
Fast Ad-Hoc Search Algorithm for Personalized
PageRank

著者 FUJIWARA Yasuhiro, NAKATSUJI Makoto, SHIOKAWA
Hiroaki, MISHIMA Takeshi, ONIZUKA Makoto

journal or
publication title

 IEICE transactions on information and systems

volume E100.D
number 4
page range 610-620
year 2017-04
権利 (C) 2017 The Institute of Electronics,

Information and Communication Engineers
URL http://hdl.handle.net/2241/00146196

doi: 10.1587/transinf.2016AWI0002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tsukuba Repository

https://core.ac.uk/display/87199999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

610
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

INVITED PAPER Special Section on Award-winning Papers

Fast Ad-Hoc Search Algorithm for Personalized PageRank

Yasuhiro FUJIWARA†a), Makoto NAKATSUJI††, Members, Hiroaki SHIOKAWA†††,
Takeshi MISHIMA†, Nonmembers, and Makoto ONIZUKA††††, Member

SUMMARY Personalized PageRank (PPR) is a typical similarity met-
ric between nodes in a graph, and node searches based on PPR are widely
used. In many applications, graphs change dynamically, and in such cases,
it is desirable to perform ad hoc searches based on PPR. An ad hoc search
involves performing searches by varying the search parameters or graphs.
However, as the size of a graph increases, the computation cost of per-
forming an ad hoc search can become excessive. In this paper, we pro-
pose a method called Castanet that offers fast ad hoc searches of PPR.
The proposed method features (1) iterative estimation of the upper and
lower bounds of PPR scores, and (2) dynamic pruning of nodes that are not
needed to obtain a search result. Experiments confirm that the proposed
method does offer faster ad hoc PPR searches than existing methods.
key words: Personalized PageRank, ad-hoc, fast, algorithm

1. Introduction

In recent years, there has been growing interest in mining
the large-scale graphs that are typically found in social net-
works. Since the publication of PageRank [1], researchers
have studied approaches to compute node importance based
on graph link structures. This is because node importance
has many important applications such as classifying and an-
alyzing graphs in a graph database [2]. Many methods that
are based on the idea of PageRank have already been pro-
posed, of which Personalized PageRank (PPR) is the most
popular measure for computing node similarity [3]. A PPR
similarity score corresponds to the probability of being in a
steady state after a random walk through a graph where the
query node corresponds to the starting point. Although PPR
can be determined by iterative computation, the probability
c (called the scaling parameter) is used in this computation;
it is the probability that the random walk will return to the
query node. In many applications, it is preferable to perform
PPR searches in an ad hoc manner on arbitrary graphs. An
ad hoc search involves performing searches while varying
the search parameters or graphs each time a search is per-
formed. There are two reasons for this. The first is that the

Manuscript received October 28, 2016.
Manuscript revised December 26, 2016.
Manuscript publicized January 23, 2017.
†The authors are with NTT Software Innovation Center,

Musashino-shi, 180–8585 Japan.
††The author is with NTT Resonant, Tokyo, 108–0023 Japan.
†††The author is with University of Tsukuba, Tsukuba-shi, 350–

8573 Japan.
††††The author is with Osaka University, Suita-shi, 565–0871

Japan.
a) E-mail: fujiwara.yasuhiro@lab.ntt.co.jp

DOI: 10.1587/transinf.2016AWI0002

graph structure is not clear until the the query node is known
due to the property that graphs change dynamically in many
applications. The second is that scaling parameter c affects
the PPR similarity score, so the suitable scaling parameter
varies from one application to another [4]. Since the com-
putation cost of PPR is O((N+M)T) where N, M, and T are
the numbers of nodes, edges, and iterations, respectively, the
computation time needed to perform an ad hoc search in a
large-scale graph can become excessive.

In this paper, we propose a method called Castanet that
identifies the top-k nodes with exact node ranking. In order
to reduce the search cost, our method utilizes the following
two approaches: (1) Iteratively calculate upper/lower PPR
scores and (2) Prune nodes that are unnecessary for the top-k
search at each iteration. We have confirmed that the method
proposed in this paper is more effective than the conven-
tional method. This paper is structured as follows: First,
related studies are discussed in Sect. 2. The background to
our study is then presented in Sect. 3. In Sect. 4, we describe
the proposed method, and we discuss the results of our tests
in Sect. 5. A summary of our work is presented in Sect. 6.

2. Related Work

Previous PPR studies can be split into two categories:
matrix-based and Monte Carlo-based approaches. Tong et
al. studied two matrix-based approaches called B LIN and
NB LIN [5]. These approaches calculate approximate PPR
scores by eigenvalue decomposition. Fujiwara el al. pro-
posed fast methods for searching PPR by using LU decom-
position and QR decomposition [6], [7]. Unlike the method
of Tong et al., these methods have the merit of being able to
perform accurate searches on PPR. However, these matrix
decomposition methods require matrix decomposition to be
performed before searching, so they are not suitable for ad
hoc searches.

Fogaras et al. proposed a method that uses a Monte
Carlo-based approach to realize fast computation [8]. To
precompute approximate PPR scores, they used “finger-
prints” obtained by random walks starting from the query
node. During a search, the PPR scores are approximated by
using the distribution of end points in precomputed finger-
prints. Bahmani also proposed using precomputed random
walks in a similar way [9]. Avrachenkov et al. proposed a
Monte Carlo-based MC Complete Path method for fast PPR
search where MC is an acronym for Monte Carlo [12]. In

Copyright c© 2017 The Institute of Electronics, Information and Communication Engineers

FUJIWARA et al.: FAST AD-HOC SEARCH ALGORITHM FOR PERSONALIZED PAGERANK
611

this method, approximate PPR scores are obtained quickly
by computing ad hoc random walks when a search is per-
formed. However, in Monte Carlo-based approaches, the
precision depends on the number of random walks, which
induces a trade-off between speed and search precision.

We previously proposed a fast PageRank search
method called F-Rank [10]. The method we are propos-
ing here differs from F-Rank in that the proposed method
searches for the top-k nodes while performing accurate node
ranking. That is, although F-Rank performs a top-k search,
F-Rank does not perform node ranking in the search re-
sults. The proposed method also differs from F-Rank in that
the proposed method reduces the number of nodes involved
in the computation by computing partial graphs based on
the number of hops from the query node during the itera-
tive computation. Although Personalized PageRank differs
from PageRank in that nodes are ranked based on the query
node, the proposed method uses this property to facilitate
fast searching.

3. Preliminary

In this section, we define the notations used in this paper
and explain the background knowledge needed to under-
stand our approach. Table 1 lists the main symbols and their
definitions. PPR computes similarities based on a “random
surfer model” similar to approach taken by Google’s PageR-
ank algorithm. PageRank exploits a graph’s link structure to
compute the importance of nodes in the entire Web graph.
PPR, introduced by Jeh et al., is based on the idea that global
node importance scores can be tailored for each user [3].
Specifically, a set of nodes is defined for each user, and the
node importance scores are computed based on priority val-
ues that are arbitrarily set for each node. The sum of these
node priority values is normalized to 1. If a set of nodes is
taken as the query nodes, then the importance score of each
node can be considered as its similarity to the query node.

Table 1 Main symbols and their definitions.

Symbol Definition

G The graph being queried
N Number of nodes in the graph
M Number of edges in the graph
T Number of iterations in the original method
c Scaling parameter, 0 < c < 1
k Number of required answer nodes
V Set of nodes in G
E Set of edges in G
Q Set of query nodes
S Set of selected nodes
R Set of nodes from which the selected nodes are reachable
L Set of candidate nodes
D Set of nodes whose ranking has been determined
A Set of answer nodes

C[u] Set of nodes that have edges incident to node u
q N × 1 query node vector
s N × 1 vector of similarity based on PPR

W N × N graph adjacency matrix with normalized columns

Put simply, the similarity scores in PPR correspond to the
steady-state probabilities of random walks. At each itera-
tion of PPR, one of the nodes adjacent to the current node
is selected with probability c, and, with restart probability
1 − c, it jumps to a query node in accordance with its prior-
ity value. If sets V and E hold the nodes and edges of the
queried graph, respectively, then the graph is represented as
G = {V, E}. Also, if s is an N × 1 PPR score vector, then
the u-th element of this vector s[u] denotes the PPR score
of node u. W is an adjacency matrix of the graph where the
sum of each column is normalized to 1, and each element
W[u, v] gives the probability of transitioning from node v to
node u in a random walk. Specifically, the columns and rows
of the adjacency matrix W correspond to the start and end
of each edge respectively. The PPR scores can be obtained
by calculating the following expression recursively.

s = cWs + (1 − c)q (1)

where q represents a query node vector whose u-th element
q[u] corresponds to its preference score as a query node. In
other words, if node u is not a query node, then q[u] = 0.
The query node preference scores are normalized such that
their sum is 1.

However, this original recursive computation method
is not suitable when searching for the top-k nodes. This is
because the scores of all nodes have to be updated at each it-
eration. Furthermore, to obtain the exact ranking of the top-
k nodes, the exact scores of all nodes must be obtained by
performing iterative computation until the scores converge,
even though exact scores are not always essential for rank-
ing in most applications. The original method has a compu-
tation cost of O((N + M)T), making it difficult to perform
fast searches on large-scale graphs. A faster search method
is therefore required.

4. Proposed Method

In this section, we first present an overview of the proposed
method, and then describe it in detail.

4.1 Overview

As described in Sect. 3, the original method requires that
probabilities be calculated as steady state probabilities. This
approach incurs high computation cost because it has to it-
eratively calculate scores for the whole graph. To find the
top-k nodes quickly, our proposed method recursively up-
dates the estimated similarity values of only selected nodes
instead of all nodes at each step. Thus, the proposed method
offers high-speed processing as it avoids iteratively process-
ing the whole graph to find the top-k nodes.

To rapidly update the estimated similarity values, the
proposed method dynamically configures a subgraph by
pruning unnecessary nodes and edges from the entire graph.
The random walk probabilities that are needed to compute
the estimated values can be calculated from the subgraphs,
so the similarity values can be updated at high speed in the

612
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

proposed method. To identify unnecessary nodes and edges,
the proposed method estimates the upper and lower bounds
of the similarity values. The subgraphs obtained by iterative
computation are smaller than the whole graph, so the answer
nodes can be searched at greater speed.

This subgraph approach has the advantage of requir-
ing fewer iterations than the original iterative approach. The
original iterative approach has to perform iterative computa-
tion until the similarities converge in order to compute exact
similarities. In contrast, the proposed method can determine
the upper and lower bounds of the node ranking so that there
is no need to perform iterative computation on nodes whose
ranking has been determined. Therefore, if the ranking of all
nodes in the graph is determined from the upper and lower
bounds in the proposed method, then the iterative computa-
tion can be omitted. The search process is thus terminated
without waiting for the similarity values to converge, and as
a result our method needs fewer iterations than the original
method.

Another advantage of our approach is that it can au-
tomatically determine the structures of subgraphs and the
number of iterations. Since the proposed method does not
require any internal parameters to be set, users can easily
perform PPR searches.

4.2 Similarity Estimation

The method used to calculate estimated similarity values is
discussed below. First, we introduce the notation used in
computing the estimated values, and then we discuss the
specific computation method and the theoretical aspects of
this method.

4.2.1 Notation

To obtain the estimated values, we use probability pi[u] that
a random walk of length i starting from a query node will
end up at node u. In this random walk, we do not jump to
a query node with probability 1 − c. Here, pi is an N × 1
vector whose u-th element corresponds to pi[u]. pi can be
calculated from the i-th power of the adjacent matrix as pi =

Wiq. Since it is clear that pi =Wpi−1, we can incrementally
compute the probability pi of a random walk of length i from
pi−1 as follows:

pi[u] =

{
q[u] (i = 0)∑
v∈C[u] W[u, v]pi−1[v] (i � 0)

(2)

where C[u] is the set of start nodes of edges that are incident
to node u, i.e., C[u] is the set of nodes directly adjacent to
node u in the original graph for which u is the end point.
In the i-th iteration (i = 0, 1, 2, . . .), the proposed method
computes a set of nodes S i for which we update the upper
and lower similarity bounds. The set of selected nodes is
initialized as the set of all nodes in the original graph, i.e.,
S 0 = V , and the nodes in S i are set so that they are always
included in S i−1. Therefore, V = S 0 ⊇ S 1 ⊇ . . . ⊇ S i.

The specific details of the node selection method are dis-
cussed later. To compute the upper similarity bound, we
use the node set Ri, which is the set of nodes from which
it is possible to reach any node in set S i. Node u is able
to reach node v if there is a path from u to v in the orig-
inal graph. Since node u can be reached from itself, it is
clear that S i ⊆ Ri, and if u ∈ S i then C[u] ⊆ Ri. Also,
pi[Ri] indicates the probability that a random walk of length
i that starts at a query node will reach a node in Ri, i.e.,
pi[Ri] =

∑
u∈Ri

pi[u]. To calculate the upper limit, we use
Wmax[u], which is the maximum weighting of edges inci-
dent to node u, i.e., Wmax[u] = max{W[u, v] : v ∈ V}.

4.2.2 Definition of Similarity

We compute the lower similarity bound in each iteration by
using random walk probabilities as follows:

Definition 1 (Lower bound): The lower bound of the PPR
score of node u at the i-th iteration, si[u], is calculated as
follows:

si[u] =

{
(1 − c)pi[u] (i = 0)
si−1[u] + (1 − c)ci pi[u] (i � 0)

(3)

We will show in the next paragraph that Eq. (3) has the
lower bounding property. This definition implies that (1)
if i = 0, then the lower bound can be computed from the
random walk probability and the scaling parameter, and (2)
otherwise, the lower bound si[u] can be incrementally com-
puted from the random walk probability and the scaling pa-
rameter. This definition also indicates that we can compute
the lower bound of a node in O(1) time if the random walk
probability pi[u] has already been calculated.

We introduce the following lemma to demonstrate the
lower bound property.

Lemma 1 (Lower bound): The relationship si[u] ≤ s[u]
holds for any node in the set S i.

Proof Prior to proving Lemma 1, we first prove that
limi→∞(cW)i = 0 holds, i.e., the matrix (cW)i becomes a
zero matrix after convergence. Since 0 < c < 1, it is clear
that limi→∞ ci = 0. Since matrix W is an adjacency matrix
of the graph with normalized columns, its i-th power Wi cor-
responds to the probabilities of random walks of length i, so
none of the elements in Wi can be larger than 1 or smaller
than 0. Therefore, we have

lim
i→∞(cW)i = lim

i→∞ ci lim
i→∞Wi = 0 (4)

We next prove Lemma 1. From Eq. (1), PPR similarity
scores can be obtained as follows:

s = (1 − c)(I − cW)−1q (5)

where I is the identity matrix and (I − cW)−1 is the inverse
matrix of I − cW. Since limi→∞(cW)i = 0, the following
relation holds if (cW)0 = I [11].

FUJIWARA et al.: FAST AD-HOC SEARCH ALGORITHM FOR PERSONALIZED PAGERANK
613

(I − cW)−1 =

∞∑
j=0

(cW) j (6)

From Eqs. (5) and (6), we have

s= (1−c)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∞∑
j=0

(cW) j

⎫⎪⎪⎪⎬⎪⎪⎪⎭ q = (1 − c)
∞∑
j=0

c jp j (7)

Equation (7) indicates that the u-th element of s, s[u], can
be computed as follows:

s[u] = (1 − c)
∞∑
j=0

c j p j[u] (8)

From Eq. (3), si[u] can be computed as follows:

si[u] = si−1[u]+(1−c)ci pi[u]

= si−2[u]+(1−c)ci pi[u]+(1−c)ci−1 pi−1[u]

= (1−c)ci pi[u]+. . .+(1−c)c0 p0[u]

(9)

Therefore, since c > 0, 1 − c > 0 and p j[u] ≥ 0,

si[u]= (1−c)
i∑

j=0

c j p j[u]≤ (1−c)
∞∑
j=0

c j p j[u]= s[u] (10)

which completes the proof. �
We can use the lower similarity bound introduced in

Definition 1 to calculate the upper similarity bound. The
upper bound is defined below.

Definition 2 (Upper bound): The upper bound si[u] of the
PPR score of node u at the i-th iteration is defined as follows:

si[u] = si[u] + ci+1Wmax[u] pi[Ri] (11)

This definition shows that the upper bound estimate
of node u can be updated in O(1) time by c, Wmax[u], and
pi[Ri]. We have the following lemma for the upper similar-
ity bound at each iteration:

Lemma 2 (Upper bound): The relation si[u] ≥ s[u] holds
for all nodes in the set S i.

Proof To prove this lemma, we first use mathematical in-
duction to show that the property pi+ j[Ri+ j] ≤ pi[Ri] (j =
0, 1, . . .) holds in all iterations.

If j=0, then obviously pi+ j[Ri+ j]= pi[Ri]. Also, if j�0
(i.e., j ≥ 1), then assume that pi+ j−1[Ri+ j−1] ≤ pi[Ri] holds.
Since nodes are selected so as to satisfy S i+ j ⊆ S i+ j−1, it is
clear that Ri+ j ⊆ Ri+ j−1. Therefore, from Eq. (2), we have

pi+ j[Ri+ j]=
∑
v∈Ri+ j

pi+ j[v]

=
∑
v∈Ri+ j

∑
w∈C[v]

W[v, w]pi+ j−1[w]

≤
∑
w∈Ri+ j−1

∑
v∈Ri+ j−1

W[v, w]pi+ j−1[w]

≤
∑
w∈Ri+ j−1

pi+ j−1[w] = pi+ j−1[Ri+ j−1]

(12)

This is because C[v] ⊆ Ri+ j ⊆ Ri+ j−1 for node v such that
v ∈ Ri+ j, and W is the adjacency matrix of the graph with
normalized columns. It should be noted that C[v] ⊆ Ri+ j−1

holds for node v such that v ∈ Ri+ j and v � S i+ j. This is
because C[v] ⊆ C[v] + S i+ j ⊆ Ri+ j ⊆ Ri+ j−1. Therefore,
pi+ j[Ri+ j] ≤ pi+ j−1[Ri+ j−1] ≤ pi[Ri]. This completes the
inductive step.

Next, we will demonstrate that Lemma 2 holds. From
Eqs. (2), (8) and (10), the PPR similarity s[u] of node u can
be computed as follows:

s[u] = (1−c)
i∑

j=0

c j p j[u]+(1−c)
∞∑

j=i+1

c j p j[u]

= si[u]+(1−c)
∞∑

j=i+1

∑
v∈C[u]

c jW[u, v]p j−1[v]

(13)

Here, W[u, v] ≤ Wmax[u], and for node u such that u ∈ S i,
we have C[u] ⊆ Rj−1, hence

s[u] ≤ si[u]+(1−c)Wmax[u]
∞∑

j=i+1

c j
∑
v∈Rj−1

p j−1[v]

= si[u]+(1−c)Wmax[u]
∞∑

j=i+1

c j p j−1[Rj−1]

(14)

Since
∑∞

j=i+1 c j p j−1[Rj−1] =
∑∞

j=0 ci+ j+1 pi+ j[Ri+ j] and, as
described above, pi+ j[Ri+ j] ≤ pi[Ri],

s[u] ≤ si[u] + (1 − c)Wmax[u] pi[Ri]
∞∑
j=0

ci+ j+1

= si[u] + (1 − c)Wmax[u] pi[Ri]
ci+1 − c∞

1 − c
≤ si[u] + ci+1Wmax[u] pi[Ri] = si[u]

(15)

which completes the proof. �
As shown in Definitions 1 and 2, the lower and up-

per bounds are estimated from random walk probabilities at
each iteration. A property of these estimated values is that
their accuracy increases with each iteration. We demonstrate
this property by introducing the following lemma:

Lemma 3 (Enhancing accuracy): At the i-th iteration,
si[u] ≥ si−1[u] and si[u] ≤ si−1[u] both hold.

Proof We will first show that si[u] ≥ si−1[u]. From Eq. (3),
it is clear that si[u] − si−1[u] = (1 − c)ci pi[u] ≥ 0. We
will now show that si[u] ≤ si−1[u]. From Eqs. (3) and (11),
si[u] − si−1[u] can be computed as follows:

si[u] − si−1[u]

= si[u] − si−1[u] + ciWmax[u](cpi[Ri] − pi−1[Ri−1])

= ci{(1 − c)pi[u] +Wmax[u](cpi[Ri] − pi−1[Ri−1])}
(16)

From Eq. (2),

pi[u] =
∑
v∈C[u]

W[u, v] pi−1[v] ≤ Wmax[u]
∑
v∈Ri−1

pi−1[v]

= Wmax[u] pi−1[Ri−1]
(17)

614
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

From Eq. (12), pi[Ri] ≤ pi−1[Ri−1]. Therefore,

si[u] − si−1[u]

≤ ciWmax[u]{(1−c)pi−1[Ri−1]+cpi−1[Ri−1]−pi−1[Ri−1]}
= 0

(18)

which completes the proof. �
As described below, Lemma 3 ensures that the pro-

posed method is able to search for the top-k nodes with an
exact ranking without calculating similarities until conver-
gence. The upper and lower bounds have the property of
converging on exact similarity scores as shown below.

Lemma 4 (Convergence of estimated values): After con-
vergence, the upper and lower estimated values are the equal
to the exact similarities; i.e., s∞[u] = s∞[u] = s[u].

Proof We will first show that s∞[u] = s[u]. From Eq. (10),
it is clear that s∞[u] = (1 − c)

∑∞
j=0 c j p j[u] = s[u]. Next,

we will show that s∞[u] = s[u]. From Eq. (11), s∞[u] =
s∞[u]+ c∞Wmax[u] p∞[R∞]. Since c∞ = 0, 0 ≤ Wmax[u] ≤ 1
and 0 ≤ p∞[R∞] ≤ 1, c∞Wmax[u] p∞[R∞] = 0. Therefore
s∞[u] = s∞[u] = s[u], which completes the proof. �

As will be described later, the proposed method can
achieve precise ranking according to Lemma 4.

4.3 Subgraph-Based Search

In the proposed method, we dynamically construct sub-
graphs during iterated computations in order to compute
random walk probabilities at high speed. The upper and
lower bounds of the selected nodes are computed by using
random walk probabilities. In this section, we first discuss
our approach to node selection, and then present a formal
definition of subgraphs.

4.3.1 Node Selection

In the proposed approach, a node is selected if (1) it may
be an answer node and (2) the node’s ranking as an answer
node cannot be determined by using estimated values. If θi
is the k-th highest lower similarity bound among all nodes
at the i-th iteration, then the set Li of answer-likely nodes at
the i-th iteration is defined as follows:

Definition 3 (Answer-likely nodes): The set Li of answer-
likely nodes whose precise similarity scores may be higher
than θi at the i-th iteration is defined as follows:

Li = {u ∈ V : si[u] ≥ θi} (19)

This definition indicates that a node is an answer-likely
node if its upper similarity bound is no lower than θi. This is
because, if the upper bound of a node is lower than θi, then
its exact similarity score cannot be θi or greater, so it cannot
be an answer node. As shown below, the set of answer-
likely nodes has the property of becoming smaller with each
iteration. The set Di of nodes whose ranking is determined
to be among the top-k nodes at the i-th iteration is defined as

follows:

Definition 4 (Ranking determined nodes): If |Li| = k (i.e.,
the number of answer-likely nodes is k), the set Di of
ranking-determined nodes whose exact ranks as answer
nodes have been fixed by the i-th iteration is defined as fol-
lows:

Di= {u∈Li : si[u]> si[v] or si[u]< si[v], u�v,∀v∈Li} (20)

If |Li| � k, then Di is defined as follows:

Di = ∅ (21)

Definition 4 defines node u as a rank-determined node
if (1) the number of answer nodes is k, and (2) there does
not exist any node v(� u) whose lower or upper similarity
bound is between si[u] and si[u]. That is, if there exists
a node whose lower or upper similarity bound lies between
si[u] and si[u], then the rank of node u cannot be determined.
For example, if we have k = 4 and Li = {u1, u2, u3, u4}where
0.8 ≤ si[u1] ≤ 0.9, 0.6 ≤ si[u2] ≤ 0.7, 0.3 ≤ si[u3] ≤ 0.5,
and 0.2 ≤ si[u4] ≤ 0.4, we have Di = {u1, u2}. This is be-
cause node u1 and u2 must be the top and second similar
nodes from their estimated bounds, respectively. In Defini-
tion 4, if |Li| = k, it requires O(k log k) time to compute the
rank-determined nodes Di because Di can be obtained by
sorting the nodes of Li. Also, if |Li| � k, then there is no
need to compute Di from Eq. (21). From the definitions of
node sets Li and Di, the set S i of selected nodes is defined
as follows:

Definition 5 (Selected nodes): The set S i of selected nodes
whose upper and lower bounds are computed in the i-th it-
eration is defined as follows:

S i =

{
V (i = 0)
Li−1\Di−1 (i � 0)

(22)

In this equation, Li−1\Di−1 is calculated as {u ∈ Li−1 : u �
Di−1} (i.e., the set obtained by subtracting Di−1 from Li−1).

From Eq. (5), the proposed method first calculates the
estimated scores for all nodes, but does not update these
scores if (1) the node is not an answer-likely node, or (2)
its ranking has not been determined. In other words, we
only update the estimated value of a node if it is an answer-
likely node whose ranking has not been determined by prior
estimations.

To show the property of the selected nodes, we intro-
duce several lemmas on node sets Li and Di. First, when A
is a set of answer nodes, the property of the answer-likely
nodes Li is as follows:

Lemma 5 (Monotonic decrease in Li): During iterative
computations, the answer-likely nodes Li decrease mono-
tonically. That is, Li ⊆ Li−1 holds.

Proof If θi is the k-th highest lower bound at the i-th it-
eration, then we have θi ≥ θi−1 due to the monotonic in-
creasing property of lower bound estimations as described in

FUJIWARA et al.: FAST AD-HOC SEARCH ALGORITHM FOR PERSONALIZED PAGERANK
615

Lemma 3. Therefore, (1) if node u is included in Li, the node
must be included in set Li−1 since si−1[u] ≥ si[u] ≥ θi ≥ θi−1,
and (2) otherwise, the node may be included in set Li−1 since
θi > si−1[u] ≥ si[u] ≥ θi−1 may hold. �

Lemma 6 (Convergence of Li): After convergence, the set
of answer-likely nodes is equal to the set of answer nodes,
i.e., L∞ = A.

Proof If θ is the k-th highest exact similarity among the
answer nodes, we have θ∞ = θ after convergence based on
Lemma 4. Therefore, from Lemma 4 we have

L∞ = {u∈V : s∞[u]≥θ∞} = {u∈V : s[u]≥θ} = A (23)

�
From Lemma 3, all the nodes are needed to compute

Li, but with repeated iterations, the set Li can be computed
with increasing efficiency. If i � 0 and |Li−1| > k, then set Li

can be computed as follows:

Li = {u ∈ Li−1 : si[u] ≥ θi} (24)

Equation (24) can be obtained by replacing V with Li−1 in
Eq. (19). That is, we can compute Li from Li−1. This is be-
cause, if a node is not included in Li−1, it cannot be included
in Li from Lemma 5. Moreover, if i � 0 and |Li−1| = k, then
set Li can be computed as follows:

Li = Li−1 (25)

This is because Li ⊆ Li−1 and set Li converges to set A ac-
cording to Lemmas 5 and 6.

From Lemmas 5 and 6, ranking determined nodes ex-
hibit the following property:

Lemma 7 (Monotonic increase in Di): The set Di of
ranking-determined nodes has the property of increasing
monotonically; i.e., the relation Di ⊇ Di−1 holds at the i-
th iteration.

Proof We will first prove the case for |Li−1| � k. From
Definition 4, in this case Di−1 = ∅ ⊆ Di. Next we will prove
the case for |Li−1| = k. In this case, Li = Li−1 = A holds
due to Lemmas 5 and 6. If node u is included in set Di−1,
this node must be included in set Di. This is because (1) the
estimated values have the property of increasing accuracy
according to Lemma 3, and (2) Li = Li−1. If node u is not
included in set Di−1, it may be included in set Di due to the
property of increasing accuracy of the estimated values. �

Lemma 8 (Convergence of Di): After convergence, we
have D∞ = A; i.e., the set of rank-determined nodes be-
comes equal to the set of answer nodes.

Proof After convergence, according to Lemma 4, we have
s∞[u] = s∞[u] = s[u], and according to Lemma 6, we have
L∞ = A. Therefore, from Definition 4:

D∞={u∈L∞ : s∞[u]>s∞[v] or s∞[u]<s∞[v], u�v,∀v∈L∞}
={u∈A : s[u]>s[v] or s[u]<s[v], u�v,∀v∈A}=A

(26)

and so D∞ = A holds after convergence. �
Lemmas 5 and 7 show that the sets Li and Di have

monotonically decreasing and increasing properties, respec-
tively. Also from Lemmas 6 and 8 sets Li and Di are equal
to the set A of answer nodes after convergence. Therefore,
the following lemma holds for the selected nodes:

Lemma 9 (Selected nodes): The set of selected nodes is
monotonically decreasing and becomes an empty set after
convergence; i.e., S i ⊆ S i−1 and S∞ = ∅.
Proof This is obvious from Lemmas 5, 6, 7 and 8. �

Since, as described in Definition 5, the set of selected
nodes is initialized to the set of all nodes in the graph, the
set of selected nodes has the property that V = S 0 ⊇ S 1 ⊇
. . . ⊇ S i. Moreover, the property of S∞ = ∅ implies that our
approach terminates in a finite number of iterations since
this indicates that there are no nodes whose estimated values
have to be updated.

4.3.2 Subgraph Construction

In this section, we discuss our method for constructing sub-
graphs in order to efficiently update the estimated values at
high speed. A naive approach is to update the upper/lower
estimated values for the whole graph at each iteration. How-
ever, this approach is computationally expensive since it
needs to obtain random walk probabilities of all nodes.
Therefore, we construct subgraphs by pruning unnecessary
nodes and edges from the original graph. In this section, we
first define what we mean by subgraph, and then discuss its
properties. We also describe how to incrementally update
subgraphs at each iteration.

As shown in Definitions 1 and 2, the upper and lower
estimated values are computed by using random walk prob-
abilities obtained by Eq. (2). Therefore, the subgraphs are
constructed to facilitate the fast computation of random
walk probabilities. To construct the subgraphs, we use the
set, Hi, of nodes whose number of hops from the query
nodes is no greater than i (i.e., Hi does not contain any nodes
more than i hops from a query node). We construct subgraph
Gi at the i-th iteration based on set Hi as follows:

Definition 6 (Subgraph): If Gi = {Vi, Ei} is the subgraph
of graph G at the i-th iteration, then Vi and Ei are defined as
follows:

Vi = Hi ∩ Ri (27)

Ei = {(u, v) ∈ E : u ∈ Vi, v ∈ Vi} (28)

where (u, v) represents an edge from node u to node v.

This definition indicates that (1) if a node in the original
graph G is within i hops of a query node and the query node
is reachable from this node then the subgraph includes this
node, and (2) if two nodes are joined by an edge in a partial
graph and these nodes are both in the partial graph, then this
edge is a subgraph.

This definition also shows that as the number of query

616
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

nodes decreases, the size of the subgraphs becomes smaller
and searches can be performed at higher speed. This is be-
cause if there are fewer query nodes, the set of nodes in the
subgraph given by Eq. (27) becomes smaller. The relation-
ship between the number of query nodes and the search time
is shown in Sect. 5.

We introduce the following lemma to illustrate the
properties of subgraphs.

Lemma 10 (Upper/lower bounds of subgraphs): The up-
per/lower estimated values of selected nodes at the i-th it-
eration can be computed from Vi and Ei.

Proof As described above, pi[u] is the probability that a
random walk of length i starting from a query node will end
up at node u. So if a node is situated more than i hops away
from a query node, its random walk probability at the i-th it-
eration must be 0. As a result, we can obtain the upper/lower
estimated values from node set Hi and the set of edges that
are incident to Hi. From Eqs. (2), (3) and (11), it is clear that,
if the set of nodes S i is unreachable from a node, then the
node’s random walk probability will not affect the estimated
upper or lower bounds of any node in S i. This indicates
that it is possible to compute the upper and lower bounds
of nodes included in set S i from node set Ri and the set of
edges between nodes in Ri. As a result, we need only node
set Vi = Hi∩Ri and edge set Ei = {(u, v) ∈ E : u ∈ Vi, v ∈ Vi}
to obtain the upper/lower estimated values of the selected
nodes in the i-th iteration. �

This proof implies that we can use subgraphs to com-
pute random walk probabilities and estimate upper/lower
bounds for selected nodes. Subgraphs can be used to effi-
ciently compute upper and lower bounds as follows:

Definition 7 (Computing probabilities by subgraphs): If
Ci[u] is the set of nodes that are incident to node u in the
subgraph Gi, then we can compute the random walk proba-
bility pi[u] of node u at the i-th iteration as follows:

pi[u] =

{
q[u] (i = 0)∑
v∈Ci[u] W[u, v]pi−1[v] (i � 0)

(29)

The above equation can be obtained by replacing C[u]
with Ci[u] in Eq. (2). To find the top-k nodes at high speed,
we use the above formula to calculate the probabilities of
random walks from the subgraph. We use Definitions 2 and
1 to obtain the upper and lower bounds of nodes respec-
tively. The naive approach processes the whole graph to
calculate these bounds, but by using subgraphs we are able
to compute these estimated values more efficiently.

However, it can be computationally expensive to con-
struct these subgraphs if the approach of Definition 6 is ap-
plied directly, because all the nodes in the graph are used,
and this can make it impossible to construct subgraphs effi-
ciently. We therefore introduce an incremental approach to
obtaining subgraphs that utilizes a set of nodes, hi, and a set
of edges, ei, in iterative computations. Here, hi is defined
as the set of nodes that are i hops away from a query node.
Therefore, h0 = H0 = Q, and Hi =

⋃i
j=0 h j = Hi−1 + hi.

Also, ei is the set of edges that link node sets hi and Hi−1.
That is, since Hi = Hi−1 + hi, we have ei = {(u, v) ∈ E : u ∈
hi, v ∈ Hi−1 or u ∈ Hi−1, v ∈ hi or u ∈ hi, v ∈ hi}. Note that
hi and ei can be obtained from a single breadth-first search
rooted on the query nodes; whereby hi and ei can be ex-
tracted with low computation cost in time O(N + M). For
sets hi and ei, we have the following lemma:

Lemma 11 (Subgraph inclusion): If the sets of nodes and
edges are denoted by V ′i = Vi−1 + hi and E′i = Ei−1 + ei

respectively, then if i � 0, we have Vi ⊆ V ′i and Ei ⊆ E′i .

Proof If i � 0, since Hi = Hi−1+hi and Ri ⊆ Ri−1, we have
the following equation from Eq. (27):

Vi = (Hi−1 + hi) ∩ Ri ⊆ (Hi−1 + hi) ∩ Ri−1 (30)

Therefore, we have

Vi ⊆ Hi−1 ∩ Ri−1 + hi ∩ Ri−1 ⊆ Vi−1 + hi = V ′i (31)

If i � 0, then from Eq. (28), Vi ⊆ Vi−1 + hi, and so

Ei ⊆ {(u, v) ∈ E : u ∈ (Vi−1 + hi), v ∈ (Vi−1 + hi)} (32)

Therefore, since Vi−1 = Hi−1 ∩ Ri−1 ⊆ Hi−1:

Ei ⊆{(u, v) ∈ E : u ∈ Vi−1, v ∈ Vi−1}+
{(u, v) ∈ E : u ∈ Hi−1, v ∈ hi

or u ∈ hi, v ∈ Hi−1 or u ∈ hi, v ∈ hi}
(33)

As a result, Ei ⊆ Ei−1 + ei = E′i holds. �
Based on Lemma 11, we can incrementally construct

subgraphs while iterating. For graph G′i given by G′i ={V ′i , E′i }, we have V ′i = Vi−1 + hi and E′i = Ei−1 + ei, whereby
graph G′i can be constructed incrementally. That is, G′i can
be obtained by adding to graph Gi−1 all the nodes that are
a hop distance of i from the query nodes, and their corre-
sponding edges. Since (1) Gi ⊆ G′i holds according to the
above lemma, and (2) sets hi and ei include nodes and edges
that are not included in paths to the set S i of selected nodes,
we can compute subgraph Gi by performing a breadth-first
search to determine the paths to S i in graph G′i .

Algorithm 1 shows our incremental approach for sub-
graph construction. If i = 0, the algorithm initializes the
node and edge sets to V0 = Q and E0 = {(u, v) ∈ E :

Algorithm 1 Subgraph construction
Input: Gi−1, subgraph of previous iteration; hi, set of nodes; ei, set of edges; Si, set

of selected nodes
Output: Gi, subgraph in the i-th iteration
1: if i = 0 then
2: V0 := Q;
3: E0 := {(u, v) ∈ E : u ∈ Q, v ∈ Q};
4: else
5: V′i := Vi−1 + hi;
6: E′i := Ei−1 + ei;
7: G′i := {V′i ,E′i };
8: compute paths to Si in G′i ;
9: compute Vi and Ei from the paths;

10: end if
11: Gi := {Vi,Ei};
12: return Gi;

FUJIWARA et al.: FAST AD-HOC SEARCH ALGORITHM FOR PERSONALIZED PAGERANK
617

Algorithm 2 Castanet
Input: G, original graph; c, the scaling parameter; k, number of answer nodes; Q, set

of query nodes
Output: A, set of answer nodes
1: i := 0;
2: S0 := V;
3: repeat
4: if i � 0 then
5: i := i + 1;
6: end if
7: compute hi and ei by breadth-first search;
8: compute Gi by Algorithm 1;
9: for each node u ∈ Vi do

10: compute pi[u] from Gi by Eq. (29);
11: end for
12: for each node u ∈ Si do
13: compute si[u] by Eq. (3);
14: compute si[u] by Eq. (11);
15: end for
16: if i = 0 then
17: compute Li by Eq. (19);
18: else
19: if |Li−1 | � k then
20: compute Li by Eq. (24);
21: else
22: Li := Li−1;
23: end if
24: end if
25: if |Li | = k then
26: compute Di by Eq. (20);
27: else
28: Di := ∅;
29: end if
30: Si+1 := Li\Di;
31: until Si+1 = ∅
32: sort nodes of Di;
33: A := Di;
34: return A;

u ∈ Q, v ∈ Q}, respectively (lines 2 − 3). This is because
V0 = H0 ∩ R0 = Q ∩ V = Q from Eq. (27). Otherwise,
it computes graph G′i from the graph of the previous itera-
tion, Gi−1 (lines 5 − 7). Vi and Ei are computed from G′i by
performing a breadth-first search (lines 8 − 9). As shown
in Algorithm 1, we can incrementally compute subgraphs
without using the whole graph.

4.4 Search Algorithm

Algorithm 2 shows our algorithm (Castanet). It first initial-
izes the set of selected nodes (line 2), and computes the sub-
graph (lines 7−8). For each node included in the subgraph, it
computes the node’s random walk probability (lines 9−11),
since these random walk probabilities are needed to estimate
the upper and lower bounds (Lemma 10). It estimates the
bounds of the selected nodes (lines 12 − 15). If i = 0, it
computes Li for the answer-likely nodes according to Defi-
nition 3 (lines 16− 17). Otherwise, it incrementally updates
the set Li from Li−1 (lines 18 − 24). From Eq. (4), if |Li| � k
then Di = ∅, so Di is only calculated when |Li| = k (lines
25 − 26). It then updates the selected nodes (line 30). If the
set of selected nodes is empty, then the iterations are termi-
nated (line 31). The node ranking is obtained by sorting the
nodes of set Di according to their upper or lower estimated
bounds (line 32). Finally, Di is returned as the set of answer
nodes (lines 33 − 34).

In practice, if several nodes have same edge weights

from adjacent nodes, the nodes can have the same similar-
ity for the given query. As a result, the number of answer
nodes could be more than k. In that case, upper and lower
bounds also have the same scores for such the nodes from
Definition 1 and 2. Therefore, if several nodes have the same
k-th highest lower bound, our approach checks whether the
nodes have the same edge weights from adjacent nodes. If
so, we determine Di although Di has more than k nodes to
rank them; otherwise, we compute Li by iteratively updating
upper and lower bounds.

As shown in Algorithm 2, our search method does not
need any precomputation. In other words, it can perform ad-
hoc searches. Also, our algorithm does not need any user-
defined internal parameters. Therefore, it offers the user a
simple means of performing PPR searches.

4.5 Theoretical Analysis

This section presents a theoretical analysis of the search re-
sults and the computation cost of our algorithm. First, we
will present a theoretical discussion on the search results.

Theorem 1 (Search accuracy): Our proposed method com-
putes the top-k nodes with exact ranking.

Proof Algorithm 2 performs computations until the set
of selected nodes converges to an empty set, whereupon it
returns Di as the set of answer nodes. If S i+1 = ∅, then
Li = Di from Definition 5. Since Li ⊇ A and Di ⊆ A from
Lemmas 5, 6, 7 and 8, we have Li = Di = A if Li = Di holds.
Therefore we have Di = A if S i+1 = ∅ holds. Since Di = A,
the ranking of all nodes in set Di is fixed after achieving
convergence. Therefore, we can compute the top-k nodes
with exact node ranking. �

Next, we discuss the time complexity of our approach.
Let l and t be the average number of selected nodes and the
number of iterations in the proposed method, respectively.
Also, let n and m be the average numbers of nodes and edges
in the subgraphs, respectively. Note that the original method
requires O(N + M)T time.

Theorem 2 (Computation cost): The proposed method re-
quires, on average, O((l+ n+m+ k log k)t + N +M) time to
find the top-k nodes.

Proof Our approach first constructs the subgraph, which
takes O((n + m)t + N + M) time. This is because (1) nodes
and edges are computed by breadth-first search in O((n+m)t)
time in the subgraph at each iteration, and (2) hi and ei are
obtained, on average, in O(N + M) time. It takes, on aver-
age, O((n+m)t) and O(l·t) time to compute the random walk
probabilities and estimate the upper/lower bounds from the
subgraphs at each iteration, respectively. We compute the
sets of answer-likely nodes Li in O(l · t), and we obtain rank-
determined nodes Di in O(k log k · t) time. This is because,
in each iteration, we can compute rank-determined nodes
in O(k log k) time by exploiting quicksort. After reaching
convergence, the answer nodes are sorted to obtain the node

618
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

ranking, which takes O(k log k) time. As a result, our ap-
proach requires, on average, O((l+n+m+k log k)t+N+M)
time. �

5. Experimental Evaluation

We perform an experimental evaluation of the proposed
Castanet algorithm below. In this experiment, we compare
our approach with three other methods — the Monte Carlo-
based approach proposed by Avrachenkov et al. [12], the
matrix-based approach proposed by Fujiwara et al. [7], and
the original iterative approach [3]. The results obtained with
these four methods are labelled “Castanet”, “Monte”, “Ma-
trix” and “Original”, respectively.

We used the following data sets in the experiment:

• Notredame†: A set of Web data taken from the Univer-
sity of Notre Dame. In this graph, nodes represent Web
pages and edges represent hyperlinks between them.
There are 325, 729 nodes and 1, 497, 135 edges.
• CNR††: CNR is a public research organization in Italy.

This data set is a Web graph of the CNR domain, with
325, 557 nodes and 3, 216, 152 edges.
• Email†††: A set of email data from a European research

institute. In this graph, each node corresponds to an
email address, and an edge between nodes corresponds
to one or more email messages sent between the cor-
responding email addresses. This graph has 265, 214
nodes and 420, 045 edges.
• Social††††: This graph is obtained from Slashdot.org.

The nodes correspond to Slashdot users, and the edges
represent interactions among these users. This graph
has 82, 144 nodes and 549, 202 edges.

In the experiments, three query nodes were chosen at
random. The experiments were performed on an Intel Xeon
server with a 3.33 GHz CPU.

5.1 Search Time

We evaluated the search time of each approach. Figure 1
shows the results. In this figure, the results of the proposed
method are indicated by “Castanet(k)”, where k is the num-
ber of answer nodes. We set the scaling parameter c to 0.5
and the number of random walks in the Monte Carlo-based
approach to 2, 500, 000. The number of answer nodes had
no effect on the search times of the existing methods. This
is because (1) similarity scores are computed for all nodes
in the Monte Carlo-based method and the original iterative
method, and (2) the time required for matrix precomputation
dominates the search time of the matrix-based method. Ta-
ble 2 details the parameters of the proposed method and the
original iterative approaches for c = 0.5 and k = 10. Table 3
shows a breakdown of the search time of each approach for

†http://vlado.fmf.uni-lj.si/pub/networks/data/ND/NDnets.htm
††http://law.di.unimi.it/webdata/cnr-2000/
†††http://snap.stanford.edu/data/email-EuAll.html
††††http://snap.stanford.edu/data/soc-sign-Slashdot090221.html

Fig. 1 Search times of each method.

Table 2 Parameter scores.

Parameter
Data set

Notredame CNR Email Social

N 3.25 × 105 3.25 × 105 2.65 × 105 8.21 × 104

l 2.29 × 104 2.13 × 104 2.27 × 104 7.92 × 103

n 5.12 × 104 7.01 × 104 5.98 × 104 2.88 × 104

M 1.49 × 106 3.21 × 106 4.20 × 105 5.49 × 105

m 7.30 × 104 5.70 × 105 9.76 × 104 2.17 × 105

T 30.8 32.8 56.0 28.0
t 15.5 24.3 15.7 13.1

Table 3 Breakdown of search times.

Method
Search time [ms]

Precomputation Top-k search Overall

Castanet − 5.52 5.52
Monte − 21.8 21.8
Matrix 8.16 × 105 5.60 × 10−3 8.16 × 105

Original − 36.5 36.5

the Notredame data set where c = 0.5 and k = 10.
As shown in Fig. 1, our approach achieves a search

time reduction of up to 90% compared with the original iter-
ative methods if k = 5. This figure also shows that the search
time of the proposed method decreases as the number of an-
swer nodes (k) is reduced. This is because a smaller value
of k leads to smaller node sets Hi and Ri in Definition 6. If
k = 500, then the Monte-Carlo method is sometimes faster
than the proposed method, but this value of k is unlikely to
be used in practical applications [4], [13]. Also, as shown in
Table 3, the actual search time of methods based on matrix
decomposition may be faster than the proposed method, but
if the precomputation time is factored in, then the proposed
method is faster overall.

5.2 Search Accuracy

One characteristic of the proposed method is that it achieves
exact node ranking while the Monte Carlo-based approach
does not. Since the search accuracy of the Monte Carlo-
based approach depends on the number of random walks,
we varied the number of random walks in this experiment
and compared the performance of the Monte Carlo method
with the proposed method. Figures 2 and 3 show the search
time and accuracy of each approach for the Notredame data
set, respectively, with c = 0.5 and k = 10. In Fig. 3, we used
average precision as the metric of search accuracy [14]. The

FUJIWARA et al.: FAST AD-HOC SEARCH ALGORITHM FOR PERSONALIZED PAGERANK
619

Fig. 2 Search time vs. number of random walks.

Fig. 3 Search accuracy vs. number of random walks.

average precision has a value ranging from 0 to 1, where
results that are the same as the original search results are
deemed to have an average precision of 1.

As shown in Fig. 2, the Monte Carlo-based method re-
quires more computation time as the number of random
walks increases. If the number of random walks is not prop-
erly set, the Monte Carlo-based approach can require more
computation time than the original iterative approach. As
Fig. 3 shows, the proposed method has an average preci-
sion of 1 because it is guaranteed to provide accurate rank-
ings, but the Monte Carlo method has lower search preci-
sion. This figure also shows that the accuracy of the Monte
Carlo-based method does not improve as the number of ran-
dom walks increases. This is because the accuracy of the
Monte Carlo method had already converged under these ex-
perimental conditions. From Fig. 2 and Fig. 3, it can be seen
that our approach is superior to the Monte Carlo-based ap-
proach in both speed and accuracy.

5.3 Evaluation with Multiple Scaling Parameters

As discussed in Sect. 1, it is essential to be able to handle
ad hoc scaling parameters in real applications. Moreover,
as discussed in Sect. 4.4, the proposed method requires no
pre-computation, so it is able to handle ad hoc scaling pa-
rameters. To evaluate this feature of the proposed method,
we evaluated its performance with multiple scaling param-
eter settings. The results are shown in Fig. 4. In this ex-
periment, we set k = 10 and used the Notredame data set.
As demonstrated by the above experiment, the matrix de-
composition method has no scaling parameters that can be
applied quickly in an ad hoc fashion, so we only compared

Fig. 4 Search time vs. scaling parameters.

Fig. 5 Search time vs. number of query nodes.

our method with the Monte Carlo method.
As shown in Fig. 4, decreasing the score of the scal-

ing parameter results in greater search speed. This is be-
cause in our method the upper bound scores are obtained
by adding ci+1Wmax[u] pi[Ri] to the lower bound scores as
shown in Eq. (11), so if c is small then the upper bound is
expected to have small score. Also, random walk length in
the Monte Carlo-based method increases stochastically with
the value of c. Therefore, the search times increase in the
Monte Carlo-based method as c becomes larger.

5.4 Evaluating Different Numbers of Query Nodes

As discussed in Sect. 4.3.2, the proposed method calculates
subgraphs by using set Hi of nodes for which the number
of hops from the query nodes is no more than i, so faster
searches can be performed by reducing the number of nodes
that have to be considered. Here, we studied how the search
time varies with the number of query nodes. The results are
shown in Fig. 5, where |Q| represents the number of query
nodes.

As this figure shows, the proposed method can process
queries faster as the number of query nodes decreases. This
is because, as can be seen from Definition 6, the number of
query nodes has a large effect on the size of node set Hi, and
node set Hi has a large effect on the size of the subgraph. We
confirmed that the subgraphs become smaller as the number
of query nodes decreases, resulting in shorted search times
in the proposed method.

620
IEICE TRANS. INF. & SYST., VOL.E100–D, NO.4 APRIL 2017

6. Conclusion

In this article, we have addressed the problem of efficiently
finding the top-k nodes for PPR. We proposed an algorithm
called Castanet that can perform high-speed searches by us-
ing upper and lower bounds to prune unnecessary nodes.
Our experiments confirmed that this approach is more ef-
fective than conventional methods in dealing with ad hoc
changes to graphs and scaling parameters.

References

[1] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: Bringing order to the web,” Technical Report 1999-
66, Stanford InfoLab, Nov. 1999.

[2] A. Balmin, V. Hristidis, and Y. Papakonstantinou, “Objectrank: Au-
thority-based keyword search in databases,” VLDB, pp.564–575,
2004.

[3] G. Jeh and J. Widom, “Scaling personalized web search,” WWW,
pp.271–279, 2003.

[4] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu, “Automatic
multimedia cross-modal correlation discovery,” KDD, pp.653–658,
2004.

[5] H. Tong, C. Faloutsos, and J.-Y. Pan, “Fast random walk with restart
and its applications,” ICDM, pp.613–622, 2006.

[6] Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. Kitsuregawa, “Fast
and exact top-k search for random walk with restart,” PVLDB, vol.5,
no.5, pp.442–453, 2012.

[7] Y. Fujiwara, M. Nakatsuji, T. Yamamuro, H. Shiokawa, and M.
Onizuka, “Efficient personalized pagerank with accuracy assur-
ance,” KDD, 2012.

[8] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós, “Towards scaling
fully personalized pagerank: Algorithms, lower bounds, and experi-
ments,” Internet Mathematics, vol.2, no.3, pp.333–358, 2005.

[9] B. Bahmani, A. Chowdhury, and A. Goel, “Fast incremental and
personalized pagerank,” PVLDB, vol.4, no.3, pp.173–184, 2010.

[10] H. Shiokawa, Y. Fujiwara, and M. Onizuka, “Fast algorithm for
modularity-based graph clustering,” AAAI, pp.1170–1176, 2013.

[11] D.A. Harville, Matrix Algebra From a Statistician’s Perspective,
Springer, 2008.

[12] K. Avrachenkov, N. Litvak, D. Nemirovsky, E. Smirnova, and
M. Sokol, “Quick detection of top-k personalized pagerank lists,”
WAW, vol.6732, pp.50–61, 2011.

[13] Y.Z. Guo, K. Ramamohanarao, and L.A.F. Park, “Personalized
pagerank for web page prediction based on access time-length and
frequency,” Web Intelligence, pp.687–690, 2007.

[14] B. Carterette, J. Allan, and R.K. Sitaraman, “Minimal test collec-
tions for retrieval evaluation,” SIGIR, pp.268–275, 2006.

Yasuhiro Fujiwara is a distinguished tech-
nical member of NTT Software Innovation Cen-
ter. He received the B.E. and M.E. degrees From
Waseda University in 2001 and 2003, respec-
tively, and he received the Ph.D. degree from
The University of Tokyo in 2012. He joined
NTT Cyber Solutions Laboratories in 2003. He
currently a research engineer in NTT Software
Innovation Center. His research interest include
database, data mining, artificial intelligence, and
machine learning.

Makoto Nakatsuji is a Manager in NTT
Resonant Inc. He completed his Ph.D. in So-
cial Informatics at Kyoto University Graduate
School of Informatics in 2010. He was a visiting
scholar in The Tetherless World Constellation at
Rensselaer Polytechnic Institute in 2013. His re-
search interests include semantic data mining,
recommendation, deep learning, Question An-
swering systems, and graph analysis.

Hiroaki Shiokawa is an Assistant Profes-
sor at University of Tsukuba. He received B.S.
in information science, M.E. and Ph.D. in en-
gineering from University of Tsukuba in 2009,
2011 and 2015 respectively. From 2011 to 2015,
he was a researcher at NTT labs, and he joined
Center for Computational Sciences at University
of Tsukuba in Nov. 2015. His current main re-
search interests include database systems, data
engineering, data mining, and graph data man-
agement.

Takeshi Mishima received the B.E. and
M.E. degrees in information science from the
University of Tsukuba in 1994 and 1996, re-
spectively. He joined NTT in 1996 and has
been engaged in the research and development
of control system architecture for switching sys-
tem. He is currently working for a database
replication middleware using Off-The-Shelf re-
sources at NTT Software Innovation Center. He
is a member of the Information Processing So-
ciety of Japan (IPSJ).

Makoto Onizuka is a professor in the Grad-
uate School of Information Science and Tech-
nology at the Osaka University. He received
his Ph.D. in the Graduate School of Informa-
tion Science and Technology at the Tokyo Insti-
tute of Technology. His main research is in the
area of database systems, with special interest
in graph mining algorithms, distributed query
optimization, and exploratory search. He is a
recipient of the IPSJ Yamashita SIG Research
Award (2004) and the DBSJ Kambayashi Award

for Young Researcher (2008). He serves is a vice-chair of Technical Com-
mittee on Data Engineering, and he is a guest editor-in-chief of the special
section on Data Engineering and Information Management (2016).

http://dx.doi.org/10.1016/b978-012088469-8/50051-6
http://dx.doi.org/10.1145/775189.775191
http://dx.doi.org/10.1145/1014052.1014135
http://dx.doi.org/10.1109/icdm.2006.70
http://dx.doi.org/10.14778/2140436.2140441
http://dx.doi.org/10.1145/2339530.2339538
http://dx.doi.org/10.1080/15427951.2005.10129104
http://dx.doi.org/10.14778/1929861.1929864
http://dx.doi.org/10.1007/978-3-642-21286-4_5
http://dx.doi.org/10.1109/wi.2007.4427174
http://dx.doi.org/10.1145/1148170.1148219

