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Abstract We investigate the relation between the sentiment
of a message on social media and its virality, defined as the
volume and speed of message diffusion. We analyze 4.1 mil-
lion messages (tweets) obtained from Twitter. Although fac-
tors affecting message diffusion on social media have been
studied previously, we focus on message sentiment and re-
veal how the polarity of message sentiment affects its viral-
ity. The virality of a message is characterized by the num-
ber of message repostings (retweets) and the time elapsed
from the original posting of a message to its N th reposting
(N -retweet time). Through extensive analysis using the 4.1
million tweets and their retweets in one week, we discover
that negative messages are likely to be reposted more rapidly
and frequently than positive and neutral messages. Specifi-
cally, the reposting volume of negative messages is 20–60%
higher than that of positive and neutral messages, and neg-
ative messages spread 25% faster than positive and neutral
messages when the diffusion volume is quite high. We also
perform longitudinal analysis of message diffusion observed
over one year, and find that recurrent diffusion of negative
messages is less frequent than that of positive and neutral
messages. Moreover, we present a simple message diffusion
model that can reproduce the characteristics of message dif-
fusion observed in this paper.
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1 Introduction

On social media, such as Twitter and Facebook, users post
many messages including their opinions and feelings. One
of the most successful social media services, Twitter, allows
users to post tweets, which are short messages with a limit
of 140 characters. As of early 2014, 240 million users were
posting over 500 million tweets on Twitter each day (Yang
et al., 2014).

Some of the messages posted on social media are dis-
seminated to many other users by word-of-mouth, which
affects trends and public opinions in society. Social media
users can disseminate messages to their friends via function-
alities, such as retweeting in Twitter and share in Facebook.
This word-of-mouth message diffusion on social media is
an important mechanism that influences public opinion and
can affect brand awareness and product market share (Bak-
shy et al., 2011). Therefore, information diffusion in social
media has attracted the attention of many researchers (Suh
et al., 2010; Hong et al., 2011b; Naveed et al., 2011; Stieglitz
and Dang-Xuan, 2012; Gruzd et al., 2011; Stieglitz and
Dang-Xuan, 2013; Bakshy et al., 2012; Kempe et al., 2003).

As we will discuss in Section 2, factors affecting word-
of-mouth message diffusion in social media have been an-
alyzed extensively (Suh et al., 2010; Hong et al., 2011b;
Naveed et al., 2011). Researchers often focus on Twitter
as one of the largest social media services, and investigate
the relation between features extracted from a tweet and its
virality. For instance, it has been shown that tweets with
features such as URLs, hashtags, and emotional words are
more likely to be retweeted than those without these fea-
tures (Naveed et al., 2011). It has also been shown that the
tweet topic and the number of followers of the tweet pub-
lisher are major factors affecting tweet diffusion (Suh et al.,
2010; Hong et al., 2011b).
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We focus on sentiment as a factor affecting message dif-
fusion, and examine the effects of positive and negative sen-
timent in each tweet on its virality on Twitter. Behaviors of
social media users are not necessarily objective and legiti-
mate, and psychological and emotional factors are expected
to affect the users’ behaviors.

The relation between message sentiment and virality of
a message, defined as the volume and the speed of the mes-
sage diffusion, has been studied (Stieglitz and Dang-Xuan,
2012; Gruzd et al., 2011; Stieglitz and Dang-Xuan, 2013).
However, different results have been reported for the vol-
ume of message diffusion. For instance, Gruzd et al. (2011)
and Ferrara and Yang (2015) have shown that positive tweets
are retweeted more than negative tweets, whereas Stieglitz
and Dang-Xuan (2013) have shown the opposite. Moreover,
most studies have focused on only the volume of diffusion
and not on the diffusion speed. Although Stieglitz and Dang-
Xuan (2013) and Ferrara and Yang (2015) have performed
pioneering work in analyzing the relation between tweet
sentiment and diffusion speed, their analyses used the time
interval between the original tweet and only the first retweet
as a measure of diffusion speed.

This paper aims to reveal how the sentiment of a tweet
affects its virality in terms of both diffusion volume and
speed on Twitter by using a large-scale dataset containing
4.1 million tweets. Our main contributions are as follows.

– Through analysis of 4.1 million non-domain-specific
tweets, we reveal that negative messages are typically
more viral, in terms of both diffusion volume and speed,
than positive and neutral messages. Psychology studies
suggest that negative things have a stronger effect on
people than positive things (Taylor, 1991; Baumeister
and Bratslavsky, 2001; Rozin and Royzman, 2001). We
provide empirical evidence for the existence of such bias
on social media. In particular, to the best of our knowl-
edge, this is the first study to investigate the relation be-
tween the sentiment and diffusion speed of tweets with
a high diffusion volume.

– We also reveal that, as a result of their high virality,
negative messages typically spread with a single burst,
whereas some positive and neutral messages spread re-
currently with multiple bursts. Through a longitudinal
analysis of tweet diffusion observed over one year, we
discover that some tweets spread recurrently with multi-
ple bursts, although most tweets spread with only a sin-
gle burst. We show that the ratio of tweets with multi-
ple bursts for negative tweets is significantly lower than
those for positive and neutral tweets.

– We present a simple model of message diffusion that
can reproduce the characteristics observed in this paper.
We extend a popular influence cascade model, the in-
dependent cascade (IC) model, to include time delays
for message diffusion. The model can reproduce the dif-

ferences of diffusion volume and speed among different
sentiments by adjustment of parameters.

This paper is an extended version of our previous confer-
ence paper (Tsugawa and Ohsaki, 2015). We have extended
the observation period of retweets from one week to one
year, performed extensive analyses (Section 4.3), and con-
structed a message diffusion model that can reproduce the
characteristics of message diffusion observed in this paper
(Section 5).

The remainder of the paper is organized as follows. Sec-
tion 2 introduces works related to analyses of message dif-
fusion on social media. Section 3 explains the methodology
and dataset used for the analyses. Section 4 shows the re-
sults, and Section 5 presents a model that can reproduce our
results. Section 6 discusses the implications of the results
and limitations of the work. Finally, Section 7 contains our
conclusions.

2 Related Work

Factors affecting retweetability of tweets (i.e., probability of
retweet) have been analyzed in previous works (Suh et al.,
2010; Naveed et al., 2011; Hansen et al., 2011). Suh et al.
(2010) analyzed 74 million tweets, and showed that the pres-
ence of hashtags and URLs significantly affects retweetabil-
ity, whereas the number of past tweets does not. Naveed
et al. (2011) analyzed 60 million tweets, and showed that
the presence of emotional words, hashtags, and URLs are
major factors affecting retweetability.

Hansen et al. (2011) investigated the relation between
emotions contained in a tweet and retweetability. Analy-
sis of approximately 560,000 tweets showed that for tweets
about news, negative tweets have higher retweetability than
positive tweets, whereas the opposite is true for non-news-
related tweets. These studies have focused on retweetability;
however, in our work, we have focused on the volume and
speed of retweets.

Factors affecting the volume of retweets have been an-
alyzed (Hong et al., 2011b; Gruzd et al., 2011; Stieglitz
and Dang-Xuan, 2013). Hong et al. (2011b) have shown
that tweet topics determined by topic modeling, which is
a widely used natural language processing technique (Blei
et al., 2003), and the number of followers of the tweet
publisher are useful features for predicting the volume of
retweets.

The relation between tweet sentiment and the vol-
ume of tweet diffusion has been examined (Gruzd et al.,
2011; Stieglitz and Dang-Xuan, 2013, 2012). Gruzd et al.
(2011) have analyzed 46,000 tweets related to the Winter
Olympics in 2010, and discovered that positive tweets had a
higher number of retweets than negative tweets. In contrast,
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Stieglitz and Dang-Xuan (2013, 2012) have analyzed ap-
proximately 170,000 tweets related to political elections in
Germany, and revealed that negative and positive tweets had
a higher volume of retweets than neutral tweets. Moreover,
in one dataset, they showed that negative tweets had a higher
volume of retweets than positive tweets, whereas in the
other, there was no significant difference in retweet volume
between positive and negative tweets (Stieglitz and Dang-
Xuan, 2013). These studies used domain-specific tweets,
where the tweets were related to specific social events, and
reached different conclusions. Ferrara and Yang (2015) have
analyzed non-domain-specific tweets of English-speaking
users, and shown that positive tweets had a higher vol-
ume of retweets than negative tweets. Similarly to Ferrara
and Yang (2015), our study uses larger-scale non-domain-
specific tweets of Japanese-speaking users, and investigates
the general relation between the sentiment of a tweet and
diffusion volume.

Analyses of the relation between message sentiment and
diffusion speed are limited. Stieglitz and Dang-Xuan (2013)
and Ferrara and Yang (2015) have investigated the relation
between tweet sentiment and retweet speed. They used the
time interval between the original tweet and the first retweet
(1-retweet time) as a measure of retweet speed, and Stieglitz
and Dang-Xuan (2013) found no significant difference be-
tween the retweet speeds of positive and negative tweets,
whereas Ferrara and Yang (2015) found that the retweet
speed was faster in negative tweets than in positive tweets.
Extending the methodology of their work, we used the time
interval between the original tweet and the N th retweet as
a measure of diffusion speed, and investigated the effects of
message sentiments on diffusion speed.

Research into predicting the volume of retweets is re-
lated and is an active topic (Cheng et al., 2014; Kupavskii
et al., 2012). Cheng et al. (2014) predicted the volume
of retweets by applying machine-learning techniques. Al-
though these studies have constructed prediction models that
use several features, we examine the effect of the feature
(message sentiment in this study) on retweet volume. Our
results can be used to predict the retweet volume and provide
several suggestions for improving marketing and designing
new functionality in social media, as discussed in Section 6.

3 Methodology

3.1 Overview

We collected tweets on Twitter, and investigated the rela-
tion between the sentiment of each tweet and its virality.
To focus on users with the same culture and to eliminate
the effects of different time-zones, we restricted our re-
search to tweets from Japanese twitter users. Following the

method in (Stieglitz and Dang-Xuan, 2013), we categorized
the tweet sentiment as positive, negative, or neutral.

Tweet sentiment was determined by use of two meth-
ods: automated classification using a dictionary of positive
and negative words (Takamura et al., 2006, 2005), and man-
ual classification by several people. For automated classifi-
cation, we determined the sentiment of each tweet by count-
ing the number of affective words used in the tweet. Since
such automated classification could cause classification er-
rors, we also used manual classification of a subset of col-
lected tweets. The two classification methods were used to
check the robustness of the results. Details of these methods
are explained in Section 3.3.

For each original tweet, we calculated the number of
retweets and the time interval between the original tweet
and the N th retweet (N -retweet time). We investigated the
relation between these measures and tweet sentiment, which
will be introduced in Sections 4.1 and 4.2. Moreover, we
also investigated the relation between the sentiment of a
tweet and the temporal pattern of its longitudinal diffusion,
which will be introduced in Section 4.3.

3.2 Dataset

Using the Twitter application programming interface (API),
we collected Japanese retweets posted during July 25-31
20131. Retweets where the original tweet was posted be-
fore July 25, 2013 were discarded. For each original tweet,
we counted the number of retweets and extracted original
tweets that were retweeted multiple times; namely, tweets
with a retweet number of greater than one. This was in-
tended to focus on tweets with a certain amount of retweet
volume. We obtained 4,285,037 original tweets, referred to
hereafter as tweets. There were no special social events such
as the Olympic or political elections during the period of
data collection. The distribution of the number of retweets
in the dataset is shown in Table 1. Table 1 shows that our
dataset included tweets with a high diffusion volume. Be-
cause the distribution of the number of retweets for a tweet
is heavy-tailed (Kwak et al., 2010) and an occurrence of a
high degree of retweet diffusion is a rare event, previous
studies (Gruzd et al., 2011; Stieglitz and Dang-Xuan, 2013)
have used tweets with relatively small diffusion. In contrast,
by collecting a large number of tweets, our dataset has in-
cluded a sufficient number of tweets with a high diffusion
volume, allowing us to analyze N -retweet time for a large
retweet count, N .

From the 4,285,037 tweets, we chose 8,000 tweets for
determining sentiment by manual evaluations. To obtain the
8,000 tweets, we used stratified sampling, instead of pure

1 We used the Search API in Twitter REST API v1.1, and collected
Japanese tweets using the query q=RT, lang=ja.
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Table 1 Distribution of number of retweets in dataset

Section Number of retweets Number of tweets
1 2–10 3,748,449
2 11–25 318,640
3 26–50 111,527
4 51–75 37,174
5 76–100 18,616
6 101–250 33,847
7 251–500 10,359
8 501–750 2,903
9 751–1000 1,227

10 1001 or more 2,295

Table 2 Statistics for collected tweet dataset, DA

Mean Median Std. dev.
Number of retweets 9.70 3 70.80
Number of URLs 0.39 0 0.53

Number of hashtags 0.27 0 0.70
Number of followers 6237.30 515 36220.61

random sampling, to extract tweets with different diffusion
volumes. We classified all tweets into 10 sections, as shown
in Table 1, and randomly chose 800 tweets for each sec-
tion. We denote the dataset of all tweets and their retweets
during July 25-31, 2013, as DA, and the 8,000 sampled
tweets and their retweets during July 25-31, 2013, as DS .
We used dataset DA and DS for the analysis of the rela-
tion between tweet sentiment and measures of tweet virality
in Sections 4.1 and 4.2. Statistics about the collected tweet
data, DA, are shown in Table 2.

We also collected additional data for analyzing the re-
lation between tweet sentiment and temporal pattern of
longitudinal tweet diffusion. We collected retweets of the
4,285,037 tweets posted during one year (i.e., from August
1, 2013, to July 31, 2014). We then obtained 3,727,231
retweets (i.e., 0.87 retweets per tweet). We denote the
dataset of all tweets and their retweets between July 25,
2013, and July 31, 2014, as DAL, and 8,000 sampled tweets
and their retweets between July 25, 2013, and July 31, 2014,
as DSL. Datasets DAL and DSL were used for the analyses
in Section 4.3.

3.3 Methods for Inferring Tweet Sentiment

We inferred the sentiment of each tweet in dataset DA by us-
ing a dictionary of affective words. The dictionary is com-
piled by manual evaluation of a dictionary of positive and
negative words extracted according to a technique in (Taka-
mura et al., 2006, 2005). The dictionary contains 2,871 pos-
itive words and 3,534 negative words. Examples of words
are show in Tab. 3. We used MeCab 2 for morphological

2 http://taku910.github.io/mecab/

Table 3 Examples of positive and negative words. English translations
for dictionary-listed Japanese words are shown.

Positive Negative
Happy, laugh, pretty, favorite Sad, dislike, sick, fear
good, comfortable, smile bad, horrible, tired
celebrate, beautiful, love unlucky, anxiety, sorry

stemming of the Japanese tweet text, and obtained words
used in each tweet. For each tweet, we counted the num-
ber of positive and negative words listed in the dictionary.
We classified each tweet according to the following rules:
A tweet that had at least one positive word and no nega-
tive words was positive; a tweet that had at least one nega-
tive word and no positive words was negative; a tweet that
had no positive or negative words was neutral; other tweets
were discarded. Following these rules, we obtained 863,830
positive tweets, 343,910 negative tweets, 2,929,324 neutral
tweets, and 147,973 tweets that were discarded. Previous
studies (Naveed et al., 2011; Hansen et al., 2011) have used
similar dictionary-based approaches to analyze the relation
between tweet sentiment and virality. Therefore, this ap-
proach is reasonable for classifying large-scale tweet data.

Moreover, we inferred the sentiment of each tweet in
dataset DS by manual evaluation. We recruited 11 annota-
tors from undergraduate and graduate students in our labora-
tory. Annotators were instructed to read the tweets indepen-
dently, and to tag each tweet as positive, negative, neutral,
or uncertain. For each tweet, three annotators independently
gave a sentiment tag for the tweet. Following the method
used in the sentiment analysis task in the SemEval work-
shop (Rosenthal et al., 2015), we adopted a majority vote
for determining the sentiment label for each tweet. We dis-
carded tweets that were given three different tags by the
three annotators, and tweets that were given two or more un-
certain tags. If two of the three annotators gave the tweet the
same tag, the tweet was classified as having the sentiment
corresponding to the tag. Using this method, we obtained
1,436 positive tweets, 976 negative tweets, and 4,734 neu-
tral tweets (for a total of 7,146 tweets), which were used in
the analyses. We discarded 854 tweets, of which 138 tweets
were uncertain.

We examined the agreement between the automated
classification using the dictionary of affective words, and the
manual classification (Table 4). The overall agreement be-
tween the automated and manual classifications was approx-
imately 60%. Evaluating the sentiment of short messages
automatically is challenging (Barbosa and Feng, 2010), and
overall agreement is often low. However, the proportion of
tweets classified as being of the opposite sentiment was only
2%, suggesting that automated classification can be used for
our analysis, particularly for comparing negative and posi-
tive tweets.



On the Relation between Message Sentiment and its Virality on Social Media 5

Table 4 Tweet sentiment obtained by manual and automated classifications

Positive (manual) Negative (manual) Neutral (manual) Uncertain (manual) Discard (manual)
Positive (automated) 559 95 871 4 134 1,663

Negative (automated) 69 286 384 6 93 838
Neutral (automated) 751 513 3,321 123 440 5,148
Discard (automated) 57 82 158 5 49 351

1,436 976 4,734 138 716 8,000

3.4 Measures of Diffusion Volume and Speed

We obtained the number of retweets for each tweet and N -
retweet time as measures of diffusion volume and speed, re-
spectively. Each retweet had a timestamp and the ID of the
original tweet. For each original tweet, T , we counted the
number of retweets of T . We obtained the N -retweet time of
T by calculating the interval between the time T was posted
and the time the N th retweet was posted.

3.5 Methods for Statistical Analysis

To begin with, we examined the mean and distribution of the
measures of message virality for the message sentiments.
We classified all tweets into positive, negative, or neutral.
For each category, we obtained the mean and distribution
of the number of retweets and N -retweet time. When ana-
lyzing dataset DS , we estimated the mean of the number of
retweets in the population, given that dataset DS was ob-
tained from dataset DA by biased sampling. The method of
estimating the mean number of retweets of positive tweets
was as follows. Let µp

i be the sample mean of the number
of retweets of positive tweets in section i (Table 1) and in
dataset DS , and let fp

i be the number of positive tweets in
section i and in dataset DA divided by the number of posi-
tive tweets in dataset DA. The mean number of retweets of
positive tweets was estimated as

∑
i f

p
i µ

p
i .

Next, we performed regression analysis to investigate
the effects of message sentiment on virality, taking into
consideration other factors related to retweet behavior. We
used the variables shown in Table 5. Following the method
in (Stieglitz and Dang-Xuan, 2013), we used the presence
of URLs, hashtags, and the number of followers as con-
trol variables because these factors affect message diffu-
sion (Stieglitz and Dang-Xuan, 2013; Suh et al., 2010;
Naveed et al., 2011). Using these control variables, we ex-
amined the effects of message sentiment on virality, elimi-
nating the effects of other factors. We did not include a vari-
able for the activity of twitter users because this did not af-
fect message diffusion (Stieglitz and Dang-Xuan, 2013). We
did not use dataset DS for regression analysis because it was
obtained from a biased sampling.

Following the method in (Stieglitz and Dang-Xuan,
2013), we used a binomial regression model for regression

Table 5 Variables used in regression analysis

Variable Description
RTnum Number of retweets
NRTtime Time interval between original tweet and N th retweet
pos Categorical variable showing tweet is positive
neg Categorical variable showing tweet is positive
follower Number of followers
URL Categorical variable for whether tweet includes URL
hash Categorical variable for whether tweet includes hashtag

of RTnum because the variance of the number of retweets
was high (Tables 1 and 2). In the negative binomial regres-
sion model, the relation between dependent and independent
variables was modeled as

log(RTnum) =β0 + β1URL+ β2hash

+ β3 log(follower) + β4pos + β5neg ,
(1)

RTnum =eβ0 × eβ1URL × eβ2hash

× followerβ3 × eβ4pos × eβ5neg ,
(2)

where βn is the regression coefficient. Note that follower is
log-transformed because the distribution of the number of
followers is heavy-tailed. For the regression of NRTtime,
we used a simple linear regression model.

4 Results of Analyses

4.1 Negative messages spread widely

To investigate the relation between message sentiment
and diffusion volume, we examined the mean number of
retweets for each category based on tweet sentiment (Fig. 1).
The bars on the left-hand side of the figure show the re-
sults obtained from dataset DS , and the bars on the right-
hand side show the results obtained from dataset DA. The
results of dataset DS show estimated mean values that are
explained in Section 3.5.

Figure 1 shows that the retweet volume of negative
tweets is approximately 20–60% higher than that of neu-
tral tweets, and the retweet volumes of positive and neu-
tral tweets are similar to each other. We performed the pair-
wise test on the results of dataset DA using the Steel-Dwass
method (Steel, 1960; Dwass, 1960), and discovered that
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Fig. 2 Cumulative distribution of number of retweets for each cate-
gory. Note that (a) shows cumulative distributions of retweet volume
for sampled tweets, not total population. Negative tweets tend to have
higher retweet volume than positive and neutral tweets.

there were significant differences in the number of retweets
between any two categories based on sentiment (p < 0.05).
These results suggested that the retweet volume of negative
tweets was higher than that of neutral and positive tweets,
and the retweet volume of positive tweets was similar to
that of neutral tweets. The differences of the mean values
obtained with datasets DS and DA may have been caused
by the difference between the automated and manual classi-
fications (Table 4).

Next, we investigated the distributions of the number of
retweets for each category (Fig. 2). Figure 2 confirms that
negative tweets tend to have a higher retweet volume than
positive and neutral tweets. We also find that positive tweets
tend to have a slightly higher retweet volume than neutral
tweets (Fig. 2 (b)).

Table 6 Negative binomial regression results for RTnum. ***: signifi-
cant at 1% level, **: significant at 5% level, *: significant at 10% level.

Dependent variable: RTnum

Independent variables Coeff. β eβ

pos*** 0.131 1.139
neg*** 0.311 1.365
log(follower)*** 0.203
URL*** 0.546 1.726
hash*** 0.291 1.338
constant*** 0.467

Pseudo R2 0.030
Num. of observations 4,137,064

Next, we performed regression analysis to investigate
the relation between message sentiment and virality, elim-
inating the effects of other factors affecting message diffu-
sion. We performed negative binomial regression analysis
for investigating the effects of message sentiment on diffu-
sion volume. The dependent variable was RTnum, and the
independent variables were pos, neg, follower, URL, and
hash. Table 6 shows the regression analysis results. The re-
gression coefficient, β, and the values of eβ for each variable
are shown in the table to demonstrate the effects of each in-
dependent variable on the dependent variable.

The result of the regression analysis showed that
whether the sentiment of a tweet was negative or positive,
this factor increased the number of its retweets in the model.
The strength of the effect of each variable could be estimated
on the basis of the regression coefficient, eβ (Eq.(2)). The
regression coefficient of neg suggested that negative tweets
were retweeted 36.5% more often than neutral tweets, con-
sistent with previous results. This indicated that negative
sentiment was a major driving factor for tweet diffusion,
because the regression coefficient of neg was comparable
with that of hash, which was a major driving factor for
retweets (Suh et al., 2010; Naveed et al., 2011). In addition,
positive sentiment in a tweet also increased retweet volume,
although the effect was weaker than that of other factors. In
summary, this result showed that negative sentiment was a
strong driving factor for retweet diffusion, and that positive
sentiment was not a strong driving factor for retweet diffu-
sion, although it also slightly affected diffusion volume.

Note that the value of pseudo R2 in our model is low.
Message diffusion in social media is often difficult to ex-
plain, and there are many other driving factors. In this anal-
ysis, we can conclude that the effects of negative and pos-
itive sentiment are statistically significant, and the effect of
negative sentiment is similar to that of hashtags. We do not
claim that we can model the retweet volume only using these
variables. We also note that the value of pseudo R2 in our
model is lower than that obtained in (Stieglitz and Dang-
Xuan, 2013). The reason is that our dataset does not in-
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Fig. 3 Average N -retweet time per category. Average N -retweet time
of negative tweets is shorter than those of positive and neutral tweets.

clude tweets that are not retweeted. URLs and hashtags in
tweets are strong factors affecting whether the tweets are
retweeted (Suh et al., 2010; Naveed et al., 2011). Therefore,
we can generally construct a more accurate model explain-
ing RTNum on the basis of these independent variables if the
dataset includes tweets with no retweet than if the dataset
only includes tweets with more than one retweet.

4.2 Negative messages spread rapidly

Next, we dealt with retweet speed by using average N -
retweet time. Figure 3 shows the average N -retweet times
for each category. The average N -retweet time was obtained
by calculating the average N -retweet time for tweets that
were retweeted at least N times. Because the number of
samples with a high retweet count, N , was limited, the av-
erage values fluctuated if N was high.

Figure 3 shows that the average N -retweet time of neg-
ative tweets is shorter than those of positive and neutral
tweets. In particular, when N > 100, the average N -retweet
time of negative tweets is approximately 20% shorter than
those of positive and neutral tweets (i.e., negative tweets
spread 25% faster than positive and neutral tweets). Note
that the fraction of tweets retweeted more than 100 times
is only 1% of the collected dataset. Namely, tweets with a
retweet count of N > 100 have high virality in terms of
diffusion volume. These results suggest that negative tweets
spread faster than positive and neutral tweets, particularly
for tweets with a high diffusion volume. In contrast, the N -

retweet time of positive tweets was slightly longer than that
of neutral tweets.

We investigated the distribution of N -retweet time of
tweets for each category. Figures 4, and 5 show the cumula-
tive distributions of N -retweet time for each category when
N = 100 and N = 1000, respectively. We chose N = 100

to investigate the diffusion speed of tweets with high diffu-
sion volume, and chose N = 1000 to investigate the dif-
fusion speed of tweets with quite high diffusion volume.
Note that in terms of diffusion volume, tweets with a retweet
count of N > 100 are approximately top 1% tweets and
those with a retweet count of N > 1000 are approximately
top 0.05% tweets.

These results show that negative tweets spread faster
than neutral and positive tweets if the retweet count, N , is
quite high. Figure 5 shows that the diffusion speed of nega-
tive tweets is faster than that for tweets with other sentiments
when N = 1000. In contrast, Figure 4 shows that the N -
retweet time for negative tweets and tweets with other senti-
ments are similar. The difference in N -retweet time between
positive and neutral tweets was only observed in Fig. 4(b).
The pairwise test with the Steel-Dwass method (Steel, 1960;
Dwass, 1960) showed that there was a significant difference
in 100-, and 1000-retweet time among tweet sentiment cat-
egories in dataset DA (p < 0.05).

Next, we examined the relation between message senti-
ment and diffusion speed by using regression analysis. We
used 100-RTtime and 1000-RTtime as dependent variables.
In addition to the independent variables used in the diffusion
volume regression analysis, we used RTnum as an indepen-
dent variable. The reason is that tweets with a high diffusion
volume are considered to spread fast, and therefore, RTnum
may affect 100-RTtime and 1000-RTtime. In the following
analyses, a linear regression model was used. Tables 7 and 8
show the regression results for the dependent variables of
100-RTtime, and 1000-RTtime, respectively. Standardized
coefficients of variables are shown in the tables for com-
paring the variables of different scales.

Table 8 indicates that the presence of negative sentiment
in a message decreased the 1000-retweet time (p < 0.1).
The regression coefficient of neg suggests that 1000-retweet
time of negative tweets is approximately 1.9 hour shorter
than neutral tweets. This result was consistent with the ob-
servation in the previous results that negative tweets spread
faster when the number of retweets is quite high. Table 7
shows that the presence of negative sentiment in a message
did not significantly affect 100-retweet time. This result sug-
gests that negative sentiment does not have a significant ef-
fect on diffusion speed when the diffusion volume is not
quite high. Observing other control variables, we find, as
intuitively expected, that follower, URL, and RTnum signif-
icantly affect diffusion speed, and standardized coefficients
suggest that particularly RTnum has strong effects on both



8 Sho Tsugawa, Hiroyuki Ohsaki

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  5  10  15  20  25  30

Em
pir

ica
l C

DF

100-retweet time [h]

Negative
Neutral
Positive

(a) Manual classification

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  5  10  15  20  25  30

Em
pir

ica
l C

DF

100-retweet time [h]

Negative
Neutral
Positive

(b) Automated classification

Fig. 4 Cumulative distribution of 100-retweet time for each category. 100-retweet times for negative tweets and tweets with other sentiments are
similar.
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Fig. 5 Cumulative distribution of 1000-retweet time for each category. Diffusion speed of negative tweets is faster than that of tweets with other
sentiments when N = 1000.

Table 7 Regression results for 100-RTtime[h]. ***: significant at 1%
level, **: significant at 5% level, *:significant at 10% level.

Dependent variable: 100-RTtime [h]

Independent variables Coeff. β Std. Coeff.
pos*** 1.149 0.032
neg 0.052 0.001
log(follower)*** -0.632 -0.113
URL*** 1.889 0.062
hash*** 1.992 0.056
RTnum*** -0.003 -0.126
constant*** 11.855

R2 0.040
Num. of observations 48,814

of 100-retweet time and 1000-retweet time. Table 7 indi-
cates that the presence of positive sentiment in a message
increased the 100-retweet time (p < 0.05), which is consis-
tent with previous results (Figs. 3(b) and 4(b)).

4.3 Negative messages do not spread recurrently

Finally, we focus on the relation between temporal pat-
terns of tweet diffusion and tweet sentiment using one-year
records of retweets, datasets DAL and DSL. During our
analysis, we discovered that while most tweets spread over a
period of a day or a few days, there existed long-lived tweets

Table 8 Regression results for 1000-RTtime[h]. ***: significant at 1%
level, **: significant at 5% level, *: significant at 10% level.

Dependent variable: 1000-RTtime [h]

Independent variables Coeff. β Std. Coeff.
pos 0.941 0.021
neg* -1.922 -0.036
log(follower)** -0.331 -0.048
URL*** 5.055 0.134
hash 0.339 0.007
RTnum*** -0.002 -0.247
constant*** 17.365

R2 0.080
Num. of observations 2,194

whose diffusion lasted for several months. Figure 6(a) shows
an example of a typical diffusion for a tweet; i.e., a series of
changes in the number of retweets over time. Typical tweets
spread as a single burst, and diffusion did not last over a
couple of days. In contrast, we discovered that there ex-
isted recurrent tweet diffusion patterns. Figure 6(b) shows
an example of recurrent tweet diffusion. On a popular social
medium, Facebook, recurrence of message diffusion had re-
cently been observed (Cheng et al., 2016), and we discov-
ered that such recurrent cascades of repostings had also been
observed on Twitter.

Our question here is how the temporal diffusion pattern
of messages is affected by sentiment. To perform a quanti-
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Table 9 Summary of findings

Conclusion Supporting results
Retweet volume Negative is higher than positive and neutral Figs. 1, 2, and Tab. 6

Positive is slightly higher than neutral Tab. 6
Retweet speed Negative is faster than positive and neutral

for quite high diffusion volume Figs. 3, 5, and Tab. 8*

Neutral is slightly faster than positive
for not quite high diffusion volume Figs. 3(b), 4(b), and Tab. 7

Recurrence Negative is less frequent than positive and neutral Fig. 7
* Evidence in Table 8 is not so strong, but supports this conclusion.
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Fig. 6 Examples of temporal patterns of tweet diffusion. Typical
tweets are limited to single-burst spread, and their diffusion only con-
tinues for some days. Some tweets spread with multiple bursts.

tative investigation, we counted the number of tweets that
spread recurrently for positive, negative, and neutral tweets.
Following Cheng et al. (2016), we used their definition of
recurrence, explained as follows. Consider a tweet diffusion
over t days. We counted the number of peak days of the
tweet diffusion. Let ri be the number of retweets observed
on day i. Day i is called a peak day if ri is at least h0, at least
m times the mean number of retweets per day, and a local
maximum in [i − w, i + w] days. Finally, between any two
adjacent peak days pi and pi+1, the number of retweets must
fall below v · min{rpi , rpi+1}. If a diffusion of a tweet has
multiple peaks, the tweet diffusion is considered to be recur-
rent. We used h0 = 10, m = 2, w = 7, and v = 0.5, which
were the same parameters used in (Cheng et al., 2016).

We examined the fraction of tweets with recurrent dif-
fusion for each category, based on tweet sentiment (Fig. 7).
The three bars on the left show the results obtained from
dataset DSL, and the three bars on the right show the results
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Fig. 7 Relation between tweet sentiment and fraction of recurrently
spreading tweets. Left-hand bars show result for dataset DSL, and
right-hand bars show result for dataset DAL. Population is tweets
whose number of retweets is greater than 100. Fraction of recurrent
diffusion of negative tweets is lower than those of positive and neutral
tweets.

obtained from dataset DAL. Note that tweets with more than
100 retweets were used in this analysis in order to eliminate
tweets with low diffusion volume.

Figure 7 shows that the fraction of recurrent diffusion
of negative tweets is lower than those of positive and neu-
tral tweets. We performed the Chi-squared test on the results
of dataset DAL, and discovered that there were significant
differences in the fraction of recurrent tweets between any
two categories based on sentiment (p < 0.05). These results
suggest that recurrent diffusion of negative messages is less
frequent than those of positive and neutral messages.

These results are consistent with the findings in the anal-
yses on diffusion volume and speed. As discussed in (Cheng
et al., 2016), if the virality of a message is strong, the mes-
sage can reach its audience in a single burst. Therefore, it is
considered to be natural that negative messages, which tend
to be viral, are not likely to spread recurrently.

Our findings are summarized in Table 9. We conclude
that negative tweets spread more widely than positive or
neutral tweets, and suggest that negative tweets spread faster
than tweets with other sentiments, particularly for tweets
with a quite high diffusion volume. As a result of their
high virality, negative messages have less frequent recurrent
spreading than positive and neutral messages. The effect of
positive sentiment is weaker than that of negative sentiment,
although positive tweets tend to be retweeted slightly more
than neutral tweets.
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5 Model-based explanation

5.1 A simple model of message diffusion

We present a simple message diffusion model, called “inde-
pendent cascade with Zipf-distributed delay” (IC-ZD), that
can reproduce the characteristics observed in this paper. The
IC-ZD model can produce message diffusion with both sin-
gle and multiple bursts. In the IC-ZD model, the virality
of diffusion of a message can be changed by parameter-
adjustment.

The IC-ZD model is based on a popular influence cas-
cade model, called “independent cascade” (IC) (Kempe
et al., 2003). The IC model is a model for influence cas-
cade on a graph. In the IC model, each active node has a
single opportunity to spread its influence to adjacent nodes
with a predefined influence spread probability p. We con-
sider influence in the IC model as a message, and an active
node in the IC model as a user who has retweeted the mes-
sage. The parameter p controls diffusion volume. Using the
IC model, in which each node has a single opportunity to
spread influence, is considered to be a natural approach to
modeling tweet diffusion, in which each user can repost a
tweet only once. However, in the original IC model, when
node i is activated at time-step t, node i spreads its influence
to an adjacent inactive node at the next time-step t+ 1, and
thus cannot produce a recurrent diffusion pattern.

To produce a recurrent diffusion pattern, the IC-ZD
model incorporates time-delay for influence (message) dif-
fusion. In the IC-ZD model, when node i is activated at time-
step t, it has a single opportunity to spread influence to an
adjacent inactive node j with a probability p at time-step
t+δ, where δ is a random variable obtained from a Zipf dis-
tribution with power-law exponent γ. The parameter γ con-
trols diffusion speed. Since bursty behaviors are character-
ized by long-tailed distributions of inter-event time (Karsai
et al., 2012; Zhao et al., 2011), and in our data, the distri-
bution of time intervals between retweets follows a power-
law (see Fig. 8), we expect that power-law time delays of
message diffusion can reproduce bursty message diffusions.
Note that the IC model with time delay is not a novel model,
since it was also used in (Liu et al., 2012). However, we use
Zipf distribution for time delay, whereas Liu et al. (2012)
used Poisson distribution.

5.2 Simulation setups and results

We conducted simulations using the IC-ZD model. Unfor-
tunately, since the social network structure of users in our
retweet dataset was not available, we used a publicly avail-
able social network data of Twitter users (De Domenico
et al., 2013). The data contain retweet relationships among
256,491 users. On the network, we performed simulations
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Fig. 8 Distribution of time interval between adjacent two retweets in
dataset DAL. Time interval between retweets follows power-law.

using the model, activating a randomly selected node at
time-step 0. We varied influence spread probability, p, be-
tween 0.0050 and 0.0080, and parameter of time delay, γ,
between 1.80 and 2.00. For each parameter setting, we per-
formed 50,000 simulation runs.

Examples of temporal patterns of message diffusion in
the model are shown in Fig. 9. These figures confirm that
our model can reproduce message diffusion for both single
burst and recurrent bursts.

Figure 10 shows the average N -retweet time obtained
from 50,000 simulation runs for parameter settings (a) p =

0.0068, γ = 1.81; and (b) p = 0.0070, γ = 1.86. Here,
N -retweet time for a simulation run is defined as the time-
step where the number of active nodes exceeds N for the
first time in the simulation run. On the basis of this figure,
we discover that N -retweet time for parameter setting (b) is
shorter than that for parameter setting (a), particularly when
the retweet count N is high. Let us assume that the simula-
tions with parameter setting (a) simulate positive tweet dif-
fusion, and the simulations with parameter setting (b) sim-
ulate negative tweet diffusion. Then, we find that the model
can reproduce the characteristics observed in Section 4.2
showing that negative messages spread faster, particularly
when the diffusion volume is high. Here, fractions of recur-
rent diffusion in diffusion where size is greater than 100 are
4.0% for parameter (a) and 2.7% for parameter (b), and the
average diffusion volume is 6.8 for parameter (a) and 10.7
for parameter (b). These results also indicate that the model
can simulate tweet diffusion with different viralities, and can
reproduce the characteristics shown in this paper.
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Fig. 9 Examples of temporal patterns of message diffusion generated
by IC-ZD model. One unit of time shown in these figures corresponds
to 24 steps in simulations.
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Fig. 10 N -retweet time obtained from simulations for two parameter
settings: (a) p = 0.0068, γ = 1.81; and (b) p = 0.0070, γ = 1.86.
Assuming (a) as positive tweet diffusion and (b) as negative tweet
diffusion, we discover that this model can reproduce characteristics
shown in Fig. 3 demonstrating that negative messages spread faster,
particularly when diffusion volume is high.

Finally, we conducted simulations on the same network
using the original IC model (Kempe et al., 2003), and the IC
model with Poisson-distributed delay (IC-PD) (Liu et al.,
2012). We varied the influence-spread probability p between
0.0050 and 0.0080 for the IC and IC-PD models, and the
average delay λ between 1 and 50 for the IC-PD model.
For each parameter setting, we performed 50,000 simulation
runs. The results of the simulation runs using the IC model
did not show a recurrent diffusion pattern. As we discussed
in the previous subsection, long-term diffusion cannot be
produced using the IC model, since nodes spread influence
to their neighbors immediately after they become active in
the IC model. In contrast, in the IC-PD model, although
long-term recurrent diffusion can be observed when param-
eter λ is high, bursty short-term diffusion cannot. Figure 11
shows cumulative distributions of 100-retweet time obtained
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Fig. 11 Cumulative distribution of 100-RT time. (a) IC-ZD model with
p = 0.0070 and γ = 1.86, and (b) IC-PD model with p = 0.0070
and λ = 35. IC-ZD model and IC-PD model with these parameter
settings produce similar diffusion volumes and fractions of recurrent
diffusion. IC-ZD model can successfully reproduce form of distribu-
tion of 100-retweet time similar to that observed in this paper, whereas
IC-PD model cannot.

from simulations using the IC-ZD model (p = 0.0070 and
γ = 1.86) and the IC-PD model (p = 0.0070 and λ = 35).
Note that the IC-ZD and IC-PD models with these parameter
settings produce similar diffusion volumes (10.7 and 10.1)
and fractions of recurrent diffusion (2.7% and 2.8%). Fig-
ure 11 shows that the IC-ZD model can successfully repro-
duce a form of distribution similar to that shown in Fig. 4,
whereas the IC-PD model cannot. These results suggest that
the delay with Zipf distribution used in our proposed model
is a key to reproducing the characteristics of tweet diffusion.

6 Discussion

6.1 Findings and implications

Our study shows that negative tweets are more viral than
positive tweets in terms of retweet volume. This is strong
evidence of existence of negativity bias (Taylor, 1991;
Baumeister and Bratslavsky, 2001; Rozin and Royzman,
2001) on social media. As discussed in Section 2, prior
work by Stieglitz and Dang-Xuan (2013) only partially sup-
ported the negativity bias, and that by Gruzd et al. (2011)
showed opposite results. These studies targeted domain-
specific tweets, and as discussed in (Stieglitz and Dang-
Xuan, 2013), the tweet domain altered how tweet sentiment
affected virality. However, our study investigates the effects
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of tweet sentiment using non-domain-specific tweets. Con-
sequently, our study shows that negative tweets are generally
more viral than positive tweets, indicating negativity bias on
social media.

The results for retweet speed also partly support the neg-
ativity bias. We investigated the relation between tweet sen-
timent and N -retweet time. For a quite high retweet count,
N , negative tweets spread faster than positive and neutral
tweets. Stieglitz and Dang-Xuan (2013) and Ferrara and
Yang (2015) used only 1-retweet time, and discovered that
there was no significant difference in retweet speed between
positive and negative tweets. Our study shows that negative
tweets spread faster than positive tweets when the diffusion
volume is quite high. To the best of our knowledge, ours is
the first study to show the effects of sentiment on diffusion
speed for tweets with a high diffusion volume.

Our results also show that the effects of positive senti-
ment in a tweet on its virality are weak. This contradicts
the results in (Stieglitz and Dang-Xuan, 2013, 2012; Gruzd
et al., 2011; Naveed et al., 2011; Ferrara and Yang, 2015),
suggesting that positive and negative sentiment in a mes-
sage increase its virality. One possible cause of the differ-
ence between our study and previous studies might be the
nationality of the subject audience. Ours is the first study
to use Japanese tweets to investigate the relation between
tweet sentiment and virality. The linguistic and cultural dif-
ferences may affect the results because usage patterns for
Twitter users differ across languages (Hong et al., 2011a).
However, more analyses are necessary to reveal the causes
of these discrepancies.

Our longitudinal analysis of temporal patterns of mes-
sage diffusion shows that some messages spread recurrently,
and also demonstrated that the IC model with power-law
time delay could produce such recurrent patterns of message
diffusion. Cheng et al. (2016) also proposed a model of re-
curring message diffusion, but the model assumed multiple
copies of a message. To the best of our knowledge, our study
is the first to present a model of recurrent message diffusion
that assumes a single copy.

Our results have several implications. First, it is impor-
tant for companies to address negative opinions about their
products on social media. Even if the numbers of users with
positive and negative opinions are equal, negative opinions
may spread faster and further, thus reaching a higher num-
ber of people than the positive opinions. Second, it is im-
portant to track the sentiment of individual tweets to pre-
vent unintentional tweet diffusion. Recently, negative ru-
mors and misinformation spreading on social media, known
as flaming, have posed serious problems, and blocking ru-
mor spread is of interest to researchers (Budak et al., 2011;
Wen et al., 2014). Our results suggest that individual users
should take care to avoid unnecessary negative terms to pre-
vent unintentional information spread. A mechanism to de-

tect and alert users to tweet sentiment may be an effective
approach. Third, the proposed IC-ZD model can be used for
analyzing message diffusion on social media with respect to
several criteria. For instance, the model could be useful for
analyzing the effects of network structure on the message
diffusion, and the effects of increase in virality on diffusion
volume and speed.

6.2 Limitations

We used a large-scale dataset including 4.1 million tweets,
which was merely a sample of messages on social me-
dia. We studied Twitter as a social media platform, and
only analyzed Japanese tweets. We chose Twitter because of
the availability of large-scale Twitter tweet data; however,
to generalize the results, it was necessary to analyze data
from other platforms. Most previous studies used English
tweets (Gruzd et al., 2011; Naveed et al., 2011; Hansen et al.,
2011), and some used German tweets (Stieglitz and Dang-
Xuan, 2013, 2012), whereas our study used Japanese tweets.
Our study showed that for Japanese tweets, tweet sentiment
was a major driving factor for retweets. However, the re-
search methodologies of this study were different from those
of previous studies, particularly regarding tweet topics, and
Twitter usage patterns are different across languages (Hong
et al., 2011a). Therefore, the differences among different
languages should be investigated. In order to examine how
to generalize our results, we are also interested in a number
of related tasks, such as expanding the data collection pe-
riod, and investigating messages during social events (e.g.,
national festival holidays).

We used a simple approach for automated classification
of large-scale tweets based on their sentiment (Hansen et al.,
2011; Naveed et al., 2011). Although we obtained similar
results from datasets constructed by automated and man-
ual classifications, use of a more sophisticated method to
determine tweet sentiment may produce better results. Be-
cause each tweet is short, it is difficult to determine tweet
sentiment, and there have been several studies regarding
how to determine tweet sentiment accurately (Barbosa and
Feng, 2010; Agarwal et al., 2011; Kontopoulos et al., 2013;
Gonçalves et al., 2013). In future work, we intend to apply
these techniques to our dataset, and To validate the results in
this paper.

7 Conclusion

We investigated the relation between the sentiment of a
tweet and its virality in terms of diffusion volume and speed
by analyzing 4.1 million tweets on Twitter. We used the
number of retweets and N -retweet time as measures of tweet
virality. We discovered that negative tweets spread more
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widely than positive and neutral tweets, and that negative
tweets spread faster than either positive or neutral tweets
when the diffusion volume was quite high. We showed that
the diffusion volume of negative tweets was 20–60% higher
than that of positive and neutral tweets, and that the diffusion
speed of negative tweets was 25% faster than that of posi-
tive and neutral tweets when the diffusion volume was quite
high. We also conducted a longitudinal analysis of tweet dif-
fusion, and discovered that recurrent diffusion of negative
messages was less frequent than that of positive and neu-
tral tweets. Moreover, we presented a simple tweet diffusion
model, the IC-ZD model, that can reproduce the character-
istics of tweet diffusion observed in this paper.

Acknowledgements

The authors would like to thank Dr. Mitsuo Yoshida of
Toyohashi University of Technology for his support to the
data collection, and Hisayuki Mori of Kwansei Gakuin Uni-
versity for helping the analyses. This work was partly sup-
ported by the Telecommunications Advancement Founda-
tion.

References

Agarwal A, Xie B, Vovsha I, Rambow O, Passonneau R
(2011) Sentiment analysis of Twitter data. In: Proceed-
ings of the Workshop on Languages in Social Media
(LSM’11), pp 30–38

Bakshy E, Hofman JM, Mason WA, Watts DJ (2011) Every-
one’s an influencer: Quantifying influence on Twitter. In:
Proceedings of the 4th ACM International Conference on
Web Search and Data Mining (WSDM’11), pp 65–74

Bakshy E, Rosenn I, Marlow C, Adamic L (2012) The role
of social networks in information diffusion. In: Proceed-
ings of the 21st International Conference on World Wide
Web (WWW’12), pp 519–528

Barbosa L, Feng J (2010) Robust sentiment detection on
Twitter from biased and noisy data. In: Proceedings of
the 23rd International Conference on Computational Lin-
guistics (COLING’10), pp 36–44

Baumeister RF, Bratslavsky E (2001) Bad is stronger than
good. Review of General Psychology 5(4):323–370

Blei D, Ng A, Jordan M (2003) Latent Dirichlet allocation.
Journal of Machine Learning Research 3:993l–1022

Budak C, Agrawal D, El Abbadi A (2011) Limiting the
spread of misinformation in social networks. In: Proceed-
ings of the 20th International Conference on World Wide
Web (WWW’11), pp 665–674

Cheng J, Adamic L, Dow PA, Kleinberg JM, Leskovec J
(2014) Can cascades be predicted? In: Proceedings of

the 23rd International Conference on World Wide Web
(WWW’14), pp 925–936

Cheng J, Adamic LA, Kleinberg J, Leskovec J (2016) Do
cascades recur? In: Proceedings of the 25th International
Conference on World Wide Web (WWW’16), pp 671–
681

De Domenico M, Lima A, Mougel P, Musolesi M (2013)
The anatomy of a scientific rumor. Scientific Reports
3:2980:1–2980:9

Dwass M (1960) Some k-sample rank-order tests. In: Con-
tributions to Probability and Statistics, Stanford Univer-
sity Press, pp 198–202

Ferrara E, Yang Z (2015) Quantifying the effect of sentiment
on information diffusion in social media. PeerJ Computer
Science 1:e26
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