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QUANTIFIER ELIMINATION FOR LEXICOGRAPHIC
PRODUCTS OF ORDERED ABELIAN GROUPS

By

Shingo IBUKaA, Hirotaka Kikyo, and Hiroshi TANAKA

Abstract. Let L,, = {+, —, 0} be the language of the abelian groups,
L an expansion of L,s(<) by relations and constants, and Lmoq =
LagU{=,},-, where each =, is defined as follows: x =, y if and
only if n|x — y. Let H be a structure for L such that H | L,,(<) is a
totally ordered abelian group and K a totally ordered abelian group.
We consider a product interpretation of H x K with a new predicate
I for {0} x K defined by N. Suzuki [9].
Suppose that H admits quantifier elimination in L.
1. If K is a Presburger arithmetic with smallest positive element
lx then the product interpretation G of H x K with a new
predicate I admits quantifier elimination in L(/,1)U Lpq
with 1¢ = (07 1x).
2. If K is dense regular and K/nK is finite for every integer
n > 2 then the product interpretation G of H x K with a new
predicate I admits quantifier elimination in L(Z, D) U Ly for
some set D of constant symbols where G | I(d) for each
deD.
3. If K admits quantifier elimination in Ly.q(<, D) for some set
D of constant symbols then the product interpretation G of
H x K with a new predicate / admits quantifier elimination
in L(I,D)U Ly unless K is dense regular with K/nK being
infinite for some 7.
Conversely, if the product interpretation G of H x K with a new
predicate I admits quantifier elimination in L(/, D) U Lyoq for some
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set D of constant symbols such that G | I(d) for each d € D then
H admits quantifier elimination in LU L4, and K admits quantifier
elimination in Lye(<, D).

We also discuss the axiomatization of the theory of the product
interpretation of H x K.

Introduction

Throughout the paper, “ordered abelian group’ will stand for “totally or-
dered abelian group”.

Komori [7] and Weispfenning [12] had shown that the direct product Z x Q
equipped with the lexicographic ordering admits quantifier elimination in a
language expanding the language of the ordered abelian groups {+,—,0,<}.
Here, Z is a Presburger arithmetic (the ordered abelian group of the integers),
and Q a divisible ordered abelian group (the ordered abelian group of rational
numbers). They also gave a concrete axiomatization (recursive axiomatization)
for the theory of Z x Q. Weispfenning [12] extensively studied quantifier elim-
ination in the language

{+7 _aoa <} U {Ell;}isk,n<w U {Ii}isk

where the I; for i < k represent convex subgroups such that I, 2, 1 2---2 )
and each =! is a binary relation defined by x = y < 3z(L;(z) An|(x — y — 2)).
Suzuki [9] has defined a product interpretation of H x K in the language L(I)
equipped with the lexicographic ordering where H is an L-structure for a lan-
guage L expanding {+, —,0, <} by adding relation symbols and constant symbols
such that the reduct of H to {+,—,0,<} is an ordered abelian group, K is also
an ordered abelian group, and I is interpreted as the set {0} x K. He has shown
that if H admits quantifier elimination in L and K is a divisible ordered abelian
group then the product interpretation of H x K admits quantifier elimination
in the language L(I). Moreover, the theory of H x K is determined by the theory
of H and it is recursively axiomatizable if the theory of H is. Tanaka and
Yokoyama [11] gave another proof. We will show a similar result when K is a
Presburger arithmetic or a dense regular abelian group instead of a divisible
ordered abelian group. We also show a similar result when K is an ordered
abelian group which admits quantifier elimination in Lyeq(<, D) for some set D of
constant symbols. In the case that H admits quantifier elimination in Lyeq(<, C)
for some set C of constant symbols, our results follow from Weispfenning’s
results [12, 13]. But we believe that our proof is simpler. Choose an ordered
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abelian group Hj, and let H be an expansion of H, by relations and constants
which admits quantifier elimination. If the form of the language of H is different
from Lyoq(<,C) for any set of constant symbols C, then we get a new example
of product interpretation of H x K which admits quantifier elimination.

Tanaka and Yokoyama have shown that if H=H' and K=K’ in ap-
propriate languages then H x K = H' x K'. Let us denote the theory of a
structure M by Th(M). We present an axiomatization of Th(H x K) depending
on Th(H) and Th(K). Furthermore, if Th(H) and Th(K) are recursively axi-
omatizable then so is Th(H x K).

1. Preliminaries

We follow the notation of Hodges’ book [5] in general. Throughout the
paper, we use the symbols “+7, “—="  “0”, “<” and “I”, where “+” is a binary

L]

function symbol, “—"" a unary function symbol, “0” a constant symbol, “<” a
binary relation symbol, and “/”’ a unary relation symbol. Let L,, = {4+, —,0}. If
L is a language, s1,52,...,5, are new symbols and C is a set of new constant
symbols, then L(sy,ss,...,5,, C) denotes the language LU {s;,s,,...,s,} UC, and
L(sy,$2,...,5,) denotes the language LU {sy,ss,...,s,}. We say that L' is an
expansion of L by relations and constants if L' can be obtained by adding relation
symbols and constant symbols to L.

If L is a language and M is an L-structure, dom(M) denotes the domain
or the universe of M, s™ denotes the interpretation of s in M for each symbol s
of L. We often omit “dom” from “dom(M)”. Hence, “x e M” will stand for
“x edom(M)”. For a map f and a subset X of the domain of f, f|X denotes
the restriction of f to X. If M is an L-structure and X = M, M|X is a structure
with domain X such that RMX = RM N X" for each n-ary relation symbol R of
L, fMX = £M|xn for each n-ary function symbol f of L, and ¢¥X =M for
each constant symbol ¢ of L if ¢ € X. Note that /¥ might be a partial map

on X in general, and ¢™1¥

might be non-existing. M|X is an L-substructure of M
if fMX is a total function from X" to X for every function symbol f of L, and
c¢M e X for every constant symbol ¢ of L (i.e., M|X is an L-structure). Let M
be an L-structure and M’ an expansion of M to a language L'. M’ is called a
definitional expansion of M if every non-logical symbol of L’ is definable in M’

by an L-formula.

If f is a function and a@ = (ay,...,a,) is a tuple of elements a,...,a, from
the domain of f, f(a) denotes the tuple (f(a1),...,f(an)). If a=(ai,...,a,) and
b is an element, a"h denotes the tuple (ay,...,a,,b) and b°a denotes the tuple

(baala"'aan)'
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If L is a language and M is an L-structure, we also call M a structure for
L. If two structures are eclementarily equivalent as L-structures, we also say
that the two structures are elementarily equivalent for L. If y = (y1,...,y,) is a
tuple of variables, VYyp(y) stands for Yy;---Vy,e(y1,...,y,). To dispense with
parentheses in formulas, we follow the following hierarchy of precedences for
logical operators and quantifiers. — has higher precedence than any other logical
operators, A has higher precedence than v, v has higher precedence than — and
—, and the quantifiers V and 3 have lower precedence than any logical operators.
For example, the formula

Vx,y xX>=1*Ax#y—x=—yAx#0
stands for
(Vx(¥9(% = ¥ Ax £ ¥) = (x = =y Ax £ 0)))).

When we write s < ¢, sometimes we allow s to be —oo and ¢ to be co. We
consider —oo < ¢ and s < oo to be formulas that are always true. For example,
s < x <t with s=—o0 stands for x < ¢, s < x <t with t = oo stands for s < x,
and s < x <t with s = —c0 and ¢ = oo stands for a formula that is always true.

DerFINITION 1.1.  An L-structure M admits quantifier elimination if for any
formula ¢(y) of L with a tuple of free variables y, there is a quantifier-free
formula (y) of L such that

MEYY o(y) < ¥()).

A theory T in L admits quantifier elimination if for any formula ¢(y) of L with a
tuple of free variables y, there is a quantifier-free formula (5) of L such that

TEYy () < w(p).

We often consider a definitional expansion M’ of M to some extended language
L’. When the defining L-formulas of all the new symbols of L’ is given, any L-
structure can naturally be expanded to an L’-structure. We say that M admits
quantifier elimination in L' if the definitional expansion M’ of M to L’ admits
quantifier elimination. In the case that L” is a sublanguage of L’, we also say that
M admits quantifier elimination in L" if M’'|L" admits quantifier elimination.

For the basic definitions and facts on (ordered) abelian groups, we refer the
reader to [3] and [4]. Nevertheless, we will review some definitions and facts.
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For a set X, idy denotes the identity map on X. For a term ¢ of L, 0-¢
denotes 0, 1-¢ denotes ¢, 2-¢ denotes ¢+ ¢, 3-¢ denotes ¢+ ¢+ ¢, and so on. In
this way, m - t is defined for any non-negative integer m. For any negative integer
m, m -t denotes the term —(|m| - ¢). We sometimes write m¢ for m - ¢t when there
will be no confusion. Let Lyog = Loy U{=, : n = 2} where each =, is a binary
relation defined by x =, y< 3z (x — y = nz). Any abelian group can be con-
sidered as an Lyeg-structure with this definition. For a natural number n, n|x
denotes the formula 3z (x = nz).

DEerFINITION 1.2 (Abelian Group). An L,g-structure A is called an abelian
group if
AEYVYx,y,z (x+y)+z=x+(y+2),

AEVx,y,z x+0=04+x=x,
AEVYx,y,z x+(—x)=(—x)+x=0, and
AEVx,y X+y=y+x

If an L,g-structure A is an abelian group, L,e-substructure of A4 is called a
subgroup of A. If B is a subgroup of an abelian group and ae 4, a+ B =
{a+x:x€e B} is called a coset of B in A. A coset of B which is different from
B is called a proper coset of B. For an abelian group 4, let nd = {nx: xe A} for
an integer n.

DerFINITION 1.3, Suppose an Lgg-structure A is an abelian group. A sub-
group B of A is called pure if for any positive integer n and for any b € B,
A E Ix (nx =b) implies B = 3x (nx =b). If B is a pure subgroup of 4, then B
1S an Ly.q-substructure of A.

A subgroup B of an abelian group is called divisible if nB = B for every
positive integer n. An abelian group A is called forsion-free if A EVx (x #0 —
nx # 0) for every integer n > 0. Suppose A4 is an abelian group and B and C are
subgroups of A. If A={b+c:be B, ce C}and BNC = {0} then we call 4 the
direct sum (or the internal direct sum) of B and C and write A = B® C. In this
case, B is called a direct summand of A. C is also a direct summand of A. Every
direct summand of an abelian group is a pure subgroup.

Fact 1.4. Let A be an abelian group and B its subgroup. B is a direct
summand of A if and only if there is a group homomorphism n: A — B such that
T | B = ldB
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DerFINITION 1.5 (Direct Product). Suppose Lgg-structures B and C are
abelian groups. Let 4 be an L,g-structure with dom(A4) = dom(B) x dom(C) (a
product set) such that 04 = (08,0°), (x1, y1) +4 (x2, 2) = (x1 +8 x2, y1 +S 12),
and —4(x,y) = (—=Bx,—Cy). 4 is called the direct product (or external direct sum)
of B and C. Let B' = {(h,0°):bedom(B)} and C’ = {(08,¢): cedom(C)}.
A|B’ and A|C’ are subgroups of A and are isomorphic to B and C respectively as
groups (Lgg-structures). 4 is the (internal) direct sum of A|B’ and A4|C’.

Fact 1.6. Let A be a torsion-free abelian group. Any equation nx = a with
neZ and a € A has at most one solution in A. Intersections of pure subgroups of A
are again pure in A. For every subset S of A, there exists a minimal pure subgroup
containing S. This subgroup is called the pure subgroup generated by S.

The following fact is Theorem 38.1 together with Exercise 4 and 5 on p. 162
in [4]. Eklof and Fisher called an abelian group wi-equationally compact if it
satisfies condition (5) of this fact, and pointed out this equivalence [2]. By an
equation over A, we mean a formula of the form 7 = a with a term ¢ of L,, (with
variables) and a € 4. Note that any term of L,, can be considered as a Z-linear
combination of variables in abelian groups.

Fact 1.7. The following conditions on an abelian group A are equivalent:

(1) If B is a pure subgroup of C, C/B is countable, and f : B — A is a group
homomorphism, then there is a group homomorphism g : C — A such that
g|B=f.

(2) A is pure-injective: If B is a pure subgroup of C, and f: B — A a group
homomorphism, then there is a group homomorphism g : C — A such that
g|B=f.

(3) A4 is algebraically compact: If A is a pure subgroup of C then A is a direct
summand of C.

(4) If every finite subsystem of a system of equations over A has a solution in
A, then the whole system is solvable in A.

(5) If every finite subsystem of a countable system of equations over A has a
solution in A, then the whole system is solvable in A.

Fact 1.8. Let A be a torsion-free abelian group. Then for any positive
integers m, n,

(1) A 'va,y X =p Y & MX =y My,

(2) AEVYX,y x=,y — mx =, my, and

(3) AEVYXI, X2, V1,02 X1 S VIAX) =, Y2 — X1+ X2 =, 01 + 12
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The following lemma seems to be well-known but we could not find it in the
literature. It is essentially due to Presburger [8].

LemMA 1.9.  Suppose G is a torsion-free abelian group. Let t,(¥),...,t,(y) be
terms of L,g with tuple y of variables, and I, ..., 1, positive integers. Then we can
effectively find (by a recursive procedure) a quantifier-free formula 0(y) of Lmod
such that

Gy (ﬂlA xzz,»z,-@))w(y).

Proor. First, we prove a claim.

CLamM 1. Let | and m be any positive integers and let d be the greatest
common divisor of | and m. Since 1/d and m/d are relatively prime integers, we
can choose integers u, v such that ul/d +vm/d = 1. Then

GEVX, 3,2 (Y=Y AXZn2) o (x Spya (om]d)y + (ul/d)z A y — 2 =, 0).

Let x,y,z€ G be arbitrary. Suppose GEx=;y and G E x =,z Then
Gk (m/d)x =4 (m/d)y and G| (I/d)x =4 (I/d)z. Hence, G| (vm/d)x
=/a (vm/d)y and G | (ul/d)x =4 (ul/d)z. By adding terms on each side, we
have G | x =4 (vm/d)y + (ul/d)z.

Also, since G E/|x—y, GEm|x—z, and d|/, m, we have G = d|x — y and
GEd|x—z and thus GEd|y—z

Conversely, suppose that G |= x =4 (vm/d)y + (ul/d)z and G = y — z =40.
Choose w e G such that G | y —z =dw. Then in G,

X Zpya (vm/d)y + (ul/d)z
= (vm/d +ul/d)y + (ul/d)(z — y)
=1-y—ulw
= y.

Hence, G = x =;y. Similarly, G E x =, z. The claim is proved.

We prove the statement of the lemma by induction on the number n of
conjuncts in the scope of “Ix”.

If n =1, then we can always choose such x. Therefore, we can choose 0 = 0
for 6(p).
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If n>2, by Claim 1, we have

GEVY <3x_ N x=, [i()_})> = 1(y) —(y) =a0A3x

i=l,...,n

x =0 (h/d)0 () + Wh/d)(F) A\ x =, 6(P)
i=3,...,n
where d is the greatest common divisor of /; and /, and v, u are integers such
that ul/; + vl, = d. Note that /;/d and /d are integers.
By induction hypothesis, we can effectively eliminate “3x” from the sub-
formula

Ix x =4 (h/d)ti(P) + (ul/d)2(F) A 4 N x=,4(9). [

Quantifier elimination is known for abelian groups by Szmielew [10]. A
shorter proof can be found in a Ziegler’s paper [14].

Fact 1.10 (Szmielew). Any abelian group admits quantifier elimination in
Lm0d~

DEFINITION 1.11 (Ordered Abelian Group). An L,.(<)-structure 4 is called

4 is a total order on

an ordered abelian group if A|L,, is an abelian group, <
dom(4), and

AEVx,y,z x<y—ox+z<y+z

If an L,g(<)-structure A4 is an ordered abelian group and B is a subgroup of
A|Lyg, then the L,4(<)-substructure of 4 with domain dom(B) is also an ordered
abelian group.

Suppose an L,e(<)-structure 4 is an ordered abelian group. A subset B of 4
is called convex if for any a,be B and for any xe 4, A = a < x < b implies
x € B. A convex subgroup of A is a subgroup of 4 whose domain is a convex
subset of 4. A subset B of A is called dense if for any a,b € A4, there is an element
x € B such that 4 Ea < x < b. A dense subgroup of A is a subgroup of A whose
domain is a dense subset of A.

If an L,g(<)-structure A is an ordered abelian group then A|L,s is a torsion-
free abelian group, and any convex subgroup of A is a pure subgroup of A.

The ordered abelian groups which admit quantifier elimination in Lpeq(<)
together with some set of constant symbols have been classified by Weispfenning
[13].
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DEerFINITION 1.12.  An ordered abelian group G is dense regular if it satisfies
the following equivalent conditions:
(1) For any integer n > 2,

GEV,z 0<y—3Ix (0<x<yAx=,z).

(2) For any prime p, pG is dense in G.
(3) G is elementarily equivalent to a dense subgroup of the real numbers R
(a dense Archimedean group).

RemARK 1.13. Suppose # is an integer > 2. Then for any ordered abelian
group G,
GEVYy,zdx y<xAx=,z.

ProoF. Let y,ze G be arbitrary. If y <z then the statement holds with
x =z If y =z choose a positive element ¢ in G. Then the statement holds with
x=z+nd If z< y, then 0 < y—z. Then y —z <n(y — z) since n > 2. There-
fore, y <z+4n(y —z) =, z. The statement holds with x =z +n(y — z). O

Lemma 1.14. Let n be an integer > 2. For an ordered abelian group G, the
following are equivalent:

(1) GEVYh,c 0<b—3x (0<x<bAx=,0).

(2) GEVa,b,c 0<a<b—3x (a<x<bArx=,c).

(3) GEVYa,b,c a<b—3Ix (a<x<bax=,c).

Proor. We work in G.

(3) = (1) is immediate.

(1) = (2). Let a,b,c € G be arbitrary with 0 < a < b. By (1), we can choose
xo € G such that 0 <xp <b—a and xp =,c. Again by (1), we can choose
X1 € G such that 0 < x; < xp and x; =, a. Let x = a — x; + x¢. Since a — x; =, 0,
X =, X9 =, c¢. On the other hand, 0 < x; < xg < b — a implies 0 < xop — x; < b — a.
Hence, a < a+ xo — x; < b.

(2) = (3). Let a,b,ce G be arbitrary with a<b. If 0 <b then 0 <a<b
or a <0< b. In either cases, we can choose desired x by (2). If » <0, then
0<-b<—a By (2), we can choose x' € G such that —b < x' < —a and

x" = —¢ (mod n). Hence, a < —x’ < b and —x’' = ¢ (mod n). O

The additive group of rational numbers Q is dense regular. There are many
dense regular groups. Let p be a prime number, and let F, be the prime field
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of characteristic p. For any abelian group G, G/pG is a F,-vector space. Let
B,(G) = dimg, G/pG. B,(G) is called a Szmielew invariant. Note that G/nG is
finite for every positive integer n if and only if $,(G) is finite for every prime
number p.

Fact 1.15 (Zakon). For any function f from the set of prime numbers to
wU{w}, there is a dense regular group G such that B,(G) = f(p) for any prime
number p. Here w is the first infinite ordinal number.

Proor. We present a construction by Weispfenning [12]. Let {r,,: p is
a prime, n < w} be a set of linearly independent real numbers over Q. Let
Z,={a/beQ:b#0 (mod p)}, and

G=P D Z,-rpn

p:prime n<f(p)

Then G is a dense subgroup of the additive group of the real number field and
B,(G) = f(p) for every prime p. ]

Fact 1.16 (Weispfenning). Let G be an ordered abelian group, and D a pure
subgroup of G. Consider each element of D as a constant symbol. Then G admits
quantifier elimination in Lyod(<, D) if and only if

(1) G is dense regular or

(2) there exists a finite sequence {Gi}o_;.,, of convex subgroups of G and a

sequence {(ki,d;)},_;-,, such that

(1) G, =G;

(il) for 1 <i<m, k; is a positive integer, d; € D, d; € G; — G;_1, G;/Gi—
is a Z-group with smallest positive element 1,4+ G;_1, k;-1; —d; €
Gi-1;

(ili) Go is dense regular, and for every prime p, f,(Go) is finite and every
coset of pGy in Gy has a representative in D.

The following is a corollary to this fact.

Fact 1.17 (Weispfenning). Let G be an ordered abelian group.

(1) G admits quantifier elimination in Lynoa(<) if and only if G is dense
regular.

(2) Let d be an element of G. G admits quantifier elimination in Lyoa(<,d) if
and only if G is dense regular, or there exists a divisible convex subgroup
Go of G and an integer k # 0 such that G/ Gy is a Z-group with smallest
positive element 1+ Gy and k-1 —d € Gy.
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2. Product Interpretations

DerFINITION 2.1 (Lexicographic Product). Let L,4(<)-structures B and C be
ordered abelian groups. An L,q(<)-structure A4 is called the lexicographic product
of B and C if A|L,, is the direct product of abelian groups B|L,, and C|L,s, and
for any x, y e A with x = (xp,x¢), y = (¥, yc), A Ex < y if and only if

B|:xB<yB or
BExp=yp and C[E x¢c < yc.

Now, we will introduce the notion of product interpretation for the direct
product of two ordered abelian groups. The definition was given in [9] and [11].
The following is a slightly generalized one.

DermNiTION 2.2 (Extended Product Interpretation). Let L be an expansion
of L, (<) by predicates and constants, and D a set of constant symbols such
that DNL = . Suppose that H is an L-structure such that H|L,(<) is an
ordered abelian group, K an L,(<,D)-structure such that K|L,(<) is an
ordered abelian group. Let / be a new unary relation symbol which does not
appear in L. A structure G for L(I, D) is called an extended product interpretation
of H x K with new predicate I, if

1. G|Ly(<) is a lexicographic product of H |Lae(<) and K| L,y (<),

2. for each constant symbol ¢ € L, there is an element ¢x € K such that

= (cf ck), and ! =l implies ¢ = c{ for any constant symbols

c
cl,c €L,

3. (%1, 1), (Xn, yn)) € RE if and only if (x1,...,x,) € RY for each re-

lation symbol R of L —{<},

4. 19 ={(07 x): xe K}, and

5. d% = (0" ,dX) for each constant symbol d € D.

Note that K = G |19 as Lmeq(<, D)-structures. An extended product inter-
pretation of H x K is not unique because of condition 2. If ¢¢ = (¢#,0%) for
each constant symbol ¢ € L, then G is called the product interpretation of H x K
with new predicate I [9, 11].

Lemmas 2.3 and 2.8 below are essentially proved by Tanaka and Yokoyama
[11].

Lemma 2.3. Let L be an expansion of L, (<) by predicates and constants,
and D a set of constant symbols such that DN L = (&. Suppose that H is an
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L-structure such that H | L., (<) is an ordered abelian group, K an Lmeq(<,D)-
structure such that K |L.g(<) is an ordered abelian group, and G an extended
product interpretation of H x K with a new predicate 1. If ¢(X) is a quantifier-free
formula of L with an n-tuple X of variables, there is a quantifier-free formula
¢*(X) of L(I) such that for any tuple g = (g1,...,9,) € G" with g; = (i u, 9i, k) for
i=1occn, HEo(Gy) if and only if G &= ¢*(q), where Gy = (911 dn.n)-

Proor. Let ¢(X) be a quantifier-free formula of L with a tuple X of n
variables. Then ¢(X) is a Boolean combination of formulas of forms #(x) =0,
0 < #(x), and R(s;(X),...,s(X)), where (%), 51(X),...,s/(X) are terms of L and
R is an [-ary relation symbol of L.

Let §=(g1,...,9,) be an arbitrary tuple from G with g; = (g; u,¢i k) for
i=1,...,n, and let gy = (91,1, gn,u) and Jx = (g1, Gn,K)-

We can write #(X) = #;(X) + t2(¢) where #,(X) is a term of L., #(Z) a term
of L,, with a p-tuple Z of variables, and ¢ = (ci,...,c,) a tuple of constant
symbols of L. Choose ¢; x € K such that ¢% = (¢!, ¢; k) for i=1,...,p and let

ek = (cL&; -+ ¢p.k). Then 19(g) = (¢"(gy), tf (gx) + 15 (¢k)). Hence,
HE1(gy) =0« GE1(«(g)), and
HEO0<1(gy) < GEO0<u(g)AmI(1(g)).
Similarly, we have
H = R(s1(Gg), - 51(9r)) & G = R(s1(9), - - -, 51(7))-

Let ¢*(X) be the formula obtained from ¢(X) by replacing #(¥) =0 and
0 < #(x) with I(¢#(x)) and 0 < #(X) A—I(2(X)), respectively. Then H [ ¢(gy) if
and only if G E ¢*(g). O

DerFiNITION 2.4 (Unnested atomic formula). Let L be a language. By an
unnested atomic formula ¢(X) where X is a tuple of variables, we mean an atomic
formula of one of the following forms:

u=v;
c=v for some constant symbol ¢ of L;
f(z) =y for some function symbol f of L;
R(2) for some relation symbol R of L.

Here, u, v, y are variables from X, and Z a tuple of variables from X.
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DeriniTION 2.5 (Partial isomorphism). Let 4 and B be structures for a
language L. A partial map f from A4 to B is called a partial L-isomorphism if
for any tuple a from the domain of f and for any unnested formula ¢(x) of L
with a tuple X of free variables such that the length of X is equal to the length
of a,

A 9(a) < B o(f(a)

Note that since ¥ = v is an unnested formula, a partial L-isomorphism is a one-
to-one map.

We are going to define 4 ~ B, which is defined in [5], p. 102. We define it in
a different way, but they are equivalent essentially by [5], Lemma 3.3.1.

DerFmNITION 2.6. Let A and B be structures for a language L, @ a tuple from
A, and b a tuple from B. Suppose that @ and b have the same length. For any
integer k > 0, we define (4,a) ~ (B, b) for L by induction on k as the following:

(A,a@) ~ (B,b) for L if there is a partial L-isomorphism f from 4 to B such
that f(a) = b.

Suppose k > 0. (A4,a) ~ (B,b) for L if for every element ¢ of A there is an
element d of B such that (4,a"c) ~4_1 (B,b"d) for L, and for every element d of
B there is an element ¢ of 4 such that (4,a"c) ~;_ (B,b'd) for L.

For k> 1, A~ B for L if (A,( )) ~(B,( )) for L where () is the empty
tuple.

The following is Corollary 3.3.3 in [5].

Facrt 2.7 (Fraissé-Hintikka). Let A and B be structures for a finite language
L. Then the following are equivalent:

(1) A= B for L.

(2) A=y B for L for every integer k > 1.

LemmA 2.8.  Let L be an expansion of L,s(<) by predicates and constants and
I a new unary predicate. Suppose that H = H' for L, and K = K' for Las(<,D)
for some set D of new constant symbols. Then the following hold.
(1) The product interpretations H x K and H' x K’ with new predicate I are
elementarily equivalent.
(2) If G is an extended product interpretation of H x K with new predicate I,
G’ is an extended product interpretation of H' x K' with new predicate I,
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and for each constant symbol ¢ in L there is a constant symbol d. € DU {0}
such that ¢© = (cf,dX) and ¢ = ("', dX"), then G= G’ for the lan-
guage L(I,D).

Proor. It is enough to prove (2). Let G and G’ be as above. We only
have to show that G = G’ for any finite sublanguage L’ of L(I,D) such that
L. (<,I) = L'. We can assume that for any constant symbol c € LN L', there is a
constant symbol d € (DN L')U{0} such that ¢ = (¢¥,d¥) and ¢%" = (¢!, dX").

Cram 1. Let aq;eH, a.eH', bje K and bl eK' for i=1,...,m with
m > 0. For any integer k >0, if (H,(a1,as,...,an)) =~k (H',(a],a),...,a,,)) for
LNL" and (K, (bi,by,...,by)) =i (H',(b1,b},...,b))) for La(<,D)NL' then
(G, (91,925 9m)) =k (G, (91,95, ---,9,,)) for L' where g; = (a;,b;) and g} =
(al,bl) for i=1,...,m.

We prove the claim by induction on k.

Suppose k = 0. Assume m > 0. By the assumption, there is a partial (LN L')-
isomorphism f; from H to H’ such that fi(a;) =a) for i=1,...,m, and there
is a partial (Lae(<,D)NL’)-isomorphism f, from K to K’ such that f,(b;) =b]
for i=1,...,m. Let f be a partial map from G to G’ defined by f(g;) =
f((ai, b)) = (a],b]) = (fi(ai), fo(b;)) =g} for i =1,...,m. It is straightforward to
prove that f is well-defined and it is a partial L’-isomorphism. We show that f
is a partial CU{I}-isomorphism where C is the set of constant symbols of
LNL'. The remaining cases can be treated similarly.

If GE1(g;) then a; = 07 since g; = (a;,b;). We have f(g;) = f((07,b))) =
(f1(01), f(b))) = (07", b!). Hence, G' = I(f(g:)). By symmetry, G = I(g;) if and
only if G’ E1(f(g;)). Therefore, f is a partial {I}-isomorphism.

Suppose G [ g; = ¢ for a constant symbol ¢ e LNL'. Then g; = (c?,dX) for
some d.e DNL'. We have f(g)) = f((c",dX)) = (fi(c"), f(dX)) = ("', dX).
Hence, G' = f(g;) = ¢. By symmetry, G = ¢; = c if and only if G' = f(g;) = c.
Therefore, f is a partial C-isomorphism.

Now, we turn to the induction step. Suppose k> 0. We are going to
show that (G, (g1,92,---,9m)) =k (G',(91,95,---,g),)) for L’. By symmetry, it
is enough to show that for any g, €G, there is g, , € G such that
(G, (91,92 - Gms Gm+1)) Ri—1 (G, (91,935 - s Gy g;/n-H)) for L'.

Let gpt1 = (@mi1,bms1) € G be arbitrary. Since

(H,(a1,az,...,am)) ~r (H', (a],d5,...,a))

0 m



Quantifier elimination for lexicographic products 109

for LNL" and a1 € H, we can choose a,,,; € H' such that
(H,(ay,az,...,am,am1)) =1 (H', (a}, a5, ... ,a,,,a,,.,))
for LNL'. Also, since
(K, (b1,ba,...,by)) =k (K', (b1, D5,...,D)))

for L, (<,D)NL', we can choose b, , € K' such that

»Ymy Ym+1

)
( b17b27---7bm;bm+l)) k-1 (Hl7(b{7béa bl b/ ))
)

for L, (<,D)NL'". Let g, = (ay,.,b,,. ). Then by the induction hypothesis,

m+l7 m+1
(Gv (glnga s 7gmagm+1)) Rk-1 (G/7 (g;agév cee 79,/,1,g,,,1+]))

for L’. We have proved the claim.

Now we turn to the proof of the lemma. Let k£ > 1 be any integer. Since
H=H'for LNL" and K = K’ for L. (<,D)NL', we have H ~; H' for LNL'
and K =~ K’ for L,(<,D)NL" by Fact 2.7. Hence, G x; G’ for L’ by Claim 1.
Since G =~ G’ for L’ for any integer k > 1, G = G’ for L' by Fact 2.7. O

LEMMA 2.9. If G is an ordered abelian group, A a convex subgroup of G, B a
subgroup of G, and G=B® A as an abelian group, then G is isomorphic to the
lexicographic product of B and A.

PrROOF. Assume b+ a < b’ +da’ with b,b' € B and a,a’ € A.

Suppose b < b’ is not the case. Then b>5" and we have 0 <b—b' <
a'—ae A. Hence, b — b’ € A by convexity of 4 and thus b —b" € AN B = {0}.
Hence, b =b' and a < d'. O

ProposITION 2.10 (Theory of an Extended Product Interpretation). Let L be
an expansion of Lag(<) by predicates and constants, and H a structure for L such
that H | Lag(<) is an ordered abelian group, and K an L,,(<, D)-structure for some
set D of constant symbols such that K| L,s(<) is an ordered abelian group. Let G
be an extended product interpretation of H x K with a new predicate 1. Suppose
that for each constant symbol ¢ € L, there is a constant symbol d. € D such that
¢ = (c,dK). Then M = G for L(I1,D) if and only if M satisfies the following
axioms:

1. M| La(<) is an ordered abelian group;

2. IM js a convex subgroup;

3. IM = K for Ly(<,D);
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4. for each relation symbol R of L — {<}, truth value of R is fixed modulo I,
ie., if R has the arity m,

M EYX, . X1,y Vm
I(y1>/\"'/\1(ym) - (R(x1>-~~axm> — R(xl —)/1,---7Xm—ym));

5. M/IM = H for L;
6. for each term t(yi,...,¥n) of Lag and a tuple (ci,...,c,) of constant
symbols of L,

MEt(cg—dy,...;cn—d,) #0— I(t(c; —deyy. .. en—de,))
and for each positive integer n,
MEVYx Ix)an|x+tlci—dy,...,cn—d,,)
—n|lxan|tici —dey,...,cn —dp,).

Note that assuming condition 4, M /I™ can naturally be considered as an L-
structure.

In particular, if the theory of H in L and the theory of K in L.s(<,D) are
recursively axiomatizable and the function mapping each constant symbol ¢ of L
to a constant symbol d. of D is a recursive function, then the theory of G in L(I,D)
is recursively axiomatizable.

Proor. It is straitforward to check that G satisfies the axioms 1-6.

Let M be any model of the axioms 1-6. To show that M = G for L(I, D),
we can replace M by an elementary extension of M. So, we can assume that M
is w;-saturated. Let us denote the L,g(<, D)-substructure of M with domain I
by IM also. Let C be the set of constant symbols of L and P the pure sub-
group of M generated by {(¢ —d.)" : ¢e C}. Then PNIM = {0} and P@® I is
a pure subgroup of M by Axiom 6. Therefore, there is a group homomorphism
g from P@®IM to I such that ¢g|I™ =id and g(x) =0 for every xe P.
Since M is wi-saturated, /™ satisfies condition (5) of Fact 1.7 (w;-equationally
compact). Hence, I™ is pure-injective by Fact 1.7. Therefore, we can extend
g to a homomorphism ¢’ : M — I™. Since ¢'(x) = g(x) = x for every xe I,
M =Kerg ®IM. Since P < Ker(g) = Ker(g'), M is isomorphic to an extended
product interpretation of Ker(g’) and /¥ by Lemma 2.9, and Ker(g') = H as
L-structures by Axiom 4. Therefore, M = Ker(g') x I® = G in the language
L(I,D) by Lemma 2.8. O
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3. Lemmas for Quantifier Elimination

In this section, we present some lemmas used in common later.

REMARK 3.1. Suppose that L = L'(C) for some set C of constant symbols.
Then to show that a theory 7" admits quantifier elimination in L, it is enough to
show that every existential formula of L’ is equivalent to a quantifier-free formula
of L=L'(C) modulo T.

LemMmA 3.2. Let L be an expansion of La,(<) by predicates and constants,
and D a set of constant symbols such that D\ L = (. Suppose H is an L-structure
such that H|L,,(<) is an ordered abelian group, K an L, (<,D)-structure such
that K| Ly (<) is an ordered abelian group, and G an extended product inter-
pretation of H x K with a new predicate 1. Let Ly be the set of relation symbols
of L other than <. Then the following are equivalent:

(1) G admits quantifier elimination in L(I,D)U Lyoq.

(2) Let x be a variable and y an n-tuple of variables. Suppose that p, q are
natural numbers such that p < g, m is a non-zero integer, p(x,y) a con-
Junction of literals of Lr(+,—,0,I), t;(y) a term of Ly, for i=1,...,q,
s1(p) a term of Lay or —0, $2(¥) a term of L,g or o, Wi(x,y) the
formula

si(p) <mx <s:(H)A N\ mx#E u(F) A N\ mx=,4(5) Ae(x, P),
I<i<p pHI<j<q

and W, (x,y) the formula

mx=s1(y)An N\ mx#E, (7))~ N\ mx=,45(9) re(x, ).
l<i<p p+1<j<q

We assume that s1(y) is a term of L,y in ¥ (x, 7).

Then for any n-tuple a from G, each of the statements G = Ix¢(x,a),
G E IxVY(x,a) and G | IxVY2(x,a) is equivalent to a Boolean combina-
tion of statements of the form G [ 0(a) for some quantifier-free formula
0(5) of L(I,D)U Ly

ProoF. Let C be the set of constant symbols of L. Let L’ be the language
Lr(I)U Lyod. Then L(I,D)U Lyoq = L'(CUD). By Remark 3.1, it is enough to
show that any existential formula of Lg(/)U Lioq is equivalent to a quantifier-
free formula of L(I,D)U Lyoq modulo the theory of G.
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Since G is totally ordered by <9, any quantifier-free formula of Lg (1)U Lyoq
with free variables x"y is equivalent to a disjunction of formulas of forms
Y (x, y) and W(x, y) allowing m to be 0. In the case with m = 0, it is enough to
eliminate the quantifier from 3Ix¢(x, y). Now, the lemma is clear. ]

The statements G | 3xg(x,a) and G | Ix¥,(x,a) of Lemma 3.2 (2) are
reduced by the following lemma.

LemMMA 3.3, Assume the assumption of Lemma 3.2, and the assumption of
Lemma 3.2 (2). Let ¢'(x,7) be the formula obtained from ¢(x,7) by replacing
each subformula “I(t)” with “t =07. Then the following hold:

(1) Let a= ((b1,c1),...,(by,cy)) be an arbitrary n-tuple from G, and ay the

n-tuple (by,...,b,). Then G &= 3Ixp(x,a) if and only if H |= Ix19' (x1,ay).

(2) Let a= ((b1,¢1),.-.,(bn,cy)) be an arbitrary n-tuple from G, and ay the

n-tuple (by,...,b,). Then G | IxWYy(x,a) if and only if the conjunction of
the following statements holds:

HE3Ix; mx; =s(ay) /\(pl(xl,ﬁH),

GEs@=,0n /N s@#,u@nr )N s@=;a).

1<i<p p+H1<j<q

(3) If H admits quantifier elimination in L then for any n-tuple a from G,
each of the statements G |= Ixp(x,a) and G = IxV,(x, a) is equivalent to a
Boolean combination of statements of the form G = 0(a) with a quantifier-
free formula 0(¥) of L(I)U Lyoq-

Proor. (1) and (2) are immediate. We have (3) by (1), (2) and Lemma 2.3.
O

Statement G = 3xW¥;(x,a) of Lemma 3.2 (2) will be reduced with several
lemmas.

LemMMmA 3.4. Assume the assumption of Lemma 3.2, and the assumption of
Lemma 3.2 (2). Let a= ((by,c1),...,(bu,cn)) be an arbitrary n-tuple from G, and
ay the n-tuple (by,...,b,). Then G | IxY(x,a) is equivalent to the disjunction of
the following statements (a) and (b):

(@) H E si(an) < s2(ag) and G | IxYi(x,a).

(b) H E s1(ay) = s2(am) and G E Ix¥;(x,a).
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Statement (a) of Lemma 3.4 is reduced by the following lemma.

Lemma 3.5. Assume the assumption of Lemma 3.2, and the assumption of
Lemma 3.2 (2). Let ¢'(x,y) be the formula obtained from ¢(x,y) by replacing
each subformula “I(t)” with “t =07.

Let a=((b1,c1),...,(bu,cy)) be an arbitrary n-tuple from G, ay the n-tuple
(by,...,by), and ag the n-tuple (c1,...,c,). Then the following statements (1) and
(2) are equivalent:

(1) H Esi(ag) < s2(ap) and G E ¥ (x,a).

(2) For some W ={l,...,p},

H ': S1 (ﬁH) < Sz(dH) Adx;

si(amg) < mxy < sy(am) Ap'(x1,am) A N mx #, tc(@y)
kewe

A /\ mx| =y, tj(dH) A /\ mxy =, lj(le)
ieW pH1<j<q

and

KE3x N\ mxy #,t(agk)n N\ mxy = 4(ax).

ieW p+1<j<gq

Proor. (1) = (2). Assume (1). Then there is x = (xy,xx) € G such that

GEsi(a <mx<sya)n N mx#,t@~ N  mx=,t(a)re(x,a).
I<i<p p+H1<j<q

First, we have
H | s1(ay) < mxy < sy(ay) A o' (xy,a).

Let W={1<i<p:HEmxy=,t(ay)}. Forie W, if K | mxg =, t;(ag) then
G E m(xy,xg) =, (ti(an), ti(ag)). Therefore, K | mxkg #, ti(ax) for ie W. (2)
holds with x; = xy € H and x; = xg € K.

(2) = (1). Assume (2). Choose W <= {1,...,p}, x; € H and x; € K such that

H E sy(ay) <mx; < sy(ag) Ao (x1,am)

AN\ mxr #E n@u) n )\ mxy = @) n N\ mxy =g t(an)
keWe ieW pH1<j<gq

and

KE )\ mxy#,ti(ag) A\ mxy = t(ag).

ieW p+1<j<gq
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Since H k= s1(ay) < s2(ag) and H E si(ay) < mx; < s2(ag), we have H =
mx) < s2(ag) or H |Emx; = sy(ag).

Case H |=mx; < s2(@g). Let I be a common multiple of /i,...,/, and
m. By Remark 1.13, we can choose an element d € K satisfying K Fd =,0
and K [ si(ag) —mx; <d. Since K |d =0, KEd=,0. Pick d'e K such
that K=d =md’. Put xk =x, +d' € K and x = (x1,xg). Then K E s1(ag) <
mxy +d =m(xy +d') = mxg. Since H E si(ay) <mx;, K [ s1(ag) < mxg, and
s@(a) = (sfl(ay),sK(ak)), we have G [ s1(a) < mx. Since H | mx; < sy(ary), we
have G E mx < 5(a).

Since K E d =, 0 for each /;, we have K = mxg = mx; + d =, mx; for each i.
Hence,

KE N\ mxg #,ti(ag)n /\  mxg = t;(ax).
ieW pH+1<j<q

Therefore, we have (1):
H '= Sl(dH) < SZ(aH) and

GEsi(a <mx<syan N mx#,t@~ N mx=,4(a)re(x,a).
I<i<p ptH1<j<q

Case H =mx; = s(ay). Let / be a common multiple of /;,...,/, and m.
By Remark 1.13, we can choose an element d e K satisfying KEd=,0
and K | —sy(ag) +mx; <d. Since K |Fd =0, K |=d =,,0. Pick d’ € K such
that KEd=md'. Put xk =x; —d'e K and x = (x;,xx). Then K | mxg =
m(xy —d') =mxy —d < s(ag). Since H | mx| = s(ay), K mxg < sy(ag),
and s¥(a) = (s¥(ay),sX(ax)), we have G Emx < s(a). Since H k s1(ay) <
$2(ag) = mx;, we have G E 51(a@) < mx.

Now, with an argument similar to the case H |=mx; < s2(dy), we can
deduce (1). O

LemMmA 3.6.  Assume the assumption of Lemma 3.2, and the assumption of
Lemma 3.2 (2). Suppose H admits quantifier elimination in L and for any positive
integer I, K/IK is finite and there is a set D; of variable-free terms of Lgs(D)
such that D = {d* : d e D;} forms a set of representatives of the proper cosets
of IK in K. Let y(x,¥) be a formula of L, and W a subset of {l,...,p}. Let
a=((by,c1),...,(bu,cn)) be an arbitrary n-tuple from G, and put ag = (b, ...,by,)
and ag = (c1,...,¢y). Then the conjunction of the statements

(C) H ': dx; l//(xl,le) A /\ mx =y, l‘i(ﬁH) A /\ mxy =y, Zj(ﬁH)
ieW pH1<j<gq
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and

(f) K ): dx; /\ mx; §é]! li<671<) A /\ mx; =j, lj(ﬁK)

ieW pH1<j<q
is equivalent to a Boolean combination of statements of the form G |= 0(a) with
a quantifier-free formula 0(y) of L(I,D)U Liod.

Proor. Let / be an arbitrary integer such that / > 2, and let D; be a set
of variable-free terms of L,e(D) such that DX = {dX :d e D;} forms a set of
representatives of the proper cosets of /K in K. Then (f) is equivalent to (f1):

ie W \deD, p+1<j<q

(fl) K ': dx; /\ ( \/ mx; =y, [i(aK) +d> A A mx; =y, [j(ﬁ[().
Assuming (e), (f1) is equivalent to

(f2) GE3Ix A\ ( \/ mx =, t;(a)+ d) AN mx =, 1a).
ieW \deDy pH1<j<q

Hence, the conjuction of (e) and (f) is equivalent to the conjunction of (e)
and (f2).

By the assumption that A admits quantifier elimination in L and Lemma 2.3,
(e) is equivalent to a statement of the form G [ 6(a) with 6(y) a quantifier-free
formula of L(I).

It is enough to show that (f2) is equivalent to a Boolean combination of
statements of the form G | 6(a) with 0(y) a quantifier-free formula of L(7,1)U
Lo (f2) is equivalent to a finite disjunction of statements of the form
(f3) GE3x N\ mx=;ta)

I<i<n’
with terms #/(7) of Lug(D).

By Lemma 1.9,

GEVYzl,...,zp (Elx /\ xE;i/z,-><—>92(zl,...,zn/)

i=l,...,n

for some quantifier-free formula 60,(zi,...,2,) in Lyeq. Therefore, (f3) is equiv-
alent to

G ': 02([1 (67)7 ey tn’((i))

with a quantifier-free formula 0(¢(7),...,t,(7)) of Lmod(D). The lemma is

s tn!

proved. |
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4. Products with a Presburger Arithmetic

DermITION 4.1.  An ordered abelian group G is called a Presburger arithmetic
or a Z-group if it is elementarily equivalent to the structure Z of integers for
Lag(<)'

THEOREM 4.2.  Let L be an expansion of Lag(<) by predicates and constants,
and H an L-structure such that H|L.,(<) is an ordered abelian group and H
admits quantifier elimination in L, and K a Presburger arithmetic (Z-group) with
smallest positive element 1. Then any extended product interpretation G of H x K
with new predicate I admits quantifier elimination in L(I,d)U Lyoq with a new
constant symbol d when d° is any non-zero multiple of (0, 1k).

Moreover, if there is a recursive procedure for quantifier elimination of H in
L and there is a recursive map f from the set C of constant symbols of L to K
such that ¢® = (¢!, f(c)) for each c¢ e C, then there is a recursive procedure for
quantifier elimination of G in L(I,d)U Lyq.

ProoF. First, we introduce a constant symbol 1 such that 1¢ = (07, 1x). In
G, d can be represented as my - 1 for some non-zero integer m,. At some stage,
we use 1 for quantifier elimination an then eliminate the constant 1 using d.

We show the statement of Lemma 3.2 (2). Let x be a variable and y an
n-tuple of variables. Suppose that p, ¢, and m are natural numbers with p < ¢,
¢(x,7) is a conjunction of literals of Lg(+,—,0,1), #(7) a term of L,, for
i=1,...,9, 51(y) a term of Ly, or —co, s2(¥) a term of Ly, or oo, ¥;(x, y) the
formula

si(p) <mx <sy(p)n N mx#E (A N\ mx=,4(5) Ae(x, 5),
1<i<p pH1<j<q

and ¥, (x, y) the formula

mx=s1(F)n N\ mx#, ()~ N\ mx=4(5) A0, ).
1<i<p pHl<j<q
We assume that s;(7) is a term of L,, in W5 (x, 7).
By Lemma 3.3, we have the following:

CLamM 1. For any n-tuple a from G, each of the statements G | Ix¢(x,a) and
G | IxYa(x,a) is equivalent to a Boolean combination of statements of the form
G E 0(a) with a quantifier-free formula 6(y) of L(I).
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Now, we turn to the reduction of G | IxW¥(x,a) for any n-tuple a from G.

Cram 2. Let | be a common multiple of all the l’s and m. Let a=
((b1,¢1)y- -y (bu,cn)) be an arbitrary n-tuple from G, and put ag = (by,..., b,).
Then the following statements (b) and (bl) are equivalent:

(b) HEsi(ay) =s(ayg) and G E Y (x,a).

(bl) H | 3x; s1(ay) = s2(ay) = mxy Ap'(xy,ay), and for some natural num-

ber k such that 1 <k <1,

GEsi(@@+k-1<s(@ansi(a+k-1=,0

AN osi@ 4k #E @ N\ si@) + k1=, 4(a).

1<i<p p+1<j<gq
ProoF OoF CLaM 2. Suppose (b) holds. Choose x = (xp,xx) € G such that

G Esi(@) <mx <sy(@nplx,a)n )\ mx#E, 5@~ )\ mx=;,4a).
1<i<p pFH1<j<q
Since H E si(ay) =s2(amg), we have H [ si(day)=mxy =sy(ay). Hence,
H 'Z E|X1 Sl(aH) = S2((7H) = mx /\(pl(xh&H).

Since G = I(sy(a) — s1(a)), we have G = mx = s1(@) + z for some z € I¢ with
GEO0<z Let z= (0" zk). Since K is a Z-group, there is an integer k such
that 1 <k </and Kk -1=zk. Also, K k-1 <z because 1X is the least
positive element of K. Therefore, G s1(a)+ k-1 <s1(a) +z = mx < 52(a).
Also, G E s51(a) + k-1 =, mx. By the choice of /, we have G = s1(a) + k-1 =,
mx =, 0 and G E s1(a@) + k- 1 =, mx for each i. Therefore, we have (bl).

Conversely, suppose (bl) holds. Choose x; € H and a positive integer k as in
(bl). Since G E s1(a) + k-1 =, 0, there is x € G such that G = mx = s;(a) + k- 1.
Let x = (x{,x2). Then clearly, H k= mx| = si(ay) = s»(ay) = mxj, and thus
x{ =x1. Hence Gk ¢(x,a). Note also that G = si1(a) <si(@)+k-1 by k>1.
Replacing s;(a@) + k-1 with mx, we get (b). The claim is proved.

CrLamm 3. For any n-tuple a from G, GE3IxV¥i(x,a) is equivalent to a
Boolean combination of statements of the form G k= 0(a) with a quantifier-free
SJormula 0(y) of L(I,1)U Lioq.

Proor oF Cram 3. Let a=((b1,c1),...,(bs,cy)) be an arbitrary n-tuple
from G, and put ayg = (by,...,b,). By Lemma 3.4, G = 3x¥,(x,a) is equivalent
to the disjunction of the statements (a), (b) of Lemma 3.4. Statement (a) of
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Lemma 3.4 is equivalent to a Boolean combination of statements of the form
G [ 6(a) with a quantifier-free formula 6(y) of L(Z,1)U Lyoq by Lemma 3.6 with
D = {1} and Lemma 2.3. Statement (b) of Lemma 3.4 is equivalent to a Boolean
combination of statements of the form G | 6(a) with a quantifier-free formula
0(7) of L(I,1)U Lyoq by Claim 2 and Lemma 2.3. The claim is proved.

CLAM 4. G admits quantifier elimination in L(I,d)U Lyog if d¢ =mg-1¢
with an integer my # 0.

Proor oF CLAM 4. 1 occurs only in subformulas of one of the forms
s(p) = t(p), s(y) =t(y) and s(y) < t(y) with terms s(y), #(7) of Lyg(1). For
any n-tuple a from G, G kE s(a) = t(a) < |mo|s(a) = |mo|t(a), G | s(a) =, t(a) <
11015(@) =1 0] 1(@), and G  5(@) < (@) < lmols(@) < Imo|1(@). Since mo|s(5)
and |my|?(y) can be considered as terms of L,s(d), G admits quantifier elimi-
nation in L(I,d)U Lyoq. O

5. Products with a Dense Regular Group

THEOREM 5.1.  Let L be an expansion of Lag(<) by predicates and constants,
and D a set of constant symbols such that DN L = . Suppose H is an L-structure
such that H | Ly (<) is an ordered abelian group, K an Lmea(<, D)-structure such
that K| Ly, (<) is a dense regular ordered abelian group, and K /nK is finite and
every proper coset of nK intersects with DX = {dX . d € D} for any integer n > 2.
If H admits quantifier elimination in L then any extended product interpretation G
of H x K with a new predicate I admits quantifier elimination in L(I,D)U Lyq.

Moreover, if there is a recursive procedure for quantifier elimination of H in
L and for quantifier elimination of K in Lyoa(<,D), and there is a recursive map
f from the set C of constant symbols of L to K such that ¢ = (¢, f(c)) for
each c € C, then there is a recursive procedure for quantifier elimination of G in
L(I, D) U Lynoa.

Proor. We show the statement of Lemma 3.2 (2). Let x be a variable and y
an n-tuple of variables. Suppose that p, ¢ are natural numbers such that p < ¢, m
is a non-zero integer, ¢(x, y) is a conjunction of literals of Lg(+,—,0,71), t;(¥) a
term of L, for i=1,...,q, si(¥) a term of L,y or —oo, 52(7) a term of L,, or
o0, Yi(x,y) the formula
si(y) <mx<s(F)n N\ mx#E u(m)a N\ mx=,4(5) ~ex, ),

1<1<p pH1<j<q
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and ¥, (x, y) the formula

mx=si(HA N mxE u(Ha N mr= ) Aol ).
1<i<p pH1<j<q
We assume that s;(7) is a term of L, in ¥»(x, 7).
By Lemma 3.3, we have the following:

CLaM 1. For any n-tuple a from G, each of the statements G |= Ix¢(x,a) and

G | IxYy(x,a) is equivalent to a Boolean combination of statements of the form
G = 6(a) with a quantifier-free formula 6(y) of L(I).

Now, we turn to the reduction of G E IxW¥;(x,a) for any n-tuple a from G.

Cram 2. Let I be a common multiple of all the I’s and m, and D; a subset
of D such that DF = {d* : d € D} forms a set of representatives of all the proper
cosets of IK in K. Let a = ((by,¢1), ..., (by,cy)) be an arbitrary n-tuple from G, and
put ag = (by,...,b,). Then the following statements (b) and (bl) are equivalent:

(b) H ': Sl(aH) = Sz(ﬁH) and G ': ‘I’l(x, ﬁ).

(bl) H | 3x; s1(ay) = s2(ay) = mx; Ap'(x1,ay), and for some d € D;U {0},

GEsi(a) <sy(a)asi(a)+d=,0
AN si@+d#E a@A N\ si(@) +d =, (a).

1<i<p pHI<j<q

ProoF ofF CLamM 2. Suppose (b) holds. Choose x = (xp,xk) € G such that

GEsi(a) <mx <sya) npx,a)n N\ mx#, @~ N\ mx=,14a).
I<i<p pH1<j<q
Since H [ si1(ay) =s2(ay), we have H [ si(ay)=mxy = sy(ay). Hence,
H ': E|X1 Sl(ﬁH) = SQ(ﬁH) = mx /\gol(xl,c_lH).

Since G = I(s2(a) — s1(a)), we have G| mx=s(a)+z for some zelC.
Since D;U{0} is a set of representatives of all the cosets of /K in K and
K ~ 19, there is d € D; such that I¢ |z =;d, and thus G [ z =;d. Therefore,
G E 51(a) + d =, mx. By the choice of /, we have G | s;(a) +d =, mx =, 0 and
G E 51(a) + d =, mx for each i. Therefore, we have (bl).

Conversely, suppose (bl) holds. Choose x; € H and d € D;U{0} as in (bl).
We have G =0 < s52(a) — s1(a) and G = I(s2(a@) — s1(a)). Since K is dense regular
and K = G |19 as Lyoa(D)-structures, we can pick x; € /¢ such that G E0 <
Xy < Sz(ﬁ) — 85 (ﬁ) AXy =;d.
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Then we have

G E si(a) < s1(a) + x2 < s2(a) Asi(@) + x2 =5, 0

AN osi@+xa#E @A N\ si(@) + x2 = 4(a).

I<i<p pH1<j<q

Let x = (xy,xx) € G be such that G| mx = s(a)+ x,. Since x, €19 x;=
(0,z) for some ze K. Hence, sU(a)+xy= (sf(ay),sk(ax)+d). Therefore,
H = mxy = s1(ay). Since H = s1(ay) = s2(ag) = mx; Ap'(x1,ay), we have
H = mxy = si(ag) = s2(ay) = mx;. Hence, H = xi = x;. Therefore, G E ¢(x, a)
since H = ¢'(xy,ay). Now, we have (b). The claim is proved.

Cramm 3. For any n-tuple a from G, GE 3IxW¥i(x,a) is equivalent to a
Boolean combination of statements of the form G k= 0(a) with a quantifier-free
SJormula 0(y) of L(I,D)U Lyeq.

Proor oF Cram 3. Let a= ((b1,c1),...,(by,cy)) be an arbitrary n-tuple
from G, and put ayg = (by,...,b,). By Lemma 3.4, G = 3x¥,(x,a) is equivalent
to the disjunction of the statements (a), (b) of Lemma 3.4. Statement (a) of
Lemma 3.4 is equivalent to a Boolean combination of statements of the form
G [ 0(a) with a quantifier-free formula 0(7) of L(I, D) U Ly0q by Lemma 3.6 and
Lemma 2.3. Statement (b) of Lemma 3.4 is equivalent to a Boolean combination
of statements of the form G E 6(a@) with a quantifier-free formula 6(y) of
L(I,D)U Lyq by Claim 2 and Lemma 2.3. The claim is proved. O

For the case that K is a dense regular ordered abelian group such that K/nK
is infinite for some n, we have the following.

THEOREM 5.2. Let L be an expansion of Lag(<) by predicates and constants.
Suppose H is an L-structure such that H|La,(<) is a divisible ordered abelian
group, and K an L.g(<)-structure which is a dense regular ordered abelian group.
If H admits quantifier elimination in L then any extended product interpretation G
of H x K with a new predicate I admits quantifier elimination in L(I)U Lyq.

ProoF. We show the statement of Lemma 3.2 (2). Let x be a variable and y
an n-tuple of variables. Suppose that p, ¢ are natural numbers such that p < ¢,
m is a non-zero integer, ¢(x, y) a conjunction of literals of Lg(+,—,0,1), #;(¥) a
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term of Ly, for i=1,...,q, 51(y) a term of Ly, or —o0, s:(y) a term of L., or
oo, Wi(x,y) the formula

si(P) <mx < ()~ N\ mx#E ()~ N\ mx=,65(0) Ae(x, §),
1<i<p pH1<j<q

and W;(x, y) the formula

mx=s1()~n N\ mx#, (0~ N mx=,4(5)Ap(x, p).
1<i<p pH1<j<q
We assume that s;(7) is a term of L, in ¥ (x, 7).
By Lemma 3.3, we have the following:

CLamM 1. For any n-tuple a from G, each of the statements G |= Ix¢(x,a) and

G | IxYa(x,a) is equivalent to a Boolean combination of statements of the form
G [ 6(a) with a quantifier-free formula 6(y) of L(I).

Now, we turn to the reduction of G = IxW¥;(x,a) for any n-tuple a@ from G.

Cramm 2. Let a= ((b1,¢1),-..,(bn,cn)) be an arbitrary n-tuple from G, and
put ag = (by,...,by). Then the following statements (a) and (al) are equivalent:

(@) H E si(ag) < s2(ay) and G | IxY(x,a).

(al) H k= s1(ag) < s2(ag) A3xy s1(ag) < mxy < sp(am) A o'(x,a) and

GEIx N\ mx#,u@n N mx=,14a).

I<i<p pH1<j<q

ProOOF OF CLAIM 2. (a) = (al) is immediate.
(al) = (a). Suppose (al) holds. Let ax = (¢, ..., c,). Choose x = (xg,xx) € G
such that

GE N\ mx#,t@n )\ mx=;a).

I<i<p pH1<j<q

Since H is divisible, mxy =, t;(ay) for i=1,...,p,...,q. Therefore,

KE N mxx#,t(a)n N mx=;(ag).

1<i<p pHI<j<q

Now, we can show (a) by an argument similar to the proof of (2) = (1) for
Lemma 3.5. Claim 2 is proved.
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Cramm 3. Let a= ((b1,¢1),...,(bn,cn)) be an arbitrary n-tuple from G, and
put ag = (by,...,b,). Then the following statements (b) and (bl) are equivalent:
(b) H ’: S1 (ﬁH) =95
(bl) H ': Sl(c_lH) =95
GEsi(a) <sa)ndx N\ mx#,4@)~ N mx=,1a).

1<i<p p+H1<j<q

(ag) and G E Ix¥)(x,a).
(ag) Adx; mx; < si(a@g) Ap'(x,a) and

Proor oF CLamm 3. (b) = (bl) is immediate.

(bl) = (b). Suppose (bl) holds. Let ax = (cy,...,¢,). As in Claim 2, we can
choose xg € K such that

KE N\ mxx#,t(ag)~n )\ mx=,t(ag).
1<i<p pH1<j<q

Let / be a common multiple of all the /’s. Choose d € K such that K 0 <
d < sy(ag) — s1(ag) nd =/ xg. Let x = (sfl(ay),sX(ax) +d). Then we have (b).
The claim is proved.

CLaM 4. For any n-tuple a from G, Gk 3Ix¥ (x,a) is equivalent to a
Boolean combination of statements of the form G k= 0(a) with a quantifier-free
SJormula 6(y) of L(I)U L.

ProoF oF CLamm 4. Let a= ((b1,c1),...,(bu,cn)) be an arbitrary n-tuple
from G, and put ay = (by,...,by).
By Lemma 3.4, G E 3x¥;(x,a) is equivalent to the disjunction of the state-
ments (a) and (b) of Lemma 3.4. By Fact 1.10, the statement
GEIx N\ mx#,4@~ N mx=,1a).
1<i<p p+1<j<gq
is equivalent to a statement of the form G | 6(a) with a quantifier-free formula
0(y) of Lmoq- Hence, the statement (a) of Lemma 3.4 is equivalent to a Boolean
combination of statements of the form G k 6(a) with a quantifier-free formula
0(y) of L(I)U Lyoa by Claim 2 and Lemma 2.3, and the statement (b) of Lemma
3.4 is equivalent to a Boolean combination of statements of the form G [ 0(a)
with a quantifier-free formula () of L(I)U Lo by Claim 3 and Lemma 2.3.
The claim is proved. [

QUESTION 5.3. Is there any ordered abelian group H other than divisible
ordered abelian group such that an extended product interpretation of H x K
admits quantifier elimination?
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ExaMPLE 5.4. Let R be a dense regular ordered abelian group such that
R/nR is infinite for some n > 0. Let Hy be the lexicographic product Z x R.
Hy does not admit quantifier elimination in Lpyoq(<). Let H be a definitional
expansion of H, such that H admits quantifier elimination in the expanded
language L. Note that L is different from Lpoq(<,D) for any set D of constant
symbols. Let K be a Z-group or a dense regular group such that K/nK is finite
for any integer n > 0. Then any extended product interpretation of H x K admits
quantifier elimination in L(I,D)U Lyq for some set D = K of constants.

6. Products with a Quantifier Eliminable Group

The following two lemmas appear in [13] in some different forms.

LemmaA 6.1. Let L be an expansion of La,(<) by predicates and constants,
and D a set of constant symbols such that DN L = (&. Suppose H is an L-structure
such that H | Ly (<) is an ordered abelian group, K an Lo (<, D)-structure such
that K| Ly (<) is an ordered abelian group, and G an extended product inter-
pretation of H x K with a new predicate 1. Suppose H has the smallest positive
element 1y and there is a constant symbol ¢ of L such that ¢ =k -1y for some
integer k # 0. Then I is equivalent to a quantifier-free formula of L.s(<,c) in G.

PrROOF. Suppose ¢ is a constant symbol of L such that ¢ =k .1y with
an integer k£ # 0. Without loss of generality, we can assume that k > 0. Since
¢% = (k-1p,cg) for some cx € K, we have G EVx (I(x) < —c<kx<e¢). [

LemMA 6.2. Let L be an expansion of L.s(<) by predicates and constants,
and D a set of constant symbols such that DN\ L = (. Suppose H is an L-structure
such that H | Ly (<) is an ordered abelian group, K an Lo (<, D)-structure such
that K| L.y (<) is an ordered abelian group, and G an extended product inter-
pretation of H x K with a new predicate 1. Suppose further that n is an integer and
there is a binary relation =, of L such that HE=Vx,y (x =,y < n|(x—y)).
Then the following hold.

(1) GeEVx,y x=,y—3z Iz2)Ax—y—z=,0).

(2) If K/nK is finite and every coset of nK in K has a representative of the
Jorm t% for some term t of Lag(D), then the relation =) is definable by a
quantifier-free formula of Lyoa(D) in G.

(3) Suppose K is a Z-group and let 1x be the smallest positive element of K. If
KEd=k- 1k for some d € D with an integer k # 0, then the relation =/
is definable by a quantifier-free formula of Lynod(d) in G.
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Proor. (1) Let x, y be arbitrary elements of G. Then we can write
x = (xg,xx) and y = (ym, yx) for some xy,yy € H and xg, yx € K. Suppose
GEx=,y. Then by the definition of an extended product interpretation,
H = xy =) yu, and thus H En|(xy — yu). Let z= (07 xx —X yk). Then ze G
and GEI(z)Ax—y—z=,0.

Conversely, suppose G E I(z) Ax — y —z =, 0 for some z € G. Since G | I(z),
z= (0" zx) for some zgx e K. Hence, (x— y—2)" = (xyg = yy,u) for some
uekK. Since GEn|(x—y—=z), HEn|(xy — yg). Therefore, G = x =/ y.

(2) Let S be a finite set of terms of L, (D) such that the set S¥ =
{tK . 1t € S} forms a set of representatives of all the cosets of nK in K. Then by (1),

GEVx,y x=,y< \/x—y=,t
teS

(3) Introduce a constant symbol 1 such that 1% is the smallest positive
element of K. Let S ={0,1,2-1,...,(n—1)-1}. Then SX forms a set of repre-
sentatives of all the cosets of nK in K.

Let d € D be such that K =d = k-1 with an integer k # 0. Then for each
i<n and for any x,ye G, GEx—y=,i-1 if and only if GE k(x — y) =,
i-d. By this and (2), the relation =, is definable by a quantifier-free formula of
Liod(d) in G. O

THEOREM 6.3. Let L be an expansion of L.s(<) by predicates and constants,
and H an L-structure such that H | Ly (<) is an ordered abelian group. Suppose K
is an ordered abelian group and D = K a pure subgroup of K such that K admits
quantifier elimination in Lyod(<,D) but K is not dense regular.

If H admits quantifier elimination in L then any extended product interpre-
tation of H x K with a new predicate 1 admits quantifier elimination in L(I,D)U
Limod-

Proor. Since K admits quantifier elimination in the language Loq(<,D),
by Fact 1.16, there is a finite sequence {G},_,,, of convex subgroups of K and
a sequence {(k;,d;)}, -;-,, such that (i) G,, = K; (ii) for 1 <i < m, k; is a positive
integer, d; € D, d; € G; — Gi_1, G;/Gj_1 is a Z-group with smallest positive element
l;+ Gi_1, ki -1, —d; € Gi_1; and (iii) Gy is dense regular, and for every prime p,
ﬂp(Go) is finite and every coset of pGy in Gy has a representative in D.

Introduce a new predicate I; representing G; for each i < m. Let K’ be an
oi-saturated elementary extension of K in the expanded language L,s(<,D)U
{Ii};<,- Let G/ = I;(K’) for each i = 1,...,m. By Fact 1.7, foreach i =1,...,m,
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there is a subgroup A4; of G/ such that G/ =4, ® G/_,. A; = G}/G]_, is a Z-

group. Let 14, be the smallest positive element of A4; for each i =1,... ,m. Then
ki- 14, —dX € G/, for each i=1,...,m.
Now, let G be an arbitrary extended product interpretation of H x K with a

new predicate I. For each constant symbols ¢ of L, we have ¢ = (¢, cg) for
some ckx € K by the definition of an extended product interpretation. Let G’ be an
extended product interpretation of H x K’ | Lid(<, D) with new predicate I such
that ¢ = (¢!, cx) for each constant symbols ¢ of L. Then G' = G for L(I,D)
by Lemma 2.8. To show that G admits quantifier elimination in L(I, D) U Ly,
it is enough to show that G’ admits quantifier elimination in L(I, D) U Lyoq.
Let DG, ={d e D:d¥ e Gy}. Then by Remark 3.1, it is enough to show that
the reduct G” of G’ to L(I,dy,dy-1,...,di, Dg,) admits quantifier elimination in
L([, dm, dm—l yeeey dlaDGo) U Linod.

Consider 4,, as a structure for Lao(<,d,) by di» =k, -1,4,. Let B,, be a
structure for L(I,d,,) which is an extended product interpretation of H x A,, with
new predicate I such that ¢®» = (¢# ¢, ) for each constant symbol of L where
1 By Theorem 4.2,
B,, admits quantifier elimination in the language L(/,d,)U Lnoq. Let L =
{=]" : n > 2} and consider B,, as a structure for L(/,d,,) UL , with B,, | Vx, y

(x=I"y < x=,y) for each integer n > 2. B,, admits quantifier elimination in

% = (¢, cx) with cx = ¢4, + g, ¢4, € Ay and cg € G’
m— m—

m—1°

the language L(/,d,)UL. ;. Since K’ is isomorphic to the lexicographic pro-
duct of 4,, and G),_, by Lemma 2.9, G” is isomorphic to a reduct of an ex-
tended product interpretation of B, x G! _, with new predicate I,,_;. Here, G/,_,
is considered as a structure for Lae(<,du—1,...,d1,Dg,).

Now, consider 4,1 as a structure for Lqs(<,dn—1) by drfﬁ‘ =lky-1-14, -
Let B,_; be a structure for L(I,I,_1,dn,dn—1) which is an extended product
interpretation of B,, x A,, with new predicate I,,_; such that ¢®1 = (¢ ¢y ¢y, )
+ca,-1+¢cq s ca, € Am, Ca

m m—1

for each constant symbol of L where cx = ¢4 €

A,—1, and g € G!,_,. By Theorem 4.2, B,,_; admits quantifier elimination in
the language L(I,1,—1,dp, dp—1) UL} U Lyod. In—1 is definable by a quantifier-
free formula of L4 (d,) in B,_; by Lemma 6.1, and each relation of L . is
definable by a quantifier-free formula of L,e(d,,,) in B,_; by Lemma 6.2. There-
fore, B,_; admits quantifier elimination in the language L(I,d,,dy—1)U Lnod.
Let Ll = {=m"1:pn>2} and consider B, as a structure for L(1,dy,dp_1)U
Ll with B,_1 EVx,y (x=""1y«< x=,y) for each integer n>2. B,
admits quantifier elimination in the language L(1,d, dy—1) U L"), Since G/, ; is
isomorphic to the lexicographic product of 4,,; and G/ _, by Lemma 2.9, G” is

isomorphic to a reduct of an extended product interpretation of B, x G, _,
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with new predicate 1,-,. Here, G, , is considered as a structure for
Lag(<, dmfz, . 7d17DGo)-

Repeating this argument, we get a structure By for L(I,d,, dy—1,...,d1)U
Ll i with L} ={=!:n>2} such that B; EVx,y (x=]y < x =, ) for each
integer n > 2, By admits quantifier elimination in its language, and G” is iso-
morphic to a reduct of an extended product interpretation By of B; x G{ with
new predicate Iy. Here, G is considered as a structure for Ly,(<, Dg,). By admits
quantifier elimination in the language L(Z, Io,dm,dm,l,...,dl)ULllnodULmod by
Theorem 5.1. I is definable by a quantifier-free formula of L..(d;) in By by
Lemma 6.1, and each relation of L! , is definable by a quantifier-free formula
of Lag(Dg,) in By by Lemma 6.2. Therefore, By admits quantifier elimination
in the language L(I,dy,dn—1,-..,d1,Dg,)ULmoa by Theorem 5.1. Since G” is
isomorphic to the reduct of By to the language L(I,dy,dy—1,...,d1,Dg,), G"
admits quantifier elimination in L(I,d,,dy1,...,d1, DG,) U Lmod. O

Finally, we show partial converses.

THEOREM 6.4. Let L be an expansion of L.g(<) by predicates and constants,
and H an L-structure such that H | Ly, (<) is an ordered abelian group. Suppose K
is an ordered abelian group and D = K a pure subgroup of K.

If an extended product interpretation of H x K with a new predicate I admits
quantifier elimination in L(I,D)U Lmoqa then H admits quantifier elimination in
LU Linoa.

Proor. Suppose an extended product interpretation G of H x K with a
new predicate / admits quantifier elimination in L(I, D)U Lyoq. We show that
H admits quantifier elimination in LU Ly,4. Let x be a variable and y a tuple
of variables. Let Ix¢(x, y) be a formula of LU Ly,,q4, where ¢(x, y) is quantifier-
free. Since ¢(x,y) is a quantifier-free formula of LU Ly, the formula ¢(x, y)
is a Boolean combination of formulas of the forms mx = t(y), mx < t(y),
mx+(y) =, 0 and R(si(x, ¥),...,s(x,¥)), where R is a relation symbol of
L —{<}, [, m, n are integers such that / is the arity of R and n > 2, and #(y),
s1(x, ¥),...,8(x, ¥) are terms of L.

Let ¢*(x,7) be a formula obtained from ¢(x,y) by replacing mx = t(y),
mx < ((y) and mx+1(y) =,0 with I(¢(p) —mx), mx < t(¥) AL (t(y) — mx),
and 3z(I(mx + t(7) — nz)), respectively. Let &= (hy,...,h,) be a tuple of ele-
ments from the ordered abelian group H. Then, we have

H ': ElX(p()C, il) SaY ): Hx‘/’*()% ilG)v
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where hg = ((h,0%),..., (h,,0%)). Since the ordered abelian group G admits
quantifier elimination in the language L(I, D) U L4, there exists some quantifier-
free formula ¥(y) in L(I,D)U Lpyeq such that

G E 3" (x,hi6) © G = Y(ho).

Because y(y) is a quantifier-free formula of L(Z, D)U Lyq, the formula y(y) is
a Boolean combination of formulas of the forms #(y) =0, #(y) <0, #(y) =,0,
R(s1(7),...,8(7)) and I(#(y)), where /, n are positive integers, f, si,...,s are
terms of L(D) and R is an [-ary relation symbol of L other than “<”. Let
H(y) = t1(¥) + t2(¢) + d, where 1,(y) is a term of Lyg, 1(Z) a term of L,, with a
p-tuple Z of variables, ¢ = (c1,...,¢,) is a tuple of constant symbols from L, and
d e D. Choose c¢; g € K such that ¢’ = (¢ ¢; k) for each i=1,...,p and let
ek = (c1.k,- - ¢px). Note that 1,(¢)% = (2(6)", 1K (¢k)). Then,

HEH(h)+n@)=0 if KEn(k)+d=0

thl(hc;)+tz(0)+dOﬁ{H,:j(ozo) if KEn(ex)+d#0,

HEti(h)+16() <0 if KEt(ck)+d=0
HEH(h)+1n@) <0 if KEn(g)+d<O,

G’le(/_lc)+lz(f)+d<0<:>{

H':ll(h)+f2(5) =,0 if K'th(f[()+d =,0
HE—-(0=0) if KEn(ck)+d=#,0,

G F R(si(ha).-..,si(he)) < H E R(sj (), ...s; (i),

G I1(ti(hg) + () +d) & H = t1(h) + t,(¢) = 0,

Glztl(ﬁg)+tz(5)+d5n0<:>{

where s7(7) is the term obtained from s;(y) by replacing each element of D
with 0.

Therefore, there exists some quantifier-free formula /() in LU Lo such
that G = y(hg) < H = /'(h). It follows that H admits quantifier elimination in
LU Lpog. ]

THEOREM 6.5. Let L be an expansion of L.s(<) by predicates and constants,
and H an L-structure such that H | L.s(<) is an ordered abelian group. Suppose K
is an ordered abelian group and D = K a pure subgroup of K.

If an extended product interpretation G of H x K with a new predicate 1
admits quantifier elimination in L(I,D)U Lyoq and there is a constant symbol
d. € D such that ¢¢ = (cf1,dX) for each constant symbol ¢ of L, then K admits
quantifier elimination in Lyoa(<, D).
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PrOOF. Suppose an extended product interpretation G of H x K with a
new predicate / admits quantifier elimination in L(/,D)U Ly,q. We show that
K admits quantifier elimination in Lmn.q(<,D). Let 3x0(x, y) be a formula of
Lioda(<, D), where 0(x, y) is a quantifier-free formula of Lyeq(<, D). Then the
formula 6(x, y) is a Boolean combination of formulas of the forms mx = #(y),
mx < t(y), and mx + t(y) =, 0, where m and n are integers such that n > 2, and
tis a term of Lyg(D). Let k = (ki,...,k,) be a tuple of elements from the ordered
abelian group K. Let kg = ((0,k;),...,(0,k,)). Then, we have

K E 3xp(x, k) & G = 3x I(x) A p(x, k).

Since the ordered abelian group G admits quantifier elimination in the language
L(I,D)U Lpoq, there exists some quantifier-free formula t(7) of L(I,D)U Lyoeg
such that

G E Ix I1(x) Ao(x,k6) & G | t(ke).

Because 7(y) is a quantifier-free formula of L(1, D) U Lyed, the formula 7(7) is a
Boolean combination of the forms #(7) =0, #(¥) <0, #{(¥) =, 0, R(s1(¥),...,s:(¥))
and I(#(y)), where I, n are positive integers, ¢, sy,...,s; are terms of L(D) and
R is an [-ary relation symbol of L. Let ¢(7) = t;(¥) + £2(¢) + d, where #,(¥) is a
term of L, 12(Z) a term of L,, with a p-tuple Z of variables, ¢ = (c1,...,¢,) is a
tuple of constant symbols from L, and d € D. Put 0 = (0,...,0). Choose d,, € D
such that ¢ = ( n dK) for each i=1,...,p and let d; = (d,,,...,d,,). Note that

l ¢

1(0)¢ = (2(e)", 1(de)"). Then,

[1 +lz(d£)+d 0 if H ):lz(é) =0

G’le(lgg)-i-tz +d= 0<:>{ (
E (0= if HE t,(¢)#0,
(0=0) if HEn(c) >0
G’:tl(kg)-l-lz +d<0<:>{K|:t1( (dc)—l—d<0 if HEn(e)=0
KEO0=0 if HE () <0,

K)=t1 k) +0(de) +d =,0 if HE 0(¢)=,0

GE tikg) +t(¢)+d=,0<
—(0=0) if H[E 1(¢) #,0,

K}:O—O if H}:R(sl( ),---,57(0))

G & Ris(ko).- )& —0) if HER(s! (0), .., s57(0)),

KEO0=0 if HE () =0

GFI(zl(/EG)thz(EHd)@{K#ﬁ(oo) if H [ n(c)#0,

where s/(7) is the term obtained from s;(7) by replacing d with 0.



Quantifier elimination for lexicographic products 129

Therefore, there exists some quantifier-free formula 7'(7) in Lyod(<, D) such

that G | t(kg) © K = '(k). It follows that K admits quantifier elimination in

Lmod (<; D ) ]
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