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1. Introduction

In this paper, we investigate detailed properties of nonnegative solutions to
the semilinear parabolic pseudo-differential equation

(1) ou+ (A *u=u?, te(0,0), xeR",
' u(0,x) = up(x) >0, xeR”,

where 0 <o <1 and 1 < p. Here (—A)” is defined by

(12) e = e [ e epace ac

R"

Let us first recall Fuyjita’s result [Fu] on the semilinear heat equation

(13) {6,u—Au:u1’, te(0,00), xeR"

u(0,x) =up(x) =0, xeR"

In [Fu], he shows that the nonnegative solution to (1.3) blows up in finite time
if 1 < p<1+2 while there exists a time global solution if 1+2 < p and if the
initial data uq is sufficiently small. In addition, the blow-up for the critical case
(p=1+2) is shown by several papers (see for example, Weissler [We]).

On the other hand, Sugitani [Su] studies the blowing-up of a solution to the
integral equation arising from (1.1). According to [Sul, if 1 < p < 1+ 2, then the
solution for non-negative and nontrivial initial data blows up in finite time.
However, he does not mention the relationship between (1.1) and the corre-
sponding integral equation. Moreover, equation (1.1) has not been studied
intensively since Sugitani’s work. This is mainly due to the fact that the fun-
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damental solution of the linearized equation d,u+ (—A)*u =0 is not given
explicitly.

Taking into consideration the above situation, in this paper we will consider
the following three problems.

(A) The behavior of the fundamental solution of the linear equation

o+ (—A)*u=0.

(B) The regularity of the solution to (I1.1).

(C) The life span of the solution.

First, let us discuss the problem (A). Obviously, for the investigation of a
nonlinear equation, it is quite important to understand properties of the fun-
damental solution of the corresponding linearized equation. In fact, since the
fundamental solution of the heat equation is explicitly given by the Gauss kernel,
a lot of results on nonlinear heat equations are obtained by the study of the
Gauss kernel. However, in the case of (1.1) it is quite difficult to give an explicit
expression of the corresponding fundamental solution. Instead, in this paper, we
will provide its asymptotic expansion formula.

Let W®(z,x) be the fundamental solution to the linear parabolic pseudo-
differential equation

(1.4) Ou(t,x) + (—A)*u(t,x) = 0.

Then, our first main theorem is stated as follows.

THEOREM A. For each fixed t >0, W (t,x) has the asymptotic expansion
(1.5) W (1) ~ > ait!|x| ", as |x] — +oo,
=

where the coefficients a; (j=1,2,...,) are given by

(_1)/*122@‘

. o . n .
(1.6) aj = T sin(zof) (1 4+ oc])F(z + oc]>.

As is well known, the fundamental solution of the heat equation decays
exponentially. Therefore, we have to stress here the fact that the fundamental
solution W (*)(z, x) to the equation (1.4) decays polynomially. As we see later, this
difference affects the behavior of the solution to (1.1). We also remark that from
the point of view of probability theory it is important to give an explicit
asymptotic expansion formula of W(*(z,x). (See Remark 2.1 in Section 2.)



Behavior of solutions to linear 223

Next, let us go into the problem (B). The starting point is the integral
equation arising from (1.1)

t

(1.7)  u(t,x) = WO(1,-) % up(x) + J

J W (t — s, x — y)u(s, y)! dyds.
0 n

It is relatively easy to prove by contraction argument that (1.7) has a unique
solution u e C([0,T), L' N L*) for sufficiently small 7 > 0 if uy e L' N L. But
the problem is “In what sense does the above solution satisfy the original pseudo-
differential equation (1.1)?” In other words, to what extent does the solution to
(1.7) gain its regularity? We will answer this question by the following.

THEOREM B. We assume that 5 < o < 1. Let ue C([0,T); L'(R")NL*(R"))
satisfy the integral equation (1.7) in [0,T) x R". Then, the following (i), (ii), and
(iii) hold.
(i) u is of class C' with respect to te (0,T) and of class C* with respect to
x e R". Moreover, ue C((0,T), HX(R")NHZ(R")NC((0,T); L'(R") N
L*(R")).

(i) (—A)"ue C((0,T) x R") and (—A)*ue C((0,T); L'(R") N L*(R")).

(ili) u satisfies the semilinear parabolic pseudo-differential equation

o+ (—A)*u=u?,
as an equality in C((0,T); L'(R")N L*(R™)).
Here we define a Sobolev space H; = Hj(R") (s> 0 and 1 <¢ < o)) by
(1.8) HE = H3(R") = {f € LYR") | (1 - A)f € LI(R")}.

Finally, let us deal with the problem (C). We first explain the case of
semilinear heat equations. Let 7'(1) be the life span of the nonnegative solution
to the Cauchy problem

(1.9) {6,u—Au:uP, t>0, xeR",

u(0,x) = W(x), xeR"

where Y(x) >0 and A>0 is a small parameter. Then, we see easily that
T(A) — oo as 2 — 0. However, the growth order of T'(1) depends on the decay
rate of Y as |x| — oo. For example, the following is a part of the results shown
by Lee and Ni [LN].
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THEOREM (Lee and Ni [LN]). Let a > 0. Assume that there exist constants
Cy,Cy > 0 such that

(1.10) Cilx| ™ < y(x) < G|x|™,  for sufficiently large |x|.
If1<p<p.=1+2%and a+n, then
(1.11) T(2) ~ VA p=D)=(/2) min{any) - ge ),

The third purpose of this paper is to calculate the growth order of the life span
T(A) of the solution to the following Cauchy problem.

_ o . n
(1.12) {6,u+( ANu=u? >0 xeR"

u(0,x) = W(x), xeR"

where Y(x) =0 and 7. >0 is a small parameter.

Our result is stated as follows.

TaeoReM C. Let p, (o) =1 +2. We assume that } < o < 1. In addition, we
assume that for some constant ¢ > 0
(1.13) 0 < (x) < e(l+|x]) ">

(1) If 1 < p < p(a), then

(1.14) T(3) ~ 27207 Dintpe0=0) =g 0.
(i) If p = p.(o), then
(1.15) log T(2) ~ 272", as A — 0.

(i) If p.i(a) < p, then T(X) = oo for sufficiently small 1 > 0.

If we put oo =1 in (1.14), then the order of the life span coincides with that in
(L.11). In this sense, Theorem C is considered to be a generalization of the theorem
by Lee and Ni.

Our paper is organized as follows. In Section 2, we will give the asymptotic
expansion of the fundamental solution W (¥ (¢, x). The key idea in this section is
to use the method of oscillatory integrals. Section 3 is devoted to prove the
positivity of W®(¢,x). In this section, we also prove the comparison theorem.
Then, as an application of the results in Section 2, we will show Theorem B
(regularity theorem) in Section 4. We will deal with the problem (C) (the problem
of life span) in both Section 5 and 6. In Section 5, we will give lower bounds of
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the life span, and in Section 6, we will give its upper bounds. Finally in Section 7,
we give some generalization of our results.
Acknowledgment

The authors would like to thank Professor Mamoru Kanda for his usuful
suggestions. The authors also would like to thank the referee for his valuable
comments.

2. Asymptotic Property of W (¢, x)

In this section, we study asymptotic properties of the fundamental solution
W@ (1, x) of the parabolic pseudodifferential equation

(2.1) Ou(t,x) + (—A)*u(t,x) = 0,

with the initial data u(0,x) = uo(x). We see easily that W(*)(z,x) is given by the
Fourier integral

(2.2) W (1, x) = (2n)" J o1 giex gz,

Let

2.3) W) = W (1,x) = )" | e e
R)’l

Then, we have

(2,4) I/V(oc)(t7 X) _ lfn/Zoc‘/V(on)(fl/ZocX)

So, it suffices to calculate the asymptotic expansion of w(*(x) as |x| — co.
The main purpose of this section is to prove the following.

THEOREM 2.1.

o0
(2.5) W) ~ D gl (¥ = +o0)
=1
where the constants a; (j=1,2,...,) are given by
(_1)]*12211‘

. . . n .
(2.6) aj = T sin(7o/) (1 + oq)l"(i + OC]) .
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Let
(2.7) Wi (x) = <2n>*”J RAVAGES
where
.3) 1) = & (’—C)

Here we take a compactly supported smooth function y on R” such that

const. (Jx] <1)

)=o) = {5 (05

(2.9) x(x)=0
J x(x) dx = 1.
Let us rewrite w?® using the Taylor series expansion of e* (1 = —|§|2“) as
follows.
o —n ix-& o~ . (_l)j 20 2u(N+1) 20
@10) w2 = )" | @ | S R + Y Vg ™) )
J=0 )
(_1)N+1 1
211)  gv(h) = 7J (1= 5)Ne= ds.
N! 0

Here N is an arbitrary fixed positive integer.
Then, we have

o - (_1)j —n 20 (N)
@12) Wi =Y en | AL+ ) de + RV ),
= 7

where Z,[x,(» + x)] denotes the Fourier transform of y,(y + x) with respect to y

and where the remainder term R\ is given by

2.13) RO) = @n) " | a1 gn (1) de

The following lemma plays an essential role in the computation of the
asymptotic expansion of wZ.
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LemMmA 2.1. Let ¢ be a Schwartz class function on R" which vanishes near
the origin. Then, we have

(214) | 6o ae=cp| o) dx. for g0,
Rll Rll
where the above constant Cg is given by

b e e ()

(For the proof, see for example Helgason [Hel] page 134, Chapter 1, Section
2, Lemma 2.34.)
Let us now assume that x is away from the origin. We note that under the

above asumption, y.(y + x) vanishes near the origin as a function of y if 2e < |x]|.
So, by the above lemma,

@16 | AL+ )0 d = Cop | 1l d,

where C,; is the constant given in Lemma 2.1.
Next, let us admit the following lemma.

LemMa 2.2, The limit lim,_q R (x) exists for each x(# 0). Moreover, there
exists a constant Ay such that

< AN‘X|—21(N+1)+2

(2.17) , for |x| > 0.

tim RV (x)

We will prove this lemma later.
If we take the limit ¢ — 0 in (2.12), then by making use of (2.16), we have

I Gt O : —n=2s im R
(2.18) 15% w(x) = ;j!@n)” Cayj 11_1:13 JR" |yl 2:(y+x)dy+ ll_r% RM (x)

. |

-1 / —n—20j :
(2.19) Zj(,(zn))n Cayld| ™" + lim R (x).
=t/ '

In the above computation, note that the right hand side of (2.16) equals 0
if j=0. On the other hand, by (2.7), lim,_o w?(x) = w¥(x). Therefore, by
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Lemma 2.2 we obtain

o) oy M1/
(2.20) w (x)_zj!(Zn)"

J=1

Czaj|x|7n72dj + 0(|X|72“<N+1)+2)7 (lx‘ - +OO),

which proves the assertion of Theorem 2.1.
Theorem 2.1 yields the following theorem on the asymptotic expansions of
derivatives of w®.

TueOREM 2.2. For each multi-index y, the derivative d'w'® of w® has the

asymptotic expansion.
© .

(2.21) IO (x) ~ > a@dl(1x| "), (Ix] = +o0).
j=1

Here a; in (2.21) is the constant given by (2.6) in Theorem 2.1.
Proor. It is easily seen from the expression (2.3) that 0’w® is a bounded
function for each y. So the above theorem is proved by applying the following

lemma with respect to each variable repeatedly. O

Lemma 2.3. Let f be a C? class function on R with the asymptotic expansion

o0
[~ Y ™, as || = o,
j=1

where o> 0 and m < 0. We assume that ["(t) is a bounded function. Then f'(f)
has the asymptotic expansion

s}
f(t) ~ Z(m — a)at™ ¥ as |t — 0.
J=1

The above lemma is easily verified. So we omit the proof.
Similarly as in Theorem 2.1, we can prove the following.

THEOREM 2.3. For > 0, (fA)'Bw“‘> has the asymptotic expansion.

(2.22) (A WO (x) ~ D bl (] = +o0).
j=0
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Here the constant b; in (2.22) is given by

(71)/*1221j+2/3

1) b=y

sin(zoyj + ) (1 + oy + [)’)F(g +oj + ﬁ) .
Summarizing the above results, we obtain

COROLLARY 2.1.  The fundamental solution W'*)(t,x) and its derivatives have
the following asymptotic expansions.

o0
W(O()(t,x) ~ Zajtj|x|7n72]a, as |x| N +(X)7
Jj=1

(224) W (e,x) ~ gt (@), as x| — o,
=1

8

(A WO (1,x) ~ D bt X[ (] — +o0),
j=0

where the coefficients a; (j=1,2,...,) and b; (j=0,1,...,) are given respec-

tively by (2.6) and (2.23).

COROLLARY 2.2.
w (x) = O(|x| "),

@ (x) = O(Ix| """, for j (1< j<n),
(2.25)
By, 0w (x) = O(x| "), for jk (1< j.k<n),

(=)W (x) = O(x "), for >0, as |x| — .

In particular, w®, (%W(“), 6X/aka(°‘), and (—A)ﬂw(“) are all integrable on R".

We will use this corollary to study the regularity of the solution to (1.1).
Finally, we will prove Lemma 2.2 in the rest part of this section.

ProOF OF LEMMA 2.2. Throughout the proof, we assume that x is fixed and
away from the origin, say for example |x| > 1.
The existence of the limit lim, o R\ (x) is obvious. (Take the limit ¢ — 0 in

both sides of (2.12).)
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Let ¢, and ¥, be smooth functions on R” such that

RS

%@‘%<m>w
(2:26) 0< (&) <1,
D@ = 1- (&)

Using above ¥, and y,, we write RéN)(x) as

227 ROV = [ eI o (&)

—FJRMemffoNEV“N+”gN(KVh)¢A§)df
= 100 N) + 17 (6 ).

Step 1. First, we give the estimate of I,;(U(x; N). Let / be the integer such
that

(2.28) 2 < 2(N+1) <20+2.

Then [&]ZM Vg (1€, (€) in the integrand of I\V(x;N) is a compactly
supported function of class C?*. Using the equality

(2.29) e 7 (&) = (_Af)lj )< Xg(y)zl
- e Ix =y

Le(x+ )

l g
= (_Acf) Hy 27
|y

(é)a

we rewrite Ie(l)(x; N) as

(X + )
!
ik

Let us assume that 0 < ¢ < $|x|, then

(c‘f)‘ < JRW dy

230 1wN = 7

n

() (=A) 1PN Vg (1) (&)} d&.

1:(x + )

(2.31) 5
|yl

7
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So we can apply the covergence theorem of Lebesgue to I,;(l)(x; N). Therefore, the
limit lim,_,q 1,;(1)(x; N) exists and we have

1

(232)  [lim 110(x N)’ < WJW (=A) 1PNV gn (117 (6)}] dé

1
= Const.— < Const.

|x|21 20(N+1)-2"

|1

Step 2. Next, we consider the estimate of 7,°) (x;N). Let

(2.33) (@) = EP N gn (1€ (6).

Then, since |£[*M* gy (|E**) is the N-th remainder term of the Taylor expansion
of e* (2=—[¢*),

N

(2.34) G {ef” - Z(‘jl!)]|é|2“f}wz<é>.

Jj=0

Note that iy, vanishes near the origin. So fy is a smooth function with the
following property. For each multi-index p, there exists a constant C, such
that

(2.35) 0w (O] < Cy(1+ 1), for £eR™.

In other words, fy belongs to the symbol class Slzf’(fv . In particular, for some

constant C,, we have

(2.36) (=82 "y (E)] < Cu(1+ 12D,
Let us take the integer m such that

(2.37) —n—-3<2aN-2m< —n—1.
Then, similarly as in (2.30), we have

Z(x+ )
|y|2m

(©)(=Aa)"fx (<) dé.

n

(2.38) I (x;N) = J 7,

Thus, by the same arguement as in Step 1, we see that the limit lim,_o 12 (x;N)
exists and
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%j (=80 (&) de

|x

(2.39)

lim 1% (x; N) ’ <
e—0

1 1
s—ﬂ@Ja+mW“Mﬁ=®mfﬁ
x| R" [

< Const. W .

Both (2.32) and (2.39) prove the assertion of Lemma 2.2.

REMARK 2.1. As is well known in probability theory, the fundamental
solution W®(t,x) of du+ (—A)*u=0 is the density of the semigroup of n-
dimensional symmetric stable process with index 20. Moreover, its asymptotic
expansion formula is known in one dimensional case. (See Zolotarev [Zo],
Chapter 2, Section 2.5.) However, the proof depends on some probability theo-
retical argument. Therefore, it should be remarked that our asymptotic expansion
formula is given in n-dimensional case and the proof is done by the method of
Fourier analysis.

3. Positivity of W (z,x) and Comparison Theorem

In this section, we will show the positivity of the fundamental solution
W@ (t,x) of the parabolic pseudo-differential equation du 4 (—A)”*u = 0. Next,
we will apply it to the comparison theorem.

We start with the definition of a completely monotone function.

DrerFINITION 3.1. A function ¢ on (0,00) is completely monotone if ¢ is
smooth and

(3.1) bﬂm$¢MM2& m=0,1,2,...,.>0.

EXAMPLE.

(i) ¢(4) =477 is completely monotone if ¢ > 0.

(i) If ¥ is a positive function with a completely monotone derivative, then
eV is completely monotone. (It is easily proved by induction.)

(ili) By the above two, e *'

is completely monotone if 0 < o < 1.
(For the details of completely monotone functions, see [Fe] Chap. XIII, Section

4.)
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Surprisingly, a completely monotone function is real analytic, namely, a
smooth function on (0, 00) satisfying the condition (3.1) automatically becomes
real analytic on (0, 00). Farthermore, such a function is written as the Laplace
transform of a probability distribution. More precisely, we have the following
theorem.

THEOREM 3.1 ([Fe], Chap. XIII, Section 4, Theorem 1). A function ¢ on
[0, 00) is the Laplace transform of a probability distribution p, if and only if ¢ is
completely monotone and ¢(0) = 1.

Now let us prove the positivity of W ® (¢, x).
It follows from the above example and Theorem 3.1 that if 0 < o < 1 there
exists a probability distribution x such that

(3.2) e = J:C e u(dp).

Substituting 4 = |¢|? in (3.2), we have

(3.3) e"f‘Zq = L e*plf\zﬂ(dp)'
Hence,
(3.4) w® (x) = (zn)*nj e 67 piEx gz

=(2n)™" J ) J:O eié'xe_p‘élz,u(dp) dé

= [ wtan{ | e af

0

= Jo (4np)7”/ze_‘x‘2/4/’u(dp) > 0.

Therefore, by the expression (3.4) combined with (2.4) we obtain the following
theorem.

THEOREM 3.2.

i) W (t,x) >0 for t >0 and for x € R".

(ii) W (¢,x) is monotone decreasing with respect to |x|, that is, W (t,x) >
W, y) if [x] <[yl
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By Corollary 2.2 combined with the above theorem, we have

COROLLARY 3.1. For each fixed t > 0, there exist positive constants C; and
C,y such that

(3.5) G+ x)™ ™ < W9 (1,x) < G+ |x|) ™, for xeR".

RemMark 3.1. Nishio [N] also proves (3.5), using a potential theoretical
method. However, the estimate (3.5) itself is not sufficient for our purpose. As we
mentioned in the introduction, we need both Corollary 3.1 and the integrability
of derivatives of W®(z,x).

Next, we go into the comparison theorem.

THEOREM 3.3. Let u,ve C((0,T); H*NH>*)NC'((0,T); L'(R") N L*(R"))
NC([0,T); L'(R")NL*(R")) be nonnegative solutions to the following equations
respectively.

(3.6) o+ (—A)u= f(u), u(0,x)=up(x),
(3.7) o+ (=A)"v=g(v), v(0,x)=vo(x).

We assume that f and g are continuous functions on [0, 0) and uy,vy € L'(R") N
L*R"™). In addition, we assume that g is monotone increasing and satisfies the
following condition. For any M >0, there exists a constant Cy such that

(3.8) sup g() = 9(v) <Cu

O<u,v<M Uu—vu
Then we have
(1) If uo(x) <wo(x) for xeR" and f(u) <g(u) for u=0, then u(t,x) <
v(t,x) for (t,x)e[0,T) x R".
(il) Conversely, if ug(x) = vo(x) for x e R" and f(u) = g(u) for u>0, then
u(t,x) > o(t,x) for (t,x)e[0,T) x R".

Proor. We prove only (i) of the statement. By (3.6), (3.7), and the as-
sumption that f(u) < g(u), we have

(3.9) (v —u) + (=A)* (v —u) = g(v) — f(u)
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Let w=v—u and wy = vy — uy. Moreover let

go(t,x)=g(u(t,x)
(3.10) Glt,x) = o wen o i o6x) #ultx)
0, if v(t,x) = u(t,x)

Then by (3.9), Theorem 3.2 (i), and the assumption that wy = vy —up > 0, we
have

(B.11) w(t,x) = WD (1,2) % wo(x)
[ s et ) - atuls )} drs
> J W@ (t—s,x— y)G(s, y)w(s, y) dyds

0JR"

Let us fix any Ty (0 < 7y < T) and let

L)

(3.12) M = max{supo<<r,||u(t, )|l .- supo<i<7[[0(7, )]
Then, by (3.8),
(3.13) 0 < G(t,x) < Cy, for (2,x)e]0,Ty] x R™.

Now we introduce a linear operator S: L ([0, Ty] x R") — L*([0, Ty] x R") as
follows.

t

Gl (s = |

[, =50 3) Gl s ) s,
e

for ¢ € L*(]0, Ty] x R").

We see easily by induction that

B15) IS ] = Ll o N =123

Hence

(3.16) ISM]| < %H 0, as N — 0.

Since W®(t,x) > 0 (Theorem 3.2) and G(¢,x) >0, S maps a nonnegative func-

tion to a nonnegative function. So if ¢(¢,x) > (S¢)(z, x), then

(3.17) Pp(t,) = (S9)(1,x) = (S*9)(1,x) = --- = (S¥4)(1,x).
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Let N — co. Then, by (3.16) we obtain ¢(¢,x) > 0. Here note that inequality
(3.11) means that w(¢,x) > (Sw)(t,x). Therefore, the above argument can be
applied to ¢ = w, which proves that w(z,x) = v(¢,x) — u(¢,x) > 0. O

REMARK 3.2. Usually the comparison theorem for nonlinear parabolic
differential equation is proved by the maximum principle of the corresponding
linear parabolic differential equation. (See Protter and Weinberger [PW].)
However, such a method can no longer be applied to this case, due to the fact
that (—A)“ is not a local operator.

4. Existence of Local Solutions
We begin with the integral equation arising from (1.1).

t

n

(4.1)  u(t, x) :J W (1, x — y)uo(y) dy—&-J

j Wt~ 5, — y)uls, y)? dyds,
0 n

o

where W (*)(¢,x) is the fundamental soluton to the linear equation d,u + (—A)"u
=0.
By contraction argument, we can prove the following.

THEOREM 4.1. Assume that uy(x) >0 and that uye L'(R")NL*(R"). If
T > 0 is sufficiently small, then the integral equation (4.1) has a unique nonnegative
solution ue C([0,T); L'(R")N L*(R™)).

The problem is to prove that the above solution u of the integral equation
(4.1) satisfies the parabolic pseudo-differential equation (1.1).

The difficulty lies in the fact that (—A)” is no longer a local operator. In
addition, the regularizing effect of (—A)* becomes weak if o is small.

Therfore, we need to consider the meaning of a solution to (1.1) rigorously.
In this paper, we study the existence of a solution to (1.1) in the framework of
L'(R")NL*(R"™). So we define a solution of (1.1) by the following.

DerFINITION 4.1, ue C([0,T); L'(R")NL*(R")) is called a strong solution
of the semilinear parabolic pseudo-differential equation (1.1) in [0,7) x R" if u
satisfies the following conditions.

(i) ueC((0,T); H*NH>).

(i) ue C'((0,T); L' (R")NL*(R")).
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(iii) As an equality in L'(R")NL*(R")), u satisfies the equation
(4.2) o+ (—A)*u=ul.

(iv) lim,_ o u(t,-) =up in L'(R")NL*(R").
From now on, we assume that § <o < 1.
First, let us consider the regularity of u with respect to x.

LemMmA 4.1. (1) We assume that ue C([0,T); L"(R")NL*(R")). Let

t

(4.3) Du(t,x) = J J ) W (t —s5,x — p)u(s, y)? dyds

0

t
= |, =) )t ) s,
where w® is the function given by (2.3). Then, for each te[0,T), ®u(t,-) e
CY(R"). Moreover, 0., (®u) e C([0,T); L'(R")NL*(R")), (1 < j <n).

(2) In addition to the assumption in (1), we assume that u(t,-) e C'(R")
for each t€(0,T) and that o ue C((0,T); L'(R")NL*(R")) (1 < j<n). Then,
Qu(t,-) € C*(R") for each t € (0,T), and 0,0, (Pu) € C((0, T); L' (R") N L*(R")),
(1<j,k<n).

Proor. By a straightforward computation, we have

t

(4.4) ax/(q)u)(h x) = J J n(t — S)*1/2x(axjw(x))(z)u(s7x — (- S)l/ZxZ)P dzds.

0

So, by Corollary 2.2 and the assumption that %< o<1,

(43) 10401 ey < 1051 sl ey [ (=977 s < o0
Similarly we have

(4.6) |0, (Pu)(, )| 1 (rry < ||5x/-W(“>||L'(R")H”||L1(R“) X J;(l —s) " ds < to0.

The above two inequalities prove the assertion of (1).
If u satisfies the assumptions in (2), so does u”. Therefore, by integral by
parts with respect to x, we have
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(47) ax/ axk (q)u)(t, x)

/2
B J J (0,0 W) (t — 5,x — y)u(s, y)? dyds
0 R”

+JI J "([—S)*1/2oc(axl.w(°‘))(z)axk{u<s’x_ (1 — )2V dzds,

/2

In the integrand of the first term of L.H.S. of (4.7), (0,0, WY (t—s5,x — )
is integrable with respect to (s,y) € [0,4] x R” due to Corollary 2.1 and
Corollary 2.2. Moreover, in the integrand of the second term of L.H.S. of (4.7),
0y {u(s,x — ((t — 5)"*2)}” is bounded and integrable with respect to x € R” for
each se [£,7] due to the assertion of (1). Therefore, it follows from (4.7) that
0.0, (®u) € C((0, T); L' (R") N L* (R")). 0

PropoSITION 4.1.  Let ue C([0,T); L'(R")NL*(R™)) be the solution of the
integral equation (4.1) in [0, T) x R". Then, for each te (0,T), u(t,-) e C*(R").
Moreover, Oyu,dy,0xue C((0,T); L'(R")NL*(R")) for 1 < j,k <n.

Proor. Using (4.3) and (2.4), we rewrite integral equation (4.1) as
(4.8) u(t,x) = W1, % ug(x) + du(z, x).

Obviously, W®(t,-) xug € C*((0,T) x R") and o, W (¢,) % ug, 0,05, W) (1,

up € C((0, T); L'(R")NL*(R")). On the other hand, by Lemma 4.2 (1), ®u(t,-)
e C'(R"), and 0, (®u) e C([0,T); L'(R")NL*(R")), (1 < j <n). Therefore, by
equation (4.8), u(r,-)e C'(R") for t€(0,T), and dyue C((0,T);L'(R")N
L*(R™)). Then, we can apply Proposition 4.1 (2) to u. Thus, the assertion of the
Proposition is proved. O

The above proposition yields the following.

PROPOSITION 4.2, Let ue C([0,T); L'(R")NL*(R™)) be the solution of the
integral equation (4.1) in [0,T) x R". Then, (—A)"u(t,-) e L'(R")N L*(R"), for
te(0,7).

PROOF. Proposition 4.1 shows that ue C((0,T); H3(R") N HZ2 (R")). Thus,
(1-=AueC((0,T); L"(R")NL*(R™). As is well known, the operator
(=A)*(1 —A)™" is well defined as a bounded operator on L4(R"), (1 < ¢ < o).
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This fact is easily checked by the argument of Fourier multipliers. (See for
example Bergh and Lofstrom [BL], Chapter 6, Theorem 6.2.3.)

Therefore, (—A)*u= (—A)*(1 —A)"'(1 — Aue C(0,T); L"(R")NL*(R")).

]

Now we will show that u satisfies the parabolic pseudo-differential equation
(1.1). We start with the difference quotient of ®u.

t+h

(4.9) %{(Du(t +h,x) — Qu(t,x)} = %J J ) W (t4+h—s,x— p)u(s, y)” dyds

t

1 t
+—J J (WOt 4 h—s5,x—y)
h 0 n

— WO (t—s,x — y)}u(s, p)” dyds
(we put) =I(h) + J(h).

Without loss of generality, we may assume that # > 0 when we let # — 0 in the
above equality. By the mean value theorem, there exists o € (¢,1 + &) depending

on h and z such that
t+h
(4.10) J u(s,x + (t+h— )22 ds = hu(o, x + (t+ h — 6)/?2)P.

t

Then, we see easily that

(4.11) I(h) = lrh J ,, w2 u(s, x + (1 + h — 5)"/%z2) dzds

t

1 t+h
- ZJ w® (z){J u(s,x + (1 +h—s)"/?z)? ds} dz

t

= J w® (2 u(e, x + (1 +h — a)/*2)? dz

— J w® (2 u(t, x)? dz = u(t, x)?,

as h — 0, in C((0,T),L'(R")NL"(R")).

Next, for € > 0, let

(4.12) JO(h) = JtJ WOt h—sx - y)

!
h)o

= Wt —s,x = y)}uls, y)" dyds.
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We note that (O, W) (t+h—s,x—y)=—((=A) W) (t+h—s,x—y) is
bounded and integrable with respect to (s, y) € [0,z — €] x R”. So we have

t—e 1
(4.13)  JO(h) = J J J (0 W ) (t 4 ht — 5,x — y)u(s, y)? drdyds
0 n

We put

1 pt—e
(4.14) D gu(t,x) = J J J W (t 4 ht — s, x — y)u(s, y)” dydsdr.
0 Jo "

Taking account of Lemma 4.1, we see that

e—0

(415) (D(/H)u(t, x) — (D(h’o)u(l‘, x)

1t
:J J J W (t 4+ ht — 5, x — )u(s, y)" dydsdr,
0 JoJrr

in C((0,7), H(R") N H2 (R")).

As we explained bebore, (—A)* = (—A)*(1 —A)"'(1 — A) is a bounded operator
from H}(R")NH2Z(R") to L'(R")NL*(R"). So we have

(4.16) TO(h) = —(=A) "Dy u =2 —(=A) "Dy yu
in C((0,T), L' (R")NL*(R")).

On the other hand, obviously J(9(h) — J(h) as e — 0 in C((0,T),L'(R")N
L#(R")). Thus,

(417) J(/’l) = —(—A)“CD(/LQ)M(Z, X)

Moreover, we have

(418)  lim ,oult,x) = Du(t,x), in C((0,7), HAR") N H (R")).
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Therefore, we have

(4.19)  lim J(h) = lim —(=A) @, 0)u(t, x)

= —(=A)*®u(t,x), in C((0,T),L"(R")NL"(R")).

Therefore, by (4.9), (4.11) and (4.19),
.1
(4.20) }111’% %{(Du(t + h,x) — Qu(t,x)}

= lim 1(h) + lim J ()

= u(t,x)" — (=A)*®u(t,x), in C((0,T),L'(R")NL”(R")).

Since u is a solution to the integral equation (4.8), we have

(421) lim Lt + ) — u(t, )}

= 0, WW(1,-) % up(x) + lim %{(I)u(t + h,x) — Du(t,x)}

= —(=A) "W (1,-) % up(x) + u(t, x)” — (=A)*Du(t, x)
(by (4.8)) = —(—A)“{W(“>(t, )k up(x) + Du(t, x)} + u(t, x)”
= —(=A)"u(t, x) + u(t,x)".

In the above equality, the limit exists in the topology of C((0,T),L'(R™)N

L*(R")). We note that in these limiting procedures I(h),J(h) € C((0,T — h) x R")

and I(h) — u?, J(h) — —(—A)"®u respectively as & — 0 in the topology of

C((0, Tp), LY(R")N L*(R™)) for any Ty < T. Thus ®u and u are differentiable

with respect to t€ (0, T) and d,u, 6,0u e C((0,T) x R"). Moreover, for the same

reason, we see that (—A)*®u and (—A)%u also belong to C((0,T) x R").
Summarizing the above argument, we obtain the following.

THEOREM 4.2.  We assume that 1 < o < 1. Let ue C([0,T); L'(R") N L*(R"))
satisfy the integral equation (4.1) in [0,T) x R". Then, the following (i), (ii), and
(iii) hold.

() u is of class C' in te(0,T) and of class C* in xeR". Moreover,

ue C((0,7), HX(R")NH2 (R")NCY(0,T); L'(R") N L*(R")).
(i) (—A)"ue C((0,T) x R") and (—A)*ue C((0,T); L'(R") N L*(R")).
(1) u is a unique strong solution of (1.1) in the sense of Definition 4.1.
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Theorem B in the introduction is a direct consequence of the above theorem.

REmMARK 4.1. In this paper, we do not discuss the case 0 < a < % For a
technical reason, our method employed in this section cannot be applied in this
case. Moreover, it seems that the solution of the integral equation (4.1) no longer
becomes a strong solution in the sense of Definition 4.1.

5. Existence of Global Solutions and Lower Bounds of the Life Span

The purposes of this section are twofold, the first one is to prove the ex-
istence of global solutions to (1.1) for sufficiently small data in the case p.(x) =
1+ 2,7“ < p, and the second one is to give lower bounds of the life span in the case

1 <p<pe(o).
As we mentioned in the introduction, we assume the following condition on
the initial data wu.

(A) 0 < up(x) <o(1+ [x|)™"**, where ) > 0.
Due to Corollary 3.1, the condition (A) is equivalent to
(A 0 < up(x) < coW™(z,x), where co,7> 0.

For 0 < T < oo, we define a Banach space 77 by the space of all measurable
functions v on [0,7) x R" satisfying

(5.1) loll, L 5.5 o)< 0,77 k" ';8 3' < +oo,
where

(5.2) p(t,x) = WP (1 +1,x).

Moreover, we define a subset 7 of ¥7 by

(5.3) Vi ={vevr;v(t,x) >0, for (¢,x)e[0,T) x R"}

The following lemma is important for both global existence theorem and
lower bounds of the life span.

LEmMA 5.1. Let ® be the operator defined by (4.3).
(i) There exists a constant C independent of T such that

(5.4) 0 < (dp)(t,x) < Cp(t, x) LT(I +S)7n(1’*1)/2@( ds
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(i) Assume that 1 < p < p.(a). Let 1> 0. If 0 < v(t,x) < Ap(t,x) for (t,x) €
[0,T) x R", then we have the estimate

CPT'=r=0122p(1.x), in the case 1 < p < p.(«),

(5:5) 0 < (Do)t %) < {C/V' log(l +T)p(t,x), in the case p = p.(2),

for (t,x) €[0,T) x R". Here the constant C does not depend on T.
(ili) Assume that p.(o) < p. Let A>0. If 0 <uv(t,x) < Ap(t,x) for (t,x) €
[0,00) x R”, then we have the estimate

(5.6) 0 < (Dv)(2,x) < CAp(1,x).

In particular, ®pe V.

PRrOOF.
(5.7) p(t,x)! = WO+ 1,x) ' WH(1 4+ 1,x)
={(1+ 07w (1 + 0"V ' WO (1 + 1, %)

< C(l + t)fn(pfl)/zl W(a)(l _|_ [7 x)7

w120 p71
where C:{(Zn)"J el dé} .
Thus, we have

(5.8) 0 < (®p)(t,x) = Jo - W (t—s,x— y)p(s, y)? dyds

1

< C| (14502
0

X WO (t—s,x— Y)W (1 + s, y) dyds
RV'I

t

(by semigroup property) = C | (1 + )™~V ds x w® (1 + ¢, x).

0

The above inequality proves (i).
The assertions (ii) and (iii) follow easily from (i). O

Existence of global solutions.
Let us first consider the global existence of the solutions to (1.1) for suf-
ficiently small data.
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The method is similar to that of Fujita [Fu]. So we are brief.
Due to Lemma 5.1, we have

Lemma 5.2. (i) If ve V), then ®ve vV} . Moreover, we have

(5.9) |@oll,., < Clle

p
V"

(ii) Let vi,voe v [ If |lo1ll,, <M and |v2|l,. < M, then we have
(5.10) ||(I)Ul — CDUzH/.;/;Q < CpMp_] Hvl — UZHVQ?

In (i) and (ii), C is the constant given in (iii) of Lemma 5.1.
Let us take Jy such that

1
(5.11) 0 < dg < CV/=D=r/(r=)  Cp(250)7" < 5
For the above ), we take a closed convex set Z#7(2Jy) in ¥, as follows.
(5.12) ABT(200) ={ve v, | vl <2dp,v =0}
We define a mapping ¥ : ¥, — ¥, by

(5.13) (Po)(t,x) = W(“)(t, ) up(x) + (Pv)(¢, x)

= W D) @

t
+ J J W@ (t—s,x — y)(s, )’ dyds
0 n

Due to the assumption (A) on uy, ¥: 7, — ¥ is well-defined. Then, by
Lemma 5.2 and the definition of 6, we have

LemMA 5.3. If uy satisfies

(5.14) 0 < up(x) < W™ (1,x),

then
(1) W(#1(260)) = B7(25)).
(ii) For vy,vy € B7(2d)),
1

(5.15) W, — \PUzHWt < 5”1)1 — UZH"//;'
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The above lemma means that ¥ : %7 (2d)) — #7(2d)) is a contraction
mapping. Therefore, by the fixed point theorem, there exists u e %7 (2dy) such
that Wu = u. In other words, this u satisfies the integral equation (4.1). So, by
Theorem 4.2, this u solves the equation (1.1) in (0, c0) x R”. Thus we obtain

THEOREM 5.1.  Assume that p.(«) =1+2 < p and that § < o < 1. Then, in
the sense of Definition 4.1, there exists a global in time strong solution to the
semilinear parabolic pseudo-differential equation (1.1) with the initial data u
satisfying the condition (A) for sufficiently small 6y > 0.

Lower bounds of the life span.

In this subsection, we will give lower bounds of the life span of the solution
to the following Cauchy problem under the assumption that %< o<1 and
l<p<plo)=1+2.

o+ (—AN)*u=ul, te(0,T), xeR",

(5.16) {u(O,x) = A(x), xeR",

Here we assume that i # 0 satisfies the condition (A).
Let T(A) be the life span of the solution to (5.16), that is,

(5.17) T(A) =sup{T > 0; the strong solution of (5.16) exists in (0,7) x R"}.

It is easily seen by Theorem 4.2 that T(1) coincides with the life span of the
L' N L*-solution to the integral equation arising from (5.16).
The purpose of this subsection is to prove the following proposition.

PROPOSITION 5.1.  Assume that 1 < p < p.(a) =1+2. Then there exists a
costant C > 0 such that for sufficiently small . >0

(5.18) Cpm =D 0=P) < (), in the case 1 < p < p.(a),

(5.19) CA2/" <log T(J), in the case p = p.(a).
Proor. Similarly as in Lemma 5.2, we have

LEMMA 5.4. Assume that 1 < p < p.(«) and 1 < T < o0.
(i) Let ve 75 . Then ®ve ¥ . Moreover, if ||v||,, <2, then

CPT'r=02% i the case 1 < p < p.()

5.20 Dol <
(5.20) @]l {Ci" log T in the case p = p.(a)
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(il) Let vy, v 75 If |luill,, <4 and ||02|,, < 2, then we have
(5.21)  [|@v; — Dvs . < CpAP o) — 0]

" {Tl"(l’wz“, in the case 1 < p < p.(a),
log T, in the case p = p.(a).

In (i) and (ii), the constant C does not depend on either 1 or T.

Since  satisfies the assumption (A), we have
(5.22) 0< W1, )« (x) < W (t,) « WL, )(x)
= COVV(O()(t+ lvx) = Cop(tvx)v

for some positive costant co. Namely we have ||W(*)(z,-) Wy, < co.
For the above constant ¢y and a parameter 4 > 0, we define a convex subset
BT (2¢04; T) of V7 by

(5.23) B (2045 T) :={ve v vl <2ci}.
Next, for a positive constant g, let us take 7= T, (1) such that

(5.24) {Cﬂ»”_lTl"(PWz“ = 1y, in the case 1 < p < p.(a).

Ci" " log T = ., in the case p = p.(a).

Here in the above equalities C is the same constant as in Lemma 5.4. The above
contant g, will be determined later.
We now define a mapping ¥, : v — ¥, by

(5.25) (P10)(1,x) = 2W @ (1,) % Y (x) + (D) (1, %)

1| WOex = () dy

t
+ J J W (t—s,x — y)(s, )’ dyds
0 n

Then by Lemma 5.4, (i) and (5.24), if ve 87 (2¢o4; T)
(5.26) [P0l 4, < col + (2¢0)” oA
Moreover, if vy,v; € 1 (2¢04; T), then

(5.27) 101 = Faaly; < p2e0) ollor — v

7.

Vi
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So let us choose a positive constant g, such that

N —

(5.28) (2c0)"uty < co,  p(2c0)" g <

Taking (5.26), (5.27), and (5.28) into account we see that

ve BT (2c04T) = Yve B (2c04; T),

(5.29) .

v, € .@+(2C()}v; T) = H\P).Ul — \P/WZHVT < 5 ||Ul - 1)2||,1/-T.
(5.29) shows that ¥, : B (2coA; T) — #B7(2¢o4; T) is a contraction mapping.
Therefore, by the fixed point theorem, there exists an element u € #1(2co/; T)
such that W,u = u. By Theorem 4.2, this u solves the Cauchy problem (5.16).

Summarizing the above argument, we have the following.

Take a positive constant g, such that (5.28) holds. Next, take 7" = T.(4) such
that (5.24) holds for the above y,. Then there exists the solution u to the Cauchy
problem (5.16) in (0,7) x R". It follows from (5.24) that the above 7 = T.(4)
satisfies

T.() = %“’1(1’*1)/2“}71 C1=n(p=1)/22 j=2a(p=1)/n(p.(2)=p)

(5.30) in the case 1 < p < p.(a),

log T.(2) = uyC~' 272" in the case p = p.(a),

which proves the assertion of Proposition 5.1. O

6. Upper Bounds of the Life Span

In this section, we give upper bounds of the life span of the solution to (1.11)
with nontrivial initial data.
We start with the integral equation arising from (1.11).

t

(6.1)  u(t,x) = 2WA(1,-) x (x) +J

J W (t—s,x — y)uls, y)” dyds.
0 n

For the solution u; of (6.1), let
(6.2) Fi(t):J W (1 x)u (1, x) dx

Then, our first objective is to estimate the blowup time of F,(¢).
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Here we note that without loss of generality we may assume that
(63) Y(x) = W (1),

for some constant ¢y > 0. In fact, we have the following lemma.

LemMmA 6.1. Assume that the intial data uy of (1.1) is nonzero, that is,
up(x) =0, and uy # 0. For each ty > 0, the solution u to (1.1) satisfies

(6.4) u(to,x) > 0 W(“)<l0,x),

for some costant ¢y > 0.

(This lemma is easily seen, so we omit the proof.)
As the first step, we will prove the following.

LeMMmA 6.2.

(6.5) Fi(1) = AcoW @ (1,0)(2¢ + 1) 4 (26) ™/ ‘[ts”/Z“F;v(s)p ds.
0

PrOOF. Multiply both sides of (6.1) by W (¢, x) and integrate with respect
to x. Then we have

n

66)  F@=2| | WOww O x- u) dsdy

t
—&-J J J WO (1, x) WA (t = 5,x — p)uy(s, y)? dxdyds.
0 n n

Using the semigroup property
(6.7) J WO (1 x) WO (1,x — y) dx = WD (21, y),

we have

(6.8) The first term of RHS of (6.6) = AJ w2t y)(y) dy

n

wymemq W 1, ) W1, ) dy

(by semigroup property) = AcoW (21 +1,0)

= JcoW ™ (1,0)(21 + 1)~
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Similarly we have

(6.9) The second term of RHS of (6.6)

t
= J J W (2t — s, y)ui(s, y)” dyds
0 n

t
> J J W (21, y)uj(s, y)” dyds

0
t 2¢ —n/2o
> J J (—) W (s, y)us(s, p)? dyds
0JrR"\ S
t
> (2:)*"”“[ s"P2F (5)? ds. O
0
Let
(6.10) Gy(1) = (" Fy(1).

Then Lemma 6.2 yields the following.

LEMMA 6.3.

(6.11) G()>qi+2"/2“J 20A=P) G, (s) ds, for t>1,
1

where ¢ = 37"?*co W #)(1,0).

Let H,(z) be the solution to the integral equation

(6.12) H(t) = c1/1+2—"/2“J /2200=P) [, (5)P ds, for t > 1.
1

By comparison theorem, we have

(6.13) G,(t) = H;(t) for t>1.
Therefore,
(6.14) Fi(f) = t72*Gy(t) = " H,(1) for t> 1.

On the other hand, H,(r) is given explicitely as follows.
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Hy(1) = (e 72177 = (p = 2, (0} 0,

6.15 ety L
(o1 Here A,(1) = {1——<p At 1}, (I1<p<pa)=1+2

log 1, (p=ps0) =1+2).

Obviously H,(¢) blows up in finite time. Thus by (6.14) F,(¢) also blows up in
finite time. Let Tr(1) and Ty(A) be the blowup time of F), and H, respectively.
Again by (6.14), Tr(1) < Ty (). Here by (6.15)

Ty (3) = (AP~ 4 ) a7 2= 0/mp=p) - in the case 1 < p < p.(x),

1— n(p-1) cl—]?
where ¢, = %

(p— 1271/
(6.16)
log Ty(4) = ¢227"*, in the case p = p.(a),
1—p
2!
where C) = m

Therefore, we obtain

PROPOSITION 6.1.  F,(t) blows up in finite time. In addition, the blowup time
Tr(X) of F;(t) is estimated as follows.

(6.17) Tr(2) < CA7 2= D/mp0=P) iy the case 1 < p < p.(),

(6.18)  log Tr(4) < Ci™"*, in the case p = pi(a),

where C is a constant depending only on n, p, and «.

The next objective is to estimate the blowup time of u; using Tr(4).
Let x =0 in the integral equation (6.1) and apply Jensen’s inequality. Then

t

(6.19) wlt0)= | | WO s s )" dvds
JO "

t

\Y

{J WO = s, )us(s, ) dy}p ds

0
(1/2)1

\Y

P
{J W (¢ — s, y)uy(s, p) dy} ds.
(/4 Ure
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If {# <s< 1z then |(ﬁ)l/2“y| <|y| and { < £ Thus by Theorem 3.2 (ii), we
have

@ s n/2o " s 1/2a
(6.20) W\ (t—s,y) = (:) W s, (t — s) ¥

> 3—11/20( W(x) (S, y)

By making use of the above two inequalities, we obtain

(1/2) p
(6.21) u;(1,0) > 3—"P/2“J {J W (s, )us(s, y) dy} ds
(/4 Ure
(1/2)t
_ 3_,1,,/qu Fy(s)” ds.
(1/4)1

If 1t — Tp(4) — 0, then by Proposition 6.1 the RHS of inequality (6.21) (and thus
the LHS of (6.21)) blow up. Here we note that the life span 7'(1) of u; is nothing
but the blowup time of u;. Therefore, we have

PROPOSITION 6.2.  u, blows up in finite time. Moreover, T(A) <2Tr(2).

Combining Proposition 5.1, Proposition 6.1, and Proposition 6.2, we obtain
Theorem C in the introduction, namely,

THEOREM 6.1. There exist constants Cy, Cy > 0 such that for sufficiently small
A>0
(6.22) Cllfza(l’*l)/n(,l’*(u)*ﬂ) <T() < (/12}'72&(1771)/n(p*(ac)fp)7

in the case 1 < p < p.(a),

(6.23) CA7"* <log T(J) < G2, in the case p = p.(a).

7. Some Generalization

In this section, we deal with a semilinear parablic pseudo-differential equation
with a more generalized nonlinear term. Let us consider the following Cauchy
problem.

(7.1) {5t”+(—A)“u=g(u), te(0,00), xeR”,

u(0,x) =up(x) >0, xeR”,

where ¢ is a real valued function.
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Then, by the same argument as in Section 4, we have the following.

THEOREM 7.1. If we assume the condition

(H1): ge CY([0, 0)).

In addition, we assume that ugpe L' NL*. Then, (1.1) has a unique strong

solution u in [0,T) x R" for some T >0 in the following sense.

() u is of class C' with respect to te (0, T) and of class C* with respect to
x e R". Moreover, ue C((0,T), H}(R")NHZ (R"))NC((0,T); L'(R")N
L*(R"))

(i) (—=A)*ue C((0,T) x R") and (—A)*ue C((0,T); L'(R")NL*(R")).

(i) u satisfies the semilinear parabolic pseudo-differential equation

Ot + (=A)"u = g(u),
as an equality in C((0,T); L'(R")N L*(R")).

Next, let us consider the problem of life span. Let T'(4;¢,y) be the life span
of the strong solution to the following Cauchy problem.

o+ (—A)*u=g(u), te(0,0), xeR",
(7.2) {u(O,x) =Y(x), xeR"

where (x) is a function which satisfies the condition (A) in Section 5.

Here in addition to (H1), we assume the following two conditions (H2) and
(H3) on g.

(H2): ¢'(u) = 0 for ue |0, c0).

(H3): There exist constants C;,C, >0 and p > 1 such that Ciu” < g(u) <

Coul for ue [0, 0).

Then, we can apply the comparison theorem (Theorem 3.3) to (7.2). Thus we

have

(7.3) T(3: Co ) < T(ig.0) < T(; Crul ).
Therefore, by Theorem C, we obtain
TueoreM 7.2. (i) If 1 < p < p.(a) =1+, then
(7.4) T(J; g, W) ~ A2~ Dinlp@=p) g ) 0.
(ii) If p= po(x) =1+2, then

(7.5) log T(;g,0) ~ 272" as 4 — 0.
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