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ABSTRACT

Large-scale and complex dynamical networks with high-dimension states have

been emerging in the era of big data, which potentially generate massive data set-

s. To deal with the massive data sets, one promising method is the distributed

collaboration strategy over the network. This dissertation proposes the schemes of

distributed estimation and distributed quickest detection and also studies the per-

formance of the distributed schemes with the large deviation analysis, which answers

a fundamental question on how to quantify the rate at which the distributed scheme

approaches the centralized performance.

First, the distributed Kalman filtering scheme with the Gossip interaction among

sensors is proposed to estimate the high-dimension states at each node, where sen-

sors exchange their filtered states (estimates and error covariance) and propagate

their observations via inter-sensor communications. The conditional estimation er-

ror covariance sequence at each sensor under this scheme is proven to evolve as a

random Riccati equation (RRE) with Markov modulated switching. By formulating

the RRE as a random dynamical system, it is shown that the network consensus over

the estimation at each node is achieved. The large deviation analysis further shows

that the distributed scheme converges to the optimal centralized one at an exponen-

tially fast rate. By considering the energy and bandwidth constrains, a Quantized

Gossip-based Interactive Kalman Filtering algorithm for scalar dynamic systems is

also proposed, where the sensors exchange their quantized states with neighbors via

inter-sensor communications. It is shown that, in the countable infinite quantization

alphabet case, the network can still achieve weak consensus with the additional infor-

mation loss caused by quantization. It is also proved that, under certain conditions,
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the network can also achieve weak consensus with the finite quantization alphabet,

which is more restricted and practical.

Then, the distributed quickest detection scheme is proposed with multiple rounds

of inter-sensor communications to propagate observations during the sampling inter-

val. By modeling the information propagation dynamics in the network as a Markov

process, the two-layer large deviation analysis is used to analyze the performance of

the distributed scheme. The first layer analysis proves that the probability of false

alarm decays to zero exponentially fast with the increasing of the averaged detection

delay, where the Kullback-Leibler (KL) information number is established as a cru-

cial factor. The second-layer analysis shows that the probability of the rare event

that not all observations are available at a sensor decays to zero at an exponentially

fast rate when the number of communications increases, where the large deviation

upper and lower bounds for this rate are also derived, based on which it is shown

that the performance of the distributed algorithm converges exponentially fast to

that of the centralized one, by proving that the defined distributed KL information

number converges to the centralized KL information number.
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1. INTRODUCTION

Large scale and complex dynamical systems with high-dimension states have been

emerging, which potentially generate the massive data sets, as the trending in the

era of big data. The novel signal processing methods dealing with these large scale

and complex systems are required. For estimation aspect, in research areas such

as the system control, power grid and communication network, we need to resolve

or estimate the states of these dynamical systems, and then further corresponding

actions could be taken. Due to the high-dimension of states, it is hard to resolve

the system states at one node, since only portion of high-dimension states could be

observed at one node with its limited sensing capability. The nodes need to collabo-

rate with each other in order to complete the estimation task. Since the centralized

method has some disadvantages including issues such as poor scalability and robust-

ness, and high communication and computation burdens, which are specified later,

one promising method to deal with the above issues is the distributed collaboration

strategy over the sensor network. This distributed philosophy is also needed in the

detection problems in the large scale systems.

In this chapter, we first introduce background and motivations for the work in this

thesis, including the literature review therein. Then we summarize the contributions

of this thesis, with the statement of specific problems solved.

1.1 Background and Motivations

With the sensor network monitoring or sensing the large scale systems, each sensor

or node is not able to observe the whole state process in the system, due to the well-

known capability constrains of sensors, such as the limited battery capacity, the low

computation ability, and the limited sensing range. Therefore, only a portion of the
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state process in the large scale system could be possibly observed at each sensor. To

resolve the dynamical states of the system, an apparent and ideal way is to collect

the observations from all sensors and then implement the estimation or filtering

algorithm over the whole set of observations to estimate the system states. This

is the so-called centralized philosophy, requiring the existence of a fusion or control

center and each sensor communicating and sending the collected observation to this

fusion center, where the signal processing method is implemented over the received

observations from all sensors. For this centralized method, there are some obvious

disadvantages, mainly summarized into the following three aspects: 1) Scalability and

robustness: The centralized method is fragile to the attack leading to the failure of the

fusion center or the sensors nearby the fusion center that play the critical role in the

multi-hop routing protocol to relay the observations from other sensors, and it needs

to redesign the network protocol when extending the network size with additional

sensor implemented. 2) Communication burden: With the large scale of the network,

if designing the protocol of one-hop communication from the sensors to the fusion

center, the transmission power at those faraway sensors have to be high enough to

support the communication, which conflicts to the low power supplies at sensors.

Usually the multi-hop routing protocol is adopted, then sensors nearby the fusion

center have to relay and communicate much more frequently, which leads to heavy

communication burden and easily causes death of those sensors. 3) Computation

burden: The fusion center takes heavy computation burden to process the massive

data sets collected from the sensors, especially in the large scale network. To solve

the above concern, distributed signal processing philosophy have been taken into

consideration.

To be specific, for distributed estimation in a wireless sensor network [74, 50],

multiple spatially distributed sensors collaborate to estimate the system state of
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interest, without the support of a central fusion center due to physical constraints

such as large system size and limited communications infrastructure. Specifically,

each sensor makes local partial observations and communicates with its neighbors

to exchange certain information, in order to enable this collaboration. Due to its

scalability for large systems and robustness to sensor failures, distributed estimation

techniques find promising and wide applications including in battlefield surveillance,

environment sensing, or power grid monitoring. Especially in the era of big data

and large systems, which usually require overwhelming computation if implemented

in centralized fashion, distributed schemes become critical since they can decompose

the computational burden into local parallel procedures. A principal challenge in

distributed sensing, and in distributed estimation in particular, is to design the

distributed algorithm to achieve reliable and mutually agreeable estimation results

across all sensors, without the help of a central fusion center. Further prior work

addressing the above concerns is found in [56] and [28], with detailed surveys in

[49, 17] and the literature cited therein.

This thesis studies the Modified Gossip Interactive Kalman Filtering (M-GIKF)

for distributed estimation over potentially big data sets generated by a large dy-

namical system, in which each sensor observes only a portion of the large process,

such that, if acting alone, no sensors can successfully resolve the entire system. The

M-GIKF is fundamentally different from other distributed implementations of the

Kalman filter, such as [53], [48], [34], and [10], which usually employ some form of

averaging on the sensor observations/estimations through linear consensus or dis-

tributed optimization techniques. In [53], decentralization of the Kalman filtering

algorithm is realized, where each node implements its own Kalman filter, broadcasts

its estimate to every other node, and then assimilates the received information to

reach certain agreement. In [48], the author proposes an approximate distributed
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Kalman filtering algorithm by decomposing the central Kalman filter into n micro

Kalman filters with inputs obtained by two consensus filters over the measurements

and inverse covariance matrices. In [34], distributed Kalman filtering is derived for

large-scale systems, where low-dimensional local Kalman filtering is achieved by spa-

tially decomposing the large-scale system and adopting bipartite fusion graphs and

consensus averaging algorithms. In [10], the authors formulate distributed Kalman

filtering for a scalar system as an optimization problem to minimize the trace of the

asymptotic error covariance matrix and study the interaction among the consensus

matrices, the number of messages exchanged, and the Kalman gains. Single time-

scale distributed approaches, i.e., in which only one round of inter-sensor message

exchange is permitted per observation sampling epoch, are considered in [33], [51].

The distributed Kalman filtering algorithm in [33] involves a dynamic consensus

mechanism in which at every observation sampling round each sensor updates its

local estimate of the system state by combining a neighborhood consensus cooper-

ation term (based on a single round of inter-agent message exchange) with a local

innovation term (based on the new observation data sensed). The resulting distribut-

ed algorithm can track unstable dynamics with bounded mean-squared error (MSE)

as long as the degree of instability of the dynamics is within a so called Network

Tracking Capacity (NTC) of the agent network. A generic characterization of agent

networks in which the above dynamic consensus based algorithm provides tracking

with bounded MSE is provided in [18], where the authors employ structural sys-

tem theoretic tools to obtain conditions on the communication topology and sensing

model structure that guarantee tracking with bounded MSE. Another class of dy-

namic consensus type distributed observers/estimators has been proposed in [51], in

which, in addition to updating their local state estimates, the agents propagate an

additional augmented state in a distributed fashion. Conditions on local innovation
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gain selection and coupling between the estimate and augmented state updates were

obtained that guarantee stable tracking performance. More recently, an extension

of the algorithm in [33] is proposed in [13], which performs dynamic consensus on

pseudo-innovations, a modified version of the innovations, to improve estimation

performance. A conceptually different single time-scale distributed Kalman filter-

ing scheme was considered in [30], in which inter-agent cooperation was obtained

by randomized estimate swapping among neighboring agents. Under rather weak

assumptions on the detectability of the global sensing model and connectivity of

the inter-agent communication network, the algorithm in [30] was shown to yield

stochastically bounded estimation error at each agent. Moreover, the conditional

error covariance at each agent was shown to converge to a stationary distribution of

an associated random Riccati equation.

In wireless sensor networks, quantization is usually required before the data is

exchanged through inter-sensor communications [44, 71, 41, 2, 20], since the limited

sources, such as bandwidth and power, prevent the exchange of high-precision data

(e.g., real-valued analog data) among the sensors. For quantized Kalman filtering

in the literature, in [47], the innovation is quantized by either an iterative binary

quantizer or a single-shot batch quantizer, and a recursive state estimator is intro-

duced. In [63], Kalman filters based on both quantized observations and quantized

innovations are proposed, and the tradeoff between energy consumption and estima-

tion accuracy is studied. In [73], an optimal quantization method over observations

and a transmit power scheduling strategy for the decentralized estimation in an in-

homogeneous sensor network is proposed to minimize the total transmit power. In

[40], a distributed adaptive one-bit quantization scheme over observations is pro-

posed for distributed estimation, where each individual sensor dynamically adjusts

the threshold of its quantizer.
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Another distributed scheme studied in this thesis is the distributed quickest de-

tection. Quickest change detection problems focus on detecting abrupt changes in

stochastic processes as quickly as possible, with constraints to limit the detection

error. Quickest change detection has wide applications in fields such as signal and

image processing [35, 39, 69], computer network intrusion detection [68, 64, 9], neuro-

science [12], environment and public health surveillance [21, 61], and system failure

detection [54, 42]. Specifically, when quickest change detection is implemented in

sensor networks [5, 45, 65], it can detect the change of statistical features, such as

the mean and variance, over the observation sequences taken by sensors. For exam-

ple, quickest change detection can be implemented in sensor networks for chemical

industry to monitor the leakage, or to surveille the change of temperature in the

field, by detecting the change in statistical patterns.

For signal processing implementation in sensor networks, essentially it can be

divided into the following two categories: centralized vs. distributed algorithms. For

centralized quickest change detection algorithms [67, 70, 23, 46, 75, 38, 4], a con-

trol or fusion center exists to process the data in a centralized way. Specifically, in

centralized algorithms, they assume that either the raw observations from all the

sensors or certain pre-processed information from the sensors (some people call this

case as decentralized sensing) are available to the control or fusion center via certain

communication channels; then a final centralized detection procedure is executed at

the center. However, centralized algorithms have some disadvantages, such as heavy

communication burden, high computation complexity, low scalability, and poor ro-

bustness. On the contrary, distributed implements do not require a control or fusion

center, and the detection procedure is implemented at each sensor in a local and

parallel fashion, with interactions among sensors in the neighborhood to exchange

information. While centralized quickest change detection algorithms have been well-
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studied, there are fewer literatures on the study of distributed algorithms for quickest

change detection problems [7, 62], which become more desired in large-scale networks

with a huge volume of data, in order to reduce the overall computation complexity

and to enhance scalability. In [7], a distributed consensus based Page’s test algorith-

m, using cumulative sum (CUSUM) log-likelihood of the data, was proposed, with

the assumption that the change happening time is deterministic but unknown, which

is called a non-Bayesian setup. In [62], a distributed change detection algorithm was

proposed, to combine a global consensus scheme with the geometric moving average

control charts that generate local statistics.

In both [7] and [62], non-Bayesian setups of the change happening time are con-

sidered, where the communication stage and the observation stage are interleaved,

i.e., they are at the same time scale and each is executed once within one system

time slot. Under such an interleaving strategy, the convergence of the test statistic is

established when the system time goes to infinity. However, this type of convergence

analysis over time does not fit well into quickest change detection problems, which

are time-sensitive, with the goal to detect the change as quickly as possible. This

is different from traditional detection problems without much consideration of the

timing issue, where the convergence analysis is commonly performed as the system

time goes to infinity.

1.2 Contributions

For the distributed estimation, the proposed M-GIKF achieves sensor collabo-

ration by exchanging local estimation states and propagating observations between

neighbor sensors. In M-GIKF, each sensor runs a local Kalman filter. At each signal

evolution epoch, each sensor first randomly selects a neighbor with which to exchange

its state (their local Kalman filter state estimate and conditional error covariance),
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then propagates its observations to randomly selected neighbors, and lastly updates

the estimate based on the received states and accumulated observations. This kind of

collaboration through state exchange and observation propagating occurs distribut-

edly and randomly, being controlled by the random network topology provided by

an underlying gossip protocol. In M-GIKF, we assume that the communication

channels among neighbors are ideal, implying that we precisely convey the sensor

states and observations without distortion. The M-GIKF scheme introduced in this

thesis generalizes the (GIKF) scheme introduced in the prior work [30], in which

inter-sensor communication and signal evolution operate at the same time scale such

that only sensor states are exchanged at each signal evolution epoch; in contrast, the

M-GIKF scheme is a multi-time scale algorithm in which at each signal evolution

epoch the agents cooperate through a single round communication of states exchange

and the additional communication at a predefined rate γ (informally, γ denotes the

average number of additional network communications per signal evolution epoch)

to disseminate observations according to a randomized gossip protocol.

The GIKF proposed in the prior work [30] is a simpler version of M-GIKF without

observation propagation; [30] shows that the error process is stochastically bounded

and the network achieves weak consensus. The detailed characterization of this

invariant measure was not established. In this thesis, we prove that the measure µγ

approaches the Dirac measure δP ∗ (P ∗ is the unique fixed point of the error covariance

sequence in centralized Kalman filtering), and µγ satisfies the Large Deviation (LD)

upper and lower bounds. The LD property of µγ implies that the probability of a

rare event (the event of staying away from an arbitrary small neighborhood of P ∗)

decays exponentially; in other words, the convergence of µγ to δP ∗ is exponentially

fast in probability.

In contrast, the previous work in [31] only provides the Moderate Deviation prop-
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erty of the random Riccati equation (RRE), where the RRE arises in Kalman filtering

with intermittent observations, a problem discussed in [60], where the sensor observa-

tion packets, transmitted through an imperfect communication medium, are received

at the estimator as a Bernoulli process with arrival probability γ > 0. In this case,

the Moderate Derivation shows that the probability of a rare event decays as a power

law of (1−γ) for γ → 1. Such setup and result are fundamentally different from those

in this thesis, because Kalman filtering with intermittent observations discussed in

[60] and [31] considers only the local algorithm at each sensor without inter-sensor

communications.

By considering the limited sources for wireless sensor networks, such as bandwidth

and power, which prevent the exchange of high-precision data (e.g., real-valued ana-

log data) among the sensors, we further propose the quantized GIKF algorithm to

involve the quantization scheme before transmitting data on the inter-sensor com-

munication channel. The quantization procedure induces some noise to the swapped

signal, such that the received state from the neighbor loses certain information. This

makes the problem more challenging and different from the problem solved in Chap-

ter 2 and 3, where we assume that the state of a sensor is perfectly transmitted to

its neighbor. Then a natural question to ask is whether or not the estimation error

variance sequence could still achieve weak convergence with the information loss due

to quantization. To seek a positive answer, a Quantized Gossip Interactive Kalman

Filtering (QGIKF) algorithm with a countable infinite quantization alphabet is first

studied in the thesis, which is then extended to investigate a more restrictive and

practical case with a finite quantization alphabet. In case of finite quantization al-

phabet, we propose a modified quantized GIKF (M-QGIKF) alphabet to solve the

potential problem that quantization could saturate with finite quantization alphabet,

and find the conditions under which M-QGIKF can still achieve weak consensus.
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For the distributed quickest detection, different from the existing work, in this

thesis we propose a distributed change detection algorithm based on a Bayesian

setup of change happening time. To the best of our knowledge, this thesis is the first

work discussing the distributed change detection algorithm under such a Bayesian

setup. Additionally, in our proposed distributed algorithm, multiple communication

steps are in between two observation instants, i.e., the communication step has a

smaller time scale than that of the observation stage. In communication steps, a

random point-to-point gossip based algorithm is proposed as in [37, 36]. We model

the information propagation procedure governed by this communication procedure

as a Makov process. We then analyze the performance of the proposed distributed

change detection algorithm, with a method of two-layer large deviation analysis.

Large deviation techniques [14, 8] have been used to analyze the performance of

either centralized or distributed estimation and detection algorithms, for example,

in [37, 3, 25, 55]. However, no existing work has utilized the technique of large

deviation analysis to study the performance of the change detection algorithms,

especially the distributed change detection algorithms. The most related work is

[55], in which a distributed sequential detection method is proposed to solve the

problem of Gaussian binary hypothesis testing. The sequential hypothesis testing

problem could be considered as a special case of change detection problems, where

the change happened at the initial time point [52].

The first-layer large deviation analysis shows that the relation between the con-

ditional averaged detection delay and the probability of false alarm satisfies the large

deviation principle, which implies that the probability of false alarm decays expo-

nentially fast as the conditional averaged detection delay increases. In the first-layer

analysis, the nonlinear renewal theorem is adopted, by representing the stopping

time with the form of a random walk crossing a constant threshold plus a nonlinear
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term. The second-layer analysis derives the large deviation upper and lower bound-

s for the probability of the rare event that not all observations are available at a

sensor. Based on this, we further prove that the distributed Kullback-Leibler infor-

mation number converges to the centralized Kullback-Leibler information number,

by deriving the upper and lower bounds for the distributed form of Kullback-Leibler

information numbers. We eventually show that the performance of the distributed

algorithm converges exponentially fast to that of the centralized one when the av-

eraged number of communications increases. In the analysis, the concept of hitting

time in Markov chain is used to derive the large deviation upper and lower bounds.

Here I give the overview of contributions corresponding to addressing the follow-

ing questions:

1. With lacking of detectability for the large scale system at a single node, how

to design a distributed Kalman filtering strategy to achieve the reliable state

estimate at each node for the entire system?

2. Can the estimation error covariance sequence in the proposed distributed Kalman

filtering scheme achieve convergence?

3. How to quantify the rate at which the proposed distributed Kalman filtering

scheme approaches the centralized performance as the inter-sensor communi-

cation rate increases?

4. With quantization involved, due to the information loss caused by quantiza-

tion with infinite quantization alphabet, can the proposed distributed Kalman

filtering scheme still achieve weak consensus?

5. By considering a more practical quantization method with finite quantization

alphabet causing more information loss, how to design the algorithm and what’s
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the condition to maintain weak consensus?

6. In the distributed quickest detection scheme, what’s the relation between the

two performance metrics: probability of false alarm and averaged detection

delay?

7. Under which condition, the distributed quickest detection scheme will approach

the centralized optimal performance? What’s the convergence rate?

This thesis is structured as follows. In Chapter 2, the system model is first setup,

including the signal/observation model and the inter-sensor communication model.

Then we propose the M-GIKF algorithm and a distributed observation dissemina-

tion protocol embedded in M-GIKF algorithm. After establishing the model for the

M-GIKF, we study its conditional estimation error covariance properties. We show

that the sensor network achieves weak consensus for each γ > 0, i.e., the conditional

estimation error covariance at a randomly selected sensor converges weakly (in dis-

tribution) to a unique invariant measure of an associated random Riccati equation.

To prove this, we interpret the filtered state at each sensor, including state estimate

and error covariance, as a stochastic particle and interpret the travelling process of

filtered states among sensors as a Markov process. In particular, the sequence of

travelling states or particles evolves according to a switched system of random Ric-

cati operators, where the switching is dictated by a nonstationary Markov chain on

the network graph. We formulate the corresponding random Riccati equation (RRE)

as a Random Dynamical System (RDS) and establish the asymptotic distributional

properties of the RRE sequence based on the properties of RDSs, where we show

that the sequence of RREs converges weakly to an invariant measure.

In Chapter 3, the characterization of the converged invariant measure µγ is s-

tudied with the large deviation analysis. We characterize such an invariant measure
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denoted as µγ, which is the counterpart of the unique fixed point P ∗ of the error

covariance sequence in centralized Kalman filtering [27]. As γ → ∞, we further

prove that the measure µγ approaches the Dirac measure δP ∗ , and µγ satisfies the

Large Deviation (LD) upper and lower bounds. The LD property of µγ implies that

the probability of a rare event (the event of staying away from an arbitrary small

neighborhood of P ∗) decays exponentially; in other words, the convergence of µγ to

δP ∗ is exponentially fast in probability. In Chapter 3, we first present the overview

of large deviation principle with introducing some related definitions. Then, some

preliminary results including the string theory and the Riccati equation are estab-

lished to assist the large deviation analysis. Finally, we derive the upper and lower

bounds of the large deviation and also present the numerical simulation results to

calculate these bounds.

In Chapter 4, we first present the overview of the dithered quantization method

and emphasize its property that the output is independent to the input when the

Schuchman condition is satisfied. Based on this dithered quantization method, we

propose the QGIKF scheme, with the state of a sensor first quantized into a infi-

nite quantization alphabet before transmitting. With QGIKF algorithm, we further

derive the corresponding estimation error variance, the format of which is quite dif-

ferent from that of M-GIKF algorithm. Then, an RDS formulation is established to

represent the behavior of estimation error variance. Finally, we prove the weak con-

sensus results by first giving some intermediate results including the stochastically

boundedness as the perquisite conditions.

In Chapter 5, we extend the study from the infinite quantization alphabet to the

finite quantization alphabet, which is a more practical and constrained case. Since

the finite quantization alphabet induces more information loss and the quantization

would saturate when the input data stays outside the alphabet range, we propose
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the M-QGIKF algorithm to deal with these issues. We prove that under some mild

conditions, the M-QGIKF algorithm can still achieve weak consensus. The simulation

results further illustrate the consensus and also show the advantage of this distributed

cooperation with quantization over the non-cooperation scheme.

In Chapter 6, a distributed Bayesian quickest change detection algorithm is stud-

ied. By modeling the information propagation dynamics in the network as a Markov

process, two-layer large deviation analysis is presented to analyze the performance

of the proposed algorithm. The first-layer analysis shows that the relation between

the probability of false alarm and the conditional averaged detection delay satisfies

the large deviation principle, implying that the probability of false alarm according

to a rare event decays to zero at an exponentially fast rate when the conditional

averaged detection decay increases. The second-layer analysis shows that the prob-

ability of the rare event that not all observations are available at a sensor decays

to zero at an exponentially fast rate when the averaged number of communications

increases, where the large deviation upper and lower bounds for this rate are also

derived, based on which we show that the performance of the distributed algorithm

converges exponentially fast to that of the centralized one.
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2. DISTRIBUTED KALMAN FILTERING (M-GIKF) ALGORITHM AND

WEAK CONSENSUS ANALYSIS∗

In this chapter, we first setup the system model, including the signal/observation

model and the communication model for the inter-sensor communications. Then,

we propose the distributed Kalman Filtering (M-GIKF) algorithm, and describe

the distributed observation dissemination protocol used in the M-GIKF algorithm.

Finally, we present and prove the weak consensus results on the estimation error

covariance over sensors.

2.1 System Model

In this section, we describe the system model, with the signal/observation and

communication models.

2.1.1 Signal and Observation Model

Let t ∈ R+ denote continuous time and ∆ > 0 be a constant sampling interval

and the global signal process {xk∆}k∈N evolves as a sampled linear dynamical system:

x(k+1)∆ = Fxk∆ +wk∆ (2.1)

where xk∆ ∈ RM is the signal (state) vector with initial state x0 being distributed

as a zero mean Gaussian vector with covariance P̂0 and the system noise {wk∆} is

an uncorrelated zero mean Gaussian sequence independent of x0 with covariance Q.

∗Part of this chapter is reprinted, with permission, from [Di Li, S. Kar, J. M. F. Moura, H.
V. Poor, and S. Cui, “Distributed Kalman filtering over massive data sets: Analysis through large
deviations of random Riccati equations.” IEEE Transactions on Information Theory, 61(3):1351–
1372, Mar. 2015.]
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The observation at the n-th sensor yn
k∆ ∈ Rmn at time k∆ is of the form:

yn
k∆ = Cnxk∆ + vn

k∆ (2.2)

where Cn ∈ Rmn×M and {vn
k∆} is an uncorrelated zero mean Gaussian observation

noise sequence with covarianceRn ≫ 01. Also the noise sequences at different sensors

are independent of each other, the system noise process and the initial system state.

Because of the limited capability of the sensors, typically the dimension of yn
k is much

smaller than that of the signal process and the observation process at each sensor is

not sufficient to make the pair {Cn,F} observable2. We envision a totally distributed

application where a reliable estimate of the entire signal process is required at each

sensor. To achieve this, the sensors need collaboration via occasional communications

with their neighbors, whereby they exchange their filtering states and observations.

The details of the collaboration scheme will be defined precisely later.

We present the following weak assumptions on the signal/observation model:

Stabilizability: Assumption S.1 The pair (F ,Q1/2) is stabilizable. The non-

degeneracy (positive definiteness) of Q guarantees this.

Weak Detectability: Assumption D.1 There exists a walk 3 (n1, · · · , nl) of

length l ≥ 1 covering the N nodes, such that the matrix
∑l

i=1(F i−1)TCT
ni
Cni

F i−1 is

invertible.

1The sampling interval ∆ could be a function of various system parameters such as the sampling
rate of the sensors and the rate of signal evolution. Thus the factor 1/∆ may be viewed as the
signal evolution time scale. Since ∆ is fixed throughout the paper, we will drop ∆ from the discrete
index of sampled processes for notational convenience. Then, xk will be used to denote xk∆ and
the process {xk∆}k∈N will be denoted by {xk}k∈N.

2It is possible that some of the sensors have no observation capabilities, i.e., the corresponding
Cn is a zero matrix. Thus this formulation easily carries over to networks of heterogeneous agents,
which consist of ‘sensors’ actually sensing the field of interest and actuators implementing local
control actions based on the estimated field.

3A walk is defined w.r.t. the graph induced by the non-zero entries of the matrix A
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Remark 2.1.1 Assumption (D.1) is minimal, since even in the centralized condition,

where a center can access to all the sensor observations over all time, it requires

the detectability for arbitrary choice of the matrix F governing the signal dynamics.

This justifies the term of weak detectability.

2.1.2 Communication Model

Communication among sensors is constrained by several factors such as proximity,

transmit power, and receiving capabilities. We model the underlying communication

structure of the network in terms of an undirected graph (V, E), where V denotes the

set of N sensors and E is the set of edges or allowable communication links between

the sensors. The notation n ∼ l indicates that sensors n and l can communicate, i.e.,

E contains the undirected edge (n, l). The graph can be represented by its N × N

symmetric adjacency matrix A:

Anl =

 1 if (n, l) ∈ E

0 otherwise
(2.3)

We assume that the diagonal elements of A are identically 1, indicating that a

sensor n can always communicate to itself. Note that E is the maximal allowable

set of allowable communication links in the network at any time, however, at a

particular instant, each sensor may choose to communicate only to a fraction of its

neighbors. The exact communication protocol is not so important for the analysis,

as long as some weak connectivity assumptions are satisfied. For definiteness, we

assume the following generic communication model, which subsumes the widely used

gossiping protocol for real time embedded architectures ([6]) and the graph matching

based communication protocols for internet architectures ([43].) Define the set M
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of symmetric 0-1 N ×N matrices:

M =
{
A

∣∣ 1TA = 1T , A1 = 1, A ≤ E
}
, (2.4)

where A ≤ E is to be interpreted as component-wise. In other words, M is the set

of adjacency matrices, where every node is incident to exactly one edge (including

self edge) and allowable edges are only those included in E .4 Let D be a probability

distribution on the space M. The sequence of time-varying adjacency matrices

{A(k)}k∈N, governing the inter-sensor communication, is then an i.i.d. sequence in

M with distribution D and independent of the signal and observation processes.5

We make the following assumption of connectivity on the average:

Assumption C.1: Define the symmetric stochastic matrix A as

A = E [A(k)] =

∫
M

AdD(A) (2.5)

The matrix A is assumed to be irreducible and aperiodic.

Remark 2.1.2 The stochasticity of A is inherited from that of the elements in M.

Here we are not concerned with the properties of the distribution D as long as the

weak connectivity assumption above is satisfied. The irreducibility of A depends

both on the set of allowable edges E and the distribution D. We do not detail this

question here. However, to show the applicability of Assumption C.1 and justify the

notion of weak connectivity, we note that such a distribution D always exists if the

graph (V, E) is connected. We provide a Markov chain interpretation of the mean

adjacency matrix A, which is helpful for the following analysis. The matrix A can

4The set M is always non-empty, since the N ×N identity matrix IN ∈ M.
5For convenience of presentation, we assume that A(0) = IN , although communication starts at

time slot k = 1.
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be interpreted as the transition matrix of a time-homogeneous Markov chain on the

state space V . Since the state space V is finite, the irreducibility of A implies the

positive recurrence of the resulting Markov chain.

2.2 M-GIKF Algorithm

In this section, the M-GIKF algorithm is proposed. Before proposing the M-

GIKF algorithm, we first summarize the GIKF algorithm. Lastly an example of

distributed observation dissemination protocol in M-GIKF algorithm is presented in

detail.

2.2.1 Overview of GIKF Algorithm

The GIKF (see [30]) assumes that inter-sensor communication rate is comparable

to the signal evolution time scale and only one round of sensor communication is

allowed for every epoch [(k − 1)∆, k∆).

We now present the algorithm GIKF (gossip based interacting Kalman filter) for

distributed estimation of the signal process xk over time. Let the filter at sensor

n be initialized with the pair
(
x̂0|−1, P̂0

)
, where x̂0|−1 denotes the prior estimate

of x0 (with no observation information) and P̂0 the corresponding error covariance.

Also, (x̂n
k|k−1, P̂

n
k ) denotes the estimate at sensor n of xk based on information6 till

time k−1 and the corresponding conditional error covariance, respectively. The pair(
x̂n
k|k−1, P̂

n
k

)
is also referred to as the state of sensor n at time k − 1. To define the

estimate update rule for the GIKF, denote by n→
k the neighbor of sensor n at time k

w.r.t. the adjacency matrix7 A(k). We assume that all inter-sensor communication

for time k occurs at the beginning of the slot, whereby communicating sensors swap

6The information at sensor n till (and including) time k corresponds to the sequence of obser-
vations {yn

s }0≤s≤k obtained at the sensor and the information received by data exchange with its
neighboring sensors.

7Note that by symmetry we have (n→
k )→k = n. It is possible that n→

k = n, in which case A(k)
has a self-loop at node n.
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their previous states, i.e., if at time k, n→
k = l, sensor n replaces its previous state(

x̂n
k|k−1, P̂

n
k

)
by

(
x̂l
k|k−1, P̂

l
k

)
and sensor l replaces its previous state

(
x̂l
k|k−1, P̂

l
k

)
by(

x̂n
k|k−1, P̂

n
k

)
. The estimate is updated by sensor n at the end of the slot (after the

communication and observation tasks have been completed) as follows:

x̂n
k+1|k = E

[
xk+1

∣∣∣ x̂n→
k

k|k−1, P̂
n→
k

k ,yn
k

]
(2.6)

P̂ n
k+1 = E

[(
xk+1 − x̂n

k+1|k
) (

xk+1 − x̂n
k+1|k

)T∣∣∣ x̂n→
k

k|k−1, P̂
n→
k

k ,yn
k

]
. (2.7)

2.2.2 Proposed M-GIKF Algorithm

We start by introducing some notation. Let P denote the power set of [1, · · · , N ].

The elements of P are indexed by ȷ ∈ [0, · · · , 2N − 1], with 0 denoting the null set

and 2N − 1 the entire set. Also, for technical convenience, we will interpret the

elements (sensors) in a subset ȷ to be arranged in ascending order, i1 denoting the

first and i|ȷ| denoting the last. For each sensor n, we denote by {In
k }, the subset

valued process taking values in P. For a given ȷ ∈ P, by yȷ
k we denote the subset

[(yi1
k )

T · · · (yi|ȷ|
k )T ]T of observations at the k-th epoch, whereas, the matrix Cȷ stands

for the matrix [CT
i1
· · · CT

i|ȷ|
]T , and the matrix Rȷ = diag[Ri1 , · · · ,Ri|ȷ| ]. In particular,

at the k-th epoch, y
In
k

k denotes the subset of observations available at sensor n at the

end of (k∆, (k + 1)∆].

Suppose, in the basic GIKF scheme explained above, there is an additional step

of communication. Specifically, assume that in every interval [k∆, (k + 1)∆) the

network (as a whole) is given an opportunity for additional communication at rate

γ, i.e., additional γ message exchanges occur across the network in each epoch. In

particular, we assume that the total number of additional sensor transmissions in
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[k∆, (k + 1)∆) is dominated by a Poisson random variable of rate γ8, and that each

transmission conforms to the network topology induced by the maximal adjacency

matrix A. Clearly, by exploiting this additional inter-sensor communication, the

network should be able to perform a filtering task that is at least as good if not

better than the basic GIKF.

A natural way to improve the performance of the GIKF is to use this additional

communication to disseminate the observations across the sensors. We denote this

new scheme with additional communication for disseminating the observations by

Modified GIKF (M-GIKF). For each sensor n, the subset-valued process {Iγ,n
k } taking

values in P is used to index the subset of observations y
Iγ,n
k

k available at sensor n at

the end of the interval [k∆, (k + 1)∆), e.g., if {Iγ,n
k } = [m,n], then the observations

ym
k and yn

k are available at sensor n by the end of the interval [k∆, (k + 1)∆). Also,

the corresponding parameters with y
Iγ,n
k

k in the observation model (2.2) are denoted

by CIγ,n
k

and RIγ,n
k

.

For the GIKF algorithm it is clear that

I0,n
k = {n}, ∀n ∈ [1, · · · , N ], k ∈ N,

i.e., each sensor only has access to its own observations in each epoch. Hence, in the

GIKF the only cooperation among the sensors is achieved through estimate exchang-

ing and no explicit mixing or aggregation of instantaneous observations occur. This

is in fact the key difference between the GIKF and the M-GIKF. In the M-GIKF,

the sensors use the additional communication rate γ to exchange instantaneous ob-

servations, in addition to performing the basic estimate swapping of the GIKF.

In this work, our main focus is not on the exact nature of the instantaneous

8The Poisson assumption is claimed and justified at the end of this subsection.
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observation dissemination protocol, as long as it is distributed (i.e., any inter-sensor

exchange conforms to the network topology) and satisfies some assumptions (in Sec-

tion 2.2.3 we will provide an example of such distributed protocols satisfying these

assumptions). Recall Iγ,n
k to be the instantaneous observation set available at sen-

sor n by the end of the interval [k∆, (k + 1)∆). Note, the statistics of the process

{Iγ,n
k } depend on the dissemination protocol used and the operating rate γ. Before

providing details of the dissemination protocol and the assumptions on the processes

{Iγ,n
k }, for all n, we explain the M-GIKF scheme as follows. For the moment, the

reader may assume that {Iγ,n
k } are generic set-valued processes taking values in P

and there exists a distributed protocol operating in the time window [k∆, (k+ 1)∆)

leading to such observation sets at the sensors by the end of the epoch. Clearly, for

any protocol and γ ≥ 09,

{n} ⊂ Iγ,n
k , ∀n ∈ [1, · · · , N ], k ∈ N.

Moreover, if the observation dissemination protocol is reasonable, In
k is strictly

greater than {n} with positive probability. The basic difference between the GIKF

and the M-GIKF is that, in (2.6)-(2.7), instead of conditioning on yn
k at sensor n,

we condition on the possibly larger set y
In
k

k of observations available at sensor n.

With this setup, now, we formally describe the M-GIKF, which generalizes the

GIKF when additional inter-sensor communication at rate γ is allowed in every epoch

[k∆, (k + 1)∆).

Algorithm M-GIKF: We assume that γ > 0 is given and fixed. Let the filter

at sensor n be initialized with the pair
(
x̂0|−1, P̂0

)
, where x̂0|−1 denotes the prior

estimate of x0 (with no observation information) and P̂0 the corresponding error

9For conciseness, we will drop the superscript γ over the notations related to the M-GIKF with
the additional communication rate γ.
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covariance. Also, by
(
x̂n
k|k−1, P̂

n
k

)
we denote the estimate at sensor n of xk based

on information till time k − 1 and the corresponding conditional error covariance,

respectively. The pair
(
x̂n
k|k−1, P̂

n
k

)
is also referred to as the state of sensor n at time

k−1. Similar to GIKF, the M-GIKF update involves the state exchanging step (w.r.t.

the adjacency matrices {A(k)}), whereby, at the beginning of the epoch [k∆, (k +

1)∆), sensor n exchanges its state with its neighbor n→
k w.r.t. A(k). This exchange

is performed only once in the interval [k∆, (k + 1)∆). Then each sensor in M-GIKF

makes its sensing observation and M-GIKF instantiates the distributed dissemination

protocol before the end of the epoch. This leads observation aggregation with y
In
k

k

being the observation set available at sensor n at the end of the interval [k∆, (k+1)∆).

The estimate update at sensor n at the end of the slot (after the communication and

observation dissemination tasks have been completed) is

x̂n
k+1|k = E

[
xk+1

∣∣∣ x̂n→
k

k|k−1, P̂
n→
k

k ,y
In
k

k , In
k

]
P̂ n
k+1 = E

[(
xk+1 − x̂n

k+1|k
) (

xk+1 − x̂n
k+1|k

)T∣∣∣ x̂n→
k

k|k−1, P̂
n→
k

k ,y
In
k

k , In
k

]
.

Due to conditional Gaussianity, the optimal prediction steps can be implemented

through the time-varying Kalman filter recursions, and it follows that the sequence{
P̂ n
k

}
of the conditional predicted error covariance matrices at sensor n satisfies the

Riccati recursion:

P̂ n
k+1 = F P̂

n→
k

k FT +Q−F P̂
n→
k

k CT
In
k

×
(
CIn

k
P̂

n→
k

k CT
In
k
+RIn

k

)−1

CIn
k
P̂

n→
k

k FT . (2.8)

Remark 2.2.1 Note that the sequence
{
P̂ n
k

}
is random, due to the random neigh-
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borhood selection function n→
k . The goal of the paper is to study the asymptotic

properties of the sequence of random conditional error covariance matrices
{
P̂ n
k

}
at

each sensor n and to show in what sense they reach consensus, such that, in the limit

of large time, every sensor provides an equally good (stable in the sense of estimation

error) estimate of the signal process.

2.2.3 Distributed Observation Dissemination Protocol in M-GIKF

We first introduce the following assumptions on the communication medium and

the distributed information dissemination protocol generating the subsets {In
k } for

all n, k.

(i) (E.1): The total number of inter-sensor observation dissemination messages

M(k) in the interval [k∆, (k+1)∆), for all k ∈ T+ follows a Poisson distribution

with mean γ.

(ii) (E.2): For each n, the process {In
k } is (conditionally) i.i.d. For each k, the

protocol initiates at the beginning of the interval [k∆, (k+1)∆) and operates on

the most recent observations {yn
k}1≤n≤N . The protocol terminates at the end of

the epoch. For observation dissemination in the next epoch [(k+1)∆, (k+2)∆),

the protocol is re-initiated and acts on the new observation data {yn
k+1}1≤n≤N ,

independent of its status in the previous epoch. Necessarily, the sequence is

(conditionally) i.i.d.. We define

lim
k→∞

1

k

k−1∑
i=0

M(i) = γ, a.s., (2.9)

i.e., the average number of dissemination messages per epoch is γ.

(iii) (E.3): Recall the notations ȷ and {i1, · · · , i|Pȷ|} at the beginning of this section.
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For each ȷ ∈ [0, · · · , 2N − 1], define

P
(
In
k = {i1, · · · , i|Pȷ|}

)
= qn(ȷ), ∀n, k. (2.10)

We assume that for all γ > 0

P (In
k = {1, 2, · · · , N}) = qn(2

N − 1) > 0, ∀n, k. (2.11)

(iv) (E.4): For each ȷ ̸= 2N − 1, define

−q
n
(ȷ) ≤ lim inf

γ→∞

1

γ
ln (qn(ȷ))

≤ lim sup
γ→∞

1

γ
ln (qn(ȷ)) ≤ −qn(ȷ). (2.12)

We assume that, for ȷ ̸= 2N − 1, qn(ȷ) > 0, ∀n. Since {n} ⊂ In
k for all n,

necessarily for all ȷ, such that n /∈ {i1, · · · , i|Pȷ|}, qn(ȷ) = ∞.

Remark 2.2.2 We now comment on the assumptions and justify their applicability

under reasonable conditions (an example of distributed observation dissemination

protocol with rate constraints is provided in the sequel):

(i) Assumption (E.1) essentially means that the waiting times between successive

transmissions are i.i.d. exponential random variables with mean 1/γ. This

is justified in Carrier Sense Multiple Access (CSMA) type protocols, where

the back-off time is often chosen to be exponentially distributed. To be more

realistic, one needs to account for packet delays and transmission/reception

processing times. We ignore these in the current setting. On a more practical

note, the rate γ may be viewed as a function of the network communication
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bandwidth; the larger the bandwidth, the higher the rate of channel usages and

hence γ. In distributed network communication settings, a typical example

of exponential waiting between successive transmissions is the asynchronous

gossip model (see [6]).

(ii) Assumption (E.2) is justified for memoryless and time-invariant communica-

tion schemes. It says that the scope of an instantiation of the distributed

observation dissemination protocol is confined to the interval [k∆, (k + 1)∆),

at the end of which the protocol restarts with a new set of observations inde-

pendent of its past status. Equation (2.9) is then a direct consequence of the

Strong Law of Large Numbers (SLLN). This essentially means that the obser-

vation dissemination rate is γ times the observation acquisition or sampling

rate scale.

(iii) Assumption (E.3) is satisfied by any reasonable distributed protocol if the

network is connected. Intuitively, this is due to the fact that, if γ > 0, the

probability of having a sufficiently large number of communications in an in-

terval of length ∆ > 0 is strictly greater than zero (which can be very small

though, depending on the value of γ). On the other hand, if the network is

connected, it is possible by using a sufficiently large (but finite) number of com-

munications to disseminate the observation of a sensor to every other sensor.

An example of protocol satisfying (E.3) is provided in the sequel.

(iv) Assumption (E.4) is justifiable by showing that qn(ȷ) decays exponentially as

γ → ∞. An example of protocol satisfying (E.4) is provided in the the sequel.

Remark 2.2.3 We claim that if random link failures are further considered in the

protocol, the M-GIKF algorithm and the corresponding convergence result could still
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hold with minimum modification, since link failures basically lead to no information

swapping or propagation between some particular node pairs. This results in the

same effect as the case where the sensors choose to communicate with themselves

in our current protocol. Apparently, with random link failures, to achieve the same

error performance, it would require more signal evolution epochs compared with the

case without link failures.

An Example of Practical Protocol: In the following, we give an example of

a gossip based distributed observation dissemination protocol. During the epoch

[k∆, (k+1)∆), the protocol initiates the observation dissemination at sensor n. Sen-

sor n starts with its own current observation yn
k and keeps exchanging its observation

with its neighbors till the end of this epoch. The number of exchanges and the type

of each exchange are determined by an asynchronous pairwise gossip protocol [6],

where the inter-sensor communication occurs at successive ticks of a Poisson process

with rate γ/∆o, and at each tick only one of the network links is active with uniform

probability 1/M , where ∆o is the time duration allocated for observation dissemina-

tion with each epoch, and M is the cardinality of the allowable communication link

set E . Equivalently, we could consider each network link activated independently of

the others according to the ticks of a local Poisson clock with rate γ/∆M , where

no two links will become active simultaneously due to the independence of events

in the local Poisson processes. As a formal statement, the number of inter-sensor

communications for observation dissemination M(k) in the interval [k∆, (k + 1)∆)

follows a Poisson distribution with mean value γ, which proves that this protocol

satisfies assumption (E.1). In addition, the corresponding sequence of time-varying

adjacency matrices {Ao
k(i)}i=1,··· ,M(k) is an i.i.d. sequence uniformly distributed on

the set {Enl}, where Enl is defined as a permutation matrix, such that, for each
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(n, l) ∈ E and n ̸= l, Enl
n,l = Enl

l,n = 1 and Enl
m,m = 1 for m ̸= n, l, with all other

entries being 0.

Now, we establish the observation dissemination process. Let sik = [sik(1), · · · , sik(N)]

with its entry sik(n) ∈ [1, · · · , N ] indexing the observation y
sik(n)

k at sensor n just after

the i-th exchange in the epoch [k∆, (k + 1)∆). Starting with s0k(n) = n for each n

means that, at the beginning of the epoch [k∆, (k+1)∆) before any exchanges, each

sensor n only has its own observation yn
k . When exchanges happen, the observations

{yn
k}1≤n≤N travel across the network according to

sik = Ao
k(i)s

i−1
k , i ∈ [1, · · · ,M(k)]. (2.13)

During this exchange process until the end of the epoch [k∆, (k + 1)∆), the

sensors store the observations passing through them. Therefore, at the end of the

epoch [k∆, (k + 1)∆), the set of observations available at sensor n is

In
k =

M(k)∪
i=0

{sik(n)}. (2.14)

Finally, the observation dissemination for the epoch [k∆, (k+1)∆) terminates at

the end of this epoch, right before the sensor starts the next epoch [(k+1)∆, (k+2)∆).

Then similarly the observation dissemination repeats during the epoch [(k+1)∆, (k+

2)∆) independent of its prior state. Therefore, the sequence {In
k } as the set of

observation indices available at sensor n at the end of each epoch is a temporally i.i.d.

process, which satisfies assumption (E.2). Moreover, this observation dissemination

process is assumed to be independent of the estimate exchange process.

Remark 2.2.4 It is readily seen that the above observation dissemination protocol

conforms to the preassigned gossip network structure. In fact, to execute the above
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protocol, each sensor needs to know its local communication neighborhood only, no

global topology information is required. Secondly, note that, at each communication,

a sensor forwards a single observation y
sik(n)

k to a neighboring sensor. Since, the sensor

observations are typically low-dimensional, the data overhead of each communication

is modest. Finally, since the above protocol is fully randomized (neighbors are chosen

independently uniformly), it is likely that a sensor will receive multiple copies of the

same observation (possibly through different neighbors), i.e., some communications

might end up being redundant.

To prove that this protocol satisfies assumptions (E.3) and (E.4), we have the

following analysis employing the hitting time concept of Markov chains. For each

ȷ ̸= 2N − 1, without loss of generality, we assume that ȷ corresponds to the sensor

subset {n1, n2, ..., nm}, with {n′
1, n

′
2, ..., n

′
N−m} denoting the complementary subset.

As explained by the interacting particle representation in the next section, the link

formation process following the sequence {Ao
k(i)} for the observation dissemination

can be represented as N particles moving on the graph as identical Markov chains.

We use Ti to denote the hitting time starting from sensor i to another sensor n in the

Markov chain, with the transition probability matrix as the mean adjacency matrix

Ao, which is irreducible and defined in a similar way as (2.5). Then, we have

qn(ȷ) = P
(
Tn′

1
> M(k), · · · , Tn′

N−m
> M(k),

Tn1 ≤ M(k), · · · , Tnm ≤ M(k))

≤ P
(
Tn′

1
> M(k), · · · , Tn′

N−m
> M(k)

)
≤ min

1≤i≤N−m
P
(
Tn′

i
> M(k)

)
. (2.15)
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From Theorem 7.26 in [19], since the transition matrix Ao is irreducible, there

exist constants 0 < α < 1 and 0 < L < ∞ such that P (Ti > L) ≤ α, ∀i, and more

generally,

P (Ti > kL) ≤ αk, k = 0, 1, 2, · · · . (2.16)

Also, there exists constant 0 < β < 1 such that P (Ti > L) ≥ β, ∀i, and more

generally,

P (Ti > kL) ≥ βk, k = 0, 1, 2, · · · . (2.17)

Then, following (2.15), we have

lim sup
γ→∞

1

γ
ln (qn(ȷ))

≤ lim sup
γ→∞

1

γ
ln

(
min

1≤i≤N−m
P (Tn′

i
> M(k))

)
≤ lim sup

γ→∞

1

γ
ln
(
α⌊M(k)

L
⌋
)
=

ln α

L
(2.18)

where the last equation is obtained since limγ→∞
M(k)

γ
= 1.

We also have

qn(ȷ) = P
(
Tn′

1
> M(k), · · · , Tn′

N−m
> M(k),

Tn1 ≤ M(k), · · · , Tnm ≤ M(k))

≥ P
(
Tn′

1
> M(k)

)
· · ·P

(
Tn′

N−m
> M(k)

)
P (Tn1 ≤ M(k)) · · ·P (Tnm ≤ M(k)) . (2.19)
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Then, from (6.52) and (6.53), we have

lim inf
γ→∞

1

γ
ln (qn(ȷ))

≥ lim inf
γ→∞

1

γ
ln

[(
β⌈M(k)

L
⌉
)N−m (

1− α⌊M(k)
L

⌋
)m

]
= (N −m)

ln β

L
(2.20)

where the last equation is obtained since limγ→∞
M(k)

γ
= 1 and 0 < α < 1.

Therefore, from (6.56) and (6.58), we have q
n
(ȷ) and qn(ȷ) in (2.12) well defined

as

q
n
(ȷ) = (m−N)

ln β

L
, qn(ȷ) = − ln α

L
. (2.21)

Since qn(ȷ) = − lnα
L

and α < 1, clearly we see that, for ȷ ̸= 2N − 1, qn(ȷ) > 0.

Therefore, we have completed the proof that assumption (E.4) holds.

To establish assumption (E.3), we denote Tm = max{T1, ..., TN}, i.e., Tm is

the longest time among all hitting times to sensor n from other sensors. Then,

qn(2
N − 1) = P (Tm ≤ M(k)) = 1 − P (Tm > M(k)), which is greater than zero

according to (6.52). This access to all the observations at the end of an epoch may

be arbitrarily small but strictly greater than zero.

2.3 Weak Consensus Analysis for M-GIKF Algorithm

In this section, we study the weak consensus over the network implementing M-

GIKF algorithm. To this end, an interacting particular representation strategy is

first proposed. Then, we formulate the estimation error covariance sequences as a

random dynamical system (RDS). By adopting the properties in the RDS, we prove

the weak consensus result.
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2.3.1 Interacting Particular Representation

To simplify the notation in (2.8), we define the functions of fȷ : SM
+ 7−→ SM

+ for

ȷ ∈ [0, · · · , 2N − 1] denoting the respective subset Riccati operators10:

fȷ(X) = FXFT +Q−FXCT
ȷ

(
CȷXCT

ȷ +Rȷ

)−1 CȷXFT . (2.22)

Recall the sequence n→
k of neighbors of sensor n. The sequence of conditional error

covariance matrices {P n
k } at sensor n then evolves according to

P̂ n
k+1 = fȷ (In

k )

(
P̂

n→
k

k

)
(2.23)

where ȷ (In
k ) denotes the index of In

k in the set P. The above sequence
{
P̂ n
k

}
is

non-Markovian (and is not even semi-Markov given the random adjacency matrix

sequence {A(k)}), as P̂ n
k at time k is a random functional of the conditional error

covariance of sensor n→
k at time k−1, which, in general, is different from that of sensor

n. This makes the evolution of the sequence
{
P̂ n
k

}
difficult to track. To overcome

this, we give the following interacting particle interpretation of the conditional error

covariance evolution, from which we can completely characterize the evolution of the

desired covariance sequences
{
P̂ n
k

}
for n = 1, · · · , N .

To this end, we note that the link formation process given by the sequence {A(k)}

can be represented by N particles moving on the graph as identical Markov chains.

The state of the n-th particle is denoted by zn(k), and the sequence {zn(k)}k∈N takes

values in [1, · · · , N ]. The evolution of the n-th particle is given as follows:

zn(k) = zn(k − 1)→k , zn(0) = n. (2.24)

10For ȷ = 0, the corresponding Riccati operator f0 in (2.22) reduces to the Lyapunov operator,
see [30].
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Recall the (random) neighborhood selection n→
k . Thus, the n-th particle can be

viewed as originating from node n at time 0 and then traveling on the graph (possibly

changing its location at each time) according to the link formation process {A(k)}.

The following proposition establishes important statistical properties of the sequence

{zn(k)} :

Proposition 2.3.1

(i) For each n, the process {zn(k)} is a Markov chain on V = [1, · · · , N ] with the

transition probability matrix A.

(ii) The Markov chain {zn(k)} is ergodic with the uniform distribution on V being

the attracting invariant measure.

For each of the Markov chains {zn(k)}, we define a sequence of switched Riccati

iterates {Pn(k)}:

Pn(k + 1) = fȷ (Ik
zn(k)

)(Pn(k)). (2.25)

The sequence {Pn(k)} can be viewed as an iterated system of Riccati maps, in

which the random switching sequence is governed by the Markov chain {zn(k)}. A

more intuitive explanation comes from the particle interpretation; precisely the n-th

sequence may be viewed as a particle originating at node n and hopping around

the network as a Markov chain with transition probability A whose instantaneous

state Pn(k) evolves via the Riccati operator at its current location. In particular, in

contrast to the sequence
{
P̂ n
k

}
of the original conditional error covariances at sensor

n, the sequence {Pn(k)} does not correspond to the evolution of the error covariance

at a particular sensor. The following proposition establishes the relation between

{Pn(k)} and the sequence
{
P̂ n
k

}
of interest.
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Proposition 2.3.2 Consider the sequence of random permutations {πk} on V , given

by

(πk+1(1),· · ·, πk+1(N))=(πk(1)
→
k ,· · ·, πk(N)→k ) (2.26)

with initial condition

(π0(1), · · · , π0(N)) = (1, · · · , N) . (2.27)

Note that πk(n) = zn(k) for every n, where zn(k) is defined in (2.24). Then, for

k ∈ N,

(P1(k), · · · , PN(k)) =
(
P̂

πk(1)
k , · · · , P̂ πk(N)

k

)
. (2.28)

The above proposition suggests that the asymptotics of the desired sequence
{
P̂ n
k

}
for every n can be obtained by studying the asymptotics for the sequences {Pn(k)}.

Hence, in the subsequent sections, we will focus on {Pn(k)}, rather than working

directly with the sequences
{
P̂ n
k

}
of interest, which involve a much more complicated

statistical dependence.

2.3.2 An Auxiliary Sequence

Since the switching Markov chains {zn(k)} are non-stationary, in order to analyze

the processes {Pn(k)} for n = 1, ..., N under the scope of iterated random systems

[16] or RDSs [1], we propose an auxiliary process
{
P̃ (k)

}
evolving with similar

random Riccati iterates, but for which the corresponding switching Markov chain

{z̃(k)} is stationary, i.e., {z̃(k)} is initialized by the uniform invariant measure on V .

Then, we can analyze the asymptotic properties of the auxiliary sequence
{
P̃ (k)

}
by

formulating it as an RDS on the space SN
+ and derive the asymptotics of the sequence

{Pn(k)} for n = 1, ..., N . The auxiliary sequence
{
P̃ (k)

}
is formally defined as

follows, which follows the concept proposed in [30], but with necessary and non-
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trivial modifications to take into account observation dissemination.

Consider a Markov chain {z̃(k)}k∈T+ on the graph V , with transition matrix A

and uniform initial distribution as follows:

P[z̃(0) = n] =
1

N
, n = 1, ..., N. (2.29)

By proposition 2.3.1, the Markov chain {z̃(k)} is stationary.

Now we can define the auxiliary process
{
P̃ (k)

}
with similar random Riccati

iterates as

P̃ (k + 1) = fȷ (Ik
z̃(k)

)

(
P̃ (k)

)
(2.30)

with (possibly random) initial condition P̃ (0)11.

2.3.3 RDS Formulation

In order to proceed with the asymptotic analysis of the auxiliary sequence
{
P̃ (k)

}
,

we construct an RDS (θ, φ) on SN
+ , equivalent to the auxiliary sequence

{
P̃ (k)

}
in

the sense of distribution. To achieve this, we construct the Markov chain {z̃(k)} on

a canonical path space. Let Ω̃ denote the set {1, ..., N} with F̃ as the corresponding

Borel algebra on Ω̃, thus F̃ is the power set of {1, ..., N}. Denote ΩR = ⊗∞
k=−∞Ω̃,

which is the two-sided infinite product of sets Ω̃, i.e., ΩR is the space of two-sided

sequences of entries in {1, ..., N},

ΩR = {w = (· · · , w−1, w0, w1, · · · )|wt ∈ {1, · · · , N}, ∀t ∈ T}. (2.31)

11Note that the sequences {Pn(k)} of interest have deterministic initial conditions, but it is

required for technical reasons to allow random initial states P̃ (0) to study the auxiliary sequence{
P̃ (k)

}
.
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Equip ΩR with the corresponding product Borel algebra FR = ⊗∞
k=−∞F̃ . Note

that {wk}k∈T+ for all w ∈ ΩR denotes the canonical path space of the Markov

chain {z̃(k)}k∈T+ . Consider the unique probability measure PR on FR, under which

the two-sided stochastic process {wk}k∈T is a stationary Markov chain on the finite

state space {1, · · · , N} with transition probability matrix A. By the assumption of

stationarity and Proposition 2.3.1, the distribution of wk for each k ∈ T is necessarily

the uniform distribution on {1, · · · , N}. We note that the stochastic processes {z̃(k)}

and {wk} are equivalent in terms of the distribution induced on the path space. We

define the family of transformations {θk}k∈T on Ω as the family of left-shifts, i.e.,

θkw(·) = w(k + ·), ∀k ∈ T. (2.32)

Then, the space (Ω,F ,P, {θRk , k ∈ T}) becomes the canonical path space of a

two-sided stationary sequence equipped with the left-shift operator, satisfying the

properties in definition of RDS in [30] to be a metric dynamical system and in fact,

also ergodic.

We now define the cocycle φ over SN
+ , which constructs the RDS of interest. We

define φ : T+ × ΩR × SN
+ 7→ SN

+ by:

φ(0, w,X) = X, ∀w,X (2.33)

φ(1, w,X) = fI0
w(0)

(X), ∀w,X (2.34)

φ(k, w,X) = fIk−1
θk−1w(0)

(φ(k − 1, w,X))

= fIk−1
w(k−1)

(φ(k − 1, w,X)), ∀k > 1, w,X. (2.35)

The equality in (2.35) comes from the property of the left-shit θ, i.e., θk−1w(0) =

w(k − 1). The cocycle φγ,R satisfies the assumptions of measurability seen in its
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arguments, and the continuity of the map φγ,R(k, w, ·) : SN
+ 7→ SN

+ w.r.t. the phase

variableX for each fixed k, w follows from the continuity of the corresponding Riccati

operator. Therefore, the pair (θ, φ) forms a well-defined RDS on the phase space SN
+ .

Now we consider a random variable sequence
{
φ(k, w, P̃ (0))

}
k∈T+

(the randomness

is induced by w), which can be considered as successive random iterates of the RDS

{θ, φ} with the initial state P̃ (0). From the construction of {θ, φ}, the sequence{
φ(k, w, P̃ (0))

}
k∈T+

is distributionally equivalent to the sequence P̃ (k)k∈T+ , i.e.,

φ(k, w, P̃ (0))
d
= P̃ (k), ∀k ∈ T+. (2.36)

Therefore, analyzing the asymptotic distribution properties of the sequence
{
P̃ (k)

}
equals to studying the sequence {φ(k, w, Pn(0))}, which we will analyze in the sequel.

We first establish some properties of the RDS (θ, φ) that represents the sequence{
P̃ (k)

}
.

Lemma 2.3.3

(i) The RDS (θ, φ) is conditionally compact.

(ii) The RDS (θ, φ) is order preserving.

(iii) If in addition Q is positive definite, i.e., Q ≫ 0, the RDS (θ, φ) is strongly

sublinear.

The proof of Lemma 2.3.3 and the concepts including conditionally compact,

order preserving, and sublinearity, are discussed in prior work [30].

2.3.4 Weak Consensus of Error Covariance over Network

We fix a γ > 0. First, we present the asymptotic properties of the auxiliary

sequences
{
P̃ (k)

}
.
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Theorem 2.3.4 Under the assumptions C.1, S.1, and D.1, there exists a unique

invariant probability measure µγ on the space of positive semidefinite matrices SN
+ ,

such that the sequence
{
P̃ (k)

}
converges weakly (in distribution) to µγ from every

initial condition Pn(0) for each n ∈ [1, · · · , N ], i.e.,

{
P̃ (k)

}
⇒ µγ. (2.37)

Theorem 2.3.4 implies that the sequence
{
P̃ (k)

}
reaches consensus in the weak

sense to the same invariant measure µγ irrespective of the initial states, since µγ does

not depend on the index n and on the initial state P̃ (0) of the sequence
{
P̃ (k)

}
.

Based on Theorem 2.3.4, we can deduce Theorem 2.3.5, which does not directly

touch the sequences
{
P̂ n
k

}
for n = 1, · · · , N , but sets the stage for showing the key

result regarding the convergence of these sequences.

Theorem 2.3.5 As defined in Section 2.3.3, {z̃(k)} is a stationary Markov chain on

V with transition probability matrix A, i.e., z̃(0) is distributed uniformly on V . Let

ν be a probability measure on SM
+ ; and the process

{
P̃ (k)

}
is given by

P̃ (k + 1) = fȷ (Ik
z̃(k)

)

(
P̃ (k)

)
, k ∈ T+ (2.38)

where P̃ (0) is distributed as ν, independent of the Markov chain {z̃(k)} and the

processes {Ik
n} for all n. Then, there exists a unique probability measure µγ such

that, for every ν, the process
{
P̃ (k)

}
constructed above converges weakly to µγ as

k → ∞, i.e.,

fȷ (Ik
z̃(k)

) ◦ fȷ (Ik−1
z̃(k−1)

) · · · ◦ fȷ (I0
z̃(0)

)

(
P̃ (0)

)
=⇒ µγ. (2.39)
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We now state the theorem characterizing the convergence properties of the sequences{
P̂ n
k

}
.

Theorem 2.3.6 Let q be a uniformly distributed random variable on V , independent

of the sequence of adjacency matrices {A(k)} and the processes {Ik
n}. Then, the

sequence
{
P̂ q
k

}
converges weakly to µγ defined in Theorem 2.3.5, i.e.,

P̂ q
k =⇒ µγ. (2.40)

In other words, the conditional error covariance
{
P̂ q
k

}
of a randomly selected sensor

converges in distribution to µγ.

Remark 2.3.7 Theorem 2.3.6 reinforces the weak consensus achieved by the M-GIKF

algorithm, i.e., the conditional error covariance at a randomly selected sensor con-

verges in distribution to an invariant measure µγ. In other words, it provides an

estimate {x̂q(k)} for the entire signal x, where {x̂q(k)} is obtained by uniformly

selecting a sensor q independent with the random gossip protocol {A(k)} and the

process {Ik
n} and using its estimate {x̂q(k)} for all time k. Also note that the re-

sults here pertain to the limiting distribution of the conditional error covariance

and, hence, the pathwise filtering error, which is a much stronger result than just

providing the moment estimates of the conditional error covariance, which does not

provide much insight into the pathwise instantiation of the filter. In the following

subsection, we provide the the analytical characterizations of the invariant measure

µγ by showing it satisfies the Large Deviation lower and upper bounds as µγ → ∞ .

The proofs of these Theorems are presented in Appendix of this chapter.
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2.4 Appendices

2.4.1 Proof of Theorem 2.3.4

We take some steps to prove Theorem 2.3.4. First, we have the following lemma.

Lemma 2.4.1 Recall Assumption D.1, we assume there exists a walk on the graph

induced by the non-zero entries of the matrix A, w0 = {n1, · · · , nl} covering the N

nodes, such that the following Gramian matrix

Gγ
w0

=
l∑

i=1

(F i−1)TCT
ni
Cni

F i−1 (2.41)

is invertible.

We define the function gγw0
: SN

+ 7→ SN
+ by

gγw0
(X) = fIγ,nl

l

◦ f
I
γ,nl−1
l−1

◦ · · · ◦ fIγ,n1
1

(X), (2.42)

where Iγ,ni

i = {n1, · · · , n|ȷi|}.

Then, there exists a constant α0 > 0 such that the following uniformity condition

holds,

gγw0
(X) ≼ α0I, ∀X ∈ SN

+ , (2.43)

i.e., the iterates gγw0
(·) is uniformly bounded irrespective of the initial value.

Proof 1 Recall (3.18),

fȷ(X) = FXFT +Q−
|ȷ|∑
j=1

FXCT
ij

(
CijXCT

ij
+Rij

)−1

CijXFT . (2.44)
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Clearly, ni ∈ Iγ,ni

i as stated in Section 2.2.2, thus we have

fIγ,ni
i

(X) ≼ fni
(X). (2.45)

In the Lemma 15 of [30], we have shown that there exists a constant α0 > 0 such

that

fnl
◦ fnl−1

◦ · · · ◦ fn1(X) ≼ α0I, ∀X ∈ SN
+ . (2.46)

Combining (2.45) and (2.46), we conclude that

gγw0
(X) ≼ α0I, ∀X ∈ SN

+ . (2.47)

The following lemma establishes asymptotic boundedness of
{
P̃γ(k)

}
.

Lemma 2.4.2 The sequence
{
P̃γ(k)

}
is stochastically bounded for each n under the

assumptions of Theorem 2.3.4,

lim
J→∞

sup
k∈T+

P
(∥∥∥P̃γ(k)

∥∥∥ > J
)
= 0. (2.48)

Proof 2 In case that F is stable, the result is obvious, since the suboptimal estimate

of 0 at each node for all time is stochastically bounded. Therefore, in the following

we consider the case that F is unstable.

The proof mainly uses the uniform boundedness of the composition of Riccati

operators in Lemma 2.4.1 and the ergodicity of the underlying switching Markov

chain {z̃(k)}k∈T+ . From Lemma 2.4.1, we see that a successive application of l

Riccati maps (in the composition order of fIγ,nl
l

◦ · · · ◦ fIγ,n1
1

) constrains the iterate

in the conic interval [0, α0I] irrespective of its initial value. Our approach is to relate

the probability of large exceeding of P̃γ(k) to the hitting time statistic of a modified
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Markov chain. We show in detail as follows.

First, we note that the regularity of the distribution of P̃γ(k) for every k implies

that it suffices to show that

lim
J→∞

sup
k≥k0

P
(∥∥∥P̃γ(k)

∥∥∥ > J
)
= 0 (2.49)

for some arbitrary selected large k0 ∈ T+. For every n, the Riccati operator is upper

bounded by the Lyapunov operator,

fn(X) ≼ FXFT +Q, ∀X ∈ SN
+ . (2.50)

For sufficiently large J > 0, we define k(J) as follows, which will be used later.

k(J) = max
k

{
k ∈ T+

∣∣∣∣α2kα0 +
α2k − 1

α2 − 1
∥Q∥ ≤ J

}
, (2.51)

where α = ∥F∥. Since F is unstable, i.e., α > 1, we have that k(J) → ∞ when

J → ∞.

We introduce another notation. For integers k0, k1 ≥ l, the phrase “there exists

a (n1, · · · , nl) cycle in the interval [k0, k1]” indicates the existence of an integer k0 +

l − 1 ≤ k′ ≤ k1 such that,

z̃(k′ − l + s) = ns, 1 ≤ s ≤ l, (2.52)

where {z̃(k)}k∈T+ is the switching Markov chain.

We now make the following claim to relate the probability of interest for suffi-

42



ciently large J , then we prove it.

P
(∥∥∥P̃γ(k)

∥∥∥ > J
)
≤ P(no(n1, · · · , nl)exists in[k − k(J), k]). (2.53)

Indeed, we assume on the contrary that a (n1, · · · , nl) cycle exists in the interval

[k − k(J), k]. Then, from (2.52), it means that there exists k′ ∈ [k − k(J), k] such

that z̃(k′ − l + s) = ns, 1 ≤ s ≤ l, which implies that

P̃γ(k
′) = fIγ,nl

l

◦ · · · ◦ fIγ,n1
1

(
P̃γ(k

′ − l + 1)
)
, (2.54)

hence by Lemma 2.4.1, we have

P̃γ(k
′) ≼ α0I, (2.55)

which holds irrespective of the value of P̃γ(k
′ − l + 1). By (2.50), we see that

P̃γ(s) ≼ F P̃γ(s− 1)FT +Q, ∀s. (2.56)

Continuing the recursion from k′ and with the fact P̃γ(k
′) ≼ α0I and α = ∥F∥, we

have

∥∥∥P̃γ(k)
∥∥∥ ≤ α2(k−k′)

∥∥∥P̃γ(k
′)
∥∥∥+

α2(k−k′) − 1

α2 − 1
∥Q∥ ≤ α2(k−k′)α0 +

α2(k−k′) − 1

α2 − 1
∥Q∥.

(2.57)

Since (k − k′) ≤ k(J), with the definition of k(J) (2.51), we have from the above

that

∥∥∥P̃γ(k)
∥∥∥ ≤ α2(k−k′)α0 +

α2(k−k′) − 1

α2 − 1
∥Q∥ ≤ α2k(J)α0 +

α2k(J) − 1

α2 − 1
∥Q∥ ≤ J. (2.58)
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Thus we note that the existence of a (n1, · · · , nl) cycle in the interval [k − k(J), k]

implies
∥∥∥P̃γ(k)

∥∥∥ ≤ J , i.e., we have the following event inclusion,

{there exists a (n1, · · · , nl) cycle in [k − k(J), k]} ⊂
{∥∥∥P̃γ(k)

∥∥∥ ≤ J
}
, (2.59)

from which the claim in (2.53) is established. Therefore estimating the probability

of P
(∥∥∥P̃γ(k)

∥∥∥ > J
)
can be reduced to estimating the R.H.S. of (2.53). To this end,

we construct another Markov chain {z′(k)}k≥l, with the sate space Z is a subset of

V l given by

Z =
{
z′ = (i1, · · · , il)|Aij ,ij+1

> 0, 1 ≤ j < l
}
. (2.60)

The dynamic of the Markov chain {z′(k)}k≥l is given in terms of the Markov chain

{z̃(k)}k∈T+ as follows,

z′(k) = (z̃(k − l + 1), · · · , z̃(k)) . (2.61)

From the dynamics of {z̃(k)}k∈T+ , it follows that {z′(k)}k≥l is a Markov chain

with the transition probability Anm between allowable states (i1, i2, · · · , il−1, n) and

(i2, · · · , il−1, n,m). With state space Z, the Markov chain {z′(k)} inherits the irre-

ducibility and aperiodicity from that of {z̃(k)}. And {z′(k)} is also stationary from

the stationarity of {z̃(k)} with invariant distribution,

P(z′(k) = (i1, · · · , il)) =
1

N

l−1∏
j=1

Aij ,ij+1
, (i1, · · · , il) ∈ Z, k ≥ l, k ∈ T+. (2.62)

Denote the hitting time τ0 of {z′(k)} to the state (n1, · · · , nl) as

τ0 = min{k > l|z′(k) = (n1, · · · , nl)} (2.63)
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and for all z′ ∈ Z, we define

Pz′(τ0 > s) = P(τ0 > s|z′(l) = z′). (2.64)

Also for each k ≥ l and J sufficiently large, we define the stopping times as

τJk = min{k ≥ k − k(J)|z′(k) = (n1, · · · , nl)}. (2.65)

From the Markovian property then it follows

P(τJk > k|z′(k − k(J)− 1) = z′) = Pz′(τ0 > k(J) + 1). (2.66)

Then it follows successively that

P(no (n1, · · · , nl) exists in [k − k(J), k])

= P(τJk > k)

=
∑
z′∈Z

[
P(z′(k − k(J)− 1) = z′)P(τJk > k|z′(k − k(J)− 1) = z′)

]
=

∑
z′∈Z

P(z′(k − k(J)− 1) = z′)Pz′(τ0 > k(J) + 1). (2.67)

Since the above result holds for all k ≥ k0 for some sufficiently large k0, we conclude

from (2.53)

sup
k≥k0

P
(∥∥∥P̃γ(k)

∥∥∥ > J
)
≤

∑
z′∈Z

P(z′(k − k(J)− 1) = z′)Pz′(τ0 > k(J) + 1). (2.68)

The recurrence of the finite state Markov chain {z′(k)} and the fact that k(J) → ∞
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as J → ∞ imply, for all z′ ∈ Z,

lim
J→∞

Pz′(τ0 > k(J) + 1) = 0. (2.69)

Since Z is finite, letting J → ∞, we have from (2.68) that

lim
J→∞

sup
k≥k0

P
(∥∥∥P̃γ(k)

∥∥∥ > J
)
= 0. (2.70)

Then the lemma holds.

We now prepare to prove Theorem 2.3.4.

From Lemma 2.3.3, (θγ,R, φγ,R) is conditionally compact, order preserving, and

strongly sublinear. And the cone SN
+ satisfies the conditions required in the assump-

tions of Theorem 27 in [30]. We also have for k > 0,

φγ,R(k, w, 0) = fIk−1
wk−1

w(0)(φ
γ,R(k − 1, w, 0)) ≽ Q ≫ 0. (2.71)

Therefore, the conditions in Theorem 27 in [30] are all satisfied, and exactly one

of the claims a) and b) holds. By an argument similar to Lemma 6.1 in [32], the

claim a) can not hold in the case of stochastically boundedness of
{
P̃γ(k)

}
from

Lemma 2.4.2. Therefore, b) holds, then as a direct conclusion of Theorem 27 in [30],

we can establish the existence of a unique almost equilibrium uγ(w) ≫ 0 defined on

a θR invariant set Ω∗ ∈ FR with P(Ω∗) = 1, such that for random variable v(w)

possessing the property 0 ≼ v(w) ≼ αuγ(w) for all w ∈ Ω∗ and deterministic α > 0,

the following result holds,

lim
k→∞

φ(k, θ−kw, v(θ−kw)) = uγ(w), w ∈ Ω∗. (2.72)
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Since the distribution of the pull-back and forward orbits are equal, from Lemma

24 in [30], uγ(w) is also the converged unique equilibrium measure for the sequence{
P̃γ(k)

}
. However, to show that the measure induced by uγ on SN

+ is attracting for{
P̃γ(k)

}
, (2.72) must hold for all initial v. We state the following results to extend

to the general initial conditions.

Lemma 2.4.3 Under the assumption of Theorem 2.3.4, let uγ be the unique almost

equilibrium of the RDS (θγ,R, φγ,R). Then

P
(
w : uγ(w) ≽ Q

)
= 1. (2.73)

Proof 3 The proof uses the fact that for all n, fIn
k
≽ Q, and follows the development

in Lemma 6.2 of [32].

Now we start the proof of Theorem 2.3.4. The proof logic is first finding a suitable

modification X̃(w) of an arbitrary initial condition P0, such that X̃(w) = P0 a.s.

and a deterministic α > 0 satisfying 0 ≼ X̃(w) ≼ αuγ(w). Then, from (2.72), we

can establish the weak convergence of the sequence
{
φγ,R(k, w, X̃(w))

}
with initial

condition X̃(w) to µγ. Finally, since X̃(w) is a.s. equal to P0, we can deduce the

weak convergence of the desired sequence
{
φγ,R(k, w, P0)

}
. We state the proof of

Theorem 2.3.4 as follows.

Proof 4 Denote µγ as the distribution of the unique almost equilibrium in (2.72).

With Lemma 2.4.3, we have µγ(SN
++) = 1. Let P0 ∈ SN

+ be an arbitrary ini-

tial condition. By construction of the RDS (θγ,R, φγ,R), the sequences {Pk} and{
φγ,R(k, w, P0)

}
are distributional equivalent, i.e., Pt

d
= φγ,R(k, w, P0). Recall Ω

∗ as

the θR-invariant set with P(Ω∗) = 1 in (2.72) on which the almost equilibrium uγ is
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defined. By Lemma 2.4.3, there exists Ω1 ∈ Ω∗ with P(Ω1) = 1, such that

uγ(w) ≽ Q, ∀w ∈ Ω1. (2.74)

We define the random variable X̃(w) by

X̃(w) =


P0, w ∈ Ω1,

0, w ∈ Ωc
1.

Now choose α > 0 large enough, such that P0 ≼ αQ, which is possible since Q ≫ 0.

Then, we have

0 ≼ P0 = X̃(w) ≼ αQ ≼ αuγ(w), w ∈ Ω1, (2.75)

0 = X̃(w) ≼ αuγ(w), w ∈ Ωc
1. (2.76)

Therefore,

0 ≼ X̃(w) ≼ αuγ(w), w ∈ Ω∗. (2.77)

Then, with (2.72), we have

lim
k→∞

φγ,R(k, θ−kw, X̃(θ−kw)) = uγ(w), w ∈ Ω∗. (2.78)

Since convergence a.s. implies convergence in distribution, we have

φγ,R(k, θ−kw, X̃(θ−kw)) ⇒ µγ, (2.79)

as k → ∞. By Lemma 24 in [30], the sequence
{
φγ,R(k, w, X̃(w))

}
also converges

48



in distribution to the unique distribution µγ, i.e, as k → ∞

φγ,R(k, w, X̃(w)) ⇒ µγ. (2.80)

Now, since P(Ω1) = 1, by (2.75),

φγ,R(k, w, P0) = φγ,R(k, w, X̃(w)), P a.s., (2.81)

which shows

φγ,R(k, w, P0)
d
= φγ,R(k, w, X̃(w)). (2.82)

From (2.80) and (2.82), we have φγ,R(k, w, P0) ⇒ µγ. Since Pt
d
= φγ,R(k, w, P0),

finally we have Pt ⇒ µγ, as k → ∞. The proof is completed.

2.4.2 Proof of Theorem 2.3.5

By Theorem 2.3.4, we have obtained that such a sequence
{
P̃γ(k)

}
converges

weakly to µγ when stated from any deterministic initial condition. In the case that

P̃γ(0) is distributed as ν, by the independence of P̃γ(0) with the Markov chain {z̃(k)}

and the processes {Ik
n} for all n, we have for g ∈ C(SN

+ ),

E
[
g
(
P̃γ(k)

)]
=

∫
SN+

E
[
g
(
P̃γ(k)

)
|P̃γ(0) = X

]
dν(X). (2.83)

Now the distribution of the sequence {P̃γ(k)} conditioned on the event P̃γ(0) = X

is the same as that when the sequence starts with the deterministic initial condition

X (this is true because P̃γ(0) is independent of {z̃(k)}). Hence by Theorem 2.3.4,

lim
k→∞

E
[
g
(
P̃γ(k)

)
|P̃γ(0) = X

]
=

∫
SN+

g(y)dµγ(Y ) (2.84)
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for all X. Since g is bounded, the dominated convergence theorem and (2.83) result

in

lim
k→∞

E
[
g
(
P̃γ(k)

)]
=

∫
SN+

g(y)dµγ(Y ) (2.85)

for all g ∈ C(SN
+ ). Hence the required convergence in distribution follows.
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3. LARGE DEVIATION ANALYSIS FOR M-GIKF ALGORITHM∗

In this chapter, we first give the overview of large deviation principle. Then, we

present some intermediate results including the definitions about string and the prop-

erties of Riccati equation. At last, as the main part in this chapter, we present the

large deviation results for the invariant measure µγ, by deriving the large deviation

lower and upper bounds, respectively.

3.1 Overview of Large Deviation Principle

Let {µγ} be a family of probability measures on the complete separable metric

space (X , dX ) indexed by the real-valued parameter γ taking values in R+. Let

I : X 7−→ R+ be an extended-valued lower semicontinuous function. The family

{µγ} is said to satisfy a large deviations upper bound with rate function I(·) if the

following holds:

lim sup
γ→∞

1

γ
lnµγ(F)≤− inf

X∈F
I(X), for every closed set F ∈X . (3.1)

Similarly, for an extended-valued lower semicontinuous function I : X 7−→ R+, the

family {µγ} is said to satisfy a large deviations lower bound with rate function I(·),

if

lim inf
γ→∞

1

γ
lnµγ (O)≥− inf

X∈O
I(X), for every open set O ∈ X . (3.2)

∗Part of this chapter is reprinted, with permission, from [Di Li, S. Kar, J. M. F. Moura, H.
V. Poor, and S. Cui, “Distributed Kalman filtering over massive data sets: Analysis through large
deviations of random Riccati equations.” IEEE Transactions on Information Theory, 61(3):1351–
1372, Mar. 2015.]
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In addition, if the functions I and I coincide, i.e., I = I = I, the family {µγ} is said

to satisfy a large deviations principle (LDP) with rate function I(·) (see [15]). The

lower semicontinuity implies that the level sets of I(·) (or I(·)), i.e., sets of the form

{X ∈ X | I(X) ≤ α} (or I(·)) for every α ∈ R+, are closed. If, in addition, the levels

sets are compact (for every α), I(·) (or I(·)) is said to be a good rate function.

Before interpreting the consequences of the LD upper and lower bounds as defined

above, we consider the notion of a rare event, which is the central motivation to all

large deviations:

Definition 3.1.1 (Rare Event) A set Γ ⊂ B(X ) is called a rare event with respect

to (w.r.t.) the family {µγ} of probability measures, if limγ→∞ µγ(Γ) = 0. In other

words, the event Γ becomes increasingly difficult to observe (i.e., it becomes rare) as

γ → ∞.

Once a rare event Γ is identified, the next natural question is the rate at which its

probability goes to zero under µγ as γ → ∞. This is answered by the LD upper and

lower bounds, which also characterize the family {µγ} as γ → ∞. Indeed, it is not

hard to see that, if the family {µγ} satisfies the LD upper and lower bounds, we have

for every measurable set Γ ∈ X :

µγ(Γ) ≤ e−γ(infX∈Γ I(X)+o(1)) (3.3)

µγ(Γ) ≥ e−γ(infX∈Γ◦ I(X)+o(1)), (3.4)

where o(1) is the little-o notation. Now assume infX∈Γ I(X) > 0. Then, from (3.3)

it is clear that Γ is a rare event and, in fact, we conclude that the probability of

Γ decays exponentially with a LD exponent greater than or equal to infX∈Γ I(X).

Similarly, infX∈Γ◦ I(X) > 0 suggests that the LD decay exponent is not arbitrary
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and cannot be larger than infX∈Γ◦ I(X). In addition, if the rate functions I and I

close to each other, the estimate of the exact decay exponent is tight.

3.2 Some Intermediate Results

In this section, some preliminary results on string and approximation results

regarding Riccati equation are presented.

3.2.1 Preliminary Results on String

The RRE sequence is an iterated function system (see, e.g., [16]) comprising

of random compositions of Riccati operators. Understanding the system requires

studying the behavior of such random function compositions, where not only the

numerical value of the composition is important, but also the composition pattern is

relevant. To formalize this study, we start with the following definitions.

Definition 3.2.1 (String) Let P0 ∈ SM
+ . A string R with initial state P0 and length

r ∈ N is a (r + 1)-tuple of the form:

R =
(
fȷr , fȷr−1 , · · · fȷ1 , P0

)
, ȷ1, · · · , ȷr ∈ P (3.5)

where fȷ corresponds to the Riccati operator defined in (2.22). The length of a string

R is denoted by len(R). The set of all possible strings is denoted by S.

Fix γ > 0. A string R of the form

R =
(
fȷr , fȷr−1 , · · · fȷ1 , P0

)
, ȷ1, · · · , ȷr ∈ P

is called γ-feasible, if there exists a path1 (nr, nr−1, · · · , n1) of length r w.r.t. A, such

that qni
(ȷi) > 0 (recall qni

(ȷi) defined in (2.10)) for all 1 ≤ i ≤ r. The set of all

1A sequence of nodes (nr, nr−1, · · · , n1) is called a path w.r.t. A if Ani,ni+1 > 0 for all 1 ≤ i < r.
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γ-feasible strings is further denoted by Sγ.

Remark 3.2.2 Note that a string R can be of length 0; then it is represented as a

1-tuple, consisting of only the initial condition.

Let r1, r2, · · · , rl be non-negative integers, such that
∑l

i=1 ri = r and ȷki ∈ P for

1 ≤ i ≤ rk and 1 ≤ k ≤ l, where for all k, we have ȷki = ȷk1, 1 ≤ i ≤ rk. Let R be a

string of length r of the following form:

R=
(
fȷ11 ,· · ·, fȷ1r1 ,· · ·, fȷ21 ,· · ·, fȷ2r2 ,· · ·, fȷl1 ,· · ·, fȷlrl , P0

)
. (3.6)

For brevity, we write R as

R =
(
f r1
ȷ11
, f r2

ȷ21
, · · · , f rl

ȷl1
, P0

)
. (3.7)

For example, the string (f1, f2, f2, f2, f1, f1, P0) could be written concisely as (f1, f
3
2 , f

2
1 , P0).

Definition 3.2.3 (Numerical Value of a String) Every string R is associated with its

numerical value, denoted by N (R), which is the numerical evaluation of the function

composition on the initial state P0; i.e., for R of the form

R =
(
fȷr , fȷr−1 , · · · fȷ1 , P0

)
, ȷ1, · · · , ȷr ∈ P,

we have

N (R) = fȷr ◦ fȷr−1 ◦ · · · ◦ fȷ1(P0). (3.8)

Thus2, the numerical value can be viewed as a function N (·) mapping from the space

S of strings to SM
+ . We abuse notation by denoting N (S) as the set of numerical

2For function compositions, we adopt a similar notation to that of strings; for example, we
denote the composition f1 ◦ f2 ◦ f2 ◦ f2 ◦ f1 ◦ f1(P0) by f1 ◦ f3

2 ◦ f2
1 (P0).
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values attainable, i.e.,

N (S) =
{
N (R) | R ∈ S

}
. (3.9)

Similarly, by N (Sγ) we denote the subset of numerical values associated to the γ-

feasible strings Sγ.

Remark 3.2.4 Note the difference between a string and its numerical value. Two

strings are equal if and only if they comprise the same order of function compositions

applied to the same initial state. In particular, two strings can be different, even if

they are evaluated with the same numerical value.

For fixed P0 ∈ SM
+ and r ∈ N, the subset of strings of length r and initial

condition P0 is denoted by SP0
r . The corresponding set of numerical values is denoted

by N (SP0
r ). Finally, for X ∈ SM

+ , the set SP0
r (X) ⊂ SP0

r consists of all strings with

numerical value X, i.e.,

SP0
r (X) =

{
R ∈ SP0

r | N (R) = X
}
. (3.10)

In the following, we present some important properties of strings to be used later.

Recall from [30] that SM
++ is the cone of positive definite matrices.

Proposition 3.2.5

(i) For r1 ≤ r2 ∈ N, we have N
(
SP ∗
r1

)
⊂ N

(
SP ∗
r2

)
, where P ∗ ∈ SM

++ denotes the

unique fixed point of the Riccati operator f2N−1. In particular, if for some X ∈ SM
+ ,

r0 ∈ N, and ȷr0 , · · · , ȷ1 ∈ P, the string R =
(
fȷr0 , · · · , fȷ1 , P

∗) belongs to SP ∗
r0

(X),

we have (
fȷr0 , · · · , fȷ1 , f

r−r0
2N−1

, P ∗
)
∈ SP ∗

r (X) ⊂ SP ∗
(X), ∀r ≥ r0. (3.11)
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(ii) Let r ∈ N and R ∈ SP0
r = (fȷr , · · · , fȷ1 , P0) be a string. Define the function π(·)

by

π (R) =


∑r

i=1

(
1− I{2N−1}(ȷi)

)
, if r ≥ 1

0, otherwise.
(3.12)

i.e., π(R) counts the number of occurrences of the non-centralized Riccati operator

f2N−1 in R.

Also denote R̂ = (fȷ̂π(R)
, fȷ̂π(R)−1

, · · · , fȷ̂1 , P0), which represents the string of length

π(R) obtained by removing the occurrences of f2N−1 from R3.

Then, there exists αP0 ∈ R+, depending on P0 only, such that

fȷ̂π(R)
◦ fȷ̂π(R)−1

· · · ◦ fȷ̂1 (αP0I) ≽ N (R) . (3.13)

Proof 5 The proof is a straightforward generalization of Proposition 3.6 in [31] and

is omitted.

3.2.2 Riccati Equation

In this section, we present several approximation results needed in the sequel. We

discuss generic properties, like uniform convergence of the Riccati operator, which

will be used in the sequel to obtain various tightness estimates required for estab-

lishing the LD results.

Proposition 3.2.6

(i) For every X ∈ SM
+ and ȷ ∈ [0, · · · , 2N − 1], we have

fȷ(X) ≽ f2N−1(X). (3.14)

3For example, if R = (f1, f2N−1, f3, f2N−1, f2, P0), R̂ = (f1, f3, f2, P0).
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(ii) For every ε > 0, there exists rε ≥ M , such that, for every X ∈ SM
+ , with X ≽ P ∗

(P ∗ is the unique fixed point of the centralized Riccati operator f2N−1), we have

∥∥f r
2N−1 (X)− P ∗∥∥ ≤ ε, r ≥ rε. (3.15)

Note, in particular, that rε can be chosen independent of the initial state X.

(iii) For a fixed r ∈ N and ȷr, · · · , ȷ1 ∈ P, define the function g : SM
+ 7−→ SM

+ by

g(X) = fȷr ◦ · · · ◦ fȷ1(X), X ∈ SM
+ . (3.16)

Then g(·) is Lipschitz continuous with some constant Kg > 0. Also, for every ε2 > 0,

there exists rε2 , such that the function f
rε2
2N−1

(·) is Lipschitz continuous with constant

K
f
rε2
2N−1

< ε2.

Proof 6 The second and third assertions follow from Lemmas 3.1 and 3.2 in [31]. For

the the first assertion, note that by (2.22) we have

fȷ(X) = FXFT +Q−FXCT
ȷ

(
CȷXCT

ȷ +Rȷ

)−1 CȷXFT (3.17)

where Cȷ = [CT
i1
· · · CT

i|ȷ|
]T . Hence, we can rewrite the above equation as

fȷ(X)=FXFT+Q−
|ȷ|∑
j=1

FXCT
ij

(
CijXCT

ij
+Rij

)−1

CijXFT (3.18)

that is obtained due to the fact that CȷXCT
ȷ + Rȷ is block diagonal, from which it
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follows that

(
CȷXCT

ȷ +Rȷ

)−1

=


(
Ci1XCT

i1
+Ri1

)−1

. . . (
Ci|ȷ|XCT

i|ȷ|
+Ri|ȷ|

)−1

 . (3.19)

Since ȷ = 2N − 1 corresponds to the entire set of nodes {1, · · · , N}, we have

|ȷ| ≤ N and hence

f2N−1(X) = FXFT +Q

−
N∑
j=1

FXCT
ij

(
CijXCT

ij
+Rij

)−1

CijXFT . (3.20)

Therefore, fȷ(X) ≽ f2N−1(X).

3.3 Large Deviation Analysis

In this section, we first present the main results on large deviation analysis. The

rest of this section is devoted to prove these main results. The upper and lower

rate functions are defined, followed by their properties. Then, the large deviation

lower and upper bounds are derived sequentially, which together complete the large

deviation analysis.

3.3.1 Main Results

We characterize the invariant measure µγ governing the asymptotics of the con-

ditional sensor error covariance process {P̂ n
k }, n = 1, · · · , N . The following result is

a first step to understanding the behavior of the invariant distribution µγ family.

Theorem 3.3.1 The family of invariant distributions µγ converges weakly, as γ →
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∞, to the Dirac measure δP ∗ corresponding to the performance of the centralized

estimator (recall, P ∗ is the unique fixed point of the centralized Riccati operator

f2N−1).

Remark 3.3.2 Theorem 3.3.1 states that the family {µγ} converges weakly to the

Dirac measure δP ∗ concentrated at P ∗, as γ → ∞, which is intuitive, since with γ →

∞, the distributed M-GIKF filtering process reduces to classical Kalman filtering

with all the observations available at a fusion center, i.e., centralized filtering, where

P ∗ is the unique fixed point of this centralized filtering. Therefore, with γ → ∞,

we expect the M-GIKF to perform more and more similarly to the centralized case,

which leads to the weak convergence of the measure µγ to δP ∗ as γ → ∞. An

immediate consequence of Theorem 3.3.1 is

lim
γ→∞

µγ(Γ) = 0, ∀Γ ∩ P ∗ = ∅ (3.21)

which means, w.r.t. {µγ}, every event Γ with P ∗ /∈ Γ is a rare event. This is

intuitively correct, since as γ → ∞, the measures {µγ} become more and more

concentrated on an arbitrarily small neighborhood of P ∗, resulting in the event Γ

becoming very difficult to observe.

The proof of this theorem is presented in Appendix 3.5.1. In the sequel, we

establish the LD upper and lower bounds for the family {µγ} as γ → ∞, which

completely characterizes the behavior of {µγ}.

Recall the set of strings S in Definition 3.2.1. For an integer r ≥ 1, let Pr denote

the set of all paths of length r in the sensor graph w.r.t. the adjacency matrix A,
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i.e.,

Pr = {(nr, · · · , n1) | ni ∈ [1, · · · , N ], ∀1 ≤ i ≤ r and

Ani,ni+1
> 0, ∀1 ≤ i < r

}
. (3.22)

To each string R = (fȷr , fȷr−1 , · · · , fȷ1 , P ∗) ∈ SP ∗
r of length r, defined in Section 3.2,

we assign its upper and lower weights respectively as,

w(R) = min
(nr,··· ,n1)∈Pr

r∑
i=1

Iȷi ̸=2N−1qni
(ȷi) (3.23)

w(R) = min
(nr,··· ,n1)∈Pr

r∑
i=1

Iȷi ̸=2N−1qni
(ȷi). (3.24)

We set w(R) = w(R) = 0, if r = 0 in the above.

Note that |Pr| < ∞ for each r ∈ N; hence w(·) and w(·) are well-defined ex-

tended valued functions mapping from SP ∗
to R+ (we adopt the convention that the

minimum of an empty set is ∞).

Finally, define the upper and lower rate functions, I, I : SM
+ 7−→ R+ by

I(X) = inf
R∈SP∗ (X)

w(R), I(X) = inf
R∈SP∗ (X)

w(R). (3.25)

We then have the following large deviation results for the family {µγ} as γ → ∞.

Theorem 3.3.3 Assume that (C.1), (S.1), (D.1), and (E.4) hold. Then, as γ → ∞,

the family µγ satisfies the LD upper and lower bounds with rate functions I and I,

i.e.,

lim sup
γ→∞

1

γ
lnµγ(F)≤− inf

X∈F
I(X), for every closed set F ∈ X (3.26)
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lim inf
γ→∞

1

γ
lnµγ(O)≥− inf

X∈O
I(X), for every open set O ∈ X . (3.27)

Remark 3.3.4 Theorem 3.3.3 characterizes the invariant measure {µγ} as γ → ∞.

It establishes the important qualitative behavior of {µγ} that rare events decay

exponentially when γ → ∞. For a rare event Γ, from (3.26) and (3.27), we have

e−γ(infX∈Γ◦ I(X)) ≤ µγ(Γ) ≤ e−γ(infX∈Γ I(X)). (3.28)

The exact exponent of the exponential decay is bounded within

[γ( inf
X∈Γ

I(X)), γ( inf
X∈Γ◦

I(X))].

The result suggests how the system designer could trade off estimation accuracy

with the communication rate γ. For instance, given a tolerance ε > 0, in order to

guarantee the probability of estimation errors lying outside the ε−neighborhood of

the optimal centralized estimation error P ∗ is less than some δ > 0, γ should be

selected according to

e
−γ

(
inf

X∈BC
ε (P∗)◦ I(X)

)
≤ µγ(BC

ε (P
∗)) ≤e

−γ

(
inf

X∈BC
ε (P∗)

I(X)

)

whereBC
ε (P

∗) is the complement of the open ballBε(P
∗). By computing infX∈BC

ε (P ∗)◦ I(X)

and inf
X∈BC

ε (P ∗) I(X), the designer obtains an estimate of the communication rate γ

required to maintain the probability of outlying errors less than δ.

3.3.2 The Upper and Lower Rate Functions

We define

I(X) = inf
R∈SP∗

(X)
π(R), ∀X ∈ SM

+ . (3.29)
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Recall that I, I : SM
+ 7−→ R+ are defined as

I(X)= inf
R∈SP∗

(X)
w(R), I(X)= inf

R∈SP∗
(X)

w(R), ∀X∈ SM
+ . (3.30)

The functions I, I are not generally lower semicontinuous and hence do not qualify

as rate functions. However, candidate rate functions for the family of invariant dis-

tributions can be the lower semicontinuous regularizations of I, I, which are defined

as

IL(X) = lim
ε→∞

inf
Y ∈Bε(X)

I(Y ), ∀X ∈ SM
+

IL(X) = lim
ε→∞

inf
Y ∈Bε(X)

I(Y ), ∀X ∈ SM
+ . (3.31)

The following proposition gives some readily verifiable properties of IL(X), whose

proof may be obtained from Proposition 6.1 of [31].The semicontinuous regularization

IL(X) also has similar properties.

Proposition 3.3.5

(i) The function IL(X) is a good rate function on SM
+ .

(ii) For every X ∈ SM
+ , IL(X) = limε→0 infY ∈Bε(X) I(Y ).

(iii) For every non-empty set Γ ∈ B(SM
+ ), infX∈Γ IL(X) ≤ infX∈Γ I(X). In addition,

if Γ is open, the reverse inequality holds and thus infX∈Γ IL(X) = infX∈Γ I(X).

(iv) Let K ⊂ SM
+ be a non-empty compact set; then we have limε→0 infY ∈Kε

IL(Y ) =

infY ∈K IL(Y ).
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3.3.3 Large Deviation Lower Bound

The following lemma establishes the LD lower bound for the sequence {µγ} of

invariant distributions as γ → ∞.

Lemma 3.3.6 Let Γ ∈ B(SM
+ ); then the following lower bound holds:

lim inf
γ→∞

1

γ
lnµγ (Γ◦) ≥ − inf

X∈Γ◦
IL(X). (3.32)

Proof 7 Since the sequence {Pn(k)} converges weakly (in distribution) to µγ̄, we have

lim sup
k→∞

P(Pn(k) ∈ F )≤µγ(F ), ∀ closed set space F ⊂SM
+ . (3.33)

Consider a measurable set Γ ∈ B(SM
+ ). Note that if Γ has an empty interior Γ◦,

the assertion in (3.32) holds trivially since the right-hand side becomes −∞. We

thus consider the non-trivial case in which Γ◦ ̸= ∅. Let X ∈ Γ◦ ∩ DI , with DI as

the effective domain of I(·), i.e., the set on which I(·) is finite. There exists a small

enough ε > 0, such that the closed ball Bε(X) ∈ Γ◦. Then, from (3.33), we have

µγ(Γ◦) ≥ µγ
(
Bε(X)

)
≥ lim sup

t→∞
P
(
Pn(k) ∈ Bε(X)

)
. (3.34)

Now we calculate the right-hand side of (3.34). The set SP ∗
(X) is non-empty,

due to the fact that X ∈ DI implying that I(X) is finite and SP ∗
(X) is non-empty.

Hence, for some r0 ∈ T+ and ȷ1, ..., ȷr0 ∈ P, we have a string R = (fȷ1 , ..., fȷr0 , P
∗) ∈

SP ∗
(X). Define the function g: SM

+ 7→ SM
+ by g(Y ) = fȷ1 ◦ ... ◦ fȷr0 (Y ). Since g is

continuous, there exists ε1 > 0 such that

∥g(Y )− g(P ∗)∥ ≤ ε,∀ Y ∈ Bε1(P
∗). (3.35)
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With Proposition 3.2.6 (ii), for ε1 > 0, there exists rε1 such that

∥∥f r
2N−1(Y )− P ∗∥∥ ≤ ε1, ∀ r ≥ rε1 , Y ∈ SM

+ . (3.36)

For any r ∈ T+ such that r ≥ r0 + rε1 and any string R1 ∈ SP0
r of the form

R1 =
{
fȷ1 , ..., fȷr0 , f

rε1
2N−1

, fi1 , ..., fir−r0−rε1
, P0

}

where fi1 , ..., fir−r0−rε1
∈ P, it follows that

∥N (R1)−X∥ = ∥N (R1)−N (R)∥

=
∥∥∥g (f rε1

2N−1
(fi1 , ..., fir−r0−rε1

(P0))
)
− g(P ∗)

∥∥∥ ≤ ε,

which is derived from the fact that

∥∥∥f rε1
2N−1

(fi1 , ..., fir−r0−rε1
(P0))− P ∗

∥∥∥ ≤ ε1.

Therefore,

N (R1) ∈ Bε(X).

For r ≥ r0 + rε1 , define the set of strings

Rt =
{(

fȷ1 , ..., fȷr0 , f
rε1
2N−1

, fi1 , ..., fir−r0−rε1
, P0

)∣∣∣
fi1 , ..., fir−r0−rε1

∈ P
}
. (3.37)
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Then, it follows that N (R2) ∈ Bε(X),∀ R2 ∈ Rt. Thus, for r ≥ r0 + rε1 , we have

P
(
Pn(k) ∈ Bε(X)

)
≥ P (Pn(k) ∈ N (Rt))

=
∑

i1,...,ir−r0−rε1
∈P

[
r0∏
k=1

qnk
(ȷk)

][ r0+rε1∏
k=r0+1

qnk
(2N − 1)

]
[r−r0−rε1∏

k′=1

qnk′
(ik′)

]

=

r0∏
k=1

qn(ȷk)

r0+rε1∏
k=r0+1

qnk
(2N − 1). (3.38)

From (3.34) and (3.38), there exists

µγ(Γ◦) ≥
r0∏
k=1

qn(ȷk)

r0+rε1∏
k=r0+1

qnk
(2N − 1) (3.39)

and hence

lnµγ(Γ◦) ≥
r0∑
k=1

Iȷk ̸=2N−1 ln qnk
(ȷk) +

r0∑
k=1

Iȷk=2N−1 ln qnk
(ȷk)

+

r0+rε1∑
k=r0+1

ln qnk
(2N − 1). (3.40)

Since limγ→∞ qnk
(2N − 1) = 1, i.e., the probability of each sensor obtaining the full

set of observations through the observation dissemination protocol approaches 1 as
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the communication rate γ → ∞, we have

lim inf
γ→∞

lnµγ(Γ◦)

γ
≥ lim inf

γ→∞

r0∑
k=1

Iȷk ̸=2N−1

1

γ
ln qnk

(ȷk)

≥
r0∑
k=1

Iȷk ̸=2N−1 lim inf
γ→∞

1

γ
ln qnk

(ȷk)

≥ −
r0∑
k=1

Iȷk ̸=2N−1qnk
(ȷk) (3.41)

where the last inequality follows from the fact that lim infγ→∞
1
γ
ln qnk

(ȷk) ≥ q
nk
(ȷk).

Since the above holds for all (nr0 , · · · , n1) ∈ Pr0 , we have

lim inf
γ→∞

lnµγ(Γ◦)

γ
≥ max

(nr0 ,··· ,n1)∈Pr0

{
−

r0∑
k=1

Iȷk ̸=2N−1qnk
(ȷk)

}

= −w(R) (3.42)

with w(R) = min(nr0 ,··· ,n1)∈Pr0

∑r0
i=1 Iȷi ̸=2N−1qni

(ȷi).

Given that the above holds for all R ∈ SP ∗
(X), we have

lim inf
γ→∞

lnµγ(Γ◦)

γ
≥ sup

R∈SP∗
(X)

(−w(R))

= − inf
R∈SP∗ (X)

w(R) = −I(X). (3.43)

Finally, from the fact that for X /∈ DI , I(X) = ∞, we have

lim inf
γ→∞

lnµγ(Γ◦)

γ
≥ − inf

X∈Γ◦∩DI

I(X) = − inf
X∈Γ◦

I(X).

Since Γ◦ is open, from Proposition 3.3.5 (iii), we have

− inf
X∈Γ◦

IL(X) = − inf
X∈Γ◦

I(X). (3.44)
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Thus, the proof is completed.

3.3.4 Large Deviation Upper Bound

In this subsection, we establish the LD upper bound for the family of invariant

distributions as γ → ∞. The proof is divided into three steps. First, we establish

the upper bound on compact sets. Then, we derive a tightness result for the family

of invariant distributions. Finally, we establish the LD upper bound on the required

closed sets.

First, we provide some basic results on the topological properties of strings.

Definition 3.3.7 (Truncated String) Let the stringR be given asR = (fȷ1 , · · · , fȷr , P0)

where r ∈ T+, ȷ1, · · · , ȷr ∈ P. Then for s ≤ r, the truncated string Rs of length s is

defined as

Rs = (fȷ1 , · · · , fȷs , P0). (3.45)

Lemma 3.3.8 Define the set of strings U ⊂ SP ∗
and the quantities l(F ), for a closed

set F ∈ SM
+ , as

U(F ) =
{
R ∈ SP ∗ |N (R) ∈ F

}
(3.46)

l(F ) = inf
R∈U(F )

π(R) (3.47)

l
′
(F ) = inf

R∈U(F )
w(R) (3.48)

where

w(R) = min
(nr,··· ,n1)∈Pr

r∑
i=1

Iȷi ̸=2N−1qni
(ȷi). (3.49)

Then, if l(F ) < ∞ and l′(F ) < ∞, there exists rF ∈ T+ large enough, such that for

all R ∈ U(F ) with len(R) ≥ rF , we have π(RrF ) ≥ l(F ) and w(RrF ) ≥ l′(F ).
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In the statement of Lemma 3.3.8, we assume that the infimum of an empty set is ∞.

The proof of Lemma 3.3.8 is provided in Appendix 3.5.2.

From the definition of U(F ), we see that

U(F ) =
∪
X∈F

SP ∗
(X) (3.50)

and hence

l(F ) = inf
X∈F

inf
R∈SP∗

(X)
π(R) = inf

X∈F
I(X) (3.51)

l
′
(F ) = inf

X∈F
inf

R∈SP∗ (X)
w(R) = inf

X∈F
I(X). (3.52)

If l(F ) < ∞, i.e., the set U(F ) is non-empty, the infimum is attained. That is,

there exists R∗ ∈ U(F ) such that l(F ) = π(R∗).

Now we prove the LD upper bound for the family of {µγ} as γ → ∞ over compact

sets.

Lemma 3.3.9 Let K ∈ B(SM
+ ) be a compact set. Then the following upper bound

holds:

lim sup
γ→∞

1

γ
lnµγ (K) ≤ − inf

X∈K
IL(X). (3.53)

The proof is presented in Appendix 3.5.3.

We use the following tightness result to extend the upper bound from compact

sets to arbitrary closed sets.

Lemma 3.3.10 The family of invariant distributions {µγ} satisfies the following tight-

ness property: For every a > 0, there exists a compact set Ka ⊂ SM
+ such that,

lim sup
γ→∞

1

γ
lnµγ

(
KC

a

)
≤ −W (a) (3.54)
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where

W (a) = min
(n1, · · · , nlen(R)

) ∈ Plen(R)

R : π(R) = ⌊a⌋

len(R)∑
i=1

Iȷi ̸=2N−1qni
(ȷi). (3.55)

The proof is presented in Appendix 3.5.4.

Now we can complete the proof of the LD upper bound for arbitrary closed sets

by using the upper bound on compact sets in Lemma 3.3.9 and the tightness result

in Lemma 3.3.10.

Lemma 3.3.11 For a closed set F ∈ B(SM
+ ), the following upper bound holds:

lim sup
γ→∞

1

γ
lnµγ (F ) ≤ − inf

X∈F
IL(X). (3.56)

Proof 8 Let a > 0 be arbitrary. By the tightness estimate in Lemma 3.3.10, there

exists a compact set Ka ⊂ SM
+ such that

lim sup
γ→∞

1

γ
lnµγ

(
KC

a

)
≤ −W (a). (3.57)

The set F ∩Ka, as the intersection of a closed and a compact set, is compact. Then

the LD upper bound in Lemma 3.3.9 holds, and we have

lim sup
γ→∞

1

γ
lnµγ (F ∩Ka) ≤ − inf

X∈F∩Ka

IL(X). (3.58)

To estimate the probability µγ(F ), we use the following decomposition:

µγ(F ) = µγ(F ∩Ka) + µγ(F ∩KC
a ) ≤ µγ(F ∩Ka) + µγ(KC

a ). (3.59)
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From the results on the limits of real number sequences (see Lemma 1.2.15 of [14]),

we have

lim sup
γ→∞

1

γ
lnµγ (F ) ≤

max

(
lim sup
γ→∞

1

γ
lnµγ (F ∩Ka) , lim sup

γ→∞

1

γ
lnµγ

(
KC

a

))
.

From (3.57) and (3.58), we have

lim sup
γ→∞

1

γ
lnµγ (F ) ≤ max

(
− inf

X∈F∩Ka

IL(X),−W (a)

)
≤ max

(
− inf

X∈F
IL(X),−W (a)

)
= −min

(
inf
X∈F

IL(X),W (a)

)
.

Since the above inequality holds for an arbitrary a > 0, taking the limit as a → ∞

on both sides together with W (a) → ∞, we have

lim sup
γ→∞

1

γ
lnµγ (F ) ≤ max

(
− inf

X∈F∩Ka

IL(X),−W (a)

)
≤ − inf

X∈F
IL(X). (3.60)

3.4 Simulation Results

In this section, we simulate the M-GIKF to estimate a 10-dimensional state-

unknown system4 with a network of 5 sensors. The matrices F , Cn, and Q satisfy

Assumptions S.1 and D.1. The simulation is based on the example of distributed

observation dissemination protocol discussed in Section 2.2.3, in which this protocol

does not use knowledge of global topology and is the simplest random walk on the

4We acknowledge that this is not a large system size; it just illustrates the concept.
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Figure 3.1: CDF of the normalized largest eigenvalue from µγ for varying γ =
30, 40, 50, 60.
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Figure 3.2: CDF of the normalized trace from µγ for varying γ = 30, 40, 50, 60

graph with uniform (unoptimized) neighbor selection. By tuning the link selection

probabilities (using full knowledge of global topology), it could be possible to perform

better. The protocol in Section 2.2.3 is just an example of possible protocols, while

the theoretical analysis in our paper is protocol independent.

We study the behavior of µγ for different values of γ. We iterate the RRE

104 times to ensure the error covariance sequence at a randomly selected sensor

converged in distribution to µγ as shown in Theorems 2.3.5 and 2.3.6, where we

simulate 5, 000 samples for each γ. In order to graphically present the distribution

for the covariance matrix, we focus on its largest eigenvalue and trace here. The

resulting empirical Cumulative Distribution Functions (CDFs) of the normalized

largest eigenvalue λmax(·) and the normalized trace Tr(·) (which is the conditional

mean-squared error) of the error covariance matrices are plotted in Fig. 3.1 and
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Fig. 3.2, where the x-axis is λmax(·)/λmax(P
∗) and Tr(·)/Tr(P ∗), respectively. As γ

increases, we see that the empirical measure µγ converges in distribution to the Dirac

measure δP ∗ of P ∗.

Then we simulate the LD decay exponent of the rare event BC
ε (Tr(P

∗)) with

ε = Tr(P ∗)/2, and the LD decay exponent of the rare event BC
ε′ (λmax(P

∗)) with ε′ =

λmax(P
∗)/2. For each γ, we estimate the LD decay exponents 1

γ
lnµγ(BC

ε (λmax(P
∗)))

and 1
γ
lnµγ(BC

ε (Tr(P
∗))) by using the samples obtained above for calculating the

empirical CDFs. Then we take effort to numerically calculate the LD lower and upper

bounds. From Theorem 3.3.3, the LD upper bound for the rare event BC
ε (Tr(P

∗))

can be obtained as the negative infimum of I(·) over the set of rare events, and the LD

lower bound for the rare event BC
ε (Tr(P

∗)) can be obtained as the negative infimum

of I(·) over the set of rare events. Recall (3.23), (3.25), and (3.26), we present the

LD upper bound for the rare event BC
ε (Tr(P

∗)) as

− inf
Tr(X)∈BC

ε (Tr(P ∗))
inf

R∈SP∗ (X)
min

(nlen(R),··· ,n1)∈Plen(R)

len(R)∑
i=1

Iȷi ̸=2N−1qni
(ȷi), X ∈ SM

+ , (3.61)

where qni
(ȷi) is defined in (2.21). Now we present one way to set α in (2.21). Recall

Section 2.2.3, where Ti is the hitting time starting from sensor i to another particular

sensor n in the Markov chain with transition matrix Ao. Then we have

P (Ti > L) =
∑

n1,··· ,nL ̸=n

Ao
n1n2A

o
n2n3 · · ·Ao

nL−1nL
, (3.62)

and α can be selected as α = maxi P (Ti > L).

For the LD lower bound of the rare event BC
ε (Tr(P

∗)), recall (3.24), (3.25), and
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Figure 3.3: LD decay exponent for probability of rare event BC
ε (Tr(P

∗)) and the LD
upper and lower bounds.
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(3.27), we present the LD lower bound as

− inf
Tr(X)∈BC

ε (Tr(P ∗))o
inf

R∈SP∗
(X)

min
(nlen(R),··· ,n1)∈Plen(R)

len(R)∑
i=1

Iȷi ̸=2N−1qni
(ȷi), X ∈ SM

+ , (3.63)

where q
ni
(ȷi) is defined in (2.21). We could set β in (2.21) as β = mini P (Ti > L).

Then the problems of computing the LD upper and lower bounds could be con-

verted to solving the optimization problems in (3.61) and (3.63) respectively. We

could then apply some search method to numerically solve those problems to obtain

the LD upper and lower bounds. The same analysis could be applied for the case of

BC
ε (λmax(P

∗)).

Fig. 3.3 and Fig. 3.4 display the estimated LD decay exponents of the rare events

of BC
ε (Tr(P

∗)) and BC
ε′ (λmax(P

∗)) for different values of γ, and the corresponding

LD upper and lower bounds of the decay exponents, respectively. The empirically

estimated decay exponents in these two rare events perform quite similar, which is

due to the fact that ε and ε′ have the same relative factor 0.5 for the maximum

eigenvalue and the trace of P ∗, respectively.

Finally, note that the convergence rate with respect to γ (i.e., the large deviation

exponent) may be improved by considering a more sophisticated observation dissem-

ination protocol. For instance, the neighbor selection probabilities in the observation

dissemination protocol from Section 2.2.3 may be optimized for a given communica-

tion network structure. This could lead to a faster mixing Markov chain governing

the observation dissemination and, hence, for the same rate γ, a sensor could more

likely receive the observations of more sensors in each epoch (also see Remark 2.2.4),

leading to faster convergence of {µγ} to δP ∗ .
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3.5 Appendices

3.5.1 Proof of Theorem 3.3.1

First define the following class of sets:

C = {F|F is closed and P ∗ ∈ F}. (3.64)

Then proving this theorem is equivalent to proving the following:

lim
γ→∞

dP (µ
γ, δP ∗) = 0 (3.65)

where the Prohorov metric dP (µ
γ, δP ∗) = inf{ε > 0 | µγ(Fε) + ε ≥ 1, ∀F ∈ C} is

defined in [24].

Consider 0 < ε < 1 small enough. Then there exists a ε0 > 0 such that, for every

F ∈ C, we have Bε0(P
∗) ⊂ Fε. The numerical value of the string R = P ∗ belongs

to Bε0(P
∗), and hence by (3.39), there exists an integer r∗ such that

µγ(Bε0(P
∗)) ≥

r0∏
k=1

qn(ȷk)

r0+rε1∏
k=r0+1

qnk
(2N − 1)

=
r∗∏
k=1

qnk
(2N − 1), where r∗ = r0 + rε1 .

Thus, for all F ∈ C, we have

µγ(Fε) ≥ µγ(Bε0(P
∗)) ≥

r∗∏
k=1

qnk
(2N − 1). (3.66)
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Since qnk
(2N − 1) → 1 as γ → ∞, we have for γ → ∞

µγ(Fε) + ε ≥
r∗∏
k=1

qnk
(2N − 1) + ε ≥ 1. (3.67)

Then, following the definition of dP (µ
γ, δP ∗), when γ → ∞, we have

dP (µ
γ, δP ∗) ≤ ε, γ → ∞. (3.68)

Hence,

lim
γ→∞

dP (µ
γ, δP ∗) ≤ ε. (3.69)

Since ε > 0 is arbitrary, by considering the limit as ε → 0, we conclude that

limγ→∞ dP (µ
γ, δP ∗) = 0.

3.5.2 Proof of Lemma 3.3.8

We first prove, if l′(F ) < ∞, there exists rF ∈ T+ large enough, such that for all

R ∈ U(F ) with len(R) ≥ rF , we have w(RrF ) ≥ l′(F ). Then the proof for the case

of l(F ) naturally follows.

The case l′(F ) = 0 is trivial, by choosing an arbitrary positive rF . Consider

the case l′(F ) ≥ q, where q = min1≤n≤N,ȷ∈P qn(ȷ). Using an inductive argument, it

suffices to show that for every q ≤ i ≤ l′(F ), there exists a positive riF ∈ T+ such

that, for R ∈ U(F ) with len(R) ≥ riF , we have

w
(
RriF

)
≥ i. (3.70)

First we consider the case i = q. We assume on the contrary that there is no

such rqF ∈ T+ for which the above property holds. Since U(F ) is not empty, by
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Proposition 3.2.5 (i), there exists r0 ∈ T+ such that

SP ∗

r ∩ U(F ) ̸= ∅, ∀r ≥ r0. (3.71)

Thus, the non-existence of rqF implies that, for every r ≥ r0, there exists a string

Rr ∈ U(F ) with len(Rr) ≥ r, such that w(Rr
r) = 0. Therefore, such Rr is of the

form

Rr =
(
f r
2N−1, fȷ1 , · · · , fȷlen(Rr)−r

, P ∗
)

(3.72)

where ȷ1, · · · , ȷlen(Rr)−r ∈ P. Thus, by denoting

Xr = fȷ1 ◦ · · · ◦ fȷlen(Rr)−r
(P ∗), (3.73)

we have N (Rr) = f r
2N−1(Xr). By Proposition 3.2.6 (ii), the uniform convergence of

the Riccati iterates implies that, for an arbitrary ε > 0, there exists rε ≥ M , such

that, for every X ∈ SM
+ ,

∥∥f r
2N−1 (X)− P ∗∥∥ ≤ ε, r ≥ rε (3.74)

where the constant rε can be chosen independently of X. Then, by defining r′ε =

max(r0, rε), we have

∥N (Rr)− P ∗∥ =
∥∥f r

2N−1 (Xr)− P ∗∥∥ ≤ ε, r ≥ r′ε. (3.75)

Since ε is arbitrary, the above result shows that the sequence {N (Rr)}r≥r′ε of numer-

ical results converges to P ∗ as r → ∞. By construction, the sequence {N (Rr)}r≥r′ε

belongs to the set F , and we conclude that P ∗ is a limit point of the set F . Since F

79



is closed, we have P ∗ ∈ F , which implies

{
R ∈ SP ∗ |N (R) = P ∗} ⊂ U(F ). (3.76)

Hence, specifically, (f2N−1, P
∗) ∈ U(F ). Thus the fact that w ((f2N−1, P

∗)) = 0

contradicts the hypothesis l′(F ) ≥ q.

Therefore, we establish that, if l′(F ) ≥ q, there exists rqF satisfying the property

in (3.70) for i = q. Note here that, if l′(F ) = q, this step has completed the proof of

the lemma. In the general case, to establish (3.70) for all q ≤ i ≤ l′(F ), we need the

following additional steps.

Let us now assume l′(F ) ≥ 2q. We further assume on the contrary that the claim

in (3.70) does not hold for any q ≤ i ≤ l′(F ). By the previous step, clearly the claim

holds for i = q. Then, let k, q ≤ k < l′(F ), be the largest number such that the

claim in (3.70) holds for all q ≤ i ≤ k, which implies that there exists no rk+q
F ∈ T+

satisfying the claim in (3.70) for i = k + q. Since the claim holds for i = k, there

exists rkF ∈ T+ such that, for all R ∈ U(F ) with len(R) ≥ rkF , we have w(RrkF ) ≥ k.

The non-existence of rk+q
F and (3.71) imply that, for every r ≥ r0, there exists a

string Rr ∈ U(F ) with len(Rr) ≥ r such that w(Rr
r) < k + q.

Define r′0 = max(r0, r
k
F ), then by the existence of rkF and w(Rr

r) < k+ q, we have

w(Rr
r) = k for r ≥ r′0. Therefore, for r ≥ r′0, Rr is necessarily of the form

Rr =
(
fȷ1 , · · · , fȷrk

F

, f
r−rkF
2N−1

, fi1 , · · · , filen(Rr)−r
, P ∗

)

where ȷ1, · · · , ȷrkf ∈ P such that w(RrkF
r ) = k and i1, · · · , ilen(Rr)−r ∈ P.

Now consider the sequence {Rr}r≥r′0
. Define the set J as J = {Rr, r ≥ r′0},

and also define the set J1 as J1 = {R ∈ SP ∗

rkF
|w(R) = k}. Consider the mapping

80



ΘrkF : J 7→ J1 by

ΘrkF (R) = RrkF , ∀R ∈ J . (3.77)

Since the cardinality of the set J1 is finite and the set J is countably infinite, for

a specific R′ ∈ J1, the set
(
ΘrkF

)−1

(R′) is countably infinite. This in turn implies

that we can extract a subsequence {Rrm}m≥0 from the sequence {Rr}r≥r′0
, such that

RrkF
rm = R′, ∀m ≥ 0. (3.78)

In other words, if R′ is represented by R′ =

(
fȷ′1 , · · · , fȷ′rk

F

, P ∗
)

for some fixed

ȷ′1, · · · , ȷ′rkF ∈ P, for each m the string Rrm is of the form

Rrm =

(
fȷ′1 , · · · , fȷ′rk

F

, f
rm−rkF
2N−1

, fi1 , · · · , filen(Rrm )−rm
, P ∗

)

where i1, · · · , ilen(Rrm )−rm ∈ P are arbitrary. We denote by

Xm = fi1 ◦ · · · ◦ filen(Rrm )−rm
(P ∗), ∀m, (3.79)

and we have

N (Rrm) = fȷ′1 ◦ · · · ◦ fȷ′rk
F

(
f
rm−rkF
2N−1

(Xm)
)
. (3.80)

Since rm → ∞ as m → ∞, by Proposition 14 (ii), we have

lim
m→∞

f
rm−rkF
2N−1

(Xm) = P ∗. (3.81)

Note that the function fȷ′1 ◦ · · · ◦ fȷ′
rk
F

: SM
+ 7→ SM

+ , being the finite composition of
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continuous functions, is continuous. We then have

lim
m→∞

N (Rrm) = lim
m→∞

fȷ′1 ◦ · · · ◦ fȷ′rk
F

(
f
rm−rkF
2N−1

(Xm)
)

= fȷ′1 ◦ · · · ◦ fȷ′rk
F

(
lim

m→∞
f
rm−rkF
2N−1

(Xm)
)

= fȷ′1 ◦ · · · ◦ fȷ′rk
F

(P ∗)

= N (R′). (3.82)

Therefore, the sequence {N (Rrm)}m≥0 in F converges to N (R′) as m → ∞. Hence

N (R′) is a limit point in F , and N (R′) ∈ F as F is closed. This implies that

R′ ∈ UF . Since w(R′) = k and R′ ∈ UF , this contradicts the hypothesis that

k < l′(F ) and thus the claim in (3.70) holds for all q ≤ i ≤ l′(F ).

To prove, if l(F ) < ∞, there exists rF ∈ T+ large enough, such that for all

R ∈ U(F ) with len(R) ≥ rF , we have π(RrF ) ≥ l(F ), the method is the same as

above, where l(F ) becomes a non-negative integer. We choose rF as the maximum

one in these two cases, then the Lemma is proved.

3.5.3 Proof of Lemma 3.3.9

For ε > 0, define Kε as the ε-neighborhood of K and Kϵ as its ε-closure, i.e.,

Kε =

{
X ∈ SM

+ | inf
Y ∈K

∥X − Y ∥ < ε

}
(3.83)

Kε =

{
X ∈ SM

+ | inf
Y ∈K

∥X − Y ∥ ≤ ε

}
. (3.84)

Since Kε is open, by the weak convergence of the sequence {Pn(r)} to µγ, we

have

lim inf
r→∞

P (Pn(r) ∈ Kε) ≥ µγ(Kε), (3.85)
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which implies that

lim inf
r→∞

P
(
Pn(r) ∈ Kε

)
≥ µγ(K). (3.86)

Now we calculate the left-hand side of (3.86). Since Kε is closed, the results of

Lemma 3.3.8 apply. Recall the definition of U(F ). Also, for every r ∈ T+ and the

closed set F , we define

U r(F ) = U(F ) ∩ SP ∗

r . (3.87)

We consider first l(K) < ∞ and l′(K) < ∞ (i.e., U(K) is non-empty). We then have

P
(
Pn(r) ∈ Kε

)
= P

(
Pn(r) ∈ N

(
U r

(
Kε

)))
. (3.88)

Since K ⊂ Kε and l(K) < ∞, we have l(Kε) < ∞. Thus, since Kε is closed,

Lemma 3.3.8 shows that there exists rKε
∈ T+, such that, for any string R ∈ U(Kε)

with len(R) ≥ rKε
, we have π (RrKε ) ≥ l(Kε) and w (RrKε ) ≥ l′(Kε). In other words,

for all r ≥ rKε
, we have

π (RrKε ) ≥ l(Kε), w (RrKε ) ≥ l′(Kε), ∀ R ∈ U r(Kε). (3.89)

Now consider r ≥ rKε
and define J P ∗

r as the set of strings

J P ∗

r =
{
R ∈ SP ∗

r |π (RrKε ) ≥ l(Kε), w (RrKε ) ≥ l′(Kε)
}
. (3.90)

The set J P ∗
r consists of all strings R with length r such that we have at least l(Kε)

occurrences of non-f2N−1 and the value of w no less than l′(Kε) in the truncated

string RrKε .
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For r ≥ rKε
, it is obvious that the following holds:

U r(Kε) ⊂ J P ∗

r ⊂ SP ∗

r . (3.91)

Clearly, we have that, for r ≥ rKε
,

P
(
Pn(r) ∈ N (J P ∗

r )
)

=
∑

R∈J P∗
r

r∏
k=1

qnk
(ȷk) ≤ (2N − 1)l(Kε)

 rKε

l(Kε)


× max

(n1, · · · , nr
Kε

) ∈ Pr
Kε

R : π(R
r
Kε ) = l(Kε)

rKε∏
k=1

qnk
(ȷk|ȷk ̸= 2N − 1), (3.92)

where l(Kε) = minR∈J P∗
r

π (RrKε ). Then, from (3.88) and (3.91), we have

µγ(K) ≤ lim inf
r→∞

P
(
Pn(r) ∈ N

(
U r(Kε)

))
≤ lim inf

r→∞
P
(
Pn(r) ∈ N (J P ∗

r )
)

≤ (2N − 1)l(Kε)

 rKε

l(Kε)


max

(n1, · · · , nr
Kε

) ∈ Pr
Kε

R : π(R
r
Kε ) = l(Kε)

rKε∏
k=1

qnk
(ȷk|ȷk ̸= 2N − 1).
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Taking the logarithm, dividing by γ on both sides, and taking the limits, we have

lim sup
γ→∞

lnµγ(K)

γ

≤ lim sup
γ→∞

max
(n1, · · · , nr

Kε
) ∈ Pr

Kε

R : π(R
r
Kε ) = l(Kε)

rKε∑
k=1

Iȷk ̸=2N−1

1

γ
ln qnk

(ȷk)

≤ max
(n1, · · · , nr

Kε
) ∈ Pr

Kε

R : π(R
r
Kε ) = l(Kε)

rKε∑
k=1

Iȷk ̸=2N−1

(
lim sup
γ→∞

1

γ
ln qnk

(ȷk)

)

≤ − min
(n1, · · · , nr

Kε
) ∈ Pr

Kε

R : π(R
r
Kε ) = l(Kε)

rKε∑
k=1

Iȷk ̸=2N−1qnk
(ȷk) ≤ −l

′
(Kε).

Then, taking the limit as ε → 0 on both sides leads to

lim sup
γ→∞

lnµγ(K)

γ
≤ − lim

ε→0
l′(Kε). (3.93)

From Proposition 3.3.5 (iii), we have

l′(Kε) = inf
X∈Kε

I(X) ≥ inf
X∈Kε

IL(X) (3.94)

where I(X) = infR∈SP∗ (X) w(R).

Again, taking the limit as ε → 0 and from Proposition 3.3.5 (iv), we have

lim
ε→0

l′(Kε) ≥ lim
ε→0

inf
X∈Kε

IL(X) = inf
X∈K

IL(X). (3.95)

The lemma then follows from (3.93) and (3.95).
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3.5.4 Proof of Lemma 3.3.10

Let a > 0 be arbitrary and choose z ∈ N such that z ≥ a. From Proposition 3.2.5

(ii), there exists αP ∗ ∈ R+ depending on P ∗ only, such that

fȷ̂π(R)
◦ fȷ̂π(R)−1

· · · ◦ fȷ̂1 (αP ∗I) ≽ N (R) , ∀R ∈ SP ∗
.

We define b ∈ R+ such that ∥fȷ̂z ◦fȷ̂z−1 · · ·◦fȷ̂1 (αP ∗I) ∥ < b. Consider the compact set

Ka = {X ∈ SM
+ |∥X∥ ≤ b}, and also define the closed set Fb = {X ∈ SM

+ |∥X∥ ≥ b}.

From Lemma 3.3.8, define the set U(Fb) as

U(Fb) =
{
R ∈ SP ∗ |N (R) ∈ Fb

}
. (3.96)

Then, we have the following inclusion:

U(Fb) ⊂
{
R ∈ SP ∗ |π(R) ≥ z

}
. (3.97)

Hence, l(Fb) = infR∈U(Fb) π(R) ≥ z. Since Fb is closed, by Lemma 3.3.8, there exists

rFb
∈ T+ such that

π(RrFb ) ≥ z, ∀R ∈ U(Fb). (3.98)

To estimate the probability µγ(KC
a ), we follow the method in Lemma 3.3.9. First,

we have the following by weak convergence:

µγ(KC
a )≤ lim inf

r→∞
P
(
Pn(r)∈KC

a

)
≤ lim inf

r→∞
P(Pn(r)∈Fb) .
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For r ∈ T+, denote the set J P ∗
r = SP ∗

r ∩ U(Fb). For r ≥ rFb
, similar to (3.92), we

have

P (Pn(r) ∈ Fb) =
∑

R∈J P∗
r

r∏
k=1

qnk
(ȷk)

≤ (2N − 1)l(Fb)

 rFb

l(Fb)


max

(n1, · · · , nrFb
) ∈ PrFb

R : π(RrFb ) = l(Fb)

rFb∏
k=1

qnk
(ȷk|ȷk ̸= 2N − 1)

≤ (2N − 1)l(Fb)

 rFb

l(Fb)


max

(n1, · · · , nrz ) ∈ Prz

R : π(Rrz ) = z

rz∏
k=1

qnk
(ȷk|ȷk ̸= 2N − 1).

Arguments similar to those in Lemma 3.3.9 lead to

µγ(KC
a ) ≤ (2N − 1)l(Fb)

 rFb

l(Fb)


max

(n1, · · · , nrz ) ∈ Prz

R : π(Rrz ) = z

rz∏
k=1

qnk
(ȷk|ȷk ̸= 2N − 1),

from which we obtain,

lim sup
γ→∞

lnµγ(KC
a )

γ
≤

− min
(n1, · · · , nrz ) ∈ Prz

R : π(Rrz ) = z

rz∑
i=1

Iȷi ̸=2N−1qni
(ȷi) ≤ −W (z),
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where W (z) is defined as

W (z) = min
(n1, · · · , nlen(R)

) ∈ Plen(R)

R : π(R) = z

len(R)∑
i=1

Iȷi ̸=2N−1qni
(ȷi). (3.99)

Obviously, W (z) ≥ W (a) follows from z ≥ ⌊a⌋. Then we have lim supγ→∞
lnµγ(KC

a )
γ

≤

−W (a).

3.5.5 Proof of Theorem 3.3.3

We are now ready to complete the proof of Theorem 3.3.3.

Proof 9 Lemma 3.3.6 and Lemma 3.3.11 have established that the family of {µγ}

satisfies the LD lower and upper bounds at scale γ with rate functions IL and IL,

respectively, as γ → ∞. To complete the proof of Theorem 3.3.3 it suffices to show

that IL(·) = I(·) and IL(·) = I(·), i.e., I(·) and I(·) are lower semicontinuous. We

first prove IL(·) = I(·), and it takes the same method to prove IL(·) = I(·).

If IL(X) = ∞, from Proposition 3.3.5 (iii), clearly IL(X) = I(X), ∀X ∈ SM
+ .

Then, we consider the case IL(X) < ∞. From the definition

IL(X) = lim
ε→∞

inf
Y ∈Bε(X)

I(Y ), (3.100)

we know the discrete quantity infY ∈Bε(X) I(Y ) is non-decreasing w.r.t. ε; then there

exists ε0 > 0 such that

IL(X) = inf
Y ∈Bε(X)

I(Y ), ∀ε ≤ ε0. (3.101)

The infimum above is achieved for every ε0 > 0, and we conclude that there exists a
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sequence {Xn}n∈N such that

Xn ∈ Bε0(X), lim
n→∞

Xn = X, I(Xn) = IL(X). (3.102)

Recall the set of strings

U(Bε0(X)) = {R ∈ SP ∗|N (R) ∈ Bε0(X)}. (3.103)

Then we have

l′(Bε0(X)) = inf
Y ∈Bε0 (X)

I(Y ) = IL(X). (3.104)

Since Bε0(X) is closed, by Lemma 3.3.8, there exists r0 ∈ T+ such that for

R ∈ U(Bε0(X)) with len(R) ≥ r0,

w(Rr0) ≥ l′(Bε0(X)) = IL(X). (3.105)

By the existence of {Xn}, there exists a sequence {Rn} of strings in U(Bε0(X))

such that

N (Rn) = Xn, w(Rn) = IL(X). (3.106)

Without loss of generality, we assume that len(Rn) = r0 for all n. Indeed, if

len(Rn) < r0, we can modify Rn by appending the requisite number of f2N−1 at the

right end, which still satisfies (3.106). On the other hand, if len(Rn) > r0, we note

that Rn must be of the form

Rn =
(
fȷ1 , · · · , fȷr0 , f

len(Rn)−r0
2N−1

, P ∗
)

(3.107)

where the truncated string (defined in Definition 3.3.7) Rr0
n satisfies N (Rr0

n ) = Xn
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and w(Rr0
n ) = IL(X). Hence, if len(Rn) > r0, we may consider the truncated string

Rr0
n instead, which also satisfies (3.106). We thus assume that the sequence {Rn}

with the properties in (3.106) further satisfies len(Rn) = r0 for all n.

The number of distinct strings in the sequence {Rn} is at most (2N−1)r0 ; in fact,

it should be less than (2N − 1)r0 due to the constraint w(Rn) = IL(X). Hence, at

least one pattern is repeated infinitely often in the sequence {Rn}, i.e., there exists

a string R∗ such that we have len(R∗) = r0, w(R∗) = IL(X), and a subsequence

{Rnk
}k∈N of {Rn} with Rnk

= R∗.

The corresponding subsequence {Xnk
} of numerical values then satisfies

Xnk
= N (Rnk

) = N (R∗), ∀k ∈ N, (3.108)

and hence we have

X = lim
k→∞

Xnk
= N (R∗). (3.109)

Therefore, we have the string R∗ ∈ SP ∗
(X) and

I(X) = inf
R∈SP∗ (X)

w(R) ≤ w(R∗) = IL(X). (3.110)

With the fact that I(X) ≥ IL(X), we have the final conclusion:

I(X) = IL(X). (3.111)
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4. QUANTIZATION BASED ALGORITHM (QGIKF) WITH INFINITE

QUANTIZATION ALPHABET∗

In this chapter, we propose and study a quantized GIKF (QGIKF) algorithm

with infinite quantization alphabet in a dynamic scalar large scale system. Due to

the limited sources, such as the bandwidth and power, the exact analog signal is

prevented to transmit in the wireless sensor network. It is required to first quantize

the data before transmitting it. In previous chapters, we have assumed the state of

a sensor can be ideally transmitted to its neighbors. In this chapter, we extend the

previous study to investigate the performance of the GIKF algorithm with quanti-

zation to meet the constrains of limited sources. Since quantization could cause the

information loss on the transmitted data, an natural question is raised that whether

or not the QGIKF can still achieve weak consensus with this type of information

loss. In the sequel, we will find the answer of this question. First, we describe the

quantization scheme used in this chapter, named dithered quantization. Then, we

propose the QGIKF algorithm and derive the iteration formulation of estimation

error variance with QGIKF. Finally, the analysis over weak consensus is presented.

4.1 System Setup

4.1.1 System Model

In this chapter and Chapter 5, we consider a discrete-time linear Gaussian dy-

namic scalar system observed by a network of N sensors. The system model is given

∗Part of this chapter is reprinted, with permission, from [Di Li, S. Kar, F. E. Alsaadi, A. M.
Dobaie, and S. Cui, “Distributed Kalman filtering with quantized sensing state.” IEEE Transac-
tions on Signal Processing, 63(19):5180–5193, Oct. 2015.]
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as

xk+1 = Fxk + wk+1, (4.1)

where F is the system parameter, xk is the system state with initial state x0 distribut-

ed as a Gaussian value with x0 ∼N(x̂0|−1, P̂0|−1) (x̂0|−1 denotes the prior estimate

of x0 (with no observation information), and P̂0|−1 denotes the corresponding error

variance), and the system noise {wk} is an uncorrelated zero mean Gaussian sequence

with variance Q, independent of x0.

The observation signal at sensor n is

ynk = Cnxk + vnk , (4.2)

where Cn is the observation parameter and the observation noise {vnk} is another

uncorrelated zero mean Gaussian sequence with variance Rn. These noise sequences

at different sensors are independent of each other, and independent of the system

noise sequence {wk} and the initial system state x0.

The inter-sensor communication model is same as the communication model de-

scribed in Section 2.1.2, which is omitted here.

4.1.2 Quantization Scheme

The quantization scheme adopted in this paper is the dithered quantization [22,

57, 2], where a controlled noise or dither is added to randomize the value before

quantization, where a uniform quantizer is applied. The detailed quantization process

is stated as follows. The dither v as a random variable is first added to the value x

to be quantized. We then adopt the uniform quantizer with a quantization step ∆
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and the countably infinite quantization alphabet [29] given by

Q = {k∆|k ∈ Z}. (4.3)

With Q in (4.3), the quantizing function q(·) : R → Q is given as

q(x) = argmin
k∆

|k∆− (x+ v)|.

In other words,

q(x) = k∆, ∀ k∆− ∆

2
≤ x+ v < k∆+

∆

2
.

Then the quantization noise ε is defined as

ε = q(x)− x, (4.4)

while the quantization error e is

e = q(x)− (x+ v). (4.5)

We see that ε = e+v. Here we adopt the non-subtractive dithered quantization [22],

which is more practical compared to the subtractive dithered quantization where the

receiver is assumed to know the dither signal and subtract it from the reconstructed

quantizer value such that ε = e.

If the dither v satisfies the Schuchman conditions [57], the quantization error

e is i.i.d. uniformly distributed on [−∆
2
, ∆
2
) and independent of the input value x.

A sufficient condition for v to satisfy the Schuchman conditions is that v is i.i.d.

uniformly distributed on [−∆
2
, ∆
2
) and independent of the input value x. In the

sequel, we assume that this sufficient conditions holds.
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If the above sufficient condition holds, the dithered quantization scheme is equiv-

alent to the probabilistic quantization [73] [2], where x is quantized in a probabilistic

fashion as

P{q(x) = (k + 1)∆} = (x− k∆)/∆,

P{q(x) = k∆} = 1− (x− k∆)/∆,

where q(x) is an unbiased estimator as E[q(x)] = x.

4.2 QGIKF Scheme

In this section, the procedure of QGIKF algorithm is first described in detail,

then the iteration of the corresponding estimation error variance is derived.

4.2.1 QGIKF Algorithm

With the quantization scheme described in Section 4.1.2, we now introduce the

quantized gossip-based interacting Kalman filtering (QGIKF) scheme for distributed

estimation of the state process xk over time. Let the filter at sensor n be initialized by

the pair
(
x̂0|−1, P̂0|−1

)
, where x̂0|−1 denotes the prior estimate of x0 (with no observa-

tion information) and P̂0|−1 is the corresponding error variance. Also,
(
x̂n
k|k−1, P̂

n
k|k−1

)
denote the prediction of xk at sensor n based on information till time k − 1 and the

corresponding conditional error variance, respectively. The pair
(
x̂n
k|k−1, P̂

n
k|k−1

)
is

also referred as the state of sensor n at time k − 1. To define the estimate update

rule for the QGIKF, let n→
k be the communication neighbor of sensor n at time k

w.r.t. the adjacency matrix1 A(k). We assume that all inter-sensor communications

of time k occur at the beginning of the slot, after the state
(
x̂n
k|k−1, P̂

n
k|k−1

)
is quan-

tized according to the dithered quantization scheme with output q
(
x̂n
k|k−1, P̂

n
k|k−1

)
.

1Note that by symmetry we have (n→
k )→k = n. It is possible that n→

k = n, where the graph
corresponding to A(k) has a self-loop at node n.
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The paired communicating sensors receive the quantized states from each other and

swap out their previous states, i.e., if at time k, n→
k = l, l ̸= n, sensor n replaces

its previous state
(
x̂n
k|k−1, P̂

n
k|k−1

)
by q

(
x̂l
k|k−1, P̂

l
k|k−1

)
and sensor l replaces its pre-

vious state
(
x̂l
k|k−1, P̂

l
k|k−1

)
by q

(
x̂n
k|k−1, P̂

n
k|k−1

)
. If at time k, n→

k = n, i.e., sensor

n communicates to itself (no inter-sensor communication occurs), sensor n keeps its

previous state
(
x̂n
k|k−1, P̂

n
k|k−1

)
.

4.2.2 Estimation Error Variance Iteration

After the above communication procedure is over and a new observation is made,

by the recursion algorithm of Kalman filtering, when the inter-sensor communication

occurs as n→
k ̸= n, the estimate update at sensor n at the end of the slot k executes

as

x̂n
k+1|k = Fx̂n

k|k, (4.6)

where

x̂n
k|k = q

(
x̂
n→
k

k|k−1

)
+Kn

k

[
ynk − Cnq

(
x̂
n→
k

k|k−1

)]
, (4.7)

and Kn
k is the Kalman filtering gain. Then for the estimation error variance, we have

P̂ n
k+1|k =E

[(
xk+1 − x̂n

k+1|k
)2 ∣∣∣q (x̂n→

k

k|k−1

)
, q

(
P̂

n→
k

k|k−1

)
, n→

k , ynk

]
= E′

{
E
[(
xk+1 − x̂n

k+1|k
)2 ∣∣∣q (x̂n→

k

k|k−1

)
, q

(
P̂

n→
k

k|k−1

)
,

n→
k , ynk , εx̂n→

k
k|k−1

, ε
P̂

n→
k

k|k−1

]}
, (4.8)

where ε
P̂

n→
k

k|k−1

and ε
x̂
n→
k

k|k−1

are the quantization noises, and the expectation E′ is over

ε
P̂

n→
k

k|k−1

and ε
x̂
n→
k

k|k−1

. For concision, in the following we denote the combined operations

of all expectations as E′◦E. To calculate (4.8), first we have the following correction
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step to derive P̂ n
k|k:

P̂ n
k|k = E′◦E

[(
xk − x̂n

k|k
)2∣∣∣ ·

]
= E′◦E

[(
xk − q

(
x̂
n→
k

k|k−1

))2
∣∣∣∣ ·

]
+ (Kn

k )
2E′◦E

[(
ynk − Cnq

(
x̂
n→
k

k|k−1

))2
∣∣∣∣ ·

]
− 2Kn

kE′◦E
[(

xk − q
(
x̂
n→
k

k|k−1

))(
ynk − Cnq

(
x̂
n→
k

k|k−1

))∣∣∣ ·] , (4.9)

where the condition ‘·’ denotes the condition in (4.8). The first term in (4.9) is

calculated as

E′◦E
[(

xk − q
(
x̂
n→
k

k|k−1

))2
∣∣∣∣ ·

]
= E′◦E

[(
xk − x̂

n→
k

k|k−1

)2
∣∣∣∣ ·

]
+ E′

[
ε2
x̂
n→
k

k|k−1

∣∣∣q (x̂n→
k

k|k−1

)]
= q

(
P̂

n→
k|k−1

k

)
− E′

[
ε
P̂

n→
k

k|k−1

∣∣∣q (P̂ n→
k

k|k−1

)]
+ E′

[
ε2
x̂
n→
k

k|k−1

∣∣∣q (x̂n→
k

k|k−1

)]
= q

(
P̂

n→
k

k|k−1

)
+

∆2

6
, (4.10)

where the first equation follows from ε
x̂
n→
k

k|k−1

= ex̂,k + v, in which ex̂,k and v are

independent of xk and x̂
n→
k

k|k−1, and the last equation is derived in Appendix 4.4.

The third term of (4.9) equals to

2Kn
kE′◦E

[(
xk − x̂

n→
k

k|k−1

)(
ynk − Cn

(
x̂
n→
k

k|k−1

))∣∣∣ ·
]

+ 2E′
[
ε2
x̂
n→
k

k|k−1

∣∣∣q (x̂n→
k

k|k−1

)]
CnK

n
k

= 2q
(
P̂

n→
k

k|k−1

)
CnK

n
k +

∆2

3
CnK

n
k .
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By (4.2), the second term of (4.9) is derived as

(Kn
k )

2E′◦E
[(

ynk − Cnq
(
x̂
n→
k

k|k−1

))2
∣∣∣∣ ·

]
= (Kn

k )
2E′◦E

[(
ynk − Cnx̂

n→
k

k|k−1

)2
∣∣∣∣ ·

]
+ (Kn

kCn)
2E′

[
ε2
x̂
n→
k

k|k−1

∣∣∣q (x̂n→
k

k|k−1

)]
= (Kn

k )
2
[
C2

nq
(
P̂

n→
k

k|k−1

)
+Rn

]
+

∆2

6
(Kn

kCn)
2.

Then, we can rewrite (4.9) as

P̂ n
k|k = q

(
P̂

n→
k

k|k−1

)
− 2q

(
P̂

n→
k

k|k−1

)
CnK

n
k

+ (Kn
k )

2
[
C2

nq
(
P̂

n→
k

k|k−1

)
+Rn

]
+ Zn

k , (4.11)

where Zn
k = ∆2

6
(1−Kn

kCn)
2.

Here we derive the optimal Kn
k by minimizing P̂ n

k|k. Let

∂P̂n
k|k

∂Kn
k

=

[
C2
nq

(
P̂

n→
k

k|k−1

)
+ C2

n

∆2

6
+Rn

]
Kn

k − q
(
P̂

n→
k

k|k−1

)
Cn − ∆2

6
Cn = 0;

the solution leads to the optimal Kn
k as

Kn∗
k =

[
q
(
P̂

n→
k

k|k−1

)
+ ∆2

6

]
Cn

C2
nq

(
P̂

n→
k

k|k−1

)
+ C2

n
∆2

6
+Rn

. (4.12)

Then at the update step, we have

P̂ n
k+1|k = F 2P̂ n

k|k +Q. (4.13)

Equs (4.6), (4.7), (4.11), (4.12) and (4.13) construct an optimal distributed and
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quantized Kalman filtering algorithm. To establish the property that the estimation

error variance at a randomly selected sensor converges in distribution to a unique

invariant distribution, we first study the following suboptimal algorithm; later we

will show that the convergence property is automatically verified in the optimal case

based on its proof for the suboptimal algorithm.

For the suboptimal algorithm, instead of adopting the optimal Kn∗
k in (4.12), we

choose the gain Kn
k as

Kn
k = q

(
P̂

n→
k

k|k−1

)
Cn

[
C2

nq
(
P̂

n→
k

k|k−1

)
+Rn

]−1

. (4.14)

By plugging (4.14) into (4.11), we have

P̂ n
k|k = (1−Kn

kCn)q
(
P̂

n→
k

k|k−1

)
+ Zn

k . (4.15)

And then according to (4.13), we deduce

P̂ n
k+1|k = F 2q

(
P̂

n→
k

k|k−1

)
+Q+ F 2Zn

k

− F 2q
(
P̂

n→
k

k|k−1

)2

C2
n

[
C2

nq
(
P̂

n→
k

k|k−1

)
+Rn

]−1

. (4.16)

When sensor n communicates to itself (no inter-sensor communication occurs) as

n→
k = n, the problem degenerates to the classic Kalman filtering problem [27] with

x̂n
k+1|k and P̂ n

k+1|k respectively iterated as

x̂n
k+1|k = Fx̂n

k|k−1 + FKn
k

(
ynk − Cnx̂

n
k|k−1

)
, (4.17)

P̂ n
k+1|k=F 2P̂ n

k|k−1+Q−
(
FP̂ n

k|k−1Cn

)2[
C2

nP̂
n
k|k−1+Rn

]−1

, (4.18)
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where

Kn
k = P̂ n

k|k−1Cn

(
C2

nP̂
n
k|k−1 +Rn

)−1

. (4.19)

In the sequel, we will study the asymptotic property of the error variance se-

quence
{
P̂ n
k+1|k

}
iterated as (4.16) or (4.18) to show that the network achieves weak

consensus.

4.3 Weak Consensus Analysis

In this section, we first present the interacting particle representation for the

estimation error variance sequence. Then an RDS formulation is setup by considering

an auxiliary sequence. Finally, the weak consensus result is proved.

4.3.1 Interacting Particle Representation

First, to simplify the notation in (4.16), we define the function f1,n as

f1,n(X) = F 2q (X) +Q− F 2q (X)2 C2
n

[
C2
nq (X) +Rn

]−1

+
∆2

6
F 2

(
1− C2

nq (X)
[
C2
nq (X) +Rn

]−1
)2

, (4.20)

and to simplify the notation in (4.18), we define the function f2,n as

f2,n(X) = F 2X +Q− (FXCn)
2 [C2

nX +Rn

]−1
. (4.21)

Then the sequence of error variance P̂ n
k+1|k at sensor n iterates according to

P̂ n
k+1|k = fn

(
P̂

n→
k

k|k−1

)
, where fn = f1,n, if n

→
k ̸= n; and fn = f2,n, if n

→
k = n.

To track the sequence
{
P̂ n
k|k−1

}
, we adopt the following interacting particle pro-

cess to represent it. We will show that by the interacting particle representation,

we can completely characterize and track the evolution of the sequence
{
P̂ n
k|k−1

}
for

n = 1, ..., N .
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Note that the inter-sensor communication link formation process controlled by

the sequence {A(k)} can be represented by N particles moving on the graph as a

Markov chain. The state of the n-th particle at time k is denoted by pn(k), where

pn(k) takes values from the state space [1, ..., N ], and the transition of the n-th

particle is given by

pn(k) = (pn(k − 1))→k , pn(0) = n.

Therefore, the n-th particle can be considered as originating from node n and then

travelling on the graph according to the link formation process {A(k)}.

For each n, the process {pn(k)} is a Markov chain on V = [1, · · · , N ] with the

transition probability matrix Ā. For each of the Markov chains {pn(k)}, we define a

sequence of iteration Pn(k) as

Pn(k + 1) = fpn(k) (Pn(k)) , (4.22)

where fpn(k) = f1,pn(k) if pn(k) ̸= pn(k + 1); and fpn(k) = f2,pn(k) if pn(k) = pn(k + 1).

Note that the sequence {Pn(k)} is governed by the Markov chain {pn(k)}, and

from the perspective of the particle, {Pn(k)} can be considered as a particle originat-

ing at sensor n and hopping around the network as a Markov chain with transition

probability matrix Ā, whose state Pn(k) evolves according to function (4.22). In

contrast to the sequence
{
P̂ n
k|k−1

}
of the conditional error variance at a particular

sensor n, the sequence {Pn(k)} does not correspond to the error variance evolution at

a particular sensor. With the Markov chain {pn(k)}, the relation between
{
P̂ n
k|k−1

}
and {Pn(k)} could be shown as

(P1(k), · · · , PN(k)) =
(
P̂

p1(k)
k|k−1, · · · , P̂

pN (k)
k|k−1

)
, (4.23)
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from which we see that the properties of the sequence of interest
{
P̂ n
k|k−1

}
could be

obtained by studying the corresponding sequence {Pn(k)}. Hence, in the sequel, we

will first study the sequence {Pn(k)} to show its weak convergence.

4.3.2 An Auxiliary Sequence with RDS Formulation

Since the Markov chain {pn(k)} is not with a stationary distribution, in order to

perform the analysis based on RDS [1] [26] to analyze {Pn(k)}, we need an auxiliary

sequence
{
P̃ (k)

}
based on a Markov chain {p̃(k)} with a stationary distribution,

which is a Markov chain with the transition matrix Ā and an uniform initial dis-

tribution P[p̃(0) = n] = 1/N, n = 1, · · · , N . For the corresponding
{
P̃ (k)

}
, with

random initial condition P̃ (0), it is defined as

P̃ (k + 1) = fp̃(k)

(
P̃ (k)

)
, (4.24)

where fp̃(k) = f1,p̃(k) if p̃(k) ̸= p̃(k + 1); and fp̃(k) = f2,p̃(k) if p̃(k) = p̃(k + 1).

Now in order to proceed the asymptotic analysis of the auxiliary sequence
{
P̃ (k)

}
,

we can construct an RDS (θR, φR) equivalent to the auxiliary sequence
{
P̃ (k)

}
in

the sense of distribution. The construction process is similar to that in our pre-

vious paper [30], for which the details are skipped here. Briefly, denote θR =

(ΩR,FR,PR, {θRk , k ∈ T}) as a metric dynamic system, where (ΩR,FR,PR) is a

probability space and the family of transformations {θRk } on ΩR is the family of left-

shifts, i.e., θRk w = w(k+ ·), ∀k ∈ T, w ∈ ΩR; The cocycle φR : T+×ΩR×R+ 7→ R+
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is defined as: ∀k > 1, w,X,

φR(0, w,X) = X,

φR(1, w,X) = fw0(X),

φR(k, w,X) = fθRk−1w(0)

(
φR(k − 1, w,X)

)
= fwk−1

(
φR(k − 1, w,X)

)
.

Based on the construction of (θR, φR), the sequence
{
φR (k, w, Pn(0))

}
is distri-

butionally equivalent to the sequence
{
P̃ (k)

}
. At this stage, we can analyze the

asymptotic distributional properties of the sequence
{
P̃ (k)

}
by utilizing the prop-

erties of an RDS, which is presented in the next subsection.

4.3.3 Some Intermediate Results

The following proposition states two boundedness properties to be used later for

proving the lemmas.

Proposition 4.3.1

(i) Denote w = (n1, · · · , nl) as a walk on the graph (V, E). Define an auxiliary

sequence {P ′
w(k)}1≤k≤l with initial condition P ′

w(1) = X and the iteration as

P ′
w(k + 1) = F 2P ′

w(k) +Q

− F 2C2
nk
P ′
w(k)

2(C2
nk
P ′
w(k) +Rnk

)−1 +
∆2

6
F 2.

(4.25)

Define another auxiliary sequence {P ′′
w(k)}1≤k≤l with the same initial condition P ′′

w(1) =
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X and the iteration as

P ′′
w(k + 1) = F 2 (P ′′

w(k) + ∆) +Q− F 2C2
nk

(P ′′
w(k) + ∆)

2

×
[
C2

nk
(P ′′

w(k) + ∆) +Rnk

]−1
+

∆2

6
F 2. (4.26)

Then, we have recursively

P ′′
w(l + 1) < P ′

w(l + 1) +
F 2(F 2l − 1)∆

(F 2 − 1)
. (4.27)

(ii) Recall fn(X) defined at the beginning of Section 4.3.1, we have that fn(X) is

upper-bounded as

fn(X) < F 2[X + Y (∆)] +Q, (4.28)

where Y (∆) = ∆2

6
+∆.

Proof 10 For part (i), we define a function h(X): h(X) = F 2X+Q−F 2C2
nk
X2(C2

nk
X+

Rnk
)−1 + ∆2

6
F 2, and it is easy to verify that h(X) is monotonically non-decreasing.

Then compare the structures of P ′
w(l + 1) and P ′′

w(l + 1), we can deduce that

P ′′
w(l + 1) < P ′

w(l + 1) +
F 2(F 2l − 1)∆

(F 2 − 1)
.

For part (ii), fn(X) is either f1,n(X) or f2,n(X). We have

f1,n(X) ≤ F 2q(X) +Q+
∆2

6
F 2.
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Additionally, since X −∆ ≤ q(X) < X +∆, we have

f1,n(X) < F 2(X +∆) +Q+
∆2

6
F 2

= F 2[X + Y (∆)] +Q.

We also have

f2,n(X) ≤ F 2X +Q < F 2[X + Y (∆)] +Q.

Thus, we conclude that

fn(X) < F 2[X + Y (∆)] +Q.

Lemma 4.3.2 Let w = (n1, · · · , nl) as a walk on the graph (V, E) such that, there

exists at least one Cni
, i = 1, · · · , l, be non-zero. If we define the function gw as

gw(X) = fnl
◦ fnl−1

◦ · · · ◦ fn1(X), (4.29)

there exists a constant α > 0 such that the following result holds:

gw(X) ≤ α, ∀X ≥ 0. (4.30)

Proof 11 With the walk w = (n1, · · · , nl), we construct an error variance sequence

{Pw(k)}1≤k≤l satisfying the iteration:

Pw(k + 1) = fnk
(Pw(k)) (4.31)

with initial condition Pw(1) = X, where the function fnk
is defined at the beginning
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of Section 4.3.1. Then we have

Pw(l + 1) = fnl
◦ fnl−1

◦ · · · ◦ fn1(X), (4.32)

which implies that gw(X) = Pw(l + 1).

If nk+1 ̸= nk, recall (4.20); we then have

Pw(k + 1) = F 2q[Pw(k)] +Q− F 2C2
nk
q[Pw(k)]

2(C2
nk
q[Pw(k)] +Rnk

)−1

+
∆2

6
F 2

{
q[Pw(k)]C

2
nk
(C2

nk
q[Pw(k)] +Rnk

)−1 − 1
}2

a

≤ F 2q[Pw(k)] +Q− F 2C2
nk
q[Pw(k)]

2

(C2
nk
q[Pw(k)] +Rnk

)−1 +
∆2

6
F 2

b

≤ F 2(Pw(k) + ∆) +Q− F 2C2
nk
(Pw(k) + ∆)2

(C2
nk
(Pw(k) + ∆) +Rnk

)−1 +
∆2

6
F 2 (4.33)

where inequality a is due to the fact that 0 ≤ q[Pw(k)]C
2
nk
(C2

nk
q[Pw(k)]+Rnk

)−1 < 1,

and inequality b is due to the fact that Pw(k) − ∆ ≤ q[Pw(k)] < Pw(k) + ∆ and

the monotonically non-decreasing property of the function h(X) = F 2X + Q −

F 2C2
nk
X2(C2

nk
X +Rnk

)−1 + ∆2

6
F 2.

If nk+1 = nk, recall (4.21); we then have

Pw(k + 1) =

F 2Pw(k) +Q− F 2C2
nk
Pw(k)

2(C2
nk
Pw(k) +Rnk

)−1

≤ F 2(Pw(k) + ∆) +Q− F 2C2
nk
(Pw(k) + ∆)2

(C2
nk
(Pw(k) + ∆) +Rnk

)−1 +
∆2

6
F 2 (4.34)
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which is due to the fact that the function f2,n(X) = F 2X+Q−(FXCn)
2 [C2

nX +Rn]
−1

is monotonically non-decreasing.

Recall the auxiliary sequence P ′′
w(k) defined in (4.26). Due to the facts shown

in (4.33) and (4.34), Pw(1) = P ′′
w(1) = X, and the monotonically non-decreasing

property of the function h(X) = F 2X + Q− F 2C2
nk
X2(C2

nk
X + Rnk

)−1 + ∆2

6
F 2, we

have Pw(l + 1) < P ′′
w(l + 1).

For the auxiliary sequence {P ′
w(l+ 1)} defined in (4.25), from Lemma 15 in [30],

and with the weak detectability assumption, we have P ′
w(l + 1) ≤ α′, where α′ is a

positive constant. Since P ′
w(l+1) ≤ α′, according to (4.27), P ′′

w(l+1) is also bounded.

With Pw(l + 1) < P ′′
w(l + 1) obtained above, we conclude that Pw(l + 1) could be

bounded by a constant α.

Lemma 4.3.3 The sequence {P̃ (k)} is stochastically bounded, i.e.,

lim
J→∞

sup
k∈T+

P
(
P̃ (k) > J

)
= 0. (4.35)

Proof 12 First, in the case of a stable F , i.e., |F | ≤ 1, this claim is obvious, due to

the fact that the suboptimal estimate of 0 at each sensor for all time is stochastically

bounded. Next, we consider the case with |F | > 1.

Note that the regularity of the distribution of P̃ (k) for each k implies that to

prove (4.35) it suffices to show

lim
J→∞

sup
k≥k0

P
(
P̃ (k) > J

)
= 0 (4.36)

for some arbitrary large k0 ∈ T+.

Recall Y (∆) in (4.28) and α in Lemma 4.3.2, for a sufficiently large J > 0, we
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define,

k(J) =

max
k

{
k ∈ T+

∣∣∣∣F 2kα +
F 2k − 1

F 2 − 1
(Q+ F 2Y (∆)) ≤ J

}
. (4.37)

Here we introduce some new notations. For integers k0, k1 ≥ l, the statement

“there exists a (n1, n2, · · · , nl) walk in the time interval [k0, k1]” indicates the exis-

tence of an integer k0 + l − 1 ≤ k′ ≤ k1 such that

p̃(k′ − l + s) = ns, 1 ≤ s ≤ l, (4.38)

where {p̃(k)}k∈T+ is a Markov chain.

Now we make the following claim regarding the probability of interest:

P
(
P̃ (k) > J

)
≤ P(no (n1, n2, · · · , nl) exists in [k − k(J), k]). (4.39)

In the sequel, we justify the correctness of this claim.

First, we assume the contrary that a walk (n1, n2, · · · , nl) exists in the interval

[k−k(J), k]. Then there exists k′ ∈ [k−k(J), k] such that p̃(k′−l+s) = ns, 1 ≤ s ≤ l,

which implies that P̃ (k′) = fnl
◦ · · · ◦ fn1(P̃ (k′ − l + 1)). Hence, by Lemma 4.3.2,

we have P̃ (k′) ≤ α. By (4.28), P̃ (s) < F 2[P̃ (s − 1) + Y (∆)] + Q, ∀s; and run the

recursion, we have

P̃ (k) < F 2(k−k′)P̃ (k′) +
F 2(k−k′) − 1

F 2 − 1
(Q+ F 2Y (∆))

≤ F 2(k−k′)α +
F 2(k−k′) − 1

F 2 − 1
(Q+ F 2Y (∆))

≤ F 2k(J)α +
F 2(k(J)) − 1

F 2 − 1
(Q+ F 2Y (∆)) ≤ J,
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where the second inequality is based on P̃ (k′) ≤ α by Lemma 4.3.2, the third in-

equality follows from k − k′ ≤ k(J) by the fact that k′ ∈ [k − k(J), k], and the last

inequality follows from (4.37).

Thus we can conclude that the existence of a walk (n1, n2, · · · , nl) in the interval

[k−k(J), k] implies that P̃ (k)≤J , i.e., the event {Existence of a walk (n1, n2, · · · , nl)

in [k − k(J), k]} ⊂
{
P̃ (k) ≤ J

}
, which implies the claim in (4.39). Therefore, char-

acterizing P(P̃ (k)>J) on the L.H.S. of (4.39) can be reduced to studying the prob-

ability of a (n1, n2, · · · , nl) walk existing in [k − k(J), k]. The remaining procedure

is to construct another Markov chain, and relate the probability of a (n1, n2, · · · , nl)

walk existing in [k − k(J), k] to the hitting time statistics of this Markov chain.

We construct a Markov chain {z(k)}k≥l. Recall the stochastic matrix Ā in Sec-

tion 2.1.2. The state space Z is the subset of V l given as

Z = {z = (i1, · · · , il) | Āij ,ij+1
> 0, 1 ≤ j < l}. (4.40)

The dynamic of {z(k)}k≥l is could be established by considering the Markov chain

{p̃(k)}k∈T+
defined in Section 4.3.2 as

z(k) = (p̃(k − l + 1), p̃(k − l + 2), · · · , p̃(k)). (4.41)

From the dynamic of {p̃(k)}k∈T+
, it implies that {z(k)}k≥l is a Markov chain with

transition probability Ānm between available states (i1, · · · , il−1, n) and (i2, · · · , il−1, n,m).

With the state space Z, the Markov chain {z(k)}k≥l inherits irreducibility, aperiod-

icity, and stationarity from that of the Markov chain {p̃(k)}k∈T+
.
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Denote the hitting time τ0 of {z(k)} to the state (n1, · · · , nl) as

τ0 = min{k > l | z(k) = (n1, · · · , nl)}.

For each k ≥ l and a sufficiently large J , we define the stopping time τJ as

τJ = min{k ≥ k − k(J) | z(k) = (n1, · · · , nl)}.

For all z ∈ Z, define

Pz(τ0 > h) = P(τ0 > h | z(l) = z).

Then from the Markovian property, it follows that

P(τJ > k | z(k − k(J)− 1) = z) = Pz(τ0 > k(J) + 1).

Therefore, we have the following results:

P(no (n1, · · · , nl) exists in [k − k(J), k]) = P(τJ > k)

=
∑
z∈Z

[
P(τJ > k | z(k − k(J)− 1) = z)

P(z(k − k(J)− 1) = z)]

=
∑
z∈Z

[Pz(τ0 > k(J) + 1)P(z(k − k(J)− 1) = z)] (4.42)

Since the above result is established for all k ≥ k0 with some sufficient large k0, we
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have from (4.39) that

sup
k≥k0

P
(
P̃ (k) > J

)
≤

∑
z∈Z

[Pz(τ0 > k(J) + 1)P(z(k − k(J)− 1) = z)] (4.43)

Due to the positive recurrence of the finite state Markov chain {z(k)} and the

fact that k(J) → ∞ as J → ∞, for all z ∈ Z, we have

lim
J→∞

Pz(τ0 > k(J) + 1) = 0. (4.44)

Since Z is finite, by combining (4.43) and (4.44) and using the dominated convergence

theorem, we have

lim
J→∞

sup
k≥k0

P
(
P̃ (k) > J

)
= 0. (4.45)

By the regularity of the distribution of P̃ (k) for each k, (4.45) implies that

lim
J→∞

sup
k∈T+

P
(
P̃ (k) > J

)
= 0.

4.3.4 Main Results on Weak Consensus

With the property of stochastic boundedness for the sequence
{
P̃ (k)

}
, Lem-

ma 6.1 in [32], and Theorem 27 in [30], we can conclude that only claim b) in Theo-

rem 27 of [30] holds, i.e., there exists a unique almost equilibrium uĀ(w) defined on

a θR-invariant set Ω∗ ∈ FR with P(Ω∗) = 1, such that for any random variable v(w)

possessing the property 0 ≤ v(w) ≤ ηuĀ(w) for all w ∈ Ω∗ and deterministic η, the
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following holds:

lim
k→∞

φ(k, θR−kw, v(θ
R
−kw)) = uĀ(w), w ∈ Ω∗. (4.46)

Further incorporating Lemma 17 in [30], we have the following theorem regarding

the weak convergence of the sequence
{
P̃ (k)

}
:

Theorem 4.3.4 Under the assumption of connectivity, there exists a unique proba-

bility measure µĀ (functional of the stochastic matrix Ā), such that for each n ∈

{1, · · · , N}, the sequence
{
P̃ (k)

}
converges weakly to µĀ from every initial condition

Pn(0):

P̃ (k) ⇒ µĀ, ∀n ∈ {1, · · · , N}. (4.47)

After establishing Theorem 4.3.4, following the logic in the proof for Theorem 10 in

[30] (so the proof is skipped here), we now present the key result characterizing the

convergence property of the sequence
{
P̂ n
k|k−1

}
.

Theorem 4.3.5 Under the assumption of connectivity, denote n as the index of the

sensor (uniformly) randomly selected from the whole set of sensors {1, · · · , N}. Then

the sequence
{
P̂ n
k|k−1

}
converges weakly to the unique probability measure µĀ as in

Theorem 4.3.4, i.e.,

P̂ n
k|k−1 ⇒ µĀ. (4.48)

For the optimal algorithm with the error variance sequence
{
P̂ n
k|k−1

}
in (4.13)

taking the optimal gainKn∗
k in (4.12), the convergence or consensus property over the

network can be easily established based on the above analysis on the suboptimal case.

Specifically, we could define the corresponding functions for the optimal algorithm,

in the same way how fn is defined at the beginning of Section 4.3.1. Then with
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the interacting particle representation, we can construct the RDS formulation for

the corresponding auxiliary sequence. Since we have established the stochastically

boundedness in the suboptimal case, the stochastically boundedness of
{
P̂ n
k|k−1

}
in

the optimal algorithm is automatically established. Finally, with the properties of the

constructed RDS, we can prove the convergence property for the optimal algorithm.

4.4 Appendix: Derivation of (4.10)

We have

E′
[
ε
P̂

n→
k

k|k−1

∣∣∣q (P̂ n→
k

k|k−1

)]
= E∗E′

[
ε
P̂

n→
k

k|k−1

∣∣∣q (P̂ n→
k

k|k−1

)
, P̂

n→
k

k|k−1

]
= E∗

[
q
(
P̂

n→
k

k|k−1

)
− P̂

n→
k

k|k−1

∣∣∣q (P̂ n→
k

k|k−1

)
, P̂

n→
k

k|k−1

]
, (4.49)

where E∗ is over P̂
n→
k

k|k−1. From the nature of dithered quantization, conditioned on

q
(
P̂

n→
k

k|k−1

)
, P̂

n→
k

k|k−1 is within the interval
(
q
(
P̂

n→
k

k|k−1

)
−∆, q

(
P̂

n→
k

k|k−1

)
+∆

)
. To be

concise, in the sequel we write q
(
P̂

n→
k

k|k−1

)
as q(·). Then we have (4.49) equal to

∫ q(·)+∆

q(·)−∆

(q(·)− p) f
P̂

n→
k

k|k−1

(p|q (·))dp, (4.50)

where f
P̂

n→
k

k|k−1

(p|q (·)) is obtained from the Bayesian rule as

f
P̂

n→
k

k|k−1

(p|q (·)) =
P
(
q(·)|P̂ n→

k

k|k−1 = p
)
P
(
P̂

n→
k

k|k−1 = p
)

P (q(·))

=


1
∆

(
1− q(·)−p

∆

)
, if q(·)−∆ < p ≤ q(·)

1
∆

(
1− p−q(·)

∆

)
, if q(·) < p < q(·) + ∆,

(4.51)
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with the last equation based on the dithered quantization rule and the uninform

prior distribution for P̂
n→
k

k|k−1 from the non-informative perspective. Then it is easy to

derive that (4.50) equals to zero, i.e.,

E′
[
ε
P̂

n→
k

k|k−1

∣∣∣q (P̂ n→
k

k|k−1

)]
= 0. (4.52)

We also have

E′
[
ε2
x̂
n→
k

k|k−1

∣∣∣q (x̂n→
k

k|k−1

)]
= E∗

[(
q
(
x̂
n→
k

k|k−1

)
− x̂

n→
k

k|k−1

)2 ∣∣∣q (x̂n→
k

k|k−1

)
, x̂

n→
k

k|k−1

]
,

=

∫ q(·)+∆

q(·)−∆

(q(·)− x)2 f
x̂
n→
k

k|k−1

(x|q (·))dx, (4.53)

where E∗ is over x̂
n→
k

k|k−1 and q(·) denotes q
(
x̂
n→
k

k|k−1

)
. Similarly as solving (4.50), we

could derive f
x̂
n→
k

k|k−1

(x|q (·)) and further calculate (4.53) as

E′
[
ε2
x̂
n→
k

k|k−1

∣∣∣q (x̂n→
k

k|k−1

)]
=

∆2

6
. (4.54)

113



5. QUANTIZATION BASED ALGORITHM (QGIKF) WITH FINITE

QUANTIZATION ALPHABET∗

In this chapter, we extend the analysis with infinite quantization alphabet in

Chapter 4 to the quantization with finite quantization alphabet, which is more prac-

tical and constrained. With the finite quantization alphabet, more information loss

would occur with limiting the quantization output within the finite range. It is an

interesting question to study whether or not there exists certain (possible modified)

quantized GIKF algorithm can still achieve weak consensus. To seek a positive an-

swer, we will propose a modified quantized GIKF (M-QGIKF) scheme and study its

convergence performance.

5.1 M-QGIKF Scheme

In this section, we study the case with a finite quantization alphabet, i.e., each

inter-sensor communication channel adopts a uniform quantizer with ⌈log2(2L+ 1)⌉

bits and a step size ∆, where L is a positive integer. In other words, the quantization

alphabet is

Q̃ = {l∆|l = 0,±1, · · · ,±L}. (5.1)

We claim that this quantizer saturates if the quantization input exceeds the range

[−(L + 1
2
)∆, (L + 1

2
)∆). The dither v is defined the same as the case of countable

infinite alphabet, i.e., v is a i.i.d. uniformly distributed random variable over [−∆
2
, ∆
2
).

The QGIKF algorithm with the finite quantization alphabet could be modified

∗Part of this chapter is reprinted, with permission, from [Di Li, S. Kar, F. E. Alsaadi, A. M.
Dobaie, and S. Cui, “Distributed Kalman filtering with quantized sensing state.” IEEE Transac-
tions on Signal Processing, 63(19):5180–5193, Oct. 2015.]
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as follows. Operate the algorithm in the same way as QGIKF with an infinite

quantization alphabet, when the quantizer does not saturate for the communication

pair of sensors n and l , i.e., when the following two conditions at time k are both

satisfied:

∣∣x̂i
k|k−1 + v

∣∣ < (L+ 0.5)∆, i = n, l, (5.2)∣∣P̂ i
k|k−1 + v

∣∣ < (L+ 0.5)∆, i = n, l. (5.3)

Whenever either one of above conditions is violated, i.e., the quantizer saturates,

a message indicating the status of quantization saturation will be shared between

the communication pair. Then at the end of slot k, sensor n acts like no information

received from its communication counterpart and updates its state P̂ n
k+1|k with its own

previous state P̂ n
k|k−1 as in (4.18); similar rules apply to sensor l. Note that when

the quantizer does not saturate, each sensor behaves the same as for the QGIKF

with an infinite quantization alphabet, by updating its state P̂ n
k+1|k as (4.16) with

the swapped state from its communication counterpart.

In the sequel, we will study the asymptotic property of the error variance sequence{
P̂ n
k+1|k

}
described above, to show that the network still achieves weak consensus

with the finite quantization alphabet under certain conditions.

5.2 Weak Consensus Analysis

In this section, we first present the RDS formulation for the estimation error

variance sequence of the M-QGIKF. Then, we prove the weak consenus results.

5.2.1 RDS Formulation

Recall the interacting particle representation of P̂ n
k|k−1 for QGIKF with an infinite

quantization alphabet in Section 4.3.2, where a sequence of iteration for Pn(k) is
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defined as

Pn(k + 1) = fpn(k) (Pn(k)) ,

where fpn(k) = f1,pn(k) if pn(k) ̸= pn(k + 1), fpn(k) = f2,pn(k) if pn(k) = pn(k + 1), and

the process {pn(k)} is a Markov chain on V = [1, · · · , N ] with transition probability

matrix Ā. Then, with the Markov chain {pn(k)}, the relation between
{
P̂ n
k|k−1

}
and

{Pn(k)} could be shown as

(P1(k), · · · , PN(k)) =
(
P̂

p1(k)
k|k−1, · · · , P̂

pN (k)
k|k−1

)
. (5.4)

In this section, we will represent P̂ n
k|k−1 for QGIKF with a finite quantization

alphabet by another interacting particle process. With the condition in (5.2) and

(5.3), the probability of saturation P n,l

sat,k for the communication pair of sensors n

and l at time slot k is defined as

P n,l

sat,k =P
[(∣∣x̂n

k|k−1 + v
∣∣ ≥ (L+ 0.5)∆

)
∪(∣∣P̂ n

k|k−1 + v
∣∣ ≥ (L+ 0.5)∆

)
∪(∣∣x̂l

k|k−1 + v
∣∣ ≥ (L+ 0.5)∆

)
∪(∣∣P̂ l

k|k−1 + v
∣∣ ≥ (L+ 0.5)∆

)]
. (5.5)

Recall Ā in Section 2.1.2. We define another symmetric stochastic matrix 1 ĀF (k)

at time slot k with the element ĀF (k)nl as

ĀF (k)nl = Ānl(1− P n,l

sat,k), ∀n, l ∈ {1, · · · , N}, n ̸= l,

1To distinguish from the terms used in the case of an infinite quantization alphabet, we add the
superscript F over terms in this section.
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ĀF (k)nn = Ānn +
∑

i=1,··· ,N,i ̸=n

ĀniP
n,i

sat,k, ∀n ∈ {1, · · · , N}. (5.6)

Note that, with a finite quantization alphabet, the formation process of inter-

sensor communication links for state swapping can still be represented by N particles

moving on the graph as a Markov chain. The state of the n-th particle at time k

is denoted by pFn (k), where pFn (k) takes value in the state space [1, ..., N ], and the

transition of the n-th particle is given by

pFn (k) = (pFn (k − 1))→k , pFn (0) = n. (5.7)

For each n, the process
{
pFn (k)

}
is a Markov chain on V = [1, · · · , N ] with a sym-

metric transition probability matrix ĀF (k). We define a sequence of iteration P F
n (k)

as

P F
n (k + 1) = fpFn (k)

(
P F
n (k)

)
,

where fpFn (k) = f1,pFn (k) if p
F
n (k) ̸= pFn (k+1); and fpFn (k) = f2,pFn (k) if p

F
n (k) = pFn (k+1).

Then, similar to (5.4), with the Markov chain {pFn (k)}, the relation between{
P̂ n
k|k−1

}
and {P F

n (k)} could be shown as

(
P F
1 (k), · · · , P F

N (k)
)
=

(
P̂

pF1 (k)

k|k−1 , · · · , P̂
pFN (k)

k|k−1

)
,

from which we see that the properties of the sequence of interest
{
P̂ n
k|k−1

}
could be

obtained by studying the corresponding sequence {P F
n (k)}.

Similar to Section 4.3.2, in order to perform the analysis based on RDS to analyze

{P F
n (k)}, we need construct an auxiliary sequence

{
P̃ F (k)

}
with a Markov chain{

p̃F (k)
}
, which has the transition matrix ĀF (k) and an uniform initial distribution

P[p̃F (0) = n] = 1/N, n = 1, · · · , N . Since the transition matrix ĀF (k) is symmetric,
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{
p̃F (k)

}
is a Markov chain with a stationary distribution as the uniform distribution.

For
{
P̃ F (k)

}
, with a random initial condition P̃ (0), it is defined as

P̃ F (k + 1) = fp̃(k)(P̃
F (k)), (5.8)

where fp̃F (k) = f1,p̃F (k) if p̃
F (k) ̸= p̃F (k+1); and fp̃F (k) = f2,p̃F (k) if p̃

F (k) = p̃F (k+1).

Now in order to execute the asymptotic analysis of the auxiliary sequence
{
P̃ F (k)

}
,

we can construct a RDS (θR,F , φR,F ) equivalent to the auxiliary sequence
{
P̃ F (k)

}
in

the sense of distribution. The construction process is similar to that in our previous

paper [30] and that in Section 4.3.2, such that the details are skipped here. Briefly,

we restate the definitions as follows. Denote θR,F = (ΩR,F ,FR,F ,PR,F , {θR,F
k , k ∈ T})

as a metric dynamic system, where (ΩR,F ,FR,F ,PR,F ) is a probability space and the

family of transformations {θR,F
k } on ΩR,F is the family of left-shifts, i.e., θR,F

k w =

w(k + ·), ∀k ∈ T, w ∈ ΩR,F ; the cocycle φR,F : T+ × ΩR,F × R+ 7→ R+ is defined

as: ∀k > 1, w,X,

φR,F (0, w,X) = X,

φR,F (1, w,X) = fw0(X),

φR,F (k, w,X) = fθR,F
k−1w(0)

(
φR,F (k − 1, w,X)

)
= fwk−1

(
φR,F (k − 1, w,X)

)
.

Based on the above construction of (θR,F , φR,F ), the sequence
{
φR,F

(
k, w, P F

n (0)
)}

is distributionally equivalent to the sequence
{
P̃ F (k)

}
. We now analyze the asymp-

totic distributional properties of the sequence
{
P̃ F (k)

}
by utilizing the properties

in RDS, which is presented in the next subsection.
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5.2.2 Main Results on Weak Consensus

Lemma 5.2.1 If the system shown in (4.1) is stable, i.e., |F | < 1, and the quantization

parameter L∆ is sufficiently large such that L∆ > α + Q+F 2Y (∆)
1−F 2 , in the asymptotic

case as k → ∞, we have the probability of saturation P n,l

sat,k strictly less than 1, and

P n,l

sat,k → 0, as L∆ → ∞.

The proof of Lemma 5.2.1 is presented in Appendix 5.4.1.

The following theorem shows that for the QGIKF algorithm with a finite quantiza-

tion alphabet, the network can still achieve weak consensus under certain conditions.

Theorem 5.2.2 For the QGIKF algorithm with a finite quantization alphabet, under

the assumption of connectivity, denote n as the index of the sensor (uniformly)

randomly selected from the whole set of sensors {1, · · · , N}. If the system shown

in (4.1) is stable, i.e., |F | < 1, and the quantization parameter L∆ is sufficiently

large such that L∆ > α + Q+F 2Y (∆)
1−F 2 , the sequence

{
P̂ n
k|k−1

}
converges weakly to a

unique probability measure µĀ,L∆ (functional of the matrix Ā and the quantization

parameter L∆) as k → ∞, i.e.,

P̂ n
k|k−1 ⇒ µĀ,L∆.

Proof 13 According to (5.6), ĀF (k)nl is positive whenever Ānl defined in Section 2.1.2

is positive in the asymptotic case as k → ∞, which is implied by the fact that P n,l

sat,k

is strictly less than 1 from Lemma 5.2.1. Then the stochastic matrix ĀF (k) inherits

the irreducibility and aperiodicity from that of Ā, which implies the connectivity of

the communication network for the QGIKF with the finite quantization alphabet in

the asymptotic case as k → ∞.

According to (5.16), it is easy to show that the sequence
{
P̃ F (k)

}
is stochastically
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bounded, in a similar way as for Lemma 4.3.3. With the property of stochastic

boundedness for the sequence {P̃ F (k)}, Lemma 6.1 in [32], and Theorem 27 in [30],

we again could conclude that only claim b) in Theorem 27 of [30] holds, i.e., there

exists a unique almost equilibrium uĀ,L∆(w) defined on a θR,F -invariant set Ω∗ ∈

FR,F with P(Ω∗) = 1, such that for any random variable v(w) possessing the property

0 ≤ v(w) ≤ ηuĀ,L∆(w) for all w ∈ Ω∗ and deterministic η, the following holds:

lim
k→∞

φ(k, θR,F
−k w, v(θR,F

−k w)) = uĀ,L∆(w), w ∈ Ω∗.

Further incorporating Lemma 17 in [30], we have the following statement regarding

the weak convergence of the sequence
{
P̃ F (k)

}
:

Under the assumption of connectivity, there exists a unique probability measure

µĀ,L∆ (functional of the stochastic matrix Ā and the quantization parameter L∆),

such that for each n ∈ {1, · · · , N}, the sequence
{
P̃ F (k)

}
converges weakly to µĀ,L∆

from every initial condition P F
n (0):

P̃ F (k) ⇒ µĀ,L∆, ∀n ∈ {1, · · · , N}.

Then, following the logic in the proof for Theorem 10 in [30], we can prove

Theorem 5.2.2 to characterize the convergence property of the sequence
{
P̂ n
k|k−1

}
for

the QGIKF algorithm with a finite quantization alphabet.

5.3 Simulation Results

The simulation is based on a network with five sensors and an adjacency matrix

satisfying the connectivity requirement of the network. The parameters Cn and Rn

in the observation model (4.2) are selected differently for various sensors, resulting in

different estimation error variances when each sensor running its own local Kalman
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filter without cooperation. Denote C = [C1, · · · , C5] and R = [R1, · · · , R5], where

for our simulation, we set C = [1 0 2 1.5 1], R = [2 3 4 8 5], F = 0.9, and Q = 1.

We run the simulation for the QGIKF with a finite quantization alphabet Q̃ in

(5.1). We set the quantization step ∆ = 1 and L = 14, to satisfy the condition

L∆ > α + Q+F 2Y (∆)
1−F 2 = 13.52. According to the fact that the quantizer is with

⌈log2(2L + 1)⌉ bits, we have a 5-bit quantizer here. The QGIKF algorithm runs

with 1, 000 iterations to ensure the convergence. We simulate the optimal estimation

error variance of the QGIKF algorithm with gain Kn∗
k in (4.12) for 5, 000 times and

calculate the corresponding empirical cumulative distribution function (CDF).

In Fig. 5.1, we show the comparison between the empirical CDFs for the con-

vergence measure of the QGIKF and that of the non-quantized GIKF in [30]. Since

QGIKF involves more error or information loss due to quantization, the performance

of the estimation error variance with QGIKF is worse than (but close to) that of the

non-quantized GIKF. In Fig. 2, we show the performance of the QGIKF versus the

non-cooperation scheme, i.e., each sensor runs its own local Kalman filter such that

there is no information exchange among the sensors. The probability histograms in

Fig. 5.2 illustrate the statistic of the convergence measure obtained with QGIKF

and the statistic of the error variance obtained with the non-cooperation scheme, by

uniformly selecting a sensor index. Compared with the non-cooperation scheme, the

proposed QGIKF provides much more chances to achieve a lower estimation error

variance, which demonstrates the advantage of cooperation even with quantization

incorporated in the inter-sensor communications.
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Figure 5.1: Empirical CDFs for the measure µĀ in the QGIKF and the non-quantized
GIKF.
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Figure 5.2: Histogram of the measure µĀ in the QGIKF and the error variance
distribution in the non-cooperation algorithm.
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5.4 Appendices

5.4.1 Proof of Lemma 5.2.1

Recall Proposition 4.3.1 (ii):

fn(X) < F 2[X + Y (∆)] +Q. (5.9)

For a sufficiently large J > 0, we define an auxiliary value k(J) as

k(J) = max
k

{
k ∈ T+

∣∣∣∣α +
1− F 2k

1− F 2
(Q+ F 2Y (∆)) ≤ J

}
, (5.10)

where α is the bound in Lemma 4.3.2.

Note that the first part below is very similar to the proof for Lemma 4.3.3; we

restate them here for self-completeness. For integers k0, k1 ≥ l, the statement “there

exists a (n1, n2, · · · , nl) walk in the time interval [k0, k1]” indicates the existence of

an integer k0 + l − 1 ≤ k′ ≤ k1 such that

p̃F (k′ − l + s) = ns, 1 ≤ s ≤ l, (5.11)

where {p̃F (k)}k∈T+ is a Markov chain.

Now we make the following claim regarding the probability P(P̃ F (k) > J):

P(P̃ F (k) > J)

≤ P(no (n1, n2, · · · , nl) exists over [k − k(J), k]). (5.12)

In the sequel, we justify the correctness of this claim.

First assume the contrary that a walk (n1, n2, · · · , nl) exists in the interval [k −
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k(J), k]. Then there exists k′ ∈ [k−k(J), k] such that p̃F (k′− l+ s) = ns, 1 ≤ s ≤ l,

which implies that P̃ F (k′) = fnl
◦ · · · ◦ fn1(P̃

F (k′ − l + 1)). Hence, by Lemma 4.3.2,

we have P̃ F (k′) ≤ α. By (5.9), P̃ F (s) < F 2[P̃ F (s− 1)+ Y (∆)] +Q, ∀s, and run the

iterations, we have

P̃ F (k) < F 2(k−k′)P̃ F (k′) +
1− F 2(k−k′)

1− F 2
(Q+ F 2Y (∆))

< α +
1− F 2(k−k′)

1− F 2
(Q+ F 2Y (∆))

≤ α +
1− F 2(k(J))

1− F 2
(Q+ F 2Y (∆)) ≤ J,

where the second inequality is based on P̃ F (k′) ≤ α and F < 1, the third inequality

follows from k− k′ ≤ k(J) by the fact that k′ ∈ [k− k(J), k], and the last inequality

follows from (5.10).

Thus we can conclude that the existence of a walk (n1, n2, · · · , nl) in the interval

[k−k(J), k] implies that P̃ F (k)<J , i.e., the event {Existence of a walk (n1, n2, · · · , nl)

over [k − k(J), k]} ⊂
{
P̃ F (k) < J

}
, which implies the claim in (5.12). Now we

study the probability of a (n1, · · · , nl) walk existing over [k− k(J), k] in (5.12). The

remaining procedure is to construct another Markov chain, and relate the probability

of a (n1, · · · , nl) walk existing over [k − k(J), k] to the hitting time statistics of this

Markov chain.

We construct another Markov chain {z(k)}k≥l with the state space Z, as a subset

of V l, given by

Z = {z = (i1, i2, · · · , il)|Āijij+1
, 1 ≤ j < l}, (5.13)

and the dynamics is given in terms of the Markov chain
{
p̃F (k)

}
k∈T+

as:

z(k) = (p̃F (k − l + 1), · · · , p̃F (k)).
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From the dynamics of
{
p̃F (k)

}
k∈T+

, we have that {z(k)}k≥l is a Markov chain

with transition probability ĀF (k)nl between allowable states (i1, i2, · · · , il−1, n) and

(i2, · · · , il−1, n, l).

Denote the hitting time τ0 of z(k) to the state (n1, · · · , nl) as

τ0 = min{k > l|z(k) = (n1, · · · , nl)}.

For each k ≥ l and a sufficiently large J , we define the stopping time τJ as

τJ = min{k ≥ k − k(J) | z(k) = (n1, · · · , nl)}.

For all z ∈ Z, define

Pz(τ0 > h) = P(τ0 > h | z(l) = z).

Then from the Markovian property, it follows that

P(τJ > k | z(k − k(J)− 1) = z) = Pz(τ0 > k(J) + 1).

Therefore, we have the following results:

P(no (n1, · · · , nl) exists in [k − k(J), k]) = P(τJ > k)

=
∑
z∈Z

[
P(τJ > k | z(k − k(J)− 1) = z)

P(z(k − k(J)− 1) = z)]

=
∑
z∈Z

[Pz(τ0 > k(J) + 1)P(z(k − k(J)− 1) = z)] (5.14)

Since the above result is established for all k ≥ k0 with some sufficient large k0, we
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have from (5.12) that

sup
k≥k0

P
(
P̃ F (k) > J

)
≤

∑
z∈Z

[Pz(τ0 > k(J) + 1)P(z(k − k(J)− 1) = z)] (5.15)

From (5.10), we see that, if J ≥ α + Q+F 2Y (∆)
1−F 2 , k(J) → ∞. Then, with J ≥

α+ Q+F 2Y (∆)
1−F 2 , due to the recurrence of the finite state Markov chain {z(k)} and the

fact that k(J) → ∞, we have

Pz(τ0 > k(J) + 1) = 0.

Since Z is finite, (5.15) implies that

sup
k≥k0

P
(
P̃ F (k) > J

)
= 0, ∀J ≥ α +

Q+ F 2Y (∆)

1− F 2
. (5.16)

From (5.5), we have

P n,l

sat,k ≤P
[(∣∣x̂n

k|k−1 + v
∣∣ ≥ (L+ 0.5)∆

)]
+ P

[(∣∣P̂ n
k|k−1 + v

∣∣ ≥ (L+ 0.5)∆
)]

+ P
[(∣∣x̂l

k|k−1 + v
∣∣ ≥ (L+ 0.5)∆

)]
+ P

[(∣∣P̂ l
k|k−1 + v

∣∣ ≥ (L+ 0.5)∆
)]

≤P
(∣∣x̂n

k|k−1

∣∣ ≥ L∆
)
+ P

(
P̂ n
k|k−1 ≥ L∆

)
+ P

(∣∣x̂l
k|k−1

∣∣ ≥ L∆
)
+ P

(
P̂ l
k|k−1 ≥ L∆

)
(5.17)
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where the last equality is due to the fact that v ∈ [−∆
2
, ∆
2
).

Recall the construction process of P̂ n
k|k−1 from (5.7) to (5.8), and the given con-

dition L∆ > α + Q+F 2Y (∆)
1−F 2 . From (5.16), we have

P
(
P̂ n
k|k−1 ≥ L∆

)
= 0, ∀k ≥ k0, ∀n ∈ {1, · · · , N}. (5.18)

Recall the system model in (4.1), we have

xk+1 = F k+1x0 + (F k + F k−1 + · · ·+ 1)w, (5.19)

where x0 is the initial state and w is a zero mean Gaussian distributed random

variable with variance Q.

In the asymptotic case as k → ∞, we have that xk converges to a Gaussian

distribution as xk ∼ N (0, Q/(1− F )2). Due to the fact that the dithered quantizer

generates the output as an unbiased estimate of the input [2], and the Kalman filter

is an unbiased estimator of the unknown state [27], with (4.6), we have

E(x̂n
k|k−1) = E(xk).

Then, in the asymptotic case as k → ∞, E(x̂n
k|k−1) = E(xk) = 0. From (4.8) and
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(5.18), we have that

E
[(
xk − x̂n

k|k−1

)2]
= E

[(
xk − E(xk) + E(x̂n

k|k−1)− x̂n
k|k−1

)2]
= E

[
(xk − E(xk))

2]+ E
[(
x̂n
k|k−1 − E(x̂n

k|k−1)
)2]

+ 2E
[
(xk − E(xk))

(
x̂n
k|k−1 − E(x̂n

k|k−1)
)]

< L∆ (5.20)

Then, in the asymptotic case as k → ∞, since xk ∼ N (0, Q/(1− F )2) and E(x̂n
k|k−1) =

E(xk), we have the variance of x̂n
k|k−1 as

Var
(
x̂n
k|k−1

)
= E

[(
x̂n
k|k−1 − E(x̂n

k|k−1)
)2]

< L∆− E
[
(xk − E(xk))

2]− 2E
(
xkx̂

n
k|k−1

)
= L∆− Q

(1− F )2
− 2E

(
xkx̂

n
k|k−1

)
≤ L∆− Q

(1− F )2
, (5.21)

where the last inequality is due to the fact E
(
xkx̂

n
k|k−1

)
≥ 0, which is proved in

Appendix 5.4.2.

According to the Chebyshev’s inequality, in the asymptotic case as k → ∞ with

E(x̂n
k|k−1) = 0, we have

P
(∣∣x̂n

k|k−1

∣∣ ≥ L∆
)
≤

Var
(
x̂n
k|k−1

)
(L∆)2

<
L∆− Q

(1−F )2

(L∆)2
, (5.22)

where the last inequality is from (5.21).
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By combining (5.17), (5.18), and (5.22), as k → ∞, we conclude that

P n,l

sat,k <
2L∆− 2Q

(1−F )2

(L∆)2
(5.23)

We see that with a sufficiently large L∆, the probability of saturation P n,l

sat,k could

be maintained at a small value, and P n,l

sat,k → 0, as L∆ → ∞.

5.4.2 Proof of E
(
xkx̂

n
k|k−1

)
≥ 0 in (5.21)

In the case of n→
k ̸= n, recalling (4.6) and (4.7), we have

x̂n
k+1|k = Fq

(
x̂
n→
k

k|k−1

)
+Kn

k

[
Fynk − FCnq

(
x̂
n→
k

k|k−1

)]
. (5.24)

Since ynk = Cnxk + vnk , we have

Fynk = CnFxk + Fvnk . (5.25)

By plugging (5.25) into (5.24), we obtain

x̂n
k+1|k = Fq

(
x̂
n→
k

k|k−1

)
+Kn

k

[
CnFxk + Fvnk − FCnq

(
x̂
n→
k

k|k−1

)]
.

= FRn

[
C2

nq
(
P̂

n→
k

k|k−1

)
+Rn

]−1

q
(
x̂
n→
k

k|k−1

)
+Kn

k [CnFxk + Fvnk ] , (5.26)

where the last equality is due to the definition of Kn
k in (4.14). In the sequel, we

write FRn

[
C2

nq
(
P̂

n→
k

k|k−1

)
+Rn

]−1

as K̃n
k .
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Then,

E
(
x̂n
k+1|kxk+1

)
= K̃n

kE
(
q
(
x̂
n→
k

k|k−1

)
xk+1

)
+Kn

kCnFE[xkxk+1]

= K̃n
kE

(
q
(
x̂
n→
k

k|k−1

)
(Fxk + wk+1)

)
+Kn

kCnFE[xk(Fxk + wk+1)]

= K̃n
kFE

(
q
(
x̂
n→
k

k|k−1

)
xk

)
+Kn

kCnF
2E[x2

k]

= K̃n
kFE

[(
x̂
n→
k

k|k−1 + e+ v
)
xk

]
+Kn

kCnF
2E[x2

k]

= K̃n
kFE

(
x̂
n→
k

k|k−1xk

)
+Kn

kCnF
2E[x2

k], (5.27)

where we have the non-negative factors of K̃n
kF = F 2Rn

[
C2

nq
(
P̂

n→
k

k|k−1

)
+Rn

]−1

,

Kn
kCn = C2

nq
(
P̂

n→
k

k|k−1

) [
C2

nq
(
P̂

n→
k

k|k−1

)
+Rn

]−1

, and E[x2
k].

In the case of n→
k = n, recalling (4.17), we have

x̂n
k+1|k = Fx̂n

k|k−1 + FKn
k

(
ynk − Cnx̂

n
k|k−1

)
. (5.28)

By plugging (5.25) into (5.28), we obtain

x̂n
k+1|k = Fx̂n

k|k−1 +Kn
k

(
CnFxk + Fvnk − FCnx̂

n
k|k−1

)
.

= FRn

(
C2

nP̂
n
k|k−1 +Rn

)−1

x̂n
k|k−1

+Kn
k (CnFxk + Fvnk ) , (5.29)

where the last equality is due to the definition of Kn
k in (4.19). In the sequel, we
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write FRn

(
C2

nP̂
n
k|k−1 +Rn

)−1

as K̃n
k . Then,

E
(
x̂n
k+1|kxk+1

)
= K̃n

kE
(
x̂n
k|k−1

)
xk+1 +Kn

kCnFE[xkxk+1]

= K̃n
kE

(
x̂n
k|k−1(Fxk + wk+1)

)
+Kn

kCnFE[xk(Fxk + wk+1)]

= K̃n
kFE

(
x̂n
k|k−1xk

)
+Kn

kCnF
2E[x2

k], (5.30)

in which K̃n
kF = F 2Rn

(
C2

nP̂
n
k|k−1 +Rn

)−1

, Kn
kCn = C2

nP̂
n
k|k−1

[
C2

nP̂
n
k|k−1 +Rn

]−1

and E[x2
k] are non-negative.

Considering (5.27) and (5.30), we have that, in either case of n→
k ̸= n or n→

k = n,

in order to prove E
(
x̂n
k+1|kxk+1

)
≥ 0, we only need to show E

(
x̂
n→
k

k|k−1xk

)
≥ 0. To

this end, by following the iteration (5.30), it suffices to prove E
(
x̂n
0|−1x0

)
≥ 0, which

is established as follows. Since the initial state x0∼(x̂0|−1, P̂0|−1), for each n, we have

E
(
x̂0|−1x0

)
= x̂2

0|−1 ≥ 0. (5.31)

Thus, according to (5.27) or (5.30), recursively we have that E
(
x̂n
k+1|kxk+1

)
≥ 0.
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6. DISTRIBUTED BAYESIAN QUICKEST CHANGE DETECTION

In this chapter, we turn to the distributed detection problem and propose a

distributed Bayesian quickest change detection algorithm for sensor networks, based

on a random gossip inter-sensor communication structure. Without a control or

fusion center, each sensor executes its local change detection procedure in a parallel

and distributed fashion, interacting with its neighbor sensors via random inter-sensor

communications to propagate information. By modeling the information propagation

dynamics in the network as a Markov process, two-layer large deviation analysis is

presented to analyze the performance of the proposed algorithm.

6.1 System Setup

Consider a network with N nodes. Assume that a change happens at time λ = k.

Then conditioned on λ = k, independent and identically distributed (i.i.d.) obser-

vations X i
1, · · · , X i

k−1 at sensor i follow a distribution with density function f i
0(x);

observations X i
k, X

i
k+1 · · · follow another distribution with density function f i

1(x).

We assume that observations at different sensors are independent of each other and

the various densities are absolutely continuous with respect to the Lebesgue measure.

Denote Xi
n = [X i

1, · · · , X i
n] as observations up to time n at node i. Let Pk be the

probability measure of Xi
n when the change occurs at time k, and Ek be the cor-

responding expectation operator. We need to design a sequential on-line detection

algorithm (with a stopping criterion) over the observation sequence to detect the

change.

Consider a Bayesian setup, and assume the prior distribution for the change-point

time λ as

πk = P(λ = k).
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Let Pπ denote the probability measure, defined as Pπ(·) =
∑∞

k=1 πkPk(·), and let Eπ

denote the expectation operator with respect to the measure Pπ.

The change detection problem can be converted to the hypothesis testing problem

with hypotheses “H0 : λ > n” and “H1 : λ ≤ n”, i.e., to sequentially decide which

hypothesis is true at each time n. If H0 is decided, it indicates that the change hasn’t

happened; if H1 is decided, it claims that the change has happened.

6.1.1 Centralized Scheme

First we discuss the centralized change detection algorithm, which means that

observations from all sensors are available at a control center, where the detection

algorithm is performed. Denote Xn = [X1
n, · · · ,XN

n ] as observations up to time n

from all sensors; denote the likelihood ratio for “H1 : λ ≤ n” vs. “H0 : λ > n”

averaged over the change point (see [66]) as:

Λn =
P(Xn|λ ≤ n)P(λ ≤ n)

P(Xn|λ > n)P(λ > n)

=

∑n
k=1

[
πk

∏N
i=1

∏n
j=k f

i
1(X

i
j)
∏k−1

j=1 f
i
0(X

i
j)
]

∑∞
k=n+1 πk

∏N
i=1

∏n
j=1 f

i
0(X

i
j)

. (6.1)

Assume the prior distribution is geometric [52], i.e.,

πk = ρ(1− ρ)k−1, with ρ in (0, 1).

Then, we have

Λn =
1

(1− ρ)n

n∑
k=1

πk

n∏
j=k

N∏
i=1

f i
1(X

i
j)

f i
0(X

i
j)
. (6.2)
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We further have the following recursive form as

Λn =
1

1− ρ
(Λn−1 + ρ)

N∏
i=1

f i
1(X

i
n)

f i
0(X

i
n)
, (6.3)

with the initial state Λ0 = 0. Taking logarithms on both sides, we have

log Λn = log
1

1− ρ
+ log(Λn−1 + ρ) +

N∑
i=1

log
f i
1(X

i
n)

f i
0(X

i
n)
. (6.4)

Let FX
n = σ(Xn) be the σ−algebra generated by the observations Xn, and we

denote

pn = P{λ ≤ n|FX
n } (6.5)

as the posterior probability that the change has occurred before time n. It follows

that Λn = pn/(1− pn).

We intend to detect the change as soon as possible, with a constraint on the de-

tection error. Thus, the change detection problem can be formulated as the following

optimization problem over certain decision rules:

inf
τ∈∆(α)

ADD(τ)

s. t. ∆(α) = {τ : PFA(τ) ≤ α}, (6.6)

where the Averaged Detection Delay (ADD) is

ADD(τ) = Eπ(τ − λ|τ ≥ λ),
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the Probability of False Alarm (PFA) is

PFA(τ) = Pπ(τ < λ) =
∞∑
k=1

πkPk(τ < k),

with Eπ and Pπ defined at the beginning of this section, and α the upper limit of

PFA.

The optimal solution to this problem is given by the Shiryaev test (see [58, 59]),

where the detection strategy corresponds to claiming a change when the likelihood

ratio Λn exceeds a threshold, i.e., the optimal stopping time τ ∗ is

τ ∗(A) = inf{n ≥ 1 : Λn ≥ A}, (6.7)

where A is chosen such that PFA(τ ∗(A)) = α. It is difficult to set a threshold A

exactly matching the above condition. We could set A = (1−α)/α guaranteeing that

PFA(τ ∗(A)) ≤ α, which is due to the fact that Pπ(τ ∗(A) < λ) = Eπ
(
1− pτ∗(A)

)
and

1−pτ∗(A) ≤ 1/(1+A) with pτ∗(A) defined in (6.5), such that PFA(τ ∗(A)) ≤ 1/(1+A).

Therefore, setting A = (1− α)/α guarantees PFA(τ ∗(A)) ≤ α [66].

6.1.2 Isolated Scheme

If there is no control center and each sensor implements the local change de-

tection algorithm purely based on its own observations, the log-likelihood ratio for

hypotheses “H0 : λ ≤ n” vs. “H1 : λ > n” of sensor i at time n is derived as

log Λi
n = log

1

1− ρ
+ log(Λi

n−1 + ρ) + log
f i
1(X

i
n)

f i
0(X

i
n)
, (6.8)

with the initial state Λi
0 = 0.

Then, to solve the optimization problem in (6.6) at sensor i, the Shiryaev test
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with test statistic in (6.8) is the optimal solution [58, 59], with the optimal stopping

time τ i
∗
at sensor i as

τ i
∗
(A) = inf{n ≥ 1 : Λi

n ≥ A}, (6.9)

where A is chosen such that PFA(τ i
∗
(A)) = α. Since this detection strategy is

exclusively based on local observations at each sensor, it is called the isolated scheme.

Intuitively, the larger the difference between densities f i
1(x) and f i

0(x) is, the

faster the change can be detected. To quantify the difference between densities f i
1(x)

and f i
0(x), the Kullback-Leibler information number is defined as

D(f i
1, f

i
0) =

∫
log

{
f i
1(x)

f i
0(x)

}
f i
1(x)dx, (6.10)

which is also called divergence or KL distance between densities f i
1(x) and f i

0(x). We

assume a mild condition that 0 < D(f i
1, f

i
0) < ∞ and 0 < D(f i

0, f
i
1) < ∞, for each i.

In the sequel, we will show that the Kullback-Leibler information number is a

crucial factor in analyzing the performance of the change detection algorithms.

6.2 Large Deviation Analysis for Centralized and Isolated Algorithms

Large deviation studies the asymptotic behavior of a rare event. Generally, for a

rare event satisfying the large deviation principle, the probability of this rare event

occurring decays to zero at an exponentially fast rate in the asymptotic sense over

certain quantity. In this section, we analyze the performance of the centralized

algorithm, by quantifying the relation between the conditional ADD and the PFA

via large deviation analysis, showing that the event of false alarm can be considered

as a rare event and the corresponding PFA decays to zero exponentially fast, when

the conditional ADD increases. The results in this section will set the background

for analyzing the distributed case in the next section.
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Since ADD might be difficult to characterize, following [66], we instead analyze

the conditional ADD (CADD). The CADD is defined as CADDk(τ) = Ek(τ − k|τ ≥

k), k = 1, 2, · · · . The relation between ADD and CADD is described as follows:

ADD(τ) = Eπ(τ − λ|τ ≥ λ)

=

∑∞
k=1 πkPk(τ ≥ k)Ek(τ − k|τ ≥ k)

Pπ{τ ≥ λ}

=

∑∞
k=1 πkPk(τ ≥ k)CADDk(τ)

Pπ{τ ≥ λ}
. (6.11)

According to the optimal stopping rule (6.7) and the test statistic (6.3), we find

CADD1(τ
∗) ≥ CADDk(τ

∗), for k ≥ 2, which is explained as follows. For k = 1

(which means that the change happens at time 1), by investigating (6.3), Λ1 is

updated based on the initial state Λ0 = 0. For k ≥ 2, by investigating (6.3), Λk

is updated based on Λk−1, where 0 ≤ Λk−1 < A according to the optimal stopping

rule (6.7) and the condition τ ∗ ≥ k. Thus, we have Λk−1 ≥ Λ0. According to the

optimal stopping rule (6.7), the spent time of crossing the threshold after the change

happens (detection delay) in the case of k ≥ 2 is less than that in the case of k = 1 on

average. Therefore, we have CADD1(τ
∗) ≥ CADDk(τ

∗). Additionally, the difference

between CADD1(τ
∗) and CADDk(τ

∗) could be treated as a constant for large A,

which approximately equals E∞(log Λk−1), k ≥ 2 [66]. Therefore, in the sequel, we

focus on the use of CADD1(τ
∗), which could be also considered as the worst-case

study.

The relation between CADD1(τ
∗) and PFA(τ ∗), for the centralized scheme, is

presented in the following theorem.

Theorem 6.2.1 The probability of false alarm (PFA(τ ∗)), with the optimal stopping

rule (6.7), satisfies the large deviation principle, in the asymptotic sense with respect
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to the increasing conditional ADD (CADD1(τ
∗)), i.e.,

lim
CADD1(τ∗)→∞

1

CADD1(τ ∗)
log[PFA(τ ∗)]

= −(D + | log(1− ρ)|), (6.12)

where D is the sum of the Kullback-Leibler information numbers across all sensors,

i.e., D =
∑N

i=1D(f i
1, f

i
0), and D + | log(1 − ρ)| is the large deviation decay rate,

quantifying how fast the probability of false alarm decays to zero over the increasing

conditional ADD.

Proof 14 Recall Theorem 5 in [66], which establishes the following results:

PFA(τ ∗) =
ζ(ρ,D)

A
(1 + o(1)), as A → ∞; (6.13)

E1(τ
∗) =

1

D + | log(1− ρ)|

[
log

A

ρ
− ξ(ρ,D)

]
+ o(1),

as A → ∞, (6.14)

where D =
∑N

i=1D(f i
1, f

i
0), and both ζ(ρ,D) and ξ(ρ,D) are functions of ρ and D.

Since ρ and D are constants once the system parameters are set, ζ(ρ,D) and ξ(ρ,D)

are also system constants.

Since CADD1(τ
∗) = E1(τ

∗− 1) = E1(τ
∗)− 1, by combining (6.13) and (6.14), we

have

log
PFA(τ ∗)ρ

ζ(ρ,D)(1 + o(1))
= −CADD1(τ

∗)(D + | log(1− ρ)|)

− ξ(ρ,D) + (o(1)− 1)(D + | log(1− ρ)|). (6.15)

Then, after dividing the left-hand and right-hand sides of (6.15) by CADD1(τ
∗) and
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taking the limit as CADD1(τ
∗) → ∞, we have

lim
CADD1(τ∗)→∞

1

CADD1(τ ∗)
log PFA(τ ∗)

= −(D + | log(1− ρ)|). (6.16)

The above theorem quantifies the tradeoff between two performance metrics: PFA

and CADD1, in the defined change detection problems, i.e., as CADD1 increases, PFA

decays to zero exponentially fast and the decay rate is D + | log(1− ρ)|.

For the isolated scheme, at each node i, the relation between PFA(τ i
∗
) and

CADD1(τ
i∗) has a similar format to that in the centralized case shown in Theo-

rem 6.2.1. We give the following corollary.

Corollary 6.2.2 The probability of false alarm (PFA(τ i
∗
)), with the optimal stopping

rule (6.9), satisfies the large deviation principle, in the asymptotic sense with respect

to the increasing conditional ADD (CADD1(τ
i∗)), i.e.,

lim
CADD1(τ i

∗)→∞

1

CADD1(τ i
∗)

log[PFA(τ i
∗
)]

= −(D(f i
1, f

i
0) + | log(1− ρ)|), (6.17)

which implies that the large deviation decay rate of the PFA isD(f i
1, f

i
0)+| log(1−ρ)|.

Theorem 6.2.1 and Corollary 6.2.2 imply that the Kullback-Leibler information

number is a crucial factor that determines the performance of change detection al-

gorithms. Specifically, Corollary 6.2.2 shows that, for different sensors with different

pairs of densities f i
1(x) and f i

0(x), the sensor associated with a density pair bear-

ing a larger Kullback-Leibler information number asymptotically leads to a smaller

PFA, under the same CADD performance. Compared with the isolated scheme,
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Theorem 6.2.1 shows that, in the centralized scheme, the sum of Kullback-Leibler

information numbers D is used to quantify the relation between PFA and CADD,

which can be intuitively explained as follows.

In the next section, we propose a distributed change detection scheme and analyze

its performance. Due to the information propagation among sensors, we show that

the distributed scheme will outperform the isolated one, and the outperforming is

reflected by the averaged partial sum over individual Kullback-Leibler information

numbers.

6.3 Distributed Change Detection Scheme

In this section, a random gossip based distributed change detection algorithm is

first introduced. Then, we model the information propagation in this distributed

scheme as a Markov process. Finally, two-layer large deviation analysis is presented

to analyze the performance of the proposed distributed algorithm.

First, we interpret the network as a non-directed graph G = (V, E), where V is

the set of nodes with |V| = N and E is the set of edges. If node i is connected to

node j, then we have that edge (i, j) ∈ E . The connection in graph G is represented

by the following N ×N symmetric adjacency matrix A with each element Aij as:

Aij =

 1, (i, j) ∈ E or i = j,

0, otherwise.
(6.18)

We assume that the network is connected, i.e., each node has a path to any other

node.

We propose a random gossip based distributed change detection algorithm, where

a random gossip algorithm, as the inter-sensor communication structure, is used to

propagate information among sensors within the neighborhood.
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Communication among sensors is constrained by factors such as proximity, trans-

mitting power, and receiving capabilities. We model the communication structure in

terms of the non-directed graph G = (V, E), which is defined at the beginning of this

section. If node i can communicate with node j, there is an edge existing between i

and j, i.e., the set of edges E contains the edge (i, j). We assume that the diagonal

elements in adjacency matrix A are identically 1, which indicates that a node can

always communicate with itself. The set E is the maximal set of allowable commu-

nication links in the network at any time; however, at a particular instant, only a

fraction of the allowable communication links are active, for example, to avoid strong

interference among communications. The exact communication protocol is not that

important for the theoretical analysis, as long as the connectivity of network is satis-

fied. For definiteness, we assume the following generic communication model, which

subsumes the widely used gossip protocol for real-time embedded architectures [6]

and the graph matching based communication protocols for internet architectures

[43]. Define the set M of binary symmetric N ×N matrices as follows:

M =
{
A|1TA = 1T , A1 = 1, A ≤ A

}
(6.19)

where A ≤ A is interpreted as component-wise. In other words, M is the set

of adjacency matrices, where each node is incident to exactly one edge, which is

included in the edge set E . Let D denote a probability distribution on the space

M. We define a sequence of time-varying matrices A(m), m = 1, 2, · · · , as an

independent and identically distributed sequence in M with distribution D. Define

the averaged matrix Ā as

Ā =

∫
M

AdD(A). (6.20)
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According to the definition of M in (6.19), Ā is a symmetric stochastic matrix.

We assume Ā to be irreducible and aperiodic. This assumption depends on the allow-

able edges E and the distribution D. Such a distribution D making this assumption

valid always exists if the graph (V , E) is connected, e.g., the uniform distribution. In

addition, Ā could be interpreted as the transition matrix of a Markov chain, which

we will discuss later.

Assume that the sampling time interval for taking observations is ∆, within which

there are M rounds of inter-sensor communications, where M is a Poisson random

variable with mean γ [6]. At the m-th (m ∈ {1, · · · ,M}) round, a node randomly

selects another node from its neighborhood to construct a two-way communication

pair to exchange the observations between them. At each sampling time interval,

this communication structure is modeled by the sequence of matrices A(m), m =

1, 2, · · · ,M , i.e., the establishment of a communication link between node i and

node j indicates that nodes i and j are neighbors with respect to the time varying

adjacency matrix A(m). Note that there may exist multiple communication links or

pairs simultaneously in the network, but only one communication link is associated

with one given node in each round, which is also implied by the mathematical model

in (6.19).

Now we model the communication link formation process from the perspective

of Markov process. To this end, the communication link process governed by the

time varying adjacency matrix sequence {A(m)} can be represented by N particles

traveling on the graph [37]. We denote the state of the i-th particle as zi(m), where

zi(m) indicates the index of node that the i-th particle travels to at time m, with

zi(m) ∈ {1, · · · , N}. The evolution of the i-th particle is given as follows:

zi(m) = [zi(m− 1)]→m , zi(0) = i, (6.21)
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where the notation [i]→m denotes the neighbor of node i at time m with respect to

the adjacency matrix A(m), i.e., a communication link is established between i→m

and i at time m. Thus, the travelling process of the i-th particle can be viewed as

originating from node i initially and then traveling on the graph according to the

link formation process {A(m)} (possibly changing its location at each step). For

each i, the process {zi(m)} is a Markov chain on the state space {1, · · · , N} with

the transition probability matrix Ā [37].

After M rounds of inter-sensor communications, each node accumulates some

observations from other nodes, with which the local test statistic at each node is

updated. Denote Oi
n as the set of nodes whose observations are available at node i

after inter-sensor communications at the end of the observation time period n. We

will describe the accumulation process to obtain Oi
n later. Then, the distributed test

statistic Λi
n,D is updated as

Λi
n,D =

1

1− ρ
(Λi

n−1 + ρ)
∏
j∈Oi

n

f j
1 (X

j
n)

f j
0 (X

j
n)
. (6.22)

With this test statistic updating rule, at each sensor i, the distributed change

detection scheme is executed with the following stopping time τ iD:

τ iD(A) = inf{n ≥ 1 : Λi
n,D ≥ A}, (6.23)

where A is chosen as A = (1− α)/α such that PFA(τ iD(A)) ≤ α.

Now we describe the observation accumulation process to obtain Oi
n. Let smn =

[smn (1), · · · , smn (N)], with element smn (i) ∈ {1, · · · , N} indexing the observationX
smn (i)
n

at sensor i just after the m-th round of communication in the observation time

period n. The initial state is s0n(i) = i at each sensor i, which means that at
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the beginning of the time slot n, each sensor i only has its own observation X i
n.

When the communication starts, by following the communication model A(m), the

observations {X i
n}i∈{1,··· ,N} travel across the network in the following way:

smn = A(m)sm−1
n , 1 ≤ m ≤ M. (6.24)

During these M rounds of inter-sensor communications until the end of the time

period n, each sensor stores observations exchanged from other sensors. Then, at

the end of the time period n, observations from other sensors are accumulated at

sensor i, and the set of sensors whose observations are available at sensor i is denoted

by

Oi
n =

M∪
m=0

{smn (i)}. (6.25)

This observation accumulation process terminates at the end of the time period

n. Then, a similar observation accumulation process repeats during the time period

n + 1, which is independent of the previous process. Therefore, the sequence {Oi
n},

as the set denoting observation indices which are available at sensor i at the end of

the n-th period, is an i.i.d. process.

To better describe our work in the sequel, we introduce some notations here. Let

Ψ denote the power set of node indices {1, · · · , N}, where elements of Ψ are indexed

by ν, with ν ∈ {0, 1, · · · , 2N − 1}. We use Ψ0 to denote the null set and Ψ2N−1 to

denote the whole set of node indices. For technical convenience, we interpret sensors

in the set Ψν indexed by ν to be arranged in an ascending order with j1 denoting the

first one and j|Ψν | denoting the last one, i.e., Ψν = {j1, · · · , j|Ψν |}. Therefore, the set

Oi
n, denoting nodes whose observations are available at node i after the observation

accumulation process, is a random variable taking values from Ψ. We denote the
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following probability as

Pr(Oi
n = Ψν) = qin(ν), ν ∈ {0, 1, · · · , 2N − 1}. (6.26)

6.4 First-layer Large Deviation Analysis

To perform large deviation analysis, we first need to interpret the stopping time

τ iD(A) as a form of random walk crossing a threshold plus a nonlinear term [66]. To

this end, the stopping time τ iD(A) could be rewritten as:

τ iD(A) = inf {n ≥ 1 : Wn(ρ) + ln ≥ log(A/ρ)} , (6.27)

where Wn(ρ) = Zn + n| log(1− ρ)| is a random walk with

Zn =
n∑

k=1

∑
j∈Oi

k

log
f j
0 (X

j
k)

f j
1 (X

j
k)
, (6.28)

and

ln = log

1 +
n−1∑
k=1

(1− ρ)k
k∏

s=1

∏
j∈Oi

s

f j
0 (X

j
s )

f j
1 (X

j
s )

 . (6.29)

Specifically, Wn(ρ) is a random walk with mean

E1{Wn(ρ)} = n
2N−1∑
ν=1

q̄iγ(ν)
∑
j∈Ψν

D(f j
1 , f

j
0 ) + n| log(1− ρ)|, (6.30)

where q̄iγ(ν) is the probability defined as

q̄iγ(ν) = Pr(Oi
γ = Ψν), ν ∈ {0, 1, · · · , 2N − 1}, (6.31)
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in which Oi
γ, a random variable taking values from Ψ, denotes the set of nodes whose

observations are available at node i after γ rounds of communications, and γ is the

mean value of the number of communication rounds. Then, based on the above

random walk interpretation for the stopping time, we have the following theorem

regarding the relation between PFA and CADD in the proposed distributed change

detection scheme.

Theorem 6.4.1 The probability of false alarm (PFA(τ iD)), with the stopping rule

(6.23) in the distributed change detection algorithm with the parameter γ as the av-

eraged number of inter-sensor communications, satisfies the large deviation principle

in the asymptotic sense with respect to increasing conditional ADD (CADD1(τ
i
D)),

i.e.,

lim
CADD1(τ iD)→∞

1

CADD1(τ iD)
log[PFA(τ iD)]

= −(Di
γ + | log(1− ρ)|), (6.32)

where Di
γ =

∑2N−1
ν=1 q̄iγ(ν)

∑
j∈Ψν

D(f j
1 , f

j
0 ), and Di

γ + | log(1− ρ)| is the large devia-

tion decay rate of PFA. We call Di
γ as the distributed Kullback-Leibler information

number.

Theorem 6.4.1 shows that Di
γ, whose function is similar to D in the centralized

scheme and D(f i
1, f

i
0) in the isolated scheme, is a crucial factor determining the per-

formance of the distributed change detection algorithm. The physical meaning of

Di
γ is explained as follows. Due to the observation propagation process, observa-

tions and the corresponding log-likelihood ratios from other sensors are available at

each sensor; to some extent, Di
γ can be considered as an accumulated form of these

information. In particular, Di
γ is an averaged partial sum of the Kullback-Leibler
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information numbers D(f i
1, f

i
0), i = 1, · · · , N , compared to D as the total sum. Al-

so, from the mathematical form of Di
γ, we see that D(f i

1, f
i
0) ≤ Di

γ ≤ D, and the

case of q̄iγ(1) = 1 corresponds to the lower bound Di
γ = D(f i

1, f
i
0), while the case of

q̄iγ(2
N − 1) = 1 corresponds to the upper bound Di

γ = D. Since D(f i
1, f

i
0) ≤ Di

γ ≤ D

and Di
γ determines the performance of the change detection algorithm, the above

analysis proves that the distributed algorithm outperforms the isolated algorithm,

but falls behind the centralized algorithm.

We present the proof for the above theorem as follows.

Proof 15 The proof adopts the relevant results from the nonlinear renewal theory in

[72]. To complete the proof, we first present two preliminary results, regarding the

proposed distributed algorithm, as follows:

PFA(τ iD) =
ζ(ρ,Di

γ)

A
(1 + o(1)), as A → ∞, (6.33)

E1(τ
i
D) =

1

Di
γ + | log(1− ρ)|

[
log

A

ρ
− ξ(ρ,Di

γ)

]
+ o(1),

as A → ∞, (6.34)

where Di
γ is defined below (6.32), denoting the averaged value of the Kullback-

Leibler information number in the distributed algorithm, and ζ(ρ,Di
γ) and ξ(ρ,Di

γ)

are functions of parameters ρ and Di
γ.

Note that the above results for the distributed algorithm is similar to Theorem 5

in [66], which is related to the performance of the isolated algorithm. The difference

is that the averaged partial sum of the Kullback-Leibler numbers is involved in the

distributed algorithm, due to the observation accumulation at each node. In the
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sequel, we provide the proof flow for these two results.

First, we verify (6.33). By recalling pn defined in (6.5) and Λn = pn/(1− pn), we

have

PFA(τ iD) = Eπ(1− pτ iD) = Eπ(1 + Λτ iD
)−1

= Eπ

(
1 + A

Λτ iD

A

)−1

=
1

A
Eπ

(
e−ωa

)
(1 + o(1)), A → ∞, (6.35)

where ωa = log Λτ iD
− a and a = log(A/ρ). For Eπ (e−ωa), we have

Eπ
(
e−ωa

)
= Eπ

(
e−ωa|τ iD ≥ λ

)
(1− PFA(τ iD))

+ Eπ
(
e−ωa|τ iD < λ

)
PFA(τ iD)

= Eπ
(
e−ωa|τ iD ≥ λ

)
+O(A−1), A → ∞, (6.36)

which is due to PFA(τ iD) ≤ 1/(1 + A) < 1/A.

Thus, we turn to study Eπ (e−ωa|τ iD ≥ λ) as

Eπ
(
e−ωa|τ iD ≥ λ

)
=

∞∑
k=1

Ek

(
e−ωa|τ iD ≥ k

)
P(λ = k|τ iD ≥ k). (6.37)

For any 1 ≤ k < ∞, we have

τ iD = inf {n ≥ 1 : Wn,k(ρ) + ln,k ≥ a} , (6.38)

where Wn,k(ρ) = Zn,k + (n − k + 1)| log(1 − ρ)|, n ≥ k, is a random walk with

Ek [Wn,k(ρ)] = (n−k+1)(Di
γ + | log(1−ρ)|) and ln,k is a nonlinear term. In Wn,k(ρ),
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we have

Zn,k =
n∑

t=k

∑
j∈Oi

t

log
f j
0 (X

j
t )

f j
1 (X

j
t )
. (6.39)

Then, by applying Theorem 4.1 in [72], we obtain

lim
A→∞

Ek

(
e−ωa|τ iD ≥ k

)
= ζ(ρ,Di

γ), (6.40)

where ζ(ρ,Di
γ) is a function of parameters ρ and Di

γ.

We also have

lim
A→∞

P(λ = k|τ iD ≥ k) = lim
A→∞

πkPk(τ
i
D ≥ k|λ = k)

Pπ(τ iD ≥ k)
= πk. (6.41)

Therefore, by plugging (6.40) and (6.41) into (6.37), we have

lim
A→∞

Eπ
(
e−ωa|τ iD ≥ λ

)
= ζ(ρ,Di

γ). (6.42)

Finally, by combining (6.35), (6.36), and (6.42), we prove (6.33).

The proof of (6.34) depends on Theorem 4.5 in [72]. In order to use this theorem,

the validity of the following three conditions needs to be checked:

∞∑
n=1

P1{ln ≤ −θn} < ∞, for some 0 < θ < Di
D;

max
0≤k≤n

|ln+k|, n ≥ 1, are P1 uniformly integrable;

lim
A→∞

aP1{τ iD(A) ≤ εa(Di
D + | log(1− ρ)|)−1} = 0,

for some 0 < ε < 1, where a = log(A/ρ),

150



where ln is defined in (6.29).

It is easy to check that the first condition is valid, as ln ≥ 0. For the second

condition, we have max0≤k≤n |ln+k| = l2n, since ln, n = 1, 2, · · · , are non-decreasing.

Thus, to check that the second condition is valid, we only need to show that ln,

n = 1, 2, · · · , are P1 uniformly integrable. To this end, we have that ln converges

almost surely, as n → ∞, to the following random variable

l = log

1 +
∞∑
k=1

(1− ρ)k
k∏

s=1

∏
j∈Oi

s

f j
0 (X

j
s )

f j
1 (X

j
s )

 . (6.43)

By taking the expectation, we have

E1(l) ≤ log

{
1 +

∞∑
k=1

(1− ρ)k

}
= log

1

ρ
. (6.44)

Since ln, n = 1, 2, · · · , are non-decreasing, we have ln ≤ l. Then, we have

E1(ln) < ∞, implying the uniform integrability. Therefore, the second condition is

satisfied.

Now we intend to show the validity of the third condition. According to Lemma

1 in [66], we have

P1

{
τ iD(A) ≤ 1 + (1− ϵ)La

}
≤ e−ϕϵa + β(ϵ, A), (6.45)

where La = a(Di
D + | log(1 − ρ)|)−1, ϕϵ > 0 for all 0 < ϵ < 1, and β(ϵ, A) =

P1

{
max1≤n<Kϵ,A

Zn ≥ (1 + ϵ)Di
DKϵ,A

}
, in which Kϵ,A = (1− ϵ)La and Zn is defined

in (6.28). The term e−ϕϵa on the right-hand side is o(1/a). Thus, in order to show

lim
A→∞

aP1

{
τ iD(A) ≤ 1 + (1− ϵ)La

}
= 0, (6.46)
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we only need to prove that the other term β(ϵ, A) is also o(1/a), since a = log(A/ρ).

To this end, by applying Theorem 1 of [11], for ν > 0 and r ≥ 0, we have

∞∑
n=1

P1

{
max
1≤k≤n

(Zk −Di
Dk) ≥ νn

}
≤ Cr

{
E1[(Z1 −Di

D)
+]r+1 + [E1(Z1 −Di

D)
2]r

}
, (6.47)

where Cr is a constant. When r = 1, the finiteness of the right-hand side of the

above inequality implies that the left-hand side is also finite. Thus, we obtain

P1 {max1≤k≤n(Zk −Di
Dk) ≥ νn} = o(1/n).

Then, with the fact that

β(ϵ, A) ≤ P1

{
max

1≤n<Kϵ,A

(Zn −Di
Dn) ≥ ϵDi

DKϵ,A

}
, (6.48)

we have β(ϵ, A) = o(1/a). Therefore,

lim
A→∞

aP1

{
τ iD(A) ≤ 1 + (1− ϵ)La

}
= 0. (6.49)

By taking ε = 1− ϵ, finally we have

lim
A→∞

aP1{τ iD(A) ≤ εLa}

≤ lim
A→∞

aP1

{
τ iD(A) ≤ 1 + (1− ϵ)La

}
= 0 (6.50)

Hence the third condition is satisfied. Therefore, the conditions of Theorem 4.5 in

[72] are satisfied. This theorem shows that (6.34) is valid.

Then, with (6.33) and (6.34), by taking the same proof method of Theorem 6.2.1,
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we have

lim
CADD1(τ iD)→∞

1

CADD1(τ iD)
log[PFA(τ iD)]

= −(Di
γ + | log(1− ρ)|). (6.51)

6.5 Second-layer Large Deviation Analysis

Since Di
γ has been shown as a crucial factor in the large deviation analysis of

last subsection, in this subsection, we focus on studying the behavior of Di
γ. As we

still stay in the scope of large deviation analysis as we did in the last subsection,

we call it as the second-layer large deviation analysis, where the analysis in the last

subsection is called the first-layer large deviation analysis.

As we cannot obtain the closed-form for Di
γ due to the complicated probabilities

incorporated, we discuss its asymptotic behavior when γ → ∞. To this end, we first

study the behavior of q̄iγ(ν), defined below (6.30), when γ → ∞, by employing the

concept of hitting times in Markov chains.

For each ν ̸= 2N − 1, without loss of generality, we assume that ν corresponds

to the index of the sensor subset {i1, i2, · · · , im}, with {i′1, i′2, · · · , i′N−m} as the com-

plementary subset, where m ≥ 1 due to the fact that at least its own observation is

available at each sensor. Let Tj denote the hitting time, starting from state (index of

sensor) j to hit another specific state i in the Markov chain, whose transition proba-

bility matrix is Ā defined in (6.20). From Theorem 7.26 in [19], since the transition

probability matrix Ā is irreducible, there exists constants 0 < α < 1 and 0 < L < ∞

such that P (Tj > L) ≤ α,∀j, and more generally,

P (Tj > kL) ≤ αk, k = 0, 1, 2, · · · . (6.52)
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Also, there exists a constant 0 < β < 1 such that P (Tj > L) ≥ β, ∀j, and more

generally,

P (Tj > kL) ≥ βk, k = 0, 1, 2, · · · . (6.53)

Based on the above results of hitting times in Markov chains, we first present the

following large deviation related theorem on the asymptotic behavior of
∑2N−2

v=0 q̄iγ(v),

as γ → ∞. Since ν ∈ {0, 1, · · · , 2N − 1} according to (6.31), we have
∑2N−2

v=0 q̄iγ(v) =

1− q̄iγ(2
N − 1), where q̄iγ(2

N − 1) denotes the probability that the observations from

all sensors are available at sensor i, i.e.,
∑2N−2

v=0 q̄iγ(v) is the probability of the event

that not all observations are available at sensor i.

Theorem 6.5.1 As γ → ∞, the probability
∑2N−2

v=0 q̄iγ(v) has the large deviation upper

and lower bounds as follows,

ln β

L
≤ lim

γ→∞

1

γ
ln

2N−2∑
v=0

q̄iγ(v) ≤
ln α

L
, (6.54)

where α, β and L are parameters in (6.52) and (6.53).

Since
∑2N−2

v=0 q̄iγ(v) presents the probability of the event that not all observations

are available at sensor i, Theorem 6.5.1 implies that this event is a rare event and

its probability decays exponentially fast to zero as γ → ∞.

The proof is presented as follows.

Proof 16 Recall that ν corresponds to the index of the sensor subset {i1, i2, · · · , im},

with {i′1, i′2, · · · , i′N−m} as the complementary subset, and Tj denotes the hitting time,

starting from state (index of sensor) j to hit another specific state i in the Markov
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chain. Then, the probability q̄iγ(ν) could be represented as

q̄iγ(ν) = Pr(Ti′1
> γ, · · · , Ti′N−m

> γ, Ti1 ≤ γ, · · · , Tim ≤ γ)

≤ Pr(Ti′1
> γ, · · · , Ti′N−m

> γ)

≤ min
1≤n≤N−m

Pr(Ti′n > γ). (6.55)

Thus, we have

lim
γ→∞

1

γ
ln
(
q̄iγ(ν)

)
≤ lim

γ→∞

1

γ
ln

(
min

1≤n≤N−m
P (Ti′n > γ)

)
≤ lim

γ→∞

1

γ
ln
(
α⌊γ/L⌋) = ln α

L
(6.56)

where the second inequality is due to (6.52).

For q̄iγ(ν), we also have

q̄iγ(ν) = Pr(Ti′1
> γ, · · · , Ti′N−m

> γ, Ti1 ≤ γ, · · · , Tim ≤ γ)

≥ Pr(Ti′1
> γ) · · ·Pr(Ti′N−m

> γ)

Pr(Ti1 ≤ γ) · · ·Pr(Tim ≤ γ). (6.57)

This leads to

lim
γ→∞

1

γ
ln
(
q̄iγ(ν)

)
≥ lim

γ→∞

1

γ
ln
[(
β⌈γ/L⌉)N−m (

1− α⌊γ/L⌋)m]
= (N −m)

ln β

L
(6.58)

where the first inequality is due to (6.52) and (6.53), and the last equality is derived

with 0 < α < 1.

155



By combining (6.56) and (6.58), we have

(N −m)
ln β

L
≤ lim

γ→∞

1

γ
ln
(
q̄iγ(ν)

)
≤ ln α

L
. (6.59)

Then, we obtain

lim
γ→∞

1

γ
ln

2N−2∑
v=0

q̄iγ(v)

≤ lim
γ→∞

1

γ
ln
[
(2N − 1)max

v
(q̄iγ(v))

]
= lim

γ→∞

1

γ
ln
[
max

v
(q̄iγ(v))

]
≤ ln α

L
, (6.60)

where the last inequality is due to (6.59).

We also have

lim
γ→∞

1

γ
ln

2N−2∑
v=0

q̄iγ(v)
a

≥ lim
γ→∞

1

γ
ln(q̄iγ(vp))

b
=

ln β

L
, (6.61)

where vp on the right-hand side of inequality a denotes a particular index of the

subset of sensors such that m = N − 1, i.e., vp is the index of the sensor subset

{i1, i2, · · · , iN−1}, recalling the notations defined at the beginning of this section.

Since for vp ∈ {0, 2N −2}, we have
∑2N−2

v=0 q̄iγ(v) ≥ q̄iγ(vp), implying the establishment

of inequality a. According to (6.59) and taking m = N − 1, we derive the equation

b in (6.61).
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By combining (6.60) and (6.61), we conclude that

ln β

L
≤ lim

γ→∞

1

γ
ln

2N−2∑
v=0

q̄iγ(v) ≤
ln α

L
(6.62)

Based on Theorem 6.5.1, we further have the following theorem regarding the

behavior of the distributed Kullback-Leibler information number Di
γ defined in The-

orem 6.4.1.

Theorem 6.5.2 As γ → ∞, we have the following upper and lower bounds for the

value of Di
γ,

D−
[

max
j∈{1,··· ,N}\i

D(f j
1 , f

j
0 )

]
e

ln α
L

γ ≤ Di
γ

≤ D −
[

min
j∈{1,··· ,N}\i

D(f j
1 , f

j
0 )

]
e

ln β
L

γ, (6.63)

where D(f j
1 , f

j
0 ) is the Kullback-Leibler information number defined in (6.10) and

D is the centralized Kullback-Leibler information number defined in Theorem 6.2.1,

and lnα/L and ln β/L are the upper and lower bounds derived in Theorem 6.5.1.

Theorem 6.5.2 implies that Di
γ converges to D exponentially fast, as γ → ∞. Since

Di
γ and D determine the performance of the distributed and centralized algorithms

respectively, this theorem also implies that the performance of the proposed dis-

tributed algorithm converges to that of the centralized one at an exponentially fast

rate.

Proof 17 Recall Di
γ =

∑2N−1
ν=1 q̄iγ(ν)

∑
j∈Ψν

D(f j
1 , f

j
0 ) and D =

∑N
i=1D(f i

1, f
i
0). We
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have

Di
γ

a
= q̄iγ(2

N − 1)D +
2N−2∑
ν=1

q̄iγ(ν)
∑
j∈Ψν

D(f j
1 , f

j
0 )

b
=

1−
2N−2∑
ν=1

q̄iγ(ν)

D +
2N−2∑
ν=1

q̄iγ(ν)
∑
j∈Ψν

D(f j
1 , f

j
0 ), (6.64)

where equation a is due to the fact that Ψν = {1, · · · , N} with ν = 2N−1, i.e., Ψ2N−1

denotes the set of indices of all sensors, and equation b is based on
∑2N−1

ν=1 q̄iγ(ν) = 1.

Then, from (6.64), we have

Di
γ ≤

1−
2N−2∑
ν=1

q̄iγ(ν)

D

+
2N−2∑
ν=1

q̄iγ(ν) max
1≤ν≤2N−2

∑
j∈Ψν

D(f j
1 , f

j
0 )

= D −
2N−2∑
ν=1

q̄iγ(ν) min
j∈{1,··· ,N}\i

D(f j
1 , f

j
0 ). (6.65)

We could also obtain

Di
γ ≥

1−
2N−2∑
ν=1

q̄iγ(ν)

D

+
2N−2∑
ν=1

q̄iγ(ν) min
1≤ν≤2N−2

∑
j∈Ψν

D(f j
1 , f

j
0 )

= D −
2N−2∑
ν=1

q̄iγ(ν) max
j∈{1,··· ,N}\i

D(f j
1 , f

j
0 ). (6.66)
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According to Theorem 6.5.1, as γ → ∞, we have

e
ln β
L

γ ≤
2N−2∑
v=0

q̄iγ(v) ≤ e
ln α
L

γ. (6.67)

Then, by combining (6.65), (6.66) and (6.67), as γ → ∞, we derive

D−
[

max
j∈{1,··· ,N}\i

D(f j
1 , f

j
0 )

]
e

ln α
L

γ ≤ Di
γ

≤ D −
[

min
j∈{1,··· ,N}\i

D(f j
1 , f

j
0 )

]
e

ln β
L

γ (6.68)

6.6 Simulation Results

In this section, we simulate the proposed distributed algorithm with a network

of 5 nodes taking observations. We consider a Bayesian setup, and set the prior

distribution of the change-point time as a geometric distribution with parameter

ρ = 0.1. Before the change happens, we consider that the observation at each node

follows a Gaussian distribution N(0, 1); after the change happens, the observation

at node i, i = 1, · · · , 5, turns to follow another Gaussian distribution N(0.1× i, 1).

Note that here we consider a setup that observations at different nodes have different

post-change distributions, which is to mimic the more general situation that different

nodes could suffer different levels of impact from the same physical change. For

example, certain physical event, such as the leakage of chemical gas or the abrupt

increasing of temperature, would lead to different degrees of impacts in different

nodes, due to their various locations. The nodes near the origin of the physical event

could suffer from a more serious influence, which is reflected by a larger mean in

the post-distribution; the nodes faraway the origin could suffer from a less serious

influence, which is reflected by a smaller mean in the post-distribution.
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In Fig. 6.1, we show the simulated and analytical results corresponding to the first-

layer large deviation analysis, and also compare the performance of the distributed

scheme versus the centralized and isolated ones. In the simulation, we set γ as 6,

recalling that γ is the mean value for number of communication rounds within each

sampling time period. In Fig. 6.1, the dashed curves denote the simulated decay

rate, and the solid lines present the analytical decay rates in Theorem 6.2.1 for the

centralized scheme, Corollary 6.2.2 for the isolated scheme, and Theorem 6.4.1 for

the distributed scheme, respectively. A higher decay rate implies a lower PFA under

the same conditional ADD, which means that the performance is better. Therefore,

from the simulation results of the decay rates, we see that the the distributed scheme

outperforms the isolated one, but performs worse than the centralized one, which

conforms to the analytical result from Theorem 6.4.1.

In Fig. 6.2, we show the simulation results of the value 1
γ
ln
∑2N−2

v=0 q̄iγ(v), denoting

the decay rate of the rare event that not all observations are available at sensor i, as

the parameter γ increases, which is the second-layer large deviation analysis shown

in Theorem 6.5.1. We also present the large deviation lower and upper bounds in

Fig. 6.2, from which we see that the simulated decay rate locates between the large

deviation lower and upper bounds, and the bounds are relatively tight, which verifies

the analytical result in Theorem 6.5.1. Here we also present the lower bound ln β/L

and the upper bound lnα/L of Theorem 6.5.1, which are shown in Fig. 6.2. Recall

that Tj denotes the hitting time, starting from state (index of sensor) j to hit another

specific state i in the Markov chain with the transition probability matrix Ā. Then

we have

P (Tj > L) =
∑

i1,··· ,iL ̸=i

Āji1Āi1i2Āi2i3 · · · ĀiL−1iL . (6.69)

Recall that we intend to find α such that P (Tj > L) ≤ α, ∀j. Thus, we can set
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α = maxj P (Tj > L). In order to find β such that P (Tj > L) ≥ β, ∀j, we can set

β = minj P (Tj > L). Then, we are ready to calculate lnα/L and ln β/L. To this

end, the selection of L is a critical step, as both α and β are calculated based on

the selection of L. Here we show the calculation of lnα/L and ln β/L with different

L values in Fig. 6.3. From Fig. 6.3, we see a very interesting phenomenon that

these two bounds look converging as L increases, although here we will not provide

the mathematical proof of this result. This observation could imply some potential

properties for hitting time in Markov chains. The further exploration with analytical

analysis based on this observation will be left for our future work. Note that the

upper and lower bounds in Fig. 6.2 are set as the values calculated with L = 15.

In Fig. 6.4, we show the simulation results for the distributed Kullback-Leibler

information Di
γ, the value of the centralized Kullback-Leibler information D, and

the calculation results for the upper and lower bounds presented in Theorem 6.5.2.

From Fig. 6.4, we see that the upper bound is a very tight bound, while the lower

bound is relatively looser. However, the range of y-axis in this figure is very small

from 0.3765 to 0.3810; so both the lower and upper bounds are tight bounds in this

sense. We also see that the distributed Kullback-Leibler information Di
γ converges

to the centralized Kullback-Leibler information D, as γ increases, which implies that

the performance of the distributed change detection scheme converges to that of the

centralized one, since Di
γ and D determine the performance of the distributed and

centralized schemes, respectively.
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Figure 6.1: First-layer large deviation analysis: comparison of decay rates in dis-
tributed, centralized, and isolated schemes with simulation (dash curve) vs. analyt-
ical results (solid line).
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Figure 6.2: Second-layer large deviation analysis in Theorem 6.5.1: simulated decay
rate (dash curve) of the probability of the rare event that not all observations are
available at a sensor, and the corresponding large deviation upper and lower bounds
(solid lines)
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Theorem 6.5.1 with varying L.

164



60 70 80 90 100 110

0.377

0.3775

0.378

0.3785

0.379

0.3795

0.38

0.3805

0.381

γ

T
he

 v
al

ue
 o

f d
is

tr
ib

ut
ed

 K
ul

lb
ac

k−
Le

ib
le

r 
in

fo
rm

at
io

n

Figure 6.4: Simulated distributed Kullback-Leibler information (dash curve), central-
ized Kullback-Leibler information (dash-dot line) and the corresponding analytical
upper and lower bounds (solid curve) in Theorem 6.5.2.
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7. CONCLUSIONS

This thesis has studied the distributed signal processing methods in large scale

and complex systems, by proposing a distributed Kalman filtering scheme to estimate

the high-dimension states and a distributed quickest change detection scheme to de-

tect the change happening. A random gossip based scheme called Modified Gossip

Interactive Kalman filtering (M-GIKF) has been first studied, where the inter-sensor

communications among neighbor sensors are used to exchange information (estimates

and error covariances) among sensors. It is shown that the conditional estimation

error covariance sequence at each sensor evolves as a random Riccati equation (RRE)

with Markov modulated switching. With the idea of the random dynamic system

(RDS), it is proven that the network achieves weak consensus, i.e., the conditional

estimation error covariance at a randomly selected sensor converges weakly (in dis-

tribution) to a unique invariant measure. Further, it is proved that as the number of

communications goes to infinity, this invariant measure has the Large Deviation (LD)

upper and lower bounds, implying that this measure converges exponentially fast (in

probability) to the Dirac measure δP ∗ , where P ∗ is the stable error covariance in the

centralized Kalman filtering setup. The LD results have answered a fundamental

question on how to quantify the rate at which the distributed scheme approaches the

centralized performance as the inter-sensor communication rate increases. Moreover,

the quantization method used before communications in the proposed distributed

scheme is also investigated, which is called the dithered quantization. Although the

network consensus is sensitive to the information loss caused by the quantization, it

is shown that the network can still achieve weak consensus with the dithered quan-

tization in the case of countable infinite quantization alphabet. Then, a Bayesian
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quickest change detection scheme is proposed, where multiple communication rounds

happen during the observation sampling interval to propagate the observations. The

two-layer large deviation analysis is used to analyze the performance of the dis-

tributed scheme. The first layer analysis proves that the probability of false alarm

decays to zero exponentially fast with the increasing of the averaged detection delay.

The second-layer analysis shows that the probability of the rare event that not all

observations are available at a sensor decays to zero at an exponentially fast rate

when the number of communications increases, based on which it is shown that the

performance of the distributed algorithm converges exponentially fast to that of the

centralized one.
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