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ABSTRACT 

A novel concept applicable to the control of spindles at high speed is developed by using 

active magnetic bearings (AMBs) that are non-contact and of low vibration.  Extensive 

literature reviews explicate that the broad applications of AMBs are severely hampered 

by the incomplete description of the underlying electro-magnetic-mechanical dynamics. 

The thesis considers the gyroscopic effect inherent of a flexible rotor and explores the 

geometry coupling of the electro-magnetic actuators to the formulation of a 

comprehensive nonlinear AMB-rotor model.  The model provides the basis for the 

creation of a novel time-frequency control algorithm whose derivation requires no 

linearization or mathematical simplification of any kind, thus allowing the model system 

to retain its true fundamental characteristics.  Unlike proportional-integral-derivative 

(PID) controllers that are dominant in most if not all AMB configurations, the controller 

developed for the research is inspired by the wavelet-based nonlinear time-frequency 

control methodology that incorporates the basic notions of online system identification 

and adaptive control.  Wavelet filter banks and filtered-x least-mean-square (LMS) 

algorithm are two of the major salient physical features of the controller design, with the 

former providing concurrent temporal and spectral resolutions needed for identifying 

nonlinear states of motion and the latter ensuring the dynamic stability of the AMB-rotor 

system at all operating speeds subjected to the presence of external disturbances.   It is 

shown in the thesis that the vibration of the rotor is unconditionally controlled by 

maintaining the mandatory 0.55 mm air gap at 150,000 and 187,500 rpm subject to a tight 

spatial constraint (tolerance) of the order of 0.1375mm.  System responses with and 
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without considering the gyroscopic motion and geometry coupling are studied to 

demonstrate the negative impact on misinterpreting the AMB-rotor dynamics when the 

two effects are neglected.  The case of an impact of 5,000m/s2 in magnitude and 0.001 

seconds in duration at 187,500rpm is also investigated to establish the robustness of the 

controller design.  The time responses of all the cases considered are both temporally 

bounded and spectrally bandwidth-limited, thus demonstrating the effectiveness of the 

wavelet-based time-frequency controller design in mitigating the inherent instability of 

the AMB-rotor system at extreme speeds.   



iv 

ACKNOWLEDGEMENTS 

I would like to dedicate this thesis to my loving parents who raised me with the greatest 

love and the deepest affection in the world.  Without their support I would not have been 

able to finish my study at Texas A&M University.  No words of gratitude are equal to 

their unconditional love and steadfast encouragement. 

     I am grateful to Dr. C. Steve Suh, who is my research advisor and the chairman of my 

thesis committee, for his patience, guidance, encouragement, and criticism of my work. 

His serious attitude toward research and enthusiasm for life has greatly affected me in the 

last two years.  My sincere appreciation also goes to Dr. Nguyen Hung and Dr. Won-

Jong Kim for serving on my advisory committee and for providing their insightful 

guidance throughout the course of the endeavor. 

     Lastly, I would like to thank all my friends at Texas A&M for their generosity and 

support.  I would like for all of them to know that I treasure their friendships very much.   



v 

TABLE OF CONTENTS 

Page 

ABSTRACT ....................................................................................................................... ii 

ACKNOWLEDGEMENTS ...................................................................................................... iv 

TABLE OF CONTENTS ............................................................................................................ v 

LIST OF FIGURES .................................................................................................................. vii 

LIST OF TABLES .................................................................................................................... xii 

CHAPTER I INTRODUCTION ................................................................................................ 1 

1.1 Overview ............................................................................................................................ 1 
1.2 Issues of Present Work ............................................................................................. 3 
1.3 Research Objective ................................................................................................... 4 

 1.3.1 Model Development................................................................................................ 5 
 1.3.2 Controller Design .................................................................................................... 7 
 1.3.3 Research Plan with Tasks ....................................................................................... 8 

CHAPTER II DYNAMICS OF AMB-SUPPORTED ROTOR ............................................ 9 

CHAPTER III ELECTRO-MECHANICAL DYNAMICS ................................................. 17 

3.1 Electromagnetic Actuation Force ........................................................................... 17 
3.2 State-Variable Representation ................................................................................ 24 

CHAPTER IV CONTROLLER DESIGN .............................................................................. 28 

4.1 Nonlinear Time-frequency Control Theory ............................................................28 
4.2 Controller Configuration and Control Scheme ....................................................... 34 

CHAPTER V NUMERICAL RESULTS AND DISCUSSION .......................................... 36 

5.1 System Responses with and without Gyroscopic Effect ........................................ 38 
5.2 System Responses without and with Geometry Coupling ...................................... 42 
5.3 Performance of Controller Design .......................................................................... 47 
5.4 Robustness of Controller Design ............................................................................ 74 

CHAPTER VI SUMMARY AND FUTURE WORK .......................................................... 86 



vi 

6.1 Summary ................................................................................................................. 86 
6.2 Future Work ............................................................................................................ 88 

REFERENCES ........................................................................................................................... 89 



vii 

LIST OF FIGURES 

FIGURE                Page 

1.1   AMB configuration .................................................................................................... 2 

1.2   AMB model configuration (with impulse excitation applied at CG) ......................... 5 

2.1   AMB sysem ................................................................................................................ 9 

3.1   Schematic of an electro-magnet ............................................................................... 20 

3.2   Configuration of electro-magnetic forces................................................................. 22 

3.3   Cross-section of bearing A ....................................................................................... 23 

3.4   Cross-section of bearing B ....................................................................................... 24 

4.1   Two-channel filter bank ........................................................................................... 28 

4.2   Architecture of wavelet based time-frequency controller ........................................ 32 

4.3   Control flow chart .................................................................................................... 35 

5.1   Displacements of rotor at bearing A in X-direction with and without gyroscopic 
effect at 15,000rpm .................................................................................................. 38 

5.2   Displacements of rotor at bearing B in X-direction with and without gyroscopic 
effect at 15,000rpm .................................................................................................. 39 

5.3   Displacements of rotor at bearing A in Y-direction with and without gyroscopic 
effect at 15,000rpm .................................................................................................. 39 

5.4   Displacements of rotor at bearing B in Y-direction with and without gyroscopic 
effect at 15,000rpm .................................................................................................. 40 

5.5   Spectral responses of model with gyrosopic effect (a)-(d) and without gyrosopic 
effect (e)-(h) ............................................................................................................. 41 

5.6   Comparison of rotor displacements at bearing A in X-direction for 0   and 
0.414   with gyroscopic effect at 15,000rpm ...................................................... 44 

5.7   Comparison of rotor displacements at bearing B in X-direction for 0   and 
0.414   with gyroscopic effect at 15,000rpm ...................................................... 44 



viii 

5.8   Comparison of rotor displacements at bearing A in Y-direction for 0   and 
0.414  with gyroscopic effect at 15,000rpm ....................................................... 45   

5.9   Comparison of rotor displacements at bearing B in Y-direction for 0   and 
0.414   with gyroscopic effect at 15,000rpm ...................................................... 45 

5.10 Spectral responses of model with geometry coupling (a)-(d) and without 
geometry coupling (e)-(h) ........................................................................................ 46 

5.11 Rotor displacement at bearing A in X-direction with 0.414   and gyroscopic 
effect at 187,500rpm (controlled) ............................................................................. 48 

5.12 Rotor displacement at bearing B in X-direction with 0.414   and gyroscopic 
effect at 187,500rpm (controlled) ............................................................................. 49 

5.13 Rotor displacement at bearing A in Y-direction with 0.414   and gyroscopic 
effect at 187,500rpm (controlled) ............................................................................. 49 

5.14 Rotor displacement at bearing B in Y-direction with 0.414   and gyroscopic 
effect at 187,500rpm (controlled) ............................................................................. 50 

5.15 Rotor displacement at bearing A in X-direction with 0.414   and gyroscopic 
effect at 150,000rpm (controlled) ............................................................................. 50 

5.16 Rotor displacement at bearing B in X-direction with 0.414   and gyroscopic 
effect at 150,000rpm (controlled) ............................................................................. 51 

5.17 Rotor displacement at bearing A in Y-direction with 0.414   and gyroscopic 
effect at 150,000rpm (controlled) ............................................................................. 51 

5.18 Rotor displacement at bearing B in Y-direction with 0.414   and gyroscopic     
effect at 150,000rpm (controlled) ............................................................................. 52 

5.19 Rotor displacement at bearing A in X-direction with 0.414   and gyroscopic 
effect at 187,500rpm (uncontrolled) ......................................................................... 55 

5.20 Rotor displacement at bearing B in X-direction with 0.414   and gyroscopic 
effect at 187,500rpm (uncontrolled) ......................................................................... 55 

5.21 Rotor displacement at bearing A in Y-direction with 0.414   and gyroscopic 
effect at 187,500rpm (uncontrolled) ......................................................................... 56 

5.22 Rotor displacement at bearing B in Y-direction with 0.414   and gyroscopic 
effect at 187,500rpm (uncontrolled) ......................................................................... 56 



ix 

5.23 Phase portrait of rotor motion at bearing A in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm .............................................................................. 58 

5.24 Phase portrait of rotor motion at bearing B in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm .............................................................................. 58 

5.25 Phase portrait of rotor motion at bearing A in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm .............................................................................. 59 

5.26 Phase portrait of rotor motion at bearing B in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm .............................................................................. 59 

5.27 Phase portrait of rotor motion at bearing A in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm (uncontrolled) ...................................................... 60 

5.28 Phase portrait of rotor motion at bearing B in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm (uncontrolled) ...................................................... 61 

5.29 Phase portrait of rotor motion at bearing A in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm (uncontrolled) ...................................................... 61 

5.30 Phase portrait of rotor motion at bearing B in Y-direction with 0.414    and 
gyroscopic effect at 187,500rpm (uncontrolled) ...................................................... 62 

5.31 Phase portrait of rotor motion at bearing A in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 0.5 seconds) ............................................... 63 

5.32 Phase portrait of rotor motion at bearing B in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 0.5 seconds) ............................................... 63 

5.33 Phase portrait of rotor motion at bearing A in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 0.5 seconds) ............................................... 64 

5.34 Phase portrait of rotor motion at bearing B in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 0.5 seconds) ............................................... 64 

5.35 Poincare section of rotor motion at bearing A in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm .............................................................................. 66 

5.36 Poincare section of rotor motion at bearing B in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm .............................................................................. 66 

5.37 Poincare section of rotor motion at bearing A in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm .............................................................................. 67 



x 

5.38 Poincare section of rotor motion at bearing B in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm .............................................................................. 67 

5.39 Evolution of Poincare section .................................................................................. 68 

5.40 Poincare plot of rotor motion at bearing A in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 1 seconds) .................................................. 68 

5.41 Poincare plot of rotor motion at bearing B in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 1 seconds) .................................................. 69 

5.42 Poincare plot of rotor motion at bearing A in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 1 seconds) .................................................. 69 

5.43 Poincare plot of rotor motion at bearing B in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 1 seconds) .................................................. 70 

5.44 Instantaneous frequency of rotor motion at bearing A in X-direction with 
0.414   and gyroscopic effect at 187,500rpm ..................................................... 71 

5.45 Instantaneous frequency of rotor motion at bearing B in X-direction with 
0.414   and gyroscopic effect at 187,500rpm ..................................................... 72 

5.46 Instantaneous frequency of rotor motion at bearing A in Y-direction with 
0.414   and gyroscopic effect at 187,500rpm ..................................................... 72 

5.47 Instantaneous frequency of rotor motion at bearing B in Y-direction with 
0.414   and gyroscopic effect at 187,500rpm ..................................................... 73 

5.48 Time response of rotor vibration at bearing A in X-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm ......................................... 74 

5.49 Time response of rotor vibration at bearing B in X-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm ......................................... 75 

5.50 Time response of rotor vibration at bearing A in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm ......................................... 75 

5.51 Time response of rotor vibration at bearing B in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm ......................................... 76 

5.52 Phase portrait of rotor motion at bearing A in X-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm ......................................... 77 



xi 

5.53 Phase portrait of rotor motion at bearing B in X-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm ......................................... 78 

5.54 Phase portrait of rotor motion at bearing A in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm ......................................... 78 

5.55 Phase portrait of rotor motion at bearing B in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm ......................................... 79 

5.56 Phase portrait of rotor motion at bearing B in X-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm (after 1 seconds) ............. 79 

5.57 Phase portrait of rotor motion at bearing A in X-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm (after 1 seconds) ............. 80 

5.58 Phase portrait of rotor motion at bearing A in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm (after 1 seconds) ............. 80 

5.59 Phase portrait of rotor motion at bearing B in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm (after 1 seconds) ............. 81 

5.60 Poincare section of rotor motion at bearing B in X-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm ......................................... 81 

5.61 Poincare section of rotor motion at bearing A in X-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm ......................................... 82 

5.62 Poincare section of rotor motion at bearing A in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm ......................................... 82 

5.63 Poincare section of rotor motion at bearing B in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm ......................................... 83 

5.64 Instantaneous frequency of rotor motion at bearing A in X-direction with
0.414  , gyroscopic effect, and impulse excitation at 187,500rpm ..................... 84 

5.65 Instantaneous frequency of rotor motion at bearing B in X-direction with
0.414  , gyroscopic effect, and impulse excitation at 187,500rpm ..................... 84 

5.66 Instantaneous frequency of rotor motion at bearing A in Y-direction with
0.414  , gyroscopic effect, and impulse excitation at 187,500rpm ..................... 85 

5.67 Instantaneous frequency of rotor motion at bearing B in Y-direction with
0.414  , gyroscopic effect, and impulse excitation at 187,500rpm ..................... 85 



xii 

LIST OF TABLES 

TABLE Page 

5.1 System parameters ...................................................................................................... 37 

5.2 Comparison of rotor displacement amplitude at 150,000rpm and 187,500rpm in 
negative direction ....................................................................................................... 53 

5.3 Comparison of rotor displacement amplitude at 150,000rpm and 187,500rpm in 
positive direction ........................................................................................................ 54 



1 

CHAPTER I 

INTRODUCTION 

1.1 Overview 

As high performance rotary machinery such as wind mills becomes populous, alternative 

bearings that are effective in mitigating friction, vibration, and thermal generation are in 

high demand.  One of the alternatives is active magnetic bearings (AMBs).  AMBs are 

non-contact in that they exploit electro-magnetic force to suspend the rotor to maintain a 

desired “air gap,” which is the space between the rotor and stators (electro-magnets). 

Typically, an AMB system consists of two radial AMBs and one axial AMB that together 

as an integral unit controls five degree-of-freedoms (DOFs) in total.  As illustrated in Fig. 

1.1, the single radial AMB has two pairs of electromagnets as the stators.  They are made 

of laminated rings to reduce energy loss.  The coils wounded around these stators carry 

the driving currents controlled by the controllers (not shown).  The electromagnetic force 

field is generated in the cavity to suspend the rotor and to maintain a spatial clearance 

between the rotor and stators which is the air gap. 

         AMBs are found in many applications. For example, they enable the variations of 

damping and stiffness in suspension systems [1, 2] and compressors [3].  Their non-

contact nature is explored in the design of fly-wheel energy storage devices [4, 5] and 

pumps [3] to minimize rotor kinetic energy loss to friction and thermal generation.   Given 

their explicit advantages over the conventional mechanical bearings [6], AMBs are shown 

to be promising in machine tool spindle design [7].  AMBs have also found applications 

in biological systems including being employed as an essential component in artificial 
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hearts [2, 8].  Since alien contaminants such as dust, debris, and fluid resulted from 

lubricant-leakage or mechanical-contact could disperse through blood circulation and 

ultimately compromise the proper functioning of human organs, the implication of 

exploring AMBs as a viable alternative to fluid film bearings or mechanical bearings in 

human body is significant.  This is a typical example of AMBs being utilized to replace 

conventional rolling elements when the environment is of concern. 

Fig. 1.1 AMB configuration 
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1.2 Issues of Present Work 

Though studies are abundant and demonstrating promising potentials, however, two major 

issues hamper the broader application of AMBs.  The first is the disregard for the 

gyroscopic effect and geometry coupling that influence the magnitude as well as 

distribution of the electro-magnetic force in AMBs.  Not considering the two has a 

significant implication for the proper control of AMBs.  In describing AMB dynamics and 

subsequently establishing the corresponding dynamic system model, gyroscopic effect, 

which characterizes the gyroscopic motion of the rotor, is generally neglected [9, 10].  For 

short rotors the assumption of negligible gyroscopic effect is acceptable because the 

angular displacements of the rotor at both ends where AMBs are mounted can be assumed 

to be identical, thus resulting in no relative displacement.  However, for the long rotor 

considered in this thesis, the relative displacement is prominent and non-negligible.  The 

dynamics of the AMB system is incomplete without considering the gyroscopic effect.  

       An intensive literature review shows that the generation of electro-magnetic force is 

usually simplified by disregarding the geometry coupling effect so as to retaining the 

radial component and dropping the component perpendicular to it.  However, the 

perpendicular component can be significant enough to have an impact on the motion of 

the rotor when it is off the bearing center [9, 10].  AMB control cannot be effective without 

considering the geometry coupling effect. 

      The dominant method for controlling AMB systems is PID control where linearization 

is inevitably required for system modeling and controller design.  Linearization has been 

studied under the topics of sliding mode control for AMBs [11, 12] and input-output signal 
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linearization [13-17].  Linearization necessarily would misinterpret a nonlinear system 

such as AMBs of its true inherent characteristics.  Control of AMBs has conventionally 

been facilitated mainly in the time-domain.  Research focusing on the control of AMBs in 

both the time and frequency domains is rare.  Because dynamic instability is characterized 

by time-varying frequency and non-stationary spectrum [18, 19], the control of AMBs 

needs be executed in the time and frequency-domain concurrently to ensure stability and 

performance at high speed.  This is the reason why chatter is detrimental to surface finish 

and damaging to both the work-piece and the tool.  The hazardous effect is particularly 

prominent at high-speed drilling or milling operation when the excitation is of broad 

bandwidth.  Control of dynamic instability must be realized in the time and frequency 

domains simultaneously. 

1.3 Research Objective  

The proposed research is aimed to establish the feasibility of a high-speed AMB-rotor 

system so as to address the aforementioned issues through the implementation of a novel 

nonlinear controller design.  The objective of the research is of two-fold.  The first is to 

develop a comprehensive dynamic model allowing the highly nonlinear characteristics of 

a specific AMB-rotor configuration to be studied.  The second is to formulate a time-

frequency control methodology that is robust, requires no linearization, and incorporates 

no feedback.   
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1.3.1 Model Development 

Fig. 1.2 AMB model configuration (with impulse excitation applied at CG) 

Fig. 1.2 presents a five degree-of-freedom (DOF) AMB-supported rotor model used 

for the research.  Because they can negatively impact the motion and stability of the AMB-

rotor system, gyroscopic and geometry coupling effects are considered in the system’s 

equations of motion (EOM).  The radial and polar moments of inertia of the rotor are 

included in the EOM with the length of the rotor explicitly being specified.  The 

corresponding EOM that incorporates gyroscopic effect has been derived as follows: 

 1
ax bx dx

r

x f f f
m

   (1.1) 



6 

1
)( ay by dy

r

y f f f
m

   (1.2)

2 sinsinp p x

r r r

I I M

I I I
     

   
      
   

    (1.3)

 2sin sin sin cos sin cosp p y

r r r

I I M

I I I
          

   
        
   

     (1.4) 

sin
sin cos x z

p

M M

I

     
     (1.5)

2 2x ax bx

l l
M f f   (1.6)

2 2y ay by

l l
M f f  (1.7)

˙
2cosdy rf m t    

 
 (1.8)

˙
2sindx rf m t    

 
 (1.9)

  ˙
22
cosp r

d

I I
f tl  

    
 

 (1.10)

  ˙
22
sinp r

d

I I
f tl  

    
 

 (1.11)

where axf , bxf , ayf , and byf  are the electro-magnetic actuation force components generated 

by the two supporting AMBs, bearings A and B, in the x- and y-directions. ψ ,  and   
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denote the angular displacements, and   and   are the static eccentricity and dynamic 

eccentricity, respectively.  

          The effect of geometry coupling is considered for the comprehensive description of 

the electrical-magnetic force in the AMB-rotor model.  With the consideration of the 

parameter, denoted as   in the followings, the electro-magnetic force can be decomposed 

into two perpendicular components allowing forces along different axes in bearing A to 

be readily correlated as follows: 

 1 2 3 4
a

ax a a a a

x
f f f f f

h
      
 

(1.12)

 3 4 1 2
a

ay a a a a

y
f f f f f

h
      
 

(1.13)

1.3.2 Controller Design 

Nonlinear control of AMBs and magnetic levitation systems were investigated in [20] and 

[21] where linearization was applied to simplify the EOMs.  In this thesis, a novel control 

scheme is formulated to control the AMB-rotor model system described above.  The 

scheme employs wavelets and filtered-x LMS (FXLMS) algorithm as two of the physical 

features.  The controller is developed without resorting to linearization which is a common 

practice of the controller design community. With the implementation of filtered-x LMS 

algorithm, probable mathematical singularity and physical instability at uncontrollable 

frequencies is avoided, thus ensuring the proper control of the model system response in 
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the frequency domain.  The controller, which is adaptive, is so designed that the control 

parameters are updated in real-time to warrant desired system response at all time.  

       Numerical investigations are performed using the following (four) models of different 

considerations for system parameters: (1) model without considering gyroscopic effect; 

(2) model without considering geometry coupling; (3) model with both gyroscopic effect 

and geometry coupling included; and (4) model with a broad bandwidth, brief duration 

impulse excitation.  

1.3.3 Research Plan with Tasks 

To meet the research objective defined above, it is imperative that a solid plan along with 

definitive tasks is developed.  The followings are specific tasks generated to address all 

the issues regarding the application of AMBs, and, once properly executed, to substantiate 

the applicability of AMBs to high speed spindle design.   

1. Create an AMB-rotor design concept

2. Derive the corresponding dynamic model that describes the AMB-rotor design

3. Develop and implement a nonlinear time-frequency controller design based on the

derived model

4. Generate numerical results to validate the model as well as the controller design
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CHAPTER II 

 DYNAMICS OF AMB-SUPPORTED ROTOR 

The diagram in Fig. 2.1 shows a solid cylindrical shaft that is supported by two active 

magnetic bearings (AMBs), Bearing A and Bearing B.   At where the geometric center 

(CG) is located a coordinate system xyz is defined.  In addition to the three translational 

degrees-of-freedom, three rotational degrees-of-freedoms are also specified using 

notations ,  , and  as shown.  

Fig. 2.1 AMB system 

The translational and rotational motions of the rotor can be described using the 

Newton’s Laws as follows, 
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 m r

d
F I m v

dt
 
   (2.1) 

 d
M H I

dt
 

   (2.2)

with F


 and M


 being the external force and the mass moment of the rotor, respectively, 

mI


and H


the linear and angular momentum vectors, rm and v


 the mass and velocity

vector of the rotor, and I  and 


 the inertia tensor and angular velocity vector of the rotor. 

As the rotor rotates the corresponding inertia tensor I  varies with respect to the stationary 

reference frame defined by xyz.  As such a coordinate system of rotation   is attached 

to the center of mass for the evaluation of the moment vector in Eq. (2.3) in the following 

   d
I I M

dt 


       
 

  

Assuming that mass imbalance is negligible, the inertia tensor and angular velocity vector 

of the rotor are 

0 0

0 0

0 0

r

r

p

I

I I

I


 
 

  
 
 

(2.3)

1

2

3

sin cos

cos sin

sin

    
    
   

  
      

      

 
 
 

(2.4)

where rI  and pI  are the radial and polar moments of inertia of the rotor and ,  , and 

  denote the angular displacements associated with the stationary coordinates.  Since 
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angles   and   are generally very small in applications, the small angle approximations 

that cos 1   and sin 0   are commonly adopted.  No such approximations will be 

followed in the derivations below so as to incorporate no linearization. 

Rearranging Eq. (2.5) we have 

1

2

3

cos sin 0

sin cos 0

sin 0 1

   
   
  

    
         
    
    





(2.5)

Similarly, the moment with respect to the rotating frame is  

cos sin 0

sin cos 0

sin 0 1
xyzM M

 
 


 
   
 
 

(2.6)

Substituting Eqs. (2.6) and (2.7) into Eq. (2.3), one has 

   
 
 

 

 
 

 

sin cos sin cossin cos

cos sin cos sin cos sin

sinsin sin

r r

r r

p p

I I
d d

I I I I
dt dt

I I


          
              

       

                                      

   
    

   

  

which subsequently leads to the following equations that govern the motion of the rotor in 

the xyz-coordinates.    

2 sinsinp p x

r r r

I I M

I I I
     

   
      
   

    (2.7)

 2sin sin sin cos sin cosp p y

r r r

I I M

I I I
          

   
        
   

     (2.8) 

sin
sin cos x z

p

M M

I

     
     (2.9)
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In the interest of studying the motion of the rotor in the xy-plane, it is assumed that there 

is no force applied along, or moment exerted about, the z-axis.  The non-zero moments are 

therefore 

2 2x ax bx

l l
M f f   (2.10)

2 2y ay by

l l
M f f  (2.11)

It is self-explanatory in Eqs. (2.14)-(2.17) below that axf , bxf , ayf , and byf  are the electro-

magnetic actuation force components generated by the bearings A and B in the x- and y-

directions.  As is noted in [9], axf and ayf  are coupled.  So are bxf  and byf .  The coupling is

established in the following through α, a physical quantity called geometry coupling

parameter,   

 1 2 3 4
a

ax a a a a

x
f f f f f

h
      
 

(2.12)

 1 2 3 4
b

bx b b b b

x
f f f f f

h
      
 

(2.13)

 3 4 1 2
a

ay a a a a

y
f f f f f

h
      
 

(2.14)

 3 4 1 2
b

by b b b b

y
f f f f f

h
      
 

(2.15)

When the small angle assumption is considered, that is, when sin 0  , the governing 

equations become  
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p x

r r

I M

I I
 

 
  
 

  (2.16)

p y

r r

I M

I I
 

 
  
 

  (2.17)

Eqs. (2.18) and (2.19) are commonly employed to represent the dynamics of a spinning 

rotor.  However, such a linearized version is not valid for describing rotor motions at high 

speed. 

          In the case of a long rotor, gyroscopic effects are anything but negligible.  When the 

length of the rotor, l, is prominent, the displacement components, ax  and ay , of the shaft

at Bearing A, and the displacement components, bx  and by  at Bearing B, are correlated 

with the displacements of the mass center of the rotor, x and y, as follows: 

sinax x l   (2.18)

sinay y l   (2.19)

sinbx x l   (2.20)

sinby y l   (2.21)

The rotor is initially set at and aligned with the geometric centers of the active magnetic 

bearings A and B.  However, the presence of the rotor’s own weight induces a static 

eccentricity,  , and a dynamic eccentricity , , that are both non-zero.  Although small

in magnitude, nevertheless, neglecting the eccentricities is considered inappropriate.  The 

imbalances due to the eccentricities can be determined as force components as 
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˙
2cosdy rf m t    

 
 (2.22)

˙
2sindx rf m t    

 
 (2.23)

  ˙
22
cosp r

d

I I
f tl  

    
 

 (2.24)

  ˙
22
sinp r

d

I I
f tl  

    
 

 (2.25)

The motion of the rotor in the xy-plane can be fully characterized using the following four 

equations: 

 1
ax bx dx

r

x f f f
m

   (2.26)

1
)( ay by dy

r

y f f f
m

   (2.27)

2 sinsinp p x

r r r

I I M

I I I
     

   
      
   

    (2.28)

 2sin sin cos sin cn ossip p y

r r r

I I M

I I I
          

   
        
   

     (2.29) 

Of the 4 model cases studied in the thesis; namely, (1) model without considering 

gyroscopic effect, (2) model without considering geometry coupling, (3) model with both 

gyroscopic effect and geometry coupling included, and (4) model with a broad bandwidth, 

brief duration impulse excitation, Eqs. (2.28)-(2.31) correspond to Model Case (3).   



15 

When gyroscopic effect is ignored, the motion of the rotor is exclusively 

translational.  The dynamics of the rotor can then be described by the following set of 

equations which involve no angular motions: 

 1
ax bx dx

r

x f f f
m

   (2.30)

1
)( ay by dy

r

y f f f
m

   (2.31)

 1 2 3 4
a

ax a a a a

x
f f f f f

h
      
 

(2.32)

 1 2 3 4
b

bx b b b b

x
f f f f f

h
      
 

(2.33)

 3 4 1 2
a

ay a a a a

y
f f f f f

h
      
 

(2.34)

 3 4 1 2
b

by b b b b

y
f f f f f

h
      
 

(2.35)

where  

a bx x x  (2.36)

a by y y  (2.37)

It is understood that Eqs. (2.32)-(2.39) correspond to Model Case (1). 

The decoupling of electro-magnetic forces given in Eqs. (2.14)-(2.17) constitutes 

Model Case (2).  The corresponding equations of motion are listed in Eqs. (2.40)-(2.47) 

below 

 1
ax bx dx

r

x f f f
m

   (2.38)
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1
)( ay by dy

r

y f f f
m

   (2.39)

2 sinsinp p x

r r r

I I M

I I I
     

   
      
   

    (2.40)

 2sin sin cos sin cn ossip p y

r r r

I I M

I I I
          

   
        
   

     (2.41) 

where  

1 2ax a af f f  (2.42)

1 2bx b bf f f  (2.43)

3 4ay a af f f  (2.44)

3 4by b bf f f  (2.45)

In Model Case (4) an impulse is applied to the rotor in the x-direction.  This is 

implemented by incorporating the impulse excitation ( )x t  in Model Case (3) into the 

equation below 

 1
( )ax bx d

r
xxx f f f

m
t   (2.46)
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CHAPTER III 

 ELECTRO-MECHANICAL DYNAMICS 

In the first half of the Chapter III the physical principles governing the electromagnetic 

actuation force are derived in detail.  The electro-mechanical system model is then 

presented as the state-variable representation that describes the dynamics of the AMB-

rotor model. 

3.1 Electromagnetic Actuation Force  

An active magnetic bearing is comprised of a stator and a rotor.  The rotor is a shaft 

elevated in the bearing cavity by the electromagnetic attraction forces induced by the 

stator, which is the electromagnetic force generator.  Two stators are considered in this 

investigation and each of them consists of four individual components.  Fig. 1.1 in the 

Chapter I gives such an arrangement where the 2 stators exert forces that drive the radial 

motion of the rotor in the xy-plane.  Each individual component of the stator is wrapped 

by conducting coils.  When current is induced in the coils, the electro-magnet pairs create 

a field of magnetic flux that elevates the rotor and maintains a spatial clearance between 

the rotor and the stator.  The clearance is called the air gap.  

The quantity of magnetic lines created by an electro-magnet is characterized by 

the magnetic flux,   .  Since the total magnetic flux is uniform, a parameter named 

magnetic flux density, B, can be defined as follows which is the number of magnetic lines 

per unit area: 
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g

B
A


 (3.1)

where gA  is the area under the air gap in the electro-magnet. 

           The ability of a coil in producing flux is defined as the magneto-motive force, 

which is the product of the number of coils, N, and the current running through the coils, 

i. The magnetic field intensity H, which is the magneto-motive force per unit length, is

described using the flux path length  l  whose definition is depicted in Fig. 3.1: 

Ni
H

l
 (3.2)

Magnetic field intensity and flux intensity are correlated through two permeability 

constants: 

0 rB H  (3.3)

where 7
0 4 10 /H m     is the permeability of the free space and r  is the relative 

permeability whose value depends on the medium on which the magnetic field exerts.   For 

air and most non-magnetic materials the relative permeability 1.0r  . 

             Analogous to resistance in electric circuits, reluctance is the parameter introduced 

to characterize the resistance in magnetic circuits,  

Ni
R 


 (3.4)

Or alternatively using Eqs. (3.1)–(3.3),  

0 r g

l
R

A 
 (3.5)
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           Before proceeding further with derivations, the following assumptions are made: 

(1) Flux leakage is negligibly small, meaning that the flux goes through the rotor and 

stator without losses. 

(2) Fringing effect, the spreading of the magnetic flux lines in the air gap, is negligible. 

(3) Constant permeability of the iron.  That is, the permeability of the rotor and stator 

stays constant. 

(4) The cross-section of the iron is uniform along the entire magnetic loop. 

            The force is generated along the magnetic loop l , which is constituted by the loop 

length ironl  in the iron and h, the nominal air gap at the initial equilibrium state. 

Considering Eqs. (3.4) and (3.5) and substituting ironl  and h, yields a new expression forΦ

as follows, 

 0 0

2 iron

g gr iron

l

A A

Ni
h

  

 


(3.6)

 Substituting Eq. (3.6) into Eq. (3.1) results in the following alternative expression for B, 

 

0

2 iron

r iron

Ni
B

l
h








(3.7)

Since the permeability of iron is approximately 20,000, which is significantly greater than 

1, Eq. (3.7) can be reduced to be 
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0

2

Ni
B

h


 (3.8)

Fig. 3.1 Schematic of an electro-magnet 

Also, the magnetic flux can be represented as 

0Φ
2

gN A i

h


 (3.9)
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The magnetic bearing actuator force is given by 

2

0

gB A
f


 (3.10)

The force can now be shown to be a function of N, i, 0 , gA  , and h,  

2 2
0

24
gN A i

f
h


 (3.11)

As is seen in Fig. 3.2, the electromagnetic force in the radial direction is the resultant of 

two perpendicular components 1pf  and 2pf  .  Hence, the force can be shown to be 

2 2
0

2
cos

4
gN A i

f
h


 (3.12)

where   is the geometry coupling parameter defined as follow [20, 21], 

tann

p

f

f
   (3.13)

       As the rotor spins, the geometric centers of the rotor at both ends do not stay in line 

with the bearing centers, thus necessarily resulting in time-varying air gaps in both the 

bearings.  This renders it imperative that electromagnetic forces be modeled as the 

function of the rotor position.  In this thesis, two active magnetic bearings are employed 

to support the motion of a flexible rotor.  At each bearing, four actuator forces are 

generated by two pairs of electromagnets driven by a specified current.  The magnetic 

actuation forces in Bearing A as seen in Fig. 3.3 are: 
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Fig. 3.2 Configuration of electro-magnetic forces 

 

2
1

1 2cos a
a

a

ki
f

h x



(3.14)

 

2
2

2 2cos a
a

a

ki
f

h x



(3.15)

 

2
3

3 2cos a
a

a

ki
f

h y



(3.16)

 

2
4

4 2cos a
a

a

ki
f

h y



(3.17)
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Fig. 3.3 Cross-section of bearing A 

The forces generated in Bearing B can also be seen in Fig 3.4 they are similar as follows: 

 

2
1

1 2cos
b

b
b

ki
f

h x



(3.18)

 

2
2

2 2cos
b

b
b

ki
f

h x



(3.19)

 
3

2

3 2cos b

b

b

ki
f

h y



(3.20)
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 
4

2

4 2cos b

b

b

ki
f

h y



(3.21)

where 
2

0

4
gN A

k


  is the magnetic force parameter. 

Fig. 3.4 Cross-section of bearing B 

3.2 State-Variable Representation 

Applying notations 1x x  , 2x x  , 1y y  , 2y y  , 1   , 2   , 1   , 2   , 

    to Eqs. (2.20)-(2.23), (2.24)-(2.27), (2.28)-(2.31), and (3.14)-(3.21), the state-
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variable representation of the AMB-rotor model system is then 

1 2x x (3.22)

 2

1
( )ax b d x

r
x xf f fx t

m
  (3.23)

1 2y y (3.24)

2 ( )
1

ay by dy
r

y f f f
m

   (3.25)

1 2  (3.26)

1 2  (3.27)

 2 sindx rf tm   (3.28)

 2cosdy rf tm   (3.29)

 2
2 2 2 1 2 1sin sin

2
p p

ax bx
r r r

d

I I l
f

I
ff

I I      
   

         
   

  (3.30) 

 
2

2
2 2 2 1 2 2 1 2 1 1sin sin sin cos( )(sin( ) cos )

2
p p

ay by
r r

d
r

I I l
t t f f

I I
f

I 



           



       



      (3.31) 

   22
cosp r

d

I
f l t

I
 


 (3.32)

   22
sinp r

d

I
f l t

I
 


 (3.33)
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 1 2 3 4

2 2 2 2
1 2 3 4

2 2 2 2
1 1 1 1 1 1 1 1( ( sin )) ( ( sin )) ( ( sin )) ( ( sin ))

2 2 2 2

cos

a
ax a a a a

a a a a

x
f f f f f

h

i i i i
k

l l l l
h x h x h y h y



 
   

     
 

  
  

     
            

 

      (3.34) 

 1 2 3 4

2 2 2 2
1 2 3 4

2 2 2 2
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      (3.37)  

       Eqs. (3.22) - (3.33) describe the mechanical dynamics, while Eqs. (3.34) - (3.37) 

govern the electro-magnetic force dynamics. It is noted that functions ( )x t  are the 

external excitations applied along the x-axis.
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CHAPTER IV 

CONTROLLER DESIGN 

4.1 Nonlinear Time-frequency Control Theory 

Nonlinear control of active magnetic bearings and magnetic levitation systems was studied 

in [22] and [23] in which linearization was employed.  In this thesis, a novel control 

scheme is developed and applied to the AMB-rotor system model elaborated in the 

previous chapters.  The scheme utilizes the discrete wavelet transformation (DWT) and 

Filtered-x LMS algorithm (FXLMS) to build a controller dedicated to the control of the 

system.  The controller is developed without resorting to linearization.  With the 

incorporation of the FXLMS algorithm, the mathematical singularity and physical 

instability at uncontrollable frequencies are avoided.  The algorithm ensures the updating 

of controller in real-time and also guarantees a desired system response at all time. 

       The novel control scheme consists of two major components: DWT and least-mean-

square adaptive filters to realize feed-forward control and on-line identification. 

Generally, the DWT can be expressed as a two-channel filters as shown in Fig 4.1.  

Fig. 4.1 Two-channel filter bank 

2

2

2

2
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The approximation, a[n], and detail, b[n], coefficients can be calculated as follows: 

         0 0
2 2

k k

a n h n k x k h k x n k     (4.1)

         1 1
2 2

k k

d n h n k x k h k x n k     (4.2)

where 0,1, 2n   .   Assume that the length of the high-pass filter and the low-pass 

filters are both 4, Eqs. (4.1) and (4.2) can be expressed as: 

aY T X (4.3)

where  aT  is the infinite analysis matrix of the following form: 

aT   
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(4.4)

Since X is the infinite array signal, Y can be expressed as:      

[ , [0], [1], [3], [0], [1], [2], ]TY a a a d d d   (4.5)
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In [24], a procedure named periodization is employed to substitute the infinite input signal 

as a finite one as follows 

[ [0], [1], [2], , [ 1], [ ]]N TX x x x x N x N  (4.6)

Since the input signal is truncated in this operation, aT , the analysis matrix, also needs to 

be truncated as an N N  matrix, N
aT .  The truncated filter coefficients are put back into a 

proper positon in the matrix to make the signal consistent with the periodic signal.  Eq. 

(4.4) then takes up the form below 

1
N X N

p paY T X  (4.7)

where p is the decomposition level.   In this research, a second level decomposition is 

considered.  For 8N  , the truncated analysis matrix is  

X
aT   
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(4.8) 

Eq. (4.7) can be rearranged using Eq. (4.8) into a concise form 

1
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Np N
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p
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A
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D
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 
(4.9)
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with  

1 [0] [1] [ 1]2
T

p
NA a a a

    (4.10)

1 [0] [1] [ 1]2
T

p
ND d d d

    (4.11)

The synthesis can be expressed as: 

N N N
saT T I (4.12)

where NI  is the identity matrix, meaning that  

  1N N
s aT T


 (4.13)

When 0p   , Eq. (4.9) is defined as the first level decomposition.  The second level 

decomposition can be expressed as follows 
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(4.14)

 FXLMS is effective in noise reduction, in which adaptive filters use the noise near 

the sound source as the reference to generate a compensating signal to cancel the noise. 

The residual error is then used to adapt (update) the coefficients of the active filter to 

minimize the mean-square-error in real-time.  In this section, the wavelet transformation 

matrix is employed to transform an input signal into its corresponding wavelet coefficient 

array.  The scheme is demonstrated using the architecture shown in Fig. 4.2.  In the figure 

the input signal x(n) is the electric current that runs through the AMB-rotor system.  d(n) 

is the desired displacement of the rotor at where the two magnetic bearings are mounted, 



32 

which is set to be 0. ( )u n is the current after being controlled. To incorporate the N N

analysis matrix, the signal vector is digitized as follows 

( ) [ ( ), ( 1) , ( 1)]TX n x n x n x n N    (4.15)

Fig. 4.2 Architecture of wavelet based time-frequency controller 

( ) [ ( ), ( 1) , ( 1)]TU n u n u n u n N    (4.16)

'( ) [ '( ), '( 1) , '( 1)]TX n x n x n x n N    (4.17)

( ) [ ( ), ( 1) , ( 1)]TE n e n e n e n N    (4.18)
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( ) [ ( ), ( 1) , ( 1)]TF n f n f n f n N     (4.19)

All the vectors are first-in-last-out arrays (FILO), i.e. the N-th data is replaced by the 

incoming one.  Hence one vector shares most of the terms with the last one.  The first 

adaptive filter W1 aims to identify the instability including chaotic response of the system 

on-line.  The second adaptive filter W2 aims to adapt the weight on-line, thus preforming 

as a feed-forward controller.  

The weights of the two filters are 

1 1,0 1,1 1, 1( ) [ ( ), ( 1), , ( 1)]T
NW n w n w n w n N     (4.20)

2 2,0 2,1 2, 1( ) [ ( ), ( 1), , ( 1)]T
NW n w n w n w n N    (4.21)

( )e n , the identification error between the desired displacement d(n) and the output from 

the adaptive filter, 1W , are calculated as

 ( ) ( )e n y n d n  (4.22)

in which ( )y n  can be expressed using Eq. (4.23) below 

1( ) ( ) ( )Ty n W n TU n (4.23)

The error between the desired displacement of the rotor and the output of W2 is 

    ( )e n y n d n  (4.24)

The difference between the ‘identification error’ and the ‘error’ is therefore  

    ( )f n e n e n  (4.25)

The weights of the two adaptive filters are updated by a least- mean-square algorithm as 

follows 
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   1 1 1
1 ( ) ( )W n W n TU n f n    (4.26)

   2 2 2
1 ( ) ( )W n W n TX n f n     (4.27)

where 1( ) ( ) ( )Tx n W n TX n  , and 1 , 2  are filter step sizes. 

4.2 Controller Configuration and Control Scheme   

Each electromagnet is controlled individually.  Hence a total of eight controllers are 

employed.  The electric current provided to each electromagnet is a combination of the 

control current (controlled by the dedicated controller) and the bias current added to the 

coil.  The current running through the coils of each magnet is therefore not a constant but 

rather varying as follows 

,, 1, 2 3, 4an cabias n ni i i    (4.28)

,, 1, 2 3, 4bm cbbias m mi i i    (4.29)

where 2bias Ai   is biased from the power supply, ,ref cani and ,ref cbmi  are the currents 

before control, which is constant at 0.5A , and cani , cbmi  are the currents after control.    

The following flow chart depicts the control logic developed for the control of the 

AMB-rotor model system.  
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Fig. 4.3 Control flow chart 

In the Fig.4.3,      is the desired response of the rotor and      is the output 

response. It is understood that the current input to the electro-magnetic force 

dynamics equations is the sum of the bias current and the current after control, i.e. ian and 

ibn , which followed from Eqs. (4.28)- (4.29). 

݁ሺ݊ሻ ݅௕௜௔௦ 
 

∑ 

݅௥௘௙,௖௔௡ 
݅௖௔௡ 

݅௖௕௠

+
݀ሺ݊ ሻ 

݅௥௘௙,௖௕௠ 

௔݂௫,௔௬ 

 ሺ݊ሻݕ

Nonlinear 

Controller 

Electro-magnetic 
force dynamics  
Eqs. (3.34) - 
(3.37)  

Mechanical   
Dynamics  
Eqs (3.22)-
(3.33) ௕݂௫,௕௬ 

݁ሺ݊ሻ ݅௕௜௔௦ 

- 

݀ሺ݊ ሻ ݕሺ݊ሻ 



36 

CHAPTER V 

NUMERICAL RESULTS AND DISCUSSION 

In this chapter, the control of the AMB-rotor model system is performed using a 0.00001s 

integration step size in the MATLAB/Simulink environment.  System responses with and 

without considering gyroscopic effect and geometry coupling are discussed in the first two 

sections of the chapter.  The maximum speed within which the AMB-rotor system 

maintains a specified range of vibrations is determined in the time-domain using the 

system’s time response.  This specified range of vibrations is set to be one-fourth of the 

air-gap.  The effectiveness of the controller design is demonstrated under the particular 

speed using visualization tools including phase portraits and Poincare sections.  In the 

third part of  Chapter V the control scheme developed for the AMB-rotore system is 

validated in the simultaneous time-frequency domain by employing instantaneous 

frequency (IF).  An external impact of 5,000 m/s2 in magnitude and 0.001s in duration is 

also applied at 0.1s while the system is operating at 187,500rpm.  Controlled responses to 

the impulse are discussed in the final section.  Table 5.1 tabulates all the system parameters 

used to generate the results found in the following sections. 
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Table 5.1 System parameters 

Parameters Symbol Value Unit

Mass of rotor m 13.9  kg

Polar moments of 
Inertia 

pI 21.34 10 2kg m

Radial moment of 
Inertia  

rI 12.32 10 2kg m

Area of coil gA 31.532 10  2m

Nominal air gap h  0.55  millimeters

Coil resistance R 10.7 ohm 

Nominal coil 
inductance 

L 2.85 miliHenry

Number of turns of 
coil 

N 400 Turns 

Permeability of free 
space  

0  74 10  /Henry meter

Magnetic force 
parameters 

k 
57.7 10 2Nm

A  

Excitation signal at 
X-direction 

( )x t 5000
2

m
s

Excitation signal at 
Y-direction 

( )y t  0
2

m
s

Static eccentricity   51 10  meter

Dynamic 
eccentricity 

  44 10 rad

Geometry coupling 
parameter  

  0.414 NULL
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5.1 System Responses with and without Gyroscopic Effect  

Gyroscopic effect, which is characteristic of all spinning shafts (rotors), is commonly 

ignored in rotor-dynamic modeling [9, 10].  When the rotor is short, the assumption of 

negligible gyroscopic effect is acceptable because the displacements at both ends of the 

rotor are almost identical.  However, for the case of the long flexible rotor considered in 

this thesis, the displacements at either end of the rotor are non-negligibly different.  With 

the controller off-line and no external perturbation applied, the impact of disregarding 

gyroscopic effect is considered when the model system is operating at 15,000rpm.  In the 

followings the case of without considering gyroscopic effect is made through setting both 

the polar and radial moments of inertia to zero.   

Fig. 5.1 Displacements of rotor at bearing A in X-direction with and without gyroscopic 
effect at 15,000rpm 
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Fig. 5.2 Displacements of rotor at bearing B in X-direction with and without gyroscopic 
effect at 15,000rpm 

Fig. 5.3 Displacements of rotor at bearing A in Y-direction with and without gyroscopic 
effect at 15,000rpm 



40 

Fig. 5.4 Displacements of rotor at bearing B in Y-direction with and without gyroscopic 
effect at 15,000rpm 

The responses of the AMB-rotor system that consider gyroscopic effect are plotted 

in Figs. 5.1-5.4 against their counterparts that do not.  Since gyroscopic effect is not 

accounted for, the displacement components at both bearing locations are identical. 

Consequently the blue response lines in Figs. 5.1 and 5.2 are found to be the same.  The 

same observation can be made with the blue lines in Figs. 5.3 and 5.4. Unlike the case 

without considering gyroscopic effect, the time responses in red that correspond to 

retaining gyroscopic effect are different in each case.  The deviation of the red lines from 

the blue ones in Figs. 5.1-5.4 is significant enough to suggest that the dynamics of the 

rotor as described by the cases in which gyroscopic effect is disregarded is fundamentally 

different from the cases that consider the effect.  This is further confirmed by the spectral 

responses in Fig. 5.5 which demonstrate different dynamic signatures. 
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(a) (e)

(b) (f)

(c) (g)

(d)              (h)

Fig. 5.5  Spectral responses of model with gyrosopic effect (a)-(d) and without gyrosopic 
effect (e)-(h)
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      In addition to the noted disagreements in the time responses, the statement that 

considering gyroscopic effect or not renders different dynamics is further supported by re-

examining Figs. 5.1 and 5.2 up close.  While the time responses of the cases without 

gyroscopic effect are all bounded, the time responses with gyroscopic effect are not.  The 

corresponding vibration amplitude is seen to increase with time, thus portraying a state of 

motion that is characteristically dissimilar to the state described by the blue lines. Also, it 

is seen that the oscillation frequencies and spectra are not identical.  The implication of 

dropping gyroscopic effect in rotor-dynamic modeling is particularly consequential in 

misinterpreting the true characteristics of the rotor at high speed.  Given such prominent 

disagreements and the potential risk of generating misleading results, it is only proper that 

gyroscopic effect is considered throughout the rest of the chapter.    

5.2 System Responses without and with Geometry Coupling 

As shown in Fig. 3.3, the radial component of the electromagnetic force generated by the 

magnet has two sets of orthogonal components, 1pf and 1nf  , 2pf and 2nf . When the 

geometric center of the rotor is not aligned with the bearing center, the symmetry of the 2 

components along the y-axis, 1pf and 2pf , is broken, thus resulting in varying resultant 

forces of elevation, af and bf , in Bearings A and B.  This effect is accounted for by 

employing the geometry coupling parameter   which was previously defined in Chapter

III. Given the 8-magnet configuration of the AMB system explored in this study, the angle

of the magnet is therefore / 8  .  Hence, tan( ) 0.414   .   
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The primary objective of the section is to determine the impact of the geometry 

coupling parameter on the system response.  Knowledge to be established as to whether 

the parameter can be ignored is essential to the accurate control of the AMB-rotor system. 

In the followings, two cases, namely 0.414   and 0  , are considered for the AMB-

rotor model system running at 15,000rpm with the developed controller off-line and the 

gyroscopic effect being retained.  

When the geometry coupling parameter is taken as zero in Fig. 3.3, the horizontal 

force component vanishes, thus risking overestimating the elevation force, f, and 

underestimating the dynamics of the rotor along the horizontal direction. Figs. 5.6-5.9 give 

the comparisons of the displacement responses of the model system at the 2 bearing 

locations, where the red lines correspond to the cases when geometry coupling is 

considered, while the blue lines are the time histories correspond to without geometry 

coupling. The corresponding frequency responses are also examined in the Fourier 

domain. Fig.5.10 provides a visual comparison of the spectra, with the column on the left-

hand side demonstrating a spectral signature that is definitively different from the one 

associated with the column on the right-hand side.    
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Fig. 5.6 Comparison of rotor displacements at bearing A in X-direction for 0   and 
0.414   with gyroscopic effect at 15,000rpm 

Fig. 5.7 Comparison of rotor displacements at bearing B in X-direction for 0   and 
0.414   with gyroscopic effect at 15,000rpm 
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Fig. 5.8 Comparison of rotor displacements at bearing A in Y-direction for 0   and  
0.414   with gyroscopic effect at 15,000rpm 

Fig. 5.9 Comparison of rotor displacements at bearing B in Y-direction for 0   and 
0.414   with gyroscopic effect at 15,000rpm 
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(a) (e)

(b) (f)

(c) (g)

(d)                              (h)

Fig. 5.10  Spectral responses of model with geometry coupling (a)-(d) and without 
geometry coupling (e)-(h)



47 

It is evident that the time and frequency responses of the two cases differ at the 

fundamental level.  Since the horizontal force components, 1nf  and 2nf , are both

nonexistent when geometry coupling is ignored, the dynamics manifested through 

vibration amplitude and oscillation frequency is not in agreement with the motion states 

described by the red lines. The disagreement is most noted in the frequency domain in in 

Fig. 5.10, thus indicative of 2 distinctive sets of inherent characteristics.  Similar to the 

conclusion drawn in the previous section, the implication of disregarding geometry 

coupling in AMB modeling is in erroneously describing the true dynamics of the rotor at 

high speed.  Such prominent disagreements could very well lead to physically erroneous 

description of the rotor behavior.  Geometry coupling is therefore considered in the study 

to avoid bearing the risk of misinterpretation.    

5.3 Performance of Controller Design 

With the rotor being flexible, whirling becomes prominent with increasing speed and, as 

a direct result, serves to aggravate the vibrations of the rotor.  It is crucial for the vibration 

amplitude of the AMB supported rotor to be controlled with desired accuracy.  To mitigate 

the impact due to whirling so as to ensure the proper control of the AMB-rotor system, the 

displacement of the rotor needs to be controlled within a specified tolerance.  The tolerance 

specified for the study is 0.1375 mm, which is 25% of the air gap.  With the controller on-

line, the maximum speed at which the displacement of the rotor abides to the desired 

tolerance is found to be 187,500rpm. A 20% lower speed at  
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150,000rpm is also considered alongside this maximum speed of 187,500rpm to provide 

contrast and, in so doing, to examine the performance of the controller design in 

controlling the highly nonlinear system whose response is also highly non-stationary at 

such extreme speeds. 

Fig. 5.11 Rotor displacement at bearing A in X-direction with 0.414   and gyroscopic 
effect at 187,500rpm (controlled)
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Fig. 5.12 Rotor displacement at bearing B in X-direction with 0.414   and gyroscopic 
effect at 187,500rpm (controlled) 

Fig. 5.13 Rotor displacement at bearing A in Y-direction with 0.414   and gyroscopic 
effect at 187,500rpm (controlled)
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Fig. 5.14 Rotor displacement at bearing B in Y-direction with 0.414   and gyroscopic 
effect at 187,500rpm (controlled)

Fig. 5.15 Rotor displacement at bearing A in X-direction with 0.414   and gyroscopic 
effect at 150,000rpm (controlled) 
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Fig. 5.16 Rotor displacement at bearing B in X-direction with 0.414   and gyroscopic 
effect at 150,000rpm (controlled) 

Fig. 5.17 Rotor displacement at bearing A in Y-direction with 0.414   and gyroscopic 
effect at 150,000rpm (controlled) 
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Fig. 5.18 Rotor displacement at bearing B in Y-direction with 0.414   and gyroscopic 
effect at 150,000rpm (controlled) 

Using the data provided in Figs. 5.11-5.18, the maximum and minimum 

displacements of the rotor at the 2 bearing locations in response to 150,000rpm and 

187,500rpm are tabulated.  Table 5.2 shows the vibration amplitudes in the negative 

direction and Table 5.3 gives those that are in the positive direction.  
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Table 5.2 Comparison of rotor displacement amplitude at 150,000rpm and 187,500rpm 
in negative direction 

Speed (rpm) 

Amplitude (mm) 

150,000 187,500

Bearing A  

X-direction 

0.03002

0.1166 

Bearing B 

X-direction 0.03008  0.1164 

Bearing A  

Y-direction 0.03311  0.1149 

Bearing B 

Y-direction 0.03371  0.1168 
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Table 5.3 Comparison of rotor displacement amplitude at 150,000rpm and 187,500rpm 
in positive direction 

Speed (rpm) 

Amplitude (mm) 

150,000 187,500

Bearing A  

X-direction 0.02761  0.1162 

Bearing B 

X-direction 0.02727 0.1176 

Bearing A  

Y-direction 0.02959 0.1167 

Bearing B 

Y-direction 0.02983  0.1159 

In Tables 5.2 and 5.3 one sees that the vibration displacements at 187,500rpm are 

at least 350% greater than their counterparts at 150,000rpm in either direction.  The 

controller is seen to effectively keep the rotor displacements within the given 0.1375mm 

tight tolerance at both speeds.  A second examination of the figures and tables show that 

after the initial 0.5 seconds, the time responses at 150,000rpm are bounded within 0.01  

mm.  The corresponding time responses within the same time window at 187,500 rpm are 

between 0.06  and 0.06 mm.  While the speed increases only by 20%, the controlled 

bound achieved by the controller is 600% greater.  The impact of speed on the stability of 

the rotor and the functioning quality of the controller is therefore unmistakable.   
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Fig. 5.19 Rotor displacement at bearing A in X-direction with 0.414    and 
gyroscopic effect at 187,500rpm (uncontrolled) 

Fig. 5.20 Rotor displacement at bearing B in X-direction with 0.414   and gyroscopic 
effect at 187,500rpm (uncontrolled) 
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Fig. 5.21 Rotor displacement at bearing A in Y-direction with 0.414   and gyroscopic 
effect at 187,500rpm (uncontrolled) 

Fig. 5.22 Rotor displacement at bearing B in Y-direction with 0.414   and gyroscopic 
effect at 187,500rpm (uncontrolled) 
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As is indicated by the crash lines in Figs. 5.19-5.22, the AMB-rotor system is 

extremely unstable at speed 187,500 rpm without the controller being brought on-line. 

The state of motion of the system rapidly deteriorates and the 0.55mm air gap is seen 

violated almost immediately at approximately 0.0012 seconds in Figs. 5.19 and 5.20.  The 

various time responses of the AMB-rotor model system in Figs. 5.11-5.18 are all bounded 

under the maximum speed.  However, it is difficult to tell from the bounded time responses 

as to the dynamic state of the system and whether the instability was properly mitigated 

and replaced with stability with the presence of the controller.   

A phase portrait is the geometric representation of the trajectory of a dynamic system 

in the state space.  The periodic or otherwise aperiodic motion of the system can be 

visually established by studying the geometric characteristics and flow path of the 

trajectory.  Figs 5.23-5.26 are the phase portraits of the rotor motion corresponding to the 

first 1.5 seconds upon system start-up.  They all present symmetrical, well-defined 

geometries understood as limit-cycles that necessarily suggest a stable state of quasi-

periodic motion.   In other words, while the controlled system responses are periodic, 

nevertheless, they are also not chaotic.  
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Fig. 5.23 Phase portrait of rotor motion at bearing A in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm 

Fig. 5.24 Phase portrait of rotor motion at bearing B in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm 
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Fig. 5.25 Phase portrait of rotor motion at bearing A in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm 

Fig. 5.26 Phase portrait of rotor motion at bearing B in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm 
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  As oppose to the controlled responses whose state space variables follow a trajectory 

that evolves into a limit-cycle, as depicted in the phase portraits in Figs. 5.27-5.30, the 

system responses without the controller exerting control to mitigate instability are 

anything but a limit-cycle.  

Fig. 5.27 Phase portrait of rotor motion at bearing A in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm (uncontrolled)  
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Fig. 5.28 Phase portrait of rotor motion at bearing B in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm (uncontrolled) 

Fig. 5.29 Phase portrait of rotor motion at bearing A in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm (uncontrolled) 
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Fig. 5.30 Phase portrait of rotor motion at bearing B in Y-direction with 0.414    and 
gyroscopic effect at 187,500rpm (uncontrolled) 

It is seen in Figs. 5.11-5.18 that the system responses are all bounded between 0.5 

seconds and 1.5 seconds subject to the action of the controller.  The phase portraits 

correspond to this time window are displayed in Figs. 5.31-5.34 below.  It is understood 

that these figures are reproductions of Figs. 5.23-5.26 by removing the portion of each of 

the trajectory that corresponds to the initial 0.5 seconds of the time response.   That the 

system responses are symmetrically bounded and quasi-periodically stable is evident from 

the figures.   
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Fig. 5.31 Phase portrait of rotor motion at bearing A in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 0.5 seconds) 

Fig. 5.32 Phase portrait of rotor motion at bearing B in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 0.5 seconds) 
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Fig. 5.33 Phase portrait of rotor motion at bearing A in Y-direction with 0.414    and 
gyroscopic effect at 187,500rpm (after 0.5 seconds) 

Fig. 5.34 Phase portrait of rotor motion at bearing B in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 0.5 seconds) 
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Fractals are sets that have fine details at all possible scales and the quality of self-

similarity at different scales.  However, fractals are hard to discern in the state space 

described by using phase portraits.  Poincare sections are generally considered a better 

alternative to phase portraits for revealing fractal structures in the state space.  In the 

followings, Poincare sections are generated by sampling the state space trajectory using 

the reciprocal of the driving frequency of the rotor.  Given the maximum rotor speed at 

187,500rpm, the sampling period is therefore 0.00032 seconds.  The Poincare sections 

shown in Figs. 5.35 - 5.39 all demonstrate distinctive, well-defined fractal structures that 

are spiral-like.  Such clearly delineated fractals suggest that the controlled system is 

deterministic and that the controlled response is predictable.   A meticulous examination 

of Fig. 5.35 reveals that the trajectory spirals toward the center of the section.  This is 

demonstrated in Fig. 5.39 where 4 sets of 80 consecutive points are plotted sequentially to 

show the time evolution of the trajectory following the order of black-red-blue-yellow.  It 

can be seen that the flow starts from the outer perimeter and progresses toward the center. 

Similar observations can also be made with Figs. 5.36-5.38.   

As is evident in Figs. 5.40-5.43 where the Poincare sections plotted therein 

correspond to the trajectories collected between the 1-to-1.5 seconds window that all 

spirals evolve into yet another well-defined fractal structure, with the two sections in Figs. 

5.40 and 5.41 looking like a ciabatta bun and the two sections in Figs. 5.42 and 5.43 like 

a crushed ring.     
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Fig. 5.35 Poincare section of rotor motion at bearing A in X-direction with 0.414 
and gyroscopic effect at 187,500rpm 

Fig. 5.36 Poincare section of rotor motion at bearing B in X-direction with 0.414 
and gyroscopic effect at 187,500rpm
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Fig. 5.37 Poincare section of rotor motion at bearing A in Y-direction with 0.414 
and gyroscopic effect at 187,500rpm

Fig. 5.38 Poincare plot of rotor motion at bearing B in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm 
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Fig. 5.39 Evolution of Poincare section 

Fig. 5.40 Poincare plot of rotor motion at bearing A in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 1 seconds) 
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Fig. 5.41 Poincare plot of rotor motion at bearing B in X-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 1 seconds) 

Fig. 5.42 Poincare plot of rotor motion at bearing A in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 1 seconds) 
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Fig. 5.43 Poincare plot of rotor motion at bearing B in Y-direction with 0.414   and 
gyroscopic effect at 187,500rpm (after 1 seconds) 

To further demonstrate the performance of the controller design, the controlled 

responses found in Figs. 5.11-5.14 are transformed into the joint time-frequency domain 

using the Hilbert-Hung Transform (HHT).  Unlike Fourier-based transformation methods, 

the HHT does not use a set of predetermined basis functions.  But rather it uses the 

Empirical Mode Decomposition (EMD) scheme to extract from the signal itself a set of 

orthogonal, mono-components called Intrinsic Mode functions (IMFs).  IMFs are then 

processed by Hilbert transform to determine the instantaneous frequency of each of the 

extracted component.   The notion of instantaneous frequency has been found feasible for 

the accurate estimation of system characteristics and nonlinearities [25].  It is seen in Figs. 

5.44-5.47 that, with the online nonlinear time-frequency control, the bandwidths of all the 

non-stationary spectra are restrained and all the time-varying high frequency components 
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indicative of strong bifurcated states of nonlinearity are all properly mitigated well before 

the 0.5 seconds time mark.  These observations necessarily testify to the fact that the highly 

nonlinear AMB-rotor system is under the control of the controller at the extreme speed of 

187,500rpm in both the time and frequency domains. 

Fig. 5.44 Instantaneous frequency of rotor motion at bearing A in X-direction with 
0.414   and gyroscopic effect at 187,500rpm 
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Fig. 5.45 Instantaneous frequency of rotor motion at bearing B in X-direction with 
0.414   and gyroscopic effect at 187,500rpm 

Fig. 5.46 Instantaneous frequency of rotor motion at bearing A in Y-direction with 
0.414   and gyroscopic effect at 187,500rpm 
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Fig. 5.47 Instantaneous frequency of rotor motion at bearing B in Y-direction with 
0.414   and gyroscopic effect at 187,500rpm
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5.4 Robustness of Controller Design 

In the preceding section the performance of the controller in properly controlling the 

AMB-rotor system at extreme speeds was evaluated without considering external 

excitation or perturbation.  However, external excitation is inevitable in real-world 

applications.  Of all the unexpected, potentially harmful external input, impulse of short 

duration (and thus of broad spectrum) is of great concern for high-speed rotor-dynamic 

systems. External excitations that are spectrally broad bandwidth are particularly 

detrimental to the AMB-rotor system.  They are most potent in compromising the control 

quality.  In the present section, an impulse of 5,000m/s2 in magnitude and 0.001seconds 

in duration is applied to the rotor at 187,500rpm.   

Fig. 5.48 Time response of rotor vibration at bearing A in X-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm 
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Fig. 5.49 Time response of rotor vibration at bearing B in X-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm 

Fig. 5.50 Time response of rotor vibration at bearing A in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm
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Fig. 5.51 Time response of rotor vibration at bearing B in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm 

As shown in Figs. 5.48 and 5.49, the impulse is imposed along the X-direction at 

where the sudden peaks are registered which is 0.1 seconds after start-up.  It is evident 

from reviewing Figs. 5.48-5.51 that the time-domain X- and Y-direction vibrations of the 

rotor in response to the short impact are all bounded under the exertion of the nonlinear 

time-frequency controller. 

The phase portraits of the rotor motion given in Figs. 5.52-5.55 are geometrically 

similar to those seen in Figs. 5.23-5.26 in being symmetrical and bounded. This is the first 

indication that, under the jurisdiction of the nonlinear time-frequency controller, the 

controlled response of the AMB-suspended rotor subject to the imposed impact is a limit-

cycle. That the controlled motion state of the rotor is indeed a well-defined limit-cycle is 

further confirmed by Figs. 5.56-5.63. The corresponding phase portraits in Figs. 5.56-5.59 

convey that the rotor motion is quasi-periodic and stable.  The definitive fractal structures 
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seen in Figs. 5.60-5.63, on the other hand, suggest that the controlled AMB system is both 

deterministic and predicable - the same conclusions drawn using Figs. 5.35-5.43 with the 

case without considering the exertion of the impact. 

Fig. 5.52 Phase portrait of rotor motion at bearing A in X-direction with 0.414   , 
gyroscopic effect and impulse excitation at 187,500rpm 
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Fig. 5.53 Phase portrait of rotor motion at bearing B in X-direction with 0.414    , 
gyroscopic effect and impulse excitation at 187,500rpm 

Fig. 5.54 Phase portrait of rotor motion at bearing A in Y-direction with 0.414   , 
gyroscopic effect and impulse excitation at 187,500rpm
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Fig. 5.55 Phase portrait of rotor motion at bearing B in Y-direction with 0.414   , 
gyroscopic effect and impulse excitation at 187,500rpm 

Fig. 5.56 Phase portrait of rotor motion at bearing B in X-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm (after 1 seconds) 
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Fig. 5.57 Phase portrait of rotor motion at bearing A in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm (after 1 seconds) 

Fig. 5.58 Phase portrait of rotor motion at bearing A in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm (after 1 seconds) 
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Fig. 5.59 Phase portrait of rotor motion at bearing B in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm (after 1 seconds) 

Fig. 5.60 Poincare section of rotor motion at bearing B in X-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm 
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Fig. 5.61 Poincare section of rotor motion at bearing A in X-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm 

Fig. 5.62 Poincare section of rotor motion at bearing A in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm 
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Fig. 5.63 Poincare section of rotor motion at bearing B in Y-direction with 0.414  , 
gyroscopic effect and impulse excitation at 187,500rpm 

The prominent spectral feature of the imposed impact can be readily perceived in 

the corresponding instantaneous frequency plots in Figs. 5.64-5.67. A comparison made 

with the instantaneous frequencies given in Figs. 5.44-5.47, one sees that the action of the 

impulse results in broadband, non-stationary spectral responses whose presence 

significantly aggravate the dynamic stability of the system and temporarily delays the 

functioning of the controller. With the nonlinear time-frequency controller remaining on-

line, the vibration amplitude is ultimately suppressed and the spectral responses in terms 

of bandwidth and the non-stationary of the high frequency components sufficiently limited 

and restrained.    
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Fig. 5.64 Instantaneous frequency of rotor motion at bearing A in X-direction with
0.414  , gyroscopic effect, and impulse excitation at 187,500rpm 

Fig. 5.65 Instantaneous frequency of rotor motion at bearing B in X-direction with
0.414  , gyroscopic effect, and impulse excitation at 187,500rpm 
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Fig. 5.66 Instantaneous frequency of rotor motion at bearing A in Y-direction with    
0.414  , gyroscopic effect, and impulse excitation at 187,500rpm 

Fig. 5.67 Instantaneous frequency of rotor motion at bearing B in Y-direction with
0.414  , gyroscopic effect, and impulse excitation at 187,500rpm 
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CHAPTER VI 

SUMMARY AND FUTURE WORK 

6.1 Summary 

The critical review performed in Chapter I indicated that the description of the underlying 

electro-magnetic-mechanical dynamics governing the motion of AMBs is incomplete.  

In Chapter II the equations of motion of a typical configuration of an AMB-supported 

rotor was derived in the Cartesian coordinate system.  The translational and 

gyroscopic motions of the rotor were properly modeled without ignoring the angular 

moment of inertia that is made prominent by the finite length of the rotor.  No 

linearization was employed in developing the equations of motion, so as to retain the 

true characteristics of the underlying rotor-dynamics. Since the electro-magnetic 

forces along the X and Y directions are physically coupled, a geometry coupling 

parameter was introduced to account for this coupling effect.  The rotor considered 

for the study is flexible.  Hence a finite eccentricity due to the weight of the rotor was 

also built into the equations of motion to allow for the imbalances of the rotor to be 

properly modeled. 

In Section 3.1, the physical principle governing the generation of the 

electromagnetic actuation force was derived, followed by the derivation of the driving 

current for the AMB-rotor system in which the correlation of the electric current with 

the displacement of the rotor was established.  The electro-mechanical system model was 

then presented as the state-variable representation that described the AMB-rotor 

model dynamics.  The geometry coupling and gyroscopic effects were also 

considered in this state-variables representation. 
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         In the first half of Chapter VI, the wavelet-based nonlinear time-frequency control 

theory was reviewed.  This novel control theory employs the following two major notions 

to realize on-line identification and feed-forward control in the simultaneous time-

frequency domain: the discrete wavelet transform (DWT) and least-mean-square adaptive 

(LMS) filters.  The architecture of the controller design along with the control scheme was 

developed therein based on the state-variables representation of the AMB-rotor model 

system. 

        Numerical investigation into the effectiveness as well as performance of the 

nonlinear controller design was presented in Chapter V.  4 different model cases were 

considered in the chapter.  They were: (1) model without considering gyroscopic effect, 

(2) model with variation of the geometry coupling parameter, (3) model with both the 

gyroscopic and geometry coupling effects included, and (4) model with a brief impulse 

excitation.   In exploring the Model Case (3) the maximum speed of the model system was 

determined.  The speed was found to be 187,500rpm subject to a tight spatial constraint 

(tolerance) in the order of 0.1375mm.  Several conclusions were made from these model 

cases.  The first was that it was not proper to ignore gyroscopic effect and geometry 

coupling, whether individually or altogether, as in so doing the system response was 

inadvertently misrepresented at the fundamental level.  The second was that, with 

gyroscopic effect and geometry coupling both considered, the AMB-rotor model system 

was properly controlled at the maximum speed of the rotor.  By employing phase portraits, 

Poincare sections, and instantaneous frequency, the various (controlled) responses of the 

system were shown to be limit-cycles that were bandwidth limited and of definitive fractal 
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patterns, thus signifying a stable state of motion that was quasi-periodic and deterministic. 

That the nonlinear controller was effective, stable, and robust was the last conclusion made 

which was drawn on the fact that the adverse effects induced by a broad bandwidth 

impulse excitation imposed on the rotor at the maximum speed was effectively negated. 

The controller was shown to restore the extreme state of dynamic instability back to the 

quasi-periodic state of stability characterized by limit-cycle.   

6.2 Future Work 

The research has generated an in-depth knowledge base viable for the creation of a broad 

set of AMB-rotor systems.  Most importantly it provides the basis needed for the physical 

realization of a nonlinear controller configuration applicable to the robust control of AMB-

rotor systems at extreme operation speed.  While the endeavor documented in the thesis is 

both comprehensive and complete, however, more investigations into the followings are 

recommended.  The first would be to physically validate the controller design and establish 

that the particular AMB-rotor configuration can indeed be controlled to demonstrate 

unconditional state of stability at high speeds if not precisely 187,500rpm.  The second 

recommendation would be to consider the axial motion of the rotor in the model system. 

This can be done by incorporating magnetic thrust bearings (MTBs) to mitigate the 

translational motion of the rotor along the axial direction.  Testing of the revised 

configuration including the controller design should then be performed to validate as 

appropriate.    
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