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1. INTRODUCTION 

 
Two of the main purposes for performing long term 

measurements are: 
- to create a long time series to analyse for possible 

trend and 
- to create a parameter space as wide as possible so as 

to enable us to understand the feedback mechanism 
of an ecosystem for as wide a range of different 
conditions as possible.  

For this there is a need for continuos long data series 
of driving variables such as measured by automatic 
weather stations and flux data. However, measurements 
on a short time step, for example on a (half-)hour basis, 
of environmental variables with the objective of creating 
a long time series of data are inclined to have gaps. 
Causes for gaps can be power failure, instrument 
breakdown, or rejection of data after quality check etc.  

The treatment of gaps depends on the variable and the 
length of the gap. For instance, hourly data of a variable 
with a strong diurnal signal can be missing or daily data 
of a variable with a seasonal cycle. Both sorts of gaps 
may be treated differently.  

The most important objective of gap filling should be 
to create consistent data series. This means that before the 
gaps are filled, a data quality check should be executed to 
ensure high quality data. It should also be clear that the 
experimentalist should try and do his outmost to create a 
high quality data series of prognostic values as 
uninterrupted as possible, and that the procedures 
outlined here are only meant as a last resort and can never 
replace high quality measurements. 

In this study we use measurements of energy fluxes 
and NEE (net ecosystem exchange) over a mid latitude 
Scots pine forest in the Netherlands for a five year period 
(1995-1999). 

 
2. SITE AND METHODS 

 
2.1. Site description 

 
 The forest site is an extensive Scots pine forest in the 

center of the Netherlands on sandy soil, origination from 
glacial deposits (e.g. Dolman et al., 1998). The forest was 
planted in the beginning of the previous century. Existing 
soil organic material was largely removed at that time. 
There is an understorey of Deschampsia flexuosa, a grass 
that can reach a height of 50 cm. The soil is a sandy soil 
(humuspodzol) with a 10cm top layer of organic material.  
 

2.2. Measurements 
 

Fluxes of latent and sensible heat and momentum 

were obtained by the eddy correlation method from 
scaffolding towers since early 1995. In 1996 the system 
was extended to measure also the flux of CO2. The fetch 
is at least 1.5 kilometres in all directions and consists of 
similar forests with the same species of similar age and 
height. For this site Elbers et al. (1996) calculated that 
most of the flux originates from 500 m around the tower, 
with the maximum flux contribution at 120 m for neutral 
atmospheric conditions.  

The eddy correlation system consists of a 3-D sonic 
anemometer (Solent 1012 R2), a Krypton hygrometer 
(Campbell, Inc., USA) and a LiCOR 6262 infrared gas 
analyser linked to a notebook computer. The computer 
calculates on-line variances and co-variances at half-
hourly intervals using an moving average filter with a 
time constant of 200 s. Measurements were taken at 10 
Hz.  All raw data were saved on a removable hard disk 
and collected every week.  

At five levels (2.5, 5.0, 8.4, 23.5 & 26.0 m) within and 
above the canopy measurements were made of the CO2 
concentration using a single channel CIRAS infrared gas 
analyser (PP Systems, UK). These measurements were 
taken at each level for five minutes. The profiles thus 
obtained were time-differenced and vertically integrated 
to estimate the total change in CO2 storage. The CIRAS 
data is used to calibrate off- line the LiCOR system.  

An automated weather station took measurements of 
incoming and reflected solar (Kipp and Zonen CM21) 
and long wave (Kipp  en Zonen, CG1) radiation, soil heat 
flux (TNO-WS 31 and  Hukseflux SH1), windspeed 
(Vector A101ML), wind direction (W200P) and 
temperature and relative humidity (Vaisala HMP35A). 
Note that no measurements of net radiation were taken, as 
the separate components of the energy balance, 
shortwave and longwave radiation were determined 
independently. The incoming long-wave instruments was 
cooled by a fan to minimise temperature differences 
between the housing and the environment.  

Rainfall was measured above the canopy and in the 
open field with automated tipping bucket rain gauges. 
Power was supplied by 12 V batteries connected to solar 
panels and a wind generator. A diesel generator was used 
as backup and installed downwind at about 100 m of the 
tower. During the autumn and winter a considerable part 
of the required power is supplied by the diesel generator. 
No effect of the exhaust fumes on the CO2 signal could 
be found in the tower CO2 profile measurements.  

Corrections for signal loss of the eddy correlation 
equipment due to sensor separation, path length, finite 
instrument response time and tube length were calculated 
following Moore (1986), Moncrieff et al. (1997) and 
Aubinet et al. (2000). The reference frame of the co-
variances was rotated for every half hourly flux 



measurement to align the fluxes perpendicular to the 
mean streamline. For further details on the 
methodological aspects of the measurements see Aubinet 
et al. (2000). 

 
2.3. Gap filling 
 
There are several techniques to fill gaps in time series, 

such as: (non)-linear interpolation, look up tables, a 
method based on mean diurnal variations of previous 
periods (MDV), (multiple) (non)-linear regression, 
artificial neural networks, or (semi-)empirical models. 

As most relations in nature are complex, (non)-linear 
interpolation is only reliable for filling very short gaps 
(e.g. one 30 min. timestep) if other data series without 
gaps of more or less physically related variables show 
the same trend (e.g. temperature and radiation).  

Falge et al. (2001a) give an example of how to use 
look up tables. Missing measurements of fluxes are 
looked-up based on meteorological conditions. They 
used PPFD (photosynthetic photon flux density) and 
vapor pressure deficit as the driving meteorological 
variables for latent and sensible heat flux. For the net 
ecosystem exchange they used air temperature and PPFD. 
The tables were split up in 6 or 4 parts to represent 
different seasonal conditions. The advantage of lookup 
tables if compared with semi-empirical methods such as 
non-linear regression is that lookup tables do not depend 
on a fixed response function. 

Missing data can be filled using the mean diurnal 
variation method. The missing data are replaced by the 
mean for that time slot based on measurements of 
previous and subsequent days. Using mean diurnal 
variations to fill gaps in data series is based on the 
assumption that the average of the previous and 
subsequent periods is representative for the period with 
the missing data. Falge et al. (2001a) recommended for 
(half-)hourly data averaging windows of 7 or 14 days. 
Larger averaging intervals are in general not 
recommended as they will introduce bigger deviations of 
the mean for each time slot. The strong point of MDV is 
that there are no data needed of other variables, which is 
especially useful for remote locations when there are no 
data available at all. This at the same time is also the 
weak point of this method, because there is no response 
to different conditions that may influence the variable to 
be filled (Falge et al., 2001b). 

A well calibrated (semi-)empirical model based on 
more or less known physical functions can be used to fill 
gaps in data series of fluxes. An example of such a model 
is the often used relation between soil temperature and 
radiation and NEE (e.g. Lloyd and Taylor, 1994). 
However, the disadvantage of such models is that they 
are based on pre-defined functions that are not 
necessarily representative for the measurements. For 
example the assumption of energy balance closure 
although theoretically correct will not always be true for 
the measurements at a specific site. A site may be 
influenced by advection or the energy storage in the soil 
or canopy is not accurately measured, fluxes derived 
from a model using the assumption of energy balance 

closure will then be offset compared to the measured 
fluxes. 

Neural networks can be considered a non-linear 
regression tool and as such are capable of reproducing 
highly non-linear relations that are common in nature 
(Huntingford and Cox, 1997). A typical neural network 
consists of a number of input nodes, a number of nodes 
in a hidden layer and one output node (see Fig. 1). To 
ensure the greatest flexibility and enable the network to 
reproduce the non-linear behaviour of natural processes a 
sigmoid activation function such as:  
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can be used for the nodes in the hidden layer. 
To prevent different weights at the initialisation all 

input signals can be scaled to values between –1 and 1.  

hidden layer

x1 x2 x3 x4 input signals

output signaly

Figure 1: Example of a neural network configuration 
with 4 input signals, a hidden layer with 4 nodes and 1 
output signal. 

 
A distinct advantage of a neural network in gap 

filling is that it is not necessary to make any assumptions 
about a physical relation between variables. One can 
introduce for example time of day or day of year as an 
input signal.  

 
3. RESULTS 

 
3.1. Automatic Weather Station Data 
 
For weather data there are a number of techniques 

available which in general are based on comparing data 
at a specific site with those measured at neighboring sites. 
Xia et al. (1999) tested six different methods to estimate 
missing values in forest climatology data for Bavaria, 
Germany.  They found that a method based on multiple 
regression analysis (using the five closest weather 
stations) with least absolute criteria gave the best 
estimations. The most accurately estimated variables 
were maximum and mean temperature, and water vapor 
followed by minimum temperature. The poorest results 
were obtained for wind speed and precipitation. A 
problem arises when the station is located in extended 
forested area and the neighboring stations are located on 



for example grassland. If the forest influence is not taken 
into account the errors will increase significantly. 

An alternative to using neighboring stations is to use 
other variables measured at the same site and a non-
linear regressor such as a neural net. A neural net also 
gives the possibility of including non-linear relations in 
the data between different sites. The ability to fit the data 
depends on the number of degrees of freedom. For a 
neural network these depend on the number of input 
variables (i.e. input nodes) and the number of nodes in 
the hidden layer(s). In Table 1 an example is given of 
possible network configurations to fill the gaps in the 
wind speed data at the Loobos site. The neural net was 
not trained on the wind speed directly, but on the 
differences in wind speed measured by two sensors.  
 
Variable Output Input Nodes RMSE 

u u-usonic  usonic, u*, (z-d)/L 2 0.128 

u u-ulevel1 ulevel1, ulevel2, udir, T 2 0.578 

u u-ulevel1 ulevel1, ulevel2, uloc, Rg 3 0.437 

u u-uloc uloc, udir, T Rg 2 0.589 
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b[1] = 0.941
r ² = 0.980
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Table 1. Different neural network configurations to 

fill gaps in wind speed data. In the column Nodes the 
number of nodes used in the hidden layer is indicated, 
RMSE is the error presented as the root of the sum of 
squares divided by the number of residuals. (u* = friction 
velocity, (z-d)/L = stability parameter, udir = wind 
direction, T = temperature, Rg = global radiation, the 
subscripts stand for: sonic = sonic anemometer, level1/2 
= cup anemometer at different height, loc = anemometer 
at different location. ) 

 
In Fig. 2 the results are plotted of the first neural net 

(NN) configuration of Table 1. This figure shows that 
although this specific relation is almost linear the neural 
net improves the average and the variance explained.  

 
3.2. Flux data 
 
For flux data it is in general not practical to use 

neighboring stations to fill missing data.  
Van Wijk and Bouten (1999) used several 

combinations of input variables Rg (global radiation), T 
(temperature), D (vapour pressure deficit), u (wind speed), 
LAI (leaf area index), TofD (time of day) and Nday (day 
number) to test the performance of neural networks to 
determine the half hourly latent heat flux and NEE. They 
excluded wet day and night time data with wind speeds 
below 2.5 to 3.0 m s-1 to prevent possible side effects due 
to interception evaporation and CO2 storage build up 
during stable nights. The neural net was calibrated for a 
subset of the remaining data. The validation was done on 
the data of the same year not used for the calibration. 
They obtained the worst results  

Fig. 2: Wind speed measured by a cup-anemometer 
(u) versus the derived wind speed using a neural net (NN) 

(top graph) and as measured by a sonic anemometer (u-
sonic) (bottom graph). 

 
(NRMSE = 0.77 and R2 = 0.66) using Rg and T as input 
and 3 nodes in the hidden layer and the best results  
(NRMSE = 0.69 and R2 = 0.70) using Rg, T, D, LAI and 
TofD as input and also with 3 hidden nodes. 

Fig. 3: NEE measured and derived from a neural net. 
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Because we were not interested in trying to model 
NEE using a neural net, but only in obtaining a 
continuous data set, we used a slightly different approach. 
Instead of half hourly data we used daily data, which 
reduces the uncertainty in the data. First the missing data 
for the meteorological and other data were replaced using 
different neural net configurations as indicated in Table 1. 
Secondly the missing data in the latent heat flux were 
replaced. And at last the NEE gaps were filled in using all 
automatic weather station data, soil moisture data and 



fluxes of latent heat. This procedure ensured that we 
could use nearly all-available information at the site 
contained in the measurements of the different variables.  
In Fig. 3 the validation results for 1999 data are plotted 
for a neural  net trained on 1997 and 1998 data.  Here the 
slope of the regression line is 0.863 and the variance 
explained r2 = 0.78. 

 
4. DISCUSSION AND CONCLUSIONS 

 
From the above it is clear that filling missing data is 

not an easy and straightforward task. It is clear that the 
use of semi-empirical models is not recommended 
because of the risk of creating biased data. For missing 
precipitation data the use of neighbouring stations is often  
the only method. For other variables measured at forested 
sites care should be taken if neighbouring stations are 
used based on other land use.   

For flux data Falge et al. (2001a) prefer look-up tables 
over mean diurnal variation methods as they preserve the 
response to main meteorological conditions. An other 
technique that preserves this response are the use of non-
linear regressors. Here it was demonstrated that a neural 
network being a non-linear regressor is a good tool to fill 
missing data in both meteorological and flux data series. 
Falge et al. (2001a) showed that different filling 
techniques may give different results, and thus 
standardisation of filling techniques is preferable. 
However, as shown in Table 1. there are a number of 
different neural net configurations possible. The best 
configuration depends on the site characteristics as well 
as the data available. To get the most out off the available 
data different methods will have to be applied. To ensure 
correct interpretation of a filled data set, it is 
recommended to add to each data set information on the 
filling techniques used as well as an estimation of the 
accuracy.   

Advantages of the use of neural networks are that 
clear predefined relationships are not needed and it is 
easy to incorporate daily or seasonal trends by including 
the time of the day or the day of the year. However, it is 
also demonstrated here that the results improve if those 
easy predictable fluctuations are removed prior to the 
training of the network. The use of neural networks 
contributes to highly consistent data series. This data 
series, however is not necessarily accurate, as during the 
training phase of the network, the possible errors of the 
object variable are included. Data quality remains the 
building block of a good data series. A possible 
advantage of the use of a neural network is also that there 
is no need to find a consensus model to generate the flux 
data: consensus on the input data and the transfer 
function is sufficient. 
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