sity of Tsukuba
Reposntory '

Application of the Improved fast Gauss
transform to option pricing under
Jump-diffusion processes

0ad Sakuma Takayuki, Yamada Yuji

journal or The journal of computational finance
publication title

volume 18

number 2

page range 31-55

year 2014-12

URL http://hdl._handle.net/2241/00146111

doi: 10.21314/JCF.2014.276




Journal of Computational Finance 18(2), 31-55

Application of the improved fast Gauss
transform to option pricing under
jump-diffusion processes

Takayuki Sakuma

Graduate School of Business Sciences, University of Tsukuba,
3-29-1 Otsuka, Bunkyo-ku, Tokyo 112-0012, Japan;
email: sakuma@gssm.otsuka.tsukuba.ac.jp

Yuji Yamada

Graduate School of Business Sciences, University of Tsukuba,
3-29-1 Otsuka, Bunkyo-ku, Tokyo 112-0012, Japan;
email: yuji@gssm.otsuka.tsukuba.ac.jp

(Received January 18, 2012; revised August 22, 2012; accepted December 16, 2012)

Efficient kernel summation is an active research topic in machine learning and
computational physics. Fast multipole methods (FMMs) in particular are known
as efficient computational methods in these fields, but they have not gained much
attention in computational finance. In this paper, we apply the improved fast Gauss
transform (IFGT), a version of an FMM, to the computation of European-type
option prices under Merton's jump-diffusion model. IFGT is applied to computing
the nonlocal integral terms in partial integrodifferential equations, and our results
indicate that IFGT is useful for the fast computation of option pricing under this
model.

1 INTRODUCTION

Jump-diffusion models, which incorporate jumps in asset dynamics, have attracted
attention in financial industries because the standard Black—Scholes model cannot
capture the skew and smile effects observed in option markets. Jump-diffusion mod-
els are convenient in practice in the sense that the analytical formula is appropriate
for some types of option prices. For example, under Merton’s jump-diffusion model
(Merton 1976), an analytical expression of path-independent European call option
prices exists. Analytical formulas for some path-dependent options also exist under
Kou’s jump-diffusion model (Kou and Wang 2003, 2004). Otherwise, Monte Carlo
simulation and the finite-difference method are the standard tools used to compute
prices. Monte Carlo simulation in particular is generally time consuming. In the case
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32 T.Sakuma andY.Yamada

of the finite-difference method, it is necessary to compute nonlocal integral opera-
tors for the corresponding partial integrodifferential equations (PIDEs) numerically,
which is computationally expensive. A popular efficient approach to computing the
operators is to use the fast Fourier transform (FFT) (see, for example, Andersen and
Andreasen 2000; Tavella and Randall 2000; d’Halluin et al 2004, 2005); however,
this method requires two FFT operations at each time step and does not allow the .
direct use of nonuniform grids. ‘

In the fields of machine learning and computational physics, efficient kernel sum- '
mation is actively studied. The fast multipole methods (FMMs) originally proposed i
by Greengard and Rokhlin (1987) have, in particular, been developed for efficient f
computation. In principle, the computational cost of these methods is O (M) given
M points, which is less than that of the FFT (for which the cost is O(M log M)). _
FMMs have not yet attracted much attention in the field of computational finance,
and they have been applied to only a few cases. For example, the FMM method
called the fast Gauss transform (FGT) (Greengard and Strain 1991) was applied by
d’Halluin et al (2005) to compute integral terms in PIDEs, but they suggest the FFT
approach is superior to that of FGT. The FGT approach requires an impractically
large number of grid points in order to achieve the same accuracy as the FFT method.
Broadie and Yamamoto (2003) applied FGT to the multinomial method and stochas-
tic mesh method, and the results of their numerical experiments indicate that the use
of FGT enhances the efficiency of these methods for pricing European and Bermu-
dan options. They also applied FGT with the double-exponential integration formula
for pricing path-dependent options (Broadie and Yamamoto 2005). For the present
paper, we applied the improved fast Gauss transform (IFGT) (Yang et al 2005; Raykar
et al 2005) to computing nonlocal integral operators in PIDEs under Merton’s jump-
diffusion model. Numerical results indicate that IFGT evaluation is more efficient
than FFT evaluation and can achieve the same accuracy with a practical number of
grid points.

Outline

This paper is organized as follows. Section 2 introduces the IFGT. In Section 3, we
introduce Merton’s jump-diffusion mode! and discuss the numerical results of pricing
call options under this model using the FFT and IFGT methods. In Section 4, we apply
IFGT to a two-dimensional version of Merton’s jump-diffusion model. Section 5 is
the conclusion. i

2 IMPROVED FAST GAUSS TRANSFORM

In this section, we briefly introduce IFGT (Yang et al 2005; Raykar et al 2005). Given
source points X1, X2, ..., X, , target points y1, y2, ..., Yum, and weight coefficients

e+ o e
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C1,Ca, ..., Cp,, the kernel summation is the computation of the following sum:

M,
F(yj) =) CiK(xi, y)).
i=1 .
FMM has been widely used for efficient computation; this efficiency is due to the
basic idea of the method, which is to analytically approximate the potentially full-
rank matrix as a sum of low-rank approximations. FGT (Greengard and Strain 1991)
is an FMM for computing with respect to the Gaussian kernel

1
Kex9) = exp (=713 = #l?).

FGT applies the Hermite expansion of exp(—(1/h?)|ly; — xi||?), but terms in the
expansion increase exponentially in the multidimensional case. On the other hand,
IFGT (Yang et al 2005; Raykar et al 2005) uses the multivariate Taylor expansion
and succeeds in computing with a cost that grows only polynomially in the multi-
dimensional case. The basic schemes of IFGT given in Raykar et al (2005) are as
follows. Given a desired error bound of ¢ > 0, IFGT computes the approximated

F(y;) (denoted by F(y;)), such that

o [FON = FOI _
Dyl

To achieve the desired error bound, the points are divided into clusters S; (I =
1,2,..., L) by farthest point clustering (Gonzalez 1985). Given a cluster center x *;,
the term exp(—(2/ h2)Ay; Ax;) in the expansion

1
exp (713 = =)
1 , 1 2
= exp _h_zllij" exp —ﬁIIAx;II exp —h—z-Ay,-Ax,-

is expressed as a multivariate Taylor expansion at x*; as the following:

2 Do 2B (yi—xx\P [ xi — xx\P
w{onen)- 31 (.

B=0

The truncation number p; can be chosen separately for each source point x;. Then

R L pi , 1 ) yj —x% B
,F(yj)=chpexP(‘7ﬁ")’j_x*I" T) .@D

I=18=0
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34 T.Sakuma andY.Yamada

where

28 1 Xi — X% A
C;, = E Z Ci exp (_ﬁ"xi —x*1||2) (TI) .

X; €Sy

Defining pmax := max; p; and using an indicator function, (2.1) is equivalent to

L 5
e 7 1 X% )
Fop=3. X Cpewn( -l —xmi?) (X522, \i

I=1 |B|<Pmax—1

where

B
Xi — X%
il Z Gi exp( !lxi-x*zllz)(;h—l) ligi<pi-1-

X; €S

The computational cost of computing F (y 1) at M points is O (M>); that of computing
Cé is O(M,). Because these can be computed separately, the total computational cost
is O(M; + M;). Furthermore, the Gaussian kernel decays rapidly, so Raykar et al
(2005) achieve faster computation by discarding all the points in a cluster that are i
farther away from the target point y; than a certain distance (called the cutoff radius :
and denoted ¢ ) /

A 1 —x#\P
Fop= Y ¥ Céexp(—;;uy,-—x*luz)(%),

lyj=x*s|<c} |BI<Pma—1

where

1 Xi — X%¥] P ‘
Cp = Z C; exp( ;lgllxi-x*zllz)(—'—,;—) ligispi-1- ’

X; €S

* The details of the algorithm to choose the number of clusters, L, truncation numbers, i
Di, and cutoff radii, cj,, are given in Raykar et al (2005), which also discusses in detail
the differences between FGT and IFGT. In the present paper, we stress the following
two advantages of IFGT over the original FGT.

First, Raykar et al (2005) note that FGT uses two types of expansion (far-field and
local) and needs the cumbersome translation between the two expansions. On the
other hand, the multivariate Taylor expansion in IFGT has nice properties as both a
far-field and a local expansion; we can thus avoid representing two kinds of expansion,
as well as the translation operation. :
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Second, Raykar et al (2005) suggest that, in order to obtain the same error bound,
IFGT requires fewer terms of the multivariate Taylor expansion than the FGT requires
of either the Hermite or the Taylor expansion. This seems consistent with the result of
d’Halluin ez al (2005) that FGT requires a larger number of grid points to achieve an
accuracy similar to that of FFT. This is because the slow convergence of the Hermite
expansion makes finer spatial discretization necessary in order to achieve the desired
accuracy.

3 ONE-DIMENSIONAL JUMP-DIFFUSION MODELS

3.1 Merton’s jump-diffusion model

In this paper, we consider Merton’s jump-diffusion model (Merton 1976). Merton’s
model dynamics of an asset value S, under the risk-neutral measure gives

N(@)
S(t) = S(0)exp [(r —10® - Xt +oW(t) + Z Y,-],

i=1

where r is the risk-free rate, ¢ is the volatility of the Brownian term, N(¢) is a
Poisson process with parameter A and ¥ = E[e¥] — 1. The logarithm of the jump
size ¥; follows the normal distribution f(x), with mean y and variance y2:

(x - u)z)

22 )
Then the value of option V(S,t) with maturity T satisfies the following PIDE
(Merton 1976):

w_orev
9t~ 2 882

1
f(x) = W exp (— (31)

+ (r - )LK)SZ—I; —(r+A)V+2A V(Sn,t)f(pdn, (3.2)

n=0
where T = T — is the time to maturity. The change of variables x = log(S/K) and
v(x, ) = V(S, 1) gives the PIDE

2 a2 2 +00
0?8 (r_a___lx)a_v_(rﬂ)vﬂf v(x+2,7) f(z)dz. (3.3)
2 0x )

In the case of a European call option, the initial condition is given by

9t 2 ax?
v(x,0) = max(Ke* — X, 0),
where K is the strike price. The boundary conditions are given by

P

— 0, X = —00,

~ Ke* — Ke™, x — +o0.

v(x,7) ;
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In the case of a digital call option, the initial condition is given by v(x,0) = 1 if
x > 0, and the boundary conditions are given by

-> O, X = _w’

v(x,7) —rr

~e™T, x — +o0.
For simplicity, we numerically solve this equation via the Crank-Nicolson scheme
forl1 <i <Mand1l < j < N (M represents the number of discretization points,
and N represents the number of time steps),

v/t o/

= LD +vf) + Alnt(xi, ). (3.4)

D(v,.j ) are discretizations of the differential terms, and Int(x;, ¢;) is the integral term,
defined as follows:

+00 _ —_ 2 |
Int(x,7) := 272 f v(s, T) exp (—%&) ds l’
o0 !
M ';,
1 (si —(x = u))z)
~ : —S 22 Yuyas,
3y g v(si, T) exp ( 272 w;As

where the w; terms are weights that depend on the numerical evaluation of the inte-
gral. At each time step, we evaluate Int(x;, ¢;) explicitly, but use of iteration schemes
(see, for example, d’Halluin et al 2004, 2005) is also possible as a means of maintain-
ing second-order accuracy with respect to time. Direct computation of the integral
term /(x;, t;) is computationally expensive, so in this paper we apply IFGT for the
computation. IFGT can deal with nonuniform grids directly, and it is also possible to
construct nonuniform grids in such a way that more accuracy is achieved. However, ;
for simplicity, we use a uniform grid in this paper. Another widely used approach i
is the FFT method (see, for example, Andersen and Andreasen 2000; Tavella and
Randall 2000; d’Halluin et al 2004, 2005). At each time step, the procedure of the
FFT method is to first compute the Fourier transform of v. Next, we multiply the
Fourier transform of v by the Fourier transform of f and, finally, we compute the
inverse Fourier transform. The FFT method is more efficient than direct computation,
but two FFT operations are necessary at each time step. Also, the FFT method does
not allow the direct use of nonuniform grids and requires extended regions to avoid
wraparound effects.

3.2 Numerical experiments

IFGT in this paper is executed on freely available C++ software.! The integral operator
Int(x, 7) is approximated by the trapezoid rule. The desired error bound ¢ is set as

! Codes are available at www.umiacs.umd.edu/labs/cvl/pirl/vikas/Software/IFGT/IFGT_code.htm.
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1075, and the upper limit on the number of clusters is set as 10. In addition, all
the truncation numbers are set as a constant number, p., and we vary the value of
Pmax(= Pc) to see how pp,, influences the accuracy of option prices. The grid points
are fixed under the Crank-Nicolson scheme, so for the IFGT evaluation we apply
farthest point clustering at the initial time step only. The number of grid points to
compute Int(x, 7) is set as 2%, where « is the smallest integer satisfying M < 2%.

Table 1 on the next page and Table 2 on page 41 list the results of a comparison
between the IFGT method and the FFT method for European calls and digital calls,
respectively. Truncation of the multivariate Taylor expansion in the IFGT affects the
accuracy of the numerical evaluation of Int(x, ) in PIDEs. For example, a small num-
ber for pmax (€8, Pmax = 15) is not sufficient for approximating Int(x, t) successfully,
and the maximum error value cannot necessarily be reduced just by increasing M and
N. On the other hand, the IFGT method achieves an accuracy similar to that of FFT
if pmax is sufficiently large (pmax = 20 for European calls and pp.x = 35 for digital
calls). In addition, the values of Ratio(7T") are greater than 2 in most cases, which
indicates that IFGT is more efficient even if it is compared with just one operation of
FFT. Figure 1 on page 44 shows the price, Delta and Gamma values of a digital call;
as shown, these values are smooth functions of the stock price.

As presented in Table 3 on page 45 and Table 4 on page 45, the value of y appear-
ing in the integral operator Int(x, z) influences the IFGT evaluation. Decreasing y
increases the effect of exponential decay on the integrand, leading to rapid conver-
gence of the multivariate Taylor expansion. Therefore, for example, ppax = 1 is
sufficient for pricing European and digital calls with y = 0.05.

It is possible to apply IFGT to another jump-diffusion model, called the stochastic
volatility model with jumps in return and volatility (SVCJ model) (Duffie et al 2000),
as is shown in Appendix A. It is interesting to consider the possibility of applying
IEGT to Kou’s jump-diffusion model (Kou 2002), but, even without the help of IFGT,
we can easily achieve a linear computational cost. One method is proposed in Carr
and Mayo (2007), and we detail this in Appendix B.

4 APPLICATION TO THE TWO-DIMENSIONAL MERTON
JUMP-DIFFUSION MODEL

In principle, IFGT can be applied to multidimensional cases. Therefore, as one
example, we consider the following two-dimensional Merton model, proposed by
Huang and Kou (2006). However, we assume here that the logarithm of the jump
size follows a normal distribution rather than an asymmetric Laplace distribution.
With this model, the asset values S; and S, follow under the risk-neutral measure

Research Paper www.risk.netjournal
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TABLE 1 European call price using the IFGT and FFT methods (K = 100, T = 0.25). [Table continues on next two pages.]

IFGT (prax = 15) FFT

-~

M N Max error Time(s) Ratio Ratio(T) Maxerror Time(s) Ratio

BPRWEA ‘A pue ewMjeS '] 8¢

254 50 0.003335 0.015 — 4.133 0.003313 0.062 —

506 100 0.000878 0.062 4.133 3.258 0.000905 0.202 3.258
1010 200 0.000204 0.203 3.274 4.379 0.000172 0.889 4.401
2018 400 0.000097 0.839 4.133 4.396 0.000063 3.688 4.148
4034 800 0.000040 3.309 3.944 4.788 0.000021 15.844 4.296
8066 1600 0.000047 13.394 4.048 5.100 0.000012 68.314 4.312

g
3
B
=3
g
Q
g
§.
B
u
)
3
3
2
n

IFGT (Pmax = 20) FFT

™

M N Max error Time(s): Ratio Ratio(7) Maxerror Time(s) Ratio

254 50 0.003304 0.019 — 3.263 0.003313 0.062 —

506 100 0.000908 0.062 3.263 3.258 0.000905 0202 3.258
1010 200 0.000166 0.265 4.274 3.355 0.000172 0.889 4.401
2018 400 0.000057 1.182 4.460 3.120 0.000063 3.688 4.148
4034 800 0.000023 4275 3.617 3.706 0.000021 15.844  4.296
8066 1600 0.000011 16.330 3.820 4.183 0.000012 68.314 4.312
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TABLE 1 Continued.

IFGT (pmax = 25) FFT
M N Max error Time(s) Ratio Ratio(T) Maxerror Time(s) Ratio
254 50 0.003304 0.031 — 2.000 0.003313 0.062 —
506 100 0.000908 0.074 2387 2.730 0.000905 0202 3.258
1010 200 0.000166 0312 4.216 2.849 0.000172 0.889 4.401
2018 400 0.000057 1212 3.885 3.043 0.000063 3.688 4.148
4034 800 0.000023 4955 4.088 3.198 0.000021 15.844 4.296
8066 1600 0.000011 19.916 4.019 3.430 0.000012 68.314 4.312
IFGT (pmax = 35) FFT
M N Max error Time(s) Ratio Ratio(T) Maxerror Time(s) Ratio
254 50 0.003304 0.029 —_ 2.138 0.003313 0.062 —_
506 100 0.000908 0.109 3.7589 1.853 0.000905 0.202 3.258
1010 200 0.000166 0418 3.835 2.127 0.000172 0.889 4.401
2018 400 0.000057 1.587 3.797 2.324 0.000063  3.688 4.148
4034 800 0.000023 6.446 4.062 2,458 0.000021 15.844 4.296
8066 1600 0.000011 24972 3.874 2.736 0.000012 68.314 4312
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TABLE 1 Continued.

IFGT (pmax = 45) FFT

-

M N Max error Time(s) Ratio Ratio(T) Maxerror Time(s) Ratio

254 50 0.003304 0.031 — 2.000 0.003313 0.062 —

506 100 0.000908 0.124  4.000 1.629 0.000905 0.202 3.258
1010 200 0.000166 0.497 4.008 1.789 0.000172 0.889 4.401
2018 400 0.000057 1875 3.974 1.867 0.000063 3.688 4.148
4034 800 0.000023 8.011 4.056 1.978 0.000021 156.844 4.296
8066 1600 0.000011 30.841 3.850 2.215 0.000012 68.314 4.312

Parameters used are r = 0:05. o = 025,41 =0.1, 4 = —0.9 and y = 0.35. Max eror represents the maximum of the difference between the price computed by the Crank—
Nicolson scheme and the analytical prices given in Merton (1976) on [log(80/ K), log(110/ K)] with respect to x. Ratio represants the ratio of the CPU time for the given grid
points to the time with half as many points in each direction. Ratio(T") represents the ratio of the CPU time taken in the case of the FFT method to the CPU time taken in the case
of the IFGT method.
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TABLE 2 Digital call price using the IFGT and FFT methods (K = 100, T = 0.25). [Table continues on next two pages.]

IFGT (pmax = 15) FFT
M N Max error Time(s) Ratio Ratio(T) Maxerror Time(s) Ratio
254 50 0.001953 0.015 — 3.067 0.002129 0.046 —_
506 100 0.000551 0.062 4.133 3.258 0.000558 0.202 4.391
1010 200 0.000205 0.234 3.774 3.675 0.000139 0.860 4.257
2018 400 0.000303 0.794 3.393 4.613 0.000035 3.663 4.259
4034 800 0.000327 3.386 4.264 4.566 0.000009 15459 4.220
8066 1600 0.000335 12.881 3.804 5.190 0.000002 66.850 4.324
IFGT (pmax = 20) FFT
M N Max error Time(s) Ratio Ratio(T) Maxerror Time(s) Ratio
254 50 0.002127 0.015 — 3.067 0.002129 0.046 —
506 100 0.000618 0.062 4.133 3.258 0.000558 0.202 4.391
1010 200 0.000197 0.264 4.258 3.258 0.000139 0.860 4.257
2018 400 0.000096 0.970 3.674 3.776 0.000035 3.663 4.259
4034 800 0.000070 4156 4.285 3.720 0.000009 15459 4.220
8066 1600 0.000063 16.409 3.948 4.074 0.000002 66.850 4.324
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TABLE 2 Continued.

IFGT (pmax = 25) FFT
M N Max error Time(s) Ratio Ratio(T) Maxerror Time(s) Ratio
254 50 0.002121 0.015 — 3.067 0.002129 0.046 —
506 100 0.000548 0.078 5.200 2.590 0.000558 0.202 4.391
1010 200 0.000130 0302 3.872 2.848 0.000139 0860 4.257
2018 400 0.000034 1.148 3.801 3.191 0.000035 3.663 4.259
4034 800 0.000012 4543 4957 3.403 0.000009 15.459 4.220
8066 1600 0.000008 18.438 4.059 3.626 0.000002 66.850 4.324
IFGT (pmax = 35) FFT
M N Max error Time(s) Ratio Ratio(T) Maxerror Time(s) Ratio
254 50 0.002127 - 0.031 —_ 1.484 0.002129 0.046 —_
506 100 0.000556 0.093 3.000 2172 0.000558 0.202 4.391
1010 200 0.000137 0405 4.355 2.123 0.000139 0860 4.257
2018 400 0.000033 1.551 3.830 2.362 0.000035 3.663 4.259
4034 800 0.000009 5.948 3.835 2.599 0.000009 15459 4.220
8066 1600 0.000003 25253 4.246 2.647 0.000002 66.850 4.324
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TABLE 2 Continued.

IFGT (pmax = 45) FFT
M N Max error Time(s) Ratio Ratio(T) Maxerror Time(s) Ratio
254 50 0.002128 0.031 — 1.484 0.002129 0.046 —

506 100 0.000558 0.124  4.000 1.629 0.000558 0.202 4.391
1010 200 0.000139 0486 3.919 1.770 0.000139 0.860 4.257
2018 400 0.000035 1949 4.010 1.879 0.000035 3.663 4.259
4034 800 0.000008 7.842 4.024 1.971 0.000009 15459 4.220
8066 1600 0.000002 29.802 3.800 2.243 0.000002 66.850 4.324

Parameters used are r = 0.05, 0 = 0.25, A = 0.1, u = —0.9 and y = 0.35. Max error represents the maximum difference between the price computed by the Crank-Nicolson
scheme and the analytical prices given in Merton (1976) on [log(90/ K), log(110/ K)] with respect to x. Ratio represents the ratio of the CPU time for the given grid points to the
time with half as many points in each direction. Ratio(7") represents the ratio of the CPU time in the case of the FFT method to the CPU time in the case of the IFGT method.
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FIGURE 1 Digital call option (K = 100, T = 0.25).
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Parameters used are r = 0.05, 0 = 0.25, A = 0.1, u = —0.9 and y = 0.35. (a) Option value. (b) Delta value. (c)
Gamma value.
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TABLE 3 Max error for different pyax and y values in the case of a European call (M =
8066, N = 1600).

Pmax y=040 =035 p=015 y=0.05 » =0.0001

1 0.011004 0.002559 0.000119 0.000010  0.000010

5 0.021614 0.020654 0.004607 0.000010  0.000010
10  0.000765 0.002238 0.006046 0.000010  0.000010
20 0.000050 0.000011 0.006046 0.000010  0.000010
30 0.000050 0.000011 0.000264 0.000010  0.000010
40 0.000050 0.000011 0.000010 0.000010 0.000010
50 0.000050 0.000011 0.000010 0.000010  0.000010
60 0.000050 0.000011 0.000010 0.000010  0.000010
70 0.000050 0.000011 0.000010 0.000010  0.000010

TABLE 4 Max error for different pmax and y values in the case of a digital call (M = 8066,
N = 1600).

Pmax y=040 y=035 y=015 y»=0.05 y =0.0001

1 0.000593 0.000639 0.000014 0.000002 0.000002

5 0.000336 0.001453 0.000268 0.000002 0.000002
10  0.000849 0.000981 0.000682 0.000002  0.000002
20 0.000085 0.000063 0.000484 0.000002 0.000002
30 0.000002 0.000006 0.000123 0.000002 0.000002
40 0.000002 0.000003 0.000007 0.000002 0.000002
50 0.000002 0.000002 0.000002 0.000002 0.000002
60 0.000002 0.000002 0.000002 0.000002 0.000002
70 0.000002 0.000002 0.000002 0.000002 0.000002

(Huang and Kou 2006)

N()

S1(t) = S1(0) exp [(r — Lot = de)t + WA (D) + Z Yi(l)],
i=1

S2(t) = S2(0) exp [(r — 102 = Moot

N@®)

+ ol @) + V=20 + Y Y,-‘z"],

i=1
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46 T. Sakuma andY.Yamada

where ky = EleY k] — 1, W and W, are independent Brownian motions, p is the
correlation and N(¢) is a Poisson process with parameter A = A¢ + A1 + A5. In this
model, each asset exhibits a common jump with A, and independent jumps with A,
and A,, respectively. The logarithm of each jump size ¥; follows a normal distribution.
The infinitesimal generator of process (S1 (), S2(¢)) is given in Huang and Kou (2006)

as
v 2 3%y
Imv = —Ax ——+ -3 —+——
- Vg + Ot —da)ge+ o 1
._?..i.*. v
23x22 plzaxlx 1

+00 ptoo c
+)~cf f v(x1 + Y1, %2 + y2,T) frw yo (¥1, ¥2) dyr1 dy2
- —00

— Acv(xy, X2, 7)

+00
+4 f V(¥ + y1. 72, 7) frr O1) dyr = Arv(er, x2,7)

—00

400
+ A2 / v(x1, X2 + y2, 7) fr@ (y2) dy2 — A2v(x1, X2, T),

—00

where ffm y@ is the bivariate normal density with mean m. and variance Jc,

2
— ml,C J - vl,c pcvl:cvz)c
mC - ’ [ 2 ’
ma.c PcVl,cV2,c Vie

and fyq), fy@ are independent normal densities with means m; and m; and vari-
ances v? and v2, respectively. Then, letting x; = log(S1/Cy) and x5 = log(S2/Cs)
(Cy is a scaling factor), the value of option v satisfies the following PIDE (see, for
example, Cont and Tankov 2003):

ve—Imv+4+rv=0.

To solve the two-dimensional PIDE numerically, we use the simplest alternating
direction implicit (ADI) scheme of the Douglas—Rachford method (Douglas and
Rachford 1956):

(1-64)Y =[1 + 4o+ (1 —0)A; + 4A2]V",
(1 = 6A4)V™H =¥V —04,V™.

Ag denotes the mixed derivatives and the double integral operators, A; denotes the
spatial derivatives in the x; direction and A denotes the spatial derivatives in the

e Lo
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x, direction. This method is of first-order accuracy in time, and at each time step
the Thomas algorithm is used to solve for ¥ and V”*1, In the following numerical
experiment, we set § = 0.5 and use uniform grid points for simplicity. If we also
assume A; = A, = O for simplicity, we need to compute the following integral at
each time step:

+o00 p+oo ¢ ’
Int(xy, X2, 7) := / / v(x1 + y1. %2 + y2. D) fya yar (01, y2) dy1dy2
-0 J-o0

+00 p+oo c
=[ / v(s1,52, ) fyw yr (51— 1,52 — x2) ds; dsz,
-0 J-o0 ’
where f],c(,, y@ (81 = X1, 52 — X2) is a bivariate normal density

1

2rvicv2cy 1l — pe?

X exp (_ 1 [(Sn — (x1 +mye))? (52 — (x2 + m2.c))?

2(1 - pcz) v%,c V%’c
—2p (51— (x1 +my1c))(s2 — (x2 + m2,c))])
‘ Vi,cV2,c '

We can apply IFGT to this integral by expressing it as follows (see Appendix C for
the derivation):

(51— (x1 + m1e))? + (55 — (x5 +m) ))?
+(sl3(slv S2) - (xé(xl’ X2) + m’3,c))2

v(s1,82,7)exp | —
zvic(l + IpC')

’

where
x, = ke s 1= ke 52 my = —Lm
- T A2 - ’ 2,c "~ 2,¢c»
2 V2,¢ ' 2 Va,c € V2,c
xl (xl x2) o= IpCI Xy — Sgn(p ) |pC| xl
TN 1=l TN
SI (Sl s2) — lpCI 51— sgn(p ) |pC| SI
v ' 1 —|pc] “Vi1- | oc| ’

loc| |Pc| '
mh . = ‘/ my.c —sgn m) .
3,c 1— |pc| l,c g (pC) 1— |pc| 2,c
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TABLE § Basket call price using the IFGT and FFT methods (X = 100, T = 0.15).

IFGT (pmax = 1) FFT

-~ ~ o~

M N Price Time(s) Ratio Ratio(T) Price Time(s) Ratio

62 32 2040948 0380 — 2392 2.041042 0933 —
124 64 2067723 3.024 7.754 2447 2.067734 7.399 7.930
248 128 2.072201 22720 7.513 2774 2072202 63.020 8.517
496 256 2.073188 185.689 8.173 3.021 2.073188 561.027 8.902

Parameters are r = 0.05, gy = 0.15, g2 = 0.15, p = —=0.5, A = 0.1, my,c = —1.00, vy c = 0.45, mz o = —0.75, |
va,c = 040, p = —0.5, C; = 50 and $1(0) = S2(0) = 50. The reference price is 2.073939 computed by
1000000 Monte Carlo simulation paths (Glasserman 2004) with Sobol sequences.

Table 5 lists the pricing results for a basket call with payoff max(Cre*! + Cre*2 —
K, 0) for the case of an integral operator approximated by the double trapezoid rule. ;
As in the one-dimensional case, all the truncation numbers are equal. The desired error
bound & is set at 10~%, and the upper limit on the number of clusters is set at 10. The }
Douglas—Rachford method with explicit evaluation of the integral operator seems to “
give linear convergence, as expected. Again, we achieve the same accuracy in less time |
than using the FFT method. Values of p. and v, appearing in the integral operator
Int(x;, x2, t) influence the I[FGT evaluation. Moreover, the exponential effect in the
integrand is larger than in the one-dimensional case, and the multivariate Taylor
expansion converges rapidly. As a result, a truncation number of ppax = 1 is sufficient
to achieve the same accuracy as the FFT method, and, according to our numerical
experiments, this is true for v . across the range from 0.1 to 0.7 with p. = 0.5.
Figure 2 on the facing page shows the price, Delta, and Gamma values of a spread
call with payoff max(Cre*2 — Cre*! — K, 0); as shown, these values are smooth
functions of the stock price.

5 CONCLUSION

In this paper, we use IFGT (Yang et al 2005; Raykar et al 2005) to solve PIDEs effi-
ciently under Merton’s jump-diffusion model. The implementation is straightforward,
and our numerical examples demonstrate that the IFGT method is more efficient than
the FFT method and can achieve the same accuracy with a practical number of grid
points. For evaluation of PIDEs, we apply the simple finite difference method (the
Crank-Nicolson scheme in one-dimension and the Douglas—Rachford scheme in two-
dimensions), but it is easy to expect that a combination of IFGT with a higher-order
ADI scheme (see, for example, Craig and Sneyd 1988; Hundsdorfer 2002), along with
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Application of the improved fast Gauss transform 49

FIGURE 2 Spread call option (K = 4.0, T = 0.15): price, Delta and Gamma.
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Parameters are r = 0.05, 01 = 0.15, 02 = 0.15, p = =0.5, A = 0.1, my . = —1.00, v, = 0.45, mp, = —0.75,
V2, =040, p. = —0.5 and C, = 50. (a) Option value, S2(0) = 50. (b) Option value, S,(0) = 50. (c) Delta value,
S2(0) = 50. (d) Deita value, S;(0) = 50. () Gamma value, S2(0) = 50. (f) Gamma value, S;(0) = 50.

the use of nonuniform grid points, can achieve greater efficiency. IFGT is applied only
for a Merton-type jump model in the present paper, but another FMM, known as the
kernel-independent FMM (see, for example, Ying et al 2004; Fong and Darve 2009),
can be used for other jump models as well. We expect that the use of such an FMM
will contribute to efficient option pricing under general Lévy processes, and this is
left for future research.
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APPENDIX A. APPLICATION OF IMPROVED FAST GAUSS
TRANSFORM TO THE STOCHASTIC VOLATILITY

MODEL WITH JUMPS IN RETURN AND VOLATILITY

Letting X, = log(S;) and V; be the instantaneous variance, the asset under the SVCJ
model (Duffie er al 2000; Feng and Linetsky 2008) follows

=@u-—1iVio)dt + Vo dWy + dJy,
Vi=k(@—Vi=)dt + E/Vi—dWa + dJyv,

where (J;, J;v) is a two-dimensional jump process, W), and W5, are Brownian
motions with dWj, dWa, = pdt, k is a mean-reversion parameter and £ is a volatility
parameter of V. The infinitesimal generator for (X,, V;) is givenin Feng and Linetsky
(2008) as

(DY o VL ENES g0
Imf"(“'i)a 6= 8 T et T T 2

+o00 400
42 f F(x + %10+ v0)p(x1, v1) dx1 dvy — Af (%, v),
0 —00

where p(x;, v1) is the joint bivariate normal density

p(_ﬂ _a-m —pva)z)'

v 252

1
ex
v/ 27 s2

This implies that, given jump size v; of V;, the jump size of X, is normally distributed
with mean m+-p v, and variance s2. Then the value of option F satisfies the following
PIDE (see, for example, Cont and Tankov 2003):

Fr—ImF+rF =0.

In this case, we need to calculate a two-dimensional integral term, so we can apply
IFGT by expressing the integral as follows:

A +o0 pto0 vy
vv2ns2[) /—oo oxP (—T)f(n’vl)

X exp (_ x'(x,v)— (xz'g);l, v1) + m))z

)dxl dvy,

where x’'(x, v) := x — psv. But the value of s is expected to be small (for example,
calibration gives s = 0.0001 in Duffie et al (2000)). In this case, the simple summation
of some integrands around x and v seems to be sufficient, because the exponential
function exp(—(x’(x, v) — x'(x1, v1) + m)?/2s2) decays rapidly for small s.
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APPENDIX B. KOU’S JUMP-DIFFUSION MODEL

We leave the details of Kou’s jump-diffusion model to Kou (2002), but to compute
option prices under PIDE, it is necessary to compute the following form of integral
operator:

/+°° v(ix +2z,7)f(2)dz

—00
0 +o00
=A1/ v(x+z,t)eG‘zdz+A2/ v(x + z,7)e"%2% dz
—o0 0 .
x +00
N Ale_Glx[ v(s, 7)e%1 ds + A2e62x/ v(s, t)e~%2% ds,
—o0 ;

where A1, A2, G and G, are scalar constants. It is interesting to consider the possi-
bility of applying IFGT to this type of kernel, but, even without the help of IFGT, we
can easily achieve a linear computational cost. One method is proposed in Carr and
Mayo (2007) and, according to their paper, the second term is expressed as follows:

+00
Ape%2* f (s, T)e"%2%ds
X
+o00 x
= A,e%2* [ v(s, t)e~02% ds — A,e02* / v(s, )e 625 ds.
0 0

The second integral can be computed recursively as follows, to achieve a linear
computational cost:

Xi+1 Xi
f v(s, t)e 925 ds = / v(s, 7)e” 925 ds + v(xi41, T)e 2%+ w; 1 As,
0 0

where the w; terms are weights that depend on the numerical evaluation of the integral.

APPENDIX C. APPLICATION OF IMPROVED FAST GAUSS
TRANSFORM TO THE TWO-DIMENSIONAL
MERTON MODEL

First, we assume p. = 0. Then

(51— (x1+mye))? | (52— (x2+ma.))?
) + 2
1,c 2,c
2 (51 = (x1 +my,c))(s2 — (X2 + mac))
- (+4

Vi,eV2,c
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- 1-
= s = (o + mi )P + —2&[-92 — (X2 + m2,0)P?
vl,C vztc

+ pc[(sl —(x1+mie)) (22— (2 + m2,c))]2

Vi,¢ V2,c
1- Pec
—_ 2
= —5—[s1 = (x1 +m1c)]
vl,c
) 2
1—pc[vie Vie Vi,c
+ 3 _’.SZ_ _’xz.*..—’mz’c
Vie LV2,c V2,c V2,c

+ 1 “;Pc [vl,c / pe (51— (x1+myc))
vl,c 1- Pc Vi,c
oy [P 2=t mz,c))]2
€ 1- Pec Va,c

1- 1-—
= P sy — (k1 + my )P+ el — () + mh )]
vl,c vl,c

1—p 4
+ TC[SQ(SL $2) = (x3(x1, x2) + m} )P,
1,¢

and the integrand is expressed as

(51— (x1 +m1,e))? + (55— (x5 + m) ))?
+(S§(Sl»32) - (xé(xl'x2) + mg,c))z

v(s1,52, ) exp | —
202, (1+ pc)

where
r._ Vi i . Ve 1. Ve
X2 = ——X2, 82 = —s2, mz’c = _mz,C’
V2,c V2,c V2,c
) . pc Pc ’
x3(x1,x2) = ‘/ X1 — ‘/—xzy
1-pc 1—pc
' . Pe Pe
53(51,52) := \/1 p 51— \/——1 2
- M — VM
/ Pc Le = Pc 1]
3,c 1 _ pc < l - pc 2,c
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Similarly for p. < 0, the integrand is expressed as

(51— (x1 + m1,e))? + (55 — (x5 +m) ))?
+(S§(Sl,52) - (xé(xl’ x2) + mg,c))z
Zvic(l - pC)

' — | oc| locl
B = T ™ T ™
| |

|oc loc
1—-|pc] I —|pc|

oc| | oc| ’
m’ :=‘/ my, +‘/—m .
e 1—pc| ¢ 1 —|pc| 2.

Combining the two cases, the integral is expressed as

v(s1,52, T)exp | —

where

s3(s1,52) := 51+ 53,

(51— (x1 + m1,e))? + (55 — (x5 + m) ))?

+(S§(Sl, 32) - (xs(XI, xz) + m’3,c))2
v(slysz, t) eXp| — 2\)% (l + |pc|) ’
.

where
’ Vi,c V1 ’ 1,¢
2= —X2, §2 = 52, m2,c = m2,Cv
V2,c V2,c 2,¢
| oc| | oc|
’ — _ ’
x3(x1, x2) : 1— IPclxl sgn(pc) 1— |Pc|x2,
TN 1 - el Ni-lpl ®
mh = | oc| My.c —sgn [oc| mh
i = T [ e T B T e
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