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Transcriptome profiling of the 
spermatheca identifies genes 
potentially involved in the long-
term sperm storage of ant queens
Ayako Gotoh  1, Shuji Shigenobu2,3, Katsushi Yamaguchi2, Satoru Kobayashi4, Fuminori Ito5 
& Kazuki Tsuji6

Females of social Hymenoptera only mate at the beginning of their adult lives and produce offspring 
until their death. In most ant species, queens live for over a decade, indicating that ant queens can 
store large numbers of spermatozoa throughout their long lives. To reveal the prolonged sperm storage 
mechanisms, we identified enriched genes in the sperm-storage organ (spermatheca) relative to those 
in body samples in Crematogaster osakensis queens using the RNA-sequencing method. The genes 
encoding antioxidant enzymes, proteases, and extracellular matrix-related genes, and novel genes 
that have no similar sequences in the public databases were identified. We also performed differential 
expression analyses between the virgin and mated spermathecae or between the spermathecae at 
1-week and 1-year after mating, to identify genes altered by the mating status or by the sperm storage 
period, respectively. Gene Ontology enrichment analyses suggested that antioxidant function is 
enhanced in the spermatheca at 1-week after mating compared with the virgin spermatheca and the 
spermatheca at 1-year after mating. In situ hybridization analyses of 128 selected contigs revealed 
that 12 contigs were particular to the spermatheca. These genes have never been reported in the 
reproductive organs of insect females, suggesting specialized roles in ant spermatheca.

Reproductive success is crucial for sexual organisms, and a great diversity of reproductive strategies have been 
evolved in each species and sex, including copulation behaviours, sperm competition, investment for gamete 
production, efficiency of fertilization, and parental care. Female sperm storage from mating to fertilization is a 
major reproductive strategy and is associated with reproductive life cycles and post-copulatory sexual selection 
among most insects and some vertebrates1. In social Hymenoptera such as ants, social wasps, and bees, females 
have prominent long-term sperm storage abilities according to their specialized life history. Reproductive females 
(queens) only mate at the beginning of their adult lives and subsequently maintain viable sperms in their sper-
matheca until their death. Lifespans of social hymenopteran queens are relatively longer than those of other 
insects; honeybee queens usually live for 2–4 years2, ant queens of most species can live for more than 10 years and 
some for several decades3. Moreover, a large amount of stored sperm is necessary for keeping their large colony 
(e.g. honeybees produce more than 1 million offspring4 and several million offspring are born from queens of 
army ants and leaf-cutting ants5), and queens and their colony members increase reproductive fitness when queens 
maintain large numbers of sperm for long periods because sexual castes of subsequent generations are usually 
produced after colony growth, which may take several years. Furthermore, evolution of the prominent sperm 
storage ability is also provide crucial insight into the transitional process from primitive to advanced eusociality in 
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Hymenoptera because reproductive females of hymenopteran species with advanced eusociality tend to have traits 
of longer longevity and more colony member production than those with primitive eusociality5, 6.

Components of spermatheca fluids from honeybee queens and secretions from male bee accessory glands 
have been investigated for the past 40–50 years in efforts to reveal long-term sperm storage mechanisms. 
Accordingly, multiple candidate factors for sperm longevity have been considered, including ions, sugars, pH, 
and enzymes of antioxidant and energy metabolism7–15. However, it remains unclear whether these candidates are 
truly important for prolonged sperm storage in honeybees. Ants evolved the ability of queens to store sperm for 
an extremely longer time than honeybees (see above), therefore they are also useful for studies of the prolonged 
sperm storage mechanisms. Furthermore, they also shed light on evolutionary history of the sperm storage sys-
tems in social Hymenoptera because ants and honeybees independently evolved advanced eusociality. However 
there is a few studies of sperm maintenance in ants16. Because spermatheca directly influence sperm conditions, 
we investigated spermatheca functions in ant queens as the first step to reveal details of the ensuing long-term 
sperm storage mechanisms.

Morphological traits of female sperm storage organs are highly diverse among insects and have been closely 
associated with sperm competition, sexual conflict, and storage function17–19. In ant queens, the spermatheca 
comprises a spermathecal reservoir, a pair of spermathecal glands, a spermatheca duct connecting the reservoir 
and common oviduct, and a sperm pump20–22. The spermathecal reservoir wall comprises two simple epithelial 
cell types with a cuticle lining, columnar epithelia in the hilar region of the reservoir near the opening of the 
spermathecal duct, and squamous epithelia in the distal region. Ultrastructural observations indicate that the 
columnar cells of these reservoir walls are abundant in mitochondria and apical microvilli, indicating active 
transporting functions. However, the squamous epithelial cells contain few mitochondria and lack microvilli, 
suggesting no cellular activities20–22. Moreover, both cell types have poorly developed endoplasmic reticulum and 
golgi apparatus, suggesting the absence of secretory functions. The structure of the reservoir wall of ant queens 
is unique among social hymenopteran species because in social bees and wasps, this reservoir wall has uniform 
thickness and comprises the columnar epithelial cells6, 23–28. The spermathecal gland contains glandular and cen-
tral duct cells, which were classified as type-3 secretory cells29. In later studies, secretions from these cells report-
edly affected sperm viability in honeybee queens30. The sperm pump comprises muscular layers that are located 
at the distal portion of the spermathecal duct and may regulate sperm migration into the spermathecal reservoir 
after mating or sperm release prior to insemination. Although these morphologies are well characterized, little is 
known of the molecular functions of the spermatheca in ant queens.

Proteome analyses have been performed in the spermatheca from virgin and inseminated queen honeybees 
and in Atta sexdens rubropilosa ants12, 31. However, spermatheca-specific functions are poorly elucidated from the 
protein expression studies of the spermatheca because the ensuing protein profiles may represent housekeeping 
proteins that are also abundantly expressed in other tissues, warranting comparative studies of the spermatheca 
and other tissues. RNA sequencing methods using next generation high-throughput sequencing technologies can 
be used to determine large-scale gene expression profiles even in non-model organisms. Hence, in the present 
study, we screened candidate genes that contribute to sperm storage functions using various differential gene 
expression analyses of the spermatheca and the body samples from Crematogaster osakensis ant queens using the 
RNA sequencing method (Fig. 1). Several thousand C. osakensis queens can be collected immediately after nuptial 
flight. They can be easily kept in the laboratory and can often be maintained for over 7 years32, offering a highly 
convenient model for studies of sperm storage. Firstly, we identified genes enriched in the spermatheca com-
pared with those in the body samples to characterize the spermatheca functions (a in Fig. 1). In insect females, 
behavioural and physiological changes have been characterized following sperm and seminal fluid transfer33–35. 
Furthermore, gene expression profiles change in accordance with the mating status in the bodies and reproduc-
tive tracts, and these changes are considered important for adaptive functions, such as sperm competition and 
sperm storage, relating to reproductive success35–41. Therefore, we secondarily investigated differentially expressed 
spermatheca genes before and after mating to detect enhanced genes in the spermatheca during sperm mainte-
nance compared with those in the spermatheca without spermatozoa (b in Fig. 1). Third, we also analysed gene 
expression changes in the spermatheca at 1 week and 1 year after mating because we expected that genes with 
enhanced expression in later stage after sperm storage are likely involved in long-term sperm storage mechanisms 
compared with those in initial stage (c in Fig. 1).

Figure 1. Sample preparation schematic: Differential gene expressions patterns were compared between (a) the 
spermatheca and the body, (b) the spermatheca from virgin and inseminated queens, and (c) the spermatheca at 
1 week and 1 year after mating.
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To the best of our knowledge, this is the first molecular study of the spermatheca in ants, and the present de 
novo sequencing analyses identified multiple candidate genes for the long-term sperm storage. Finally, in situ 
hybridization analyses confirmed the spatial expression patterns of selected genes, resulting in the discovery of 
12 spermatheca specific contigs.

Results
RNA-sequencing and assembly. To build a comprehensive gene catalogue, we constructed RNA-seq 
libraries from the bodies of mated queens at 1 week and 1 year after mating, workers and males, and spermathecae 
of virgin and mated queens at 1 week and those of mated queens at 1year after nuptial flight and accessory glands 
of males (Supplementary Table S1). Paired-end sequencing of the 23 cDNA libraries from the samples using the 
Illumina Hiseq 2000 platform yielded a total of 384.4 million reads. We assembled the RNA-seq reads de novo by 
Trinity program42 (v. r2012-06-08) resulting in 164,805 contigs with a mean length of 2008.5 bp ranging from 201 
to 75,590 bp. We predicted 80,424 ORFs from the assembly, among which 37,870 (47.1%) matched to the proteins 
in the NCBI nr protein database (BLASTP, cutoff e-value of 1.0e-4), and 21,833 and 14,894 were matched with 
Arthropoda (57.7%) and bacteria sequences (39.3%) in top hits. After removing the 14,894 ORFs with hits to 
bacterial sequences, assuming them as bacterial contaminations, and 12,005 ORFs with extremely low expression 
(RPKM values in all 23 samples of less than 1), the remaining 53,525 ORFs with a N50 of 1230 bp were defined as 
a reference gene set of C. osakensis. To evaluate the accuracy of the assembly and to prepare in situ hybridization 
probes, we cloned 128 contigs and subjected them to Sanger sequencing. These sequences were more than 98% 
identical to those generated by our de novo assembly, indicating a successful de novo assembly.

Genes enriched in the spermatheca. We conducted differential expression analyses of the spermatheca 
and their body samples after 1 week and 1 year of mating (a in Fig. 1) with three biological replicates for each 
tissue using DEseq243. In these analyses, 5,941 and 2,794 genes were up-regulated and 3,785 and 2,741 genes were 
down-regulated in the spermatheca samples compared with those in the body samples after 1 week and 1 year of 
mating, respectively, with false discovery rate (FDR) < 0.01 and |log2 fold change| ≥ 1 (Fig. 2a,b). Among them, 
2,477 spermatheca-enriched genes were common to both comparisons after 1 week and 1 year of mating. These 
overrepresented genes showed a wide variety of function, such as antioxidant enzymes, chaperones, and energy 
metabolism enzymes as well as novel genes that have no similar sequences in the public database (Table 1).

Gene Ontology (GO) enrichment analyses of genes with differential expression levels in the spermatheca 
were performed using Fisher’s exact test. GO terms associated with transmembrane transporters (GO:0022857, 
GO:0055085) and oxidoreductase activity (GO:0016491) were significantly enriched in both up- and 
down-regulated genes of the spermatheca compared with the body samples after 1 week and 1 year of mating, 
relative to all annotated genes (Table 2). GO terms for precursor metabolites and energy (biological process, 
GO:0006091), ATPase activity (molecular function, GO:0016887), and mitochondrial function (cellular compo-
nents, GO:0005739) were enriched only among genes that were highly expressed in the spermatheca (Table 2).

Differentially expressed genes between the spermathecae with and without sperm. To deter-
mine genes triggered by the start of sperm storage in the spermatheca, we investigated the transcriptomic change 
before and after mating in the spermatheca (b in Fig. 1). Our RNA-seq analysis revealed that 75 genes were 
up-regulated and 20 genes were down-regulated in the spermatheca of inseminated queens compared with those 
in the spermatheca of virgin queens (FDR < 0.01 and |log2 fold change| ≥ 1, Fig. 3a).

Figure 2. Plots of differentially expressed genes between the spermatheca and the body samples at 1 week (a) 
and 1 year (b) after mating. Red dots indicate differentially expressed genes with false discovery rates (FDR) of 
<0.01and |log2 fold change| ≥ 1.
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Category Contig No. Predicted genes
Predicted protein 
motif

Signal 
sequence

Fold changes (Numbers in the bracket are not 
significant at 0.01)

Figures 
of in situ 
hybridization

Expression 
pattern‡

Spermatheca/body Spermatheca/spermatheca

1 week 1 year
mated/
unmated 1 year/1 week

Antioxidant comp70976_c0_
seq1.m.342323

PREDICTED: 
uncharacterized 
protein 
LOC105565138

Animal haem 
peroxidase — 6.28 5.08 0.48 −1.24 —* Failed

“ comp56723_c0_
seq1.m.35720

superoxide 
dismutase

Iron/manganese 
superoxide 
dismutases, 
C-terminal domain

− 1.05 1.32 −0.31 (−0.05) —* HE, MG, OV

“ comp72365_c0_
seq1.m.514034

glutaredoxin-c4-
like isoform Glutaredoxin — 1.04 1.36 (−0.28) (0.09) −* GC, HE, MG, 

OV, SD, SG

“ comp71714_c0_
seq12.m.455490

glutathione 
s-transferase 
isoform c-like 
isoform

Glutathione 
S-transferase, 
N-terminal domain

— (0.57) 1.98 −0.36 (0.31) Fig. 5b MG, SG

“ comp33014_c0_
seq1.m.14779

peroxiredoxin- 
mitochondrial Redoxin — (0.49) 1.57 −0.42 (0.25) Fig. 5c MG, SG

Chaperone comp63273_c0_
seq1.m.58938

protein lethal 
essential for 
life-like

Hsp20/alpha crystallin 
family — 2.89 2.83 −0.43 0.94 Fig. 5d OV, SG

“ comp71039_c10_
seq1.m.351826

protein charybde-
like

RTP801 C-terminal 
region — 2.60 2.67 (−0.47) (−0.42) Fig. 5e HE, MG, OV, 

SG

“ comp69851_c2_
seq1.m.223848

heat shock 70 kda 
protein cognate 4 Hsp70 protein — 2.34 1.67 (0.03) (−0.22) Fig. 5f HE, MG, OV, 

SG

“ comp70616_c1_
seq1.m.300138

dnaj homolog 
subfamily c 
member 22

DnaJ domain — 1.87 2.01 (−0.47) (0.70) —* OV

“ comp71512_c0_
seq2.m.419572

heat shock protein 
ddb_g0288861-like 
isoform

— — 1.16 1.41 (0.21) 0.63 — —

Transporter 
and channel

comp66765_c0_
seq1.m.99406

nose resistant 
to fluoxetine 
protein 6

Acyltransferase family — 8.47 6.96 (0.36) −0.99 —* Failed

“ comp70810_c0_
seq1.m.322233

sodium-
independent 
sulfate anion 
transporter

STAS domain — 5.98 4.64 (0.18) (0.14) —* HE, MG, OV, 
SG

“ comp66171_c0_
seq1.m.88333

low quality protein: 
bestrophin-3-like

Bestrophin, RFP-TM, 
chloride channel — 5.08 5.46 (0.19) (0.01) —* HE, MG, OV, 

SG

“ comp70257_c3_
seq1.m.260125

band 3 anion 
transport protein 
isoform

HCO3- transporter 
family — 4.75 3.84 (0.41) (−0.54) Fig. 5g HE, MG, OV

“ comp69671_c1_
seq1.m.212720

facilitated trehalose 
transporter tret1

Sugar (and other) 
transporter — 4.59 4.36 (−0.04) (0.26) —* MG, OV, SG

“ comp71363_c1_
seq23.m.401544

ammonium 
transporter rh type 
a isoform

Ammonium 
Transporter Family — 4.24 4.70 (−0.62) 1.67 Fig. 6a SG

“ comp70992_c5_
seq1.m.344700

facilitated trehalose 
transporter tret1-
like

Sugar (and other) 
transporter — 3.72 3.68 (−0.08) (0.05) Fig. 5h MG, OV, SG

“ comp69444_c0_
seq1.m.194515

multidrug 
resistance-
associated protein 
4-like

ABC transporter — 3.35 3.31 −0.61 (0.45) Fig. 6b SG

“ comp67902_c1_
seq1.m.126719

proton-coupled 
amino acid 
transporter 1-like 
isoform

Transmembrane 
amino acid transporter 
protein

— 3.23 3.58 (−0.14) (−0.08) Fig. 6c SG

“ comp70337_c0_
seq1.m.269473

potassium voltage-
gated channel 
subfamily h 
member 2 isoform

Ion transport protein — 1.73 2.60 −0.55 (−0.11) Fig. 5i
HE, MG, OV, 
SG (central 
duct)

Energy 
metabolism

comp70771_c0_
seq1.m.316801

maltase a2-like 
isoform

Alpha amylase, 
catalytic domain — 4.35 3.13 (0.04) −0.49 — —

“ comp55829_c0_
seq1.m.33328

l-lactate 
dehydrogenase-
like

lactate/malate 
dehydrogenase, NAD 
binding domain

— 3.75 3.90 (0.01) (−0.10) — —

“ comp67380_c0_
seq1.m.112336

hexokinase type 2 
isoform Hexokinase — 3.30 4.06 (−0.05) (0.11) Fig. 5j MG, OV, SG

“ comp71645_c0_
seq1.m.442441

glucose 
dehydrogenase GMC oxidoreductase — 3.01 3.43 (−0.04) (0.29) —* MG, SG

Continued
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Category Contig No. Predicted genes
Predicted protein 
motif

Signal 
sequence

Fold changes (Numbers in the bracket are not 
significant at 0.01)

Figures 
of in situ 
hybridization

Expression 
pattern‡

Spermatheca/body Spermatheca/spermatheca

1 week 1 year
mated/
unmated 1 year/1 week

“ comp71373_c0_
seq1.m.402567

succinate 
dehydrogenase FAD binding domain — 2.95 2.68 (−0.06) (−0.30) — —

Extracellular 
matrix related

comp63322_c0_
seq1.m.59242

flocculation 
protein flo11-like

Chitin binding 
Peritrophin-A domain — 8.66 9.56 0.73 (0.00) Fig. 6d SG

“ comp64346_c0_
seq1.m.68928

flocculation 
protein flo11-like

Chitin binding 
Peritrophin-A domain YES 9.16 10.55 0.78 (0.04) —* MG, OV, SG

“ comp63194_c1_
seq1.m.58387

chondroitin 
proteoglycan-
2-like

Chitin binding 
Peritrophin-A domain YES 6.72 5.06 (−0.22) −0.94 —* HE, MG, OV, 

SG

“ comp71322_c9_
seq1.m.393320 peroxidasin — — 6.64 7.35 (0.12) (−0.15) Fig. 6e SG

“ comp68902_c1_
seq1.m.163530

dentin matrix 
protein 4-like 
protein

— — 5.43 3.89 (−0.14) (−0.57) Fig. 6f SG

“ comp70138_c0_
seq1.m.249533 hyaluronidase-like Hyaluronidase YES 3.95 3.84 −0.72 −0.77 — —

“ comp63113_c0_
seq1.m.57806

extracellular 
matrix protein 2 
isoform

Leucine rich repeat — 1.81 1.09 (0.00) (−0.21) —* MG, OV, SG

“ comp61774_c0_
seq1.m.51004

procollagen-
lysine,2-
oxoglutarate 
5-dioxygenase 3

— YES (0.10) 1.04 (−0.11) 0.83 — —

Protease comp65714_c0_
seq1.m.81458

trypsin epsilon-
like Trypsin — 9.66 10.58 (−0.36) −0.51 — —

“ comp56664_c0_
seq1.m.35571

a disintegrin and 
metalloproteinase 
with 
thrombospondin 
motifs

Reprolysin family 
propeptide YES 4.73 3.62 (0.26) (−0.17) —* Failed

“ comp71039_c3_
seq1.m.351761

thyrotropin-
releasing 
hormone-
degrading 
ectoenzyme-like

ERAP1-like 
C-terminal domain — 4.55 4.20 (−0.04) −0.75 —* CO, GC, SG

“ comp65462_c0_
seq1.m.78928

angiotensin-
converting 
enzyme-like

Angiotensin-
converting enzyme YES 4.25 2.77 (0.15) −1.13 Fig. 5k OV, SG

Protease 
inhibitor

comp70125_c3_
seq13.m.248874

plasminogen 
activator inhibitor 
1

Serpin (serine protease 
inhibitor) YES 3.42 3.95 (0.07) 0.38 Fig. 5l OV, SG

Others comp56610_c0_
seq1.m.35452 No hits — — 11.00 11.81 (−0.41) (−0.42) Fig. 5m OV, SG

“ comp65548_c0_
seq1.m.79879

PREDICTED: 
uncharacterized 
protein 
LOC105561087

Zona pellucida-like 
domain YES 8.83 8.52 (0.21) (−0.48) Fig. 6k HE

“ comp63251_c0_
seq1.m.58816

nicotinamidase-
like — — 8.66 7.12 (0.27) −1.52 Fig. 6g SG (central 

duct)

“ comp65667_c0_
seq1.m.81045 No hits — — 8.31 9.89 1.02 (−0.07) — —

“ comp71576_c7_
seq1.m.430348 No hits — — 6.84 7.80 (1.66) (−0.18) Fig. 6j HE

“ comp70080_c1_
seq1.m.244755

secreted beta-
glucosidase adg3 
isoform x1

— — 6.50 (−2.99) 1.44 −6.13 — —

“ comp62775_c0_
seq1.m.55873

protein lethal 
malignant blood 
neoplasm 1

Insect cuticle protein YES 6.06 8.70 (0.59) 1.76 —* OV, SG

“ comp68918_c0_
seq1.m.164810

prostatic acid 
phosphatase-like

Histidine phosphatase 
superfamily (branch 2) YES 5.69 5.11 (−0.33) −1.34 — —

“ comp71109_c1_
seq1.m.360019 protein lozenge Runt domain — 5.64 5.54 (0.27) −0.65 Fig. 5n

MG, OV, SG 
(central duct 
cell)

“ comp71230_c1_
seq1.m.377439 No hits — YES 5.27 4.35 (0.08) (−0.13) Fig. 6l

HE, SG 
(central duct 
cell)

Continued
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Among the up-regulated 75 genes induced by sperm storage, genes annotated as oxidoreductase activity 
(GO:0016491) were significantly enriched compared with all annotated genes from all samples (FDR < 0.05).

Of the 75 up-regulated genes in the spermatheca with spermatozoa, 11 genes (for instance, comp65667_c0_
seq1.m.81045: No hits and comp70822_c1_seq1.m.323463: ETS translocation variant 1), were also enriched in 
the spermatheca compared with those in the body samples at 1 week after mating (Table 1 and Fig. 4). Genes, such 
as probable GPI-anchored adhesin-like protein pga55 (comp70117_c0_seq1.m.248081) and protein takeout-like 
(comp55892_c0_seq1.m.33472), were abundant in the spermatheca of virgin queens compared with the sper-
matheca and the body samples of mated queens (Table 1 and Fig. 4).

Gene expression changes with the duration of sperm storage. To identify up-regulated genes dur-
ing long-term sperm storage, we compared the spermatheca at 1 week and at 1 year after mating (c in Fig. 1). 
Accordingly, the analyses of differentially expressed genes identified 112 and 264 genes that were increased and 
decreased, respectively, in the spermatheca at 1 year compared with those at 1 week after mating (FDR < 0.01 and 
|log2 fold change| ≥ 1, Fig. 3b).

GO enrichment analysis revealed that genes related oxidoreductase activity (GO:0016491) were significantly 
overrepresented in the highly-expressed genes of the spermatheca at 1 weeks than at 1 years after mating com-
pared with all annotated genes (FDR < 0.005).

Among the 112 up-regulated genes in the spermatheca at 1 year after mating, 24 genes, such as those encod-
ing pheromone-binding protein gp-9-like (comp72284_c0_seq1.m.514027), protein lethal malignant blood 
neoplasm 1 (comp62775_c0_seq1.m.55873), and ammonium transporter rh type A isoform (comp71363_c1_
seq23.m.401544), were also enriched in the spermatheca after 1 year of mating compared with those in the body 
samples (Table 1 and Fig. 4).

Spatial gene expression patterns. To determine spatial expression patterns of candidate genes for long–
term sperm storage mechanisms in various spermatheca parts, we investigated localizations of 128 contigs in the 
abdomens of ant queens using in situ hybridization. The 128 contigs were preferentially selected from the list of 
differentially expressed genes, such as antioxidant enzymes, chaperones, transporters, and genes with large num-
bers of reads and high log fold changes in the spermatheca relative to the body samples, and contigs that were 
altered by mating status or sperm storage periods (Table 1 and Supplementary Dataset 1).

Although signals were detected for 117 of the 128 contigs, in situ hybridization analyses failed in some steps 
for 11 contigs. However, 31 of the remaining genes gave insignificant signals in the spermatheca (Supplementary 
Dataset 1), and genes for 86 contigs were detected at least in a part of the spermatheca, the hilar columnar 

Category Contig No. Predicted genes
Predicted protein 
motif

Signal 
sequence

Fold changes (Numbers in the bracket are not 
significant at 0.01)

Figures 
of in situ 
hybridization

Expression 
pattern‡

Spermatheca/body Spermatheca/spermatheca

1 week 1 year
mated/
unmated 1 year/1 week

“ comp70822_c1_
seq1.m.323463

ets translocation 
variant 1 Ets-domain — 5.09 5.88 1.05 (0.28) —*

FB, GC, HE, 
MG, OV, SD, 
SG

“ comp70117_c0_
seq1.m.248081

probable gpi-
anchored adhesin-
like protein pga55

Chitin binding 
Peritrophin-A domain YES 3.61 2.88 −1.58 (−0.30) — —

“ comp55892_c0_
seq1.m.33472

protein takeout-
like

Haemolymph juvenile 
hormone binding 
protein (JHBP)

YES 3.47 2.24 −1.02 −1.12 —* MG, OV

“ comp65714_c0_
seq1.m.81456

protein unc-13 
homolog d isoform C2 domain — 2.66 2.57 (−0.01) (0.33) Fig. 6h SG

“ comp68745_c0_
seq1.m.156391

xanthine 
dehydrogenase

Molybdopterin-
binding domain 
of aldehyde 
dehydrogenase

— 2.04 2.18 (−0.22) (0.70) Fig. 6i SG

“ comp62522_c0_
seq1.m.54679

lebercilin-like 
protein isoform x1

Ciliary protein causing 
Leber congenital 
amaurosis disease

— 1.92 (−0.09) 2.35 −1.66 — —

“ comp70881_c2_
seq1.m.331137

nuclear hormone 
receptor ftz-f1 beta 
isoform x1

Ligand-binding 
domain of nuclear 
hormone receptor

— 1.25 (0.49) (0.01) (−0.30) — —

“ comp72284_c0_
seq1.m.514027

pheromone-
binding protein 
gp-9-like

PBP/GOBP family YES 1.19 1.46 0.83 3.37 Fig. 5o GC, SG

“ comp65703_c0_
seq1.m.81364

vitellogenin 
precursor

Lipoprotein amino 
terminal region YES −3.90 (−1.08) 4.17 (−0.08) — —

*Figures are deposited in figshare (http://dx.doi.org/10.6084/m9.figshare.4750072)

Table 1. List of selected genes expressed in the spermatheca. ‡Failed = no signals, GC = genital chamber, 
SG = spermathecal gland, HE = hilar columnar epithelial cells of spermatheca reservoir, SD = spermathecal 
duct, OV = ovary, MG = midgut, CO = common oviduct.
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epithelium of the spermathecal reservoir, the spermatheca duct, and secretory and duct cells of the spermathecal 
gland (Figs 5 and 6, Table 1 and Supplementary Dataset 1).

Spermatheca-specific genes. Although most examined genes were expressed in the spermatheca and 
in other abdominal tissues and organs, such as the ovary and midgut (Fig. 5 and Table 1), 12 contigs were 
specifically expressed in the spermatheca (Fig. 6 and Table 1). Among them, nine, two, and one contigs were 
expressed in the spermathecal glands, in the hilar columnar epithelia of spermathecal reservoirs, and in the both 
regions, respectively. Moreover, these spermathecal gland-specific contigs included three that were categorized 
into the transporter functions of ammonium transporter rh type A isoform (comp71363_c1_seq23.m.401544, 
Fig. 6a), multidrug resistance-associated protein 4-like isoform (comp69444_c0_seq1.m.194515, Fig. 6b), 
which is a member of ATP-binding cassette transporter family44, 45, and proton-coupled amino acid transporter 
1-like isoform (comp67902_c1_seq1.m.126719, Fig. 6c). Three other contigs were associated with extracellu-
lar matrix-related proteins, including flocculation protein flo11-like isoform (comp63322_c0_seq1.m.59242, 
Fig. 6d), which is identical to the mucin-like protein MUC1 and is involved in intercellular adhesion in yeast46, 47,  
peroxidasin (comp71322_c9_seq1.m.393320, Fig. 6e), and dentin matrix protein 4-like protein (comp68902_c1_
seq1.m.163530, Fig. 6f), which is a secretory calcium-binding protein48. The other three contigs corresponded 
with pyrazinamidase nicotinamidase (comp63251_c0_seq1.m.58816, Fig. 6g), the UNC-13 homolog d isoform 

Figure 3. Plots of differentially expressed genes between the spermathecae of inseminated vs. virgin ant 
queens (a) and between the spermathecae at 1 week and 1 year after mating (b). Red dots indicate differentially 
expressed genes (FDR < 0.01 and |log2 fold change| ≥ 1).

Figure 4. Heat map of selected genes that were regulated by mating status or sperm storage period in the 
spermathecae. Reads per million (RPM) values of the spermatheca and the body samples were calibrated to 
Z-scores.
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(comp65714_c0_seq1.m.81456, Fig. 6h), which is essential for synaptic vesicle exocytosis during neurotransmis-
sion in Drosophila melanogaster and Caenorhabditis elegans49, 50, and xanthine dehydrogenase (comp68745_c0_
seq1.m.156391, Fig. 6i), which catalyses the conversion of xanthine to the strong antioxidant uric acid. Finally, 
coting with no sequence similarities in the NCBI database (comp71576_c7_seq1.m.430348, Fig. 6j) and contig 
that matched to the currently uncharacterized proteins that contain zona pellucida-like domains (comp65548_
c0_seq1.m.79879, Fig. 6k) were expressed only in hilar columnar epithelia of the reservoir, and the contig 
comp71230_c1_seq1.m.377439 (no sequence similarities in the NCBI database, Fig. 6l) demonstrated signals in 
the central duct of the spermathecal gland and reservoir epithelial cells.

Discussion
This study is the first report on large-scale gene expression profiling of the spermatheca to understand the molec-
ular mechanisms of long-term sperm storage in ant queens. Initially, we identified genes that are expressed at 
higher levels in the spermatheca than in the body samples and performed GO enrichment analyses of these 
crucial candidates for sperm storage functions. GO terms that are related to energy production were found to be 
enriched among genes that are highly expressed in the spermatheca, suggesting high energy costs of spermatheca 
function in ant queens.

We also performed two sets of differential gene expression analyses of the spermatheca with and without 
sperm and at 1 week and 1 year after mating to aim screening of enhanced genes triggered by insemination and by 
prolonged sperm storage. In these analyses, differential expression of genes of the GO category oxidoreductase 
activity was pronounced, suggesting the requirement of enhanced antioxidant functions. Antioxidant enzymes 
function as scavengers of free radicals. The production and elimination of reactive oxygen species (ROS) was 

Category Term GO-ID FDR

Up-regulated genes in the spermatheca at 1 week after mating

 MF transmembrane transporter activity GO:0022857 2.36E-15

 BP generation of precursor metabolites and energy GO:0006091 2.13E-07

 BP small molecule metabolic process GO:0044281 1.55E-06

 MF oxidoreductase activity GO:0016491 2.94E-06

 MF ATPase activity GO:0016887 1.34E-04

 CC extracellular region part GO:0044421 8.49E-03

 CC mitochondrion GO:0005739 8.97E-03

 CC vacuole GO:0005773 8.97E-03

Down-regulated genes in the spermatheca at 1 week after mating

 MF oxidoreductase activity GO:0016491 3.13E-15

 MF hydrolase activity, acting on carbon-nitrogen 
(but not peptide) bonds GO:0016810 1.82E-03

 MF peptidase activity GO:0008233 1.82E-03

 BP transmembrane transport GO:0055085 1.50E-02

 CC extracellular space GO:0005615 1.82E-02

 MF lyase activity GO:0016829 1.94E-02

 BP lipid metabolic process GO:0006629 2.74E-02

 BP small molecule metabolic process GO:0044281 2.86E-02

Up-regulated genes in the spermatheca at 1 year after mating

 MF transmembrane transporter activity GO:0022857 1.23E-16

 MF oxidoreductase activity GO:0016491 4.37E-15

 BP generation of precursor metabolites and energy GO:0006091 2.00E-08

 CC mitochondrion GO:0005739 2.50E-08

 BP small molecule metabolic process GO:0044281 1.15E-06

 CC vacuole GO:0005773 2.91E-03

 MF ATPase activity GO:0016887 6.34E-03

 CC extracellular region GO:0005576 7.69E-03

Down-regulated genes in the spermatheca at 1 year after mating

 MF oxidoreductase activity GO:0016491 4.01E-11

 MF transmembrane transporter activity GO:0022857 2.40E-04

 BP transmembrane transport GO:0055085 2.40E-04

 CC extracellular space GO:0005615 3.49E-02

 MF hydrolase activity, acting on carbon-nitrogen 
(but not peptide) bonds GO:0016810 4.71E-02

Table 2. Over-represented gene ontology terms among genes differentially expressed between the spermatheca 
and the body samples of queens after 1 week and 1 year of mating. Abbreviations: BP, biological process; MF, 
molecular function; CC, cellular components.
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reportedly associated with sperm longevity in humans51, 52. GO enrichment analyses also suggested that antioxi-
dant function is enhanced in the spermatheca at 1 week after mating compared with the virgin spermatheca and 
the spermatheca at 1 year after mating, indicating that antioxidant functions of the spermatheca were enhanced 
in the initial phase rather than in the later phase after mating. Hence, ROS levels in sperm cells may be higher 
soon after ejaculation by males, but the spermatheca remove ROS in the initial phase after sperm transmission, 
subsequently the spermatheca may maintain stored spermatozoa with lower resource for antioxidant function 
after establishment of suitable sperm conditions in the later phase.

Although all genes that were differentially expressed in the spermatheca samples are likely candidates for 
further studies of spermatheca functions, we focused on spermatheca-enriched genes with elevated expression 
following mating (inseminated vs. virgin queens) and following long duration of sperm storage (at 1 week vs. at 1 

Figure 5. Longitudinal section of the spermatheca stained with hematoxylin and eosin (a) and expression 
patterns of selected highly expressed contigs in the spermatheca (b–o). Schematic indications of spermatheca 
morphology are shown in the upper right corner (a). Details of the spermathecal gland are shown in the bottom 
left corner (n). Scale bar, 100 µm; GC, genital chamber; HE, hilar columnar epithelium of the spermathecal 
reservoir; R, reservoir; SD, spermathecal duct; SG, spermathecal gland.
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year after mating). Although log fold changes in spermatheca gene expression levels in inseminated queens were 
less than 1 compared with those in virgin queens, we identified only one contig hit for the pheromone-binding 
protein gp-9-like (comp72284_c0_seq1.m.514027). This gene was strongly expressed in the spermathecal glands 
and in the genital chamber (see below), suggesting important roles in reproductive functions of ant queens. This 
contig was also associated with a soluble odorant-binding protein with homology to proteins that were identi-
fied in seminal fluids and accessory glands of other insect males, such as fruit fly, mosquitos, crickets, and flour 
beetles53–56, however the function in male reproductive tracts remain unclear. In contrast with these short-term 
sperm storage species, the corresponding gene was expressed at significantly lower levels in C. osakensis male 
accessory glands than in their body tissues (Gotoh et al., in prep.). In honeybees, odorant-binding protein 14 has 
also been detected in spermathecal fluid of queens, but not in seminal fluid of males12, 13, as well as C. osakensis. 
These data suggest that the reproductive functions of this gene may differ between long-term sperm storage spe-
cies, honeybee and C. osakensis, and other short-term sperm storage species, and are likely to have central roles of 
long-term sperm maintenance, although we cannot discard the possibility that the differences reflect phylogenet-
ical difference between hymenopteran and non-hymenopteran species.

Based on the present comparisons of differentially expressed genes, we selected 128 contigs potentially 
involved in the prolonged sperm storage and investigated their expression patterns in various spermatheca parts, 
including the hilar columnar epithelium of the spermathecal reservoir, the spermatheca duct, and secretory and 
duct cells of the spermathecal gland. In previous studies on ant and honeybee queens, the function of the sper-
mathecal gland and the hilar columnar epithelium of the spermathecal reservoir were considered important for 
sperm maintenance. Moreover, proteins from spermathecal glands in honeybees were reportedly secreted into the 
spermathecal reservoir to enhance sperm viability30. Hence, the genes expressed in the spermathecal gland and 
containing signal sequences may encode proteins for secretion into the spermathecal reservoir, leading to direct 

Figure 6. Expression patterns of 12 contigs that were only expressed in the spermatheca. Scale bar, 100 µm; HE, 
hilar columnar epithelium of the spermathecal reservoir; R, reservoir; SD, spermathecal duct; SG, spermathecal 
gland.
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effects on sperm longevity in ants. Specifically, proteases and protease inhibitors containing signal sequences were 
expressed in the spermathecal glands of ant queens, likely influencing sperm physiology after secretion into the 
spermathecal reservoir. Serine protease genes with signal sequences were reportedly dominant in spermatheca 
from various Drosophila species, and the encoded proteins were suggested to be secreted into the spermathecal 
lumen57, 58. Although the functions of these proteins have not been characterized in insect females, the serine 
protease trypsin induced sperm motility and maturation in males of Lepidoptera species and water striders59–62.  
Moreover, proteases and related proteins have been associated with sperm maturation and fertilization in 
mammals63.

Previous ultrastructural observations in honeybees and ants indicated ion-transporting functions of the 
columnar epithelium of the spermathecal reservoir, but these cells showed no secretory functions20, 24. In agree-
ment, we identified contigs hit for transporters and channels that likely regulate chemical components, such as 
sugars, ions, and amino acids, in the spermathecal reservoir and they may affect microenvironments surrounding 
sperm. However, these assertions require confirmation of chemical components in spermathecal fluids from ant 
queens. Although functions of the columnar epithelium have not been suggested except for transporting roles 
in previous studies20, 24, our analyses of spatial expression patterns using in situ hybridization detected genes 
from various functional categories, including antioxidant enzymes, molecular chaperones, metabolic pathways, 
and extracellular matrix-related proteins, and some contigs with no sequence similarities in the NCBI database. 
Hence, the columnar epithelium may have multiple functions, and further analyses of the present differentially 
expressed genes will provide new insights into spermatheca functions and mechanisms of long-term sperm stor-
age in ant queens.

Genes that were matched to antioxidant enzymes and molecular chaperones were highly expressed in the 
hilar columnar epithelium of the spermathecal reservoir and/or the spermathecal gland. Protein chaperones have 
been shown to prevent protein aggregation and misfolding64, and among these, various heat shock proteins have 
been associated with sperm functions, spermatogenesis, sperm maturation, and sperm-egg interactions during 
fertilization in mammals65. In addition, antioxidant enzymes and molecular chaperones are reportedly expressed 
in honeybee spermatheca10, 12, 66, suggesting conserved contributions to long-term sperm storage. However, it 
remains unclear whether these molecules directly affect sperm cells or are associated with spermatheca mainte-
nance independently of sperm.

In the present study, we showed spermatheca-specific expression of 12 contigs. To our knowledge, these genes 
have never been reported in female reproductive organs of animals and were not overexpressed in sperm storage 
organs of female Drosophila species57, 58, indicating specialized roles in ant spermatheca and suggesting associa-
tions with long-term sperm storage mechanisms. In our in situ hybridization analyses, three of nine spermathecal 
gland-specific contigs were matched to extracellular matrix-related genes. In humans, semenogelin is a major 
component of seminal fluid that contributes to gel matrix formation67 and reportedly inhibits sperm mortal-
ity through the formation of physical coagulum traps68. In contrast with insect species with short-term sperm 
storage, ant queens immobilize sperm cells within the spermatheca, suggesting that sperm immobilization con-
tributes to sperm survival (Gotoh et al. in prep.). Hence, because the spermathecal fluid is viscous (Gotoh pers. 
obs.), these extracellular matrix-related proteins may be secreted into the lumen of the spermathecal reservoir to 
influence viscosity and sperm motility.

Long-term sperm storage is a hallmark of social Hymenoptera and C. osakensis queen is a good model 
for understanding the mechanisms on the very long-term sperm storage. Our study will provide an impor-
tant resource for future studies on molecular and cellular mechanisms of the prolonged sperm storage in C. 
osakensis and the evolution of the advanced society depending on the prominent reproductive ability in social 
Hymenoptera.

Methods
Sample collection. C. osakensis queens and males were collected during nuptial flight in the Kagawa and 
Aichi prefectures, Japan. Dealated queens were reared at room temperature for 1 week or 1 year after nuptial flight 
and the spermathecae from queens and the accessory glands from males were dissected in 1 × phosphate buffered 
saline (PBS). The mating status of queens was confirmed during dissection. Worker ants were obtained from a 
rearing colony (Supplementary Table S1).

RNA extraction and library preparation. Total RNA was isolated from the bodies and 7–20 spermathe-
cae (spermathecal reservoir, the spermathecal gland, the sperm pump, and a part of the spermathecal duct) of 
queens with different ages and reproductive statuses using RNeasy kits (Qiagen) according to manufacturer’s 
instructions (Supplementary Table S1). Total RNA was also isolated from 6–10 male bodies using the TRIzol 
reagent (Invitrogen) and from 10–20 male accessory glands and from five worker bodies of different ages using 
RNeasy kits (Qiagen) according to the manufacturer’s instructions (Supplementary Table S1). Queen and male 
RNA samples were prepared in triplicate. Due to the difficulty of queen sample preparation, two of the three 
queens’ body samples lacked abdominal tips (Supplementary Table S1). Sequence libraries were generated using 
TruSeq RNA sample preparation kits v2 (Illumina) following manufacturer’s protocol with minor modifica-
tions: RNA fragmentation was conducted for 4 min instead of 8 min at 94 °C and the number of PCR cycles was 
changed from 15 to 10 for all but spermatheca samples, which had low RNA concentrations. Gel size selection 
was conducted to remove fragments of more or less than 200–500 base pairs from the four spermatheca libraries 
(Supplementary Table S1). We validated the sequence libraries using qPCR (KAPA SYBR FAST qPCR kit, Kapa 
Biosystems, Woburn, MA USA) and Bioanalyzer High Sensitivity DNA Assay (Agilent Technologies).

Sequencing and data analysis. Paired end sequencing of the 23 libraries was performed in two lanes of a 
HiSeq2000 flow cell. Qualities of sequences were assessed using a FastQC program (http://www.bioinformatics.

http://S1
http://S1
http://S1
http://S1
http://S1


www.nature.com/scientificreports/

1 2Scientific RepoRts | 7: 5972  | DOI:10.1038/s41598-017-05818-8

bbsrc.ac.uk/projects/fastqc/). De novo assembly of short reads was performed using Trinity42 (v. r2012-06-08). 
Open reading frames (ORFs) were predicted using the TransDecoder program (Trinity package). Short reads 
were mapped to the reference gene set using Bowtie2 (v. 2.1.0) and the transcript abundances were estimated 
using eXpress (v. 1.4.1). Sequence similarity search was performed against the NCBI’s non-redundant (nr) protein 
database (ver. October 2015) using BLASTP (e-value cut-off of 1.0e-4). Based on the BLAST nr search result, we 
removed contaminant contigs with bacterial sequence hits. We also excluded very lowly expressed contigs with 
reads per kilobase of exon per million mapped reads (RPKM) values of less than 1.0 in all 23 samples. Secretion 
signal sequences and protein domains were predicted using SignalP (v. 4.0) and Pfam databases (v. 27.0, e-value 
cut-off of 1e-6), respectively. Gene Ontology (GO) terms were assigned using Blast2GO software (v. 3.3.5). GO 
term enrichment analyses were performed using Blast2GO to test over-representation by comparing differentially 
expressed genes with all annotated genes. Differentially expressed genes analyses were conducted using DEseq243.

Paraffin sectioning and RNA in situ hybridization. Specific primers for 128 contigs, including 148 
ORFs, were designed to amplify 600–1000-base pair lengths of probe fragments (Supplementary Dataset 1). For 
seven contigs including 19 ORFs, probes were designed for untranslated regions (UTR; Supplementary Dataset 1). 
After cloning into the pTA2 vector (TOYOBO), sense and antisense probes were labelled with digoxigenin-UTP 
(Roche) using T7 or T3 RNA transcription kits (Roche) and concentrations were adjusted to 100 ng/µl in for-
mamide. For contigs that lacked coding sequence information, sense or antisense orientations were assumed from 
corresponding signal data.

Abdomens were dissected from queens collected in Aichi and Hyogo prefectures at 1 week and 1 year after 
mating and were fixed in 4% paraformaldehyde in phosphate buffered saline for 2 h. We used 1 week or 1 year 
samples for in situ hybridization according to the higher expression of selected genes. Tissues were dehydrated in 
a graded ethanol series and were replaced with butanol before embedding in paraffin. Longitudinal serial sections 
were cut at a thickness of 9 µm, were deparaffinised in xylene, and then were dehydrated in an ethanol series. After 
washing, sections were incubated with 10-µg/ml proteinase K (Promega) at 37 °C for 15 min and were then refixed 
in 4% paraformaldehyde. Acetylation was performed for 10 min using 100-mM triethanol amine and 0.25% acetic 
acid anhydride. Subsequently, prehybridization solution was replaced with 400-ng/ml probe diluted in hybridiza-
tion solution and was incubated overnight at 51 °C. Sections were then washed and incubated in a 1:1000 dilution 
of anti-digoxigenin (Roche) for 2 h at room temperature and were then washed again. After washing in solution 
containing 5-mM MgCl2, 100-mM NaCl, 100-mM Tris (pH 9.5), and 0.1% Tween-20, tissues were exposed to 
NBT/BCIP solution (Roche) until signals were detected. For histological observation of the spermatheca, lon-
gitudinal serial sections of the abdomen were cut at 4 µm, and stained with hematoxylin and eosin as previously 
described69. Specimens were observed (Leica DMRB and Olympus BX53) and were photographed with a 3CCD 
digital camera (Victor KY-F75 and Olympus DP72).
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