Jacobi Oper atiors Al ong the Structure Fl ow on Real Hypersurfaces in a Nonflat Compl ex Space Form

著者	K U Hang, KURI HARA Hi royuki, TAKAG Ryoi chi
j ournal or publ i cat i on titl e	Tsukuba Jour nal of Nat hemat i cs
vol une	33
nunber	1
page range	$39-56$
year	2009
URL	ht t p: //hdl . handl e. net $/ 2241 / 00146498$

JACOBI OPERATORS ALONG THE STRUCTURE FLOW ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM

By
U-Hang Ki, Hiroyuki Kurihara and Ryoichi Takagi

Abstract

Let M be a real hypersurface of a complex space form with almost contact metric structure (ϕ, ξ, η, g). In this paper, we study real hypersurfaces in a complex space form whose structure Jacobi operator $R_{\xi}=R(\cdot, \xi) \xi$ is ξ-parallel. In particular, we prove that the condition $\nabla_{\xi} R_{\xi}=0$ characterizes the homogeneous real hypersurfaces of type A in a complex projective space or a complex hyperbolic space when $R_{\xi} \phi S=S \phi R_{\xi}$ holds on M, where S denotes the Ricci tensor of type $(1,1)$ on M.

1. Introduction

Let $\left(M_{n}(c), J, \tilde{g}\right)$ be a complex n-dimensional complex space form with Kähler structure (J, \tilde{g}) of constant holomorphic sectional curvature $4 c$ and let M be an orientable real hypersurface in $M_{n}(c)$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from (J, \tilde{g}).

It is known that there are no real hypersurface with parallel Ricci tensors in a nonflat complex space form (see [6], [8]). This result say that there does not exist locally symmetric real hypersurfaces in a nonflat complex space form. The structure Jacobi operator $R_{\xi}=R(\cdot, \xi) \xi$ has a fundamental role in contact geometry. Cho and the first author started the study on real hypersurfaces in a complex space form by using the operator R_{ξ} in [3], [4] and [5]. Recently Ortega, Pérez and Santos [12] have proved that there are no real hypersurfaces in $P_{n} \mathbf{C}$, $n \geq 3$ with parallel structure Jacobi operator $\nabla R_{\xi}=0$. More generally, such a result has been extended by [13] due to them.

[^0]Now in this paper, motivated by results mentioned above we consideer the parallelism of the structure Jacobi operator R_{ξ} in the direction of the structure vector field, that is $\nabla_{\xi} R_{\xi}=0$.

In 1970's, the third author [14], [15] classified the homogeneous real hypersurfaces of $P_{n} \mathbf{C}$ into six types. On the other hand, Cecil and Ryan [2] extensively studied a Hopf hypersurface, which is realized as tubes over certain submanifolds in $P_{n} \mathbf{C}$, by using its focal map. By making use of those results and the mentioned work of Takagi, Kimura [10] proved the local classification theorem for Hopf hypersurfaces of $P_{n} \mathbf{C}$ whose all principal curvatures are constant. For the case $H_{n} \mathbf{C}$, Berndt [1] proved the classification theorem for Hopf hypersurfaces whose all principal curvatures are constant. Among the several types of real hypersurfaces appeared in Takagi's list or Berndt's list, a particular type of tubes over totally geodesic $P_{k} \mathbf{C}$ or $H_{k} \mathbf{C}(0 \leq k \leq n-1)$ adding a horosphere in $H_{n} \mathbf{C}$, which is called type A, has a lot of nice geometric properties. For example, Okumura [11] (resp. Montiel and Romero [10]) showed that a real hypersurface in $P_{n} \mathbf{C}$ (resp. $H_{n} \mathbf{C}$) is locally congruent to one of real hypersurfaces of type A if and only if the Reeb flow ξ is isometric or equivalently the structure operator ϕ commutes with the shape operator H.

Among the results related R_{ξ} we mention the following ones.

Theorem 1 (Cho and $\mathrm{Ki}[5]$). Let M be a real hypersurface in a nonflat complex space form $M_{n}(c)$ which satisfies $\nabla_{\xi} R_{\xi}=0$ and at the same time $R_{\xi} H=H R_{\xi}$. Then M is a Hopf hypersurface in $M_{n}(c)$. Further, M is locally congruent to one of the following hypersurfaces:
(1) In cases that $M_{n}(c)=P_{n} \mathbf{C}$ with $\eta(H \xi) \neq 0$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius r, where $0<r<\pi / 2$ and $r \neq \pi / 4$;
$\left(A_{2}\right)$ a tube of radius r over a totally geodesic $P_{k} \mathbf{C}(1 \leq k \leq n-2)$, where $0<r<\pi / 2$ and $r \neq \pi / 4$.
(2) In cases $M_{n}(c)=H_{n} \mathbf{C}$,
$\left(A_{0}\right)$ a horosphere;
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1} \mathbf{C}$;
$\left(A_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbf{C}(1 \leq k \leq n-2)$.

In this paper we study a real hypersurface in a nonflat complex space form $M_{n}(c)$ which satisfies $\nabla_{\xi} R_{\xi}=0$ and at the same time $R_{\xi} \phi S=S \phi R_{\zeta}$, where S denotes the Ricci tensor of the hypersurface. We give another characterization
of real hypersurfaces of type A in $M_{n}(c)$ by above two conditions. The main purpose of the present paper is to establish Main Thoerem stated in section 5. We note that the condition $R_{\xi} \phi S=S \phi R_{\xi}$ is a much weaker condition. Indeed, every Hopf hypersurface always satisfies this condition.

All manifolds in this paper are assumed to be connected and of class C^{∞} and the real hypersurfaces are supposed to be oriented.

2. Preliminaries

We denote by $M_{n}(c), c \neq 0$ be a nonflat complex space form with the FubiniStudy metric \tilde{g} of constant holomorphic sectional curvature $4 c$ and Levi-Civita connection $\tilde{\nabla}$. For an immersed $(2 n-1)$-dimensional Riemannian manifold $\tau: M \rightarrow M_{n}(c)$, the Levi-Civita connection ∇ of induced metric and the shape operator H of the immersion are characterized

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+g(H X, Y) v, \quad \tilde{\nabla}_{X} v=-H X
$$

for any vector fields X and Y on M, where g denotes the Riemannian metric of M induced from \tilde{g} and v a unit normal vector on M. In the sequel the indeces i, j, k, l, \ldots run over the range $\{1,2, \ldots, 2 n-1\}$ unless otherwise stated. For a local orthonormal frame field $\left\{e_{i}\right\}$ of M, we denote the dual 1-forms by $\left\{\theta_{i}\right\}$. Then the connection forms $\theta_{i j}$ are defined by

$$
d \theta_{i}+\sum_{j} \theta_{i j} \wedge \theta_{j}=0, \quad \theta_{i j}+\theta_{j i}=0
$$

Then we have

$$
\nabla_{e_{i}} e_{j}=\sum_{k} \theta_{k j}\left(e_{i}\right) e_{k}=\sum_{k} \Gamma_{k i j} e_{k},
$$

where we put $\theta_{i j}=\sum_{k} \Gamma_{i j k} \theta_{k}$. The structure tensor $\phi=\sum_{i} \phi_{i} e_{i}$ and the structure vector $\xi=\sum_{i} \xi_{i} e_{i}$ satisfy

$$
\begin{align*}
& \sum_{k} \phi_{i k} \phi_{k j}=\xi_{i} \xi_{j}-\delta_{i j}, \quad \sum_{j} \xi_{j} \phi_{i j}=0, \quad \sum_{i} \xi_{i}^{2}=1, \quad \phi_{i j}+\phi_{j i}=0, \\
& d \phi_{i j}=\sum_{k}\left(\phi_{i k} \theta_{k j}-\phi_{j k} \theta_{k i}-\xi_{i} h_{j k} \theta_{k}+\xi_{j} h_{i k} \theta_{k}\right), \tag{2.1}\\
& d \xi_{i}=\sum_{j} \xi_{j} \theta_{j i}-\sum_{j, k} \phi_{j i} h_{j k} \theta_{k} .
\end{align*}
$$

We denote the components of the shape operator or the second fundamental tensor H of M by $h_{i j}$. The components $h_{i j ; k}$ of the covariant derivative of H are given by $\sum_{k} h_{i j ; k} \theta_{k}=d h_{i j}-\sum_{k} h_{i k} \theta_{k j}-\sum_{k} h_{j k} \theta_{k i}$. Then we have the equation of Gauss and Codazzi

$$
\begin{align*}
& R_{i j k l}=c\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}+\phi_{i k} \phi_{j l}-\phi_{i l} \phi_{j k}+2 \phi_{i j} \phi_{k l}\right)+h_{i k} h_{j l}-h_{i l} h_{j k}, \tag{2.2}\\
& h_{i j ; k}-h_{i k ; j}=c\left(\xi_{k} \phi_{i j}+\xi_{i} \phi_{k j}-\xi_{j} \phi_{i k}-\xi_{i} \phi_{j k}\right), \tag{2.3}
\end{align*}
$$

respectively.
From (2.2) the structure Jacobi operator $R_{\xi}=\left(\Xi_{i j}\right)$ is given by

$$
\begin{equation*}
\Xi_{i j}=\sum_{k, l} h_{i k} h_{j l} \xi_{k} \xi_{l}-\sum_{k, l} h_{i j} h_{k l} \xi_{k} \xi_{l}+c \xi_{i} \xi_{j}-c \delta_{i j} \tag{2.4}
\end{equation*}
$$

From (2.2) the Ricci tensor $S=\left(S_{i j}\right)$ is given by

$$
\begin{equation*}
S_{i j}=(2 n+1) c \delta_{i j}-3 c \xi_{i} \xi_{j}+h h_{i j}-\sum_{k} h_{i k} h_{k j}, \tag{2.5}
\end{equation*}
$$

where $h=\sum_{i} h_{i i}$.
First we remark

Lemma 1. Let U be an open set in M and F a smooth function on U. We put $d F=\sum_{i} F_{i} \theta_{i}$. Then we have

$$
F_{i j}-F_{j i}=\sum_{k} F_{k} \Gamma_{k i j}-\sum_{k} F_{k} \Gamma_{k j i} .
$$

Proof. Taking the exterior derivate of $d F=\sum_{i} F_{i} \theta_{i}$, we have the formula immediately.

Now we retake a local orthonormal frame field e_{i} in such a way that (1) $e_{1}=\xi$, (2) e_{2} is in the direction of $\sum_{i=2}^{2 n-1} h_{1 i} e_{i}$ and (3) $e_{3}=\phi e_{2}$. Then we have

$$
\begin{equation*}
\xi_{1}=1, \quad \xi_{i}=0 \quad(i \geq 2), \quad h_{1 j}=0 \quad(j \geq 3) \quad \text { and } \quad \phi_{32}=1 . \tag{2.6}
\end{equation*}
$$

We put $\alpha:=h_{11}, \beta:=h_{12}, \gamma:=h_{22}, \varepsilon:=h_{23}$ and $\delta:=h_{33}$.
Promise. Hereafter the indeces p, q, r, s, \ldots run over the range $\{4,5, \ldots$, $2 n-1\}$ unless otherwise stated.

Since $d \xi_{i}=0$, we have

$$
\begin{align*}
& \theta_{12}=\varepsilon \theta_{2}+\delta \theta_{3}+\sum_{p} h_{3 p} \theta_{p}, \\
& \theta_{13}=-\beta \theta_{1}-\gamma \theta_{2}-\varepsilon \theta_{3}-\sum_{p} h_{2 p} \theta_{p}, \tag{2.7}\\
& \theta_{1 p}=\sum_{q} \phi_{q p} h_{q 2} \theta_{2}+\sum_{q} \phi_{q p} h_{q 3} \theta_{3}+\sum_{q, r} \phi_{q p} h_{q r} \theta_{r} .
\end{align*}
$$

We put

$$
\begin{equation*}
\theta_{23}=\sum_{i} X_{i} \theta_{i}, \quad \theta_{2 p}=\sum_{i} Y_{p i} \theta_{i}, \quad \theta_{3 p}=\sum_{i} Z_{p i} \theta_{i} . \tag{2.8}
\end{equation*}
$$

Then it follows from $d \phi_{2 i}=0$ that $Y_{p i}=-\sum_{q} \phi_{p q} Z_{q i}$ or $Z_{p i}=\sum_{q} \phi_{p q} Y_{q i}$. The equations (2.4) and (2.5) are rewritten as

$$
\begin{align*}
& \Xi_{i j}=-\alpha h_{i j}+h_{1 i} h_{1 j}+c \delta_{i 1} \delta_{j 1}-c \delta_{i j}, \tag{2.9}\\
& S_{i j}=h h_{i j}-\sum_{k} h_{i k} h_{j k}-3 c \delta_{i 1} \delta_{j 1}+(2 n+1) c \delta_{i j}, \tag{2.10}
\end{align*}
$$

respectively.

3. Real Hypersurfaces Satisfying $\nabla_{\xi} R_{\xi}=0$ and $R_{\xi} \phi S=S \phi R_{\xi}$

First we assume that $\nabla_{\xi} R_{\xi}=0$. The components $\Xi_{i j ; k}$ of the covariant derivativation of $R_{\xi}=\left(\Xi_{i j}\right)$ is given by

$$
\sum_{k} \Xi_{i j ; k} \theta_{k}=d \Xi_{i j}-\sum_{k} \Xi_{k j} \theta_{k i}-\sum_{k} \Xi_{i k} \theta_{k j} .
$$

Substituting (2.9) into the above equation we have

$$
\begin{align*}
\sum_{k} \Xi_{i j ; k} \theta_{k}= & -(d \alpha) h_{i j}-\alpha d h_{i j}+\left(d h_{1 i}\right) h_{1 j}+h_{1 i}\left(d h_{1 j}\right) \tag{3.1}\\
& +\alpha \sum_{k} h_{k j} \theta_{k i}-\alpha h_{1 j} \theta_{1 i}-\beta h_{1 j} \theta_{2 i}-c \delta_{j 1} \theta_{1 i} \\
& +\alpha \sum_{k} h_{i k} \theta_{k j}-\alpha h_{1 i} \theta_{1 j}-\beta h_{1 i} \theta_{2 j}-c \delta_{i 1} \theta_{1 j} .
\end{align*}
$$

In the following, we assume that $\beta \neq 0$.

Our assumption $\nabla_{\xi} R_{\xi}=0$ is equivalent to $\Xi_{i j ; 1}=0$, which can be stated as follows:

$$
\begin{align*}
& \varepsilon=0, \quad \alpha \delta+c=0, \quad h_{3 p}=0 \tag{3.2}\\
& \left(\beta^{2}-\alpha \gamma\right)_{1}-2 \alpha \sum_{p} h_{2 p} Y_{p 1}=0 \tag{3.3}\\
& \left(\beta^{2}-\alpha \gamma-c\right) X_{1}+\alpha \sum_{p} h_{2 p} Z_{p 1}=0 \tag{3.4}\\
& \left(\alpha h_{2 p}\right)_{1}+\alpha \sum_{q} h_{p q} Y_{q 1}+\left(\beta^{2}-\alpha \gamma\right) Y_{p 1}-\alpha \sum_{q} h_{2 q} \Gamma_{q p 1}=0, \tag{3.5}\\
& \alpha h_{2 p} X_{1}-\sum_{q}\left(\alpha h_{q p}+c \delta_{p q}\right) Z_{q 1}=0 \tag{3.6}\\
& -\left(\alpha h_{p q}\right)_{1}+\alpha h_{2 q} Y_{p 1}+\alpha \sum_{r} h_{r q} \Gamma_{r p 1}+\alpha h_{2 p} Y_{q 1}+\alpha \sum_{r} h_{p r} \Gamma_{r q 1}=0 \tag{3.7}
\end{align*}
$$

Hereafter we shall use (3.2) without quoting.
Furthermore we assume that $R_{\xi} \phi S=S \phi R_{\xi}$. Under the assumption $\nabla_{\xi} R_{\xi}=0$, we have the following additional equations

$$
\begin{align*}
& \left(h \delta-\delta^{2}+(2 n+1) c\right) h_{2 p}=0, \tag{3.8}\\
& \widetilde{R_{\xi}} \tilde{\phi} A=0, \\
& \widetilde{R_{\xi}} \tilde{\phi} \tilde{S}=\tilde{S} \tilde{\phi} \widetilde{R_{\xi}} . \tag{3.10}
\end{align*}
$$

where $A={ }^{t}\left(h_{24}, h_{25}, \ldots, h_{2,2 n-1}\right), \widetilde{R_{\xi}}=\left(\Xi_{p q}\right), \tilde{\phi}=\left(\phi_{p q}\right), \tilde{S}=\left(S_{p q}\right)$.
Now, properly speaking, we should denote the equation (2.3) by, e.g., (23) $)_{i j k}$. In this paper we denote it by $(i j k)$ simply. Then we have the following equations (112)-(q1p).
(112) $\alpha_{2}-\beta_{1}=0$,
(212) $\quad \beta_{2}-\gamma_{1}-2 \sum_{p} h_{2 p} Y_{p 1}=0$,
(113) $\alpha_{3}+3 \beta \delta-\alpha \beta+\beta X_{1}=0$,
(213) $\beta_{3}-\alpha \delta+\gamma \delta+(\gamma-\delta) X_{1}-\beta^{2}-\sum_{p} h_{2 p} Z_{p 1}=c$,
(313) $\beta X_{3}+\delta_{1}=0$,
(223) $\quad \gamma_{3}-2 \beta \delta+2 \sum_{p} h_{2 p} Y_{p 3}+(\gamma-\delta) X_{2}-\beta \gamma-\sum_{p} h_{2 p} Z_{p 2}=0$,
(323) $\sum_{p} h_{2 p} Z_{p 3}-\delta_{2}-(\gamma-\delta) X_{3}=0$,
$(1 p 1) \quad \alpha_{p}+\beta Y_{p 1}=0$,
(12p) $\quad \beta_{p}+2 \sum_{q, r} h_{2 q} \phi_{r q} h_{r p}+\beta Y_{p 2}+\alpha \sum_{q} \phi_{q p} h_{2 q}=0$,
(13p) $-2 \delta h_{2 p}+\beta Y_{p 3}+\alpha h_{2 p}-\beta X_{p}=0$,
(22p) $\quad \gamma_{p}+2 \sum_{q} h_{2 q} Y_{q p}-h_{2 p 2}-\sum_{q} h_{q p} Y_{q 2}+\beta \sum_{q} \phi_{q p} h_{2 q}+\gamma Y_{p 2}+\sum_{q} h_{2 q} \Gamma_{q p 2}=0$,
(23p) $\delta X_{p}+\beta h_{2 p}-\gamma X_{p}+\sum_{q} h_{2 q} Z_{q p}-h_{2 p 3}-\sum_{q} h_{q p} Y_{q 3}+\gamma Y_{p 3}+\sum_{q} h_{2 q} \Gamma_{q p 3}=0$,
(33p) $\quad \delta_{p}+h_{2 p} X_{3}-\sum_{q} h_{q p} Z_{q 3}+\delta Z_{p 3}=0$,
(21p) $\quad \beta_{p}+\sum_{q, r} h_{2 q} \phi_{r q} h_{r p}-h_{2 p 1}-\sum_{q} h_{q p} Y_{q 1}+\gamma Y_{p 1}+\sum_{q} h_{2 q} \Gamma_{q p 1}=0$,
(31p) $-\delta h_{2 p}+\alpha h_{2 p}-\beta X_{p}+h_{2 p} X_{1}-\sum_{q} h_{q p} Z_{q 1}+\delta Z_{p 1}=0$,
(32p) $\delta X_{p}+\beta h_{2 p}-\gamma X_{p}+\sum_{q} h_{2 q} Z_{q p}+h_{2 p} X_{2}-\sum_{q} h_{p q} Z_{q 2}+\delta Z_{p 2}=0$,
(1pq) $\quad 2 \sum_{r, s} h_{r p} \phi_{s r} h_{s q}-\alpha \sum_{r} \phi_{r p} h_{r q}+\alpha \sum_{r} \phi_{r q} h_{r p}-\beta Y_{p q}+\beta Y_{q p}=-2 c \phi_{p q}$,
(2pq) $\quad h_{2 p q}+\sum_{r} h_{r p} Y_{r q}-\beta \sum_{r} \phi_{r p} h_{r q}-\gamma Y_{p q}-\sum_{r} h_{2 r} \Gamma_{r p q}-h_{2 q p}$

$$
-\sum_{r} h_{r q} Y_{r p}+\beta \sum_{r} \phi_{r q} h_{r p}+\gamma Y_{q p}+\sum_{r} h_{2 r} \Gamma_{r q p}=0
$$

$$
\begin{aligned}
& (q 1 p) \quad \sum_{r, s} h_{r q} \phi_{s r} h_{s p}-\alpha \sum_{r} \phi_{r q} h_{r p}-\beta Y_{q p}-h_{p q 1} \\
& \quad+h_{2 q} Y_{p 1}+\sum_{r} h_{r q} \Gamma_{r p 1}+h_{2 p} Y_{q 1}+\sum_{r} h_{r p} \Gamma_{r q 1}=c \phi_{p q},
\end{aligned}
$$

$$
\begin{aligned}
(q 3 p) \quad h_{3 q p} & -\varepsilon Y_{q p}-\delta Z_{q p}-\sum_{r} h_{3 r} \Gamma_{r q p}-h_{2 q} X_{p}+\sum_{r} h_{q r} Z_{r p}-h_{q p 3} \\
& +h_{q 2} Y_{p 3}+h_{q 3} Z_{p 3}+\sum_{r} h_{q r} \Gamma_{r p 3}+h_{p 2} Y_{q 3}+h_{p 3} Z_{q 3}+\sum_{r} h_{p r} \Gamma_{r q 3}=0 .
\end{aligned}
$$

Remark. We did not write $(p 2 q),(3 p q)$ and ($p q r$) since we need not use them.

4. Formulas and Lemmas

Promise. In the following, we shall abbreviate the expression "take account of the coefficient of θ_{i} in the exterior derivative of \ldots " to "see θ_{i} of d of \ldots ".

In this section we study the crucial case where $\beta \neq 0$. By (3.6) and (31p) we have

$$
\begin{equation*}
\beta X_{p}=(\alpha-\delta) h_{2 p} \tag{4.1}
\end{equation*}
$$

This and (13p) imply that

$$
\begin{equation*}
\beta Y_{p 3}=\delta h_{2 p} \tag{4.2}
\end{equation*}
$$

The equation (3.9) can be rewrittened as

$$
\begin{equation*}
\sum_{q, r}\left(\alpha h_{p q}+c \delta_{p q}\right) \phi_{q r} h_{r 2}=0 \tag{4.3}
\end{equation*}
$$

which, together with (4.2), implies

$$
\beta \sum_{q, r}\left(h_{p q}-\delta \delta_{p q}\right) Z_{q 3}=\delta \sum_{q, r}\left(h_{p q}-\delta \delta_{p q}\right) \phi_{q r} Y_{r 3}=0
$$

Hence it follows from (33p) and ($1 p 1$) that

$$
\begin{equation*}
\delta_{p}=-h_{2 p} X_{3} \quad \text { and } \quad \alpha_{p}=-\beta Y_{p 1} . \tag{4.4}
\end{equation*}
$$

Thus since (4.4) and $\alpha_{p} \delta+\alpha \delta_{p}=0$ obtained from (3.2) we have

$$
\begin{equation*}
\beta \delta Y_{p 1}=-\alpha h_{2 p} X_{3}, \tag{4.5}
\end{equation*}
$$

and so $\sum_{p} h_{2 p} Z_{p 1}=0$. By (4.2), we have

$$
\begin{equation*}
\sum_{p} h_{2 p} Z_{p 3}=\sum_{p, q} h_{2 p} \phi_{p q} Y_{q 3}=\frac{\delta}{\beta} \sum_{p, q} h_{2 p} \phi_{p q} h_{2 q}=0 . \tag{4.6}
\end{equation*}
$$

From (3.6), (4.3) and (4.5) we have

$$
\begin{equation*}
h_{2 p} X_{1}=0 \tag{4.7}
\end{equation*}
$$

Now we shall prove the following key lemma.

Lemma 2. $H\left(e_{2}\right) \in \operatorname{span}\left\{e_{1}, e_{2}\right\}$.

Proof. Suppose that $h_{2 p} \neq 0$. Then from (4.7) we have $X_{1}=0$. We can select the vector e_{4} so that $h_{24} \neq 0$ and $h_{25}=\cdots=h_{2,2 n-1}=0$. We put $e_{5}:=\phi e_{4}$ and $\rho:=h_{24}(\neq 0)$. Note that $\phi_{54}=1$. Then by (4.3) we have

$$
h_{55}=\delta, \quad h_{p 5}=0 \quad(p \neq 5)
$$

Put $p=5$ in (32p). Then by above equation and (4.1) we have $X_{5}=0$ and so $Z_{45}=0$. Thus we have $Y_{55}=0$. Furthermore, put $p=q=5$ in $(q 1 p)$. Then, since $\Gamma_{551}=Y_{55}=0$, we have

$$
\begin{equation*}
\alpha_{1}=\delta_{1}=0 \tag{4.8}
\end{equation*}
$$

Thus, from (313), (323), (4.6) and (112) we have

$$
\begin{align*}
& X_{3}=0 \tag{4.9}\\
& \alpha_{2}=\delta_{2}=0 \\
& \beta_{1}=0
\end{align*}
$$

By (4.4) and (4.9) we have $\alpha_{p}=\delta_{p}=0$. Thus it follows from ($1 p 1$) that

$$
\begin{equation*}
\alpha_{p}=\delta_{p}=Y_{p 1}=Z_{p 1}=0 \tag{4.12}
\end{equation*}
$$

Now we put $F=\alpha, i=1$ and $j=p$ in Lemma 1. Then, from (2.7), (4.8), (4.10) and (4.12) we have

$$
0=\alpha_{1 p}-\alpha_{p 1}=\sum_{k} \alpha_{k} \Gamma_{k 1 p}-\sum_{k} \alpha_{k} \Gamma_{k p 1}=\alpha_{3}\left(\Gamma_{31 p}-\Gamma_{3 p 1}\right)=\alpha_{3} h_{2 p} .
$$

Thus we have $\alpha_{3}=0$. Hence it follows from (4.8), (4.10) and (4.12) that α and δ are constant, which, together with (113), imply

$$
\begin{equation*}
\alpha=3 \delta \tag{4.13}
\end{equation*}
$$

On the other hand, seeing $\theta_{1} \wedge \theta_{3}$ of d of θ_{23}, we have

$$
\begin{equation*}
X_{2}=-2 \beta \tag{4.14}
\end{equation*}
$$

Thus, from (312) and (4.13) we have

$$
\begin{equation*}
2 \delta \gamma+\beta^{2}=-c \tag{4.15}
\end{equation*}
$$

Seeing θ_{1} and θ_{2} of d of (4.15) and taking account of (4.8), (4.11) and (212), we have

$$
\begin{equation*}
\gamma_{1}=0, \quad \beta_{2}=0 \quad \text { and } \quad \gamma_{2}=0 \tag{4.16}
\end{equation*}
$$

Moreover, seeing θ_{5} of d of (4.15), we have

$$
\begin{equation*}
\delta \gamma_{5}+\beta \beta_{5}=0 \tag{4.17}
\end{equation*}
$$

From (3.5) and (4.12) we have

$$
h_{2 p 1}-\sum_{q} h_{2 q} \Gamma_{q p 1}=0 .
$$

This, together with (21p) and (12p), implies

$$
\begin{aligned}
& \beta_{p}+\rho h_{5 p}=0 \\
& \beta_{p}+2 \rho h_{5 p}+\alpha \rho \phi_{4 p}+\beta Y_{p 2}=0 .
\end{aligned}
$$

Put $p=4,5,6, \ldots, 2 n-1$ in above two equations to get

$$
\begin{align*}
& \beta_{p}=\left\{\begin{array}{ll}
0 & (p \neq 5) \\
-\rho \delta & (p=5)
\end{array}, \quad Y_{p 2}= \begin{cases}0 & (p \neq 5) \\
\rho(\alpha-\delta) / \beta & (p=5)\end{cases} \right. \tag{4.18}\\
& Z_{p 2}= \begin{cases}0 & (p \neq 4) \\
-\rho(\alpha-\delta) / \beta & (p=4)\end{cases}
\end{align*}
$$

Hence from (4.1), (4.2), (4.17) and (4.18) we have

$$
\begin{align*}
& X_{p}=\left\{\begin{array}{ll}
0 & (p \neq 4) \\
\rho(\alpha-\delta) / \beta & (p=4)
\end{array}, \quad Y_{p 3}=\left\{\begin{array}{ll}
0 & (p \neq 4) \\
-\rho \delta / \beta & (p=4)
\end{array},\right.\right. \tag{4.19}\\
& Z_{p 3}=\left\{\begin{array}{ll}
0 & (p \neq 5) \\
-\rho \delta / \beta & (p=5)
\end{array}, \quad \gamma_{p}= \begin{cases}0 & (p \neq 5) \\
-\rho \beta & (p=5)\end{cases} \right.
\end{align*}
$$

Now, by (213), (223), (4.15) and (4.19) we have

$$
\begin{align*}
& \beta_{3}=\beta^{2}-\gamma \delta=-\alpha \gamma-c=3 \delta(\delta-\gamma) \tag{4.20}\\
& \gamma_{3}=3 \beta \gamma-4 \rho^{2} \delta / \beta
\end{align*}
$$

On the other hand, if we put $F=\beta$ and γ in Lemma 1, then from (4.11), (4.12), (4.15), (4.16), (4.18) and (4.19) we have

$$
\begin{align*}
& \gamma \beta_{3}+\rho \beta_{5}=0, \tag{4.21}\\
& \gamma \gamma_{3}+\rho \gamma_{5}=0 .
\end{align*}
$$

Eliminating $\beta_{3}, \beta_{5}, \gamma_{3}, \gamma_{5}, \rho$ and β from (4.17), (4.18), (4.20) and (4.21), we have

$$
4 \gamma^{2}-6 \gamma \delta-c=0
$$

Consequently, γ is constant, which contradicts $\gamma_{5}=\rho \beta$.

Owing to Lemma 2 the matrix $\left(h_{p q}\right)$ is diagonalizable, that is, for a suitable choice of a orthonormal frame field $\left\{e_{p}\right\}$ we can set

$$
h_{p q}=\lambda_{p} \delta_{p q} .
$$

Then it is easy to see

$$
\begin{align*}
& \tilde{R}_{\xi}=-\left(\left(\alpha \lambda_{p}+c\right) \delta_{p q}\right), \tag{4.22}\\
& \tilde{S}=\left(\left\{h \lambda_{p}-\left(\lambda_{p}\right)^{2}+K\right\} \delta_{p q}\right),
\end{align*}
$$

where we put $K=(2 n+1) c$.
Here we shall sum up all equations obtained from Lemma 2.
From (4.1), (4.2) and (4.4) we have

$$
\begin{equation*}
X_{p}=Y_{p 1}=Z_{p 1}=Y_{p 3}=Z_{p 3}=0, \quad \alpha_{p}=\delta_{p}=0 \tag{4.23}
\end{equation*}
$$

This, together with (3.3) and (3.4), imply

$$
\begin{align*}
& \left(\beta^{2}-\alpha \gamma\right)_{1}=0 \tag{4.24}\\
& \left(\beta^{2}-\alpha \gamma-c\right) X_{1}=0 . \tag{4.25}
\end{align*}
$$

Put $p=q$ in (3.7). Then we have

$$
\begin{equation*}
\left(\alpha \lambda_{p}\right)_{1}=0 . \tag{4.26}
\end{equation*}
$$

Moreover, from (112)-(32p) we have

$$
\begin{equation*}
\beta_{2}-\gamma_{1}=0 \tag{4.28}
\end{equation*}
$$

$$
\begin{equation*}
(\alpha-\delta) \gamma-\beta X_{2}+(\gamma-\delta) X_{1}-\beta^{2}=-c \tag{4.29}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{3}+3 \beta \delta-\alpha \beta+\beta X_{1}=0 \tag{4.30}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{3}-\alpha \delta+\gamma \delta+(\gamma-\delta) X_{1}-\beta^{2}=c \tag{4.31}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{1}+\beta X_{3}=0 \tag{4.32}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{3}-2 \beta \delta+(\gamma-\delta) X_{2}-\beta \gamma=0 \tag{4.33}
\end{equation*}
$$

$$
\begin{equation*}
\delta_{2}+(\gamma-\delta) X_{3}=0 \tag{4.34}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{p}=0, \tag{4.35}
\end{equation*}
$$

$$
\begin{equation*}
Y_{p 2}=0, \quad Z_{p 2}=0 \tag{4.36}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{2}-\beta_{1}=0 \tag{4.27}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{p}=0 \tag{4.37}
\end{equation*}
$$

It follows from ($q 1 p$) and (3.7) that

$$
\begin{equation*}
\alpha \beta Y_{q p}=\alpha \lambda_{p} \lambda_{q} \phi_{p q}-\alpha^{2} \lambda_{p} \phi_{p q}+\alpha_{1} \lambda_{p} \delta_{p q}-c \alpha \phi_{p q} . \tag{4.38}
\end{equation*}
$$

From this, $(2 p q)$ and ($q 3 p$) we have

$$
\begin{gather*}
\beta^{2}\left(\lambda_{p}+\lambda_{q}\right) \phi_{p q}-\left(\lambda_{p}-\gamma\right)\left(\lambda_{p} \lambda_{q}-\alpha \lambda_{q}-c\right) \phi_{p q} \tag{4.39}\\
-\left(\lambda_{q}-\gamma\right)\left(\lambda_{p} \lambda_{q}-\alpha \lambda_{p}-c\right) \phi_{p q}=0
\end{gather*}
$$

$$
\begin{equation*}
\left(\lambda_{q}-\delta\right)\left[\alpha\left\{\left(\lambda_{q}\right)^{2}-\alpha \lambda_{q}-c\right\} \delta_{p q}+\alpha_{1} \lambda_{q} \phi_{p q}\right]-\alpha \beta\left\{h_{q p 3}+\left(\lambda_{p}-\lambda_{q}\right) \Gamma_{q p 3}\right\}=0 \tag{4.40}
\end{equation*}
$$

If $p=q$ in above equation, then we have

$$
\begin{equation*}
\left(\lambda_{p}-\delta\right)\left\{\left(\lambda_{p}\right)^{2}-\alpha \lambda_{p}-c\right\}-\beta\left(\lambda_{p}\right)_{3}=0 \tag{4.41}
\end{equation*}
$$

5. Proof of Main Theorem

In this section we prove

Main Theorem. Let M be a real hypersurface of a complex space form $M_{n}(c), c \neq 0, n \geq 3$ which satisfies $\nabla_{\xi} R_{\xi}=0$. Then M holds $R_{\zeta} \phi S=S \phi R_{\zeta}$ if and only if M is locally congruent to one of the following:
(I) in case that $M_{n}(c)=P_{n} \mathbf{C}$ with $\eta(H \xi) \neq 0$,
$\left(A_{1}\right)$ a geodesic hypersphere of radius r, where $0<r<\pi / 2$ and $r \neq \pi / 4$,
$\left(A_{2}\right)$ a tube of radius r over a totally geodesic $P_{k} \mathbf{C}(1 \leq k \leq n-2)$, where $0<r<\pi / 2$ and $r \neq \pi / 4$;
(II) in case that $M_{n}(c)=H_{n} \mathbf{C}$,
$\left(A_{0}\right)$ a horosphere,
$\left(A_{1}\right)$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane $H_{n-1} \mathbf{C}$,
$\left(A_{2}\right)$ a tube over a totally geodesic $H_{k} \mathbf{C}(1 \leq k \leq n-2)$.
Proof. First step. We prove $\beta=0$.
Suppose that $\beta \neq 0$. It follows from (4.22) that (3.10) is equivalent to

$$
\left(\rho_{p} \sigma_{q}-\sigma_{p} \rho_{q}\right) \phi_{p q}=0
$$

where $\rho_{p}=\alpha \lambda_{p}+c, \sigma_{p}=h \lambda_{p}-\left(\lambda_{p}\right)^{2}+K$. Therefore if $\phi_{q p} \neq 0$, then we have

$$
\begin{equation*}
\left(\lambda_{p}-\lambda_{q}\right)\left\{-c h+\alpha \lambda_{p} \lambda_{q}+c\left(\lambda_{p}+\lambda_{q}\right)+\alpha K\right\}=0 \tag{5.1}
\end{equation*}
$$

Here we assert that if $\phi_{p q} \neq 0$, then $\lambda_{p}=\lambda_{q}$. To prove this, we assume that there exist indices p and q such that

$$
\phi_{p q} \neq 0, \quad \lambda_{p}-\lambda_{q} \neq 0 .
$$

First we prepare three Lemmas.
Lemma 3. $\left(K \alpha^{2}-c \alpha h\right)_{1}=0$.
Proof. From (5.1) we have

$$
\left(\alpha^{2} K-\alpha h c\right)+\left(\alpha \lambda_{p}\right)\left(\alpha \lambda_{q}\right)+c\left(\alpha \lambda_{p}+\alpha \lambda_{q}\right)=0 .
$$

Lemma 3 follows from this and (4.26).

Lemma 4. $4 n \alpha \alpha_{1}-(\alpha \gamma)_{1}=0$.

Proof. From (4.26) we have $\left(\alpha \sum_{p} \lambda_{p}\right)_{1}=0$. Combining this equation with $h=\alpha+\gamma+\delta+\sum_{p} \lambda_{p}$, we have

$$
(\alpha(h-\alpha-\gamma-\delta))_{1}=0 .
$$

Eliminate h from this and Lemma 3.

Lemma 5. $\quad(\gamma-\delta-2 n \alpha) \alpha_{1}=0$ and $(\gamma-\delta-2 n \alpha) \beta_{1}=0$.

Proof. From (4.24) we have $2 \beta \beta_{1}-(\alpha \gamma)_{1}=0$. Hence it follows from Lemma 4 that

$$
\begin{equation*}
2 n \alpha \alpha_{1}-\beta \beta_{1}=0 . \tag{5.2}
\end{equation*}
$$

On the other hand, by (4.32) and (4.34) we have $(\gamma-\delta) \delta_{1}-\beta \delta_{2}=0$, and therefore $(\gamma-\delta) \alpha_{1}-\beta \alpha_{2}=0$. Thus Lemma 5 follows from (4.27) and (5.2).

We need to consider four cases.

Case I. Suppose that $\alpha_{1} \neq 0$ and $X_{1}=0$. Owing to Lemma 5, we have $\gamma-\delta-2 n \alpha=0$. Seeing θ_{3} of d of this equation and making use of (4.29), (4.30) and (4.33), we have

$$
\begin{equation*}
2 n \alpha^{2}\left(2 n \alpha^{2}-\delta^{2}+2 n c\right)+\beta^{2}\left\{3 \delta^{2}+(6 n+4) c-2 n \alpha^{2}\right\}=0 . \tag{5.3}
\end{equation*}
$$

Seeing θ_{1} of d of (5.3) and taking account of (3.2) and (5.2), we have

$$
\begin{equation*}
4 n^{2} \alpha^{4}+2 n \alpha^{2}\left\{3 \delta^{2}+(8 n+4) c\right\}-\beta^{2}\left(3 \delta^{2}+2 n \alpha^{2}\right)=0 . \tag{5.4}
\end{equation*}
$$

Eliminating β from (5.3) and (5.4), we have a polynomial of degree four with respect to δ containing the term $12 n \alpha^{2} \delta^{4} \neq 0$. This shows that δ is constant since $\alpha \delta+c=0$, which contradicts the assumption of Case I.

CASE II. Suppose that $\alpha_{1} \neq 0$ and $X_{1} \neq 0$. By (4.25) we have

$$
\beta^{2}-\alpha \gamma-c=0
$$

Then from (4.39) we have

$$
\left(-\lambda_{p} \lambda_{q}+2 c\right)\left(\lambda_{p}+\lambda_{q}\right)+2(\alpha+\gamma) \lambda_{p} \lambda_{q}-2 c \gamma=0
$$

Multiply above equation by α^{3} and see θ_{1} of d of this equation. Then, from Lemma 4 and (4.26) we have

$$
c\left(\alpha \lambda_{p}+\alpha \lambda_{q}-\alpha \gamma\right)+(2 n+1)\left(\alpha \lambda_{p}\right)\left(\alpha \lambda_{q}\right)-2 c n \alpha^{2}=0
$$

Again, seeing θ_{1} of d of above equation, we have $c n \alpha \alpha_{1}=0$, which is a contradiction.

CASE III. Suppose that $\alpha_{1}=0$ and $\beta^{2}-\alpha \gamma-c \neq 0$. From (4.24), (4.25), (4.27), (4.28), (4.32) and (4.34) we have

$$
\begin{equation*}
\delta_{1}=\alpha_{2}=\delta_{2}=X_{3}=\beta_{1}=\gamma_{1}=\beta_{2}=X_{1}=0 \tag{5.5}
\end{equation*}
$$

Seeing $\theta_{2} \wedge \theta_{3}$ of d of θ_{23} we have $\beta_{3}-2 \beta^{2}=\gamma \delta+2 c$, which, together with (4.31) and (5.5), imply

$$
\alpha \delta-\gamma \delta-\beta^{2}=\gamma \delta+c
$$

Substituting of (4.14) and (5.5) into (4.29) we have

$$
\begin{equation*}
\alpha \gamma-\gamma \delta+\beta^{2}=-c \tag{5.6}
\end{equation*}
$$

Eliminating β from above two equations, we have

$$
\begin{equation*}
\alpha \delta-3 \gamma \delta+\alpha \gamma=0 \tag{5.7}
\end{equation*}
$$

Seeing θ_{2} of d of (5.6) and (5.7), we have $(\alpha-\delta) \gamma_{2}=0$ and $(\alpha-3 \delta) \gamma_{2}=0$. Hence we have $\gamma_{2}=0$.

Now put $F=\alpha, \beta, \gamma$ and $i=1, j=2$ in Lemma 1. Then, we have

$$
\alpha_{3} \gamma=\beta_{3} \gamma=\gamma_{3} \gamma=0
$$

If $\gamma \neq 0$, then from (4.14) and (4.33) we have a contradiction. Thus $\gamma=0$, which contradicts (5.7).

Case IV. Suppose that

$$
\begin{align*}
& \alpha_{1}=0, \tag{5.8}\\
& \beta^{2}-\alpha \gamma-c=0 . \tag{5.9}
\end{align*}
$$

Seeing θ_{2} of d of (5.9), we have

$$
\begin{equation*}
\left(\beta^{2}-\alpha \gamma\right)_{3}=2 \beta \beta_{3}-\gamma \alpha_{3}-\alpha \gamma_{3}=0 \tag{5.10}
\end{equation*}
$$

From (4.29)-(4.31), (4.33) and (5.9) we have the following:

$$
\begin{align*}
& -\delta \gamma-\beta X_{2}+(\gamma-\delta) X_{1}=0 \tag{5.11}\\
& \alpha_{3}+3 \beta \delta-\alpha \beta+\beta X_{1}=0 \tag{5.12}\\
& \beta_{3}+(\gamma-\delta) X_{1}+\gamma \delta-\alpha \gamma-c=0 \tag{5.13}\\
& \gamma_{3}-2 \beta \delta+(\gamma-\delta) X_{2}+\beta \gamma=0 \tag{5.14}
\end{align*}
$$

Substituting of (5.12)-(5.14) into (5.10) we have

$$
(\delta-\gamma)\left(X_{1}-4 \alpha\right)=0,
$$

by virtue of (5.11). If $\delta=\gamma$, then by (5.9) we have a contradiction. Thus

$$
\begin{equation*}
X_{1}=4 \alpha \tag{5.15}
\end{equation*}
$$

Substituting of this equation into (5.11)-(5.13) we have

$$
\begin{align*}
& \beta X_{2}=4 \alpha(\gamma-\delta)-\delta \gamma \tag{5.16}\\
& \alpha_{3}+3 \beta \delta+3 \alpha \beta=0 \\
& \beta_{3}+3 \alpha \gamma-3 \alpha \delta+\gamma \delta=0 . \tag{5.18}
\end{align*}
$$

It follows from (4.33), (5.9) and (5.16) that

$$
\begin{equation*}
\alpha \gamma_{3}+\beta(3 \alpha \gamma-6 \alpha \delta-\gamma \delta)=0 \tag{5.19}
\end{equation*}
$$

From (4.32), (5.2) and (5.8) we have $X_{3}=0$ and $\beta_{1}=0$ and therefore $\alpha_{2}=\delta_{2}=0$ because of (4.27). Hence, seeing θ_{1} of d of (5.9), we have $\gamma_{1}=0$, and so $\beta_{2}=0$.

Now put $F=\alpha$ and β in Lemma 1. Then we have

$$
\alpha_{3}\left(\gamma+X_{1}\right)=0, \quad \beta_{3}\left(\gamma+X_{1}\right)=0 .
$$

If $\gamma+X_{1} \neq 0$, then we have $\alpha_{3}=\beta_{3}=0$. It follows from (4.23) and (4.35) that α, β and δ are constant and that $\alpha_{i}=\beta_{i}=0$ for $i=1,2$. Furthermore, by (5.9) we see that γ is constant. Thus from (5.17)-(5.19) we have

$$
\begin{aligned}
& \alpha+\delta=0, \\
& 3 \alpha \gamma-3 \alpha \delta+\gamma \delta=0, \\
& 3 \alpha \gamma-6 \alpha \delta-\gamma \delta=0 .
\end{aligned}
$$

Hence, by (3.2) and (5.9) we have $\alpha^{2}-c=0$ and $2 \beta^{2}+c=0$, which is a contradiction. Therefore $X_{1}=-\gamma$, which, together with (5.15), implies $\gamma=-X_{1}=$ -4α. Thus it follows from (5.17) that $\gamma_{3}=-4 \alpha_{3}=12 \beta(\delta+\alpha)$. Hence from (5.19) we have a contradiction $\alpha \delta=0$.

Consequently, for all p, q such that $\phi_{p q} \neq 0$, we have $\lambda_{p}=\lambda_{q}$. We take p, q such that $\phi_{p q} \neq 0$. Then by (4.39) we have

$$
\begin{equation*}
\beta^{2} \lambda_{p}-\left(\lambda_{p}-\gamma\right)\left\{\left(\lambda_{p}\right)^{2}-\alpha \lambda_{p}-c\right\}=0 \tag{5.20}
\end{equation*}
$$

Furthermore, from ($q 3 p$), (4.38) and (4.26) we have

$$
\left(\lambda_{p}\right)_{1}\left(\lambda_{p}-\delta\right)=0
$$

If $\left(\lambda_{p}\right)_{1}=0$, then (4.26) implies $\alpha_{1}=\delta_{1}=0$. Thus it follows from (4.32), (4.34) and (4.27) that $X_{3}=\alpha_{2}=\delta_{2}=\beta_{1}=0$. Seeing θ_{1} of d of (5.20), we have $\left\{\left(\lambda_{p}\right)^{2}-\alpha \lambda_{p}-c\right\} \gamma_{1}=0$. If $\left(\lambda_{p}\right)^{2}-\alpha \lambda_{p}-c=0$, then from (5.20), we have $\lambda_{p}=0$, which contradicts the assumption. Hence we have $\gamma_{1}=0$. Thus, from (4.28) we have $\beta_{2}=0$. If $X_{1}=0$, then by the same argument as that in Case III, we have a contradiction. Thus we have $X_{1} \neq 0$ and therefore $\beta^{2}-\alpha \gamma-c=0$ because of (4.25). By the same argument as that in Case IV, we have contradiction. Hence we have $\lambda_{p}=\delta$. From (4.41) and (113) we have $\left(\lambda_{p}\right)_{3}=\delta_{3}=\alpha_{3}=0$ and $X_{1}=\alpha-3 \delta_{p}$. Thus by (4.25) we have $\left(\beta^{2}-\alpha \gamma-c\right)(\alpha-3 \delta)=0$. If $\alpha-3 \delta=0$, then α and δ are constant and therefore by the argument as above, we have a contradiction. Thus $\beta^{2}-\alpha \gamma-c=0$. From (5.20) we have $(\alpha+\delta)(\delta-\gamma)=0$. If $\alpha+\delta=0$, then α and δ are constant, which is also a contradiction. Hence $\delta-\gamma=0$. However from (5.20) we have $\beta=0$, which is a contradiction. Consequantly we proved $\beta=0$.

Second step. Since (2.6) and $\beta=0$, we see that α is constant in M (see [7]). Thus from (3.1) our assumption $\Xi_{i j ; 1}=0$ is equivalent to $\alpha h_{i j ; 1}=0$. Put $j=1$ in
(2.3). Then by above equation we have $\alpha h_{i 1 ; k}=-c \alpha \phi_{i k}$. Therefore since (2.1) and $d \xi_{i}=0$, we have

$$
\alpha \sum_{k, l} h_{i k} \phi_{l k} h_{k j}+\alpha^{2} \sum_{k} \phi_{k i} h_{k j}=-\alpha h_{i 1 ; j}=c \alpha \phi_{i j}
$$

which implies that $\alpha^{2}(\phi H-H \phi)=0$.
Here, we note the case $\alpha=0$ corresponds to the case of tube of radius $\pi / 4$ in $P_{n} \mathbf{C}$ (see [2]). However, in the case of $H_{n} \mathbf{C}$ it is known that α never vanishes for Hopf hypersurfaces (cf. [1]). Owing to Okumura's work or Montiel and Romero's work stated in the Introduction, we complete the proof of our Main Theorem.

References

[1] Berndt, J., Real hypersurfaces with constant principal curvatures in complex hyperblic spaces, J. Reine Angew. Math. 395 (1989), 132-141.
[2] Cecil, T. E. and Ryan, P. J., Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
[3] Cho, J. T. and Ki, U-H., Real hypersurfaces in complex projective spaces in terms of Jacobi operators, Acta Math. Hungar. 80 (1998), 155-167.
[4] Cho, J. T. and Ki, U-H., Jacobi operators on real hypersurfaces in complex projective spaces, Tsukuba J. Math. 22 (1998), 145-156.
[5] Cho, J. T. and Ki, U-H., Real hypersurfaces in complex space forms with Reeb flow symmetric Jacobi operator, Canadian Math. Bull. 51 (2008), 359-371.
[6] Ki, U-H., Real hypersurfaces with pararell Ricci tensor of complex space form, Tsukuba J. Math. 13 (1989), 73-81.
[7] Ki, U-H. and Suh, Y. J., On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32 (1990), 207-221.
[8] Kim, U. K., Nonexistence of Ricci-parallel real hypersurfaces in $P_{2}(\mathbf{C})$ or $H_{2}(\mathbf{C})$, Bull. Korean. Math. Soc. 41 (2004), 699-708.
[9] Kimura, M., Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149.
[10] Montiel, S. and Romero, A., On some real hypersurfaces of a complex hyperblic space, Geom. Dedicata 20 (1986), 245-261.
[11] Okumura, M., On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
[12] Ortega, M., Pérez, J. D. and Santos, F. G., Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms, Rocky Mountain J. Math. 36 (2006), 1603-1613.
[13] Pérez, J. D., Santos, F. G. and Suh, Y. J., Real hypersurfaces in complex projective spaces whose structure Jacobi operator is D-parallel, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), 459-469.
[14] Takagi, R., On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 19 (1973), 495-506.
[15] Takagi, R., Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 15 (1975), 43-53, 507-516.

U-Hang Ki
Department of Mathematics
Kyungpook National University
Daegu 702-701, Korea
E-mail address: uhangki2005@yahoo.co.kr
Hiroyuki Kurihara
Department of Computer and Media Science
Saitama Junior College
Hanasaki-ebashi, Kazo, Saitama 347-8503, Japan
E-mail address: kurihara@sjc.ac.jp
Current address
Department of Liberal Arts and Engineering Sciences
Hachinohe National College of Technology
Hachinohe, Aomori 039-1192, Japan
E-mail address: kurihara-g@hachinohe-ct.ac.jp
Ryoichi Takagi
Department of Mathematics and Informatics
Chiba University
Chiba 263-8522, Japan
E-mail address: takagi@math.s.chiba-u.ac.jp
Current address
4-2859-51 Ohnomachi, Ichikawa, Chiba 272-0872, Japan

[^0]: 2000 Mathematics Subject Classification: 53B20, 53C15, 53C25.
 Keywords: complex space form, real hypersurface, structure Jacobi operator, Ricci tensor.
 Received December 4, 2007.
 Revised October 1, 2008.

