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Abstract

Medulloblastoma is a fatal brain tumor in children, primarily due to the presence of treat-

ment-resistant medulloblastoma stem cells. The energy metabolic pathway is a potential tar-

get of cancer therapy because it is often different between cancer cells and normal cells.

However, the metabolic properties of medulloblastoma stem cells, and whether specific

metabolic pathways are essential for sustaining their stem cell-like phenotype and radiore-

sistance, remain unclear. We have established radioresistant medulloblastoma stem-like

clones (rMSLCs) by irradiation of the human medulloblastoma cell line ONS-76. Here, we

assessed reactive oxygen species (ROS) production, mitochondria function, oxygen con-

sumption rate (OCR), energy state, and metabolites of glycolysis and tricarboxylic acid

cycle in rMSLCs and parental cells. rMSLCs showed higher lactate production and lower

oxygen consumption rate than parental cells. Additionally, rMSLCs had low mitochondria

mass, low endogenous ROS production, and existed in a low-energy state. Treatment with

the metabolic modifier dichloroacetate (DCA) resulted in mitochondria dysfunction, glycoly-

sis inhibition, elongated mitochondria morphology, and increased ROS production. DCA

also increased radiosensitivity by suppression of the DNA repair capacity through nuclear

oxidization and accelerated the generation of acetyl CoA to compensate for the lack of ATP.

Moreover, treatment with DCA decreased cancer stem cell-like characters (e.g., CD133

positivity and sphere-forming ability) in rMSLCs. Together, our findings provide insights into

the specific metabolism of rMSLCs and illuminate potential metabolic targets that might be

exploited for therapeutic benefit in medulloblastoma.
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Introduction

Brain tumors are the leading cause of cancer-related death in children, responsible for 7 per

106 deaths in the USA and approximately 10 per 106 deaths in Japan; medulloblastoma is the

most common malignant pediatric brain tumor, accounting for 20% of pediatric brain tumors

in the USA and 12% in Japan [1–4]. Although overall survival rates for medulloblastoma

patients have improved in recent years the morbidity rate remains significant, with survivors

often suffering from adverse neurologic, endocrinologic, and social effects with the current

treatment options [5–10]. Consequently, there is an urgent need to better understand the

mechanism of therapy refractoriness and to develop novel and specific tumor therapies with

reduced brain toxicity for medulloblastoma patients.

Recent molecular-based classifications divide medulloblastomas into four subtypes to allow

more accurate patient stratification and an appropriate clinical approach for each patient [9,

11]. However, it has been shown that medulloblastoma is composed of heterogeneous cancer

cell populations due to cell differentiation within individual tumors, including tumor cells

with stem cell-like properties termed medulloblastoma cancer stem-like cells (CSLCs) together

with other cancer cells [12, 13]. Previous clinical and biological evidence indicates that CSLCs

have tumor reconstruction capacity and are more resistant to radiation and conventional che-

motherapy than non-CSLCs, suggesting an important role in tumor recurrence [14–17].

Understanding medulloblastoma CSLCs in more depth will aid development of efficient and

effective novel therapies for medulloblastoma.

The energy metabolic pathway is largely differentiated between cancer and normal cells. In

particular, cancer cells exhibit higher glycolytic activity than normal cells and increased
18fluoro-2-deoxyglucose (FDG) avidity on positron emission tomography (PET). Glycolytic

ATP generation is crucial for cancer cells because glycolysis bifurcates into anabolic pathways

producing essential nucleotides, lipids, and amino acids for proliferation [18]. Interestingly,

recent studies have reported that pluripotent stem cell metabolism shifts from oxidative phos-

phorylation to aerobic glycolysis, similar to that observed in most cancers [19, 20]. During dif-

ferentiation, pluripotent stem cells downregulate glycolysis and switch to utilizing glycolysis-

derived pyruvate in their mitochondria through oxidative phosphorylation [21]. It is obvious

that energy metabolic pathways and mitochondria are important to maintain stem cell-like

phenotypes in normal cells and, as a corollary, we might assume that energy metabolic path-

ways and mitochondrial function are also important for CSLCs to maintain their stem cell-like

phenotype.

Several research groups have reported the metabolic preference of CSLCs in glioma, breast

cancer, pancreatic cancer, and leukemia [22–25]; however, the results are controversial. For

example, Feng et al. showed that a population enriched for breast tumor-initiating cells relies

more heavily on glycolysis than non-tumorigenic cancer cells, with decreased pyruvate dehy-

drogenase (Pdh) expression [22]. However, Lagadinou et al. showed that leukemia stem cells

are metabolically dormant and dependent on oxidative respiration rather than glycolysis for

energy generation, and rely on BCL-2–mediated oxidative respiration for energy homeostasis

[23]. The metabolic properties and specific metabolic pathways that sustain stem cell-like phe-

notypes and radioresistance of medulloblastoma CSLCs remain areas of active investigation.

We previously established radioresistant medulloblastoma stem cell-like clones (rMSLCs),

ONS-F8, ONS-B11, and ONS-F11, by irradiation of the ONS-76 human medulloblastoma cell

line [26]. These established clones show a high expression level of CD133, tumor sphere-form-

ing ability, side population ratio, and radioresistance compared with parental ONS-76 cells

[26]. Additionally, rMSLCs can be stably maintained in the same culture conditions as parental

ONS-76 cells and readily conform to experimental conditions. The first aim of this study was
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to identify the characteristics of metabolic pathways in medulloblastoma CSLCs in our experi-

mental system using established rMSLCs and parental ONS-76 cells.

Dichloroacetate (DCA) is a small molecule that promotes Pdh activity by inhibition of

pyruvate dehydrogenase kinase (Pdk). Originally, DCA was developed for the treatment of lac-

tic acidosis, but recent research indicates that DCA is also a prospective drug for several dis-

eases associated with metabolic change, including cancer and heart failure [27–29]. In

particular, previous reports have demonstrated that administration of DCA suppresses tumor

growth, increases cancer cell radiosensitivity, and reduces glycolysis-dependent CSLC mainte-

nance [22, 27, 30, 31]. The potential mechanism for this DCA-induced anticancer effect is

through promotion of oxidative phosphorylation and reactive oxygen species (ROS) genera-

tion, which in turn stimulates apoptosis, autophagy, and cell cycle arrest [27, 30, 32–34]. How-

ever, it is largely unknown how such changes occur in central carbon metabolism, including

glycolysis and the tricarboxylic acid (TCA) cycle, following DCA treatment, and how these

metabolic changes cause increased ROS production and extinction of stem cell-like properties

and radioresistance in medulloblastoma CSLCs. Thus, the second purpose of this study was to

examine these phenomena in rMSLCs after administration of DCA.

The results of this study revealed that rMSLCs displayed lower oxidative phosphorylation

activity and higher pyruvate kinase (PYK) activity and lactate production than parental cells.

Moreover, intervention with DCA modified multiple steps of glycolysis and the TCA cycle and

resulted in increased cellular oxidative stress and altered mitochondria morphology, thus sup-

pressing cancer stem cell-like phenotypes and radioresistance. Our findings also indicate that

CSLC metabolism plays an important role in maintaining cancer stem cell-like phenotypes

and radioresistance, and provide greater insight into the development of metabolic targeting

radiotherapy to disrupt medulloblastoma CSLCs.

Materials and methods

Cell line and culture conditions

The human ONS-76 medulloblastoma cell line was obtained from the RIKEN Cell Bank (Tsu-

kuba, Ibaraki, Japan). ONS-F8 and ONS-B11 cell lines were established from ONS-76 after

irradiation as previously described [26]. The cells were cultured in minimal essential medium

(MEM; Sigma-Aldrich Inc., Tokyo, Japan) containing 10% fetal bovine serum (FBS; Nichirei

Biosciences Inc., Tokyo, Japan), 100 mg/ml streptomycin, and 100 U/ml penicillin (Sigma-

Aldrich). Cells were incubated in a humidified atmosphere at 37˚C with a 5% CO2 atmosphere.

For subcultures, cells were rinsed with Ca2+- and Mg2+-free PBS (Sigma-Aldrich), and dis-

persed with 0.25% trypsin containing 0.5 mM ethylenediaminetetraacetate (EDTA; Sigma-

Aldrich). A final concentration of 50 mM DCA (Sigma-Aldrich) was added 48 h before analy-

sis. The number of cells was determined with TC10™ (Bio-Rad, Tokyo, Japan).

Tumorigenicity assay in immune-deficient mice

Cells were trypsinized and cell densities ranging from 100 to 1×106 cells were suspended in

200 μl of a 1:1 mixture of MEM and Matrigel™ (Becton Dickinson). Cells were transplanted

subcutaneously into NOD/SCID mice (4- to 6-week-old males; CLEA Japan, Inc., Tokyo,

Japan). Tumors were monitored 16 weeks after transplantation [35].

Intercellular ROS analysis

Intercellular ROS levels were detected by incubation with 10 μM 5-(and-6)-chloromethyl-

20,70-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA; Life Technologies,
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Tokyo, Japan) in culture media for 30 min. Cells were trypsinized and resuspended in MEM,

and at least 3×104 cells were analyzed by flow cytometry (FACSCalibur; Becton Dickinson,

Franklin Lakes, NJ, USA). The mean fluorescence intensity of each sample was normalized to

that of the ONS-76 control.

Measurement of nuclear redox state

Nuclear-specific oxidative stress was measured using a bisbenzimide-nitroxides probe that

localizes to cell nuclei and shows a substantial increase in fluorescence upon exposure to ROS

[36]. Cells were incubated with 10 μM bisbenzimide-nitroxides probe in culture media for 3 h,

trypsinized, and suspended in PBS. At least 1×104 cells were analyzed by flow cytometry

(MoFlo XDP; Beckman Coulter Inc., Brea, CA, USA). The mean fluorescence intensity of each

sample was normalized to that of ONS-76.

Analysis of mitochondria mass, membrane potential, and superoxide

production

Mitochondria mass, mitochondria membrane potential, and mitochondria-derived superox-

ide were detected using the fluorescent probes MitoGreen (2 μM; PromoKine, Heidelberg,

Germany), MitoRed (2 μM; PromoKine), and MitoSOX Red (5 μM; Life Technologies),

respectively. The cells were incubated with MitoGreen and MitoRed for 30 min and with Mito-

SOX for 10 min in culture media, trypsinized, and suspended in MEM. At least 3×104 cells

were analyzed by flow cytometry (FACSCalibur). The mean fluorescence intensity of each

sample was normalized to that of ONS-76.

Measurement of oxygen consumption rate (OCR) by MitoXpress

OCR was measured using a MitoXpress Xtra-Oxygen Consumption Assay kit (Luxcel Biosci-

ences, Cork, Ireland), according to the recommended protocol. Briefly, cells were cultured in

96-well plates (CulturPlate F; PerkinElmer Japan, Kanagawa, Japan) and the culture medium

was replaced with fresh medium before experiments. Oligomycin (1 μM; Sigma-Aldrich) or

carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP; 1 μM; Wako Pure Chemical

Industries, Osaka, Japan) were added to each well, followed by 10 μl of reconstituted MitoX-

press reagent and two drops of HS Mineral Oil. The plate was immediately measured kineti-

cally in a fluorescence plate reader (Varioskan LUX; Thermo Fisher Scientific, Kanagawa,

Japan) at 380/650 nm excitation/emission every 20 s over a period of 30 min.

Measurement of oxygen consumption rate (OCR) by electron spin

resonance (ESR)

The oxygen probe 5,9,14,18,23,27,32,36-octa-n-butoxy-2,3-naphthalocyanine (LiNc-BuO) has

been described previously [37, 38]. Cells were trypsinized, washed in MEM, and 1.25×105 cells

were suspended with 0.2 mg LiNc-BuO and 2% dextran before being drawn into a glass capil-

lary tube. The tube was sealed at both ends and subjected to X-band electron spin resonance

spectroscopy (FA200; JEOL, Tokyo, Japan) every 2 min. The cavity was maintained at 37˚C

using a temperature controller (ES-DVT4; JEOL). ESR conditions were as follows: microwave

frequency 9.4466 GHz, microwave power 1 mW, center field 322.650 mT, sweep width 0.5

mT, sweep time 1 min, and time constant 0.1 s. The spectral line widths were analyzed using a

WinRad (Radical Research, Tokyo, Japan). Line width was converted into O2 values and OCR

was calculated as described previously [37, 38].
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Fluorescence microscopy of mitochondria

Cells were fixed with 4% paraformaldehyde (PFA; Wako Pure Chemical Industries) at room

temperature for 10 min and washed three times in PBS before incubation with 2 μM Mito-

Green in PBS at room temperature for 30 min in the dark. Cells were washed three times and

mounted with fluorescence mounting medium (DAKO, Carpinteria, CA, USA). Images were

acquired with an inverted fluorescence microscope (BZ-X700, Keyence, Tokyo, Japan).

Transmission electron microscopy (TEM)

Cells were trypsinized and fixed with 2.5% glutaraldehyde in PBS for 12 h at 4˚C and washed

three times with PBS. Cells were post-fixed in 1% osmium tetroxide for 2 h at 4˚C and washed

three times with PBS. Cells were sequentially dehydrated using 50%, 70%, 80%, 95%, and

100% ethanol (10 min each), incubated in Epon solution (3 times, 1 h each), and maintained at

37˚C for 12 h, 45˚C for 12 h, and 60˚C for 2 days. Ultra-thin sections (70 nm) were made

using an ultra-microtome and imaged using a JEM-1400 transmission electron microscope

(JEOL). At least 50 mitochondria in each sample were analyzed by ImageJ software (NIH,

USA). Mitochondria circularity was calculated from the equation C = 4πS/L2, where S is the

mitochondria area and L is the mitochondria perimeter.

Measurement of CD133-positive ratio

Cells were trypsinized, washed with PBS containing 2% FBS, and 2×106 cells were suspended

in 80 μl of PBS with 2% FBS prior to addition of 20 μl FcR blocking reagent (Miltenyi Biotec

Inc., Tokyo, Japan) and 10 μl of phycoerythrin (PE)-conjugated anti-human CD133/1 mouse

IgG1 antibody (Miltenyi Biotec). After incubation for 30 min at 4˚C in the dark cells were

washed twice with 2% FBS in PBS and propidium iodide (PI) (Sigma-Aldrich) was added to a

final concentration of 1 μg/ml to detect dead cells. The cells were filtered through a 35-μm cell

strainer and at least 3×104 cells were analyzed by flow cytometry (FACSCalibur).

Tumor sphere assay

Cells were cultured in serum-free medium (SFM) composed of Dulbecco’s Modified Eagle

Medium/Nutrient Mixture F-12 (DMEM/ F12; GIBCO, Life Technologies), 20 ng/ml epider-

mal growth factor (EGF; (Sigma-Aldrich), 20 ng/ml basic fibroblast growth factor (bFGF;

Sigma-Aldrich) and 20 μl/ml B27 supplement (GIBCO, Life Technologies). Cells were plated

at a density of 1,000 cells/well on ultra-low attachment surface 24-well plates (Corning Inc.,

Lowell, MA, USA). DCA was added to treatment groups to a final concentration of 50 mM.

The number of spheres was counted at day 10.

Clonogenic assay

Cells in flasks were exposed to X-irradiation (130 kVp, 5 mA, approximately 0.9 Gy/min) at

doses of 2, 4, 6, and 8 Gy. After irradiation, the cells were trypsinized and counted, and the pre-

determined number of cells was plated onto three 60-mm dishes (Falcon, Becton Dickinson)

for each dose point. After incubation for 14 days, the colonies were fixed and stained with

0.25% methylene blue solution (Wako) in 90% ethanol solution. The number of surviving colo-

nies that included 50 cells or more was counted and averaged [39]. Survival curves were fitted

to the linear-quadratic model using DeltaGraph v.5.4 software (RedRock Software, Inc., Salt

Lake City, UT, USA) as previously described [40]. Sensitivity enhancement ratio at 4 Gy (SER

(4.0)) was calculated from the equation SER (4.0) = log Sf (DCA, 4.0) / log Sf (4.0), where Sf (DCA, 4.0)

and Sf (4.0) were surviving fractions at 4 Gy with and without DCA administration, respectively.

Metabolic analysis of rMSLCs

PLOS ONE | https://doi.org/10.1371/journal.pone.0176162 April 20, 2017 5 / 24

https://doi.org/10.1371/journal.pone.0176162


DNA agarose gel electrophoresis

After X-ray irradiation with 20 Gy, the cells were trypsinized and embedded into 0.6% mega-

base-agarose gel plugs. The plugs were treated with proteinase K in lysis buffer for 1 h on ice,

incubated at 50˚C overnight, treated with 0.1 mg/ml RNase in TE buffer at 37˚C for 1 h, and

embedded into a 0.6% megabase-agarose gel. DNA was fractionated by electrophoresis in

Tris-borate-EDTA running buffer (Wako) and visualized with an ImageQuant LAS 4000 (GE

healthcare Japan, Tokyo, Japan).

Metabolite analysis

Metabolite analysis was performed using C-Scope (Human Metabolome Technologies, Yama-

gata, Japan), according to the recommended protocol [41]. Briefly, the cells were washed twice

with 5% mannitol solution and treated with 0.8 ml of methanol and 0.55 ml of 8 μM internal

standard (IS). After centrifugation at 2,300 g, 4˚C for 5 min, the supernatants were collected

for centrifugal filtration through a 5-kDa-cutoff filter at 9,100 g, 4˚C for 3 h. The extracted

metabolites were stored at −80˚C until analysis. Concentrations of all charged compounds

were measured by capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS)

and capillary electrophoresis tandem mass spectrometry (CE-QqQMS; CE-MS/MS) as

described previously [41, 42].

Immunocytochemical staining of γ-H2AX

Cells were irradiated with 2 or 4 Gy and fixed in 4% PFA for 10 min at 0.5, 3, 6, and 24 h time

points. The fixed cells were washed in PBS, permeabilized in 0.5% Triton X- 100 (Wako),

rinsed again in PBS, and blocked with 10% donkey serum (Wako) in PBS with 0.5% Tween-20

(Wako) for 60 min at room temperature. The cells were sequentially incubated for 1.5 h with a

1:1,000 dilution of human monoclonal anti-phospho-histone H2AX (Ser139) antibody (EMD

Millipore, Darmstadt, Germany) in PBS with 1% donkey serum buffer and for 1 h with a

1:1,000 dilution of Alexa Fluor1 488-conjugated donkey anti-mouse IgG secondary antibody

(Life Technologies) in blocking buffer. The cells were counterstained with 4’,6-diamidino-

2-phenylindole (DAPI; Wako), mounted on slide glasses with DAKO fluorescent mounting

medium (Dako), and viewed using a fluorescence microscope (BZ-X700, Keyence).

Measurement of extracellular lactate production

Extracellular lactate production was measured using the Lactate Assay Kit (BioVision, Califor-

nia, USA), according to the recommended protocol. Briefly, cells were plated in 6-well plates

and fresh medium containing 100 mM 2-deoxy-D-glucose (2DG; Sigma-Aldrich) was added

24 h before experimentation. Culture medium (1 μl/well) was added to 96-well plates and the

volume was adjusted to 50 μl/well with Lactate Assay Buffer before addition of 50 μl Reaction

Mix (containing 46 μl Lactate Assay Buffer, 1 μl Lactate Enzyme Mix, and 1 μl Probe) to each

well and incubation at room temperature in the dark for 10 min. Absorbance (OD 570 nm)

was measured using a MTP-300 microplate reader (Corona Electric, Ibaraki, Japan). Lactate

concentration was derived from absorbance using a standard curve.

Pyruvate kinase (PYK) activity

PYK activity was measured using the Pyruvate Kinase Assay Kit (Biovision), according to the

recommended protocol. Briefly, cells were trypsinized and 3×105 cells were suspended in PK

Assay Buffer. The cells were disrupted by a Sonifier 250 (Emerson, Kanagawa, Japan) and cen-

trifuged at 10,000 g, 4˚C for 10 min. Cell extracts were added to 96-well plates and the volume

Metabolic analysis of rMSLCs
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was adjusted to 50 μl/well with PK Assay Buffer before addition of 50 μl Reaction Mix (con-

taining 44 μl PK Assay Buffer, 2 μl PK Substrate Mix, 2 μl PK Enzyme Mix, and 2 μl OxiRed

Probe) to each well and incubation at room temperature in the dark for 20 min. Absorbance

(OD 570 nm) was measured using a MTP-300 microplate reader (Corona Electric). PYK activ-

ity concentration was derived from absorbance using a standard curve.

Measurement of glucose uptake

Glucose uptake was measured using a Glucose Assay Kit (Abcam, Tokyo, Japan), according to

the recommended protocol. Briefly, cells were plated in 6-well plates and fresh medium was

added 24 h before experimentation. Culture medium (1 μl/well) was added to 96-well plates

and the volume was adjusted to 50 μl/well with Lactate Assay Buffer before addition of 50 μl

Glucose Reaction Mix (composed of 46 μl Glucose Assay Buffer, 1 μl Glucose Enzyme Mix,

and 1 μl Glucose Probe) to each well and incubation at room temperature in the dark for 10

min. Absorbance (OD 570 nm) was measured using a Varioskan LUX microplate reader

(Thermo Fisher Scientific). Glucose concentration was derived from absorbance using a stan-

dard curve. Glucose uptake was calculated from the equation: Glucose uptake = Glucose con-

centration in fresh medium—Glucose concentration in cell culture medium.

Statistical analysis

The mean and standard deviation (SD) were calculated for each data point. Welch’s t test was

used to analyze significant differences between groups. A P value less than 0.05 was considered

statistically significant.

Ethical considerations

All animal experiments were performed in accordance with the Animal Care Guidelines of the

University of Tsukuba. All animal husbandry procedures and animal experiments were consis-

tent with the University of Tsukuba’s Regulation of Animal Experiment and were approved by

the Animal Experiment Committee, University of Tsukuba (Permit Number: 12–414 and 14–

078). Mice were sacrificed when the tumor size reached 1.0 cm in diameter. Mice were sacri-

ficed by administering CO2.

Results

rMSLCs had higher tumorigenic ability than parental ONS-76 cells

We previously established rMSLCs with high stem cell-like phenotypes, including high CD133

positivity, side population ratio, and sphere-forming ability, by γ-ray irradiation of ONS-76 cells

(S1 Fig) [26]. In this study, we first determined the tumorigenicity of ONS-F8 and ONS-B11,

the two clones with highest CD133 ratio, by transplanting them into NOD/SCID mice. ONS-F8

and -B11 readily generated tumors even after transplantation of only 100 cells, whereas at least

1,000 parental ONS-76 cells were required for tumor formation (S1 Fig). Tumorigenic cell fre-

quencies calculated using the formula available on the WEHI ELDA website [43] for ONS-76,

-F8, and -B11 were 1 in 4,747, 1 in 1,351 and 1 in 1,508, respectively (S1 Fig). These results

showed that ONS-F8 and -B11 had higher tumorigenic ability than the parental ONS-76 cells.

rMSLCs displayed low ROS levels associated with mitochondria

superoxide production

As low ROS levels are maintained in several types of normal stem cells and mitochondrial ROS

generation is highly reliant on oxidative phosphorylation [44–46], we initially measured
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intracellular ROS levels, mitochondria superoxide production, and nuclear oxidative stress lev-

els using the CM-H2DCFDA, MitoSOX, and bisbenzimide-nitroxides fluorescent probes,

respectively. Both ONS-F8 and -B11 showed lower intracellular ROS concentration, mito-

chondria ROS generation, and nuclear oxidative stress levels than parental cells (Fig 1A–1C).

CSLCs show an enhanced capacity for synthesis of reduced GSH and defense against ROS

[16, 47]. Given the low ROS levels in ONS-F8 and -B11, we investigated whether these cells

had elevated levels of GSH. Contrary to our initial expectation, levels of cellular GSH were not

significantly different among ONS-76, -F8, and -B11 (Fig 1D). These results suggest that low

intracellular ROS levels and nuclear oxidative stress levels are preferentially maintained by low

endogenous mitochondria superoxide production in ONS-F8 and -B11.

Diminution of oxidative phosphorylation in rMSLCs

Given that electron leak from the electron transport chain is the primary cause of endoge-

nous ROS generation [48, 49], we hypothesized that oxidative phosphorylation is reduced

in rMSLCs. Measurement of mitochondria mass and membrane potential using MitoGreen

and MitoRed respectively revealed that, compared to ONS-76 cells, ONS-F8 had lower

mitochondria mass and membrane potential but ONS-B11 showed no significant difference

(Fig 2A and 2B). To further substantiate the oxidative phosphorylation potential in ONS-

76, -F8, and -B11 cells, we analyzed the oxygen consumption rate (OCR) using a MitoXpress

Fig 1. ONS-F8 and -B11 showed low levels of ROS and nuclear oxidative stress. Levels of (A) intracellular ROS, (B) mitochondria-

derived superoxide, (C) nuclear oxidative stress, (D) GSH in ONS-76, -F8 and -B11. All quantitative data are means ± S.D. *P<0.05,

Welch’s t-test, n.s., non-significant.

https://doi.org/10.1371/journal.pone.0176162.g001
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OCR measurement kit. Both ONS-F8 and -B11 showed significantly lower basal OCR than

ONS-76 (Fig 2C). The OCR was completely inhibited by oligomycin treatment, indicating

that it reflects mitochondrial respiration (Fig 2C). These results suggest that ONS-F8 and

-B11 had lower oxidative phosphorylation levels than parental cells. FCCP significantly

increased OCR in ONS-76, -F8, and -B11. ONS-F8 and -B11 showed lower OCR than ONS-

76 in the presence of FCCP (Fig 2C).

To support this observation, we further analyzed OCR by ESR spectrometry using LiNc-

BuO as an oxygen-sensing probe [37]. The cells were mixed with LiNc-BuO particles in culture

medium and analyzed by ESR [38] in a time-dependent manner; OCR was calculated from the

change in LiNc-BuO spectrum line width. ONS-F8 and -B11 cells showed significantly lower

basal OCR than ONS-76 (S2 Fig). These results were consistent with the data obtained by

MitoXpress.

DCA induces alteration of ROS metabolism and mitochondria function in

rMSLCs

To examine the relationship between ROS levels and mitochondria function in rMSLCs, we

examined ROS levels and mitochondria function after DCA treatment. Following treatment

Fig 2. Diminution of mitochondrial respiration in ONS-F8 and -B11. (A) Mitochondria mass, (B) mitochondria membrane

potential, (C) OCR (using MitoXpress) in ONS-76, -F8 and -B11 cells. All quantitative data are means ± S.D. *P<0.05, Welch’s t-test.

https://doi.org/10.1371/journal.pone.0176162.g002
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with DCA (50 mM, 48 h), intracellular ROS concentration, mitochondria ROS generation,

nuclear oxidative stress levels, mitochondria volume, and mitochondria membrane potential

were significantly increased in ONS-76, -F8, and -B11 (Fig 3A–3E). Mitochondria morphol-

ogy is related to mitochondria oxidative phosphorylation and ROS generation [50–52].

Immunofluorescent staining and TEM analysis showed that mitochondria in the DCA-

treated cells were predominantly elongated and formed extensive reticular networks (Fig 3F

and 3G).

We next determined the toxicity of DCA (50 mM, 48 h) using PI staining and the clono-

genic assay. There were no significant differences in the PI-positive cell ratio and colony-form-

ing efficiency between DCA-treated and control cells (S3 Fig). These results demonstrated that

DCA treatment induced alterations in ROS metabolism and mitochondria function in

rMSLCs without affecting cell survival under our experimental conditions.

DCA induces alteration of mitochondrial respiration and glycolysis

To investigate the effect of DCA treatment on mitochondrial respiration and glycolysis we

examined OCR, extracellular lactate production, the activity of PYK (a glycolysis enzyme that

converts PEP to pyruvate while generating ATP), and glucose uptake in control and DCA-

treated cells. DCA significantly increased OCR in ONS-76, -F8, and -B11 cells (Fig 4A). In the

presence of oligomycin, DCA-treated cells showed significantly higher OCR than non-treated

cells suggesting that the increased oxygen was not used for ATP production in oxidative phos-

phorylation. In the presence of FCCP, DCA-treated cells showed the same (ONS-76 and -B11)

or lower (ONS-F8) OCR compared with non-treated cells (Fig 4A).

ONS-F8 and -B11 showed higher extracellular lactate production than ONS-76 cells, and

DCA significantly decreased lactate production relative to untreated cells. Lactate production

was completely inhibited by 2DG treatment in the absence of DCA, indicating that the lactate

production reflects glycolysis (Fig 4B). Interestingly, in the presence of 2DG, DCA-treated

cells showed significantly higher lactate production than untreated cells, suggesting that lactate

was produced by another metabolic pathway (Fig 4B). ONS-F8 and -B11 showed high PYK

activity and the same level of glucose uptake compared with ONS-76 (Fig 4C and 4D). DCA

significantly increased PYK activity relative to untreated cells, but did not affect glucose uptake

(Fig 4C and 4D). These results demonstrated that DCA treatment induced alterations in mito-

chondrial respiration and glycolysis in rMSLCs.

rMSLCs lose cancer stem-like phenotypes in vitro after DCA treatment

We next investigated the effect of DCA treatment on medulloblastoma cancer stem-like phe-

notypes by examining CD133-positivity and sphere-forming ability in control and DCA-

treated cells in vitro. The DCA treatment groups showed significantly lower CD133-positivity

and sphere-forming ratio than the control cells (Fig 5A and 5B) suggesting that DCA sup-

pressed cancer stem-like phenotypes in rMSLCs in vitro and consistent with previous findings

for glioma and breast CSLCs [22, 53].

DCA increased radiosensitivity in rMSLCs through suppression of DNA

repair capacity

To investigate whether DCA treatment promotes radiosensitivity in rMSLCs we performed a

clonogenic assay. As expected, DCA treatment significantly increased radiosensitivity in ONS-

76, -F8, and -B11 cells after 4, 6, and 8-Gy single-dose exposure (Fig 6A). In addition, ONS-F8

and -B11 had a higher sensitivity enhancement ratio at 4 Gy than ONS-76, indicating that

DCA more effectively radiosensitized ONS-F8 and -B11 (Fig 6B).
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Fig 3. DCA enhanced ROS production and changed mitochondrial signature. (A) Intracellular ROS, (B)

mitochondria-derived superoxide, (C) nuclear oxidative stress, (D) mitochondria mass, (E) mitochondria

membrane potential, (F) fluorescence microscopy with MitoGreen stain (scale bar 5 μm), and (G) TEM

analysis of mitochondria (scale bar 2 μm) and mitochondrial circularity (at least 50 mitochondria were

measured for each sample using ImageJ software) in ONS-76, -F8 and -B11 cells with and without DCA. White

arrows indicate mitochondria. Quantitative data (without mitochondrial circularity) are means ± S.D.

Quantitative data of mitochondrial circularity are shown as boxplots. *P<0.05, Welch’s t-test.

https://doi.org/10.1371/journal.pone.0176162.g003
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Our experimental data suggest that DCA enhances oxidative stress. We postulated that

DCA-treated cells should exhibit enhanced radiation-induced DNA damage and quantified

DNA damage after 20-Gy X ray irradiation with and without DCA treatment using DNA aga-

rose gel electrophoresis. However, contrary to our initial expectations, DCA treatment did not

significantly increase DNA damage in ONS-76, -F8, and -B11 cells (Fig 6C). We next investi-

gated the kinetics of DNA double-strand break rejoining by measuring the formation and dis-

solution of histone γ-H2AX foci at 0.5, 3, 6, and 24 h after 2 or 4 Gy irradiation in DCA-

treated and control cells. The average number of foci per cell was the same in all non-irradiated

cells (Fig 6D). Both DCA-treated and control cells had a comparable increase in the average

number of foci per cell at 0.5 h post irradiation (Fig 6D). However, the number of foci

decreased slowly and remained high at 24 h post irradiation in the DCA-treated cells com-

pared with the control cells, although these differences partly failed to reach statistical signifi-

cance (Fig 6D). These results suggest that DCA does not enhance radiation-induced double-

strand breakage but suppresses DNA repair capacity.

Fig 4. DCA induces alteration of mitochondrial respiration and glycolysis. (A) OCR (using MitoXpress), (B) extracellular lactate

production, (C) pyruvate kinase activity, (D) glucose uptake in ONS-76, -F8, and -B11 cells with and without DCA. All quantitative data are

means ± S.D. *P<0.05, Welch’s t-test.

https://doi.org/10.1371/journal.pone.0176162.g004
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Glycolysis and TCA cycle intermediate metabolites in ONS-76 and -F8

cells

To further investigate metabolic pathways (glycolysis and TCA cycle) in rMSLCs, we per-

formed comprehensive metabolic characterization in ONS-76 and -F8 cells using CE-TOFMS

and CE-QqQMS;CE-MS/MS. ONS-F8 showed a significant increase in 3-phosphoglyceric acid

(3-PG), 2-phosphoglyceric acid (2-PG), and phosphoenolpyruvic acid (PEP), compared with

ONS-76 (Table 1 and S4A Fig). ONS-F8 also tended to have higher intracellular levels of lactic

acid and glyceraldehyde 3-phosphate and lower levels of pyruvic acid than ONS-76 (Table 1

and S4A Fig).

With respect to TCA cycle intermediates, ONS-F8 showed significantly increased levels of

isocitric acid and decreased citric acid and succinic acid compared with ONS-76 (Table 1 and

S4B Fig). ONS-F8 also tended to have higher 2-oxoglutaric acid (2-OG) levels and lower acetyl

CoA levels than ONS-76 (Table 1 and S4B Fig). Interestingly, ONS-F8 also showed signifi-

cantly decreased levels of oxidized nicotinamide adenine dinucleotide (NAD+) and reduced

nicotinamide adenine dinucleotide (NADH) compared with ONS-76 (Table 1 and S4B Fig).

These results, together with our OCR data, indicate that ONS-F8 had both reduced electron

transport chain and oxidative phosphorylation activities compared with ONS-76. Further-

more, ONS-F8 showed significantly low ATP and total adenylate levels, but maintained the

same ATP/ADP ratio and adenylate energy charge (AEC) [54] as ONS-76 (Table 1 and

Fig 5. DCA suppressed cancer stem-like phenotypes in vitro. (A) CD133-positive cell ratio (using flow cytometry) and (B)

sphere-forming ability in serum-free medium in ONS-76, -F8, and -B11 cells with and without DCA. All quantitative data are

means ± S.D. *P<0.05, Welch’s t-test.

https://doi.org/10.1371/journal.pone.0176162.g005
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S4C Fig), indicating that ONS-F8 exists in a low-energy or quiescent metabolic state, but does

not lack ATP.

DCA induces alteration of glucose catabolic pathway at multiple steps

and results in cellular energy depletion

Mass spectrometry analyses showed that DCA-treated cells exhibited increased glucose

6-phosphate (G6P), fructose 6-phosphate (F6P), fructose 1,6-diphosphate (F1,6P), dihydroxy-

acetone phosphate (DHAP), glyceraldehyde 3-phosphate (GAP), 2,3-diphosphoglyceric acid,

and NADH/NAD+ ratio, and depleted PEP, compared with control groups (Table 1 and S4A

and S4B Fig). These results suggest that a high NADH/NAD+ ratio induced accumulation of

Fig 6. DCA enhanced radiosensitivity and suppressed DNA damage repair pathways. (A) Radiosensitivity by clonogenic survival

assay, (B) sensitivity enhancement ratio at 4 Gy (calculated from result of clonogenic survival assay), (C) DNA fragmentation, (D) time

response of γ-H2AX foci after irradiation with 2 or 4 Gy X-ray in ONS-76, -F8, and -B11 cells with and without DCA. All quantitative data are

means ± S.D. *P<0.05, Welch’s t-test.

https://doi.org/10.1371/journal.pone.0176162.g006
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Table 1. Relative glycolysis and TCA cycle related metabolites in ONS-76 and -F8 cells with and without DCA.

ONS-76 ONS-76 +DCA ONS-F8 ONS-F8+DCA Comparative Analysis*

Glucose 6-phosphate 1 13.16 0.86 10.61 2,3,4

Fructose 6-phosphate 1 12.21 0.70 8.54 2,3,4

Fructose 1,6-diphosphate 1 13.83 1.15 14.17 1,2,3

Glyceraldehyde 3-phosphate N.D. >43.66 >6.56 >50.24

Dihydroxyacetone phosphate N.D. >92.31 N.D. >101.7

2,3-Diphosphoglyceric acid 1 1.69 0.79 1.59 1,2,3

3-Phosphoglyceric acid 1 0.94 1.46 0.85 1,3

2-Phosphoglyceric acid 1 1.01 1.41 1.01 1

Phosphoenolpyruvic acid 1 N.D. 5.20 N.D. 1

Pyruvic acid 1 2.60 0.75 1.89 2

Intracellular lactic acid 1 14.11 1.33 13.88 2,3

Acetyl CoA 1 22.86 0.78 21.71 2

Citric acid 1 0.99 0.87 0.80 1

cis-Aconitic acid 1 0.94 0.96 0.76 3

Isocitric acid 1 0.60 1.34 0.63 1,3

2-Oxoglutaric acid 1 N.D. 2.70 N.D.

Succinic acid 1 0.59 0.77 0.49 1,2,3

Fumaric acid 1 2.77 2.29 2.37

Malic acid 1 0.68 1.09 0.73

ATP 1 0.76 0.77 0.60 1,2,3,4

ADP 1 1.31 0.87 1.07

AMP 1 1.23 0.92 0.92 2,4

Total Adenylate 1 0.78 0.77 0.62 1,2,3,4

ATP/ADP 1 0.59 0.91 0.56 2,3

Adenylate Energy Charge 1 0.99 1 0.98 2,3

NADH 1 1.32 0.85 1.07 1,2,3,4

NAD+ 1 0.97 0.80 0.71 1,3,4

NADH/ NAD+ 1 1.36 1.06 1.52 2,3

Alanin 1 0.71 0.85 0.43 1,2,3,4

Arginine 1 1.29 0.83 1.08 1,2,3,4

Asparagine 1 7.08 0.80 5.12 1,2,3,4

Aspartic Acid 1 2.64 0.65 1.85 1,2,3,4

Cysteine 1 0.30 0.75 0.34 1,2,3

Glutamine 1 64.96 1.19 58.65 2,3

Glutamic Acid 1 1.71 1.01 1.36 2,3,4

Glycine 1 2.37 0.28 1.46 1,2,3,4

Histidine 1 2.35 0.90 2.21 1,2,3,4

Isoleucine 1 3.22 0.90 2.89 1,2,3,4

Leucine 1 3.53 0.90 3.26 1,2,3

Lysine 1 1.68 0.83 1.40 1,2,3,4

Methionine 1 4.96 0.94 5.06 2,3

Phenylalanine 1 2.52 0.92 2.37 2,3

Proline 1 1.95 0.75 1.57 1,2,3,4

Serine 1 1.75 0.31 0.84 1,2,3,4

Threonine 1 1.91 0.91 1.62 1,2,3,4

Tryptophan 1 2.75 0.89 2.69 1,2,3

Tyrosine 1 2.50 0.92 2.34 2,3

(Continued )
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early metabolites in glycolysis [55]. Furthermore, DCA increased accumulation of pyruvic

acid, acetyl CoA, and intracellular lactic, and decreased extracellular lactate production

(Table 1 and S4A and S4B Fig). More importantly, DCA treatment did not change levels of cit-

ric acid but increased those of acetyl CoA, suggesting that the conversion of acetyl CoA to cit-

ric acid was suppressed (Table 1 and S4B Fig).

Interestingly, DCA decreased levels of isocitric acid, succinic acid, malic acid, and 2-OG,

although these differences partly failed to reach statistical significance, and no TCA cycle inter-

mediates showed increased levels after DCA treatment (Table 1 and S4B Fig). We also found

accumulation of 18 amino acids in DCA-treated cells while only two (alanine and cysteine)

showed decreased levels (Table 1 and S4D Fig). Furthermore, DCA treatment groups had sig-

nificantly lower ATP levels, ATP/ADP ratio, and AEC than control groups (Table 1 and S4C

Fig). Our results indicate that DCA induced energy depletion and alteration of mitochondria

ROS metabolism through modulation of glycolysis, TCA cycle, and amino acid metabolism.

Discussion

In the present study we investigated the contribution and importance of energy metabolic

properties to radioresistance and maintenance of stem cell-like characteristics of rMSLCs gen-

erated after irradiation. Our results indicated suppressed mitochondrial respiration (Fig 2) in

rMSLCs. In particular, low endogenous mitochondria ROS production,sustained lower levels

of ROS in rMSLCs (Figs 1 and 2). DCA treatment led to prominent perturbations of multiple

energy production processes, such as glucose metabolism restriction Table 1 and S4A Fig),

mitochondria morphological changes (Fig 3F and 3G), and increased endogenous mitochon-

dria ROS production (Fig 3B), resulting in oxidative stress (Fig 3A and 3C), failure of DNA

repair after irradiation (Fig 5), and loss of cancer stem cell-like phenotypes (Fig 4).

Previous reports have demonstrated that CSLCs have higher radioresistance than non-

CSLCs as a result of increased DNA repair capability and antioxidative capacity [14, 15, 56],

suggesting that these properties could be a potential target of CSLC-based therapy. Metabolic

pathways, such as glycolysis, the TCA cycle, and the pentose phosphate pathway, are not only

key regulators of ROS production and antioxidant biosynthesis, but also play a pivotal role in

cancer cell radioresistance [57, 58]. Thus, to understand CSLC radioresistance these metabolic

pathways should be closely investigated. Vlashi et al. examined metabolic differences between

glioma stem cell-enriched populations and differentiated glioma cells, concluding that glioma

stem cell-enriched cells are less glycolytic than differentiated glioma cells [25]. Consistent with

this study, Lagadinou et al. revealed that low-ROS leukemia stem cells are highly reliant on oxi-

dative phosphorylation [23]. Conversely, Feng et al. showed that breast tumor initiating cells

preferentially perform glycolysis over oxidative phosphorylation compared with non-tumori-

genic cancer cells [22]. However, no previous papers have revealed the status of metabolic

Table 1. (Continued)

ONS-76 ONS-76 +DCA ONS-F8 ONS-F8+DCA Comparative Analysis*

Valine 1 2.63 0.93 2.37 1,2,3

*: Comparative analysis was performed by Welch’s t test. A P value less than 0.05 was considered statistically significant.

1: significant difference in ONS-76 vs. ONS-F8

2: significant difference in ONS-76 vs. ONS-76+DCA

3: significant difference in ONS-F8 vs. ONS-F8+DCA

4: significant difference in ONS-76+DCA vs. ONS-F8+DCA

https://doi.org/10.1371/journal.pone.0176162.t001
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properties, cellular redox state, and radioresistance in medulloblastoma CSLCs. We previously

established rMSLCs (ONS-F8 and -B11) from a medulloblastoma cell line (ONS-76). These

cells can be maintained in the same culture conditions and can be analyzed in the same culture

period as the parental medulloblastoma cell line. Assessment of mitochondria superoxide pro-

duction, OCR value (Fig 2C), and intermediates in TCA metabolism (Table 1, S4B Fig and Fig

7A) for rMSLCs and the parental cell line suggested that rMSLCs have lower mitochondria res-

piration. rMSLCs and the parental cell line showed the same level of glucose uptake (Fig 4D).

Moreover, PYK activity (Fig 4C), lactate production (Fig 4B), and concentrations of PEP,

pyruvic acid, intracellular lactic acid, acetyl CoA, and citric acid (Table 1, S4A and S4B Fig and

Fig 7A) suggested that rMSLCs had a high rate of conversion of pyruvic acid to lactic acid and

a low rate of conversion of pyruvic acid to acetyl CoA compared with the parental cell line.

Intriguingly, compared with ONS-76, mitochondrial mass and potential were lower in

ONS-F8 but the same in ONS-B11 (Fig 2A and 2B). These results may suggest that the dimi-

nution of mitochondria respiration is supported by different molecular mechanisms in

ONS-F8 and ONS-B11, and glycolytic activity and oxidative phosphorylation do no show a

direct relationship with CD133 positivity. Radiation or long-term use of 3-aminobenzamide (a

PARP inhibiter) induced transformation of glioma stem-like cells or osteosarcoma cells into

highly glycolysis-dependent CSLCs [59–61], suggesting that therapeutic strategies could com-

bine standard radiation or chemotherapy and inhibition of glycolysis.

It has been reported that several CSLCs, including breast, hepatic, and colon CSLCs, display

low intracellular ROS levels through high antioxidant capacity compared with non-CSLCs [15,

16, 47]. Although our data showed that rMSLCs possess low intracellular ROS levels and low

nuclear oxidative stress levels, no significant differences in GSH levels were observed between

Fig 7. ONS-76, -F8 and DCA-treated cells exhibit different metabolic profiles. Schematic diagram of the metabolic pathway. The red and

blue arrows represent increased and decreased metabolite concentrations in ONS-F8 compared with ONS-76 (A), and in DCA-treated cells

compared with non-DCA-treated cells (B).

https://doi.org/10.1371/journal.pone.0176162.g007
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rMSLCs and the parental line (Fig 1A, 1C and 1D). Our data suggest that endogenous mito-

chondria superoxide production was suppressed in rMSLCs through low oxidative phosphory-

lation activity. Pluripotent stem cells and hematopoietic stem cells (HSCs) also maintain low

levels of ROS through suppressed mitochondria ROS production as a result of reduced reliance

upon oxidative phosphorylation and limited mitochondria biogenesis [62–65]. Pdk, a meta-

bolic enzyme that is suppressed during mitochondrial respiration through inhibition of Pdh,

shows increased activity in induced pluripotent stem (iPS) cells and HSCs [20, 65]. Loss of Pdk

attenuates HSC quiescence, glycolysis, and transplantation capacity [65]. These results are

highly concordant with our data showing that treatment with the Pdk inhibitor DCA induced

increased mitochondria mass and superoxide production (Fig 3B and 3D), and attenuated

CD133-positivity and sphere formation (Fig 5). This suggests that Pdk-mediated antagonism

of mitochondria metabolism and a low ROS state are favored for maintenance of stem cell

properties in both normal stem cells and rMSLCs. Indeed, Tsatmali et al. and Buggisch et al.

have demonstrated that NADPH oxidase and subsequent ROS accumulation and signaling

play an important role in ES cell differentiation [66, 67]. This issue should be explored in more

detail.

We also demonstrated that DCA treatment increased radiosensitivity in rMSLCs though

suppressed DNA repair capacity but did not enhance the initial radiation-induced ROS-medi-

ated DNA damage (Fig 6). Our results suggest three potential mechanisms by which DCA

might suppress DNA repair. First, DCA treatment induced oxidization in the nucleus (Fig 3C)

and these highly oxidized conditions might hinder DNA repair after irradiation. It has been

reported that enhancement of oxidative stress, such as by H2O2 treatment or zinc deficiency,

induces dysfunction of DNA repair proteins, and hence compromises DNA repair [68, 69].

Second, DCA treatment induced high acetyl CoA levels that can complicate DNA repair

(Table 1 and S4B Fig). It has been shown that DCA increases histone acetylation associated

with acetyl CoA accumulation, and that inhibition of histone deacetylase enhances radiosensi-

tivity through prolongation of γ-H2AX foci [28, 70]. Third, DCA treatment induced low ATP

levels and an energy depletion state (Table 1 and S4C Fig) might affect DNA repair after irradi-

ation, which is known to require ATP [71, 72]. Which mechanism contributes most to

enhancement of radiosensitivity in rMSLCs is unclear and requires further investigation.

Moreover, our results showed that DCA treatment modified multiple energy production

processes (Table 1, S4 Fig and Fig 7B). First, DCA treatment increased mitochondrial mass

(Fig 3D) and membrane potential (Fig 3E), and changed mitochondria shape to an elongated

form (Fig 3F and 3G). It is possible that these mitochondrial changes led to increased superox-

ide production and high levels of oxidative stress (Fig 3A–3C). Further, DCA treatment

induced low ATP levels and an energy depletion state (Table 1 and S4C Fig). It has been dem-

onstrated that ROS production increases after blocking OxPhos [73, 74]. Our results suggest

that DCA treatment reduces oxidative phosphorylation through ROS accumulation. Second,

DCA treatment led to a decrease in several TCA cycle intermediates, including isocitric acid,

succinic acid, malic acid, and 2-OG (Table 1, S4B Fig). Conversely, levels of 18 amino acids, all

of which could be catabolized to pyruvic acid or TCA cycle intermediates, were increased

(Table 1, S4D Fig) implying that DCA induced dampening of the TCA cycle flux through inhi-

bition of amino acid degradation. Instead, DCA-enhanced pyruvic acid-acetyl CoA conversion

might be responsible for maintenance of the NADH supply (Table 1, S4B Fig). Additionally,

we showed that accumulated high levels of acetyl CoA did not elevate citric acid levels

(Table 1, S4B Fig), consistent with a previous study in murine hearts [28]. Third, DCA treat-

ment induced accumulation of early-stage glycolysis intermediates (before 3-PG) (Table 1,

S4A Fig), suggesting inhibition of GAPDH that catalyzes conversion of glyceraldehyde 3-phos-

phate into 1,3-bisphosphoglycerate, with a high NADH/NAD+ ratio (Table 1, S4A Fig) [55].
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Fourth, DCA-treated cells showed decreased alanine levels and increased pyruvic acid levels,

suggesting that DCA also promoted conversion of alanine into pyruvic acid (Table 1, S4D

Fig). Last, DCA caused accumulation of intracellular lactic acid and a decrease in extracellular

lactate production (Fig 4B, Table 1 and S4D Fig). It is possible that DCA enhanced extracellu-

lar lactate uptake or suppressed lactate excretion. Taken together, our data suggest that DCA

treatment did not simply activate the TCA cycle and oxidative phosphorylation, but instead

led to multiple metabolic pathway alterations in rMSLCs. DCA is considered a potentially

effective drug for cancer cells and CSLCs at the experimental level and several clinical trials are

currently underway. Our data provide a more comprehensive understanding of the effect of

DCA treatment on rMSLCs, which represents a milestone in investigations of the molecular

association of stem cell-like phenotypes and metabolic pathways in medulloblastoma CSLCs

and the development of novel drugs targeting medulloblastoma CSLCs.

It has been pointed out that cancer cell metabolism is different between in vivo tumors and

in vitro cell lines. In addition, several other studies indicated that glycolytic ATP contribution

differs greatly among cancers (accounting for 5–50% of the cellular ATP) [75, 76]. Oncogene

aberrations and/or the tumor microenvironment are major causes of metabolic changes in

tumor cells [77, 78] and it is important to consider these backgrounds when analyzing meta-

bolic data. Furthermore, mitochondria in tumor cells consume not only pyruvate, but also glu-

tamine, free fatty acids, ketone bodies, and proline [79, 80]. Although the lack of data on these

metabolites is a limitation of this study, it is outside the scope of this article. Future investiga-

tions are needed to examine glutamine, free fatty acids, ketone bodies, and proline metabolism,

and whether these metabolic pathways are associated with radioresistance and stem cell

phenotype.

Conclusion

We showed that rMSLCs had low ROS levels resulting from suppression of mitochondria oxi-

dative phosphorylation. DCA treatment suppressed cancer stem cell-like phenotypes and

increased intracellular ROS levels and radiosensitivity by suppressing glycolysis and inducing

mitochondrial aberrations. Combined therapy with metabolic targeted drugs and radiation

might be effective for eradication of medulloblastoma CSLCs.
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