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Abstract: Dance has been made mandatory as one of the physical education courses in Japan because
it can cultivate capacities for expression and communication. Among several types of dance education,
creative dance especially contributes to the cultivation of these capacities. However, creative dance
requires some level of particular skills, as well as creativity, and it is difficult to presuppose these
pre-requisites in beginner-level dancers without experience. We propose a novel supporting device
for dance beginners to encourage creative dance performance by continuously generating musical
sounds in real-time in accordance with their bodily movements. It has embedded sensors developed
for this purpose. Experiments to evaluate the effectiveness of the device were conducted with ten
beginner-level dancers. Using the proposed device, the subjects demonstrated enhanced creative
dance movements with greater variety, evaluated in terms of Laban dance movement description.
Also, using the device, they performed with better accuracy and repeatability in a task where they
produced an imagined circular trajectory by hand. The proposed interface is effective in terms of
creative dance activity and accuracy of motion generation for beginner-level dancers.

Keywords: creative dance; supporting dance education; grasping-type interface; embedded sensing
device; motion analysis

1. Introduction

Dance is a bodily action intended to convey to others the imagination conceived by the dancer.
In Japan, dance has been a compulsory subject for elementary school since 2011, for junior high
school since 2012, and for high school since 2013, following revisions to the curriculum guidelines
in 2008 by the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The dance
in compulsory education is composed of Creative Dance, Folk Dance, and Hip Hop as a modern
dance [1]. In particular, the improvisational aspects of creative dance are expected to contribute to the
cultivation of expressive ability, creativity, and imagination. Communication skills are also expected to
be cultivated by sharing imagination with others through bodily expressions and dance improvisation
actions. Dance education is useful not only for students under compulsory education but also for
college students and adults with no experience of the compulsory education of dance. For the latter,
it can provide an opportunity for them to acquire basic social capabilities such as creativity, faculty,
and the ability to grasp a situation by performing creative dance [2].
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However, the improvisational skills required in creative dance are difficult to be presupposed in
beginner-level dancers, because the skill required to convert their imagination to bodily expression
necessitates a certain level of experience. Improvisatory dance allows a tremendous variety of motion,
which makes it different from other types of dance, such as rhythm or folk dancing, where motion is
chosen from a set of predefined motion repertoires based on a melodic and rhythmic stream of music.

Concerning this difficulty for beginners, a report [3] by National Institute for Educational Policy
Research in Japan proposed four kinds of criteria to guide the development of creative dance by
beginner-level dancers: Involvement (liveliness of motion with rhythm and tempo without hesitation or
timidity), Creativity (variety of created motions that follow a given theme), Motor Skill (expressiveness
of entire body motion including hands and fingers), and Knowledge (knowledge and understanding
of theme, dance performance, and exercise). In this context, Terayama and Hosokawa [4] investigated
conventional teaching methods for improvisation dance and identified the usefulness of “prompts”.
They reported that educators in the field use common prompts to inspire the improvised expression of
learners immediately prior to dancing. The educators indicate imagination by displaying playing cards or
providing motor tasks to ease the conversion of imagination into bodily expressions. From this perspective,
we can consider the necessity and importance of a kind of support that can continuously prompt to derive
and encourage the imagination of bodily expression and the ability to create expressive motions.

Because these educational indications were given in conceptual terms, they tended to be
susceptible to the subjective impression of the teachers [1]. Conversely, Miyamoto [5] focused more
on describing the detail of bodily motion, such as amplitude, smoothness, continuity, and variety in
velocity and strength of motion of each body part for the evaluation criteria in education of creative
dance. Translating the educational points of the previous section into motion description, the problem
in bodily motion for beginner-level dancers is primarily that the motion tends to be small and less
variate and accompanied with hesitated and bewildered initiation.

Grasping is another important aspect of bodily motion in creative dance. It represents subtle finger
motion that must be developed in beginner-level dancers according to the above educational guideline.
Further, even when the fingers seem to be stationary, the force given by the fingers represents internal
emotion and therefore devotion to a theme [6,7], which is unobservable from outside.

Recent literature in neuroscience reports on modulation of sensory integration in the brain
induced by real-time auditory feedback of motion information. Research on the effect of a sensor
glove [8], which presents the tactile information of hand by sound, investigates the brain areas that are
responsible for the modulated sensory integration. Behavioral investigation on the effect of auditory
feedback of footstep during gait [9] reported significantly larger steps and forward drift of the body
on a treadmill induced by the feedback, and discussed the changes in the mechanism of self-motion
perception and sensory-motor integration. These neurological and behavioral evidences suggest that
sound feedback of self-motion can be a useful tool for enhancing dance movement.

Based on these perspectives, to support bodily expression of creative dance in beginner-level
dancers, in this paper we propose a device that provides prompts that reflect the relevant motion and
grasp parameters to induce and reinforce creative dance motions. This paper presents (1) a supporting
interface that triggers and senses the dancer’s motion; (2) a sound feedback mechanism used to enhance
the expression during dancing; and (3) quantitative evaluation of the dance expression including
grasping that indicates the effectiveness of the proposed method.

In the proposed method, we develop a supporting interface for beginners that generates prompts
for bodily motion during creative dance performance as displayed in Figure 1. This interface has three
features: it is ball-shaped, wireless, and hand-held. Because of these features, the interface can be held
in the user’s hand during a dance performance, allowing them free motion and detecting the grasping
motion. The interface controls sound parameters such as the note, volume, and tempo according to
variations in the grasping force and bodily motion. The sound is then presented back to the user in
real-time. Because of this feedback, users can understand the association between sound and their
bodily and grasping motions. Utilizing the imagination to generate sound sequences, users can be
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prompted for successive dance motions. In this manner, the sounds can continuously support the
user’s successive creative performance. In the experiments to verify the effectiveness of the interface,
we focus on the performance of beginner-level dancers during creative dance with the interface. Their
creative dance performance is evaluated based on Laban Movement Analysis (LMA) [10,11] and the
amount of variation in the grasping force. The accuracy of the realization of imagined motion is
evaluated in additional experiments.
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Figure 1. Conceptual diagram for the creative dance support of the proposed grasping-type interface.
Motion and grasping force sensed by the interface are presented back to the user in real-time as
a variation in musical sound. The sound encourages the user to generate motion continuously and
accurately following the imagined trajectory. It also helps the user to conceive imagination for the
next motions.

In our pilot study of this experiment with fewer subjects, a positive result was obtained [12].
In [12], order effect was not considered and the evaluation depended simply on the average and
standard deviation of accelerometer data. In contrast, in this paper, the results are evaluated according
to Laban motion standard based on the abovementioned standpoints, and order effect is dealt with
by introducing reversed order of the conditions with more number of subjects. Moreover, the second
experiment, that investigates motion accuracy to evaluate the accuracy of physical representation of
motion image under the support of the device, is newly presented here. Both the real-time creation of
motion image and the physical representation of the created image are the essential and inevitable
targets of support in supporting creative dance. These two experiments combined can guarantee the
effectiveness of the interface. Also, for both of the experiments, statistical validation of the results is
added. These results prove the effectiveness of the proposed interface, at the level of its realistic and
broad application to beginner level dancers.

The remainder of this paper is organized as follows: Section 2 describes related research. Section 3
presents the proposed bodily expression support interface that includes the hardware design, control
methods, and performance styles. Section 4 provides the experiment settings. Section 5 presents the
experiment results and discussion that confirms the usability of the proposed interface and explores the
effect of the proposed grasping interface on the creation of a musical sound-space. Section 6 presents
the conclusions.

2. Related Works

Since dance courses have become compulsory, supporting systems for dance education have
gained importance. Among the studies to support dance improvement, Sato et al. [13,14] focus on
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arm movements in street dance to analyze the movements of novice and expert dancers. These
studies evaluate from the perspective of motion analysis, whereas conventional approaches evaluate
movement through sensibilities such as aesthetic and artistic points in dance performance. These
studies focus on observing the difference between the movements of novices and experts and evaluate
the characteristics of expert dancers; however, this research has not been considered to improve the
dance performance for initial beginner-level dancers.

There have been other studies to evaluate motion using motion capture systems with virtual
reality technologies [15–18]. These studies are useful in the training of motions with trajectories
already determined such as ballet. It is possible to use these to improve the accuracy of creative dance;
however, these systems do not encourage creative performance for beginners. Tadenuma et al. [19]
also employed virtual reality technology to analyze dancer movements using Kansei information
processing technology. They developed a system for transmitting to others, through visual images, the
intent of a dancer estimated by the physical features in a video. However, because the line of sight
faces the display system, free dance expression is restricted. Moreover, the dance space is limited
because of the system required sensing areas for the motion capture system.

There is also research that proposes a new dance technique through lighting representation (LED
Lighting System) [20]. This study evaluates the effects of lighting representation on physical expression;
however, this is also for experts, rather than novices. Unlike display systems, this approach employs
wearable LEDs. Because there are many parameters to determine the light pattern, it is necessary to
choreograph the light according to the motions in advance; this does not correspond to a real-time
dancing operation.

There have been proposals that use portable devices such as haptic interfaces and mobile phones.
This line of research is particularly active in musical application [21–23]. These studies introduce
various types of sensing technique to detect human motion and the measured body movements are
mapped to music or sound. These performance systems liberate a performer from the usual physical
limitations and provide different capabilities for music creation. Unlike the methods of confirming
a dance by visualization, this is called sonification technology and has been used by professional
dancers and artists [24,25]. There are many wearable devices; however, these are not suitable for usage
to support dance beginners in an environment with multiple people because the installation tends to
be complicated. Therefore, an interface that is portable and does not include dance field restrictions is
necessary. Mobile phones, including iPhones, have become useful devices because of their multiple
sensors that can be used to detect human actions and their desirable sizes. Many software applications
have been developed to perform music production and editing [26,27]. However, such applications
focus on the development of a musical interface to create novel music. These instruments require both
hands, and are therefore not suitable for facilitating free-dance performance.

Thus, for beginners’ dance support, it is important that the system can address multiple people
via a non-wearing approach, include the possibility to measure the movement of the dancer without
limiting the dance space, and function in real-time. In this research, we propose a method to perform
musical feedback using a grasping-type portable interface.

3. Proposed System

3.1. Design

The design of our musical interface, TwinkleBall [28,29], is presented in Figure 2. The main body of
the proposed interface consists of a rubber ball, Bluetooth wireless communication module, photodiode,
three-axis accelerometer, LEDs, peripheral interface controller (PIC), and battery (9.0 V). All the
electronic devices are enclosed in the rubber ball, which is translucent and hollow. The measurement
range of the acceleration sensor is ±3.6 g. The peak wavelength of the photosensor is 560 nm.
The Bluetooth module, photosensor, three-axis sensor, PIC, and battery are placed on an electronic
circuit board inside the core, which is affixed to the rubber ball using rubber sheets. To convert the
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analogue signal of the sensors into a digital signal, 10-bit A/D conversion is used. The sampling rate
of the A/D converter is 550 Hz. The energy autonomy of the device is 1 h. The LEDs are placed on
the interior surface of the rubber ball. The specifications of the rubber ball are as follows: diameter,
152 mm; mass, 260 g; material, polyvinyl chloride (PVC). Figure 2 indicates that performers and
audiences can easily see TwinkleBall, which shines by virtue of its LEDs and translucent material,
even if the performance is staged under low-light conditions. As indicated in Figure 3, the signal
output from the photosensor and accelerometer are digitized and sent to an external computer via the
Bluetooth wireless communication module. The interval of the communication is set at 35 ms.
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Figure 3. Overview of the proposed system. The proposed system contains acceleration, Bluetooth
module, Photodiode, LEDs, and Laptop computer.

3.2. Sound Generation Mechanism

To apply the proposed interface to a dance performance, it is important for the generated sounds
to represent bodily motions. In this study, we design the sound application such that the grasping
motion controls the note and the moving motion with the interface controls the volume and tempo.
We use MIDI sounds as output. In particular, when the shape of the rubber ball changes because of the
users’ grasping force, the distance d between the internal photosensor and LEDs varies as illustrated
in Figure 4. Because the illumination intensity is inversely proportional to distance d, changes in the
grasping force produce different output signals from the photosensor. This output signal is sent to
the computer via the Bluetooth module and the note is then tuned based on its value. Because we
use MIDI sounds, the range of the note is seven bits. The 10-bit digital signal from the photosensor
is normalized into 7-bit before the MIDI output is calculated. Let Pmin and Pmax be the illumination
intensity at the maximum distance of d and the minimum distance of d, respectively, and p be the input
of the illumination intensity. Then the note is calculated as follows:

note = na + nrange·
(

p − Pmin
Pmax − Pmin

)
(1)
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where na is the reference value of note. As the range of MIDI note is 0 to 127, na is set as 60 which is C4
(Middle C) in scientific pitch notation with a frequency of 261.6 Hz. nrange is set as 24. We can control 2
octaves from 60 to 84.
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Figure 4. Difference between cases with and without force: (a) Case without force; (b) Case with force.

The proposed interface can change sound volume. The measurement value from the acceleration
sensor changes when the dancers move the grasping interface through their motions. The accelerometer
measures acceleration with respect to the x, y, and z-axes. For noise reduction of accelerometer, we applied
a smoothing filter which is based on moving window average of 10 samples. The acceleration values
are sent to the computer via the Bluetooth module. The computer calculates three-dimensional (3D)
acceleration vector length L using these values and the volume is determined by this length as indicated
in Figure 5a. The sound volume range is also seven bits, which corresponds to the resolution of the
MIDI velocity. Therefore, the calculated vector is normalized to correspond to this range. The volume
does not depend on the direction of movement because we simply use vector length L. Volume control
is divided into two cases, namely, static and dynamic. In the dynamic case, where dancers move the
interface through their motion, the volume is calculated linearly. In the static case, where dancers do not
move, yet grasp the interface, the volume depends on the gradient angle of the interface. Although the
interface shape is a sphere, it is divided into top and bottom hemispheres. The volume is determined as
indicated in Figure 5b. In this paper, v is set to 60, which is almost half the range of the MIDI velocity
determined by exploration in the preliminary experiments. Figure 5 illustrates the case of a 45-degree
angle; this corresponds to a volume of 0.75v. Then, L is calculated as follows:

L =

√
(x − xi)

2 + (y − yi)
2 +

(
z − xi + yi

2

)2
(2)

Lz =

√(
z − zi

2

)2
(3)

where, x, y, and z are the sensed acceleration values. xi, yi, and zi are initial offsets of the sensor values
which are measured before a user conducts dance, with the ball interface in a stationary state with the
z-axis aligned with the vertical. Lz is used for the static case. Finally, we calculate the volume as:

volume =

{
Lz·v i f g − C ≤ L ≤ g + C (static case)

L·v otherwise (dynamic case)
(4)

where, C is a threshold value to deal with sensing noises, and g represents gravity. By Equation (4), the
range of volume is 0 to 60 in the static case and 60 to 127 in the dynamic case, as the range of MIDI
velocity is 0 to 127.



Sensors 2017, 17, 1171 7 of 16

Sensors 2017, 17, 1171 7 of 16 

 

  
(a) (b) 

Figure 5. Volume control: (a) Vector length; (b) Static case. 

The proposed interface can also control the tempo to realize numerous expressions. However, 

all the sensing data from the interface are used to control the note and volume. Therefore, we employ 

the time sequence data of vector length L to change the tempo. We calculate the average value of L as 

follows: 

,

n

i

i

L

k
n




 

(5) 

where k is the average value of L and i is the communication index. In this paper, n is set at eight 

because the interval of communication between the interface and the laptop is 35 ms. Then, the tempo 

is calculated by the following step function: 

𝑡𝑒𝑚𝑝𝑜 = {

1600,
800,
400,
200,

𝑖𝑓 𝑘 ≤ 𝑇
𝑖𝑓 𝑇 < 𝑘 ≤ 2𝑇

𝑖𝑓 2𝑇 < 𝑘 ≤ 3𝑇
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , (6) 

where T is a threshold value to create the step function. In this paper, T is set at 2v. The tempo is not 

changed in the static case; however, it is changed through human motion in the dynamic case. 

Figure 6 displays scenes of a dance performance where the proposed interface is used. Figure 6a 

depicts the dancer changing the note by varying the grasping force with a single hand or both hands. 

Figure 6b depicts the dancer varying the volume and tempo by moving in a large motion such as 

waving. The proposed system is not sensitive to intricate motions; however, the strength of the dance 

movement influences the volume and tempo control. Therefore, the system responds to different 

dance motions. 

   
(a) 

   
(b) 

x 

y 

z 

L 

0.75v 0.75v 

0.5v 0.5v 

0.25v 0.25v 

0 

top 

bottom 

Figure 5. Volume control: (a) Vector length; (b) Static case.

The proposed interface can also control the tempo to realize numerous expressions. However,
all the sensing data from the interface are used to control the note and volume. Therefore, we employ
the time sequence data of vector length L to change the tempo. We calculate the average value of L
as follows:

k =

n
∑
i

Li

n
, (5)

where k is the average value of L and i is the communication index. In this paper, n is set at eight
because the interval of communication between the interface and the laptop is 35 ms. Then, the tempo
is calculated by the following step function:

tempo =


1600,

800,

400,

200,

i f k ≤ T

i f T < k ≤ 2T

i f 2T < k ≤ 3T

otherwise

, (6)

where T is a threshold value to create the step function. In this paper, T is set at 2v. The tempo is not
changed in the static case; however, it is changed through human motion in the dynamic case.

Figure 6 displays scenes of a dance performance where the proposed interface is used. Figure 6a
depicts the dancer changing the note by varying the grasping force with a single hand or both hands.
Figure 6b depicts the dancer varying the volume and tempo by moving in a large motion such as
waving. The proposed system is not sensitive to intricate motions; however, the strength of the dance
movement influences the volume and tempo control. Therefore, the system responds to different
dance motions.
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Figure 6. Scenes of musical performances using TwinkleBall: (a) Grasping motions; (b) Moving
motions.
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4. Experiments

In this section, we describe the experiments performed using TwinkleBall to confirm the validity of
the proposed approach. We performed two experiments; the experiments focused on the improvement
of creative activity and movement accuracy. Ten male and female subjects (university students and
researchers) participated in the experiment. None of the subjects had previous dance education. All the
subjects provided written informed consent to participate in these experiments.

4.1. Creative Activity Experiment

4.1.1. Objective

We performed this experiment of dance improvisation using TwinkleBall with beginners as
the subjects. For these subjects, this was the first time they performed an improvisation dance.
The objective of this experiment was to confirm that TwinkleBall can support the expression of
beginner-level dancers in creative dance. We evaluated the effectiveness of the sound generated by
TwinkleBall by comparing the motion data between the conditions of “sound” and “mute.” In the
“sound” condition, users held TwinkleBall in their hand while dancing and TwinkleBall generated
sound that represented the motion. In the “mute” condition, TwinkleBall was muted and did not
generate sound.

4.1.2. Setting

The dancing space for the experiment was set at 2.5 m × 2.5 m. The procedure for the experiment
was as follows:

Step 1: Explanation
First, we explained the specifications of TwinkleBall. In the MIDI, there were 128 possible
program sounds as the defining musical instrument sounds. Each subject selected a sound
number for the output sound to be used with his/her motions.

Step 2: Creative dance theme
Each subject considered a theme for the creative dance.

Step 3: Step Dance performance
The subject danced twice: (1) the subject grasped TwinkleBall without sound (i.e., mute
TwinkleBall), (2) the subject grasped TwinkleBall with sound. We observed one minute per
dance. The theme (from Step 2) chosen by the subjects was the same in both dance experiments.
To reduce order effects, we conducted experiments with two groups of five people. Half of
the subjects received (1) first followed by condition (2); the other half received condition (2)
first followed by condition (1).

Step 4: Step Completing questionnaires
Finally, the subjects completed questionnaires orally for a qualitative evaluation. The questions
were as follows:

Q.1 Do you think you could dance along to the theme without sound?
Q.2 Do you think you could dance along to the theme with sound?
Q.3 Did your motion and sound correspond when there was sound?
Q.4 Was the sound by TwinkleBall useful to determine successive motions while dancing?
Q.5 Did you feel TwinkleBall restrained your dance?

The score was chosen from a range of five (positive) to one (negative) per question.
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4.1.3. Evaluation Methods

To investigate the experiment data, we calculated the values for both the “sound” and “mute”
conditions. We employed Laban Movement Analysis (LMA) [10,11] for the evaluation of all the dance
movements including the force of bodily motions, changes in bodily motions, and the calculation
of the standard deviation of the grasping motion for evaluation of the hand action, which is a fine
movement expression.

The LMA system was developed for describing, interpreting, and documenting a variety of
human movement throughout the entire body. This is a useful method to evaluate the motion
quantitatively [23–30]. In this paper, we used Weight Effort for strength of dance and Time Effort for
briskness of dance.

Weight Effort denotes the strength of the bodily motion of creative dance. We calculate the force
per unit time during the dancing experiment, We, as follows:

We = ∑ ma
t

, (7)

where m is the mass, a is the same as L from Equation (2), and t is the time duration of the experiment.
In this experiment, m is constant (i.e., m = 1) and a is collected from the acceleration sensor.

Time Effort denotes the briskness of the change in bodily motions. This is an index to evaluate the
characteristics of the sudden movement of dance, which corresponds to jerk. We calculate the jerk per
unit time, Wt, as follows:

Wt =
∑ da

dt
t

, (8)

For the evaluation of the fine grasping motion, we measured the lighting intensity, dl, and
calculated its standard deviation, Wg, as follows:

Wg =

√
∑(dl − dave)

2

n
, (9)

where n is the element count and dave is the moving average value of dl per unit time.
Based on the above three evaluation methods, we evaluated the overall motion of the dance and

fine grasping motion.

4.2. Movement Accuracy Experiment

4.2.1. Objective

The objective of the second experiment was to confirm that the subjects were moving their
body according to their imagined motion. In this experiment, the movement task was to perform
unconstrained circular hand motion at a constant speed while maintaining the acceleration amplitude at
one of three designed constant values (low, 10 m/s2; middle, 14 m/s2; high, 18 m/s2). The effectiveness
of the sound generated by TwinkleBall was evaluated by comparing the motion data between the
conditions of “sound” and “mute.”

4.2.2. Setting

The experimental setup is illustrated in Figure 7. The procedure for the experiment was as follows:

Step 1: Adjustment to target speed
The subjects performed circular hand motions and adjusted until achieving the target
acceleration (low, 10 m/s2; middle, 14 m/s2; high, 18 m/s2).
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Step 2: Maintaining target speed
After confirming that the target acceleration was reached, the experimenter requested the
subjects to maintain the hand motion constant for five seconds. The subjects performed hand
motion twice for each of the three accelerations: (1) subject grasped TwinkleBall without
sound (i.e., mute TwinkleBall) and (2) subject grasped TwinkleBall with sound. To reduce
order effects, we conducted the experiments with two groups of five people. Half of the
subjects performed (1) first followed by condition (2); the other half performed condition (2)
first followed by condition (1).

Steps 1 and 2 were repeated for each of the three accelerations.
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4.2.3. Evaluation Method

In this experiment, the movement task was to perform uniform circular hand motion.
The centripetal acceleration measured by the acceleration sensor in the interface must be constant to
achieve a uniform circular motion. Therefore, we calculated the standard deviation of the centripetal
acceleration in the three acceleration conditions (low, middle, high).

5. Results and Discussions

5.1. Creative Activity Experiment

Table 1 lists the themes chosen arbitrarily by each subject in Step 2 of the experiment procedure.
Because we explained to the subjects that they could perform creative dance freely in Step 1, they
considered their feelings in the moment, or the imaginings that came to mind, and therefore the themes
had a wide range of variety.

Table 1. Themes in experiments voluntarily chosen by each subject.

Themes

My neighbor Totoro Bamboo shoot Sleepy, but I cannot sleep Storm Feeling when it rains
Fun I want relaxation Gorilla Deadline Running women

The experimental results for (a) Weight Effort, We, (b) Time Effort, Wt, and (c) Grasping evaluation,
Wg are displayed in Figure 8. The paired t-test technique (two-sided) was employed to verify the
effectiveness of the proposed interface. It was tested at the 5% significance level. The t-test was
computed from Figure 8. From the t-test, we determined for (a): mute-sound—We: t(4) = −3.544,
p < 0.024 and (a): sound-mute—We: t(4) = 4.476, p < 0.011; (b): mute-sound—Wt: t(4) = −3.254, p < 0.031
and (b): sound-mute)—Wt: t(4) =3.130, p < 0.035; and (c): mute-sound—Wg: t(4) = −3.366, p < 0.028
and (c): sound-mute—Wg: t(4) = 3.462, p < 0.026. Therefore, significant differences were observed.
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Figure 8. Experimental results. Mute-sound denotes condition “mute” followed by condition “sound”;
sound-mute denotes condition “sound” followed by condition “mute”: (a) Result of We; (b) Result of
Wt; (c) Result of Wg; (d) Questionnaire results—average score of five (positive) to one (negative).

From the results of shown in Figure 8a,b, we can observe that the forces of dance increased
and changes in the dance movements became more frequent using TwinkleBall with sound. As an
evaluation of the overall body motion, the effectiveness of the proposed interface can be confirmed.
Additionally, from the results shown in Figure 8c, both “sound” conditions are higher than “mute”
conditions. By using TwinkleBall with sound, it is possible to generate fine grasping motion
corresponding to sound change.

Figure 8d is the questionnaire result. Questions No. 1 and 2 provided the performers a subjective
evaluation on matching performance to the themes. For Question No. 1, there was a negative
evaluation in the case of the “mute” condition. Conversely, for Question No. 2, the score indicates
that when the subjects used TwinkleBall with sound, the sound encouraged them to express their
imagination through bodily motion. The result of Question 3 shows a positive result with higher rating
than the average score of 3. For further improvement of the rating, the delay originating from the
interval of communication (35 ms) is a topic of future refinement. Tempo depends on the parameter v,
as shown in Equation (6). The value of v was fixed through these experiments. Since the magnitude of
acceleration is affected by the length of the upper arm, tuning of v for each individual is considered
for future improvement. Question No. 4 scored a positive evaluation. We confirmed that sounds can
support the generation of successive motions continuously. Question No. 5 denotes restraint using
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TwinkleBall. Because it is a negative evaluation, the implication is that the perception of restraint by
the interface was not significant.

Although the subjects in this experiment chose a variety of themes and the dance motions
depended on the theme and personality (Figure 9), we quantitatively observed that the force of dance,
variation of dance movements, and grasping movements increased when the dance beginners used
TwinkleBall through this experiment. Moreover, we qualitatively confirmed the subjective effectiveness
of TwinkleBall to support improvisational creative dance from the results of the questionnaires. Thus,
it can be concluded that by using TwinkleBall, it is possible to assist beginner-level dancers perform
creative dance.
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Figure 9. Dance improvisation using TwinkleBall. Subjects provided themes voluntarily: (left) “Fun”,
(middle) “Bamboo shoot” and (right) “Gorilla”.

5.2. Movement Accuracy Experiment

The results of the standard deviation of the centripetal acceleration in each target speed are
presented in Figure 10. We compared the values for both the “sound” and “mute” conditions.
Additionally, Figure 11 shows an example of the time sequence data of the magnitude of accelerometer
data. The deviation of acceleration is larger in “mute” condition than in sound feedback condition,
for each of the target speeds.
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Figure 10. Results for average of standard deviation of detected centripetal acceleration in each target
speed: (a) condition “mute” followed by condition “sound”; (b) condition “sound” followed by
condition “mute”.

The paired t-test technique (two-sided) was employed for the verification. We tested at the 5%
significance level. From the t-test in the case of condition “mute” followed by condition “sound” in
Figure 10a, we determined low speed: t(4) = 1.201, p < 0.296; middle speed: t(4) = 2.785, p < 0.049;
and high speed: t(4) = 5.587, p < 0.005. From the t-test in the case of condition “sound” followed by
condition “mute” in Figure 10b, we determined low speed: t(4) = −2.130, p < 0.100; middle speed:
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t(4) = −2.835, p < 0.047; and high speed: t(4) = −3.272, p < 0.031. In the case of both low speeds,
no significant difference was observed between the results; however, significant differences can be
observed in the cases of middle and high speeds.Sensors 2017, 17, 1171 13 of 16 
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Figure 11. Time sequence results of the magnitude of the accelerations for each target speeds in
condition “mute” followed by condition “sound”: (a) condition “mute”; (b) condition “sound”.

In both cases of with and without sound from TwinkleBall, the standard deviation of centripetal
acceleration was greater for the greater speed condition. However, the trend of this correlated increase
of motion deviation according to target speed was rather mild in the “sound” condition compared to the
“mute” condition as indicated by the significant difference in the standard deviation in the middle and
high speeds. This could be explained by the different control strategy of human movement. For slower
motions, the feedback control is dominant using sensory feedbacks from visual, proprioceptive, and
vestibular sensors, continuously correcting the trajectory. Meanwhile, feedforward control is used to
generate faster ballistic motions, where the feedback control is overly slow to be fully incorporated.
Because the sound generated by the proposed device represented acceleration by rhythmic tempo,
it could contribute to stabilizing acceleration in the repeated ballistic feedforward force generation.
Thus, TwinkleBall supports the combination of slow and high speed motion and realizes a variety of
expression for the dance beginner.

6. Conclusions

This paper described the effectiveness of support by the proposed hand-held grasping-type
musical interface called TwinkleBall when beginner-level dancers generated physical expression in
creative dance. With TwinkleBall, beginners are presented with sounds in real-time that are generated
according to their imagined dance performance. Through experiments, we confirmed that these
sounds can support successive movement generations continuously during a dance performance.
We evaluated in terms of Laban dance movement description, a fine movement expression of
grasping motion, and accuracy and repeatability in a task where they produced an imagined circular
trajectory by hand. From the results of quantitative measurements and qualitative questionnaires
of the creative dance performance, we compared the conditions of TwinkleBall with and without
sound. We confirmed that TwinkleBall with sound presentation can increase the force of bodily
motion, variation of expression and fine grasping expression, assist creativity, and represent imagined
performance accurately for dance beginners.

The device may also be a new tool in brain science research by providing a new task condition
that has not been possible without it. Edagawa and Kawasaki [31] measured and analyzed EEG data
during rhythmic finger tapping tasks to investigate the brain circuits related to auditory-motor rhythm
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learning. The new device may for example extend the variety of motion in the researches of this line
from simple repetitive finger tasks to complex creative whole body movements.

Future work includes the following perspectives. Firstly, investigation of the after effect in the
creative dance task, to evaluate to which extent the enhanced dance performance lasts after detaching
or muting the device, can provide practical information for designing a protocol for realistic application
of the device to an educational context. In parallel, detailed analysis and evaluation of the enhanced
dance performance from a motor control perspective using a 3D motion capture and a physiological
measurement might also contribute to this purpose. Though we have focused on beginner level
dancers in this study, whole body motion assessment might also contribute to clarification of the
level of dancers to which the device is most effective, considering the fact that experienced dancers
are better, not only at hand manipulation, but also at whole body coordination during dancing.
Secondly, application for music composition using the device as a musical instrument, especially
in a co-creative context [32], where multiple persons hold the device in their hands, and dance and
generate sounds synchronously according to a theme. Co-creation is effective for live music generation
using mobile phone applications [26]. Our device may extend the context of music generation to group
dance. The third perspective is rehabilitation for recovery of impaired sensory-motor function after
neurological or traumatic damage. Scholz et al. [33] presents possible effectiveness of musical feedback
for upper limb rehabilitation after stroke and discusses the advantage of it as inducing motivation of the
patients as well as enhancement of sensory-motor learning with the help of the feedback. Playfulness
is an important factor of rehabilitation, inducing motivation and active participation of the patients,
to which a new technology can contribute [34]. With the enhancement of active motion creativity as
well as accuracy, which is shown through this study, our device has possibility of providing a useful
tool for rehabilitation.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/17/5/1171/s1,
Video S1: grasping; Video S2: Raising arm; Video S3: unconstrained circular hand motion.
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