Pseudo- par al I el CR subnanif ol ds of a compl ex space form

著者	Kon Nayuko
j ournal or publ i cat i on titl e	Tsukuba Jour nal of Nat hemat i cs
vol une	36
nunber	1
page range	$99-110$
year	2012
URL	ht t p: //hdl . handl e. net /2241/00148403

PSEUDO-PARALLEL CR SUBMANIFOLDS OF A COMPLEX SPACE FORM

By
Mayuko Kon

Abstract

We classify pseudo-parallel proper $C R$ submanifolds of a non-flat complex space form with semi-flat normal connection under the condition that the dimension of the holomorphic tangent space is greater than 2 .

1. Introduction

There are many results about real hypersurfaces immersed in a complex space form with additional conditions for the second fundamental form A. It is well known that there are no real hypersurface in a complex space form $M^{n}(c), c \neq 0$, of constant holomorphic sectional curvature $4 c$ with parallel second fundamental form. Moreover, Maeda [6] showed that no real hypersurface in $M^{n}(c), c>0$, $n \geq 3$, satisfies semi-parallel condition, that is, $R(X, Y) \cdot A=0$ for any X, Y tangent to the real hypersurface. Niebergall and Ryan [7] also proved the nonexistence of semi-parallel real hypersurface in $M^{2}(c), c \neq 0$.

If the second fundamental form A of a submanifold M satisfies

$$
R(X, Y) A=\alpha(X \wedge Y) A
$$

for any $X, Y \in T M, \alpha$ being a function, then A is said to be pseudo-parallel, that generalize the notion of semi-symmetric. In [5], Lobos and Ortega obtained the classification of the pseudo-parallel real hypersurfaces in $M^{n}(c), c \neq 0$, $n \geq 2$.

A submanifold M of a Kählerian manifold \tilde{M} is called a $C R$ submanifold of \tilde{M} if there exists a differentiable distribution $H: x \rightarrow H_{x} \subset T_{x}(M)$ on M satisfying the conditions that H is holomorphic, i.e., $J H_{x}=H_{x}$ for each $x \in M$,

[^0]and the complementary orthogonal distribution $H^{\perp}: x \rightarrow H_{x}^{\perp} \subset T_{x}(M)$ is antiinvariant, i.e. $J H_{x}^{\perp} \subset T_{x}(M)^{\perp}$ for each $x \in M$. Any real hypersurface of a Kählerian manifold is a $C R$ submanifold.

The main purpose of the present paper is to prove the following theorem.

Theorem. Let M be an n-dimensional proper CR submanifold of a complex space form $M^{m}(c), c= \pm 1$, with semi-flat normal connection. We suppose that the dimension h of the holomorphic tangent space >2. If the second fundamental form A satisfies $R(X, Y) A=\alpha(X \wedge Y) A$ for any X and Y tangent to M, α being a function, then α is constant and M is one of the following hypersurfaces of totally geodesic $M^{(n+1) / 2}(c)$ in $M^{m}(c)$;
i) If $c=+1$, then $\alpha=\cot ^{2}(r)$, for $0<r<\pi / 2$, and M is an open subset of a geodesic hypersphere of radius r.
ii) If $c=-1$, then
a) $1<\alpha=\operatorname{coth}^{2}(r)$, for $r>0$, and M is an open subset of a geodesic hypersphere of radius r;
b) $\alpha=1$, and M is an open subset of a horosphere;
c) $0<\alpha=\tanh ^{2}(r)<1$, for $r>0$, and M is an open subset of a tube of radius r over a totally geodesic $\mathbf{C} H^{(n-1) / 2}$.

2. Preliminaries

Let $M^{m}(c)$ denote the complex space form of complex dimension m (real dimension $2 m$) with constant holomorphic sectional curvature $4 c$. For the sake of simplicity, if $c>0$, we only use $c=+1$ and call it the complex projective space $\mathbf{C} P^{n}$, and if $c<0$, we just consider $c=-1$, so that we call it the complex hyperbolic space $\mathbf{C} H^{n}$. We denote by J the almost complex structure of $M^{m}(c)$. The Hermitian metric of $M^{m}(c)$ is denoted by G.

Let M be a real n-dimensional Riemannian manifold isometrically immersed in $M^{m}(c)$. We denote by g the Riemannian metric induced on M from G, and by p the codimension of M, that is, $p=2 m-n$.

We denote by $T_{x}(M)$ and $T_{x}(M)^{\perp}$ the tangent space and the normal space of M respectively.

We denote by $\tilde{\nabla}$ the covariant differentiation in $M^{m}(c)$, and by ∇ the one in M determined by the induced metric. Then the Gauss and Weingarten formulas are given respectively by

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y), \quad \tilde{\nabla}_{X} V=-A_{V} X+D_{X} V
$$

for any vector fields X and Y tangent to M and any vector field V normal to M, where D denotes the covariant differentiation with respect to the linear connection induced in the normal bundle $T(M)^{\perp}$ of M. We call both A and B the second fundamental form of M and are related by $G(B(X, Y), V)=g\left(A_{V} X, Y\right)$. The second fundamental form A and B are symmetric.

For $x \in M$, the first normal space $N_{1}(x)$ is the orthogonal complement in $T_{x}(M)^{\perp}$ of the set

$$
N_{0}(x)=\left\{V \in T_{x}(M)^{\perp} \mid A_{V}=0\right\} .
$$

The covariant derivative $\left(\nabla_{X} A\right)_{V} Y$ of A is defined to be

$$
\left(\nabla_{X} A\right)_{V} Y=\nabla_{X}\left(A_{V} Y\right)-A_{D_{X} V} Y-A_{V} \nabla_{X} Y
$$

If $\left(\nabla_{X} A\right)_{V} Y=0$ for any vector fields X and Y tangent to M, then the second fundamental form of M is said to be parallel in the direction of the normal vector V. If the second fundamental form is parallel in any direction, it is said to be parallel.

Definition. A submanifold M of a Kählerian manifold \tilde{M} is called a $C R$ submanifold of \tilde{M} if there exists a differentiable distribution $H: x \rightarrow H_{x} \subset T_{x}(M)$ on M satisfying the following conditions:
(i) H is holomorphic, i.e., $J H_{x}=H_{x}$ for each $x \in M$, and
(ii) the complementary orthogonal distribution $H^{\perp}: x \rightarrow H_{x}^{\perp} \subset T_{x}(M)$ is anti-invariant, i.e. $J H_{x}^{\perp} \subset T_{x}(M)^{\perp}$ for each $x \in M$.

We call H_{x} a holomorphic tangent space.

In the following, we put $\operatorname{dim} H_{x}=h, \operatorname{dim} H_{x}^{\perp}=q$. If $q=0$ (resp. $h=0$) for any $x \in M$, then the $C R$ submanifold M is a holomorphic submanifold (resp. anti-invariant submanifold or totally real submanifold) of \tilde{M}. If a $C R$ submanifold satisfies $h>0$ and $q>0$, then it is said to be proper.

In the sequel, we assume that M is a $C R$ submanifold of $M^{m}(c)$. The tangent space $T_{x}(M)$ of M is decomposed as $T_{x}(M)=H_{x}+H_{x}^{\perp}$ at each point x of M, where H_{x}^{\perp} denotes the orthogonal complement of H_{x} in $T_{x}(M)$. Similarly, we see that $T_{x}(M)^{\perp}=J H_{x}^{\perp}+N_{x}$, where N_{x} is the orthogonal complement of $J H_{x}^{\perp}$ in $T_{x}(M)^{\perp}$.

For any vector field X tangent to M, we put

$$
J X=P X+F X
$$

where $P X$ is the tangential part of $J X$ and $F X$ the normal part of $J X$. Then P is an endomorphism on the tangent bundle $T(M)$ and F is a normal bundle valued 1-form on the tangent bundle $T(M)$. We notice that $P^{3}+P=0$.

For any vector field V normal to M, we put

$$
J V=t V+f V,
$$

where $t V$ is the tangential part of $J V$ and $f V$ the normal part of $J V$. Then we see that $F P=0, f F=0, t f=0$ and $P t=0$.

We define the covariant derivatives of P, F, t and f by $\left(\nabla_{X} P\right) Y=$ $\nabla_{X}(P Y)-P \nabla_{X} Y,\left(\nabla_{X} F\right) Y=D_{X}(F Y)-F \nabla_{X} Y,\left(\nabla_{X} t\right) V=\nabla_{X}(t V)-t D_{X} V$ and $\left(\nabla_{X} f\right) V=D_{X}(f V)-f D_{X} V$, respectively. We then have

$$
\begin{aligned}
& \left(\nabla_{X} P\right) Y=A_{F Y} X+t B(X, Y), \quad\left(\nabla_{X} F\right) Y=-B(X, P Y)+f B(X, Y), \\
& \left(\nabla_{X} t\right) V=-P A_{V} X+A_{f V} X, \quad\left(\nabla_{X} f\right) V=-F A_{V} X-B(X, t V)
\end{aligned}
$$

For any vector fields X and Y in $H_{x}^{\perp}=t T(M)^{\perp}$ we obtain

$$
\begin{equation*}
A_{F X} Y=A_{F Y} X \tag{2.1}
\end{equation*}
$$

We denote by R the Riemannian curvature tensor field of M. Then the equation of Gauss is given by

$$
\begin{aligned}
R(X, Y) Z= & c\{g(Y, Z) X-g(X, Z) Y+g(P Y, Z) P X-g(P X, Z) P Y \\
& -2 g(P X, Y) P Z\}+A_{B(Y, Z)} X-A_{B(X, Z)} Y
\end{aligned}
$$

for any X, Y and Z tangent to M.
The equation of Codazzi of M is given by

$$
\begin{aligned}
& g\left(\left(\nabla_{X} A\right)_{V} Y, Z\right)-g\left(\left(\nabla_{Y} A\right)_{V} X, Z\right) \\
& \quad=c\{g(Y, P Z) g(X, t V)-g(X, P Z) g(Y, t V)-2 g(X, P Y) g(Z, t V)\}
\end{aligned}
$$

We define the curvature tensor R^{\perp} of the normal bundle of M by

$$
R^{\perp}(X, Y) V=D_{X} D_{Y} V-D_{Y} D_{X} V-D_{[X, Y]} V
$$

Then we have the equation of Ricci

$$
\begin{aligned}
& G\left(R^{\perp}(X, Y) V, U\right)+g\left(\left[A_{U}, A_{V}\right] X, Y\right) \\
& \quad=c\{g(Y, t V) g(X, t U)-g(X, t V) g(Y, t U)-2 g(X, P Y) g(V, f U)\}
\end{aligned}
$$

If R^{\perp} vanishes identically, the normal connection of M is said to be flat. If $R^{\perp}(X, Y) V=2 c g(X, P Y) f V$, then the normal connection of M is said to be semi-flat (see [9]).

We put

$$
(R(X, Y) A)_{V} Z=R(X, Y) A_{V} Z-A_{R^{\perp}(X, Y) V} Z-A_{V} R(X, Y) Z
$$

If $(R(X, Y) A)_{V}=0$ for any X, Y and Z tangent to M and any V normal to M, then the second fundamental form A is said to be semi-parallel. This condition is weaker than $\nabla A=0$. We call M a semi-parallel $C R$ submanifold if its second fundamental form A is semi-parallel. We proved the following theorem [4].

Theorem A. Let M be an n-dimensional proper $C R$ submanifold of a complex space form $M^{m}(c), c \neq 0$, with semi-flat normal connection. If the dimension of the holomorphic tangent space is greater than 2, then the second fundamental form A is not semi-parallel.

On the condition that a $C R$ manifold is proper, we note the following.

Remark 2.1. Let M be a complex n-dimensional ($n \geq 2$) holomorphic submanifold of a complex space form $M^{m}(c)$. If the normal connection of M is semi-flat, then M is either totally geodesic or M is an Einstein Kählerian hypersurface of $M^{m}(c)$ with scalar curvature $n^{2} c$. The latter case occurs only when $c>0$ (see Ishihara [2]). Then the second fundamental form of M is parallel.

Let M be an n-dimensional anti-invariant submanifold of a complex space form $M^{m}(c)$. If the normal connection of M is semi-flat, then the normal connection of M is flat by $P=0$. There exists an anti-invariant submanifold with flat normal connection and parallel second fundamental form. For example, $\pi\left(S^{1}\left(r_{1}\right) \times \cdots \times S^{1}\left(r_{n+1}\right)\right), \quad \sum r_{i}=1$, where $\pi: S^{2 m+1} \rightarrow \mathbf{C} P^{m}$ is the standard fibration, is an anti-invariant submanifold with flat normal connection and parallel second fundamental form of $\mathbf{C} P^{m}$ (c.f. Yano-Kon [9; p. 237, Theorem 3.17]).

3. Pseudo-Parallel CR Submanifolds

In this section, we prove our main theorem. First we prepare some lemmas.

Lemma 3.1. Let M be an n-dimensional proper CR submanifold of a complex space form $M^{m}(c), c= \pm 1$, with semi-flat normal connection. If the second
fundamental form A satisfies $R(X, Y) A=\alpha(X \wedge Y) A$ for any X and Y tangent to M, α being a function, then, for any vector V normal to M, A satisfies

$$
\begin{align*}
& A_{f V} X=0 \quad \text { for } X \in T_{x}(M) \tag{3.1}\\
& g\left(A_{V} X, Y\right)=0 \quad \text { for } X \in H_{x}, Y \in H_{x}^{\perp} \tag{3.2}
\end{align*}
$$

Moreover, if the dimension h of the holomorphic tangent space >2,

$$
\begin{align*}
& g\left(A_{V} X, Y\right)=-\frac{1}{h} \operatorname{tr}\left(A_{V} P^{2}\right) g(X, Y) \quad \text { for } X, Y \in H_{x}, \tag{3.3}\\
& P A_{V}=A_{V} P \tag{3.4}
\end{align*}
$$

where tr denotes the trace of an operator.
Proof. Since $(R(X, Y) A)_{V} Z=\alpha((X \wedge Y) A)_{V} Z$ for any tangent vectors $X, Y, Z \in T_{x}(M)$, we have

$$
\begin{align*}
R(X, Y) A_{V} Z= & A_{R^{\perp}(X, Y) V} Z+A_{V} R(X, Y) Z+\alpha((X \wedge Y) A)_{V} Z \tag{3.5}\\
= & 2 c g(X, P Y) A_{f V} Z+A_{V} R(X, Y) Z+\alpha g\left(X, A_{V} Z\right) Y \\
& -\alpha g\left(Y, A_{V} Z\right) X-\alpha g(X, Z) A_{V} Y+\alpha g(Y, Z) A_{V} X .
\end{align*}
$$

Thus we have

$$
\begin{aligned}
\operatorname{tr} R(X, Y) A_{V} A_{f V}= & 2 c g(X, P Y) \operatorname{tr} A_{f V}^{2}+\operatorname{tr} R(X, Y) A_{f V} A_{V} \\
& +2 \alpha g\left(X, A_{V} A_{f V} Y\right)-2 \alpha g\left(Y, A_{V} A_{f V} X\right)
\end{aligned}
$$

By the equation of Ricci, we have $A_{f V} A_{V}=A_{V} A_{f V}$. Thus we obtain $\operatorname{tr} A_{f V}^{2}=0$, which proves (3.1).

Using the equation of Gauss and (3.5),

$$
\begin{align*}
c(g(Y, & \left.A_{V} Z\right) X-g\left(X, A_{V} Z\right) Y+g\left(P Y, A_{V} Z\right) P X \tag{3.6}\\
& \left.-g\left(P X, A_{V} Z\right) P Y-2 g(P X, Y) P A_{V} Z\right) \\
& +A_{B\left(Y, A_{V} Z\right)} X-A_{B\left(X, A_{V} Z\right)} Y \\
= & c\left(g(Y, Z) A_{V} X-g(X, Z) A_{V} Y+g(P Y, Z) A_{V} P X\right. \\
& \left.-g(P X, Z) A_{V} P Y-2 g(P X, Y) A_{V} P Z\right) \\
& +A_{V} A_{B(Y, Z)} X-A_{V} A_{B(X, Z)} Y+\alpha g\left(X, A_{V} Z\right) Y \\
& -\alpha g\left(Y, A_{V} Z\right) X-\alpha g(X, Z) A_{V} Y+\alpha g(Y, Z) A_{V} X .
\end{align*}
$$

We take an orthonormal basis $\left\{e_{1}, \ldots, e_{h}, t v_{1}:=e_{h+1}, \ldots, t v_{q}:=e_{n}\right\}$ of $T_{x}(M)$, where $\left\{e_{1}, \ldots, e_{h}\right\}$ is an orthonormal basis of H_{x} and $\left\{v_{1}, \ldots, v_{q}\right\}$ is an orthonormal basis of $J H_{x}^{\perp}$. Then we have

$$
\begin{aligned}
& c \sum_{i}\left(g\left(P e_{i}, A_{V} X\right) g\left(e_{i}, Y\right)-g\left(e_{i}, A_{V} X\right) g\left(P e_{i}, Y\right)+g\left(P^{2} e_{i}, A_{V} X\right) g\left(P e_{i}, Y\right)\right. \\
&\left.-g\left(P e_{i}, A_{V} X\right)\left(P^{2} e_{i}, Y\right)-2 g\left(P e_{i}, P e_{i}\right) g\left(P A_{V} X, Y\right)\right) \\
&+\sum_{i} g\left(A_{B\left(P e_{i}, A_{V} X\right)} e_{i}, Y\right)-\sum_{i} g\left(A_{B\left(e_{i}, A_{V} X\right)} P e_{i}, Y\right) \\
&= c \sum_{i}\left(g\left(P e_{i}, X\right) g\left(A_{V} e_{i}, Y\right)-g\left(e_{i}, X\right) g\left(A_{V} P e_{i}, Y\right)+g\left(P^{2} e_{i}, X\right) g\left(A_{V} P e_{i}, Y\right)\right. \\
&\left.-g\left(P e_{i}, X\right) g\left(A_{V} P^{2} e_{i}, Y\right)-2 g\left(P e_{i}, P e_{i}\right) g\left(A_{V} P X, Y\right)\right) \\
&+\sum_{i} g\left(A_{V} A_{B\left(P e_{i}, X\right)} e_{i}, Y\right)-\sum_{i} g\left(A_{V} A_{B\left(e_{i}, X\right)} P e_{i}, Y\right) \\
&-2 \alpha g\left(A_{V} X, P Y\right)-2 \alpha g\left(A_{V} P X, Y\right) .
\end{aligned}
$$

By the straightforward computation,

$$
\begin{align*}
& (h c+2 c+\alpha) g\left(A_{V} X, P Y\right)+(h c+2 c+\alpha) g\left(A_{V} P X, Y\right) \tag{3.7}\\
& \quad-\sum_{a} g\left(A_{a} P A_{a} A_{V} X, Y\right)+\sum_{a} g\left(A_{V} A_{a} P A_{a} X, Y\right)=0
\end{align*}
$$

where A_{a} is the second fundamental form in the direction of v_{a}. Similarly, putting $Y=e_{i}, Z=P e_{i}$ into (3.6) and taking inner product with Y and summation,

$$
\begin{align*}
& c\left(\left(1+\frac{\alpha}{c}\right) g\left(P A_{V} X, Y\right)-\operatorname{tr}\left(P^{2} A_{V}\right) g(P X, Y)+g\left(P^{2} A_{V} P X, Y\right)\right. \tag{3.8}\\
& \left.\quad-2 g\left(P A_{V} P^{2} X, Y\right)-\left(h+2+\frac{\alpha}{c}\right) g\left(A_{V} P X, Y\right)\right) \\
& \quad+\sum_{a} \operatorname{tr}\left(A_{a} A_{V} P\right) g\left(A_{a} X, Y\right)+\sum_{a} g\left(A_{a} P A_{V} A_{a} X, Y\right) \\
& \quad-\sum_{a} g\left(A_{V} A_{a} P A_{a} X, Y\right)=0 .
\end{align*}
$$

Since the normal connection of M is semi-flat, the equation of Ricci gives

$$
A_{a} A_{b} X=A_{b} A_{a} X
$$

for any $X \in H_{x}$. So we have $\operatorname{tr}\left(A_{a} A_{V} P\right)=0$. Moreover, we obtain

$$
\begin{aligned}
g\left(A_{a} P A_{V} A_{a} X, Y\right) & =-g\left(X, A_{a} A_{V} P A_{a} Y\right)=g\left(X, A_{V} A_{a} P A_{a} Y\right) \\
& =g\left(A_{a} P A_{a} A_{V} X, Y\right)
\end{aligned}
$$

for any $X, Y \in T_{x}(M)$. Thus, using (3.7) and (3.8), we have

$$
\begin{align*}
& -(h+1) \operatorname{cg}\left(P A_{V} X, Y\right)-c \operatorname{tr}\left(P^{2} A_{V}\right) g(P X, Y) \tag{3.9}\\
& \quad+c g\left(P^{2} A_{V} P X, Y\right)-2 c g\left(P A_{V} P^{2} X, Y\right)=0
\end{align*}
$$

for any $X, Y \in T_{x}(M)$. When $X \in H_{x}^{\perp}$ and $Y \in H_{x}$, from (3.9),

$$
\begin{equation*}
g\left(P A_{V} X, Y\right)=-g\left(A_{V} X, P Y\right)=0 \tag{3.10}
\end{equation*}
$$

So we have $g\left(A_{V} X, Y\right)=0$ for $X \in H_{x}^{\perp}$ and $Y \in H_{x}$.
Next we consider the case that $X, Y \in H_{x}$. Since $P X, P Y \in H_{x}$, using (3.9),

$$
\begin{aligned}
& -(h-1) c g\left(P A_{V} X, Y\right)-c g\left(A_{V} P X, Y\right)-c \operatorname{tr}\left(P^{2} A_{V}\right) g(P X, Y)=0, \\
& -(h-1) c g\left(A_{V} P X, Y\right)+c g\left(A_{V} X, P Y\right)-c \operatorname{tr}\left(P^{2} A_{V}\right) g(P X, Y)=0 .
\end{aligned}
$$

From these equations and the assumption that $h>2$, we get

$$
g\left(P A_{V} X, Y\right)-g\left(A_{V} P X, Y\right)=0 .
$$

From this and (3.10), we have $P A_{V}=A_{V} P$ for any V normal to M.
Thus we obtain

$$
g\left(A_{V} X, Y\right)=-\frac{1}{h} \operatorname{tr}\left(A_{V} P^{2}\right) g(X, Y)
$$

for $X, Y \in H_{x}$.

By the similar method of Lemma 2.2 of [8], we have

Lemma 3.2. Let M be a $C R$ submanifold of $M^{m}(c)$ with semi-flat normal connection. If $A_{f V}=0$ and $P A_{V}=A_{V} P$ for any vector field V normal to M, then

$$
\begin{aligned}
g\left(A_{U} X, A_{V} Y\right)= & c g(X, Y) g(t U, t V)-c g(F X, U) g(F Y, V) \\
& -\sum_{i} g\left(A_{U} t V, e_{i}\right) g\left(A_{F_{i}} X, Y\right)
\end{aligned}
$$

Using these lemmas, we prove
Lemma 3.3. Let M be an n-dimensional proper CR submanifold of a complex space form $M^{m}(c), c= \pm 1$, with semi-flat normal connection. We suppose that the dimension h of the holomorphic tangent space >2. If the second fundamental form A satisfies $R(X, Y) A=\alpha(X \wedge Y) A$ for any X and Y tangent to M, α being a function, then $\operatorname{dim} H_{x}^{\perp}=1$.

Proof. We suppose $\operatorname{dim} H_{x}^{\perp} \geq 2$. We can take an orthonormal basis $\left\{v_{1}, \ldots, v_{q}, v_{q+1}, \ldots, v_{p}\right\}$ of $T_{x}(M)^{\perp}$, where $v_{1}, \ldots, v_{q} \in F H_{x}^{\perp}$ and $v_{q+1}, \ldots, v_{p} \in N_{x}$. Since $A_{v_{1}}$ is symmetric, taking a suitable orthonormal basis $\left\{e_{1}, \ldots, e_{h}, e_{h+1}, \ldots\right.$, $\left.e_{h+q}\right\}$ of $T_{x}(M)$, where $e_{1}, \ldots, e_{h} \in H_{x}$ and $e_{h+1}, \ldots, e_{h+q} \in H_{x}^{\perp}, A_{v_{1}}=A_{1}$ can be represented by a matrix form

$$
A_{1}=\left(\begin{array}{ccc|ccc}
a_{1} & & 0 & & & \tag{3.11}\\
& \ddots & & & 0 & \\
0 & & a_{1} & & & \\
\hline & & & b_{1} & & 0 \\
& 0 & & & \ddots & \\
& & & 0 & & b_{q}
\end{array}\right)
$$

where $a_{1}=-(1 / h) \operatorname{tr}\left(A_{1} P^{2}\right)$. In the following, we use integers s, t, \ldots for $A_{1} e_{s}=a_{1} e_{s}$ and x, y, \ldots for $A_{1} e_{x}=b_{x} e_{x}$, respectively.

Putting $X=e_{x}, Y=e_{y}$ and $Z=e_{y}$ in (3.5) and taking an inner product with e_{x}, by the straightforward computation,

$$
\begin{equation*}
\left(b_{y}-b_{x}\right)\left(g\left(R\left(e_{x}, e_{y}\right) e_{y}, e_{x}\right)+\alpha\right)=0 \tag{3.12}
\end{equation*}
$$

Using (2.1), (3.2) and the equation of Gauss, for any $x \neq y$,

$$
\begin{aligned}
& g\left(R\left(e_{x}, e_{y}\right) e_{y}, e_{x}\right) \\
& \quad=c+g\left(A_{B\left(e_{y}, e_{y}\right)} e_{x}, e_{x}\right)-g\left(A_{B\left(e_{x}, e_{y}\right)} e_{y}, e_{x}\right) \\
& \quad=c+\sum_{a} g\left(A_{a} e_{x}, e_{x}\right) g\left(A_{a} e_{y}, e_{y}\right)-\sum_{a} g\left(A_{a} e_{y}, e_{x}\right) g\left(A_{a} e_{x}, e_{y}\right) \\
& \quad=c+\sum_{a} g\left(A_{F e_{x}} t v_{a}, e_{x}\right) g\left(A_{F e_{y}} t v_{a}, e_{y}\right)-\sum_{a} g\left(A_{F e_{y}} t v_{a}, e_{x}\right) g\left(A_{F e_{x}} t v_{a}, e_{y}\right) \\
& \quad=c+g\left(A_{F e_{y}} e_{y}, A_{F e_{x}} e_{x}\right)-g\left(A_{F e_{y}} e_{x}, A_{F e_{x}} e_{y}\right) .
\end{aligned}
$$

From Lemma 3.2 and (2.1), we have

$$
\begin{aligned}
g\left(A_{F e_{y}} e_{x}, A_{F e_{x}} e_{y}\right) & =g\left(A_{F e_{x}} e_{y}, A_{F e_{x}} e_{y}\right) \\
& =c-\sum_{i} g\left(A_{F e_{x}} t F e_{x}, e_{i}\right) g\left(A_{F e_{i}} e_{y}, e_{y}\right) \\
& =c+g\left(A_{F e_{x}} e_{x}, A_{F e_{y}} e_{y}\right)
\end{aligned}
$$

From these equations, we see that $g\left(R\left(e_{x}, e_{y}\right) e_{y}, e_{x}\right)=0$. By (3.12) and Theorem 2.1, we have $b_{x}=b_{y}$ for any $x \neq y$, that is, $A_{1} X=b_{1} X$ for any $X \in H_{x}^{\perp}$.

By the similar computation, we see that $A_{x} X=b_{x} X(x=2, \ldots, q)$ for $X \in H_{x}^{\perp}$, where b_{2}, \ldots, b_{q} are functions. Thus we have

$$
A_{x} t v_{y}=b_{x} t v_{y}
$$

On the other hand, since $A_{V} t U=A_{U} t V$ for any $U, V \in F H_{x}^{\perp}$, we have

$$
A_{x} t v_{y}=A_{y} t v_{x}=b_{y} t v_{x} .
$$

Since $t v_{x}$ and $t v_{y}$ are linearly independent, we have $b_{1}=\cdots=b_{q}=0$. So we have $\left[A_{U}, A_{V}\right] X=0$ for any U and V normal to M and $X \in H_{x}^{\perp}$. Thus, by the equation of Ricci, we have

$$
0=c\{g(Y, t V) g(X, t U)-g(X, t V) g(Y, t U)\}
$$

for any $X, Y \in H_{x}^{\perp}$. Since $\operatorname{dim} H_{x}^{\perp} \geq 2$, we can take U and V orthogonal to each other. Putting $X=t U$ and $Y=t V$, we have $c=0$. This is a contradiction. Consequently, we obtain $\operatorname{dim} H_{x}^{\perp}=1$.

Lemma 3.4. Let M be an n-dimensional proper $C R$ submanifold of a complex space form $M^{m}(c), c= \pm 1$, with semi-flat normal connection. We suppose that the dimension h of the holomorphic tangent space >2. If the second fundamental form A satisfies $R(X, Y) A=\alpha(X \wedge Y) A$ for any X and Y tangent to M, α being a function, then M is a hypersurface of totally geodesic $M^{(n+1) / 2}(c)$ in $M^{m}(c)$.

Proof. We prove that the first normal space has constant dimension and it is parallel with respect to the normal connection.

If $A_{V}=0$ for $V \in F H_{x}^{\perp}$, then (3.1) implies that M is totally geodesic. This contradicts $c \neq 0$. Thus we have $A_{V} \neq 0$. We see that $N_{0}(x)=N_{x}$ and the first normal space $N_{1}(x)=F H_{x}^{\perp}$ is of dimension 1. For $V \in F H_{x}^{\perp}$ and $U \in N_{x}$, we have

$$
g\left(D_{X} V, f U\right)=-g\left(V,\left(\nabla_{X} f\right) U\right)=-g\left(V,-F A_{U} X-B(X, t U)\right)=0
$$

Thus we see that $D_{X} V \in F H_{x}^{\perp}$. So the first normal space is parallel with respect to the normal connection.

Thus we see that M is a hypersurface of totally geodesic $M^{(n+1) / 2}(c)$ in $M^{m}(c)$ (see [9; p. 77]).

To prove our main theorem, we use the following theorem given by Lobos and Ortega [5].

Theorem B. Let M be a connected real hypersurface in $M^{n}(c), n \geq 2$, $c= \pm 1$ which satisfies $R(X, Y) A=\alpha(X \wedge Y) A$ for any X and Y tangent to M, α being a function. Then α is constant and positive, and M is one of the following real hypersurfaces;
i) If $c=+1$, then $\alpha=\cot ^{2}(r)$, for $0<r<\pi / 2$, and M is an open subset of a geodesic hypersphere of radius r.
ii) If $c=-1$, then
a) $1<\alpha=\operatorname{coth}^{2}(r)$, for $r>0$, and M is an open subset of a geodesic hypersphere of radius r;
b) $\alpha=1$, and M is an open subset of a horosphere;
c) $0<\alpha=\tanh ^{2}(r)<1$, for $r>0$, and M is an open subset of a tube of radius r over a totally geodesic $\mathbf{C} H^{n-1}$.

From Lemma 3.4 and Theorem B, we obtain our main theorem.

Theorem 3.5. Let M be an n-dimensional proper $C R$ submanifold of a complex space form $M^{m}(c), c= \pm 1$, with semi-flat normal connection. We suppose that the dimension h of the holomorphic tangent space >2. If the second fundamental form A satisfies $R(X, Y) A=\alpha(X \wedge Y) A$ for any X and Y tangent to M, α being a function, then α is constant and M is one of the following hypersurfaces of totally geodesic $M^{(n+1) / 2}(c)$ in $M^{m}(c)$;
i) If $c=+1$, then $\alpha=\cot ^{2}(r)$, for $0<r<\pi / 2$, and M is an open subset of a geodesic hypersphere of radius r.
ii) If $c=-1$, then
a) $1<\alpha=\operatorname{coth}^{2}(r)$, for $r>0$, and M is an open subset of a geodesic hypersphere of radius r;
b) $\alpha=1$, and M is an open subset of a horosphere;
c) $0<\alpha=\tanh ^{2}(r)<1$, for $r>0$, and M is an open subset of a tube of radius r over a totally geodesic $\mathbf{C} H^{(n-1) / 2}$.

References

[1] T. Hamada, On real hypersurfaces of a complex projective space with recurrent second fundamental form, Ramanujan Math. Soc. 11 (1996), 103-107.
[2] I. Ishihara, Kaehler submanifolds satisfying a certain condition on normal bundle, Atti della Accademia Nazionale dai Lincei LXII (1977), 30-35.
[3] M. Kon, Ricci recurrent $C R$ submanifolds of a complex space form, Tsukuba J. Math. 31 (2007), 233-252.
[4] M. Kon, Semi-parallel $C R$ submanifolds in a complex space form, Colloquium Mathematicum 124 (2011), 237-246.
[5] G. A. Lobos and M. Ortega, Pseudo-parallel real hypersurfaces in complex space form, Bull. Korean Math. Soc. 41 (2004), 609-618.
[6] S. Maeda, Real hypersurfaces of complex projective spaces, Math. Ann. 263 (1983), 473-478.
[7] R. Niebergall and P. J. Ryan, Semi-parallel and semi-symmetric real hypersurfaces in complex space forms, Kyungpook Math. J. 38 (1998), 227-234.
[8] K. Yano and M. Kon, $C R$ submanifolds of a complex projective space, J. Diff. Geom. 16 (1981), 431-444.
[9] K. Yano and M. Kon, Structures on manifolds, World Scientific Publishing, Singapore, 1984.

Faculty of Education
Shinshu University
6-Ro, Nishinagano
Nagano City 380-8544, Japan
E-mail address: mayuko_k@shinshu-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 53C40, 53C55; Secondary 53C25.
 Key words and phrases. CR submanifold, complex space form, pseudo-parallel second fundamental form.
 Received May 19, 2011.

