHY components on a Network Interface Card (NIC). Implementing a new MAC

protocol hence might need development from scratch thereby significantly prolonging

the time needed for experimental testing.

3.1.4 Software Defined Radio based Wireless Platforms

To reduce the prototyping time for MAC protocols, and at the same time not

compromise on flexibility, Software-Defined Radio (SDR) is a promising solution.

In general, SDRs consist of three major parts: RF front end, baseband hardware

and a software host. Since hardware development takes longer than software, it is

desirable to perform as many functions as possible in the software domain to suit

rapid development.

To achieve this flexibility, a good deal of wireless platforms have adopted the

Software Defined Radio paradigm. The most popular example is the GNU Radio [35]

which focuses most of its implementation in the software domain although taking a

hit in terms of latency as discussed in [36].

In the family of FPGA-based software radio platforms, Wireless Open Access

Research Platform (WARP) [37] is a popular high-performance hardware platform

for research purposes. By using FPGA and PowerPC core, WARP enables full access

to both MAC and PHY functions thereby achieving high flexibility. However, most

FPGA-based platforms including WARP focus primarily on flexibility and latency

performance, and therefore do not guarantee quick prototyping.
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3.2 WiMAC - Key Design Principles

Hence we are in need of a rapid and flexible prototyping platform that validates

the deployment of the proposed MAC protocols by accelerating the testing phase.

WiMAC [1] is a general-purpose wireless testbed for the rapid prototyping of

user-definable MAC protocols. WiMAC is built around the idea that per-packet

decisions, which we referred to as a mechanism require fast hardware supported de-

cision making, while larger timescale decisions on the choice of mechanisms, which we

referred to as policy selection, can be done via software. Built on a mechanism-policy

separation framework, WiMAC achieves independence of software from hardware by

revamping the usual tight-coupling between the MAC and PHY layers.

The key design principles for such a platform are:

1. MAC vs PHY decoupling: In many cases, the MAC and PHY layers are very

tightly coupled. This is due to the stringent timing constraints required on

the real-time communication between the two. Any change brought into one

of them will necessitate a change in the other with minimal exceptions. This

makes it tedious to implement MAC protocols that are exceedingly different

from the existing ones. Hence to ensure rapid implementation capability, de-

coupling between MAC and PHY is essential.

2. Designing MAC protocols in software: This would not only increase the flex-

ibility in terms of protocol design, it would also enable implementation of a

larger class of algorithms since its generally easier to develop in software than

hardware. Additionally, this would also expedite the experimentation process

itself. However, not all parts of the implementation can be moved to soft-

ware, since we still have to meet the fine constraints on the processing time as

required by the MAC protocols.
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3. Supporting dynamic protocol-configuration changes at runtime: This feature

comes into play when incorporating real-time policy updates. Another scenario

where this would prove instrumental is when we deal with implementing multi-

ple MAC protocols at runtime. This would mean comparative experimentation

since we can switch between different MAC protocols to observe their relative

behavior when exposed to the same set of conditions.

3.3 802.11 Application Framework - Overview

We proceed to describe the functional blocks of WiMAC. The WiMAC enables

support for both LTE as well as 802.11. At this point, since we are only concerned

with implementing the system over Wi-Fi, we restrict ourselves to the 802.11 appli-

cation framework.

The framework consists of functional elements of the PHY and MAC layers (as

illustrated in Figure 3.1) of a single station implemented using LabVIEW Communi-

cations. It runs on the Xilinx Kintex-7 FPGA (USRP) and Intel x64 general-purpose

processor (Host), which are integrated with the RF and analog front ends of the NI

software defined radio (SDR) hardware.

The framework supports majority of the PHY and MAC functionalities from the

802.11a and 802.11ac with compliance to the 802.11 standards.
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Figure 3.1: Interoperability Between MAC and PHY Blocks in the Application
Framework

3.3.1 Functional Split - Host vs. Target

The functionality of the framework is split between the Host (software) and the

USRP Target (hardware) keenly considering their salient features. This is depicted

in Figure 3.2. Software allows for flexibility of design, accommodates incorporation

of a wider range of algorithms owing to larger memory and reduces the prototyping

time itself. Hardware helps meet the quick response constraints imposed by the MAC
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protocols.

The USRP target is hence associated with the lower MAC and baseband PHY

layer algorithms as well as control capabilities for the RF front-end.

The host on the other hand, encompasses upper MAC layer functionality includ-

ing protocol control.

Figure 3.2: Functional Split: Host-FPGA-RF

The data path between the host and the USRP target is realized using a message-

based interface communication protocol (ICP), which is described in Section 3.3.3.

The control path between the host and USRP target is implemented using LabVIEW

controls and indicators. The baseband RF configuration is achieved using target-

specific driver VIs.

While the framework achieves the decoupling between hardware and software, it
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does not compromise on the cross-layer design aspect - which is crucial for better

performance.

3.3.2 Host Architecture

We now take a closer look at how the Host deals with upper MAC layer control.

Figure 3.3: Schematic Showing the Host Architecture

As shown in Figure 3.3, the host is composed of six concurrent threads which

together cover the tasks of configuration, data exchange, and status display.

The system status is globally shared using a session cluster that stores handles

to devices and host-based queues. The system state is constantly updated by the
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parallel procedures, each of which modify the state information using the handles

obtained from the session cluster.

3.3.3 Interprocess Communication Protocol (ICP)

ICP is used to transfer data between the host and target. While the structure

itself is fixed, the length of the messages can be varied to be sent over a channel

with a bytestream transmission capability, such as the DMA FIFOs. We modify the

payload portion of this protocol to include additional fields that aid our development

process.

The ICP packet format has two variants - one to transfer data to Target TX

(Figure 3.4) and the second to receive data from the Target RX (Figure 3.5).

Figure 3.4: ICP TX Packet Format

The ICP TX structure serializes the TX Request into the header which is followed

by the MAC payload. The payload is prefixed with custom fields as illustrated. The

first 4 bytes represent the deadline of the packet which is followed by 1 byte of Re-

Transmission Number (to limit the Re-transmissions as need be) and finally tailed

by 1 byte of flow-ID. Each of these fields are prefixed when the packet arrives via
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the UDP receiver port. All except the flow-ID are detached before the packet is

transferred from Host to the USRP Target. The flow-ID is a field that will be

critical to identify the nature of flow at the receiver (and thereby forward to the

corresponding application).

Figure 3.5: ICP RX Packet Format

The ICP RX structure serializes the RX indication which is followed by the MAC

payload (MPDU without header information). The first byte of the MAC payload

is the flow-ID which is prefixed at the transmitter. Based on this, the Receiver-Host

will map the arriving flow to the corresponding application.
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4. A SOFTWARE DEFINED CONTROL APPROACH ON WIMAC

4.1 Implementation Architecture

The implementation architecture is represented in Figure 4.1:

Figure 4.1: Implementation Architecture

Each station of this network is a WiMAC node (picture depicted in Figure 4.2),

which consists of 2 parts - the Host (which runs LabVIEW on Windows) and the

USRP (Universal Software Radio Peripheral by National Instruments). The WiMAC

has the capability to talk to any host-based application via UDP.
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Figure 4.2: A WiMAC Station with a Host (right) and USRP (left)

The flows originate from (applications on) the AP and are intended for the (cor-

responding peer applications on) clients.

The AP-Host is the gateway to the Internet and could also be potentially con-

nected to other networks via its Ethernet/Wi-Fi interface chipsets.

We choose a VLC video streaming application at the AP-Host to be the source

of real-time flows, while a simple UDP file transfer application is the source of non

real-time flows.

At each Client-Host we have a VLC receiver application as well as a UDP File

receiver application to obtain the traffic generated at the Host. Packets received are

appropriately forwarded to the respective application based on the flowID that we

prefix as part of the header.

As introduced in Section 1, we implement mechanisms on the WiMAC and poli-

cies using OpenFlow.

28



4.2 Mechanism Implementation on WiMAC

Taking another look at the high-level overview of the system at the AP depicted

in Figure 1.1, we observe that the mechanism implementation is done at three levels

to enable reconfigurability. We now take a close look mechanism implementation at

each of these levels on the WiMAC.

4.2.1 Reconfigurable MAC

Deficit based queuing has been proved to be optimal for delay sensitive traffic.

This mechanism will be applicable for the inelastic real-time flows.

Packet scheduling using the Max Weight Algorithm has been established to be

throughput optimal. This mechanism will be applicable for the elastic non real-time

flows.

The solution to the problem stated in Section 2 would result in a joint congestion

control and scheduling algorithm which equitably allocates spectrum resources to

achieve the fairness objectives of both elastic and inelastic flows [38]. We find the

capacity of our system at first and allocate total resources to about 80% of the

capacity.

Based on this solution, at the beginning of each interval we give strict priority to

the inelastic flows over elastic flows and make sure that the inelastic flows are rate

controlled to prevent starvation of the elastic flows. Once all the inelastic packets

that arrived at the frame boundary are transmitted, we proceed to schedule the

elastic flows.

4.2.1.1 Deficit Based Queues - Implementation

Packet arrivals are uniform across both flows and occur at frame boundaries

(at the beginning of each interval). For each inelastic flow, as packets arrive, the
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deadlines are prefixed as part of the header. Packets remain in the queue for as long

as they are valid.

Since the deadline equals size of the interval, we guarantee that packets coming

in at the beginning of the interval are transmitted by the end of the interval (as long

as the packet arrivals are within the capacity region).

Each of the flows has a timely throughput requirement imposed on it by its

intended client. This requirement is termed as the Delivery Ratio (ql) for that flow.

The Delivery Ratio is an indicator of how much to penalize the flow in case of packet

expiry. The cumulative penalty suffered by each flow is indicated by its deficit field.

Figure 4.3: Deficit Update

The updating of deficit is illustrated in Figure 4.3. When a packet’s deadline

expires we increment deficit of the corresponding flow by ql and drop the packet.

When the packet is successfully transmitted (i.e upon reception of ACK) we decrease

deficit by (1− ql). This is consistent with the weighted delivery deficit described in

[19].

As depicted in Figure 4.4, at each slot, we give priority to the flow with more
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deficit in order to equalize the penalties. Before transmission, we check the packet

deadline and transmit/drop the packet as the case maybe. Simultaneously, we poll

the Head-Of-Line packet in the unscheduled queue and drop it on expiry.

Figure 4.4: Deficit Based Scheduling

If the transmission of a packet isn’t successful (indicated by ACK timeout), we

retransmit the packet as long as the packet is still alive. A point worth noting

here is that we don’t increment the deficit in this case i.e., we don’t penalize for

unsuccessful/lossy transmissions.

As long as the packet arrivals are within the capacity region the deficits are always

bounded and the system is stable.
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4.2.1.2 Longest Queue First - Implementation

In the case of elastic flows, the scheduling is much more straightforward since

there are no delay constraints imposed. At each slot, we check if the Deficit Based

Queues are empty (zero packets in each of them). If yes, we schedule the elastic flow

with the longest queue length as shown in Figure 4.5.

Figure 4.5: Longest Queue First Scheduling

We re-transmit a fixed number of times since the elastic packets don’t have dead-

lines associated with them. This will prevent a single elastic flow monopolizing the

resources of the entire system when its corresponding channel conditions happen to

be poor.

4.2.2 Reconfigurable PHY

Since the clients themselves are located at different spots, their individual channel

conditions could well differ. The Channel State of a client can be quantified by
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observing its block error rate - or essentially the number of successful transmissions

(denoted by ACKs). This Channel State Information (CSI) is an indicator of the

channel quality. A higher quality channel is to be given more precedence to minimize

resource wastage as well as improve the overall system performance.

In order to make sure that the spectrum is well utilized, we use the CSI of each

client to:

1. Adjust its modulation scheme

2. Weight its scheduling parameters

The CSI updating itself is done using an exponentially weight moving average of

the following form:

CSIupto [T ] = (1− β)CSIupto [T−1] + (β)CSIat [T ]

Where CSIat [T ] = 1ACK and β is pruned to suit our scenario. Based on the range

of values in which the CSI lies, we use Table 4.1 to decide which modulation scheme

to use. Since the CSI values typically don’t vary rapidly, the updated modulation

scheme will either be a step-up or a step-down from the one deployed previously.

CSIupto [T ] Modulation Scheme (MCS)
0-0.1 BPSK (3/4)
0.1-0.2 QPSK (1/2)
0.2-0.3 QPSK (3/4)
0.3-0.7 16 QAM (1/2)
0.7-0.8 16 QAM (3/4)
0.8-0.9 64 QAM (2/3)
0.9-1 64 QAM (3/4)

Table 4.1: CSI Ranges to MCS Look-up.
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Using the updated modulation scheme and a lookup table (shown in Table 4.2),

we weight the scheduling parameters (deficits or queue lengths) accordingly. This is

consistent with the (1/pn) described in [19].

Modulation Scheme (MCS) Weight
BPSK (3/4) 1
QPSK (1/2) 1.3
QPSK (3/4) 1.8
16 QAM (1/2) 2.3
16 QAM (3/4) 3
64 QAM (2/3) 3.6
64 QAM (3/4) 3.9

Table 4.2: MCS to Weight Look-up.

By choosing a modulation scheme, the net maximum throughput values observed

are correspondingly recorded (under nearly perfect channel conditions in an anechoic

chamber). These throughput values are then normalized with respect to the BPSK

base case to express them as weights in the look-up table.

4.2.3 Reconfigurable Antennas

The WiMAC’s antenna setup can be controlled via an external unit that permits

configuration of antenna parameters. A picture of the Antenna setup is shown in Fig-

ure 4.6. The antenna reconfiguration is done over large timescales at the aggregates

of packets.

The antennas used have two reconfiguration states viz. Vertical and Horizontal

polarization. These states are controlled by an Arduino microcontroller which in turn

is serially controlled by a local computer (typically an Intel NUC). More specifically,

applying a bias to the diode which in the datapath to the antennas, the polarization
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states can be altered in the timescale of microseconds.

Figure 4.6: The Reconfigurable Antenna Setup

35



4.3 Policy Implementation using OpenFlow

We now extend this setup to make the AP OpenFlow compatible to execute

specific policy schemes operating over an aggregate of packets.

We utilize OpenFlow’s Experimenter messages feature which enables the ex-

change of user-defined messages between an SDN Controller and Device. The nature

of the message is specified using an Experimenter type included as part of header.

This field allows us to define different categories of custom commands/responses.

The Controller packs the command (in pre-decided format), creates an experi-

menter message and sends it to the Device. The Device unpacks the message, per-

forms the appropriate operation (based on experimenter type) and sends the results

obtained back to the Controller (as an experimenter message).

We deploy a RYU SDN Controller which communicates to the Softswitch (SDN

Receiver/Device) via OpenFlow. The Softswitch in turn relays these messages to the

AP Host via UDP send and receive. The remote controller will now gain the ability

to configure policies (real-time) on the following components of the AP:

1. Reconfigurable MAC: MAC mechanisms and their configurations can be chosen

based on a dynamically operating bidding system. Policies would include:

• Determining which flow should be coupled with what mechanism (real-

time or throughput maximizing).

• Assigning appropriate Delivery Ratios to the real-time flows of clients.

• Proportionally allocate the spectrum resources between the two types of

flows to maximize utility.

2. Reconfigurable PHY: USRP Radio parameters (TX power level, constellation

etc.) based on channel conditions.

36



3. Reconfigurable Antennas: The WiMAC’s antenna setup via an external an-

tenna control unit that permits configuration of the radiation pattern of the

antennas.
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5. RESULTS

The primary focus of this work is to implement custom MAC mechanisms on a

wireless testbed to facilitate quick prototyping. Though a combination of real-time

and non real-time flows has never been implemented, elastic flows alone have been

implemented in [14]. While these mechanisms are very diverse, WiMAC makes the

experimentation easily performable through the decoupling framework.

5.1 Implementation Specifications

For the experiments, we use NI USRP 2153R, which is an FPGA-based SDR

by National Instruments. The experiments are run at the center frequency of 2.5

GHz. Subcarrier format follows the IEEE 802.11a 20 MHz standards. To reduce

interference from external sources, we manually set the transmit power to be 10

dBm as well as perform our experiments in an anechoic chamber. Figure 5.3 shows

a line diagram of the experimental setup while Figures 5.1 and 5.2 show snapshots

of the setup from within the chamber.

We take the slot length to be the time taken by BPSK to transmit a packet

including all overheads. We have determined the total capacity of the system to be

of the order of 16 Mbps and we operate at around 13 Mbps. We choose interval

width to be 50 ms and regulate inelastic packet arrivals to only at the beginning of

each interval for both the clients. Elastic packets are non-deterministic and follow

poisson arrivals at each interval with rate λ. We have 30 packets of inelastic flows

and λ = 10 packets per interval for elastic flows arriving for Client 1. To induce

assortment of flows, for Client 2 we have 10 packets of inelastic flows and λ = 30

packets per interval for elastic flows. Each packet is of the order of 1400 bytes. We

specify the Delivery Ratio of Client 1 to be 0.95 and Client 2 to be 0.85.
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Figure 5.1: Experimental Setup - View from AP

Figure 5.2: Experimental Setup -
View from Client 2

Figure 5.3: Experimental Setup - Line
Diagram
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5.2 Reconfigurable MAC

We have implemented the wireless system with the architecture illustrated in

Figure 4.1. This incorporates real-time flows scheduled by Deficit-Based-Queuing

and non real-time flows scheduled by Longest-Queue-First.

5.2.1 Experimental Evaluation of the Optimal MAC System

For the first set of results, we expose both clients to similar channel conditions.

As is expected, we get a throughput of about 6.5 Mbps at each Client. Since both

channels are good, we do not observe packet loss. Since we are operating within the

capacity region, the system is stable, deficits for the inelastic flows are almost always

at 0 and the queue lengths for the elastic flows maintain their state and don’t build

up to enormous amounts.

Since we use a VLC streaming application to be the source of real-time traffic,

we observe the corresponding video feed at each Client-Host with a slight delay. The

file transfer application too progresses steadily.

Next, we compare the performance of our optimal mechanism with other based

on the metrics explained in the next section.

5.2.2 Performance Comparison with Existing MAC Algorithms

For comparison purposes, the two key mechanisms discussed in Section 2 are

chosen to be benchmarks.

We implement the following MAC mechanisms in our current system of elastic

and inelastic flows:

1. Utility maximization using Max-Weight and Deficit Based (proposed & opti-

mal)

2. Max Weight Scheduling for all queues
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3. Deficit Based Queueing for all queues

4. Randomized Scheduler

Metrics to gauge the performance of each mechanism would be:

• RX Throughput: average number of packets successfully received at the client

measured in bits per second.

• Queue lengths: Of elastic flow measured each time the state of the system

changes.

• Attained Delivery Ratio: Of both elastic and inelastic flows for each client.

The attained delivery ratio for inelastic flows signifies the fraction of packets

satisfying the delay requirement. This can be quantified as (1 - Drop probabil-

ity) where the Drop probability is defined as ai−exp/(ai+ae) where ai−exp refers

to the packets expired in the interval and ai + ae refers to the total packets

that arrived at the beginning of the interval.

• Queue Deficits: Of inelastic flow measured each time the state of the system

changes.
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Figure 5.4: RX Throughput Comparison

Figure 5.4 shows the average throughput achieved by each of the MAC mecha-

nisms for Clients 1 and 2. Client 2 has a higher throughput than Client 1 owing

to the greater Delivery Ratio assigned to it. Evidently, our optimal mechanism per-

forms much better than the others by delivering a net throughput of above 13 Mbps.

The Deficit Based Queues and Longest Queue First only manage to reach around

11-12 Mbps.

A good throughput is essential to sustain a system of both elastic and inelastic

flows. More so when the inelastic flow consists of high definition video packets.
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Figure 5.5: Queue Length Comparison of Elastic Flows

Next in Figure 5.5, we take a look at the queue lengths of the elastic flows of

both the clients as time progresses. While the Optimal mechanism maintains queue

lengths at the order of less than 100 packets for each client, the Longest Queue First

mechanism is less successful since it also gives equal weight to the queue lengths of

inelastic flows (which is unnecessary). Deficit Based Queueing clearly trails behind

since it pays no heed to queue lengths while scheduling the flows.
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Figure 5.6: Attained Delivery Ratio Comparison

As illustrated in Figure 5.6, the Optimal mechanism achieves 100% of the delivery

ratio for all four flows, which is more than the required numbers for the clients (85%

and 95% respectively).

Although Deficit Based Queuing meets these numbers for inelastic flows, it only

attains around 75% delivery ratio for the elastic flows. This is due to the randomized

scheduling done between the elastic flows. The elastic packet arrivals per interval at

the two clients differ hugely (10 for Client 1 vs. 30 for Client 2). Since randomization

pays no heed to queue lengths, it schedules Client 1 (elastic) even after it runs dry.

Longest Queue First just manages to meet the optimal ratios for Client 1’s flows

as well as Client 2’s elastic flow. It takes a performance hit for the inelastic flow

of Client 2 owing to its queue length. Since inelastic packet arrivals are just 10 per

interval for Client 2, its always given a lower scheduling priority which increases the

chances of the head of line packets being dropped more often due to deadline expiry.
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Figure 5.7: Deficits Comparison of Inelastic Flows

Finally in Figure 5.7, we compare the deficit numbers for the inelastic flows of

each client as time progresses. Both the Optimal mechanism and Deficit Based

Queueing have close to zero deficits for each inelastic flow.

While deploying Longest Queue First, the deficit numbers continue to increase

slowly and are never stabilized unlike the above two mechanisms.

In all the above comparison metrics, the Randomized scheduler performs the

worst since its neither aware of queue lengths nor of the presence of deadlines and

delivery ratios to be met.
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5.3 Reconfigurable PHY

Following the MAC, we focus on enabling reconfigurability at the PHY layer

by analyzing the system performance under variable channel conditions. This is

primarily to demonstrate that the incorporation of Channel State Indicators (with

corresponding modifications to the weights and modulation scheme as discussed in

the Section 4.2.2) results in a marked improvement in performance.

Client 1 is left as is, while Client 2 is faced with a much lower received signal

strength and hence a poorer channel condition. This is achieved by decreasing the

receiver antenna gain at Client 2 as well as decreasing the transmit power at the AP

(for Client 2 in particular).

Without considering the channel state of the system - Client 2, (due to its static

modulation scheme) not only performs poorly, but also uses up the spectrum re-

sources that could have been put to better use if allocated to Client 1. The perfor-

mance gain due to incorporation of the Channel State Indicators (CSI) is illustrated

in the plots below (Figures 5.8 and 5.9).

Figure 5.8: RX Throughput with
Channel State Indication

Figure 5.9: Attained Delivery Ratio
with Channel State Indication

46



5.4 Reconfigurable Antennas

Next, we look at the system behavior with varying antenna configuration states.

The AP and Client 1 maintain their current state of Vertical Polarization with the

existing omnidirectional antenna.

Client 2 however is affixed with a re-configurable directional antenna with two

polarization states:

1. Vertical (Co-polarization)

2. Horizontal (Cross-polarization)

The system performance due to varying antenna configuration states is illustrated

in the plots below (Figures 5.10 and 5.11).

Figure 5.10: RX Throughput with
Antenna Polarization

Figure 5.11: Attained Delivery Ratio
with Antenna Polarization
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5.5 Policy Implementation

We finally look at implementing policies on our testbed. We vary arrival rates

(al) and delivery ratios (ql) in the timescale of seconds to compare how the Optimal

system performs as compared to the Randomized scheduler. The Randomized sched-

uler operates similar to an 802.11 based AP in the sense that all flows are treated

identically irrespective of their nature.

In the following experiment, we change these parameters every 90 seconds. The

variance with timeframes is depicted in Table 5.1.

hhhhhhhhhhhhhhhhhhParameter
Timeframe (sec)

0 - 90 90 - 180 180 - 270 270 - 360

ai1 35 30 40 25
λ(ae1) 10 10 20 5
ai2 10 10 20 5
λ(ae2) 35 30 40 25
ql1 0.95 0.9 0.9 0.85
ql2 0.85 0.8 0.9 0.95

Table 5.1: Parameter Specifications at each Timeframe (in seconds)

The corresponding comparison results are illustrated as under (in Tables 5.2, 5.3

and Figures 5.12, 5.13). Despite the real-time variance and exceeding the capacity

of the system (in timeframe 180 - 270), the optimal mechanism outperforms the

randomized scheduler in the key aggregates quantifying the QoS.

48



hhhhhhhhhhhhhhhhhhMAC mechanism
Timeframe

0 - 90 90 - 180 180 - 270 270 - 360

Optimal - Client 1 6.6 5.8 6.6 4.9
Optimal - Client 2 6.6 5.8 6.6 4.9
Randomized - Client 1 3.6 3.2 3.9 2.4
Randomized - Client 2 4.4 3.9 4.6 2.9

Table 5.2: Throughput (in Mbps) Variance with Time

hhhhhhhhhhhhhhhhhhMAC mechanism
Timeframe

0 - 90 90 - 180 180 - 270 270 - 360

Optimal - Client 1 100 100 86.7 100
Optimal - Client 2 100 100 100 100
Randomized - Client 1 48.9 55.2 42.8 62.3
Randomized - Client 2 51.1 51.8 59.3 68.7

Table 5.3: Attained Delivery Ratio (in %) of Inelastic Flows with Time

Figure 5.12: Deficits Comparison of Inelastic Flows with Time
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Figure 5.13: Queue Length Comparison of Elastic Flows with Time
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6. CONCLUSION

Existing efforts towards MAC implementation do attain protocol-level adaptabil-

ity but lack in terms of either implementation flexibility or prototyping agility. We

remove the tight coupling between the MAC and PHY to achieve rapid MAC pro-

totyping via the WiMAC testbed. We promote the design of MAC protocols in

software thereby supporting dynamic protocol changes at runtime.

In this work, we developed the idea of mechanism-policy separation. The per-

packet decisions (mechanisms) were implemented on the WiMAC while the larger

timescale decisions (policies) were implemented using OpenFlow.

The implementation considers both best-effort and delay sensitive traffic and uses

a combination of the appropriate protocols (Max-Weight and Deficit Based Queue-

ing) to achieve optimality. The optimal protocol outperforms the other protocols in

consideration with respect to the key aggregates that define the Quality-of-Service.

Execution of policy schemes using a centralized controller also enables the system to

achieve reconfigurability at multiple levels.

The current implementation focuses on a single-hop downlink scheduling based

wireless network. It will be worthwhile to extend this to a multi-hop setup in order

to analyze the dynamics which are less-deterministic. Another aspect that we intend

to inspect in the near future would be enabling reconfiguration of radiation patterns

using the antennas on a per-packet basis. This could be feasible with the control-

functionality at the USRP-Target. Since the USRP-Target takes care of the actual

packet transmissions, possible issues with respect to synchronization can be avoided.

In this work, we only consider some basic policy schemes to suit our implemen-

tation purposes. The idea of executing policy changes with a centralized controller
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opens a vast set of possibilities for exploration.

As demonstrated in our results, the combination of mechanisms (at the PHY-

MAC levels) with the given set of policy schemes is what results in a QoS aggregate.

It is however not clear as to what the optimal combinations are when the flows

are more varied and heterogeneous. Hence, coming up with an intelligent model to

sample the space of mechanism-combinations and their corresponding QoS aggregates

and thereby resolving the optimal combination is also an interesting direction worth

investigating.
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