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1. Introduction

In this paper, we investigate detailed properties of nonnegative solutions to

the semilinear parabolic pseudo-di¤erential equation

qtuþ ð�DÞau ¼ up; t A ð0;yÞ; x A Rn;

uð0; xÞ ¼ u0ðxÞb 0; x A Rn;

�
ð1:1Þ

where 0 < a < 1 and 1 < p. Here ð�DÞa is defined by

ð�DÞavðxÞ ¼ ð2pÞ�n

ð
Rn

e ix�xjxj2av̂vðxÞ dx:ð1:2Þ

Let us first recall Fujita’s result [Fu] on the semilinear heat equation

qtu� Du ¼ up; t A ð0;yÞ; x A Rn

uð0; xÞ ¼ u0ðxÞb 0; x A Rn:

�
ð1:3Þ

In [Fu], he shows that the nonnegative solution to (1.3) blows up in finite time

if 1 < p < 1þ 2
n
while there exists a time global solution if 1þ 2

n
< p and if the

initial data u0 is su‰ciently small. In addition, the blow-up for the critical case

(p ¼ 1þ 2
n
) is shown by several papers (see for example, Weissler [We]).

On the other hand, Sugitani [Su] studies the blowing-up of a solution to the

integral equation arising from (1.1). According to [Su], if 1 < pa 1þ 2a
n
, then the

solution for non-negative and nontrivial initial data blows up in finite time.

However, he does not mention the relationship between (1.1) and the corre-

sponding integral equation. Moreover, equation (1.1) has not been studied

intensively since Sugitani’s work. This is mainly due to the fact that the fun-
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damental solution of the linearized equation qtuþ ð�DÞau ¼ 0 is not given

explicitly.

Taking into consideration the above situation, in this paper we will consider

the following three problems.

(A) The behavior of the fundamental solution of the linear equation

qtuþ ð�DÞau ¼ 0.

(B) The regularity of the solution to (1.1).

(C) The life span of the solution.

First, let us discuss the problem (A). Obviously, for the investigation of a

nonlinear equation, it is quite important to understand properties of the fun-

damental solution of the corresponding linearized equation. In fact, since the

fundamental solution of the heat equation is explicitly given by the Gauss kernel,

a lot of results on nonlinear heat equations are obtained by the study of the

Gauss kernel. However, in the case of (1.1) it is quite di‰cult to give an explicit

expression of the corresponding fundamental solution. Instead, in this paper, we

will provide its asymptotic expansion formula.

Let W ðaÞðt; xÞ be the fundamental solution to the linear parabolic pseudo-

di¤erential equation

qtuðt; xÞ þ ð�DÞauðt; xÞ ¼ 0:ð1:4Þ

Then, our first main theorem is stated as follows.

Theorem A. For each fixed t > 0, W ðaÞðt; xÞ has the asymptotic expansion

W ðaÞðt; xÞ@
Xy
j¼1

ajt
jjxj�n�2ja; as jxj ! þy;ð1:5Þ

where the coe‰cients aj ð j ¼ 1; 2; . . . ; Þ are given by

aj ¼
ð�1Þ j�122aj

j!pn=2þ1
sinðpajÞGð1þ ajÞG n

2
þ aj

� �
:ð1:6Þ

As is well known, the fundamental solution of the heat equation decays

exponentially. Therefore, we have to stress here the fact that the fundamental

solution W ðaÞðt; xÞ to the equation (1.4) decays polynomially. As we see later, this

di¤erence a¤ects the behavior of the solution to (1.1). We also remark that from

the point of view of probability theory it is important to give an explicit

asymptotic expansion formula of W ðaÞðt; xÞ. (See Remark 2.1 in Section 2.)
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Next, let us go into the problem (B). The starting point is the integral

equation arising from (1.1)

uðt; xÞ ¼ W ðaÞðt; �Þ � u0ðxÞ þ
ð t
0

ð
Rn

W ðaÞðt� s; x� yÞuðs; yÞp dyds:ð1:7Þ

It is relatively easy to prove by contraction argument that (1.7) has a unique

solution u A Cð½0;TÞ;L1 VLyÞ for su‰ciently small T > 0 if u0 A L1 VLy. But

the problem is ‘‘In what sense does the above solution satisfy the original pseudo-

di¤erential equation (1.1)?’’ In other words, to what extent does the solution to

(1.7) gain its regularity? We will answer this question by the following.

Theorem B. We assume that 1
2 < a < 1. Let u A Cð½0;TÞ;L1ðRnÞVLyðRnÞÞ

satisfy the integral equation (1.7) in ½0;TÞ � Rn. Then, the following (i), (ii), and

(iii) hold.

(i) u is of class C1 with respect to t A ð0;TÞ and of class C2 with respect to

x A Rn. Moreover, u A Cðð0;TÞ;H 2
1 ðRnÞVH 2

yðRnÞÞVC1ðð0;TÞ;L1ðRnÞV
LyðRnÞÞ.

(ii) ð�DÞau A Cðð0;TÞ � RnÞ and ð�DÞau A Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ.
(iii) u satisfies the semilinear parabolic pseudo-di¤erential equation

qtuþ ð�DÞau ¼ up;

as an equality in Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ.

Here we define a Sobolev space Hs
q ¼ Hs

qðRnÞ (sb 0 and 1a qayÞ) by

Hs
q ¼ Hs

qðRnÞ ¼ f f A LqðRnÞ j ð1� DÞs=2f A LqðRnÞg:ð1:8Þ

Finally, let us deal with the problem (C). We first explain the case of

semilinear heat equations. Let TðlÞ be the life span of the nonnegative solution

to the Cauchy problem

qtu� Du ¼ up; t > 0; x A Rn;

uð0; xÞ ¼ lcðxÞ; x A Rn;

�
ð1:9Þ

where cðxÞb 0 and l > 0 is a small parameter. Then, we see easily that

TðlÞ ! y as l ! 0. However, the growth order of TðlÞ depends on the decay

rate of c as jxj ! y. For example, the following is a part of the results shown

by Lee and Ni [LN].

223Behavior of solutions to linear



Theorem (Lee and Ni [LN]). Let a > 0. Assume that there exist constants

C1;C2 > 0 such that

C1jxj�a
acðxÞaC2jxj�a; for su‰ciently large jxj:ð1:10Þ

If 1 < p < p� ¼ 1þ 2
n
and a0 n, then

TðlÞ@ l�1=ð1=ð p�1Þ�ð1=2Þ minfa;ngÞ; as l ! 0:ð1:11Þ

The third purpose of this paper is to calculate the growth order of the life span

TðlÞ of the solution to the following Cauchy problem.

qtuþ ð�DÞau ¼ up; t > 0; x A Rn;

uð0; xÞ ¼ lcðxÞ; x A Rn;

�
ð1:12Þ

where cðxÞb 0 and l > 0 is a small parameter.

Our result is stated as follows.

Theorem C. Let p�ðaÞ ¼ 1þ 2a
n
. We assume that 1

2 < a < 1. In addition, we

assume that for some constant c > 0

0acðxÞa cð1þ jxjÞ�n�2a:ð1:13Þ

(i) If 1 < p < p�ðaÞ, then

TðlÞ@ l�2aðp�1Þ=nðp�ðaÞ�pÞ; as l ! 0:ð1:14Þ

(ii) If p ¼ p�ðaÞ, then

log TðlÞ@ l�2a=n; as l ! 0:ð1:15Þ

(iii) If p�ðaÞ < p, then TðlÞ ¼ y for su‰ciently small l > 0.

If we put a ¼ 1 in (1.14), then the order of the life span coincides with that in

(1.11). In this sense, Theorem C is considered to be a generalization of the theorem

by Lee and Ni.

Our paper is organized as follows. In Section 2, we will give the asymptotic

expansion of the fundamental solution W ðaÞðt; xÞ. The key idea in this section is

to use the method of oscillatory integrals. Section 3 is devoted to prove the

positivity of W ðaÞðt; xÞ. In this section, we also prove the comparison theorem.

Then, as an application of the results in Section 2, we will show Theorem B

(regularity theorem) in Section 4. We will deal with the problem (C) (the problem

of life span) in both Section 5 and 6. In Section 5, we will give lower bounds of
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the life span, and in Section 6, we will give its upper bounds. Finally in Section 7,

we give some generalization of our results.
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2. Asymptotic Property of W ðaÞðt; xÞ

In this section, we study asymptotic properties of the fundamental solution

W ðaÞðt; xÞ of the parabolic pseudodi¤erential equation

qtuðt; xÞ þ ð�DÞauðt; xÞ ¼ 0;ð2:1Þ

with the initial data uð0; xÞ ¼ u0ðxÞ. We see easily that W ðaÞðt; xÞ is given by the

Fourier integral

W ðaÞðt; xÞ ¼ ð2pÞ�n

ð
R n

e�tjxj2aeix�x dx:ð2:2Þ

Let

wðaÞðxÞ ¼ W að1; xÞ ¼ ð2pÞ�n

ð
R n

e�jxj2aeix�x dx:ð2:3Þ

Then, we have

W ðaÞðt; xÞ ¼ t�n=2awðaÞðt�1=2axÞð2:4Þ

So, it su‰ces to calculate the asymptotic expansion of wðaÞðxÞ as jxj ! y.

The main purpose of this section is to prove the following.

Theorem 2.1.

wðaÞðxÞ@
Xy
j¼1

aj jxj�n�2ja; ðjxj ! þyÞð2:5Þ

where the constants aj ð j ¼ 1; 2; . . . ; Þ are given by

aj ¼
ð�1Þ j�122aj

j!pn=2þ1
sinðpajÞGð1þ ajÞG n

2
þ aj

� �
:ð2:6Þ
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Let

wa
e ðxÞ ¼ ð2pÞ�n

ð
Rn

eix�xe�jxj2a bweweðxÞ dx;ð2:7Þ

where

weðxÞ ¼ e�nw
x

e

� �
:ð2:8Þ

Here we take a compactly supported smooth function w on Rn such that

wðxÞ ¼ wðjxjÞ ¼ const: ðjxja 1Þ
0 ðjxjb 2Þ

�
wðxÞb 0ð

R n

wðxÞ dx ¼ 1:

ð2:9Þ

Let us rewrite wa
e using the Taylor series expansion of el ðl ¼ �jxj2aÞ as

follows.

wa
e ðxÞ ¼ ð2pÞ�n

ð
Rn

eix�x bweweðxÞ XN
j¼0

ð�1Þ j

j!
jxj2aj þ jxj2aðNþ1Þ

gNðjxj2aÞ
 !

dx;ð2:10Þ

gNðlÞ ¼
ð�1ÞNþ1

N!

ð1
0

ð1� sÞNe�ls ds:ð2:11Þ

Here N is an arbitrary fixed positive integer.

Then, we have

wa
e ðxÞ ¼

XN
j¼0

ð�1Þ j

j!
ð2pÞ�n

ð
R n

jxj2ajFy½weðyþ xÞ�ðxÞ dxþ RðNÞ
e ðxÞ;ð2:12Þ

where Fy½weðyþ xÞ� denotes the Fourier transform of weðyþ xÞ with respect to y

and where the remainder term R
ðNÞ
e is given by

RðNÞ
e ðxÞ ¼ ð2pÞ�n

ð
R n

e ix�x bweweðxÞjxj2aðNþ1Þ
gNðjxj2aÞ dxð2:13Þ

The following lemma plays an essential role in the computation of the

asymptotic expansion of wa
e .
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Lemma 2.1. Let j be a Schwartz class function on Rn which vanishes near

the origin. Then, we haveð
R n

jxjbĵjðxÞ dx ¼ Cb

ð
Rn

jxj�n�bjðxÞ dx; for b > 0;ð2:14Þ

where the above constant Cb is given by

Cb ¼ �pn=2�12nþb sin
pb

2

� �
G

2þ b

2

� �
G

nþ b

2

� �
ð2:15Þ

(For the proof, see for example Helgason [Hel] page 134, Chapter I, Section

2, Lemma 2.34.)

Let us now assume that x is away from the origin. We note that under the

above asumption, weðyþ xÞ vanishes near the origin as a function of y if 2e < jxj.
So, by the above lemma,ð

R n

jxj2ajFy½weðyþ xÞ�ðxÞ dx ¼ C2aj

ð
R n

jyj�n�2ajweðyþ xÞ dy;ð2:16Þ

where C2aj is the constant given in Lemma 2.1.

Next, let us admit the following lemma.

Lemma 2.2. The limit lime!0 R
ðNÞ
e ðxÞ exists for each xð0 0Þ. Moreover, there

exists a constant AN such that

lim
e!0

RðNÞ
e ðxÞ

���� ����aAN jxj�2aðNþ1Þþ2; for jxjg 0:ð2:17Þ

We will prove this lemma later.

If we take the limit e ! 0 in (2.12), then by making use of (2.16), we have

lim
e!0

wa
e ðxÞ ¼

XN
j¼1

ð�1Þ j

j!ð2pÞn C2aj lim
e!0

ð
R n

jyj�n�2ajweðyþ xÞ dyþ lim
e!0

RðNÞ
e ðxÞð2:18Þ

¼
XN
j¼1

ð�1Þ j

j!ð2pÞn C2ajjxj�n�2aj þ lim
e!0

RðNÞ
e ðxÞ:ð2:19Þ

In the above computation, note that the right hand side of (2.16) equals 0

if j ¼ 0. On the other hand, by (2.7), lime!0 wa
e ðxÞ ¼ wðaÞðxÞ. Therefore, by
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Lemma 2.2 we obtain

wðaÞðxÞ ¼
XN
j¼1

ð�1Þ j

j!ð2pÞn C2ajjxj�n�2aj þOðjxj�2aðNþ1Þþ2Þ; ðjxj ! þyÞ;ð2:20Þ

which proves the assertion of Theorem 2.1.

Theorem 2.1 yields the following theorem on the asymptotic expansions of

derivatives of wðaÞ.

Theorem 2.2. For each multi-index g, the derivative qg
xw

ðaÞ of wðaÞ has the

asymptotic expansion.

qg
xw

ðaÞðxÞ@
Xy
j¼1

ajq
g
xðjxj

�n�2ajÞ; ðjxj ! þyÞ:ð2:21Þ

Here aj in (2.21) is the constant given by (2.6) in Theorem 2.1.

Proof. It is easily seen from the expression (2.3) that qg
xw

ðaÞ is a bounded

function for each g. So the above theorem is proved by applying the following

lemma with respect to each variable repeatedly. r

Lemma 2.3. Let f be a C2 class function on R with the asymptotic expansion

f ðtÞ@
Xy
j¼1

ajt
m�aj ; as jtj ! y;

where a > 0 and ma 0. We assume that f 00ðtÞ is a bounded function. Then f 0ðtÞ
has the asymptotic expansion

f 0ðtÞ@
Xy
j¼1

ðm� ajÞajtm�aj�1; as jtj ! y:

The above lemma is easily verified. So we omit the proof.

Similarly as in Theorem 2.1, we can prove the following.

Theorem 2.3. For b > 0, ð�DÞbwðaÞ has the asymptotic expansion.

ð�DÞbwðaÞðxÞ@
Xy
j¼0

bjjxj�n�2aj�2b ðjxj ! þyÞ:ð2:22Þ
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Here the constant bj in (2.22) is given by

bj ¼
ð�1Þ j�122ajþ2b

j!pn=2þ1
sinðpaj þ pbÞGð1þ aj þ bÞG n

2
þ aj þ b

� �
:ð2:23Þ

Summarizing the above results, we obtain

Corollary 2.1. The fundamental solution W ðaÞðt; xÞ and its derivatives have

the following asymptotic expansions.

W ðaÞðt; xÞ@
Xy
j¼1

ajt
jjxj�n�2ja; as jxj ! þy;

qg
xW

ðaÞðt; xÞ@
Xy
j¼1

ajt
jðqg

xjxj
�n�2jaÞ; as jxj ! þy;

ð�DÞbW ðaÞðt; xÞ@
Xy
j¼0

bjt
jjxj�n�2aj�2b; ðjxj ! þyÞ;

ð2:24Þ

where the coe‰cients aj ð j ¼ 1; 2; . . . ; Þ and bj ð j ¼ 0; 1; . . . ; Þ are given respec-

tively by (2.6) and (2.23).

Corollary 2.2.

wðaÞðxÞ ¼ Oðjxj�n�2aÞ;

qxjw
ðaÞðxÞ ¼ Oðjxj�n�1�2aÞ; for j ð1a ja nÞ;

qxjqxkw
ðaÞðxÞ ¼ Oðjxj�n�2�2aÞ; for j; k ð1a j; ka nÞ;

ð�DÞbwðaÞðxÞ ¼ Oðjxj�n�2bÞ; for b > 0; as jxj ! y:

ð2:25Þ

In particular, wðaÞ, qxjw
ðaÞ, qxjqxkw

ðaÞ, and ð�DÞbwðaÞ are all integrable on Rn.

We will use this corollary to study the regularity of the solution to (1.1).

Finally, we will prove Lemma 2.2 in the rest part of this section.

Proof of Lemma 2.2. Throughout the proof, we assume that x is fixed and

away from the origin, say for example jxjb 1.

The existence of the limit lime!0 R
ðNÞ
e ðxÞ is obvious. (Take the limit e ! 0 in

both sides of (2.12).)
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Let c1 and c2 be smooth functions on Rn such that

c1ðxÞ ¼
1 ðjxja 1Þ
0 ðjxjb 2Þ;

�
0ac1ðxÞa 1;

c2ðxÞ ¼ 1� c1ðxÞ:

ð2:26Þ

Using above c1 and c2, we write R
ðNÞ
e ðxÞ as

RðNÞ
e ðxÞ ¼

ð
R n

eix�x bweweðxÞjxj2aðNþ1Þ
gNðjxj2aÞc1ðxÞ dxð2:27Þ

þ
ð
R n

eix�x bweweðxÞjxj2aðNþ1Þ
gNðjxj2aÞc2ðxÞ dx

¼ I ð1Þe ðx;NÞ þ I ð2Þe ðx;NÞ:

Step 1. First, we give the estimate of I
ð1Þ
e ðx;NÞ. Let l be the integer such

that

2la 2aðN þ 1Þ < 2l þ 2:ð2:28Þ

Then jxj2aðNþ1Þ
gNðjxj2aÞc1ðxÞ in the integrand of I

ð1Þ
e ðx;NÞ is a compactly

supported function of class C 2l . Using the equality

eix�x bweweðxÞ ¼ ð�DxÞ l
ð
R n

eiðx�yÞ�x weðyÞ
jx� yj2l

dyð2:29Þ

¼ ð�DxÞ lFy

weðxþ yÞ
jyj2l

" #
ðxÞ;

we rewrite I
ð1Þ
e ðx;NÞ as

I ð1Þe ðx;NÞ ¼
ð
R n

Fy

weðxþ yÞ
jyj2l

" #
ðxÞð�DxÞ lfjxj2aðNþ1Þ

gNðjxj2aÞc1ðxÞg dx:ð2:30Þ

Let us assume that 0 < e < 1
2 jxj, then

Fy

weðxþ yÞ
jyj2l

" #
ðxÞ

�����
�����a

ð
R n

weðxþ yÞ
jyj2l

dyð2:31Þ

! 1

jxj2l
; as e ! 0:
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So we can apply the covergence theorem of Lebesgue to I
ð1Þ
e ðx;NÞ. Therefore, the

limit lime!0 I
ð1Þ
e ðx;NÞ exists and we have

lim
e!0

I ð1Þe ðx;NÞ
���� ����a 1

jxj2l
ð
Rn

jð�DxÞ lfjxj2aðNþ1Þ
gNðjxj2aÞc1ðxÞgj dxð2:32Þ

¼ Const:
1

jxj2l
aConst:

1

jxj2aðNþ1Þ�2
:

Step 2. Next, we consider the estimate of I
ð2Þ
e ðx;NÞ. Let

fNðxÞ ¼ jxj2aðNþ1Þ
gNðjxj2aÞc2ðxÞ:ð2:33Þ

Then, since jxj2aðNþ1Þ
gNðjxj2aÞ is the N-th remainder term of the Taylor expansion

of el ðl ¼ �jxj2aÞ,

fNðxÞ ¼ e�jxj2a �
XN
j¼0

ð�1Þ j

j!
jxj2aj

( )
c2ðxÞ:ð2:34Þ

Note that c2 vanishes near the origin. So fN is a smooth function with the

following property. For each multi-index g, there exists a constant Cg such

that

jqg
xfNðxÞjaCgð1þ jxjÞ2aN�jgj; for x A Rn:ð2:35Þ

In other words, fN belongs to the symbol class S2aN
1;0 . In particular, for some

constant Cm we have

jð�DxÞmfNðxÞjaCmð1þ jxjÞ2aN�2m:ð2:36Þ

Let us take the integer m such that

�n� 3 < 2aN � 2ma�n� 1:ð2:37Þ

Then, similarly as in (2.30), we have

I ð2Þe ðx;NÞ ¼
ð
R n

Fy

weðxþ yÞ
jyj2m

" #
ðxÞð�DxÞmfNðxÞ dx:ð2:38Þ

Thus, by the same arguement as in Step 1, we see that the limit lime!0 I
ð2Þ
e ðx;NÞ

exists and
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lim
e!0

I ð2Þe ðx;NÞ
���� ����a 1

jxj2m
ð
Rn

jð�DxÞmfNðxÞj dxð2:39Þ

a
1

jxj2m
Cm

ð
R n

ð1þ jxjÞ2aN�2m
dx ¼ Const:

1

jxj2m

aConst:
1

jxj2aNþnþ1
:

Both (2.32) and (2.39) prove the assertion of Lemma 2.2.

Remark 2.1. As is well known in probability theory, the fundamental

solution W ðaÞðt; xÞ of qtuþ ð�DÞau ¼ 0 is the density of the semigroup of n-

dimensional symmetric stable process with index 2a. Moreover, its asymptotic

expansion formula is known in one dimensional case. (See Zolotarev [Zo],

Chapter 2, Section 2.5.) However, the proof depends on some probability theo-

retical argument. Therefore, it should be remarked that our asymptotic expansion

formula is given in n-dimensional case and the proof is done by the method of

Fourier analysis.

3. Positivity of W ðaÞðt; xÞ and Comparison Theorem

In this section, we will show the positivity of the fundamental solution

W ðaÞðt; xÞ of the parabolic pseudo-di¤erential equation qtuþ ð�DÞau ¼ 0. Next,

we will apply it to the comparison theorem.

We start with the definition of a completely monotone function.

Definition 3.1. A function j on ð0;yÞ is completely monotone if j is

smooth and

ð�1Þm dm

dlm jðlÞb 0; m ¼ 0; 1; 2; . . . ; l > 0:ð3:1Þ

Example.

(i) jðlÞ ¼ l�s is completely monotone if s > 0.

(ii) If c is a positive function with a completely monotone derivative, then

e�c is completely monotone. (It is easily proved by induction.)

(iii) By the above two, e�la

is completely monotone if 0 < a < 1.

(For the details of completely monotone functions, see [Fe] Chap. XIII, Section

4.)
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Surprisingly, a completely monotone function is real analytic, namely, a

smooth function on ð0;yÞ satisfying the condition (3.1) automatically becomes

real analytic on ð0;yÞ. Farthermore, such a function is written as the Laplace

transform of a probability distribution. More precisely, we have the following

theorem.

Theorem 3.1 ([Fe], Chap. XIII, Section 4, Theorem 1). A function j on

½0;yÞ is the Laplace transform of a probability distribution m, if and only if j is

completely monotone and jð0Þ ¼ 1.

Now let us prove the positivity of W ðaÞðt; xÞ.
It follows from the above example and Theorem 3.1 that if 0 < a < 1 there

exists a probability distribution m such that

e�la

¼
ðy
0

e�lrmðdrÞ:ð3:2Þ

Substituting l ¼ jxj2 in (3.2), we have

e�jxj2a ¼
ðy
0

e�rjxj2mðdrÞ:ð3:3Þ

Hence,

wðaÞðxÞ ¼ ð2pÞ�n

ð
Rn

e�jxj2aeix�x dxð3:4Þ

¼ ð2pÞ�n

ð
Rn

ðy
0

eix�xe�rjxj2mðdrÞ dx

¼
ðy
0

mðdrÞ ð2pÞ�n

ð
R n

eix�xe�rjxj2 dx

� �

¼
ðy
0

ð4prÞ�n=2
e�jxj2=4rmðdrÞ > 0:

Therefore, by the expression (3.4) combined with (2.4) we obtain the following

theorem.

Theorem 3.2.

(i) W ðaÞðt; xÞ > 0 for t > 0 and for x A Rn.

(ii) W ðaÞðt; xÞ is monotone decreasing with respect to jxj, that is, W ðaÞðt; xÞ >
W ðaÞðt; yÞ if jxj < jyj.
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By Corollary 2.2 combined with the above theorem, we have

Corollary 3.1. For each fixed t > 0, there exist positive constants C1 and

C2 such that

C1ð1þ jxjÞ�n�2a
aW ðaÞðt; xÞaC2ð1þ jxjÞ�n�2a; for x A Rn:ð3:5Þ

Remark 3.1. Nishio [N] also proves (3.5), using a potential theoretical

method. However, the estimate (3.5) itself is not su‰cient for our purpose. As we

mentioned in the introduction, we need both Corollary 3.1 and the integrability

of derivatives of W ðaÞðt; xÞ.

Next, we go into the comparison theorem.

Theorem 3.3. Let u; v A Cðð0;TÞ;H 2a
1 VH 2a

y ÞVC1ðð0;TÞ;L1ðRnÞVLyðRnÞÞ
VCð½0;TÞ;L1ðRnÞVLyðRnÞÞ be nonnegative solutions to the following equations

respectively.

qtuþ ð�DÞau ¼ f ðuÞ; uð0; xÞ ¼ u0ðxÞ;ð3:6Þ

qtvþ ð�DÞav ¼ gðvÞ; vð0; xÞ ¼ v0ðxÞ:ð3:7Þ

We assume that f and g are continuous functions on ½0;yÞ and u0; v0 A L1ðRnÞV
LyðRnÞ. In addition, we assume that g is monotone increasing and satisfies the

following condition. For any M > 0, there exists a constant CM such that

sup
0au; vaM

gðuÞ � gðvÞ
u� v

aCMð3:8Þ

Then we have

(i) If u0ðxÞa v0ðxÞ for x A Rn and f ðuÞa gðuÞ for ub 0, then uðt; xÞa
vðt; xÞ for ðt; xÞ A ½0;TÞ � Rn.

(ii) Conversely, if u0ðxÞb v0ðxÞ for x A Rn and f ðuÞb gðuÞ for ub 0, then

uðt; xÞb vðt; xÞ for ðt; xÞ A ½0;TÞ � Rn.

Proof. We prove only (i) of the statement. By (3.6), (3.7), and the as-

sumption that f ðuÞa gðuÞ, we have

qtðv� uÞ þ ð�DÞaðv� uÞ ¼ gðvÞ � f ðuÞð3:9Þ

¼ gðvÞ � gðuÞ þ gðuÞ � f ðuÞ

b gðvÞ � gðuÞ:
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Let w ¼ v� u and w0 ¼ v0 � u0. Moreover let

Gðt; xÞ ¼
gðvðt;xÞÞ�gðuðt;xÞÞ

vðt;xÞ�uðt;xÞ ; if vðt; xÞ0 uðt; xÞ
0; if vðt; xÞ ¼ uðt; xÞ

(
:ð3:10Þ

Then by (3.9), Theorem 3.2 (i), and the assumption that w0 ¼ v0 � u0 b 0, we

have

wðt; xÞbW ðaÞðt; �Þ � w0ðxÞð3:11Þ

þ
ð t
0

ð
R n

W ðaÞðt� s; x� yÞ gðvðs; yÞÞ � gðuðs; yÞÞf g dyds

b

ð t
0

ð
Rn

W ðaÞðt� s; x� yÞGðs; yÞwðs; yÞ dyds

Let us fix any T0 ð0 < T0 < TÞ and let

M ¼ maxfsup0ataT0
kuðt; �ÞkLy ; sup0ataT0

kvðt; �ÞkLyg:ð3:12Þ

Then, by (3.8),

0aGðt; xÞaCM ; for ðt; xÞ A ½0;T0� � Rn:ð3:13Þ

Now we introduce a linear operator S : Lyð½0;T0� � RnÞ ! Lyð½0;T0� � RnÞ as

follows.

ðSfÞðt; xÞ ¼
ð t
0

ð
Rn

W ðaÞðt� s; x� yÞGðs; yÞfðs; yÞ dyds;ð3:14Þ

for f A Lyð½0;T0� � RnÞ:

We see easily by induction that

jðSNfÞðt; xÞja CN
M

N!
tNkfkLyð½0;T0��R nÞ; N ¼ 1; 2; 3; . . . :ð3:15Þ

Hence

kSNka ðCMT0ÞN

N!
! 0; as N ! y:ð3:16Þ

Since W ðaÞðt; xÞ > 0 (Theorem 3.2) and Gðt; xÞb 0, S maps a nonnegative func-

tion to a nonnegative function. So if fðt; xÞb ðSfÞðt; xÞ, then

fðt; xÞb ðSfÞðt; xÞb ðS2fÞðt; xÞb � � �b ðSNfÞðt; xÞ:ð3:17Þ
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Let N ! y. Then, by (3.16) we obtain fðt; xÞb 0. Here note that inequality

(3.11) means that wðt; xÞb ðSwÞðt; xÞ. Therefore, the above argument can be

applied to f ¼ w, which proves that wðt; xÞ ¼ vðt; xÞ � uðt; xÞb 0. r

Remark 3.2. Usually the comparison theorem for nonlinear parabolic

di¤erential equation is proved by the maximum principle of the corresponding

linear parabolic di¤erential equation. (See Protter and Weinberger [PW].)

However, such a method can no longer be applied to this case, due to the fact

that ð�DÞa is not a local operator.

4. Existence of Local Solutions

We begin with the integral equation arising from (1.1).

uðt; xÞ ¼
ð
Rn

W ðaÞðt; x� yÞu0ðyÞ dyþ
ð t
0

ð
R n

W ðaÞðt� s; x� yÞuðs; yÞp dyds;ð4:1Þ

where W ðaÞðt; xÞ is the fundamental soluton to the linear equation qtuþ ð�DÞau
¼ 0.

By contraction argument, we can prove the following.

Theorem 4.1. Assume that u0ðxÞb 0 and that u0 A L1ðRnÞVLyðRnÞ. If

T > 0 is su‰ciently small, then the integral equation (4.1) has a unique nonnegative

solution u A Cð½0;TÞ;L1ðRnÞVLyðRnÞÞ.

The problem is to prove that the above solution u of the integral equation

(4.1) satisfies the parabolic pseudo-di¤erential equation (1.1).

The di‰culty lies in the fact that ð�DÞa is no longer a local operator. In

addition, the regularizing e¤ect of ð�DÞa becomes weak if a is small.

Therfore, we need to consider the meaning of a solution to (1.1) rigorously.

In this paper, we study the existence of a solution to (1.1) in the framework of

L1ðRnÞVLyðRnÞ. So we define a solution of (1.1) by the following.

Definition 4.1. u A Cð½0;TÞ;L1ðRnÞVLyðRnÞÞ is called a strong solution

of the semilinear parabolic pseudo-di¤erential equation (1.1) in ½0;TÞ � Rn if u

satisfies the following conditions.

(i) u A Cðð0;TÞ;H 2a
1 VH 2a

y Þ.
(ii) u A C1ðð0;TÞ;L1ðRnÞVLyðRnÞÞ.
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(iii) As an equality in L1ðRnÞVLyðRnÞÞ, u satisfies the equation

qtuþ ð�DÞau ¼ up:ð4:2Þ

(iv) limt!þ0 uðt; �Þ ¼ u0 in L1ðRnÞVLyðRnÞ.
From now on, we assume that 1

2 < a < 1.

First, let us consider the regularity of u with respect to x.

Lemma 4.1. (1) We assume that u A Cð½0;TÞ;L1ðRnÞVLyðRnÞÞ. Let

Fuðt; xÞ ¼
ð t
0

ð
R n

W ðaÞðt� s; x� yÞuðs; yÞp dydsð4:3Þ

¼
ð t
0

ð
R n

ðt� sÞ�n=2a
wðaÞððt� sÞ�1=2aðx� yÞÞuðs; yÞp dyds;

where wðaÞ is the function given by (2.3). Then, for each t A ½0;TÞ, Fuðt; �Þ A
C1ðRnÞ. Moreover, qxj ðFuÞ A Cð½0;TÞ;L1ðRnÞVLyðRnÞÞ, ð1a ja nÞ.

(2) In addition to the assumption in (1), we assume that uðt; �Þ A C 1ðRnÞ
for each t A ð0;TÞ and that qxj u A Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ ð1a ja nÞ. Then,
Fuðt; �Þ A C2ðRnÞ for each t A ð0;TÞ, and qxjqxk ðFuÞ A Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ,
ð1a j; ka nÞ.

Proof. By a straightforward computation, we have

qxj ðFuÞðt; xÞ ¼
ð t
0

ð
R n

ðt� sÞ�1=2aðqxjwðaÞÞðzÞuðs; x� ðt� sÞ1=2azÞp dzds:ð4:4Þ

So, by Corollary 2.2 and the assumption that 1
2 < a < 1,

kqxj ðFuÞðt; �ÞkLyðR nÞ a kqxjwðaÞkL1ðR nÞkukLyðR nÞ �
ð t
0

ðt� sÞ�1=2a
ds < þy:ð4:5Þ

Similarly we have

kqxj ðFuÞðt; �ÞkL1ðRnÞ a kqxjwðaÞkL1ðR nÞkukL1ðR nÞ �
ð t
0

ðt� sÞ�1=2a
ds < þy:ð4:6Þ

The above two inequalities prove the assertion of (1).

If u satisfies the assumptions in (2), so does up. Therefore, by integral by

parts with respect to x, we have
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qxjqxk ðFuÞðt; xÞð4:7Þ

¼
ðt=2
0

ð
R n

ðqxjqxkW ðaÞÞðt� s; x� yÞuðs; yÞp dyds

þ
ð t
t=2

ð
Rn

ðt� sÞ�1=2aðqxjwðaÞÞðzÞqxkfuðs; x� ððt� sÞ1=2azÞgp
dzds:

In the integrand of the first term of L.H.S. of (4.7), ðqxjqxkW ðaÞÞðt� s; x� yÞ
is integrable with respect to ðs; yÞ A

�
0; t2
�
� Rn due to Corollary 2.1 and

Corollary 2.2. Moreover, in the integrand of the second term of L.H.S. of (4.7),

qxkfuðs; x� ððt� sÞ1=2azÞgp is bounded and integrable with respect to x A Rn for

each s A
�
t
2 ; t
�
due to the assertion of (1). Therefore, it follows from (4.7) that

qxjqxk ðFuÞ A Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ. r

Proposition 4.1. Let u A Cð½0;TÞ;L1ðRnÞVLyðRnÞÞ be the solution of the

integral equation (4.1) in ½0;TÞ � Rn. Then, for each t A ð0;TÞ, uðt; �Þ A C2ðRnÞ.
Moreover, qxj u; qxjqxku A Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ for 1a j; ka n.

Proof. Using (4.3) and (2.4), we rewrite integral equation (4.1) as

uðt; xÞ ¼ W ðaÞðt; �Þ � u0ðxÞ þFuðt; xÞ:ð4:8Þ

Obviously, W ðaÞðt; �Þ � u0 A Cyðð0;TÞ � RnÞ and qxjW
ðaÞðt; �Þ � u0; qxjqxkW ðaÞðt; �Þ �

u0 A Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ. On the other hand, by Lemma 4.2 (1), Fuðt; �Þ
A C1ðRnÞ, and qxj ðFuÞ A Cð½0;TÞ;L1ðRnÞVLyðRnÞÞ, ð1a ja nÞ. Therefore, by

equation (4.8), uðt; �Þ A C1ðRnÞ for t A ð0;TÞ, and qxj u A Cðð0;TÞ;L1ðRnÞV
LyðRnÞÞ. Then, we can apply Proposition 4.1 (2) to u. Thus, the assertion of the

Proposition is proved. r

The above proposition yields the following.

Proposition 4.2. Let u A Cð½0;TÞ;L1ðRnÞVLyðRnÞÞ be the solution of the

integral equation (4.1) in ½0;TÞ � Rn. Then, ð�DÞauðt; �Þ A L1ðRnÞVLyðRnÞ, for

t A ð0;TÞ.

Proof. Proposition 4.1 shows that u A Cðð0;TÞ;H 2
1 ðRnÞVH 2

yðRnÞÞ. Thus,

ð1� DÞu A Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ. As is well known, the operator

ð�DÞað1� DÞ�1 is well defined as a bounded operator on LqðRnÞ, (1a qay).
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This fact is easily checked by the argument of Fourier multipliers. (See for

example Bergh and Löfström [BL], Chapter 6, Theorem 6.2.3.)

Therefore, ð�DÞau ¼ ð�DÞað1� DÞ�1ð1� DÞu A Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ.
r

Now we will show that u satisfies the parabolic pseudo-di¤erential equation

(1.1). We start with the di¤erence quotient of Fu.

1

h
fFuðtþ h; xÞ �Fuðt; xÞg ¼ 1

h

ð tþh

t

ð
R n

W ðaÞðtþ h� s; x� yÞuðs; yÞp dydsð4:9Þ

þ 1

h

ð t
0

ð
R n

fW ðaÞðtþ h� s; x� yÞ

�W ðaÞðt� s; x� yÞguðs; yÞp dyds

ðwe putÞ ¼ IðhÞ þ JðhÞ:

Without loss of generality, we may assume that h > 0 when we let h ! 0 in the

above equality. By the mean value theorem, there exists s A ðt; tþ hÞ depending

on h and z such thatð tþh

t

uðs; xþ ðtþ h� sÞ1=2azÞp ds ¼ huðs; xþ ðtþ h� sÞ1=2azÞp:ð4:10Þ

Then, we see easily that

IðhÞ ¼ 1

h

ð tþh

t

ð
R n

wðaÞðzÞuðs; xþ ðtþ h� sÞ1=2azÞ dzdsð4:11Þ

¼ 1

h

ð
R n

wðaÞðzÞ
ð tþh

t

uðs; xþ ðtþ h� sÞ1=2azÞp ds
� �

dz

¼
ð
R n

wðaÞðzÞuðs; xþ ðtþ h� sÞ1=2azÞp dz

!
ð
R n

wðaÞðzÞuðt; xÞp dz ¼ uðt; xÞp;

as h ! 0; in Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ:

Next, for � > 0, let

J ð�ÞðhÞ ¼ 1

h

ð t��

0

ð
R n

fW ðaÞðtþ h� s; x� yÞð4:12Þ

�W ðaÞðt� s; x� yÞguðs; yÞp dyds:
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We note that ðqtW ðaÞÞðtþ h� s; x� yÞ ¼ �ðð�DÞaW ðaÞÞðtþ h� s; x� yÞ is

bounded and integrable with respect to ðs; yÞ A ½0; t� �� � Rn. So we have

J ð�ÞðhÞ ¼
ð t��

0

ð
R n

ð1
0

ðqtW ðaÞÞðtþ ht� s; x� yÞuðs; yÞp dtdydsð4:13Þ

¼ �
ð t��

0

ð
R n

ð1
0

ðð�DÞaW ðaÞÞðtþ ht� s; x� yÞuðs; yÞp dtdyds

¼ �ð�DÞa
ð1
0

ð t��

0

ð
R n

W ðaÞðtþ ht� s; x� yÞuðs; yÞp dydsdt:

We put

Fðh; �Þuðt; xÞ ¼
ð1
0

ð t��

0

ð
R n

W ðaÞðtþ ht� s; x� yÞuðs; yÞp dydsdt:ð4:14Þ

Taking account of Lemma 4.1, we see that

Fðh; �Þuðt; xÞ �!�!0
Fðh;0Þuðt; xÞð4:15Þ

¼
ð1
0

ð t
0

ð
Rn

W ðaÞðtþ ht� s; x� yÞuðs; yÞp dydsdt;

in Cðð0;TÞ;H 2
1 ðRnÞVH 2

yðRnÞÞ:

As we explained bebore, ð�DÞa ¼ ð�DÞað1� DÞ�1ð1� DÞ is a bounded operator

from H 2
1 ðRnÞVH 2

yðRnÞ to L1ðRnÞVLyðRnÞ. So we have

J ð�ÞðhÞ ¼ �ð�DÞaFðh; �Þu �!�!0 �ð�DÞaFðh;0Þuð4:16Þ

in Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ:

On the other hand, obviously J ð�ÞðhÞ ! JðhÞ as � ! 0 in Cðð0;TÞ;L1ðRnÞV
LyðRnÞÞ. Thus,

JðhÞ ¼ �ð�DÞaFðh;0Þuðt; xÞð4:17Þ

¼ �ð�DÞa
ð1
0

ð t
0

ð
R n

W ðaÞðtþ ht� s; x� yÞuðs; yÞp dydsdt:

Moreover, we have

lim
h!0

Fðh;0Þuðt; xÞ ¼ Fuðt; xÞ; in Cðð0;TÞ;H 2
1 ðRnÞVH 2

yðRnÞÞ:ð4:18Þ
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Therefore, we have

lim
h!0

JðhÞ ¼ lim
h!0

�ð�DÞaFðh;0Þuðt; xÞð4:19Þ

¼ �ð�DÞaFuðt; xÞ; in Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ:

Therefore, by (4.9), (4.11) and (4.19),

lim
h!0

1

h
fFuðtþ h; xÞ �Fuðt; xÞgð4:20Þ

¼ lim
h!0

IðhÞ þ lim
h!0

JðhÞ

¼ uðt; xÞp � ð�DÞaFuðt; xÞ; in Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ:

Since u is a solution to the integral equation (4.8), we have

lim
h!0

1

h
fuðtþ h; xÞ � uðt; xÞgð4:21Þ

¼ qtW
ðaÞðt; �Þ � u0ðxÞ þ lim

h!0

1

h
fFuðtþ h; xÞ �Fuðt; xÞg

¼ �ð�DÞaW ðaÞðt; �Þ � u0ðxÞ þ uðt; xÞp � ð�DÞaFuðt; xÞ

ðby ð4:8ÞÞ ¼ �ð�DÞafW ðaÞðt; �Þ � u0ðxÞ þFuðt; xÞg þ uðt; xÞp

¼ �ð�DÞauðt; xÞ þ uðt; xÞp:

In the above equality, the limit exists in the topology of Cðð0;TÞ;L1ðRnÞV
LyðRnÞÞ. We note that in these limiting procedures IðhÞ; JðhÞ A Cðð0;T � hÞ � RnÞ
and IðhÞ ! up, JðhÞ ! �ð�DÞaFu respectively as h ! 0 in the topology of

Cðð0;T0Þ;L1ðRnÞVLyðRnÞÞ for any T0 < T . Thus Fu and u are di¤erentiable

with respect to t A ð0;TÞ and qtu; qtFu A Cðð0;TÞ � RnÞ. Moreover, for the same

reason, we see that ð�DÞaFu and ð�DÞau also belong to Cðð0;TÞ � RnÞ.
Summarizing the above argument, we obtain the following.

Theorem 4.2. We assume that 1
2 < a < 1. Let u A Cð½0;TÞ;L1ðRnÞVLyðRnÞÞ

satisfy the integral equation (4.1) in ½0;TÞ � Rn. Then, the following (i), (ii), and

(iii) hold.

(i) u is of class C1 in t A ð0;TÞ and of class C2 in x A Rn. Moreover,

u A Cðð0;TÞ;H 2
1 ðRnÞVH 2

yðRnÞÞVC 1ðð0;TÞ;L1ðRnÞVLyðRnÞÞ.
(ii) ð�DÞau A Cðð0;TÞ � RnÞ and ð�DÞau A Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ.
(iii) u is a unique strong solution of (1.1) in the sense of Definition 4.1.
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Theorem B in the introduction is a direct consequence of the above theorem.

Remark 4.1. In this paper, we do not discuss the case 0 < aa 1
2 . For a

technical reason, our method employed in this section cannot be applied in this

case. Moreover, it seems that the solution of the integral equation (4.1) no longer

becomes a strong solution in the sense of Definition 4.1.

5. Existence of Global Solutions and Lower Bounds of the Life Span

The purposes of this section are twofold, the first one is to prove the ex-

istence of global solutions to (1.1) for su‰ciently small data in the case p�ðaÞ ¼
1þ 2a

n
< p, and the second one is to give lower bounds of the life span in the case

1 < pa p�ðaÞ.
As we mentioned in the introduction, we assume the following condition on

the initial data u0.

0a u0ðxÞa d0ð1þ jxjÞ�n�2a; where d0 > 0:ðAÞ

Due to Corollary 3.1, the condition (A) is equivalent to

0a u0ðxÞa c0W
ðaÞðt; xÞ; where c0; t > 0:ðA 0Þ

For 0 < T ay, we define a Banach space VT by the space of all measurable

functions v on ½0;TÞ � Rn satisfying

kvkVT
¼def ess:supðt;xÞ A ½0;TÞ�R n

jvðt; xÞj
rðt; xÞ < þy;ð5:1Þ

where

rðt; xÞ ¼ W ðaÞð1þ t; xÞ:ð5:2Þ

Moreover, we define a subset Vþ
T of VT by

Vþ
T ¼ fv A VT ; vðt; xÞb 0; for ðt; xÞ A ½0;TÞ � Rngð5:3Þ

The following lemma is important for both global existence theorem and

lower bounds of the life span.

Lemma 5.1. Let F be the operator defined by (4.3).

(i) There exists a constant C independent of T such that

0a ðFrÞðt; xÞaCrðt; xÞ
ðT
0

ð1þ sÞ�nðp�1Þ=2a
dsð5:4Þ
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(ii) Assume that 1 < pa p�ðaÞ. Let l > 0. If 0a vðt; xÞa lrðt; xÞ for ðt; xÞ A
½0;TÞ � Rn, then we have the estimate

0a ðFvÞðt; xÞa ClpT 1�nðp�1Þ=2arðt; xÞ; in the case 1 < p < p�ðaÞ;
Clp logð1þ TÞrðt; xÞ; in the case p ¼ p�ðaÞ;

�
ð5:5Þ

for ðt; xÞ A ½0;TÞ � Rn. Here the constant C does not depend on T .

(iii) Assume that p�ðaÞ < p. Let l > 0. If 0a vðt; xÞa lrðt; xÞ for ðt; xÞ A
½0;yÞ � Rn, then we have the estimate

0a ðFvÞðt; xÞaClprðt; xÞ:ð5:6Þ

In particular, Fr A Vþ
y .

Proof.

rðt; xÞp ¼ W ðaÞð1þ t; xÞp�1
W ðaÞð1þ t; xÞð5:7Þ

¼ fð1þ tÞ�n=2a
wðaÞðð1þ tÞ�1=2a

xÞgp�1
W ðaÞð1þ t; xÞ

aCð1þ tÞ�nð p�1Þ=2a
W ðaÞð1þ t; xÞ;

where C ¼ ð2pÞ�n

ð
R n

e�jxj2a dx

� �p�1

:

Thus, we have

0a ðFrÞðt; xÞ ¼
ð t
0

ð
Rn

W ðaÞðt� s; x� yÞrðs; yÞp dydsð5:8Þ

aC

ð t
0

ð1þ sÞ�nðp�1Þ=2a

�
ð
R n

W ðaÞðt� s; x� yÞW ðaÞð1þ s; yÞ dyds

ðby semigroup propertyÞ ¼ C

ð t
0

ð1þ sÞ�nðp�1Þ=2a
ds�W ðaÞð1þ t; xÞ:

The above inequality proves (i).

The assertions (ii) and (iii) follow easily from (i). r

Existence of global solutions.

Let us first consider the global existence of the solutions to (1.1) for suf-

ficiently small data.
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The method is similar to that of Fujita [Fu]. So we are brief.

Due to Lemma 5.1, we have

Lemma 5.2. (i) If v A Vþ
y , then Fv A Vþ

y . Moreover, we have

kFvkVy
aCkvkp

Vy
:ð5:9Þ

(ii) Let v1; v2 A Vþ
y . If kv1kVy

aM and kv2kVy
aM, then we have

kFv1 �Fv2kVy
aCpMp�1kv1 � v2kVy

;ð5:10Þ

In (i) and (ii), C is the constant given in (iii) of Lemma 5.1.

Let us take d0 such that

0 < d0 aC�1=ðp�1Þ2�p=ðp�1Þ; Cpð2d0Þp�1
a

1

2
:ð5:11Þ

For the above d0, we take a closed convex set Bþð2d0Þ in Vy as follows.

Bþð2d0Þ ¼ fv A Vy j kvkVy
a 2d0; vb 0gð5:12Þ

We define a mapping C : Vy ! Vy by

ðCvÞðt; xÞ ¼ W ðaÞðt; �Þ � u0ðxÞ þ ðFvÞðt; xÞð5:13Þ

¼
ð
R n

W ðaÞðt; x� yÞu0ðyÞ dy

þ
ð t
0

ð
R n

W ðaÞðt� s; x� yÞvðs; yÞp dyds

Due to the assumption (A) on u0, C : Vy ! Vy is well-defined. Then, by

Lemma 5.2 and the definition of d0 we have

Lemma 5.3. If u0 satisfies

0a u0ðxÞa d0W
ðaÞð1; xÞ;ð5:14Þ

then

(i) CðBþð2d0ÞÞHBþð2d0Þ.
(ii) For v1; v2 A Bþð2d0ÞÞ,

kCv1 �Cv2kVy
a

1

2
kv1 � v2kVy

:ð5:15Þ

244 Tomoyuki Kakehi and Kensuke Sakai



The above lemma means that C : Bþð2d0Þ ! Bþð2d0Þ is a contraction

mapping. Therefore, by the fixed point theorem, there exists u A Bþð2d0Þ such

that Cu ¼ u. In other words, this u satisfies the integral equation (4.1). So, by

Theorem 4.2, this u solves the equation (1.1) in ð0;yÞ � Rn. Thus we obtain

Theorem 5.1. Assume that p�ðaÞ ¼ 1þ 2a
n
< p and that 1

2 < a < 1. Then, in

the sense of Definition 4.1, there exists a global in time strong solution to the

semilinear parabolic pseudo-di¤erential equation (1.1) with the initial data u0

satisfying the condition (A) for su‰ciently small d0 > 0.

Lower bounds of the life span.

In this subsection, we will give lower bounds of the life span of the solution

to the following Cauchy problem under the assumption that 1
2 < a < 1 and

1 < pa p�ðaÞ ¼ 1þ 2a
n
.

qtuþ ð�DÞau ¼ up; t A ð0;TÞ; x A Rn;

uð0; xÞ ¼ lcðxÞ; x A Rn;

�
ð5:16Þ

Here we assume that c2 0 satisfies the condition (A).

Let TðlÞ be the life span of the solution to (5.16), that is,

TðlÞ ¼ supfT > 0; the strong solution of ð5:16Þ exists in ð0;TÞ � Rng:ð5:17Þ

It is easily seen by Theorem 4.2 that TðlÞ coincides with the life span of the

L1 VLy-solution to the integral equation arising from (5.16).

The purpose of this subsection is to prove the following proposition.

Proposition 5.1. Assume that 1 < pa p�ðaÞ ¼ 1þ 2a
n
. Then there exists a

costant C > 0 such that for su‰ciently small l > 0

Cl�2aðp�1Þ=nðp�ðaÞ�pÞ
aTðlÞ; in the case 1 < p < p�ðaÞ;ð5:18Þ

Cl�2a=n
a log TðlÞ; in the case p ¼ p�ðaÞ:ð5:19Þ

Proof. Similarly as in Lemma 5.2, we have

Lemma 5.4. Assume that 1 < pa p�ðaÞ and 1 < T < y.

(i) Let v A Vþ
T . Then Fv A Vþ

T . Moreover, if kvkVT
a l, then

kFvkVT
a

ClpT 1�nðp�1Þ=2a in the case 1 < p < p�ðaÞ
Clp log T in the case p ¼ p�ðaÞ

�
ð5:20Þ
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(ii) Let v1; v2 A Vþ
T . If kv1kVT

a l and kv2kVT
a l, then we have

kFv1 �Fv2kVT
aCplp�1kv1 � v2kVT

ð5:21Þ

� T 1�nðp�1Þ=2a; in the case 1 < p < p�ðaÞ;
log T ; in the case p ¼ p�ðaÞ:

�
In (i) and (ii), the constant C does not depend on either l or T .

Since c satisfies the assumption (A), we have

0aW ðaÞðt; �Þ � cðxÞa c0W
ðaÞðt; �Þ �W ðaÞð1; �ÞðxÞð5:22Þ

¼ c0W
ðaÞðtþ 1; xÞ ¼ c0rðt; xÞ;

for some positive costant c0. Namely we have kW ðaÞðt; �Þ � ckVT
a c0.

For the above constant c0 and a parameter l > 0, we define a convex subset

Bþð2c0l;TÞ of VT by

Bþð2c0l;TÞ :¼ fv A Vþ
T ; kvkVT

a 2c0lg:ð5:23Þ

Next, for a positive constant m0, let us take T ¼ T�ðlÞ such that

Clp�1T 1�nð p�1Þ=2a ¼ m0; in the case 1 < p < p�ðaÞ:
Clp�1 log T ¼ m0; in the case p ¼ p�ðaÞ:

�
ð5:24Þ

Here in the above equalities C is the same constant as in Lemma 5.4. The above

contant m0 will be determined later.

We now define a mapping Cl : V
þ
T ! Vþ

T by

ðClvÞðt; xÞ ¼ lW ðaÞðt; �Þ � cðxÞ þ ðFvÞðt; xÞð5:25Þ

¼ l

ð
Rn

W ðaÞðt; x� yÞcðyÞ dy

þ
ð t
0

ð
Rn

W ðaÞðt� s; x� yÞvðs; yÞp dyds

Then by Lemma 5.4, (i) and (5.24), if v A Bþð2c0l;TÞ

kClvkVT
a c0lþ ð2c0Þpm0l:ð5:26Þ

Moreover, if v1; v2 A Bþð2c0l;TÞ, then

kClv1 �Clv2kVT
a pð2c0Þp�1

m0kv1 � v2kVT
:ð5:27Þ
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So let us choose a positive constant m0 such that

ð2c0Þpm0 a c0; pð2c0Þp�1m0 a
1

2
:ð5:28Þ

Taking (5.26), (5.27), and (5.28) into account we see that

v A Bþð2c0l;TÞ ) Cv A Bþð2c0l;TÞ;

v1; v2 A Bþð2c0l;TÞ ) kClv1 �Clv2kVT
a

1

2
kv1 � v2kVT

:
ð5:29Þ

(5.29) shows that Cl : B
þð2c0l;TÞ ! Bþð2c0l;TÞ is a contraction mapping.

Therefore, by the fixed point theorem, there exists an element u A Bþð2c0l;TÞ
such that Clu ¼ u. By Theorem 4.2, this u solves the Cauchy problem (5.16).

Summarizing the above argument, we have the following.

Take a positive constant m0 such that (5.28) holds. Next, take T ¼ T�ðlÞ such
that (5.24) holds for the above m0. Then there exists the solution u to the Cauchy

problem (5.16) in ð0;TÞ � Rn. It follows from (5.24) that the above T ¼ T�ðlÞ
satisfies

T�ðlÞ ¼ m
f1�nðp�1Þ=2ag�1

0 C1�nð p�1Þ=2al�2aðp�1Þ=nðp�ðaÞ�pÞ;

in the case 1 < p < p�ðaÞ;

log T�ðlÞ ¼ m0C
�1l�2a=n; in the case p ¼ p�ðaÞ;

ð5:30Þ

which proves the assertion of Proposition 5.1. r

6. Upper Bounds of the Life Span

In this section, we give upper bounds of the life span of the solution to (1.11)

with nontrivial initial data.

We start with the integral equation arising from (1.11).

uðt; xÞ ¼ lW ðaÞðt; �Þ � cðxÞ þ
ð t
0

ð
R n

W ðaÞðt� s; x� yÞuðs; yÞp dyds:ð6:1Þ

For the solution ul of (6.1), let

FlðtÞ ¼
ð
R n

W ðaÞðt; xÞulðt; xÞ dxð6:2Þ

Then, our first objective is to estimate the blowup time of FlðtÞ.
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Here we note that without loss of generality we may assume that

cðxÞb c0W
ðaÞð1; xÞ;ð6:3Þ

for some constant c0 > 0. In fact, we have the following lemma.

Lemma 6.1. Assume that the intial data u0 of (1.1) is nonzero, that is,

u0ðxÞb 0, and u0 2 0. For each t0 > 0, the solution u to (1.1) satisfies

uðt0; xÞb c0W
ðaÞðt0; xÞ;ð6:4Þ

for some costant c0 > 0.

(This lemma is easily seen, so we omit the proof.)

As the first step, we will prove the following.

Lemma 6.2.

FlðtÞb lc0W
ðaÞð1; 0Þð2tþ 1Þ�n=2a þ ð2tÞ�n=2a

ð t
0

sn=2aFlðsÞp ds:ð6:5Þ

Proof. Multiply both sides of (6.1) by W ðaÞðt; xÞ and integrate with respect

to x. Then we have

FlðtÞ ¼ l

ð
Rn

ð
Rn

W ðaÞðt; xÞW ðaÞðt; x� yÞcðyÞ dxdyð6:6Þ

þ
ð t
0

ð
Rn

ð
Rn

W ðaÞðt; xÞW ðaÞðt� s; x� yÞulðs; yÞp dxdyds:

Using the semigroup propertyð
R n

W ðaÞðt; xÞW ðaÞðt; x� yÞ dx ¼ W ðaÞð2t; yÞ;ð6:7Þ

we have

The first term of RHS of ð6:6Þ ¼ l

ð
R n

W ðaÞð2t; yÞcðyÞ dyð6:8Þ

ðby ð6:3ÞÞb lc0

ð
Rn

W ðaÞð2t; yÞW ðaÞð1; yÞ dy

ðby semigroup propertyÞ ¼ lc0W
ðaÞð2tþ 1; 0Þ

¼ lc0W
ðaÞð1; 0Þð2tþ 1Þ�n=2a:
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Similarly we have

The second term of RHS of ð6:6Þð6:9Þ

¼
ð t
0

ð
R n

W ðaÞð2t� s; yÞulðs; yÞp dyds

b

ð t
0

ð
R n

W ðaÞð2t; yÞulðs; yÞp dyds

b

ð t
0

ð
R n

2t

s

� ��n=2a

W ðaÞðs; yÞulðs; yÞp dyds

b ð2tÞ�n=2a

ð t
0

sn=2aFlðsÞp ds: r

Let

GlðtÞ ¼ tn=2aFlðtÞ:ð6:10Þ

Then Lemma 6.2 yields the following.

Lemma 6.3.

GlðtÞb c1lþ 2�n=2a

ð t
1

sðn=2aÞð1�pÞGlðsÞp ds; for tb 1;ð6:11Þ

where c1 ¼ 3�n=2ac0W
ðaÞð1; 0Þ.

Let HlðtÞ be the solution to the integral equation

HlðtÞ ¼ c1lþ 2�n=2a

ð t
1

sðn=2aÞð1�pÞHlðsÞp ds; for tb 1:ð6:12Þ

By comparison theorem, we have

GlðtÞbHlðtÞ for tb 1:ð6:13Þ

Therefore,

FlðtÞ ¼ t�n=2aGlðtÞb t�n=2aHlðtÞ for tb 1:ð6:14Þ

On the other hand, HlðtÞ is given explicitely as follows.
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HlðtÞ ¼ fc1�p
1 l1�p � ðp� 1Þ2�n=2aApðtÞg�1=ðp�1Þ;

Here ApðtÞ ¼
1

1� n
2að p�1Þ ft

1�ðn=2aÞðp�1Þ � 1g; ð1 < p < p�ðaÞ ¼ 1þ 2a
n
Þ

log t; ðp ¼ p�ðaÞ ¼ 1þ 2a
n
Þ:

(ð6:15Þ

Obviously HlðtÞ blows up in finite time. Thus by (6.14) FlðtÞ also blows up in

finite time. Let TF ðlÞ and THðlÞ be the blowup time of Fl and Hl respectively.

Again by (6.14), TF ðlÞaTHðlÞ. Here by (6.15)

THðlÞ ¼ ðlp�1 þ c2Þl�2aðp�1Þ=nðp�ðaÞ�pÞ; in the case 1 < p < p�ðaÞ;

where c2 ¼
	
1� nð p�1Þ

2a



c
1�p
1

ðp� 1Þ2�n=2a

log THðlÞ ¼ c2l
�n=2a; in the case p ¼ p�ðaÞ;

where c2 ¼
c
1�p
1

ðp� 1Þ2�n=2a
:

ð6:16Þ

Therefore, we obtain

Proposition 6.1. FlðtÞ blows up in finite time. In addition, the blowup time

TF ðlÞ of FlðtÞ is estimated as follows.

TF ðlÞaCl�2aðp�1Þ=nðp�ðaÞ�pÞ; in the case 1 < p < p�ðaÞ;ð6:17Þ

log TF ðlÞaCl�n=2a; in the case p ¼ p�ðaÞ;ð6:18Þ

where C is a constant depending only on n, p, and a.

The next objective is to estimate the blowup time of ul using TF ðlÞ.
Let x ¼ 0 in the integral equation (6.1) and apply Jensen’s inequality. Then

ulðt; 0Þb
ð t
0

ð
R n

W ðaÞðt� s; yÞulðs; yÞp dydsð6:19Þ

b

ð t
0

ð
R n

W ðaÞðt� s; yÞulðs; yÞ dy
� �p

ds

b

ð ð1=2Þt
ð1=4Þt

ð
R n

W ðaÞðt� s; yÞulðs; yÞ dy
� �p

ds:
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If 1
4 ta sa 1

2 t, then
��	 s

t�s


1=2a
y
��a jyj and 1

3 a
s

t�s
. Thus by Theorem 3.2 (ii), we

have

W ðaÞðt� s; yÞ ¼ s

t� s

� �n=2a
W ðaÞ s;

s

t� s

� �1=2a
y

 !
ð6:20Þ

b 3�n=2aW ðaÞðs; yÞ:

By making use of the above two inequalities, we obtain

ulðt; 0Þb 3�np=2a

ð ð1=2Þt
ð1=4Þt

ð
R n

W ðaÞðs; yÞulðs; yÞ dy
� �p

dsð6:21Þ

¼ 3�np=2a

ð ð1=2Þt
ð1=4Þt

FlðsÞp ds:

If 1
2 t ! TF ðlÞ � 0, then by Proposition 6.1 the RHS of inequality (6.21) (and thus

the LHS of (6.21)) blow up. Here we note that the life span TðlÞ of ul is nothing

but the blowup time of ul. Therefore, we have

Proposition 6.2. ul blows up in finite time. Moreover, TðlÞa 2TF ðlÞ.

Combining Proposition 5.1, Proposition 6.1, and Proposition 6.2, we obtain

Theorem C in the introduction, namely,

Theorem 6.1. There exist constants C1;C2 > 0 such that for su‰ciently small

l > 0

C1l
�2aðp�1Þ=nðp�ðaÞ�pÞ

aTðlÞaC2l
�2aðp�1Þ=nðp�ðaÞ�pÞ;ð6:22Þ

in the case 1 < p < p�ðaÞ;

C1l
�n=2a

a log TðlÞaC2l
�n=2a; in the case p ¼ p�ðaÞ:ð6:23Þ

7. Some Generalization

In this section, we deal with a semilinear parablic pseudo-di¤erential equation

with a more generalized nonlinear term. Let us consider the following Cauchy

problem.

qtuþ ð�DÞau ¼ gðuÞ; t A ð0;yÞ; x A Rn;

uð0; xÞ ¼ u0ðxÞb 0; x A Rn;

�
ð7:1Þ

where g is a real valued function.
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Then, by the same argument as in Section 4, we have the following.

Theorem 7.1. If we assume the condition

(H1): g A C1ð½0;yÞÞ.
In addition, we assume that u0 A L1 VLy. Then, (7.1) has a unique strong

solution u in ½0;TÞ � Rn for some T > 0 in the following sense.

(i) u is of class C 1 with respect to t A ð0;TÞ and of class C2 with respect to

x A Rn. Moreover, u A Cðð0;TÞ;H 2
1 ðRnÞVH 2

yðRnÞÞVC1ðð0;TÞ;L1ðRnÞV
LyðRnÞÞ

(ii) ð�DÞau A Cðð0;TÞ � RnÞ and ð�DÞau A Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ.
(iii) u satisfies the semilinear parabolic pseudo-di¤erential equation

qtuþ ð�DÞau ¼ gðuÞ;

as an equality in Cðð0;TÞ;L1ðRnÞVLyðRnÞÞ.

Next, let us consider the problem of life span. Let Tðl; g;cÞ be the life span

of the strong solution to the following Cauchy problem.

qtuþ ð�DÞau ¼ gðuÞ; t A ð0;yÞ; x A Rn;

uð0; xÞ ¼ lcðxÞ; x A Rn;

�
ð7:2Þ

where cðxÞ is a function which satisfies the condition (A) in Section 5.

Here in addition to (H1), we assume the following two conditions (H2) and

(H3) on g.

(H2): g 0ðuÞb 0 for u A ½0;yÞ.
(H3): There exist constants C1;C2 > 0 and p > 1 such that C1u

p a gðuÞa
C2u

p for u A ½0;yÞ.
Then, we can apply the comparison theorem (Theorem 3.3) to (7.2). Thus we

have

Tðl;C2u
p;cÞaTðl; g;cÞaTðl;C1u

p;cÞ:ð7:3Þ

Therefore, by Theorem C, we obtain

Theorem 7.2. (i) If 1 < p < p�ðaÞ ¼ 1þ 2a
n
, then

Tðl; g;cÞ@ l�2aðp�1Þ=nðp�ðaÞ�pÞ; as l ! 0:ð7:4Þ

(ii) If p ¼ p�ðaÞ ¼ 1þ 2a
n
, then

log Tðl; g;cÞ@ l�2a=n; as l ! 0:ð7:5Þ
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