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Background 

Glioblastoma (GBM) is the most common type of malignant brain tumor and has a very 

poor prognosis. Most patients relapse within 12 months despite aggressive treatment and 

patient outcome after recurrent is extremely worse. This study was designed to clarify the 

change of the molecular expression, including programmed cell death 1 (PD-1) and PD- 

ligand 1 (PD-L1), on the initial and secondary resected tumor specimens and to address the 

influence of these expressions for patient outcome after second surgery of glioblastoma. 

 

Methods 

We investigated 16 patients, ranging in age from 14 to 65 years, with histologically verified 

WHO grade IV GBM, whose original tumor was resected between 2008 and 2014, and 

treated with fractionated radiotherapy (FRT) and temozolomide (TMZ). Four patients who 

were treated with immunotherapy using autologous formalin-fixed tumor vaccine were 

enrolled. All of the patients underwent secondary resection after tumor recurrence within 24 

months. We carried out an immunohistochemical examination of the initial and secondary 

resected tumors from patients using a panel of immune system molecular markers, and 

assessed whether marker expression correlated with clinical outcomes. 

 

Results 

CD3, CD8 and PD-1 on tumor-infiltrating lymphocytes (TILs) was significantly increased in 

secondary resected specimens compared with initially resected specimens (p≤0.05). All 

patients expressed PD-L1 on tumor cells in initial and secondary resection specimens. 

Patients were divided into high or low expression group by median IHC score of PD-1 on 

initial or secondary resected specimens. No significant differences in patient outcomes were 

observed between high and low PD-1 or PD-L1 groups of initially resected specimens. In 

high expression group of secondary resected specimens, most patients score had increased 
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which compared with initial resected tumor specimens. The PD-1 high expression score 

group of secondary resected specimens was associated with long progression-free survival 

and short survival after recurrence. 

 

Conclusion 

PD-L1 expression was detected in almost all initial and secondary specimens. Patients 

with high PD-1 expression of secondary specimen had bad prognosis after secondary 

resection. PD-1/PD-L1 pathway may be associated with patient outcome after second 

surgery of glioblastoma. 

 

Introduction 

Glioblastoma (GBM) is the most common type of malignant brain tumor (1-3). Despite 

aggressive treatment, including tumor resection, fractionated radiotherapy (FRT) and 

temozolomide (TMZ), the overall survival (OS) of patients with GBM is only 14.6 months (4). 

Furthermore, patient outcomes after recurrence are generally dismal, with a median OS of 

less than 10.8 months (5-8). Various studies have shown that anti-angiogenic antibodies or 

intraoperative chemotherapeutic implantation do not dramatically improve patient outcomes 

(9, 10). Although isocitrate dehydrogenase-1 (IDH-1) mutation, 

O6-methylguanine-methyltransferase (MGMT) methylation status and Ki-67 index for initially 

diagnosed GBM are predictive biomarkers associated with suitability for additional treatment 

or prognosis, there are few biomarkers that are useful after recurrence (8, 11). Previous 

studies showed that expression of TP53, MDM2, MSH2 and EGFRvIII was down-regulated 

in recurrent GBM (12, 13). In other types of recurrent malignant tumors, including breast cancer 

and colorectal cancer, patient outcomes were influenced by the tumor immune 

microenvironment (14, 15). 
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We have performed immunotherapy using autologous formalin-fixed tumor vaccine 

(AFTV) for initially diagnosed GBM (16-19). In these studies, we found that a part of patients 

treated with AFTV had very good prognosis, while some patients had unfavorable outcomes. 

However, any molecular marker relating to patient prognosis was not determined.  

More recently, immune checkpoint inhibitors are attracting attention as a new treatment 

strategy that helps immune cells recognize and attack cancer cells (20, 21). In patients with 

malignant melanoma and non-small cell lung cancer, which carry a relatively high number of 

somatic mutations, treatment with an anti- PD-1 antibody induced a significant and durable 

reduction in tumor volume (20, 21). A high number of somatic mutations is thought to be a 

predictive marker of effectiveness for checkpoint inhibitor immunotherapy, because the 

degree of mutation represents the height of antigenicity and to be considered induction of 

cytotoxic T cell lymphocyte (CTL) repertoire (22). Although there have been a few studies 

addressing the associations between PD-1/PD-1 ligand (PD-L1) expression in GBM and 

patient outcomes (23-25), the value of PD-1/PD-L1 expression as a prognostic marker remains 

controversial. We studied the immune system molecular markers by immunohistochemical 

examination of initially and secondary resected tissues from patients with GBM treated with 

FRT and TMZ at our institution, and assessed whether marker expression correlated with 

clinical outcomes after second surgery. 

 

Materials and methods 

Patients and GBM specimens 

We retrospectively investigated 16 patients with histologically verified WHO grade IV GBM, 

ranging in age from 14 to 65 years, who received the first surgical tumor removal between 

2008 and 2014, and treated with FRT and TMZ at our institute (Department of Neurosurgery, 

Faculty of Medicine, University of Tsukuba). All patients, including four patients who were 
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treated with AFTV, and other four patients who were treated with proton therapy, underwent 

secondary resection after tumor recurrence within 24 months. The study included three 

patients registered in the University Hospital Medical Information Network (UMIN) clinical 

trials number 000001426, the study design and treatment protocol of which were approved 

by the ethics committees of our institute (17), and a patient treated with AFTV who was 

reported in a previous paper (19). The AFTV was prepared from autologous formalin-fixed 

tumor tissue and administered with adjuvant microparticles as described previously (16, 18). 

 

Pathological examination 

Histopathological diagnosis was confirmed according to the 2007 WHO criteria (26) by 

pathologists at Tsukuba University Hospital or the Japan Brain Tumor Reference Center at 

Gunma University (Maebashi, Japan) using paraffin-embedded tissue sections stained with 

hematoxylin and eosin (H&E). Formalin-fixed paraffin embedded (FFPE) sections (2 µm) 

were deparaffinized in xylene and rehydrated through graded alcohols (99.5%–70%). 

Antigen retrieval was carried out using target retrieval solution (pH 6.0; Dako) for PD-L1 or 

citric acid buffer (pH 6.0) for other molecules for 10 minutes in a microwave (specimens 

were put in a microwavable pressure cooker when using microwave). Endogenous 

peroxidase activity was quenched by immersion in 0.3% hydrogen peroxide in methanol for 

30 minutes at room temperature and the sections were then incubated with primary 

antibodies at 4°C overnight. The next day, the slides were incubated with a secondary 

biotinylated antibody (LSAB2 Kit; Dako) at room temperature for 10 minutes. After another 

10 minutes incubation with streptavidin-horse radish peroxidase (LSAB2 kit; Dako), 

reactions were developed using a Liquid DAB Substrate Chromogen system (Dako). The 

slides were counterstained with 50% Mayer’s hematoxylin and dehydrated through graded 

alcohols (80%–99.5%) and xylene, then cover slipped with EUKITT (mounting reagent). 
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Monoclonal antibodies used for immunohistochemistry (IHC) included anti-Ki-67 (MIB-1, 

Dako), anti-TP53 (DO-7, Dako), anti-MHC class I (W6/32, Santa Cruz Biotechnology), 

anti-MHC class II (LN3, Novus), anti-IDH-1R132H (D299-3, MBL), anti-CD3 (SP7, Novus), 

anti-CD8 (SP16, Gene Tex), anti-CD20 (BV11, Novus), anti-CD45RO (UCH-L1, Santa Cruz 

Biotechnology) and anti-PD-L1 (28-8, Abcam). Polyclonal antibodies included 

anti-Granzyme B (GRZB) (E2582, Spring Bioscience), anti-PD-1 (E18662, Spring 

Bioscience) and anti-ATRX (HPA001906, Sigma Aldrich). 

Staining indices were calculated as the average number of positive cells in randomly 

chosen pairs of vascular rich and relatively hypo-vascular areas with appropriate staining 

condition from the entire section, with a total number of cells not less than 1000. The Ki-67 

and TP53 indices were expressed as percentages. For category analysis, cases with 10% or 

more positive cells were deemed positive, and cases with fewer than 10% positive cells 

were deemed negative for TP53 (27). For IDH1-R132H and ATRX, cases with 50% or more 

positive cells were rated as positive, and cases with fewer than 50% positive cells were rated 

as negative. Expression of CD3, CD8, CD20, CD45RO, GRZB and PD-1 in infiltrating 

immune cells was scored as 1 point (0 to 4 cells per high power field, x400), 2 points (5 to 8 

cells), 3 points (9 to 12 cells) and 4 points (13 cells or more). Staining scores, which were the 

sum (2 to 8 points) of two median values of each of three points in the vascular-rich areas (1 

to 4 points) and the relatively hypo-vascular areas (1 to 4 points) were used for analysis, 

modifying a method described previously (15). Expression of MHC class I and PD-L1 in tumor 

cells was graded as ‘-’ (absence of staining), ‘+’ (up to 25% of cells stained), ‘++’ (25–50% of 

cells stained) or ‘+++’ (more than 50% of cells stained) (27, 28). The IHC evaluation was 

performed by one of the authors (T. M.) with no reference to other clinical data. 

 

DNA extraction and bisulfite treatment 
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Genomic DNA was extracted from freshly frozen tissue using a DNeasy® Blood and 

Tissue Kit (Qiagen) according to manufacturer's instructions. Genomic DNA (1 μg) was 

bisulfite modified by the MethylEasy™ Xceed Rapid DNA Bisulphite Modification Kit (Human 

Genetic Signatures), following the manufacturer's protocol. Modified DNA was purified and 

used immediately. Bisulfite modified genomic DNAs from Hela and U87 cell lines were used 

as positive controls for unmethylated and methylated DNA, respectively. Distilled water was 

used as negative control. 

 

Methylation Specific PCR (MSPs) 

MSPs were carried out with 50 ng of bisulfite modified DNA in a total volume of 10 μl, 

which contained 5 μl of 2x AmpliTaq Gold™ Fast PCR Master Mix (Applied Biosystems), in 

a Veriti thermocycler (Applied Biosystems). Oligonucleotide primers for methylated or 

unmethylated MGMT were described previously (29). PCR reactions were 95°C for 10 min, 

followed by 40 cycles of 30 seconds denaturation at 96°C, 30 seconds annealing at 62°C, 30 

seconds extension at 68°C and a final extension step at 72°C for 30 seconds. PCR products 

were electrophoresed in a 2% agarose gel and stained with ethidium bromide at a final 

concentration of 0.1 μg/ml. 

 

Statistical analysis 

All results are presented as absolute number (%) or median (range). Statistical analyses 

were performed using standard statistical software (IBM SPSS Statistics version 24.0 for 

Windows; SPSS, Chicago, Illinois, USA). For comparison of IHC score and grade, Wilcoxon 

tests between initial and secondary specimens and Mann-Whitney U tests between initial 

specimens of vaccine group and control group were used, respectively. OS from diagnosis 

to death or last follow-up was estimated using the Kaplan-Meier limit method. The log-rank 
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test was used to assess group differences. P values of less than 0.05 were considered 

statistically significant. 

 

Results 

The characteristics, IHC pathological status at the first surgery, and treatment histories 

after surgery of the 16 patients are presented in Table 1. Two patients had IDH-1 mutation 

and diagnosed with secondary GBM. 

Fig. 1 shows micrographs of CD8 and PD-1 membranous expression on tumor-infiltrating 

lymphocytes (TILs) in initially resected and secondary resected specimens from a 

representative recurrent case after AFTV treatment. Although double-staining could not be 

done due to the host type of antibody used in this study, most (approximately 74 %) of CD8+ 

T cells co-expressed PD-1 in evaluable TILs using consecutive tissue sections. Remaining 

CD8+ T cells were PD-1 negative cells. High and low PD-L1 membranous expression on 

tumor cells, and PD-1 expression on TILs of representative cases are shown in Fig. 2. Table 

2 shows IHC indices, staining scores and grades (see Material and Methods) of TILs and 

tumor cells for specimens obtained from first and second surgeries. Ki-67, P53, ATRX, 

IDH1R132H, HLA-ABC, HLA-DR and PD-L1 staining scores or indices were not significantly 

different. CD3, CD8 and PD-1 staining scores were significantly increased in secondary 

resected specimens compared with initially resected specimens (p≤0.05), and CD20, 

CD45RO and GRZB staining scores were unaltered.  

Patients were divided into high (7 or more) or low PD-1 score group (Less than 7) by PD-1 

staining scores on secondary specimens. PD-1 (as an activated/exhausted lymphocyte 

marker) expression scores of the high PD-1 score group was significantly increased in 

secondary resection specimens compared with initial resection specimens (p≤0.05) (Fig. 3A). 

All patients treated with AFTV increased PD-1 score on secondary specimens compared 
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with initial specimens. CD3 (T cell receptor), CD8 (Cytotoxic lymphocyte marker) and 

CD45RO (Memory T cell marker) expression scores were also significantly increased in high 

PD-1 score group (data not shown). There was no significant differences in molecular 

marker expression on TILs between the initial and secondary specimens of low PD-1 score 

group. No significant difference was seen between high and low PD-1 score groups on the 

initial specimens.   

To assess the association between marker expression and patient outcomes, univariate 

analyses of PFS, survival from secondary surgery and OS (from initial surgery) in high- and 

low-expression groups were performed. Fig. 3B shows the survival curves of the high and 

low PD-1 score groups on secondary specimens. In log-rank analysis, high PD-1 score after 

the secondary surgery was a significant factor associated with favorable PFS, and low PD-1 

score after the secondary surgery was also significant for improved survival. PD-1 score and 

other molecular score including Ki67 score and P53 score did not correlate in this study. 

High CD8 score after the secondary surgery was also significant poor prognostic factor of 

survival after second resection as high PD-1 score (p=0.005), and high CD3 score was trend 

of poor prognostic factor of survival after second resection (p=0.065). In tumor markers, high 

PD-L1 grading also show trend of poor prognostic factor of PFS (p=0.095). Univariate 

log-rank analysis of other IHC data, including ATRX, IDH-1R132H and others, revealed that 

positive ATRX staining after the initial surgery was the only significant factor (p<0.05) 

associated with favorable PFS. No significant differences were observed for other factors, 

including IDH-1R132H staining status, probably due to low patient numbers. 

 

Discussion 

The balance of cytotoxic CD8+TILs and negative immune regulators, such as PD-1/PD-L1 

expression and regulatory T cells in the tumor microenvironment, are critical determinants of 
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patient outcome associated with both the intrinsic and immunotherapy mediated immune 

response (30). In this study, the IHC expression scores of CD3, CD8 and PD-1 on TILs were 

significantly increased in the secondary resection specimens compared with the initial 

resection specimens, although CD20 and GRZB scores were not different. These results 

indicated that various stimulations including AFTV treatment induce the recruitment of large 

numbers of T cell type TILs, consisting mostly of CD8+ cytotoxic T cells. However, most of 

the CD8+ TILs co-expressed PD-1. PD-1 positive TILs including these CD8 T cells were in 

the exhausted state at the recurrent stage. Earlier research revealed that inflammatory 

cytokines, such as interferon alfa (IFNα) and interferon gamma (IFNγ) secreted by 

activated T cells, mediate PD-1 expression on TILs and PD-L1 expression on tumor cells, 

respectively. This mechanism is considered to be an important factor associated with tumor 

recurrence (31, 32). In this study, PD-L1 expression on tumor cells was detected in all 

specimens, and the secretion of inflammatory cytokines accumulated TILs may be linked to 

this phenomenon. In addition, GRZB downregulation was observed in PD-1 expressing TILs 

as shown in Fig. 1. We speculate that activated TILs were attenuated by inhibitory factors, 

such as accumulating regulatory T cells or myeloid derived suppressor cells, PD-1/PD-L1, 

inhibitory factors (TGF-beta, IL-10, IDO) or tryptophan catabolites, all of which are found in 

various tumor microenvironments (33, 34). 

The results of our previous Phase IIa clinical study of FRT, TMZ and AFTV 

immunotherapy for initially diagnosed GBM patients included a 33% two-year 

progression-free ratio, 22.2 months OS and 38% three-year survival ratio (17). In other words, 

a third of patients had a long PFS of over 24 months resulting in an extremely favorable 

outcome, and half of the rest of the patients had an unfavorable outcome. Thus, it will be 

very valuable to identify the mechanisms underlying early AFTV treatment failure. In the 

present study, all of the tumors in the AFTV group recurred within 24 months, and there were 
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no patients with a PFS over 24 months. In our experience, most patients with a PFS over 24 

months do not have a recurrence within the follow-up period of 3.1 years. Instead, typically 

they may have a small mass in a new location distal from the original lesion that is treatable 

with stereotactic radiotherapy. For this reason, the present study includes only AFTV failure 

patients with a relatively short PFS. 

Our data showed that cases with increased numbers of PD-1 positive TILs at the 

secondary surgery tended to have a favorable PFS. We speculate that PFS was extended 

by spontaneously or AFTV induced PD-1 negative CD8 TILs that attack the remaining tumor 

cells after the initial surgery and inhibit tumor progression. On the other hand, TILs had a 

limited capacity to infiltrate tumor tissue and influence tumor growth. However, the PD-1 low 

group had better survival after secondary surgery compared with the high group. We 

speculate that expansion of PD-1 negative CD8 T cells probably extend the interval to 

recurrence. After TILs including CD8 T cells beginning to express PD-1, tumor may recur 

rapidly. Almost all TILs express PD-1 after secondary surgery in the high groups, and there 

were minimal numbers of active TILs that were able to influence tumor progression 

consistent with very poor prognosis. Median survival from secondary surgery for the PD-1 

High group and PD-1 Low group was 13.8 months and 18.4 months, respectively.  

There are few studies addressing the association between PD-1/PD-L1 expression in 

GBM and patient outcomes. Nduom and co-authors examined 92 GBMs by IHC and 

reported that high expression of PD-L1 on GBM cells was a poor prognostic marker (25). In 

contrast, Berghoff and co-authors examined 117 initially diagnosed and 18 recurrent GBMs 

by IHC and did not find a correlation between high PD-L1 expression and prognosis (23). In 

regard to other mechanisms that may be related to AFTV treatment failure, we speculate 

that some hyper-proliferative tumors will recur until acquired immunity is established after 

AFTV administration.  
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Our results indicate that anti-PD-1 antibody therapy may effective for preventing tumor 

recurrence after initial surgery. In a mouse breast cancer model (TUBO cell xenograft), 

combination therapy with a multi-peptide vaccine and anti-PD-1 antibody prolonged survival 

of tumor-bearing mice and enhanced TIL antigen reactivity (35). Further, in colon cancer 

(CT26 cell xenograft) and ovarian cancer (ID8-VEGF cell xenograft) mouse models, the 

combination therapy of vaccination or adaptive transfer of TILs and double immune 

checkpoint blockade (CTLA-4 and PD-1) blocked tumor growth more effectively than 

monotherapy or combination therapy with single immune checkpoint blockade (36). 

Anti-CTLA-4 antibody inhibits the negative regulation by CTLA-4 signaling in the activation 

phase of the APC-T cell interaction, and enhances anti-tumor effects as a result of T cell 

activation and proliferation (37). However, it has been reported that the side effects of double 

immune checkpoint blockade combination therapy are significant (38). In our cohort, AFTV 

induced high numbers of TILs with no or very weak side effects (e.g. redness and/or 

induration in the administration skin site, and mild fever). In addition, combination therapy 

with AFTV, pembrolizumab (anti-PD-1 antibody) and radiation was effective for the treatment 

of chemo-refractory liver-metastasized uterine cervical small cell carcinoma (39). Thus, we 

expect that combination therapy with AFTV and anti-PD-1 antibody is a more effective and 

safer method for cancer immunotherapy. 

Our study has some limitations. The characteristics of our patient group were not typical 

for standard GBM patients because only recurrent cases treated with repeated surgery were 

included. The past study did not show a correlation between PD-L1 expression and MGMT 

methylation status in 117 newly diagnosed GBMs (23). Another previous analysis of 222 

GBMs also found no relationship between MGMT methylation status, TP53 expression, or 

enhancement of PD-1 positive TILs or PD-L1 expression on tumor cells at the tumor site (40). 

So we speculate that bias based on MGMT methylation status and TP53 expression might 
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not be related to the presence of PD-1-positive TILs. We could not prove that PD-1 positive 

TILs were reduced in long PFS (over 24 months) patients treated with AFTV, or patients with 

no tumor recurrence who had a co-incidental second operation, because it is very difficult to 

obtain TILs from these patients. We speculate that recurrence is not observed in long PFS 

patients because tumor cells have already been eliminated even if some PD-1 positive TILs 

are induced. Moreover, GBM heterogeneity might make it difficult to evaluate with precision 

whether high PD-1/PD-L1 expression after secondary surgery shortens OS, and the small 

number of patients is also a limitation of this study, and further analysis using a larger 

number of patients is necessary. 

 

Conclusion 

PD-L1 expression was detected in almost all initial and secondary specimens. In the 

vaccinated group, the expression of PD-1 on TILs was significantly upregulated in 

secondary resected specimens compared with the initially resected tumors (p≤0.05). The 

patients with high PD-1 expression in the secondary specimens had long PFS, and short 

survival after recurrence. PD-1/PD-L1 pathway may be associated with patient outcome 

after second surgery of glioblastoma. 
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Figure Legends 

 

Fig. 1 Micrographs showing membranous expression of CD8 (A and C) and PD-1 (B and D) 

on tumor-infiltrating lymphocytes (TILs) in initially resected specimens (A and B) and 

secondary resected specimens (C and D) in serial sections of a representative case of 

recurrent glioblastoma (Pt. #4) treated with autologous formalin-fixed tumor vaccine (AFTV) 

(Magnification x200). Scale bar = 100 µm. White arrows indicate stained cells (A and B). 

 

Fig. 2 Micrograph showing membranous expression of PD-L1 on tumor cells (A and B) and 

PD-1 on TILs (C and D) (Magnification x400).  

A: Low PD-L1 expression area corresponding to grade ‘+’ (up to 25% of cells stained) in the 
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tumor area. B: High PD-L1 expression area corresponding to grade ‘+++’ (more than 50% of 

cells stained) in the tumor area, with no PD-L1 expression on blood vessels. C: Low count of 

TILs with PD-1 expression in the tumor area corresponding to score ‘1 point’ (0-4 cells per 

high power field). D: High count of TILs expressing PD-1 corresponding to score ‘4 points’ 

(13 cells or more per high power field). Scale bar = 50 µm. 

 

Fig. 3A Scatter plot depicting the expression scores of PD-1 on TILs in initial and 

secondary resected specimens. High and low PD-1 expression on secondary resection 

specimens grouped as higher or lower than median IHC score (Low PD-1 score group (Less 

than 7), n=7; High PD-1 score group (7 or more), n=9). White circles show 4 patients treated 

with AFTV. For comparisons of IHC score, the Wilcoxon test between initial and secondary 

specimens and Mann-Whitney U test between initial specimens of the low group versus high 

group were used, respectively. P < 0.05 were considered statistically significant. 

3B Kaplan-Meier curves showing PFS, survival after secondary resection and OS 

compared with high and low PD-1 expression on secondary resection specimens grouped 

as higher or lower than median IHC score (Blue line : Low PD-1 score group (Less than 7), 

n=7; Green line : High PD-1 score group (7 or more), n=9). These curves compared with 

high and low CD8 and PD-L1 expression on secondary resection specimens are also 

shown. 
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Table 1. GBM patient characteristics, treatment histories and pathological status 

determined by immunohistochemistry (IHC). 

 Factors Values 

Patient 

background

Case number 16 

Age (median (range)) 50 (14-65) 

Sex (M:F) 10 : 6 

IHC score 

MIB-1 index (positive cell %, median 

(range)) 
24.1 (5.3-45.7) 

MGMT Methylation specific PCR 

(Methylated / Unmethylated) 
3 / 11** 

IDH-1 R132H (positive/negative) 2 / 14 

TP53 (positive cell %, median 

(range)) 
4.4 (0.0-60.4) 

GBM type Primary GBM / Secondary GBM* 14 / 2 

Treatments 

after 1st 

operation 

Conventional FRT/ Proton 12 / 4  

TMZ with RT / others 16 / 0 

AFTV treatment (yes / no) 4 / 12 

*IDH-1 mutant or clinically diagnosed secondary GBM. 

**2 patients were unavailable. 
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Table 2. Alteration of indices, staining scores and grades based on IHC staining of 

TILs and tumor cells obtained from initial and secondary resected specimens. 

  1st removal 2nd removal p value** 

Case number 16 16  

Ki-67 (%, median) 24.1 15.2 0.178 

TP53 (%, median) 4.4 5.7 >0.2 

MGMT-Methylation specific PCR 

(Unmethylated / Methylated)* 
11 / 3 10 / 4 >0.2 

ATRX (negative / positive)  3 / 13 4 / 12 >0.2 

IDH1R123H (negative / positive) 14 / 2 14 / 2 >0.2 

PD-L1 (-, +, ++, +++, median) ++ +++ 0.187 

HLA-ABC (-, +, ++, +++, median) +++ +++ >0.2 

HLA-DR (-, +, ++, +++, median) ++ ++ >0.2 

CD3 (score, median) 5.5 7.0 0.033 

CD8 (score, median) 5.0 6.0 0.009 

CD20 (score, median) 4.5 4.0 >0.2 

CD45RO (score, median) 6.0 7.0 0.148 

GRZB (score, median) 5.0 5.0 >0.2 

PD-1 (score, median) 5.0 7.0 0.036 

*2 patients were unavailable. 

**For comparison of IHC score and grade between 1st versus 2nd specimens, Wilcoxon test 

was used. Values of P < 0.05 were considered statistically significant. 
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