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Abstract  

Background.  The long-axis images of the inferior vena cava (IVC) have limitations as 

the surrogate of IVC morphology in grading of central venous pressure (CVP) by 

2-dimensional echocardiography (2DE), because of the various cross-sectional morphologies 

and its translational motion by sniffing. On the basis of the relationship between venous 

pressure and compliance, we hypothesized that the cross-sectional morphology of the IVC, 

which was obtained by 3-dimensional echocardiography (3DE), might estimate CVP more 

accurately compared to standard grading by 2DE.  

Methods. Consecutive 60 patients who underwent right heart catheterization studies were 

prospectively enrolled. Echocardiography was performed within 24 hours before 

catheterization. From 3D datasets, a cross-section of the IVC was determined that was 

perpendicular to the long-axis reference of the IVC. Short diameter (SD), long diameter (LD), 

ratio of SD to LD (S/L) as the sphericity index, and area were measured on this cross-section 

IVC image.  

Results. The CVP correlated moderately with SD (r=0.69, p<0.001), strongly with S/L 

(r=0.75, p<0.001), and modestly with area (r=0.47, p<0.001) but not with LD (r=0.24, 

p=0.17). The largest area under the curve by ROC analyses to detect CVP ≥10 mmHg was 
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0.98 (p<0.001, 95% CI 0.97-1.0) for S/L, 0.83 for SD (p<0.001, 95% CI 0.74-0.94), and 0.70 

for area (p=0.02, 95% CI 0.56-0.84). If a cut-off value of 0.69 for S/L was used, the 

sensitivity, specificity, and accuracy to detect CVP ≥10 mmHg were 0.94, 0.95, and 0.95, and 

CVP grading by 2DE were 0.59, 0.98, and 0.85, respectively. Estimations of CVP were more 

accurately reclassified using S/L rather than grading by 2DE (net reclassification 

improvement 0.38, 95% CI 0.31-0.44, p<0.001). 

Conclusions S/L of IVC cross-section measured by 3DE may be a reliable parameter to 

estimate CVP compared to standard grading by 2DE. 

 

Key words: central venous pressure; 3-dimensional echocardiography; 

Inferior vena cava; heart failure  
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Abbreviations 

 

Area =  area of the cross-section 

CVP =  central venous pressure 

HF  =  heart failure 

IVC =  inferior vena cava 

LD =  long diameter 

LV  =  left ventricular 

SD =  short diameter 

S/L =  the ratio of short diameter to long diameter 

TR =  tricuspid regurgitation 

2DE =  2-dimensional echocardiography 

3DE =  3-dimensional echocardiography 
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INTRODUCTION 

Interest in right-sided heart failure (HF) has been increasing in the management of left-sided 

HF.1-3 Because volume overload of the venous vascular bed is the cause of systemic 

congestion in right-sided HF, central venous pressure (CVP) is used as a surrogate of the 

intravascular volume status.4,5 In addition, CVP is the indicator of filling pressure. CVP is not 

only a simple hemodynamic parameter to measure, but it is also known as a determinate of 

clinical outcome in patients with various cardiac diseases.6-9 Peripheral congestion, in 

particular, renal congestion caused by increased CVP, also has been focused on as having a 

central role in cardio-renal syndrome in HF.7,10 Thus, as the significance of CVP assessment 

has been increasing, echocardiography is being widely used to estimate CVP levels in the 

clinical setting because of its noninvasiveness. The current guideline recommends estimation 

of the CVP by using a combination of the inferior vena cava (IVC) diameter and collapse rate 

of the IVC by the sniff maneouver.11 However, findings from major studies evaluating the 

correlation between IVC and CVP are controversial. 12-14 Thus, we hypothesized that the 

long-axis images of the IVC might have limitations as the surrogate of IVC morphology 

because the IVC is often elliptical, curved, and flat in cross-section. In addition, translational 

motion of the IVC caused by sniffing might be a limitation in assessing the collapse rate 
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accurately. Based on the relationship between venous pressure and venous compliance, the 

cross-sectional morphology of the IVC might be useful to estimate CVP.14-17 In addition, 

3-dimensional echocardiography (3DE) might be helpful in assessing the correct 

cross-sectional morphology of the IVC because of limitations of 2-dimensional 

echocardiography (2DE). Therefore, we aimed to investigate the accuracy of CVP estimation 

by using cross-sectional morphology parameters of the IVC obtained by 3DE compared to 

the general grading of CVP by 2DE. 

 

Methods 

Study design. To assess the associations between IVC parameters and CVP, we 

prospectively enrolled consecutive 60 patients who underwent right heart catheterization 

studies for the assessment of cardiovascular diseases at the University of Tsukuba Hospital 

from April 2014 to May 2016. The indications of right heart catheterization studies were as 

follows; hemodynamic evaluations for decision-making of interventions in valvular diseases 

or congenital heart diseases, to diagnose a cause of heart failure with or without right 

ventricular biopsy, to assess the therapeutic effects in heart failure or pulmonary 
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hypertensions, and to diagnose the cause of pulmonary hypertensions with or without 

pulmonary artery angiography. 

Echocardiographic studies were performed within 24 hours before catheterization. The 

hospital ethics committee approved the research protocol, and informed consent was obtained 

from each subject. This study complied with the Declaration of Helsinki. 

 

 

Echocardiography. Comprehensive transthoracic echocardiographic examinations were 

performed with a Vivid E9 system (GE Healthcare, Horton, Norway) with a 

variable-frequency 2.5-5 MHz sector transducer, and each echocardiographic parameter was 

measured and evaluated according to the American Society of Echocardiography (ASE) 

guidelines.18,19 Left ventricular (LV) volume, LV ejection fraction, pulsed Doppler transmitral 

flow profiles, and tissue Doppler study by spectral Doppler method on the mitral annulus 

were assessed. Right ventricular function was assessed by tricuspid annular plane systolic 

excursion and fractional area change ratio. In patients with tricuspid regurgitation (TR), peak 

pressure gradients between the right ventricle and right atrium were measured, and the degree 

of TR was assessed as the ratio of the maximal TR jet area to the corresponding right atrial 



8 
 

area: <20% was defined as mild TR, 20–40% as moderate TR, and ≥40% as severe TR. The 

velocity of flow in the hepatic veins was recorded from the subcostal window, and the 

hepatic systolic (S) and diastolic flow (D) velocities and the S/D ratio were measured. With 

the patient in the supine position, IVC diameters were measured in the subcostal view at 1.0 

to 2.0 cm from the junction with the right atrium.11 IVC diameters were measured as the 

inner-inner dimension of the IVC. The maximum diameter of the IVC and the percentage 

decrease in the diameter during inspiration were measured. Based on the ASE guidelines, the 

CVP was estimated using 3 grades consisting of 3, 8, and 15 mmHg. 

Three-dimensional echocardiography. 3DE datasets consisting of 4 consecutive 

cardiac cycles at end-expiration were obtained using a subxiphoid approach with the patient 

in the supine position. In patients with atrial fibrillation, a single-beat full-volume 3DE 

dataset was acquired. From these 3D datasets, a cross-section of the IVC was determined that 

was perpendicular to the long-axis reference of the IVC at 0.5 to 3 cm from the right atrium 

by offline analysis using commercially available software (EchoPAC PC, Ver. 104.3.0; GE 

Healthcare) (Figure 1). On the cross-section image of the IVC, the short diameter (SD), long 

diameter (LD), area of the cross-section (Area), and indexed Area calculated as IVC area / 

body surface area were measured. The line for the LD measurement was determined by 
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visual evaluation, and corrected manually to obtain the maximum length. In addition, SD was 

measured on the longest line perpendicular to the direction of the line used to measure LD. 

The ratio of SD to LD (S/L ratio) was calculated. 

 

Cardiac catheterization. Right heart catheterization was performed via a femoral or 

jugular vein approach. A 7Fr balloon-tipped pulmonary artery catheter (Swan-Ganz, Baxter 

Healthcare, Irvine, CA) was used to measure right atrial pressure, right ventricular pressure, 

pulmonary artery pressure, and pulmonary capillary wedge pressure. All pressure data were 

measured at end-expiration, and the reported values represent the average of 5-10 cardiac 

cycles. The cardiac index was measured by the Fick method. 

 

Reproducibility. Two observers independently assessed the 3D-IVC parameters in 20 

patients. To test intra-observer variability, a single observer analyzed the data twice on 

occasions separated by 1 month. To test inter-observer variability, a second observer analyzed 

the data without knowledge of the first observer’s measurements. Reproducibility was 

assessed as the mean percent error (absolute difference divided by the mean of the two 

observations). 
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Statistical analysis. Results are expressed as number (%) or as mean ± SD. Correlations 

between CVP and 3D-IVC parameters were evaluated by Pearson’s correlation coefficient. 

Correlations between CVP and CVP grading by 2DE were assessed by Spearman’s rank 

correlation. We assessed the performance of the 3D-IVC parameters to predict a CVP ≥10 

mmHg using the area under the curve (AUC) of the receiver operating characteristic (ROC) 

curve. 

Agreements of the diagnosis of CVP ≥10 mmHg between the catheterization data and the 

S/L ratio, and the ASE guideline-based CVP = 15 mmHg were assessed with Cohen’s κ 

coefficients. 

The incremental effects of the S/L ratio to predict a CVP ≥10 mmHg were assessed by 

net reclassification improvement (NRI),20 which was calculated by the following formula: 

NRI = [P(up | D = 1) - P(down | D = 1)] - [P(up | D = 0) - P(down | D = 0)], 

where P is the proportion of patients, upward movement (up) is defined as a change into a 

higher probability of CVP ≥10 mmHg category based on the S/L ratio, and downward 

movement (down) is defined as a change in the opposite direction. D denotes the response 

classification, with CVP ≥10 mmHg = 1 and CVP <10 mmHg = 0. 
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A p-value <0.05 was considered to indicate statistical significance. All calculations were 

performed with SPSS ver. 22 (SPSS Inc., Chicago, IL). In addition, comparisons of AUC 

were performed with Analyse-it (Analyse-it Software, Ltd., Leeds, UK). 

 

Results 

Adequate 2D- and 3D-IVC images were obtained in all patients. Clinical characteristics and 

echocardiographic parameters are summarized in Table 1. 

In the comparisons of CVP grades, CVP at the grade of 3 mmHg did not differ from those of 

8 mmHg, but CVP at the grade of 15 mmHg was significantly higher than those at the other 

grades (Figure 2). 

Representative images of IVC cross-sections are shown in Figure 3. The CVP correlated 

moderately with SD (r=0.69, p<0.001), and strongly with S/L (r=0.75, p<0.001), but not with 

LD (r=0.24, p=0.17) (Figure 4-a). Area showed the modest correlation with CVP (r=0.47, 

p<0.001), and indexed Area also showed the similar correlation (r=0.47, p<0.001) (Figure 

4-b). The largest AUC by ROC analyses to detect a CVP ≥10 mmHg was 0.98 (p<0.001, 95% 

confidence interval [CI] 0.97-1.0) for S/L followed by 0.83 for SD (p<0.001, 95% CI 

0.74-0.94) and 0.70 for Area (p=0.02, 95% CI 0.56-0.84) (Figure 5). If a cut-off value of 0.69 
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for S/L was used, the sensitivity, specificity, and accuracy to detect a CVP ≥10 mmHg were 

0.94, 0.95, and 0.95, whereas those for CVP grading by 2DE were 0.59, 0.98, and 0.85, 

respectively. In addition, the kappa statistic of S/L was excellent (0.82), and that of CVP 

grading by 2DE was fair (0.5). The reclassification table for the CVP example is shown in 

Table 2. Using S/L, estimations of CVP were more accurately reclassified from grading by 

2DE as the NRI was 0.38 (95% CI 0.31-0.44,(p<0.001). In particular, the improvements were 

observed in patients with a CVP ≥10 mmHg. 

In terms of reproducibility, the intra- and inter-observer variability of LD, SD, S/L, and 

Area were LD: 2.6 ± 1.9 and 4.3 ± 3.9%; SD: 1.7 ± 1.1 and 5.1 ± 3.3%; S/L: 2.9 ± 1.8 and 4.3 

± 2.1%; and Area: 4.5 ± 4.9 and 7.8 ± 4.8%, respectively. 

 

Discussion 

The present study showed that S/L of the IVC accurately predicted a CVP ≥10 mmHg. To our 

knowledge, this is the first study in which 3DE IVC images have been used to estimate CVP. 

 

S/L of IVC. The S/L of the IVC cross-section was the best predictor of increased CVP. This 

finding was attributed to the feature of venous compliance to changes in pressure. 15-17 In the 

lower range of CVP, the IVC has the largest compliance, showing small increases in CVP 
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despite large changes in intravascular volume (Figure 5). In contrast, at the relatively higher 

range of CVP, the IVC cross-section shows a more rounded shape, corresponding to a higher 

S/L. Based on the association between CVP and IVC compliance in this study, an S/L of 

around 0.7 may correspond to a value of 10 mmHg. A previous study of peripheral veins 

showed that venous compliance was rapidly reduced at around 10 mmHg of venous pressure. 

Although the association between CVP and IVC compliance has not been well studied, our 

data suggest the same pathophysiology as that of peripheral veins. However, once the IVC 

has obtained a round shape, with further increases in CVP, the change in S/L is slight and 

may be less sensitive at the upper range of CVP, which means the S/L may be not helpful in 

assessing CVP >15 mmHg as shown in Figure 4. 

Interestingly, cross-sectional IVC areas showed a modest correlation with CVP. Body 

surface area and height have significant but only weak correlations with cross-sectional areas 

(r = 0.31, p = 0.02, r = 0.33, p = 0.01, respectively), which may be associated with the modest 

correlation of indexed IVC area with CVP. Therefore, other mechanisms that affect vascular 

properties are assumed. In peripheral veins, vascular spasm is a well-known phenomenon that 

is caused by activation of the autonomic nerves.17, 21 Such vasospastic phenomenon might 

also occur in the IVC, in particular in patients with heart failure, because neurohormonal 



14 
 

factors are activated in a decompensated state. As shown in Figure 3, despite a smaller 

cross-sectional dimension, the CVP was higher in a patient with a higher S/L (Case C vs. 

Case D). Therefore, S/L is superior to simple the cross-sectional area to estimate CVP levels. 

 

CVP estimations by one-directional dimension. The 3D LD did not correlate with 

CVP despite the 3D SD showing a significant correlation with CVP. If a change in the 

cross-section caused by blood volume and pressure is considered, the change in the 3D SD is 

more dynamic than that in the 3D LD because S/L is dependent on 3D SD but not on LD. In 

addition, the 3D LD might rather shorten when changing from a collapsed shape to a round 

shape. These factors make the 3D LD less sensitive for determining changes in CVP. 

Positions to measure IVC may affect the diameters. Nakao et al. 22 reported that IVC 

diameters were largest in right lateral position, intermediate in supine position, and smallest 

in left lateral position. In addition, IVC diameters measured in left lateral position showed 

more strong correlations with CVP compared to those in supine position that we used. Since 

we did not compare the differences between positions, we might not conclude the inferiority 

of CVP estimation by 2D method compared to our 3D method. In contrast, this study found 

that the IVC shape in the short-axis view was round in patients with high CVP independent of 
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positions. The finding supports our findings and suggests advantages of the S/L of the 

cross-sectional IVC by 3DE. 

 

Clinical implications. Although various advantages of 3DE have been introduced for 

examinations of the heart, the technique remains unfamiliar in the clinical setting because of 

technical complications in its use. In contrast, the conditions for 3D imaging of the IVC are 

better than those for the heart because of easily addressed echo windows and the reduced 

movement of the IVC as opposed to the dynamic motion of the heart. In addition, the 

reproducibility with 3DE was acceptable for clinical use. Therefore, 3DE may be a feasible 

technique that shows better accuracy for the estimation of the CVP level. As compared with 

the standard grading by 2DE, our method may contribute to the more accurate screening of 

higher CVPs as shown in Table 2. 

 

Limitations. Because of 3DE nature, 3DE has poorer spatial and temporal resolutions 

compared to 2D method. In a single-beat full-volume 3DE dataset, the volume rate was from 

10 to 15 volume/sec, which might affect the accuracy to obtain IVC morphological data. 

Furthermore, catheterization and echocardiographic studies were not performed 
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simultaneously, which might also affect the results. In addition, our study was a single-center 

study with a small number of patients and did not have another cohort to validate our results. 

Therefore, we emphasize the cutoff of 3DE is only a preliminary value and to need a 

prospective study, in which both catheterization and echocardiography are performed 

simultaneously, in order to validate our findings. In addition, large-scale prospective studies 

will be needed to confirm the clinical usefulness of our method.  

 

Conclusions 

The ratio of short diameter to long diameter of the IVC cross-section obtained by 3DE may 

be a reliable parameter to estimate CVP compared to standard 2DE parameters and other 3DE 

parameters. 
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Figure Legends 

Figure 1 Three-dimensional (3D) images and measurements of the inferior vena cava (IVC). 

Left panel: 3D image of the IVC. The white dashed line is the long-axis reference, and the 

black line, which is perpendicular to the direction of the long-axis reference, is the 

cross-section reference line. Middle panel: cross-section image reconstructed from the 3D 

image of the IVC. Right panel: Measurements on the cross-section image. The blue dashed 

line is the long diameter, the red dashed line is the short diameter, and the white dashed line 

defines the cross-sectional area. 

 

Figure 2 Comparisons of central venous pressure (CVP) between the three CVP grades from 

the guideline. Error bars show average and range of standard deviation. * p<0.001, # p=0.01 

vs. CVP grade of 15 mmHg. 

 

Figure 3 Plotting of representative images of IVC cross-sections based on the correlation 

between the ratio of SD to LD (S/L) and central venous pressure (CVP). 

 

Figure 4-a Correlations of SD, LD, and S/L with central venous pressure (CVP). The vertical 

dashed line indicates the optimal cut-off value to detect a CVP of ≥10 mmHg based on 

receiver operating characteristic analysis of each parameter. The horizontal dashed line 

indicates a CVP of 10 mmHg. 

 

Figure 4-b Correlations of Area and indexed Area with central venous pressure (CVP). 

Dashed lines indicate same as Figure 4-a.  
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Figure 5 Receiver operating characteristic curves to detect a central venous pressure ≥10 

mmHg. Area, area of cross-section; LD, long diameter; SD, short diameter; S/L, ratio of SD 

to LD. 
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