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ABSTRACT 

 

This thesis starts from the construction of a mathematical model of the multi-segment 

mooring line, based on the work-energy variational method. The equations of motion in 

both Cartesian and Lagrange local coordinate systems are derived. Meanwhile, with the 

catenary theory applied, the static equilibrium configuration of the multi-segment mooring 

line is determined. Furthermore, Galerkin’s finite element method is used to generate 

mass, stiffness and damping coefficient matrices of a single mooring line. The coefficient 

matrices in the Lagrange local coordinate system are shown to be diagonal, which means 

the motions in the three directions of this coordinate system are uncoupled. With this 

information, the eigenvalue problem is solved to obtain the natural frequencies and 

associated mode shapes of a mooring line in both coordinate systems. By approximating 

the mooring line as a linear system, the modal superposition approach allows 

computationally efficient modeling of dynamics in the frequency domain, including 

estimation of extreme value statistics using Rice’s theory for Gaussian processes. The 

accuracy of the modal superposition approach is demonstrated through comparison with 

results from nonlinear time domain simulations using OrcaFlex. This approximate 
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modeling approach is useful for optimizing the design of a mooring system in the 

preliminary phases of design. 
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1. INTRODUCTION

As a kind of station keeping system, mooring systems are widely used in the offshore 

industry for floating structures to maintain their positions and thus to operate safely. Due 

to environmental disturbances, the structures are allowed to move within certain allowable 

offset limits. As a consequence, the mooring systems produce corresponding restoring 

forces or moments to keep the floating structures over specified locations. Different types 

of mooring systems are designed considering the types of floating structures, the water 

depth and the environmental conditions. 

The external environmental forces on floating structures include wave and wind 

forces, etc. Obviously, those forces will lead to motion of the floating structures. Since the 

top end of the mooring line is attached to the structure, it will be in motion as well. 

Meanwhile, the bottom end is usually treated as a fixed point. Inevitably, the mooring line 

will vibrate to some degree. Hence, designers of mooring systems should pay sufficient 

attention to the dynamics of mooring lines. 

Vibrations of a mooring line can lead to large fluctuations of mooring line top tension, 

while the mooring line top tension is a critical point of the mooring system design. It 
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should be considered carefully to guarantee that allowable tension levels are not exceeded. 

Therefore, in order to develop a fast design tool for the mooring system design, an 

investigation of the vibration of a single mooring line is needed. 

Since a mooring line is a kind of continuous system, the study of the dynamics of a 

mooring line is considered to be challenging. Due to its own submerged weight, the static 

equilibrium configuration of a mooring line is highly non-linear. Meanwhile, with external 

forces applied, the mooring line is easily displaced from the static equilibrium 

configuration. The axial stress and strain are not distributed uniformly along the mooring 

line. Accordingly, a more complicated model than a single degree of freedom system is 

needed to study the dynamics of a mooring line. 

Rather than one- or two-dimensional dynamic analysis, three-dimensional study is 

necessary to fully understand the dynamics of a mooring line. Since the excitation forces 

cannot always be in the plane of the static equilibrium configuration, vibration in the 

swinging direction can be generated.  

In contrast to a cable in air, the dynamics of a mooring line is influenced significantly 

by the surrounding water. The water has two different effects on the motion of a mooring 

line. One is hydrostatic pressure; the other is hydrodynamic force. The hydrodynamic 

force on a slender body like a mooring line can be easily modeled using Morison’s 

equation. It includes the added mass effect and hydrodynamic damping effect. The 
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hydrodynamic lift effect is neglected in this thesis, consistent with standard design practice 

for mooring lines. The added mass effect can be considered as the surrounding water being 

in motion together with the mooring line. Meanwhile, with hydrodynamic damping effect 

considered, the resonant frequencies of the mooring line will shift from the undamped 

values and a set of corresponding modal harmonic response functions can be developed 

to model the dynamics in the frequency domain. 

To study the vibration of mooring lines, an approach called modal analysis may be 

applied. This method is equivalent to solving an eigenvalue problem, which contains 

physical information of the mooring line, to obtain a set of natural frequencies and 

associated mode shapes. The results are helpful to understand the dynamics of the mooring 

line and conduct the subsequent analyses. 

Multi-segment mooring lines are extensively used to moor offshore drilling and 

production platforms in deep water. The line usually consists of both steel and fiber 

material. Steel is in the form of wire rope or chain, which is also the main component of 

traditional lines. The total weight of the all-steel mooring system increases dramatically 

as the water depth increases, as well as the manufacturing cost. As a result, it produces a 

large downward pull on the floating structure, decreasing the payload capacity and 

increasing the required buoyancy. Therefore, the all-steel mooring design is economically 

inefficient in deep water.  
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Fiber ropes have several advantages over steel for deep-water mooring systems, 

including weight savings, durability and reduced platform offset. Since the top and bottom 

parts of the mooring line are exposed to winching operations and friction with the seabed 

respectively, steel is a better material for these parts. Accordingly, multi-segment chain-

polyester-chain mooring lines are suitable in deep water. The experiences using them in 

the Gulf of Mexico, offshore Brazil and elsewhere have been favorable. 

Another consequence considering deep water depth is the large hydrostatic pressure 

applied on the bottom portion of the mooring line. Since the axial extensibility is 

considered in this thesis, the hydrostatic pressure squeezes the mooring line and thus 

increases the axial strain energy, which is known as Poisson’s effect. In deep water, large 

hydrostatic pressure contributes to the axial strain significantly. Therefore, this thesis will 

consider Poisson’s effect and estimate its degree of influence. 

Based on the catenary solution of cables, the work-energy variational method and the 

finite element method, this thesis develops three sets of codes: the first is to calculate the 

static equilibrium configuration of the mooring line; the second uses this information to 

obtain corresponding coefficient matrices and conducts modal analysis; the last performs 

extreme value analysis and estimates needed statistical properties of the mooring line top 

tension. The outcomes are sets of natural frequencies, associated mode shapes for the 

vibration of the mooring line and extremes of the mooring line top tension. With a 
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presented time series of the vessel surge motion, the time series of mooring line top tension 

or any other response of the mooring line can be obtained by modal superposition. 

Extreme value analysis of the time series of mooring line top tension can be conducted. 

Several cases will be analyzed and the results will be compared with time domain 

simulations using OrcaFlex, a commercial mooring analysis software.  

With the approach presented in this thesis, the dynamic mooring line top tension can 

be estimated accurately and quickly for the preliminary design of offshore floating systems 

based on limited information. During the preliminary design process, the overall system 

configuration and technical requirements are defined. Hull structures and risers are 

initially designed to satisfy general requirements, such as payload, air gap, offset limits, 

etc. Based on the buoyancy and payload capacity of these designs, the vertical mooring 

top tension can be estimated in order to size the mooring system. The design of the 

mooring line is influenced by variations in design parameters (vessel offset limits, anchor 

radius, length and diameter of segments, etc.). Simulations are required in order to 

estimate the extreme mooring line top tension as one aspect of determining the suitability 

of a design.  

Furthermore, the designs of hull structures, mooring systems and other components 

are coupled. Therefore, initial designs of different parts need to be adjusted several times 

in an iterative procedure in order to optimize the performance of the entire system. This 
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optimization process is an evolving route of ascendant helix requiring a set of loops, where 

design of the entire system is improved more and more. Accordingly, the estimation of 

extreme mooring line top tension needs to be conducted for different mooring system 

designs a large number of times. It can be inefficient if a single estimation is time-

consuming.  

This thesis is intended to develop an approach to improve this preliminary design 

process by accelerating the estimation of the extreme mooring line top tension. The 

approach that is going to be presented is capable of computing the extreme mooring line 

top tension in seconds, along with other useful information such as the time series of top 

tension. In contrast, current commercial mooring system software OrcaFlex takes hours 

to run a time domain simulation, then the data needs to be processed outside the software 

to estimate the extremes. Meanwhile, the present approach maintains sufficient accuracy 

compared with OrcaFlex. In conclusion, the present approach can improve the efficiency 

of the preliminary design of offshore floating systems significantly. 
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2. REVIEW OF LITERATURE 

 

The mooring line, as a kind of cable structure, has attracted the attention of many 

researchers. Correct solutions had been given for linear vibrations of uniform cables in air 

by 1820. In the first half century of 1900s, some solutions for the vibrations considering 

symmetric and asymmetric modes of the in-plane vibration were put forward. However, 

these theories assumed inextensible cables.  

Irvine (1981) presented the catenary theory for cable structures, which is useful to 

calculate the static equilibrium configuration of a mooring line. Irvine also addressed a 

linear theory of free vibration of a suspended flat-sag cable, considering material 

stretching. Triantafyllou (1984) developed a general asymptotic solution to the linear 

vibration of a taut inclined cable. Hybrid mode of the in-plane vibration was produced, 

which was a mixture of symmetric and antisymmetric shapes, with a significant effect on 

the dynamic tension. His study laid a foundation for some commonly used mooring design 

tools in the frequency domain. 

Vassalos (1996) put forward that because of hydrodynamic forces, the dynamics of 

mooring lines is quite different from that of the cable structures in air, mainly because of 

the hydrodynamic drag force. Triantafyllou (1984) also implemented the hydrodynamic 
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added mass effect for marine cables. Morison (1949) developed an equation used to model 

the hydrodynamic added mass and drag forces on an underwater slender body, well known 

as Morison’s equation. 

The governing equation of the dynamics of a mooring line is a differential equation. 

Since the mooring line is a continuous system and the configuration is highly non-linear, 

the analytical solution is difficult to obtain. To solve this differential equation numerically, 

the finite element method is a powerful tool. As a kind of finite element method, 

Galerkin’s weak form formulation is suitable to solve the equations of motion of cable 

structures. This method was well expressed by Reddy (2006). 

Garrett (1982) implemented the finite element method to conduct dynamic analysis 

of inextensible slender rods, allowing large deflections. His study includes the bending 

stiffness; thus the primary variables of the finite element method include the displacements 

and the derivative of the displacements with respect to local coordinates. Since the two 

primary variables are continuous along the entire structure, his approach worked for both 

uniform cables and beams. However, it cannot deal with multi-segment mooring lines with 

discontinuous derivatives of the displacements at the boundaries of segments.  

Henohold and Russell (1976) conducted a modal analysis of single-span cable 

structures using the finite element method. Sets of natural frequencies for several 

examples were obtained for small oscillations about the non-linear static equilibrium 
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position. Their study concerned large elastic deflections and the principle of virtual work 

was applied. The class of elements used in their study retained all geometric nonlinearities. 

Chucheepsakul and Srinil (2002) used the variational method, which is equivalent to 

the principle of virtual work, to investigate the free vibrations of three-dimensional 

extensible marine cables. The equations of motion were derived using the variational 

method and solved numerically following Garrett’s finite element method. Similarly, only 

a uniform marine cable was considered in their study. Meanwhile, hydrodynamic damping 

is not included. With modal analysis, their study presented and discussed results of the 

natural frequencies for coupled in-plane motion, associated mode shapes and the dynamic 

tension. 
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3. FORMULATION OF THE EQUATIONS OF MOTION 

 

3.1 Variation of the axial strain of the mooring line 

In the Cartesian coordinates, for an element of the mooring line with unstretched arc-

length 0ds  at the static equilibrium state, its stretched arc-length is 

  
2 2

0

2 ds x y z ds    (1) 

in which x , y  and z  represent the derivatives of x , y  and z  with respect to the 

local curvilinear coordinate along the unstretched mooring line 
0s . The static equilibrium 

state is the state where all parts of the mooring line are in static equilibrium.  

Based on the definition of Lagrangian strain, another form of the stretched arc-length 

ds  of the element at the static equilibrium state is 

 
0

(1 )ds ds    (2) 

where   is the axial strain at the static equilibrium state. From Eqs. (1) and (2), let 

2 2 2' y zs x   , then the axial strain of the element is as 

 1s     (3) 

The displaced state denotes an arbitrary configuration of the mooring line while the 

mooring line is in motion. Similarly, at the displaced state, with the displacements  ,   

and   in the Cartesian coordinates, the stretched arc-length is given by 
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2 2 2

0( ) (y ) ( )ds x z ds               (4) 

 
0

(1 )ds ds    (5) 

Combining Eqs. (4) and (5), the axial strain at the displaced state can be written as 

 
2 2 2( ) (y ) ( ) 1x z                 (6) 

    The variational form of Eq. (6) is  

 
2 2 2

( ) (y ) ( )

( ) (y ) ( )

x z

x z

     


  

            


         
  (7) 

3.2 Strain energy due to the axial deformation 

Two actions contribute to the strain energy due to the axial deformation. One is 

pulling on the mooring line due to the axial tension; the other is squeezing of the mooring 

line due to the hydrodynamic pressure (Sparks (1984)). So the total strain energy can be 

represented as 

 T PU U U    (8) 

where TU  and PU  represent the energy due to the axial tension and squeezing of the 

mooring line by the hydrostatic pressure, respectively. 

Both contributions can be expressed in the form of the axial strain as below.  

 2 P

E E


     (9) 

In Eq. (9), E  is Young’s modulus and   is Poisson’s ratio; the first term denotes 

the axial strain due to the axial tension and the second term is due to squeezing of the 

mooring line by the circumferential stress and radial stress, which are both equal to the 



12 

 

hydrostatic pressure, expressed by the Lamé’s Equations. According to Lamé’s Equations, 

the circumferential stress c  and radial stress r  for a thick cylinder are given as 

 
 

 

2 22 2

2 2 2 2 2

I O O II I O O
c

O I O I

P P R RP R P R

R R R R R



 

 
  (10) 

 
 

 

2 22 2

2 2 2 2 2

I O O II I O O
r

O I O I

P P R RP R P R

R R R R R



 

 
  (11) 

 In Eqs. (10) and (11), R  represents the radius; subscript I  and O  denote the 

inner and outer surface of the hollow cylinder, respectively. For a solid cylinder as in the 

present case (RI = 0), the circumferential stress c  and radial stress r  are equal to the 

outer pressure P . 

The hydrostatic pressure is given as ( )
P w H

P g Z z      , where 
w  is the 

density of the surrounding fluid and HZ  is the vertical coordinate of the sea surface. 

For a mooring line, the strain energy due to the axial deformation U is given as 

 
1

2 V
U dV    (12) 

In Eq. (12), dV Ads , A is the cross-section area of the mooring line, ds is the arc-

length of the element at the static equilibrium state and   is the corresponding axial 

stress. In the case of elastic deformation, the axial stress   is obtained from Eq. (13) as 

 ( 2 )PE
E


      (13) 

Therefore, another form of Eq. (12) is given as  

 2 2

0 0

1 1
(Z )

2 2

t tS S

w H
V V

P
U E dV dV EA ds g z A ds

E
              (14) 
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With an unstretched element of the mooring line, the volume is 0 0 0dV A ds , where 

0ds  is the unstretched arc-length of the element, while 0A  is the unstretched cross-

section area. For the case at the displaced state, it is obvious that dV Ads . Assuming 

that the volume of one element doesn’t change while stretching the mooring line, then 

0 0 0dV dV A ds  (15) 

Meanwhile, at the displaced state, the strain energy due to the axial deformation is 

given as 

t t0 02

0 0 0 0
0 0

1
(Z )

2

S S

w HU EA ds g z A ds      (16) 

where 
0t

S  is the total unstretched arc-length. Combining Eqs. (2), (3), (6) and (7), the 

variation of Eq. (16) is 

t0

0
0

1 ( ) (y ) ( )
(1 )

1 2

S

a b

x z
U T T ds

s

     




                 
          
   (17) 

in which 

2 2 2

2

1
y ( )

2
x z

s

     


            




(18) 

0 0(Z )a w HT EA gA z     (19) 

0 0(Z )b w HT EA gA z    (20) 

By neglecting small quantities of higher order terms, Eq. (18) reduces to 

2

yx z

s

  


      



(21) 
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Using the binomial approximation 
1

1
1 2



 


 and neglecting higher order 

terms, Eq. (17) becomes 

 
t0

2

3

2

030

2

3

( ) ( y )

(y ) ( y y y )

( ) ( y )

a b

S
a b

a b

T T
x x x x z

s s

T T
U x z ds

s s

T T
z x z z z

s s

    

     

    

  
                  

  
                    

  
                   

   (22) 

3.3 Virtual work done by the external forces 

The virtual work done by the effective weight of the submerged mooring line is 

 
t0

0
0

S

e eW w ds     (23) 

where ew  is the unit wet weight of the unstretched mooring line. 

The virtual work done by the inertia force is 

 
t0

0
0

( )
S

iW m ds         (24) 

where cw
m

g
  represents the mass per unit unstretched length of the mooring line and 

cw  is the unit weight of the unstretched mooring line in air. 

The virtual work done by the hydrodynamic forces is 

 
t0

0
0

( )
S

h x y zW F F F ds        (25) 

where xF , 
yF  and zF  are hydrodynamic forces components per unit stretched length 

in the x, y and z direction, respectively. Meanwhile, the hydrodynamic forces on a mooring 
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line can be modeled using Morison’s equation in Lagrange local coordinates p-q-r (see 

Section 3.7 for the orientation of the Lagrange local coordinates). These hydrodynamic 

forces can be expressed as 

 
0 0

1

2
p w DT w AF D C p p A C p      (26) 

 
0 0

1

2
q w DN w AF D C q q A C q      (27) 

 
0 0

1

2
r w DN w AF D C r r A C r      (28) 

in which, p , q , r  and p , q , r  are the relative velocities and accelerations of the 

mooring line and surrounding fluid in Lagrange local coordinates. DTC , DNC  and AC  

are the tangential drag, normal drag and added mass coefficient, respectively. Meanwhile, 

the corresponding forces xF , 
yF  and zF  can be obtained easily using a transform 

matrix between the Lagrange local and Cartesian coordinates.  

 In reality, the mooring line will experience hydrodynamic lift forces as well as drag 

forces. The direction of the lift force is perpendicular to the direction of the relative motion 

of mooring line and surrounding fluid. This will result in coupling between the normal 

and bi-normal motions in Lagrange local coordinates and the in-plane and swinging 

motions in Cartesian coordinates. The directions of motions and coordinate systems 

mentioned here are introduced in Section 3.7. In this thesis, the lift effect is neglected, 

consistent with standard design practice for mooring lines. 
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3.4 Euler-Poisson equations 

The virtual work-energy of the mooring line system can be expressed as 

 
e i hU W W W           (29) 

Substituting Eqs. (22) to (25) into Eq. (29); then integrating by parts from lower 

boundary zero to upper boundary 
0t

S  and considering the virtual displacements equal to 

zero at boundaries, Eq. (29) becomes 

 

2

3

2

3

2

3

( ) ( )

( ) ( )

( ) ( )

a b
x

a b
y

a b
y e

T T
x x x y x z m F

s s

T T
y x y y y z m F

s s

T T
z x z y z z m F w

s s

     

      

    

   
                     

   
                        

   
                     

t0

0
0

S

ds



 
 
 
 
 
 
 
 
 
 
 
  

  (30) 

The Euler-Poisson equations associated with the virtual displacements are given 

respectively as 

 2

3
( ) ( )a b

x

T T
x x x y x z m F

s s
    

 
                  

  (31) 

 2

3
( ) ( )a b

y

T T
y x y y y z m F

s s
    

 
                  

  (32) 

  2

3
( ) ( )a b

z e

T T
z x z y z z m F w

s s
    

 
                   

  (33) 



17 

 

3.5 Static equilibrium conditions 

By substituting the static equilibrium conditions as below 

 0                                    (34) 

and with the hydrodynamic forces set equal to zero, Eqs. (31) to (33) become 

 0a a a
e

T T T
x y z w

s s s

       
                 

   (35) 

 This Eq. (35) defines the static equilibrium configuration of the mooring line. 

3.6 Coupled equations of motion 

Combining with Eq. (35), Eqs. (31) to (33) yield the coupled equations of motion 

as below, with axm , 
aym  and azm  representing the unit added mass for each direction. 

 2

3
( )a b

dx ax

T T
x x y x z m F m

s s
                   
 

  (36) 

 2

3
( )a b

dy ay

T T
x y y y z m F m

s s
                   
 

  (37) 

 2

3
( )a b

dz az

T T
x z y z z m F m

s s
                   
 

  (38) 

Eqs. (36), (37) and (38) can be rearranged in the form of a matrix system of 

equations as 

          0M C A         (39) 

where =[ , , ]T   . The coefficient matrices are 
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  

0 0

0 0

0 0

ax

ay

az

m m

M m m

m m

 
 

 
 
  

  (40) 

  

2

3 3 3

2

3 3 3

2

3 3 3

'a b b b

b a b b

b b a b

T T x T x y T x z

s s s s

T x y T T y T y z
A

s s s s

T x z T y z T T z

s s s s

    
    

 
     

      
 

     
     

  (41) 

Matrix  C  contains the nonlinear drag components of the hydrodynamic forces. 

The linearization for these terms needs to be done. Assuming the linearization matrix is 

 L , and the transform matrix from Cartesian coordinates to Lagrange local coordinates 

is  T ,  C  can be given as 

        
1

0 0
1

0 0
2

0 0

DT

w DN

DN

C

C D T L C T

C




 
   
 
  

  (42) 

where D is the diameter of the mooring line. The form of the linearization matrix  L  is 

addressed in Section 3.9. 

Since the static equilibrium configuration of the suspended portion of a mooring line 

is lying in one plane, by choosing a proper orientation of the Cartesian coordinate system 

then y  can be zero for all parts of the mooring line. Therefore, in Cartesian coordinates 

the out-of-plane or swinging motion is uncoupled from the in-plane motion. 
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3.7 Transform between global and local coordinates 

Figure 1 shows both the Cartesian coordinates x-y-z and Lagrange local coordinates 

represented by 3 orthogonal vectors p-q-r, which are tangential, bi-normal and normal 

vector of the mooring line, respectively. The tangential and bi-normal unit vectors lie on 

the plane of the mooring line, while the normal unit vector is perpendicular to that plane. 

 

 

Figure 1. Global and local coordinates of a mooring line 

 

Transformation between the two coordinate systems can be achieved with a transform 

matrix, according to 
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  

p

T q

r







   
   

    
   
   

  (43) 

 As defined in Figure 1,   is the angle between the x axis and the plane of the 

mooring line p-q and   is the angle between the tangential unit vector p and the x-y 

plane. Accordingly, the transform matrix is given as 

  

cos cos sin sin cos

cos sin cos sin sin

sin 0 cos

T

    

    

 

  
 

 
 
  

  (44) 

where 1tan ( / )y x     and 1 2 2 0.5tan (z / ( ) )x y      . 

The transform matrix is an orthogonal matrix since its inverse is equal to its 

transpose.  

3.8 Equations of motion in Lagrange local coordinates 

The matrix form of the equations of motion in Lagrange local coordinates is given as 

          0l l l l l lM C A         (45) 

where  , ,
T

l p q r  and the coefficient matrices are given as 

        0

0

0 0

0 0

0 0

l w A

w

T

A

m

M M m A C

m A

T T

C





 
  






 

  (46) 

         0

0 0
1

0 0
2

0 0

T
DT

l w DN

DN

C

C C D L C

C

T T 

 
  
 
  

   (47) 
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       

 
0 0

0 0

0 0

a b

T a

a

l

T T

s

T
T T

s

T

A A

s

 
 


 
 

   
 
 
  

   (48) 

It is surprisingly found that the coefficient matrices in Lagrange local coordinates are 

all diagonal; thus the motions in the three directions of the Lagrange local coordinates are 

actually uncoupled. Combining the virtual work-energy expressions of the mooring line 

at both the displaced and the static equilibrium state will eliminate the work done by the 

submerged weight. Moreover, the submerged weight is the only force which is not in the 

primary directions of the Lagrange local coordinates. This result is significantly important 

since the vibration of each direction can be analyzed individually. Additionally, the 

coefficients for normal and bi-normal directions are the same. Therefore, two individual 

equations of motion can be given as follows; one is for the tangential direction and the 

other is for the normal and bi-normal direction. 

 
0 0

1
0

2
w p DTmp D L C p EA p      (49) 

  0 0

1
0

2
w A w q DN

am A C q D L
T

C q q
s

    


   (50) 

where 
pL  and 

qL  represent linearization factors in Morison’s equation for tangential 

and bi-normal directions, respectively. 

Notice that the equation of motion for the tangential direction is independent of 

Poisson’s ratio, while the equations for the normal and bi-normal direction are not. Since 

the multi-segment mooring line is widely used in deep water, where hydrostatic pressure 
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can be extremely high, the influence of the hydrostatic pressure is considered in the form 

of Poisson’s effect. It is necessary to investigate how and to which extent this effect 

influences the dynamics of the mooring line. 

3.9 Linearization of Morison’s drag with prescribed top motion spectra 

 As illustrated by Eq. (27), the Morison’ drag force can be modeled as 

 
0

1

2
q w DNF D C q q    (51) 

which is for the bi-normal direction in Lagrange local coordinates. This drag force is non-

linear. In order to implement the drag force in modal analysis in the frequency domain, it 

is necessary to linearize this force term. The linearized drag force term can be expressed 

as 

 
0

1

2
q w DN qF D C L q    (52) 

However, the drag force is applied on the entire mooring line; and the velocities of 

the different parts of the mooring line vary when the mooring line is in motion. 

Meanwhile, the velocities of all parts of the mooring line are periodic in time, which vary 

from zero to the corresponding amplitude. The linearization factor 
qL  has the dimension 

of velocity. The only given information in this thesis related to the velocity is the surge 

motion power spectrum of the vessel  xxS f . This spectrum will be provided in the 

subsequent analysis. Therefore, the linearization factor 
qL  should be dependent on this 

spectrum. In order to obtain the surge velocity spectrum of the vessel  xxS f , the 

following relationship is used: 
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    2

xx xxS f f S f   (53) 

where f  is the cyclic frequency. 

 Therefore, the zeroth spectral moment of the surge velocity spectrum 
0xm  is given 

as 

    2

0 2
0 0

x xx xx xm S f df f S f df m
 

      (54) 

 Since the direction of the surge velocity xv  is horizontal, this velocity must be 

resolved in three directions in Lagrange local coordinates.  

 The transformation of the velocities in two coordinate systems can be conducted using 

  
p x

T

q T y

r z

v v

v T v

v v

   
   

    
   
   

  (55) 

where 
pv , 

qv  and rv  are the resolved velocities in tangential, bi-normal and normal 

direction, respectively. The subscript x, y, z represent the Cartesian global coordinate 

system of the vessel, which is different from the Cartesian coordinate system utilized to 

diagonalize the coefficient matrices for a single mooring line in Section 3.6. For instance, 

in this Cartesian global coordinate system, x denotes the surge direction of the vessel. The 

transform matrix  T  is generated based on this Cartesian global coordinate system. The 

subscript T denotes the top node of the mooring line, because the transform matrix used 

here requires the angle information at the top node. 
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 With this transform matrix, the square root of the zeroth spectral moment of the surge 

velocity spectrum in these three directions can be written as 

  

0
0

0

0

0

0

p
x

T

q T

r

m m

m T

m

   
    

    
   

   

  (56) 

 The linearization factor 
qL  for the bi-normal direction is assumed to have the form: 

 
0q Lq qL C m   (57) 

The coefficient 
LqC  should have the scale of one. Because the velocities of most 

parts of the mooring line are smaller than the velocity of the top node; and the velocity of 

every node of the mooring line varies from zero to the corresponding amplitude, it is 

reasonable to select a small value for this coefficient 
LqC . Meanwhile, the linearization 

factors in the other two directions have the same form. In addition, the damping effect in 

the tangential direction usually is recognized to be the result of structural damping of the 

material (i.e. the contribution from the fluid shear stresses is assumed to be negligible). 

The coefficients in all three Lagrangian local directions 
LpC , 

LqC  and LrC  are set as 

 
2

4
Lp Lq LrC C C     (58) 

 This selection of coefficient is actually a multiplication of one 2  factor and two 

1

2
 factors. The 2  factor is needed since the significant surge velocity amplitude 
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02xS xA m . The first 
1

2
factor is used to average the velocity amplitudes of all nodes 

of the mooring line with the velocity amplitude of the top node specified. The second 
1

2

factor is introduced for averaging of the velocity of each node in a periodic cycle with the 

velocity amplitude specified. 

3.10 Static catenary solution for a multi-segment mooring line 

In order to prepare the coefficient matrices in the equations of motion for subsequent 

modal analysis, the catenary theory of cable structures (Irvine (1981)) is used to obtain the 

static equilibrium configuration of a multi-segment mooring line. The static equilibrium 

configuration is lying in one plane. The catenary equations are given as 

1 10 0
0

0

+
( ) sinh sinhA A e A A

e A A

H s H w s V V
x s

EA w H H

 
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  (60) 

where subscript A denotes the bottom of the suspended span of the mooring line segment, 

AH  is the horizontal component of tension in the span; and AV  is the vertical component 

of tension at the bottom of the span. In the case where a portion of the mooring line is 

lying on the seabed, the seabed friction is neglected and AV  is set to be zero at the 

touchdown point. 
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The multi-segment mooring line consists of several line segments. Different 

segments can have different line properties, such as material density, Young’s modulus, 

Poisson’s ratio, length, cross-section area and so on. Multi-segment mooring lines with 

different line properties are widely used in deep water, such as the chain-polyester-chain 

mooring line, which is referred as CPC line for short. The multi-segment mooring line 

will lead to discontinuity of the slope of the static equilibrium configuration at the 

boundaries between segments. Furthermore, this method allows addition of external forces 

at the boundaries between segments, such as clumped weight or the buoyancy of buoys. 

 In order to obtain the static equilibrium configuration of the multi-segment mooring 

line, the Newton-Raphson method is implemented to perform the numerical iteration 

solving Eqs. (59) and (60). Meanwhile, the extensibility of the mooring line is 

considered. With water depth, line properties, vertical mooring line top tension or anchor 

radius specified, the code will calculate where the touchdown point is in case a portion of 

the mooring line is lying on the seabed. Additionally, the code can ignore the seabed if 

needed. The outputs are top and bottom tension of each segment, stretched length of each 

segment and anchor radius if unknown. A sample input file of this code is listed in Table 

1. 
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Table 1. A sample input file of the catenary solution code 

Number of segments: 3 

Property Bottom segment Middle segment Top segment 

Length, m 300 400 300 

E, Pa 2000000 1000000 2000000 

A, 
2m  1 1 1 

Wet weight, N/m 1 1 1 

Clumped weight, N 0 0 0 

Poisson’s ratio 0.5 0.5 0.5 

Bottom coordinates, m (800, 0, 0) 

Top coordinates, m (0, 0, 500) 
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Based on this information, the complete static equilibrium configuration can be easily 

obtained using the catenary equations. Table 2 lists a sample output file.  

 

Table 2. A sample output file of the catenary solution code 

Number of segments: 3 Horizontal force, N: 544.352 

Property Bottom segment Middle segment Top segment 

Horizontal span, m 187.198 325.054 178.547 

Vertical span, m 32.488 226.679 240.833 

Unstretched length, m 190.800 400.000 300.000 

Length, m 190.905 400.271 300.276 

Bottom vertical force, N 0.000 190.800 590.800 

Top vertical force, N 190.800 590.800 890.800 

 

The corresponding plot for the static equilibrium configuration of a multi-segment 

mooring line is given as Figure 2. This mooring line has a portion lying on the seabed. 

The result produced by OrcaFlex is also plotted in this figure. Both configurations are in 

good agreement. 
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Figure 2. Example static equilibrium configuration of a mooring line 

 

 

 

 

 

  



30 

 

4. FINITE ELEMENT FORMULATION OF THE MOORING LINE 

 

4.1 Weak form of the equations of motion 

Galerkin’s method is used to construct the finite element model of the mooring line. 

The procedures are described by Reddy (2006). By multiplying both sides of the equation 

of motion by the weighting function 
iw  and integrating, the weak form for semi-

discretization of the governing equation Eq. (39) in Cartesian coordinates is given as 

             

0

0 0
0

0 1 2

0

0
b

a b
a

s
i

i i i is ss

w
w M w C A ds w Q w Q

s

 
        

 
   (61) 

where 
0as  and 

0bs  represent the vertical coordinates of two ends of one element, 
1Q  

and 2Q  are the external forces applied on two ends, which are 
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  (62) 

4.2 Finite element approximation of the mooring line 

A Lagrange quadratic approximation of the solution within a finite element of the 

mooring line is used. Some previous work used Hermite cubic shape functions (Chen 

(2002) and Chucheepsakul (2002)), which means that the primary variables in their 

approaches are displacements and the first derivatives of displacements with respect to a 

specific coordinate. However, according to the principles of the finite element method, the 
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primary variables should be continuous across the boundaries of elements (Reddy (2006)). 

In the case of multi-segment mooring lines, the first derivatives of displacements are not 

continuous across the boundaries of segments. So Lagrange quadratic shape functions are 

chosen for this formulation, instead of Hermite cubic ones. The approximation of the 

solution is assumed to be of the form 

  
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1

( , ) ( , ) ( ) ( )l lh j j
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s t s t S t s
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      (63) 

where ( )jS t  represents the displacements at the nodes. 0s  is the local curvilinear 

coordinate along the mooring line in one element, varying from 0 to h. The Lagrange 

quadratic shape functions are given as follows, with h as the unstretched arc-length of one 

element: 
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  (64) 

To clarify, ( )jS t  are as below, where subscript 1, 2 and 3 represent the three nodes 

of one quadratic element 
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  (65) 

Since the coefficient matrices are varying along the local curvilinear coordinate 0s , 

the same quadratic shape functions are applied for these matrices, Eq. (66) shows the 
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approximation for  M , similar to that for  C  and  A .  kM  is the value of  M  

at the corresponding node k of one quadratic element. 

      
3

0

1

( )h k k

k

M M M s


    (66) 

4.3 Finite element model of the mooring line 

By applying the approximations to the weak form of the governing equation, the 

finite element model for one quadratic element is obtained as 

        e e e e e e eP S H S K S R               (67) 

where the element coefficient matrices are defined as  
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And the discretized values of the displacements at nodes ( )eS t  are given as 

   1 1 1 2 2 2 3 3 3( ) [ , , , , , , , , ]e e e e e e e e e e TS t x y z x y z x y z   (72) 

The values of these coefficient matrices depend on the coordinate values of three 

discrete element nodes based on the static equilibrium configuration of the mooring line. 

Furthermore, in order to prepare the condensed coefficient matrices for the whole mooring 
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line consisting of a large number of elements, a complete set of elements are assembled 

and boundary conditions at the two ends are imposed. Additionally, in order to maintain 

high numerical accuracy for the case of multi-segment mooring lines, the element sizes 

for segments should be allowed to be different. The sequence of elements is arranged from 

anchor point or touchdown point to fairlead. 

As for the boundary conditions, although the top end is in motion, it is actually 

connected to the vessel. The motion of the top node is identical to the vessel surge motion. 

In this thesis, the vessel surge motion is specified and relatively small. The top end of the 

mooring line is treated as fixed. The bottom end is anchored on the seabed. Therefore, the 

components of the first and the last nodes in the displacement vector both equal to zero. 

Consequently, the condensed coefficient matrices are obtained by deleting the 

corresponding rows and columns.  

In addition, since the equations of motion in Lagrange local coordinates are 

uncoupled in three directions, it is easy to form the finite element model for each direction 

individually using the preceding approach. The condensed coefficient matrices in each 

direction in Lagrange local coordinates are prepared for the subsequent modal analyses. 
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5. MODAL ANALYSIS OF THE MOORING LINE 

 

The modal analysis of the mooring line is equivalent to solving the eigenvalue 

problem for the matrix system of equations and finding the corresponding eigenvalues and 

eigenvectors, which are natural frequencies and mode shapes for the dynamic system, 

respectively. For the free vibrations, it is assumed that the form of the displacement 

solution is periodic in time at the natural frequency of vibration. The configuration of the 

mooring line at a natural frequency is called the associated mode shape. The general 

procedure for the modal analysis of a mooring line in Cartesian coordinates involves 

solving an eigenvalue problem in two uncoupled directions of Cartesian coordinates (in-

plane and swinging). Following the same procedure, the modal analysis can be conducted 

in each direction in Lagrange local coordinates, in other words, the eigenvalue problem in 

each of the three uncoupled directions of Lagrange local coordinates (tangential, bi-normal 

and normal) is solved. The corresponding coefficient matrices in the normal and bi-normal 

directions are the same, while the coefficient matrices in the tangential direction are 

different from those in the other two directions. Accordingly, two sets of natural 

frequencies and associated mode shapes in the Lagrange local coordinate system and 

another two sets in the Cartesian coordinate system are the outcomes of modal analysis. 
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5.1 Modal analysis of a mooring line without damping effect 

In this case, the damping term of Eq. (67) vanishes. The harmonic displacement in 

Cartesian coordinates is assumed to have the form: 

    e i t e

amS e S   (73) 

where   denotes the frequency of natural vibration of the system. Substituting Eqs. (68)

, (70) and (73), assembling all elements of the mooring line system and applying the 

boundary conditions at the top and bottom ends, Eq. (67) becomes 

      2 0amP K S     (74) 

So the eigenvalue problem without damping involves solving the characteristic 

equation 

    2 0P K     (75) 

where  represents the determinant of the matrix inside. 

A sample set of natural frequencies for the vibration without damping in the swinging 

direction in Cartesian coordinates is given in Table 3. The associated mode shapes are 

shown in Figure 3. 

 

Table 3. Natural frequencies in swinging direction for a CPC mooring line 

Mode 1 2 3 4 5 6 

Natural 

frequency, Hz 
0.01845 0.05549 0.08138 0.12080 0.16884 0.20826 
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Figure 3. The first six mode shapes for the vibration in swinging direction 

 

5.2 Modal analysis of a mooring line with damping effect 

In the case with damping, the general solution for displacement has the form 
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    e t e

amS e S   (76) 

Following the same procedure as for the case without damping, the corresponding 

equation for the eigenvalue problem of the entire mooring line system can be generated 

with assembled mass, stiffness and damping matrices using the finite element method, 

which is represented as 

        2 0amP H K S      (77) 

The eigenvalue problem with damping is formed by setting 

      2 0P H K      (78) 

In order to solve Eq. (77), define a displacement vector as 
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Eq. (77) can be rewritten as 
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  (80) 

where  I  represents the identity matrix with the same size as  K . By solving Eq. (80)

, complex values of   are obtained. The imaginary parts of them are the corresponding 

natural frequencies in the case with damping. 

5.3 Validation of present method with previous work 

Three cases from previous work are analyzed using the present method. The first is 

case (i), a cable in air by Henghold (1976); the second is case (ii), a marine cable 

surrounded by water by Triantafyllou (1984); the last one is case (iii), a multi-segment 



38 

 

mooring line analyzed using OrcaFlex. The information of the first two cases is shown in 

Table 4. The information of the last case is given in Table 8, without the damping effect 

considered. 

 

Table 4. Information about the properties of two cables 

Case (i), Henghold (ii), Triantafyllou 

Water depth, m 500 130 

Anchor radius, m 800 303.15 

Length, m 1000 330 

E, Pa 1e6 1.5e11 

A, 
2m  1 7.07e-4 

Wet weight, N/m 1 47.6 

AC  0 0.128 

Fluid density, kg/𝑚3 0 1000 

 

The static equilibrium configuration plot for case (i) is shown as Figure 4 (a), while 

that for (ii) is shown as Figure 4 (b). For case (iii), the static equilibrium configuration is 

plotted in Figure 10. 
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Figure 4. Static equilibrium configuration of the cable for two cases 

 

The solution for the non-dimensional natural frequencies in the in-plane and swinging 

directions is given by Henghold (1976) for case (i). The cable in this case is uniform. Eight 

finite elements are used for his solution. The non-dimensional natural frequency   is 

defined by  

 
g L


    (81) 

For case (ii), Triantafyllou (1984) and Irvine (1981) provide their solutions for the in-

plane direction. Therefore, the code for modal analysis in Cartesian coordinates is 

exercised to obtain corresponding natural frequencies for both cases (i) and (ii). Two 

hundred finite elements are used for both analyses. The solution for case (i) is given in 

Table 5 and the results for case (ii) are shown in Table 6. For case (iii), natural frequencies 

in both in-plane and swinging directions are listed in Table 7. The agreement with the 
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published results is within 10% in all cases, with some cases showing consistently better 

agreement than others. For example, for case (iii) the agreement in the in-plane natural 

frequencies is within 0.06% for all seven modes. Based on these results, the approach 

developed herein is deemed to yield sufficient accuracy in applications, especially for 

multi-segment mooring lines that are widely used in deep water. 

 

Table 5. Comparison of non-dimensional natural frequencies for case (i) 

 In-plane direction Swinging direction 

Mode Present method Henghold Present method Henghold 

1 4.804 4.878 2.712 2.715 

2 7.478 7.755 5.359 5.425 
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Table 6. Comparison of in-plane natural frequencies for case (ii) 

 In-plane natural frequencies, rad/s 

Mode Present method Irvine Triantafyllou 

1 2.27 2.17 2.15 

2 2.33 2.20 2.21 

3 3.58 3.39 3.38 

4 4.64 4.39 4.37 

5 5.81 5.51 5.48 
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Table 7. Comparison of the natural frequencies for case (iii) 

 In-plane frequencies, rad/s Swinging frequencies, rad/s 

Mode Present method OrcaFlex Present method OrcaFlex 

1 0.3342 0.3341 0.2987 0.3289 

2 0.5408 0.5405 0.4875 0.5383 

3 0.7936 0.7931 0.7219 0.7926 

4 1.1173 1.1179 1.0228 1.1166 

5 1.3959 1.3964 1.2816 1.3948 

6 1.5633 1.5660 1.4376 1.5620 

7 1.7684 1.7680 1.6393 1.7671 

 

5.4 Surge motion power spectrum of the vessel 

After conducting the modal analysis, sets of natural frequencies and corresponding 

mode shapes for each direction are obtained. For each set of natural frequencies, only the 

lowest ones lying in the frequency range of vessel motion will be used for the subsequent 

analyses. The largest range of dynamic forces on the vessel imparted by the mooring 

system is in the surge direction. Therefore, for the subsequent analyses, the vessel motion 
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in the surge direction is prescribed and the motion in the other five degrees of freedom is 

constrained to zero. Note that this is a practical approximation, not a limitation inherent to 

the methodology. It would be a simple matter to superimpose the top tension fluctuations 

associated with any or all of the other five degrees of freedom while the associated spectra 

were specified. 

The surge displacements of the vessel are synthesized from prescribed spectra. For 

example, for a chain-polyester-chain (CPC) mooring line, the spectral density for surge 

motion of the vessel usually concentrates on the band from 0 to 0.2 Hz. A spectrum for 

the surge motion of the vessel used in this thesis consists of the superposition of two 

individual spectra. One is the spectrum associated with surge motions at the same 

frequencies as the waves. The other is the spectrum associated with the slow drift surge 

motion of the vessel. For convenience and simplicity, both spectra are modeled 

analytically using the JONSWAP spectral form. The JONSWAP spectrum is a three-

parameter spectrum; and it is developed and used to model wave elevation. However, this 

spectrum may be used to approximately model either the wave frequency surge motion or 

slow drift surge motion of a moored vessel in deep water. The analytical form of the 

JONSWAP spectrum is 



44 

 

 

 
2

2 2
4 exp5

2
2

4

5
( ) exp

4

p

p

f f

f

xx s

p p

f f
S f X

f f



 

      
 



  
        

  (82) 

where: 
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SX  is the significant value of process X  (i.e. surge motion in this case) 

pf  is the frequency associated with the maximum spectral density 

  is the spectral peakedness parameter 

These spectral parameters depend on the environmental conditions and the properties 

of the mooring line. 

5.5 Modal superposition of the top tension of the mooring line 

With a specified spectrum of vessel surge motion, corresponding time series 

realizations of the surge motion can be synthesized using a random phase i  for each 

discretized frequency. For the superposed surge motion spectra, with the frequency 

interval f , the displacement amplitude  Amp f  at each discretized frequency can be 

obtained as 

    2 xxAmp f S f f    (83) 
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With the amplitude calculated by Eq. (83), the time series of the surge motion is 

synthesized according to 

      2

1

i i

n
i f t

i

i

X t Amp f e
 
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   (84) 

 

A sample time series realization of the surge motion is shown in Figure 5 (a). 

 

 

Figure 5. Time series of the vessel surge motion and mooring line top tension 
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For each static equilibrium configuration of the mooring line with a specified offset 

from the original positon, a set of additional offsets are selected. The corresponding 

mooring line top tensions are calculated using the catenary solution. The linear rate of 

change of top tension per unit change of surge offset, denoted as 
surgek , can be easily 

obtained as the slope of the linear fit of the mooring line top tension versus surge offset 

curve, as shown in Figure 6.  

 

 

Figure 6. The linear regression of mooring line top tension and surge offset 
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The mooring line top tension  topT t  is assumed to be linearly related to the surge 

motion  X t  according to 

    top surge topT t k X t T    (85) 

where topT  is the mooring line top tension at the static equilibrium state. Meanwhile, the 

Fourier transform of the time series of top surge motion  f  is given as 

     (2 )i ftf X t e dt





    (86) 

In order to obtain the Fourier transform of time series of mooring line top tension 

fluctuation  f , the Fourier transform of the time series of mooring line top surge 

motion  f  is multiplied by a summation of harmonic response functions  iH f  for 

individual modes, which is equivalent to convolution of a time series and impulse response 

functions in time domain. This process can be represented as 

      
1

fn

i i

i

f k W H f f 


    (87) 

where 
fn  is the number of natural frequencies considered in this case.  

 The harmonic response function for each mode can be estimated with the 

corresponding natural frequency and an assumed damping ratio. The harmonic response 

function  iH f  for mode i is that for a viscously damped, linear single degree of 

freedom oscillator, namely 
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where 
nif  is the natural frequency for mode i and 

di  is the damping ratio for mode i.  

 Meanwhile, 
iW  is the weighting factor for each mode. Since  0 1iH   for all the 

modes and the top of the mooring line can be modeled as a linear spring while the 

frequency equals zero, iW  should have the following property:  
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In this thesis, uniformly distributed weighting factors are used for all modes. 

The result of the multiplication Eq. (87) is the Fourier transform of the time series of 

mooring line top tension fluctuation  f . The inverse Fourier transform can be 

conducted to obtain the corresponding time series of the mooring line top tension 

fluctuation  topT t  as 

     (2 )i ft

topT t f e df



    (90) 

This time series of the mooring line top tension is shown in Figure 5 (b). Meanwhile, 

the spectrum of mooring line top tension  TTS f  is estimated using 

      *1

2
TTS f f f

f
 


  (91) 

where superscript * denotes the complex conjugate of the corresponding complex number. 
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This spectrum of the mooring line top tension is compared with that from fully 

nonlinear time domain simulations performed using OrcaFlex. The damping ratios di  

for the individual modes need to be tuned to fit this spectrum with that derived from the 

OrcaFlex simulation.  
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6. EXTREME VALUE ANALYSIS OF MOORING LINE TOP TENSION 

 

6.1 Local maxima distribution using Rice’s theory 

The time series of vessel surge motion can be modeled as an ergodic Gaussian 

process with zero mean. Associated with the harmonic response functions and modal 

superposition, the superposed time series for mooring line top tension fluctuation must 

represent a Gaussian process with zero mean as well because the superposition of a limited 

number of Gaussian processes is still Gaussian. Furthermore, the extremes (individual 

local maxima) of the general stationary Gaussian random process with zero mean are 

described by the Rice distribution (Broch (1963)). The probability density function of the 

Rice distribution is given as 
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  (92) 

Related parameters 0m  and   are calculated based on the spectral moments of the 

original Gaussian process; and erf is so the called error function. The bandwidth parameter 

  can be calculated using 
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in which 
0m , 

2m  and 
4m  are spectral moments of the Gaussian process, which are 

defined by the following integral: 

  
0

n

n xxm f S f df


    (94) 

 The error function erf is given as 

  
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2 x
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
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Accordingly, the local extreme values derived from the time series of the mooring 

line top tension using the present method may be represented by the Rice distribution. The 

Rice distribution for the extreme values of the mooring line top tension can be obtained 

based on the spectral moments of the original Gaussian process. In addition, this mooring 

line top tension needs to be adjusted to have a zero mean in order to fit the original Rice 

distribution. After the fit, it can be adjusted back to be actual mean value, which is the 

situation shown in the subsequent plots in this chapter. In order to verify this distribution 

fitting procedure, a popular approach for distribution fitting named maximum likelihood 

estimation (MLE) is used. The extremes of the time series of the mooring line top tension 

are obtained, then fitted with the Rice distribution using maximum likelihood estimation. 

The probability distribution function (PDF) plots for a multi-segment mooring line using 

both distribution fitting approaches are shown in Figure 7. This figure shows that the result 
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of the spectral moment fit approach is in accordance with that of maximum likelihood 

estimation, as expected. 

 

 

Figure 7. PDF of Rice distribution, using moment fit and MLE 

 

Moreover, this distribution fitting procedure is conducted again with results from 

OrcaFlex simulations. Both outcomes will be compared to estimate the conformity of the 

present method and OrcaFlex simulation. Examples of cumulative distribution function 

(CDF) plots of the original data and the fitted Rice distribution using both the present 
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method and OrcaFlex are shown in Figure 8. The figure illustrates that the Rice 

distribution fits the original data very well, whether it is derived from OrcaFlex simulation 

or with the present method. 

 

 

Figure 8. CDF of fitted Rice distribution using present method and OrcaFlex 

 

6.2 Distribution of maximum among N local maxima 

 As described by Karimirad (2014), the “design wave” method is useful as a simple 

and preliminary check for the structural integrity of an offshore structure subjected to 

wave loads. A similar approach can be implemented in the present method in order to 

estimate the largest maximum among N local maxima of the mooring line top tension. 
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During a time simulation, 
max1x , 

max 2x  ,…, 
max Nx  denote N local maxima; the 

maximum among N maxima is denoted by Mx . It is assumed that all the local maxima 

are Gaussian distributed and independent. The probability of 
Mx  being less than a certain 

value is given as 

        max1 max1 maxNr M r r rP x x P x x P x x P x x          (96) 

The cumulative distribution and probability density of the maximum among N 

maxima is written as follows 

    
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where  rF x  represents the CDF of the Rice distribution. 

The expectation of the maximum among N local maxima is given as 

    M r M r rE x x f x dx



    (99) 

If a stochastic Gaussian process is narrow-banded, its local maxima are Rayleigh 

distributed. The expected value of the largest maximum for this process can be calculated 

by 
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 In addition, the maximum of a broad-banded Gaussian process is Gaussian distributed. 

The expected value of the largest maximum of a general Gaussian process is smaller than 

that of a narrow-banded process and larger than that of a broad-banded process. 

 For a general Gaussian process, the expected time period between two contiguous 

local maxima can be determined as 

   2

4

peak

m
E t

m
   (101) 

 Given a time simulation,  peakE t  can be computed first with spectral moments of 

this process; then the number of local maxima N is calculated using the simulation duration 

divided by  peakE t . Furthermore, the expected largest maximum mooring line top 

tension MT  can be estimated for design purposes.  

 In addition, according to Naess and Moan (2012), in the design process of mooring 

lines, a quantity of particular interest for top tension is  pT t , which with probability P is 

not exceeded during time duration t. This quantity can be represented as  

 
   PM t

F T P   (102) 

 Combining with Eq. (97) and (101), Eq. (102) can be solved numerically for  PT t  

with a given reasonable value of probability P. 
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7. CASE STUDY OF A MULTI-SEGMENT MOORING LINE 

 

7.1 Properties of a lumped multi-segment mooring line 

The study case developed herein is a lumped multi-segment mooring line. The 

original system is a semi-submersible with a mooring system using chain-polyester-chain 

line for a 2200 m water depth. The mooring system consists of four groups with four 

mooring lines each, for a total of sixteen mooring lines. In order to simplify the original 

case, a group of four mooring lines is lumped together to a single line, which is four times 

the cross-section area, axial stiffness, submerged weight, and top tension of the original 

mooring line. Figure 9 shows the static equilibrium configuration of the simplified 

mooring system. The initial anchor radius for each line at the static equilibrium state is 

3953 m. In this case, three different segments are used. The line properties for all segments 

are list in Table 8. 
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Figure 9. Configuration of the simplified mooring system 
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Table 8. Segment properties of a multi-segment mooring line 

Segment property Bottom chain Polyester Top chain 

Length, m 450 3900 150 

E, Pa 34156142431 11385428140 34156142431 

A, 
2m  0.26970259 0.14053051 0.26970259 

Wet weight, N/m 18592 502.4 18592 

AC  and DC  Various Various Various 

 

The static equilibrium configuration of this lumped multi-segment mooring line is 

shown in Figure 10. 
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Figure 10. Static equilibrium configuration of a multi-segment mooring line 

 

 For this mooring line, a total of 151 elements are used. Uniform element size is 

adopted for each segment. In order to obtain a numerically stable solution, the element 

size for different segments must be similar. 

7.2 Surrounding environmental conditions of the mooring line 

Four cases with different surrounding environments are considered for the multi-

segment mooring line. Descriptions of these cases are presented as follows. 
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1) Air 

In this case, the mooring line is vibrating in air. Buoyancy, added mass effect and 

hydrodynamic damping are neglected. Although it is not a realistic situation for mooring 

lines, this case is still needed in order to compare the results with the submerged cases. In 

addition, it is a typical case in previous research related to cable structures. Additionally, 

the static equilibrium configuration of the mooring line in this case is more slack than 

those in the following cases. 

2) Water with buoyancy 

The buoyancy of the mooring line produced by the water is included in this case. The 

hydrodynamic forces, such as added mass effect and damping effect due to the motion of 

the mooring line are not considered. 

3) Water with buoyancy and added mass effect 

In this case, the added mass effect is introduced besides the buoyancy. The added 

mass effect can be modeled using Morison’s equation. The force is proportional to the 

relative acceleration of the mooring line and surrounding fluid. The added mass coefficient 

in this research is set to be one; but can be adjusted to another value if needed. 

4) Water with buoyancy, added mass and damping effect 

The hydrodynamic damping effect is considered in this case; buoyancy and added 

mass effect are also included. The damping effect is modeled using Morison’s equation at 
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first; then linearized following the linearization procedure proposed in Section 3.9. A 

range of damping coefficient values is applied in order to investigate the effect of 

hydrodynamic damping. 

7.3 Poisson’s effect of the material of a mooring line 

 Commonly used values of Poisson’s ratio are 0.3 for steel and 0.4 for polyester. Eqs. 

(49) and (50) show that the Poisson’s effect should be included in the normal and bi-

normal directions in Lagrange local coordinates, but not in the tangential direction. In 

order to investigate the effect of hydrostatic pressure on the vibration of multi-segment 

mooring lines in deep water, cases with reasonable Poisson’s ratio or zero Poisson’s ratio 

are analyzed. 

7.4 Surge offset and motion spectrum of the top of the mooring line 

The offshore vessels often experience surge offset due to directional wave field and 

slow drift effects. Therefore, each vessel surge motion spectrum has an associated surge 

offset range. This surge offset is usually given as a percentage of the water depth. For the 

multi-segment mooring line considered, the values of the JONSWAP spectral parameters 

SX , 1/p pT f  and   are provided in Table 9 for a vessel surge motion spectrum, while 
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the wind force is fluctuating. The associated surge offset range is also included. The return 

period for this surge motion spectrum is 100 years.  

 

Table 9. Parameters of surge power spectrum used for the mooring line 

Spectral parameter 𝑋𝑆, m 𝑇𝑃, s   

Return period Surge offset Wave Slow drift Wave Slow drift Wave Slow drift 

100 years 4%-6% 9.14 50 15.5 188.68 1.0 3.3 

 

Based on the main characteristics of the surge motion spectra given in Table 9, the 

surge spectrum with 100-year return period is plotted as Figure 11.  
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Figure 11. Surge motion power spectrum with 100-yr return period 

  

This vessel surge motion spectrum with 100-year return period is used for the 

subsequent modal analysis. Five percent is chosen as the associated vessel surge offset. 

The corresponding static equilibrium configuration of this mooring line is shown in Figure 

12. 
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Figure 12. Static equilibrium configuration of a multi-segment mooring line with 5% offset 

 

7.5 Results of the modal analysis of the mooring line 

7.5.1 Results of the cases without damping effect 

The natural periods of the first eight modes for this multi-segment mooring line in 

case (1), (2) and (3) using Lagrange local coordinate system are listed in Table 10. The 

corresponding first three mode shapes are shown in Figure 13 for case (1), Figure 14 for 

case (2) and Figure 15 for case (3). Meanwhile, Table 11 shows results in Cartesian 
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coordinate system; and Figure 16, Figure 17 and Figure 18 display the corresponding 

mode shapes for case (1), case (2) and case (3), respectively. The Poisson’s ratios are set 

to be reasonable values according to the material for all cases. Only cases without damping 

involved are presented in this section. The surge motion spectrum with 100-year return 

period is used. The corresponding mean surge offset for all the cases is five percent of the 

water depth. The anchor radius of this mooring line during this 100-year event is 

calculated to be 4031.53 m. 

 

Table 10. The first eight natural periods for the mooring line in Lagrange local coordinates 

Direction Case 

Natural periods of the first eight modes, s 

1 2 3 4 5 6 7 8 

Tangential 

1) 2.800 1.411 0.980 0.829 0.673 0.546 0.458 0.395 

2) 2.801 1.412 0.980 0.829 0.673 0.546 0.458 0.395 

3) 2.801 1.412 0.980 0.829 0.673 0.546 0.458 0.395 

Normal 

and    

bi-normal 

1) 20.612 12.667 8.529 6.036 4.846 4.334 3.811 3.275 

2) 21.752 13.362 8.980 6.360 5.113 4.573 4.019 3.450 

3) 27.983 15.772 11.241 8.126 6.344 5.363 4.817 4.281 
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Table 11. The first eight natural periods for the mooring line in Cartesian coordinates 

Direction Case 

Natural periods of the first eight modes, s 

1 2 3 4 5 6 7 8 

In-plane 

1) 18.565 12.641 8.522 6.051 4.860 4.353 3.814 3.278 

2) 21.055 13.233 8.964 6.371 5.123 4.590 4.022 3.453 

3) 24.610 14.580 10.258 7.372 5.788 5.030 4.498 3.939 

Swinging 

1) 20.612 12.667 8.529 6.036 4.846 4.334 3.811 3.275 

2) 21.752 13.362 8.980 6.360 5.113 4.573 4.019 3.450 

3) 27.983 15.772 11.241 8.126 6.344 5.363 4.817 4.281 
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Figure 13. The first three mode shapes for case (1) in Lagrange local coordinates 
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Figure 14. The first three mode shapes for case (2) in Lagrange local coordinates 
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Figure 15. The first three mode shapes for case (3) in Lagrange local coordinates 
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Figure 16. The first three in-plane mode shapes for case (1) in Cartesian global coordinates 
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Figure 17. The first three in-plane mode shapes for case (2) in Cartesian global coordinates 
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Figure 18. The first three in-plane mode shapes for case (3) in Cartesian global coordinates 

  

 In Lagrange local coordinates, the natural periods and mode shapes in the tangential 

direction of each mode are almost identical for the three cases. Therefore, the buoyancy 

and added mass effect have a trivial influence on the tangential vibration. At the same 
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time, the natural periods for vibrations in the tangential direction are far smaller than those 

for normal and bi-normal vibrations, which is easy to understand since the tangential 

direction is much stiffer than the normal and bi-normal direction. On the other hand, in 

the normal and bi-normal direction, the natural periods of modes in case (2) are slightly 

larger than those in case (1). Meanwhile, the natural periods in case (3) are larger than 

those in case (2) by a relatively larger amount. Although the initial static equilibrium 

configuration of the mooring line in case (1) is different from that in case (2) and (3), the 

buoyancy effect increases the natural periods in the normal direction only by a small 

amount. In contrast, the added mass effect will increase the natural periods in the normal 

direction more significantly. Furthermore, the plots of mode shapes show that the 

discontinuities of the slopes are associated with the chain/polyester rope segment 

boundaries of the mooring line. In Cartesian coordinates, similar conclusions for both in-

plane and swinging direction are drawn as those that arise for the normal direction in 

Lagrange local coordinates. Moreover, the natural periods in the swinging direction are 

slightly larger than those in the in-plane direction. 

7.5.2 Results of the cases considering damping effect 

The linearization approach of hydrodynamic damping is proposed in Section 3.9. The 

magnitude of the linearized damping depends on the root mean square value of the 
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mooring line top surge motion spectrum and the hydrodynamic drag damping coefficient 

DC . The five-percent surge offset has an associated top surge motion spectrum with 100-

year return period. The cases are analyzed only in Lagrange local coordinates. A set of 

different damping coefficient values in both tangential and normal direction 
DC  are 

used. The natural periods of the cases with these different drag damping coefficients are 

listed in Table 12. 
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Table 12. The first eight natural periods for the damped mooring line in Lagrange local coordinates 

Direction DC  

Natural periods of the first eight modes, s 

1 2 3 4 5 6 7 8 

Tangential 

7 2.997 1.433 0.976 0.836 0.677 0.548 0.459 0.395 

5 2.896 1.422 0.978 0.833 0.675 0.547 0.458 0.395 

1 2.805 1.412 0.980 0.829 0.673 0.546 0.458 0.395 

0.5 2.802 1.412 0.980 0.829 0.673 0.546 0.458 0.395 

0.1 2.801 1.412 0.980 0.829 0.673 0.546 0.458 0.395 

Normal 

and    

bi-normal 

7 N/A 17.310 13.135 8.910 6.572 5.306 4.920 4.385 

5 79.836 15.923 12.455 8.491 6.449 5.326 4.878 4.335 

1 28.442 15.789 11.282 8.140 6.348 5.362 4.819 4.283 

0.5 28.095 15.776 11.251 8.130 6.345 5.363 4.818 4.281 

0.1 27.988 15.772 11.241 8.126 6.344 5.363 4.817 4.281 

 

Figure 19 and Figure 20 show the natural periods of the first eight modes in tangential 

and normal direction with various damping coefficients. 
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Figure 19. The first eight natural periods in tangential direction for the damped mooring line 
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Figure 20. The first eight natural periods in normal direction for the damped mooring line 

 

The mode shapes in Lagrange local coordinates while damping coefficient DC

equals to one are given in Figure 21. 
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Figure 21. The first three mode shapes for the damped mooring line in Lagrange local coordinates 

 

For the damped cases, as the drag damping coefficient increases, the natural periods 

of each mode in Lagrange local coordinates will increase. Meanwhile, as the drag damping 

coefficient varies, only the natural periods of the several lowest modes in the normal 

direction will change significantly. Even with a relatively large damping ratio, the natural 
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periods of other modes are almost identical to those for the undamped case. Furthermore, 

the slopes of the mode shape plots are discontinuous at the segment boundaries of the 

mooring line, as expected. Additionally, in the normal and bi-normal direction in Lagrange 

local coordinates, if the drag damping ratio is sufficiently large, several lowest modes will 

vanish. 

7.5.3 Results of the cases considering Poisson’s effect 

 Furthermore, in order to estimate the Poisson’s effect on the dynamics of the mooring 

line, case (5) modified from case (3) is used. Poisson’s ratio in case (5) equals zero for all 

segments; case (3) uses 0.3 for the top and bottom chain segments and 0.4 for the middle 

polyester segment. The results are listed in Table 13 and Table 14. 

 

Table 13. The first eight natural periods for the mooring line in Lagrange local coordinates 

Direction Case 

Natural periods of the first eight modes, s 

1 2 3 4 5 6 7 8 

Tangential 

3) 2.801 1.412 0.980 0.829 0.673 0.546 0.458 0.395 

5) 2.801 1.412 0.980 0.829 0.673 0.546 0.458 0.395 

Normal 

and    

bi-normal 

3) 27.983 15.772 11.241 8.126 6.344 5.363 4.817 4.281 

5) 27.663 15.533 11.116 8.054 6.286 5.299 4.757 4.243 
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Table 14. The first eight natural periods for the mooring line in Cartesian coordinates 

Direction Case 

Natural periods of the first eight modes, s 

1 2 3 4 5 6 7 8 

In-plane 

3) 24.610 14.580 10.258 7.372 5.788 5.030 4.498 3.939 

5) 24.348 14.358 10.151 7.307 5.731 4.960 4.452 3.907 

Swinging 

3) 27.983 15.772 11.241 8.126 6.344 5.363 4.817 4.281 

5) 27.663 15.533 11.116 8.054 6.286 5.299 4.757 4.243 

 

Table 13 and Table 14 illustrate that Poisson’s effect slightly increases the natural 

periods in the normal direction in Lagrange local coordinates and the swinging direction 

in Cartesian coordinates. Meanwhile, it will not affect the tangential direction in Lagrange 

local coordinates, since the equation of motion in the tangential direction Eq. (49) does 

not include Poisson’s ratio. Furthermore, in the in-plane direction in Cartesian 

coordinates, the natural periods of all modes in the case considering Poisson’s effect are 

slightly larger than those in the case with zero Poisson’s ratio. The reason is that the motion 

in the in-plane direction in Cartesian coordinates results from the coupling of the motion 

in both tangential and normal direction in Lagrange local coordinates. The coupled motion 
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in the in-plane direction is affected by the motion in the normal direction, on which the 

Poisson’s effect has influence. 

7.6 Estimation of mooring line top tension using modal superposition 

For the following analyses, the results of modal analysis in Lagrange local coordinates 

are used. The vessel surge motion spectra used in this section concentrate mostly on the 

frequency range from 0 to 0.2 Hz. Only the first several natural frequencies in the normal 

or bi-normal direction lie in this range; and all natural frequencies in the tangential 

direction do not. The associated surge offset is from four percent to six percent, which is 

a significant quantity from a design perspective. The surge offset of offshore structures is 

limited in order to perform the intended function in a safe way. A severe environment 

event will lead to a relatively large surge offset that results in an increase of the mean of 

the dynamic mooring line top tension. Accordingly, the extreme values of the mooring 

line will increase, which is of interest in this thesis. For each surge offset, the slope of top 

tension versus surge offset and the sag can be obtained. The sag is defined as a ratio of the 

maximum vertical deviation vD  between the static configuration and the chord over the 

unstretched length of the mooring line 0L , which is as  

 
0

vD
sag

L
   (103) 
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where the related variables are shown in Figure 22. 

 

 

Figure 22. The configuration of a typical mooring line 

 

For each case with specified surge offset and vessel surge motion spectrum, the 

spectrum of the mooring line top tension can be obtained using frequency domain analysis 

mentioned in Section 5.5. Furthermore, in order to fit the spectrum of top tension with 

OrcaFlex simulation, the damping ratio for each normal vibration mode is tuned.  
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7.6.1 Estimation of mooring line top tension with different surge offsets  

A set of cases with surge offset from four percent to six percent with half-percent 

interval are selected for the analyses. Table 15 lists other variables of these cases. The 

error is defined as the difference between zeroth spectral moments of the mooring line top 

tension spectra obtained using the present method relative to that obtained using OrcaFlex. 

 

Table 15. Variables of a set of mooring line cases with different surge offset 

AC : 1 DC : 1 

Poisson’s ratio: 0.3 for top and bottom chain; 0.4 for polyester 

Case Surge offset, % Slope, N/m Sag, 1e-2 Damping ratio Error, % 

(a) 4 213838.53 1.649 0.40 1.3689 

(b) 4.5 220733.18 1.536 0.45 1.3883 

(c) 5 226518.26 1.435 0.50 1.3458 

(d) 5.5 231354.96 1.345 0.55 1.3230 

(e) 6 235424.98 1.264 0.60 1.3198 
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As Figure 23 illustrates, the relationship between damping ratio and the sag of the 

mooring line is quite linear in the surge offset range four to six percent.  

 

 

Figure 23. Damping ratio vs sag for a multi-segment mooring line 

 

The first seven natural frequencies in the normal direction considered in these cases 

are shown in Table 16, where underlined natural frequencies represent the modes lying in 

the frequency range of interest. 
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Table 16. First seven natural frequencies of a mooring line in normal direction 

Case 

First seven natural frequencies in normal direction, Hz 

1 2 3 4 5 6 7 

(a) 0.0332 0.0590 0.0829 0.1149 0.1472 0.1739 0.1936 

(b) 0.0344 0.0612 0.0859 0.1190 0.1524 0.1802 0.2006 

(c) 0.0356 0.0634 0.0889 0.1230 0.1576 0.1865 0.2076 

(d) 0.0368 0.0655 0.0918 0.1270 0.1627 0.1926 0.2144 

(e) 0.0379 0.0676 0.0947 0.1309 0.1677 0.1987 0.2212 

  

Mooring line top tension spectra with four to six percent offset with a half-percent 

interval using the present method and OrcaFlex are shown in Figure 24 to Figure 28. The 

damping ratios for considered modes of each case are uniform and listed in Table 15. As 

illustrated by Figure 24 to Figure 28, the spectra produced by both procedures are in good 

agreement.  
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Figure 24. Spectra of the mooring line top tension for case (a) 
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Figure 25. Spectra of the mooring line top tension for case (b) 
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Figure 26. Spectra of the mooring line top tension for case (c) 

 



89 

 

 

Figure 27. Spectra of the mooring line top tension for case (d) 

 



90 

 

 

Figure 28. Spectra of the mooring line top tension for case (e)  

 

In contrast, Figure 29 and Figure 30 display case (c) with uniform damping ratio 0.4 

and 0.6, respectively. The results illustrate that small changes in damping ratio have a 

noticeable effect on the wave frequency top tension spectra, and 0.5 is an appropriate value 

for damping ratio for case (c) with five percent surge offset.   
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Figure 29. Spectra of the top tension for case (c) with damping ratio 0.4 
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Figure 30. Spectra of the top tension for case (c) with damping ratio 0.6 

 

Figure 31 displays the weighted harmonic response functions for all considered 

modes in case (c) as an example, while Figure 32 shows the corresponding summed 

harmonic response function. When the frequency is low, it can be observed that the value 

of the summed harmonic response function is nearly equal to one. 
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Figure 31. Weighted harmonic response functions for the first six modes for case (c) 
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Figure 32. Summed harmonic response functions for case (c) 

 

7.6.2 Estimation of mooring line top tension with different surge motion spectra 

 In order to investigate the practicability of the present method, spectra with different 

significant heights and peak periods are utilized, as shown in Table 17. The surge offset 

of the vessel is set to be five percent. Accordingly, the damping ratio for each case is 

assumed to be 0.5. Case (f), (g), (h) and (j) are modified from case (c) with different 

significant heights and peak periods. On one hand, various significant amplitudes of the 



95 

 

surge motion spectra lead to different scales of the mooring line top tension spectra. On 

the other hand, different peak periods for slow drift motion may not change the mooring 

line top tension spectra remarkably, since the value of summed harmonic response 

function near zero-frequency almost equals to one. 

 

Table 17. Parameters of surge power spectrum used for the mooring line 

Parameter 𝑋𝑆, m 𝑇𝑃, s   

Case Surge offset, % Wave Slow drift Wave Slow drift Wave Slow drift 

(c) 5 9.14 50 15.5 188.68 1.0 3.3 

(f) 5 13.72 75 15.5 188.68 1.0 3.3 

(g) 5 4.57 25 15.5 188.68 1.0 3.3 

(h) 5 9.14 50 20 283.02 1.0 3.3 

(j) 5 9.14 50 14 141.51 1.0 3.3 

  

The mooring line top tension spectra generated using the present method and 

OrcaFlex for case (f), (g), (h) and (j) are displayed in Figure 33 to Figure 36. The spectra 

using both methods for each case are in good agreement. 
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Figure 33. Spectra of the mooring line top tension for case (f) 
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Figure 34. Spectra of the mooring line top tension for case (g) 
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Figure 35. Spectra of the mooring line top tension for case (h) 
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Figure 36. Spectra of the mooring line top tension for case (j) 

 

7.7 Extreme value analysis of the mooring line top tension 

The time series of the mooring line top tension can be obtained using frequency 

domain analysis as presented in Section 5.5. The corresponding time series from OrcaFlex 

simulations can be easily computed as well. For the case with five percent surge offset, 

four-hour time domain simulations were conducted using both the present method and 

OrcaFlex. Both simulations use the same time series of the vessel surge motion as input. 
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The resulting time series of mooring line top tension are shown in Figure 37. A visual 

comparison of a portion of the time series produced with both methods is provided in 

Figure 38. A positive conformity of the present method with OrcaFlex simulations can be 

observed. 

 

 

Figure 37. Time series of the mooring line top tension 
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Figure 38. Comparison of time series of the mooring line top tension 

 

7.7.1 Local maxima distribution of mooring line top tension 

Given the time series of the mooring line top tension, the extreme value analysis can 

be conducted using Rice’s theory. Local maxima of the mooring line top tension are used 

to fit the Rice distribution. For cases (a), (b), (c), (d) and (e) with different vessel surge 

offsets, three-hour time series are simulated using both the present method and OrcaFlex. 

The zeroth spectral moments of these processes are calculated and listed in Table 18, 

where the bandwidth parameters   are also shown. 
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Table 18. Parameters of tension spectra for different surge offsets 

Case Surge offset Method 0m , 𝑘𝑁2 Bandwidth   

a 4% 

Present 7584588.83 0.987320 

OrcaFlex 7700645.12 0.999637 

b 4.5% 

Present 8020480.88 0.987324 

OrcaFlex 8144693.45 0.999657 

c 5% 

Present 8365031.99 0.987533 

OrcaFlex 8491077.92 0.999670 

d 5.5% 

Present 8668672.77 0.987718 

OrcaFlex 8797416.05 0.999680 

e 6% 

Present 8917018.32 0.987883 

OrcaFlex 9049378.28 0.999687 

 

For the five cases with different surge offsets from four to six percent, the time series 

of the mooring line top tension are obtained using both present method and OrcaFlex 

simulation. Figure 39 display the PDF plots of Rice distribution of the mooring line top 

tension local maxima of case (c) using both methods. The results illustrates that local 
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tension maxima are positively correlated with surge offset. Meanwhile, the present method 

tends to estimate slightly higher local maxima than OrcaFlex simulation. 

 

 

Figure 39. PDF of Rice distribution for local tension maxima of case (c) 

 

The corresponding CDF plots of the fitted Rice distribution for case (c) are shown in 

Figure 40. Those plots prove a satisfying conformity between the present method and 
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OrcaFlex simulations. The CDF plots can be used to estimate the extreme values of top 

tension. 

 

Figure 40. CDF of Rice distribution for local tension maxima of case (c) 

 

7.7.2 Maximum among N maxima of the mooring line top tension 

 Table 18 shows that the bandwidth parameters of the Rice distribution for all cases 

are almost equal to one. Therefore, for those cases the Rice distribution can be simplified 
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to a Gaussian distribution because it is a broad-banded process. The probability density 

function and cumulative distribution function of the Gaussian distribution are given as 
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 The cumulative distribution and probability density of the maximum among N 

maxima for this process is written as follows 
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 For the mooring line case with five percent offset, the CDF and PDF are plotted in 

Figure 41 and Figure 42, with a set of numbers of local maxima.  
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Figure 41. CDF of maximum top tension among N maxima 
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Figure 42. PDF of maximum top tension among N maxima 

  

Figure 41 and Figure 42 illustrate that as the number of local maxima increases, the 

most likely maximum value among all local maxima will be larger; and the PDF curve 

tends to be narrower. Meanwhile, the expected maximum value among N maxima with 

various N can be estimated and shown as the red line in Figure 43. 
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Figure 43. Expected value of the largest maximum top tension 

 

The expected values of the largest maximum for a narrow-banded Gaussian process 

can be calculated by Eq. (100). With the spectral moments of the present case, the 

expected values for this narrow-banded process are plotted as the blue line in Figure 43. 

Therefore, the expected largest maximum of the present case is slightly smaller than that 

of a narrow-banded process. In addition, the expected maximum of a general Gaussian 

process is smaller than that of narrow-banded process and larger than that of a broad-
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banded process; thus the corresponding values lie in the area between blue line and red 

line in Figure 43. 

 For a general Gaussian process, the expected maximum value can be estimated for 

design purposes. A simple example regarding the mooring line case with five percent 

offset is given in Table 19. 

 

Table 19. Example of estimation of the expected largest maximum 

Property Duration, s 2m ,  

2 2kN Hz   

4m ,  

2 4kN Hz  

 peakE t , s No. peaks MT , kN 

Value 10800 1518.00 10.57 11.98 901.50 50193.84 

  

Another quantity of particular interest for mooring line top tension,  PT t  can be 

calculated numerically with a given reasonable value of probability P. Table 20 shows the 

results for the mooring line case with five percent surge offset. The last row of this table 

displays the most probable maximum (MPM) value of the mooring line top tension. 
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Table 20. Top tension estimated with various N not exceeding a given probability 

Top tension, kN N=10 N=100 N=1000 N=10000 N=100000 

0.37P   44701.95 47645.30 49848.37 51665.84 53244.11 

0.5P   45240.10 48026.11 50153.50 51926.50 53475.04 

0.9P   47582.56 49798.50 51623.42 53206.63 54622.79 

0.95P   48332.22 50401.71 52139.91 53664.85 55038.55 

0.99P   49839.12 51657.96 53237.15 54650.41 55940.33 

1N
P

N


  47582.56 51657.96 54653.05 57136.52 59303.82 

  

Based on the mean value topT , zeroth spectral moment 0m  and MPM value, the peak 

factor PF can be calculated using 
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m
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 For case (a), (b), (c), (d) and (e), the most probable maximum values of the mooring 

line top tension for a 3-hour simulation are computed and listed in Table 21. 
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Table 21. 3-hr MPM values and peak factors for cases with different surge offsets 

Surge offset 4% 4.5% 5% 5.5% 6% 

MPM, kN 48967.27 51759.69 54531.30 57316.82 60100.98 

PF 4.71 4.71 4.71 4.71 4.71 

 

7.8 Application of present method in preliminary design 

7.8.1 General procedure applying the present method 

 During the preliminary design of an offshore floating structure, the hull, risers and 

other components are designed first. Based on the buoyancy and payload of the design of 

those components, the required vertical downward force of the mooring system can be 

estimated. An initial design of the mooring system is generated by adjusting design 

parameters to provide a vertical top tension, which is almost equal to the required vertical 

force. The present method can be utilized to quickly examine the dynamic mooring line 

top tension of this design, especially the extreme value. In this process, the damping ratio 

is tuned to fit the design and can be re-tuned for different applications if necessary. Based 

on the results, the designs of mooring system and other components are adjusted in order 

to satisfy technical requirements and optimize the performance of the entire system. This 
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procedure will be conducted several times until a satisfactory preliminary design is 

achieved. As for the mooring system design, parameters such as number of lines, anchor 

radius, length and cross-section area of the segments and buoys or clump weights will be 

varied. The present method will improve the efficiency of this preliminary design process 

significantly by saving the time for estimating dynamic mooring line top tension. 

 To apply the present method in a design exercise, one would start with a given surge 

motion spectrum, a given set of mooring line parameters (i.e. a given initial design) and a 

given mean offset position (e.g. five percent of water depth). This information is 

determined using the project technical requirements and the initial design of other 

components. The steps for utilizing the present method are given as follows. 

1) Calculate the static equilibrium configuration and the sag ratio of this mooring line at 

the given mean offset position. 

2) Select the damping ratio for modal superposition based on a previously calibrated curve 

(such as Figure 23). 

3) Calculate the rate of change of top tension with surge offset (e.g. Figure 6) 

4) Conduct the modal analysis in the Lagrange local coordinates and estimate the natural 

frequencies lying in the frequency range of the given surge motion spectrum 
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5) With the theoretical harmonic response function for each mode and the uniform set of 

weighting factors, the modal superposition is performed to determine the spectrum of 

mooring line top tension. 

6) Calculate the zeroth, second and fourth spectral moments using the spectrum of 

mooring line top tension for purposes of applying Rice distribution to estimate the 3-hour 

MPM value and 3-hour peak factor of the mooring line top tension. 

 After these six steps are performed for all individual mooring lines, all mooring line 

top tension statistics are available such as mean, standard deviation, spectrum, root mean 

square, 3-hour MPM and 3-hour peak factor. Based on this information, the design of the 

mooring system is assessed to determine whether it is adequate or needs to be modified, 

for example, by adjusting the design parameters such as the anchor radius or the length, 

size, or material quality of one or more segments of the mooring lines. 

7.8.2 An example design exercise using the present method 

 An example design exercise is given as follows. The parameters of the 100-year surge 

power spectrum used are listed in Table 9. The initial design of the mooring line is slightly 

modified from Table 8 with different lengths of segments in order to give an example of 

adjusting the design parameters to improve the performance of the mooring system. The 

length of each segment for this design exercise is shown in Table 22. The mean offset 
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position is set to be five percent of the water depth, which is a reasonable value associated 

with the 100-year surge power spectrum. To simplify the problem, the design object is a 

lumped mooring line mentioned in Section 7.1. The initial anchor radius of the mooring 

line is change to 3955.22 m in order to maintain the same horizontal top tension (i.e. the 

horizontal restoring force for the vessel) at the mean offset position as the initial design in 

case (c). The procedure applying the present approach in this example design exercise is 

demonstrated by the subsequent six steps. 

 

Table 22. Lengths of segments of a multi-segment mooring line 

Segment property Bottom chain Polyester Top chain 

Length, m 400 3950 150 

  

The top tension components of case (c) and this modified example design are given 

in Table 23. The horizontal top tension components of case (c) and this example design 

are almost equal to each other. 
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Table 23. Anchor radius and top tension components of case (c) and the example design 

Variable Anchor radius, m Vertical, kN Horizontal, kN Top Tension, kN 

Case (c) 3953.00 22778.98 33976.00 40905.39 

Example 3955.22 22676.51 33976.03 40848.44 

 

1) The static equilibrium configuration of this mooring line at given mean offset position 

is calculated and shown in Figure 44. The sag ratio of this mooring line is computed to be 

0.0128. 
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Figure 44. Static equilibrium configuration of a multi-segment mooring line 

 

2) The damping ratio for modal superposition is selected to be 0.58 by interpolation with 

the sag ratio obtained in step (1) and the calibrated curve Figure 23. 

3) The “slope” or the rate of change of mooring line top tension with surge offset is 

calculated to be 226.75241 kN/m. 

4) The modal analysis is conducted in the Lagrange local coordinates and the natural 

frequencies lying in the frequency range of the given surge motion spectrum are calculated 

and listed in Table 24. 
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Table 24. First seven natural frequencies of a mooring line in normal direction 

Mode 1 2 3 4 5 6 

Natural 

frequency, Hz 
0.0355 0.0666 0.0912 0.1231 0.1578 0.1900 

 

5) With the theoretical harmonic response function for each mode and the uniform set of 

weighting factors, the modal superposition is performed to determine the spectrum of 

mooring line top tension. The spectra of mooring line top tension using the present method 

and OrcaFlex are shown in Figure 45. 
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Figure 45. Spectra of the mooring line top tension using the present method and OrcaFlex 

 

6) The zeroth, second and fourth spectral moments using the spectrum of mooring line top 

tension are calculated for purposes of applying the Rice distribution to estimate the 3-hour 

MPM value and 3-hour peak factor of mooring line top tension. The results are displayed 

in Table 25. 
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Table 25. Estimation of 3-hour MPM value of mooring line top tension 

Property 0m , 2kN  
2m , 2 2kN Hz  

4m , 2 4kN Hz  Bandwidth   

Value 8396565.87 1257.06 7.71 0.99 

Property  peakE t , s No. peaks 3-hr MPM, kN 3-hr PF 

Value 12.77 846 54424.57 4.67 

  

This example design case uses longer polyester rope and shorter chain than case (c). 

As illustrated by the results listed in Table 25, the 3-hour MPM mooring line top tension 

and peak factor of this example design case are both reduced as compared with the results 

of case (c) listed in Table 21, as expected. 
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8. SUMMARY AND CONCLUSIONS 

 

The equations of motion of mooring lines are derived using the work-energy 

variational method. It is found that the equations of motion for the three Lagrangian local 

directions are uncoupled. Based on this result, a finite element model of the dynamics of 

a multi-segment mooring line is presented. Modal analysis is conducted utilizing this 

model in order to obtain the natural frequencies and associated mode shapes. The accuracy 

of this approach is demonstrated through comparison with results from several previous 

works. In addition, the hydrodynamic damping is linearized and implemented in the 

present method in order to investigate the damped mooring lines.  

Furthermore, the modal superposition approach is applied to investigate the mooring 

line top tension in the frequency domain. The extreme value statistics of mooring line top 

tension is also addressed. The results are compared with nonlinear time domain 

simulations using OrcaFlex and both are in good agreement. 

A set of codes is developed to conduct static and dynamic analysis of multi-segment 

mooring lines, modal superposition and extreme value analysis. This code set is deemed 

to be a fast design tool for mooring lines, which is accurate and computationally efficient. 
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Several cases of a multi-segment mooring line are analyzed with the present method. 

Different environmental conditions are considered in order to illustrate the influences of 

those conditions. 

First, it is determined that the natural periods for the tangential modes are far smaller 

than those for the normal and bi-normal modes. This is easy to understand since the 

equations of motion demonstrate that the tangential direction of a mooring line is much 

stiffer than the normal and bi-normal direction. Meanwhile, the slopes of mode shapes in 

all cases are discontinuous at the segment boundaries of the multi-segment mooring line, 

since the material properties of these segments are different. 

Second, by comparing the cases with and without surrounding water and added mass, 

although the buoyancy will change the static equilibrium configuration of the mooring 

line, the buoyancy does not affect the dynamics in the tangential direction at all. 

Meanwhile, it increases the natural periods in the normal direction by a small amount. In 

contrast, the added mass effect will increase the natural periods in the normal direction 

more significantly. 

Third, for damped mooring lines, as the drag damping coefficient increases, the 

natural periods of each mode will increase. However, only the natural periods of the 

several lowest modes in the normal direction change significantly. Furthermore, if the drag 

damping ratio is sufficiently large, several lowest modes will vanish. 
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Fourth, Poisson’s effect slightly increases the natural period in the normal direction 

while it does not affect that in the tangential direction. It is illustrated by the equations of 

motion that the deeper the water depth, the more significant the Poisson’s effect on the 

dynamics of the mooring line will be. 

Fifth, the modal superposition approach is applied for cases with different mooring 

line configurations and vessel surge motion spectra. An assumed damping ratio in this 

approach is demonstrated to be positively proportional to the sag of the mooring line 

configuration. 

Last, extreme value analysis of the mooring line top tension is performed. The local 

maxima of the top tension are deemed to be Rice distributed. Based on the results, the 

relevant statistical properties of the top tension process are determined, such as the CDF 

and PDF of the local maxima and the most probable maximum tension in given exposure 

duration. It is demonstrated that as the exposure duration increases, the expected value of 

the maximum tension will become larger and the PDF curve will become more narrow. 

Statistic quantities of particular interest in the design process of marine structures can be 

estimated easily utilizing the present method. 

The present method can be straightforwardly extended to: 

 accommodate specified top motion that is not in the plane of the mooring 

line 
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 calculate the tension response at any point in the mooring line, such as at the 

connections between the chain and polyester segments 

 calculate not only tension response but any other dynamic responses of 

interest, such as displacement or vector components of tension 

 The last two bullet items involve simple linear transformation of the harmonic 

response functions used in the modal superposition. 

In conclusion, a finite element model of multi-segment mooring lines is constructed 

and applied to perform modal analysis. Combining with modal superposition approach, a 

fast and accurate design tool for the estimation of the extreme values of multi-segment 

mooring line top tension is developed. Several cases of the mooring line are analyzed with 

the present method. Based on the results, the influences of multi-segment properties, 

environmental conditions, hydrodynamic damping and Poisson’s effect are investigated 

and discussed.  
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